WorldWideScience

Sample records for hydrodynamical model mike

  1. Modeling Spitsbergen fjords by hydrodynamic MIKE engine.

    Science.gov (United States)

    Kosecki, Szymon; Przyborska, Anna; Jakacki, Jaromir

    2013-04-01

    Two Svalbard's fjords - Hornsund (on the western side of the most southern part of Spitsbergen island) and Kongsfjorden (also on the western side of Spitsbergen island, but in the northern part) are quite different - the first one is "cold" and second one is "warm". It is obvious that both of them are under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current detaches Hornsund. But there is also freshwater stored in Spitsbergen glaciers that have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord and there is no answer which one is the most important in each fjord. Modeling could help to solve this problem - MIKE 3D model has been implemented for both fjords. Mesh-grid of the each fjord has been extended for covering shelf area. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Hornsund and Kongsfjorden. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  2. Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model

    OpenAIRE

    Changjun Zhu; Qinag Liang; Feng Yan; Wenlong Hao

    2013-01-01

    In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the m...

  3. Storm Surge Modelling of Super Typhoon Haiyan Event in Tacloban City, Leyte using MIKE 21 Model

    Science.gov (United States)

    Prelligera, Flor Angel; Caro, Carl Vincent; Ladiero, Christine; Mahar Francisco Lagmay, Alfredo; Lapidez, John Phillip; Malano, Vicente; Agaton, Rojelee; Santiago, Joy; Suarez, John Kenneth

    2014-05-01

    Super Typhoon Haiyan hit the Philippines on 08 November 2013 causing massive destruction to the central part of the country. Arguably the strongest tropical cyclone to make landfall in recorded history, Haiyan caused 6,201 deaths and damages amounting to PhP 36,690,882,497.27 (USD 824,390,091.77). The typhoon also brought about destructive storm surges reaching up to 7 meters in height. A better understanding of storm surge is essential to the development of mechanisms to mitigate the effects of similar events. Thus, a computer simulation of Haiyan with the resulting wave heights and storm surge levels was made using MIKE 21 model -- a software used for many different coastal and marine engineering projects worldwide. Simulations were made using the Hydrodynamic Flexible Mesh (HD FM) model coupled with the Spectral Wave (SW) model of the software. This coupled approach allows accurate calculations of both surge water levels and wave crest heights for overtopping of coastal structures. The maximum mesh flexibility of MIKE 21 allows mesh refinement for the coastal areas of Tacloban City within coarser mesh elements resulting to higher grid accuracy. Input parameters for the simulations of the coastline of Tacloban City, a densely populated coastal community heaviest hit by the storm surges of Haiyan, were obtained from the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) and Japan Meteorological Agency (JMA). Atmospheric conditions such as wind and pressure values were input to a set of regional and local hydrodynamic and spectral wave models. Simulation results were compared with available tidal gauge records and the comparison showed good correlation. Coastal regional inundation maps were then created from the results of the storm surge simulations. These maps or its equivalent should be used to develop and further improve disaster risk management plans for future surge events. These plans include, but are not limited to

  4. Mighty Mike!

    Science.gov (United States)

    Apel, Laura

    2007-01-01

    This article profiles Mike Simmel, a member of the Harlem Wizards professional basketball team and a national spokesman for Epilepsy Awareness. Mike has been diagnosed with epilepsy when he was two-years-old. At age seven, his father gave him a basketball to see if working with the ball would help him overcome his motor skills issues. Mike first…

  5. Superluminous Supernovae hydrodynamic models

    Science.gov (United States)

    Orellana, M.

    2017-07-01

    We use our radiation hydrodynamic code in order to simulate magnetar powered Superluminous Supernovae (SLSNe). It is assumed that a central rapidly rotating magnetar deposits all its rotational energy into the ejecta where is added to the usual power. The magnetar luminosity and spin-down timescale are adopted as the free parameters of the model. For the case of ASASSN-15lh, which has been claimed as the most luminous supernova ever discovered, we have found physically plausible magnetar parameters can reproduce the overall shape of the bolometric light curve (LC) provided the progenitor mass is ≍ 8M⊙. The ejecta dynamics of this event shows signs of the magnetar energy input which deviates the expansion from the usually assumed homologous behaviour. Our numerical experiments lead us to conclude that the hydrodynamical modeling is necessary in order to derive the properties of powerful magnetars driving SLSNe.

  6. Storm Surge Risk Assessment of Tacloban, Leyte Using MIKE 21 Model Simulation of Typhoon Haiyan

    Science.gov (United States)

    Prelligera, F. A.; Ladiero, C.; Caro, C. V.; Lagmay, A. M. F. A.; Lapidez, J. P. B.; Suarez, J. K. B.; Santiago, J. T.; Agaton, R.

    2014-12-01

    Rehabilitation efforts for the destruction of Typhoon Haiyan which ravaged the central part of the Philippines may take up to 10 years and will cost PhP 250 billion (USD 5.7 billion). To prevent extensive damages and extreme cost for rehabilitation, thorough risk assessment along with systematic infrastructure plans, evacuation plans, and land use planning of the areas must be done. The study conducted a qualitative risk assessment for the city of Tacloban, one of the severely affected areas by the storm surges brought about by the typhoon. Its coastal areas are at high risk to storm surge due to: its location relative to the typhoon track; low elevation topography; dense population; and progressive economic activities. The risk assessment model proposed by the United Nations (1991) was used, where the risk index is defined by the hazard index multiplied by its vulnerability index. The risk index was evaluated into a five-point scale: very high, high, medium, low, very low. The storm surge hazard index of the study area was derived from the simulation results of Typhoon Haiyan event using MIKE 21 - a versatile software used for coastal modelling. Simulations were made using the coupled approach of Hydrodynamic Flexible Mesh (HD FM) and Spectral Wave (SW) models. This approach takes into account both surge water levels and wave crest heights for overtopping of coastal structures. The vulnerability index was determined from population, built environment, and critical service centers. The resulting risk index map will be beneficial to the on-going rehabilitation efforts in the study area.

  7. Data assimilation in hydrodynamic modelling: on the treatment of non-linearity and bias

    DEFF Research Database (Denmark)

    Sørensen, Jacob Viborg Tornfeldt; Madsen, Henrik

    2004-01-01

    The state estimation problem in hydrodynamic modelling is formulated. The three-dimensional hydrodynamic model MIKE 3 is extended to provide a stochastic state space description of the system and observations are related to the state through the measurement equation. Two state estimators, the max......The state estimation problem in hydrodynamic modelling is formulated. The three-dimensional hydrodynamic model MIKE 3 is extended to provide a stochastic state space description of the system and observations are related to the state through the measurement equation. Two state estimators...... oceanic models. Three measures of non-linearity and one bias measure have been implemented to assess the validity of these assumptions for a given model set-up. Two of these measures further express the non-Gaussianity and thus guide the proper statistical interpretation of the results. The applicability...

  8. MIKE SHE: Software for integrated surface water/ground water modeling

    Science.gov (United States)

    Chunmiao Zheng,; Hughes, Joseph D.

    2008-01-01

    MIKE SHE: Software for Integrated Surface Water/Ground Water Modeling - Hughes - 2008 - Groundwater - Wiley Online Library // Modernizr.load('http://content.readcube.com.ezproxy.library.wisc.edu/wiley/epdf_linker.js'); // // // var gs_channels = 'default'; // var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; ( function () { var gads = document.createElement ( 'script' ) , node = document.getElementsByTagName ( 'script' ) [ 0 ] ; gads.async = true; gads.src = document.location.protocol + '//www.googletagservices.com/tag/js/gpt.js'; node.parentNode.insertBefore ( gads , node ); }) (); // Consideration of surface water and ground water interactions is becoming more important owing to complex water resource problems that require balancing water use and environmental concerns. Modeling of ground water is increasingly being done from an integrated hydrologic system perspective. MIKE SHE is a software tool developed specifically to simulate fully coupled surface water and ground water flow and transport processes. MIKE SHE includes a number of modules to simulate climatic processes, overland flow, channel flow, and saturated-unsaturated ground water flow. Development of Système Hydrologique Européen (SHE) began in 1977 as a collaborative research project by the Institute of Hydrology in the United Kingdom, SOGREAH in France, and the Danish Hydraulic Institute in Denmark (Graham and Butts 2006). The Danish Hydraulic Institute (now called DHI Water and Environment) is the developer of the commercial version of SHE (MIKE SHE); more information regarding the software can be found on the company’s Web site at http://www.dhigroup.com.

  9. Lotic Water Hydrodynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-23

    Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.

  10. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  11. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China

    Science.gov (United States)

    S. Wang; Z. Zhang; G. Sun; P. Strauss; J. Guo; Y. Tang; A. Yao

    2012-01-01

    Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped...

  12. On the probability distribution of stock returns in the Mike-Farmer model

    Science.gov (United States)

    Gu, G.-F.; Zhou, W.-X.

    2009-02-01

    Recently, Mike and Farmer have constructed a very powerful and realistic behavioral model to mimick the dynamic process of stock price formation based on the empirical regularities of order placement and cancelation in a purely order-driven market, which can successfully reproduce the whole distribution of returns, not only the well-known power-law tails, together with several other important stylized facts. There are three key ingredients in the Mike-Farmer (MF) model: the long memory of order signs characterized by the Hurst index Hs, the distribution of relative order prices x in reference to the same best price described by a Student distribution (or Tsallis’ q-Gaussian), and the dynamics of order cancelation. They showed that different values of the Hurst index Hs and the freedom degree αx of the Student distribution can always produce power-law tails in the return distribution fr(r) with different tail exponent αr. In this paper, we study the origin of the power-law tails of the return distribution fr(r) in the MF model, based on extensive simulations with different combinations of the left part L(x) for x 0 of fx(x). We find that power-law tails appear only when L(x) has a power-law tail, no matter R(x) has a power-law tail or not. In addition, we find that the distributions of returns in the MF model at different timescales can be well modeled by the Student distributions, whose tail exponents are close to the well-known cubic law and increase with the timescale.

  13. Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain

    Science.gov (United States)

    Z. Dai; C. Li; C. Trettin; G. Sun; D. Amatya; H. Li

    2010-01-01

    Hydrological models are important tools for effective management, conservation and restoration of forested wetlands. The objective of this study was to test a distributed hydrological model, MIKE SHE, by using bi-criteria (i.e., two measurable variables, streamflow and water table depth) to describe the hydrological processes in a forested watershed that is...

  14. Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios

    2017-05-01

    The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.

  15. A data assimilation system combining CryoSat-2 data and hydrodynamic river models

    DEFF Research Database (Denmark)

    Schneider, Raphael; Ridler, Marc-Etienne; Godiksen, Peter Nygaard

    2017-01-01

    There are numerous hydrologic studies using satellite altimetry data from repeat-orbit missions such as Envisat or Jason over rivers. This study is one of the first examples for the combination of altimetry from drifting-ground track satellite missions, namely CryoSat-2, with a river model. Cryo......Sat-2 SARIn Level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra River in South Asia, which is based on the Saint-Venant equations for unsteady flow and set up in the MIKE HYDRO River software. After calibration of discharge and water level the hydrodynamic model can accurately...

  16. Hydrodynamic model in isospin channels

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S.

    1987-08-31

    The Steinwedel-Jensen hydrodynamic model is generalized to study isovector collective modes excited in charge-exchange reactions. Results are given for the energy splittings between the different isospin components of the giant dipole and monopole resonances recently observed in (p,n) and (..pi../sup +- /,..pi../sup 0/) reactions. The quenching of the ..delta..T/sub z/ = +1 excitation strength in Nnot =Z nuclei with respect to the N = Z case is also discussed.

  17. Numerical modeling of hydrodynamic in southwestern Johor, Malaysia

    Science.gov (United States)

    Jusoh, Wan Hasliza Wan; Tangang, Fredolin; Juneng, Liew; Hamid, Mohd. Radzi Abdul

    2014-09-01

    Tanjung Piai located at the southwest of Johor, Malaysia faces severe erosion since a few decades ago. Considering the condition in this particular area, understanding of its hydrodynamic behaviour should be clearly explained. Thus, a numerical modelling has been applied in this study in order to investigate the hydrodynamic of current flow along the study area. Hydrodynamic study was carried out by applying a numerical modelling of MIKE 21 software based on flexible mesh grids. The model generally described the current flow pattern in the study area corresponding to the several flows from surrounding water regime which are Malacca Strait, Singapore Strait and Java Sea. The interaction of various water flows in the area of Tanjung Piai which is located in the middle part of the meeting of the currents to have a very complicated hydrodynamic conditions. The study area generally experienced two tidal phase in a day as the water flows is greatly influenced by the adjacent water flow from Malacca and Singapore Straits. During first tidal cycle, the most dominant flow is influenced by a single water flow which is Malacca Strait for both ebbing and flooding event. The current velocity was generally higher during this first tidal phase particularly at the tips of Tanjung Piai where severe erosion is spotted. However, the second tidal phase gives different stress to the study area as the flow is relatively dominated by both Malacca and Singapore Straits. During this phase, the meeting of current from both straits can be discovered near to the Tanjung Piai as this occurrence makes relatively slower current velocity around the study area. Basically, the numerical modelling result in this study can be considered as basic information in describing the condition of study area as it would be very useful for extensive study especially the study of sediment transport and morphological processes in the coastal area.

  18. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  19. Ecosystem approach to water resources management using the MIKE 11 modeling system in the Strymonas River and Lake Kerkini.

    Science.gov (United States)

    Doulgeris, Charalampos; Georgiou, Pantazis; Papadimos, Dimitris; Papamichail, Dimitris

    2012-02-01

    The ability to apply an ecosystem approach to the Strymonas River catchment was investigated using the MIKE 11 modeling system for the simulation of surface water. The Strymonas River catchment is shared mainly between Bulgaria and Greece. The river feeds the artificial Lake Kerkini, a significant wetland ecosystem, and further downstream it outflows to the Gulf of Strymonikos, whose estuary ecosystem is very important for fisheries, biodiversity and tourism. MIKE 11-NAM was used for the simulation of rainfall-runoff process in the Strymonas River catchment and MIKE 11-HD was used to simulate the unsteady flow of the Strymonas River and to apply management rules based on the water level of Lake Kerkini. Two water level management scenarios were investigated. The first scenario referred to the mean daily-observed water level of Lake Kerkini between 1986 and 2006, and the second scenario represented adjustments necessary to fulfill the lake's ecosystem requirements. Under the current water level management practices (Scenario 1), the Strymonas River-Lake Kerkini system has enough water to fulfill its Irrigation Water Requirements (IWR) in normal and wet years while a slight deficit is appeared in dry years; however, both Lake Kerkini and the Strymonas River estuary ecosystems are subject to pressures, since reduction of the forest area has been recorded. Applying the ecosystem approach (Scenario 2), the protection of the riparian forest of Lake Kerkini is achieved while in normal and wet years the IWR are fulfilled and the deficit of the IWR is increased in dry years. Compared to Scenario 1, the pressure of the Strymonas River estuary ecosystem is slightly increased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. River Flow Prediction for Future Climate Using Long Series of Multi-Site Synthetic Data and MIKE SHE Model

    Directory of Open Access Journals (Sweden)

    Kuchar Leszek

    2017-01-01

    Full Text Available A new simulation of daily flow for Kaczawa River, south-west Poland for extra long series of generated meteorological data (comparing to previous research and selected climate change scenarios are presented. The Representative Concentration Pathways (RCPs scenarios vs. SRES are introduced for simulations. The flow simulation in the river catchment is made using MIKE SHE hydrological model while the multisite data are generated by spatial weather generator SWGEN. Simulations are done for 2040 and 2060 while the simulations for the year 2000 are used as a background. The large number of new simulated series determined by the lead time, three climate change scenarios (RCP2.6 RCP4.5 and RCP6.0, and number of generated years (1000 for each case is equal to 7000 for a single station. Finally, Pdf function for flow is presented as well probability of exceedance of maximum flow.

  1. Hydrodynamic Modeling and Its Application in AUC.

    Science.gov (United States)

    Rocco, Mattia; Byron, Olwyn

    2015-01-01

    The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling. © 2015 Elsevier Inc. All rights reserved.

  2. Magneto-hydrodynamical model for plasma

    Science.gov (United States)

    Liu, Ruikuan; Yang, Jiayan

    2017-10-01

    Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.

  3. On a model in radiation hydrodynamics

    OpenAIRE

    Ducomet, Bernard; Feireisl, Eduard; Nečasová, Šárka

    2011-01-01

    We consider a simplified model arising in radiation hydrodynamics based on the Navier–Stokes–Fourier system describing the macroscopic fluid motion, and a transport equation modeling the propagation of radiative intensity. We establish global-in-time existence for the associated initial–boundary value problem in the framework of weak solutions.

  4. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China

    Directory of Open Access Journals (Sweden)

    S. Wang

    2012-12-01

    Full Text Available Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped calibration protocol that used streamflow measured at one single watershed outlet to a multi-site calibration method which employed streamflow measurements at three stations within the large Chaohe River basin in northern China. Simulation results showed that the single-site calibrated model was able to sufficiently simulate the hydrographs for two of the three stations (Nash-Sutcliffe coefficient of 0.65–0.75, and correlation coefficient 0.81–0.87 during the testing period, but the model performed poorly for the third station (Nash-Sutcliffe coefficient only 0.44. Sensitivity analysis suggested that streamflow of upstream area of the watershed was dominated by slow groundwater, whilst streamflow of middle- and down- stream areas by relatively quick interflow. Therefore, a multi-site calibration protocol was deemed necessary. Due to the potential errors and uncertainties with respect to the representation of spatial variability, performance measures from the multi-site calibration protocol slightly decreased for two of the three stations, whereas it was improved greatly for the third station. We concluded that multi-site calibration protocol reached a compromise in term of model performance for the three stations, reasonably representing the hydrographs of all three stations with Nash-Sutcliffe coefficient ranging from 0.59–072. The multi-site calibration protocol applied in the analysis generally has advantages to the single site calibration protocol.

  5. An interview with Mike Levine.

    Science.gov (United States)

    Levine, Mike; Vicente, Catarina

    2015-10-15

    Mike Levine, director of the Lewis-Sigler Institute for Integrative Genomics at Princeton University, is a developmental biologist who has dedicated his career to understanding how gene expression is regulated during development. Some of his most significant research, such as the co-discovery of the homeobox genes and his work on even skipped stripe 2, was performed in Drosophila, but he has since branched out to Ciona intestinalis, which he is using as a model to understand how vertebrate features have evolved. We had a lively chat with Mike at this year's Society for Developmental Biology (SDB) meeting, where he was awarded the Edwin Grant Conklin Medal. © 2015. Published by The Company of Biologists Ltd.

  6. Impact of uncertainty description on assimilating hydraulic head in the MIKE SHE distributed hydrological model

    DEFF Research Database (Denmark)

    Zhang, Donghua; Madsen, Henrik; Ridler, Marc E.

    2015-01-01

    The ensemble Kalman filter (EnKF) is a popular data assimilation (DA) technique that has been extensively used in environmental sciences for combining complementary information from model predictions and observations. One of the major challenges in EnKF applications is the description of model...... uncertainty. In most hydrological EnKF applications, an ad hoc model uncertainty is defined with the aim of avoiding a collapse of the filter. The present work provides a systematic assessment of model uncertainty in DA applications based on combinations of forcing, model parameters, and state uncertainties...

  7. Modeling multiphase flow using fluctuating hydrodynamics.

    Science.gov (United States)

    Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar

    2014-09-01

    Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.

  8. Interview with Mike Shaughnessy

    Science.gov (United States)

    Rossman, Allan; Shaughnessy, Mike

    2013-01-01

    Mike Shaughnessy is Professor Emeritus of Mathematics and Statistics at Portland State University in Oregon. He served as co-chair for the Board for the Special Interest Group for Research in Mathematics Education of the American Educational Research Association from 2005-2007. A member of the Board of Directors of the National Council of Teachers…

  9. MIKE-SHE integrated groundwater and surface water model used to ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... 8Environmental and Water Quality Consultant, PO Box 16018, Panorama, 7506, South Africa. 9Geography ..... software. Temporal analysis is often done with standard spreadsheet software. GIS software allows modellers to spa- tially correlate different types of data (e.g. mapped surface geology with ...

  10. An analytical model of flagellate hydrodynamics

    DEFF Research Database (Denmark)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders Peter

    2017-01-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical......–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming...

  11. A Hydro-Dynamical Model for Gravity

    Directory of Open Access Journals (Sweden)

    Corneliu BERBENTE

    2016-03-01

    Full Text Available hydro-dynamical model for gravity by using an analogy with the attraction of spherical sources in incompressible fluids is proposed. Information regarding a photon-like particle called graviton is taken using an author’s previous paper [6]. The substance and radiation interaction due to emission of gravitons takes place via an energy field made of the emitted gravitons and filling the entire universe. The energy distribution is considered uniform at the universe scale. A consequence of the proposed model is the increasing of the universal “constant” of gravity, as a function of the age of universe.

  12. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  13. Evaluation of parameters in hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Tae-Hoon [Hanyang University, Seoul (Korea); Lee, Jong-Wook [Korea Institute of Construction Technology, Koyang (Korea); Jegal, Sun-Dong [Kumho Engineering Company, Anyang (Korea)

    2000-02-29

    Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, 1-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data. (author). 26 refs., 7 tabs., 14 figs.

  14. Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment

    Science.gov (United States)

    Larsen, M. A. D.; Refsgaard, J. C.; Drews, M.; Butts, M. B.; Jensen, K. H.; Christensen, J. H.; Christensen, O. B.

    2014-03-01

    In recent years research on the coupling of existing regional climate models and hydrology/land surface models has emerged. A major challenge in this emerging research field is the computational interaction between the models. In this study we present results from a full two-way coupling of the HIRHAM regional climate model over a 4000 km x 2800 km domain in 11 km resolution and the combined MIKE SHE-SWET hydrology and land surface models over the 2500 km2 Skjern river catchment. A total of 26 one-year runs were performed to assess the influence of the data transfer interval (DTI) between the two models and the internal HIRHAM model variability of ten variables. In general, the coupled model simulations exhibit less accurate performance than the uncoupled simulations which is to be expected as both models prior to this study have been individually refined or calibrated to reproduce observations. Four of six output variables from HIRHAM, precipitation, relative humidity, wind speed and air temperature, showed statistically significant improvements in RMSE with a reduced DTI as evaluated in the range of 12-120 min. For these four variables the perturbation induced HIRHAM variability was shown to correspond to 47% of the RMSE improvement when using a DTI of 120 min compared to a DTI of 12 min and the variability resulted in large ranges in simulated precipitation. Also, the DTI was shown to substantially affect computation time. The MIKE SHE energy flux and discharge output variables experienced little impact from the DTI.

  15. RECENT ADVANCES IN MACROMOLECULAR HYDRODYNAMIC MODELING

    Science.gov (United States)

    Aragon, Sergio R.

    2010-01-01

    The modern implementation of the boundary element method (S.R. Aragon, J. Comput. Chem. 25(2004)1191–12055) has ushered unprecedented accuracy and precision for the solution of the Stokes equations of hydrodynamics with stick boundary conditions. This article begins by reviewing computations with the program BEST of smooth surface objects such as ellipsoids, the dumbbell, and cylinders that demonstrate that the numerical solution of the integral equation formulation of hydrodynamics yields very high precision and accuracy. When BEST is used for macromolecular computations, the limiting factor becomes the definition of the molecular hydrodynamic surface and the implied effective solvation of the molecular surface. Studies on 49 different proteins, ranging in molecular weight from 9 to over 400 kDa, have shown that a model using a 1.1 A thick hydration layer describes all protein transport properties very well for the overwhelming majority of them. In addition, this data implies that the crystal structure is an excellent representation of the average solution structure for most of them. In order to investigate the origin of a handful of significant discrepancies in some multimeric proteins (over −20% observed in the intrinsic viscosity), the technique of Molecular Dynamics simulation (MD) has been incorporated into the research program. A preliminary study of dimeric α-chymotrypsin using approximate implicit water MD is presented. In addition I describe the successful validation of modern protein force fields, ff03 and ff99SB, for the accurate computation of solution structure in explicit water simulation by comparison of trajectory ensemble average computed transport properties with experimental measurements. This work includes small proteins such as lysozyme, ribonuclease and ubiquitin using trajectories around 10 ns duration. We have also studied a 150 kDa flexible monoclonal IgG antibody, trastuzumab, with multiple independent trajectories encompassing over

  16. Hydrological and hydrogeological effects of an open repository in Forsmark. Final MIKE SHE flow modelling results for the Environmental Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-07-15

    This report presents methodology and modelling results concerning a deep-rock repository for spent nuclear fuel in Forsmark. Specifically, the modelling tools MIKE SHE, MIKE 11 and MOUSE are used to quantify the groundwater inflow to the repository and associated hydrological and hydrogeological effects during the construction and operation phases. The modelling results presented in the report provide input to the Environmental Impact Assessment (EIA) that will be part of a permit application according to the Environmental Code. Based on an existing MIKE SHE model for Forsmark, the first step of the modelling process was to implement an updated hydrogeological model of the bedrock and to increase the vertical and horizontal extents of the model domain. Other model updates involve the vegetation classification, and implementation of SFR (final repository for short-lived radioactive waste) and the subsurface drainage system at the nearby nuclear power plant. The updated model was calibrated using measured data on groundwater levels in the Quaternary deposits and the bedrock, water levels in lakes, and stream discharges. The calibrated model was then used for simulation of undisturbed conditions (i.e. without the repository) as a reference for modelling results obtained for disturbed conditions (with the repository). The modelling results for undisturbed conditions that are presented in the report closely resemble those of the final MIKE SHE site descriptive modelling (SDM-Site Forsmark). The repository layout was implemented as pipe links (segments) in the modelling tool MOUSE, and the implemented layout was used for the modelling of disturbed conditions. The study uses an updated and verified MIKE SHE-MOUSE coupling routine that is specifically adapted for calculation of groundwater inflow to grouted rock tunnels. The vertical shafts of the repository are implemented in the form of MIKE SHE grid cells with atmospheric pressure. Modelling results for disturbed

  17. A hydrodynamic model for cooperating solidary countries

    Science.gov (United States)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2017-07-01

    The goal of international trade theories is to explain the exchange of goods and services between different countries, aiming to benefit from it. Albeit the idea is very simple and known since ancient history, smart policy and business strategies need to be implemented by each subject, resulting in a complex as well as not obvious interplay. In order to understand such a complexity, different theories have been developed since the sixteenth century and today new ideas still continue to enter the game. Among them, the so called classical theories are country-based and range from Absolute and Comparative Advantage theories by A. Smith and D. Ricardo to Factor Proportions theory by E. Heckscher and B. Ohlin. In this work we build a simple hydrodynamic model, able to reproduce the main conclusions of Comparative Advantage theory in its simplest setup, i.e. a two-country world with country A and country B exchanging two goods within a genuine exchange-based economy and a trade flow ruled only by market forces. The model is further generalized by introducing money in order to discuss its role in shaping trade patterns. Advantages and drawbacks of the model are also discussed together with perspectives for its improvement.

  18. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    Science.gov (United States)

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  19. Analyzing the hydrological impact of afforestation and tree species in two catchments with contrasting soil properties using the spatially distributed model MIKE SHE SWET

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Christiansen, Jesper Riis; Pang, Bo

    2017-01-01

    afforestation or forest conversion impacts the water resource at the catchment scale. We hypothesize that the groundwater formation and streamflow is increased when water consuming conifers are replaced with the less consumptive broadleaf tree species. To test this a distributed hydrological model...... (conifer/broadleaf) and agricultural crops (grass, maize, wheat and barley) in different areal combinations. Initially, the SWET component was calibrated against plot scale field data from two forest sites to obtain vegetation parameter estimates for conifers and broadleaves. Subsequently, the catchment...... models were run for 10 years with predefined land use scenarios. MIKE SHE SWET simulated canopy interception and throughfall for conifers and broadleaf forests satisfactorily. The catchment simulations showed that replacing current conifer forests with broadleaves, resulted in a significant increase...

  20. Hydrodynamic and Salinity Intrusion Model in Selangor River Estuary

    Science.gov (United States)

    Haron, N. F.; Tahir, W.

    2016-07-01

    A multi-dimensional hydrodynamic and transport model has been used to develop the hydrodynamic and salinity intrusion model for Selangor River Estuary. Delft3D-FLOW was applied to the study area using a curvilinear, boundary fitted grid. External boundary forces included ocean water level, salinity, and stream flow. The hydrodynamic and salinity transport used for the simulation was calibrated and confirmed using data on November 2005 and from May to June 2014. A 13-day period for November 2005 data and a 6-day period of May to June 2014 data were chosen as the calibration and confirmation period because of the availability of data from the field-monitoring program conducted. From the calibration results, it shows that the model was well suited to predict the hydrodynamic and salinity intrusion characteristics of the study area.

  1. UASB reactor hydrodynamics: residence time distribution and proposed modelling tools.

    Science.gov (United States)

    López, I; Borzacconi, L

    2010-05-01

    The hydrodynamic behaviour of UASB (Up Flow Anaerobic Sludge Blanket) reactors based on residence time distribution curves allows the implementation of global models, including the kinetic aspects of biological reactions. The most relevant hydrodynamic models proposed in the literature are discussed and compared with the extended tanks in series (ETIS) model. Although derived from the tanks in series model, the ETIS model's parameter is not an integer. The ETIS model can be easily solved in the Laplace domain and applied to a two-stage anaerobic digestion linear model. Experimental data from a 250 m3 UASB reactor treating malting wastewater are used to calibrate and validate the proposed model.

  2. Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model

    Directory of Open Access Journals (Sweden)

    Patrick Keilholz

    2015-06-01

    Full Text Available The Tarim basin is a unique ecosystem. The water from the Tarim River supports both wildlife and humans. To analyze the effects of both land use and climate changes on groundwater, a research site was established at Yingibazar, which is a river oasis along the middle section of the Tarim River. A hydrological survey was performed to assess the general water cycle in this area with special emphasis on groundwater replenishment as well as the impact of agricultural irrigation on the riparian natural vegetation with respect to salt transport and depth of groundwater. Although high-resolution input data is scarce for this region, simulation of water cycle processes was performed using the hydrological model MIKE SHE (DHI. The results of the calibrated model show that natural flooding is the major contributor to groundwater recharge. There is also a close interaction between irrigated agricultural areas and the adjacent natural vegetation for groundwater levels and salinity up to 300 m away from the fields. Furthermore, the source of water used for irrigation (i.e., river and/or groundwater has a high impact on groundwater levels and salt transportation efficiency. The ongoing expansion of agricultural areas is rapidly destroying natural vegetation, floodplains, and their natural flow paths. Our results show that more unstable annual Tarim floods will occur in the future under the background of climate change. Therefore, integrated hydrological simulations were also performed for 2050 and 2100 using MIKE SHE. The results confirm that after the glaciers melt in the Tian Shan Mountains, serious aquifer depletion and environmental degradation will occur in the area, causing great difficulties for the local people.

  3. Effects on surface hydrology and near-surface hydrogeology of an open repository in Laxemar Results of modelling with MIKE SHE

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran (DHI Sverige AB, Goeteborg (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-10-15

    This report presents the methodology and the results from the modelling of an open repository for spent nuclear fuel in Laxemar. Specifically, the present work analyses the hydrological effects of the planned repository during the construction and operational phases when it is open, i.e. air-filled, and hence may cause a disturbance of the hydrological conditions in the surroundings. The numerical modelling is based on the SDM-Site Laxemar MIKE SHE model. The modelling was divided into three steps. The first step was to update the SDM-Site Laxemar model with a new hydrogeological bedrock model. The other main updates were an increase of the depth of the MIKE SHE model domain, enhanced vertical computational resolution and that the drainage of the Aespoe Hard Rock Laboratory was included in the model. The resulting model was used to simulate undisturbed natural conditions. The next step was to describe the open repository conditions, using Laxemar layout D2, by implementing the access tunnel, the repository tunnels and shafts in the model, and to simulate the consequences for the surface hydrology caused by an open repository under different conditions. The final step was a sensitivity analysis that aimed to investigate the sensitivity of the modelled effects of the open repository to the hydrogeological properties of the bedrock and the Quaternary deposits, the sediments under the sea, and changes in boundary conditions. The model covers an area of 34 km2. The groundwater divides were assumed to coincide with the surface water divides; thus, a no-flow boundary condition was used at the horizontal boundaries, except in the Quaternary deposit layers towards the sea where a time-varying boundary condition describing the sea-level in the area was used. In the bedrock layers, however, a no-flow boundary condition was applied. Also the bottom boundary was described as a no-flow boundary. The transient top boundary condition was based on meteorological data gathered at

  4. A data assimilation system combining CryoSat-2 data and hydrodynamic river models

    Science.gov (United States)

    Schneider, Raphael; Ridler, Marc-Etienne; Godiksen, Peter Nygaard; Madsen, Henrik; Bauer-Gottwein, Peter

    2018-02-01

    There are numerous hydrologic studies using satellite altimetry data from repeat-orbit missions such as Envisat or Jason over rivers. This study is one of the first examples for the combination of altimetry from drifting-ground track satellite missions, namely CryoSat-2, with a river model. CryoSat-2 SARIn Level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra River in South Asia, which is based on the Saint-Venant equations for unsteady flow and set up in the MIKE HYDRO River software. After calibration of discharge and water level the hydrodynamic model can accurately and bias-free represent the spatio-temporal variations of water levels. A data assimilation framework has been developed and linked with the model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. The setup has been used to assimilate CryoSat-2 water level observations over the Assam valley for the years 2010-2015, using an Ensemble Transform Kalman Filter (ETKF). Performance improvement in terms of discharge forecasting skill was then evaluated. For experiments with synthetic CryoSat-2 data the continuous ranked probability score (CRPS) was improved by up to 32%, whilst for experiments assimilating real data it could be improved by up to 10%. The developed methods are expected to be transferable to other rivers and altimeter missions. The model setup and calibration is based almost entirely on globally available remote sensing data.

  5. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software – Case study of Baraolt River, Romania

    Science.gov (United States)

    Andrei, Armas; Robert, Beilicci; Erika, Beilicci

    2017-10-01

    MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric

  6. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids

    Science.gov (United States)

    Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily

    2014-01-01

    Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246

  7. Hydrodynamic modelling of tidal inlets in Hue, Vietnam

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2003-01-01

    Application of an one-dimensional numerical model for hydrodynamic simulation of a complex lagooninlet system in Vietnam is presented. Model results help to get a better understanding on the behaviour of the system. Based on the numerical model results and analytic solutions, stability of tidal

  8. Automatization of hydrodynamic modelling in a Floreon+ system

    Science.gov (United States)

    Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David

    2017-07-01

    The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.

  9. Hydrodynamic modelling of extreme flood events in the Kashmir valley in India

    Science.gov (United States)

    Jain, Manoj; Parvaze, Sabah

    2017-04-01

    Floods are one of the most predominant, costly and deadly hazards of all natural vulnerabilities. Every year, floods exert a heavy toll on human life and property in many parts of the world. The prediction of river stages and discharge during flood extremes plays a vital role in planning structural and non-structural measures of flood management. The predictions are also valuable to prepare the flood inundation maps and river floodplain zoning. In the Kashmir Valley, floods occur mainly and very often in the Jhelum Basin mostly due to extreme precipitation events and rugged mountainous topography of the basin. These floods cause extreme damage to life and property in the valley from time to time. Excessive rainfall, particularly in higher sub-catchments causes the snow to melt resulting in excessive runoff downhill to the streams causing floods in the Kashmir Valley where Srinagar city is located. However, very few hydrological studies have been undertaken for the Jhelum Basin mainly due to non-availability of hydrological data due to very complex mountainous terrain. Therefore, the present study has been conducted to model the extreme flood events in the Jhelum Basin in Kashmir Valley. An integrated NAM and MIKE 11 HD model has been setup for Jhelum basin up to Ram Munshi Bagh gauging site and then four most extreme historical flood events in the time series has been analyzed separately including the most recent and most extreme flood event of 2014. In September 2014, the Kashmir Valley witnessed the most severe flood in the past 60 years due to catastrophic rainfall from 1st to 6th September wherein the valley received unprecedented rainfall of more than 650 mm in just 3 days breaking record of many decades. The MIKE 11 HD and NAM model has been calibrated using 21 years (1985-2005) data and validated using 9 years (2006-2014) data. The efficiency indices of the model for calibration and validation period is 0.749 and 0.792 respectively. The model simulated

  10. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics.

    Science.gov (United States)

    Dinariev, Oleg Yu; Evseev, Nikolay V

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  11. Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olšava River Basin

    Directory of Open Access Journals (Sweden)

    Kaiglová Jana

    2014-03-01

    Full Text Available This paper presents the results of testing the applicability of the MIKE Basin model for simulating the efficiency of scenarios for reducing water pollution. The model has been tested on the Olšava River Basin (520 km2 which is a typical rural region with a heterogeneous mix of pollution sources with variable topography and land use. The study proved that the model can be calibrated successfully using even the limited amount of data typically available in rural basins. The scenarios of pollution reduction were based on implementation and intensification of municipal wastewater treatment and conversion of arable land on fields under the risk of soil erosion to permanent grassland. The application of simulation results of these scenarios with proposed measures proved decreasing concentrations in downstream monitoring stations. Due to the practical applicability of proposed measures, these could lead to fulfilment of the water pollution limits required by the Czech and EU legislation. However, there are factors of uncertainty that are discussed that may delay or limit the effect of adopted measures in small rural basins.

  12. Interview with Mike Parker Pearson

    Directory of Open Access Journals (Sweden)

    Thomas J. T. Williams

    2013-02-01

    Full Text Available Mike Parker Pearson is the Institute of Archaeology’s newly appointed Professor of British Later Prehistory. In this interview he reflects on his experience at the birth of post-processualism, current problems and opportunities in modern archaeology, and the subject for which he is best known: Stonehenge.

  13. Building a High-Precision 2D Hydrodynamic Flood Model Using UAV Photogrammetry and Sensor Network Monitoring

    Directory of Open Access Journals (Sweden)

    Jakub Langhammer

    2017-11-01

    Full Text Available This paper explores the potential of the joint application of unmanned aerial vehicle (UAV-based photogrammetry and an automated sensor network for building a hydrodynamic flood model of a montane stream. UAV-based imagery was used for three-dimensional (3D photogrammetric reconstruction of the stream channel, achieving a resolution of 1.5 cm/pixel. Automated ultrasonic water level gauges, operating with a 10 min interval, were used as a source of hydrological data for the model calibration, and the MIKE 21 hydrodynamic model was used for building the flood model. Three different horizontal schematizations of the channel—an orthogonal grid, curvilinear grid, and flexible mesh—were used to evaluate the effect of spatial discretization on the results. The research was performed on Javori Brook, a montane stream in the Sumava (Bohemian Forest Mountains, Czech Republic, Central Europe, featuring a fast runoff response to precipitation events and that is located in a core zone of frequent flooding. The studied catchments have been, since 2007, equipped with automated water level gauges and, since 2013, under repeated UAV monitoring. The study revealed the high potential of these data sources for applications in hydrodynamic modeling. In addition to the ultra-high levels of spatial and temporal resolution, the major contribution is in the method’s high operability, enabling the building of highly detailed flood models even in remote areas lacking conventional monitoring. The testing of the data sources and model setup indicated the limitations of the UAV reconstruction of the stream bathymetry, which was completed by the geodetic-grade global navigation satellite system (GNSS measurements. The testing of the different model domain schematizations did not indicate the substantial differences that are typical for conventional low-resolution data, proving the high reliability of the tested modeling workflow.

  14. Mike Garant Ameerika ühiskonna probleemidest

    Index Scriptorium Estoniae

    2000-01-01

    44. nädalal külastas inglise keele õppetooli dr Mike Garant Helsingi ülikoolist. Mike Garant käsitles oma loengutes multikulturaalse Ameerika ühiskonna probleeme (mobiilsus, identiteet, keel) : [täistekst

  15. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    Nz. 1. Introduction. The quark gluon plasma (QGP) is formed in high-energy heavy-ion collisions at Relativis- .... To obtain final hadrons, pure hydrodynamic simulations assume free hadron resonances directly emitted ... models is realized by a Monte-Carlo event generator, which transforms the hydrody- namic output into ...

  16. Modelling of hydrodynamic circulation in Benoa Bay, Bali

    DEFF Research Database (Denmark)

    Ningsih, Nining Sari; Muchamad, Al Azhar

    2013-01-01

    A simulation of water level, velocity, salinity, and temperature in the Bay of Benoa has been carried out using a three-dimensional hydrodynamic Estuarine and Coastal Ocean Model incorporating a main characteristic of southward transport of the Indonesian throughflow at the offshore area of the bay...

  17. Physical hydrodynamic propulsion model study on creeping viscous ...

    Indian Academy of Sciences (India)

    Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube ... Dates. Manuscript received: 7 February 2016; Manuscript revised: 20 July 2016; Accepted: 5 October 2016; Early published: Unedited version published online: Final version published online: 16 February 2017 ...

  18. Hydrological and hydro-geological effects on wetlands and forest areas from the repository at Forsmark. Results from modelling with MIKE SHE; Hydrologiska och hydrogeologiska effekter paa vaatmarker och skogsomraaden av slutfoervarsanlaeggningen i Forsmark. Resultat fraan modellering med MIKE SHE

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran; Gustafsson, Ann-Marie; Aneljung, Maria; Sabel, Ulrika (DHI Sverige AB, Goeteborg (Sweden))

    2010-06-15

    This report provides background material for investigations and associated impact assessments concerning water operations in terms of withdrawal of groundwater from the final repository for spent nuclear fuel at Forsmark. The report presents detailed modelling results in the form of supplementary sensitivity analyses and detailed hydrological and hydrogeological analyses of specific nature objects in Forsmark. The sensitivity analyses aim to investigate the sensitivity of the modelling results to i) the meteorological conditions, ii) impervious surfaces and iii) the model description of the present SFR (final repository for short-lived radioactive waste). A number of simulation cases aim to study cumulative effects of groundwater withdrawal from an extended SFR. The simulations are evaluated with respect to the groundwater table drawdown and head changes in the bedrock. The report analyses the hydrogeological and hydrological conditions for a number of selected wetland objects and forest objects. The selection of objects aims to cover different types of valuable nature objects at different geographical locations in relation to the influence area of the groundwater table drawdown. The analysis comprises groundwater levels at all nature objects, whereas wetlands with particularly high nature values have been studied in detail with respect to surface water levels, the need for water supply and object-specific water balances. These studies have been performed for different meteorological conditions in the form of a type (2006) and a statistically normal, dry and wet year, respectively, with a return period of 100 years for the dry- and wet years. All simulations for disturbed conditions with a fully open repository are done with a hydraulic conductivity of K{sub inj} = 10-7 or 10-8 m/s in the grouted zone. The results show that time-dependent precipitation and snow melt have large influence on the temporal variations of the depth to the groundwater table for

  19. Smoothed particle hydrodynamics modelling of fluids and solids

    Directory of Open Access Journals (Sweden)

    Lobovský L.

    2007-11-01

    Full Text Available The study is concerned about the application of the smoothed particle hydrodynamics (SPH method within the computational fluid dynamics and elastodynamics. A brief description of the SPH model for an incompressible fluid and for an elastic solid is presented. The implemented model of incompressible fluid is tested for internal flows as well as for flows involving a free surface of the fluid. The implemented elastic solid model is examined during the simulation of the mechanical response of rubber rings.

  20. Simulation and visualization of coupled hydrodynamical, chemical and biological models

    Directory of Open Access Journals (Sweden)

    Dag Slagstad

    1997-04-01

    Full Text Available This paper briefly describes the principles of hydrodynamical and ecological modelling of marine systems and how model results are presented by use of MATLAB. Two application examples are shown. One refers to modelling and simulation of the carbon vertical transport in the Greenland Sea and the other is a study on the effect of wind pattern for the invasion success of zooplankton from the Norwegian Sea into the North Sea by use of particle tracking.

  1. Modeling of the upwelling hydrodynamics in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    Y.G. SAVVIDIS

    2004-06-01

    Full Text Available The special features of the hydrodynamic circulation in the Aegean Sea referring to the development of regional upwelling coastal zones are studied by means of a mathematical model. The modeling effort is focused on the tracing of coastal areas, where upwelling events are frequently observed during the summer meteorological conditions. These areas are characterized by the enrichment of surface waters with nutrients and, consequently, increased fish production. The phenomenon is studied by the use of a two-layer mathematical model comprising the surface heated zone and the rest of the water column. The numerical solution of the model is based on the finite differences method. The wind shear applied over the stratified basin, with predefined density stratification and initial water-layers thickness, and the gravity and Coriolis forces taken into account, constitute the basic external factors for the generation of the hydrodynamic circulation in the area of the Aegean Sea. The calibration and the validation of the model are performed by the comparison of the model output to the data and observations reported in valid scientific sources. The aim of the paper is to demonstrate the significant contribution of numerical models to the better understanding of the hydrodynamics governing the Aegean water circulation as well as the tracing of upwelling zones.

  2. Hydrodynamic modeling of semi-planing hulls with air cavities

    Directory of Open Access Journals (Sweden)

    Konstantin I. Matveev

    2015-05-01

    Full Text Available High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  3. On nano-scale hydrodynamic lubrication models

    Science.gov (United States)

    Buscaglia, Gustavo; Ciuperca, Ionel S.; Jai, Mohammed

    2005-06-01

    Current magnetic head sliders and other micromechanisms involve gas lubrication flows with gap thicknesses in the nanometer range and stepped shapes fabricated by lithographic methods. In mechanical simulations, rarefaction effects are accounted for by models that propose Poiseuille flow factors which exhibit singularities as the pressure tends to zero or +∞. In this Note we show that these models are indeed mathematically well-posed, even in the case of discontinuous gap thickness functions. Our results cover popular models that were not previously analyzed in the literature, such as the Fukui-Kaneko model and the second-order model, among others. To cite this article: G. Buscaglia et al., C. R. Mecanique 333 (2005).

  4. Data Assimilation in Hydrodynamic Models of Continental Shelf Seas

    DEFF Research Database (Denmark)

    Sørensen, Jacob Viborg Tornfeldt

    2004-01-01

    of a stochastic state propagation step using a numerical hydrodynamic model and an update step based on a best linear unbiased estimator when new measurements are available. The main challenge is to construct a stochastic model of the high dimensional ocean state that provides su cient skill for a proper update....... Assimilation of sea surface temperature and parameter estimation in hydrodynamic models are also considered. The main focus has been on the development of robust and efficient techniques applicable in real operational settings. The applied assimilation techniques all use a Kalman filter approach. They consist...... and forecast skill in the Inner Danish Waters. The framework for combining data assimilation and off-line error correction techniques is discussed and presented. Early results show a potential for such an approach, but a more elaborate investigation is needed to further develop the idea. Finally, work has been...

  5. Hydrodynamic and kinetic modelling of complex radio-frequency plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goedheer, W J; Venema, J [FOM Institute for Plasma Physics ' Rijnhuizen' , Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Land, V, E-mail: W.J.Goedheer@rijnhuizen.n [Center for Astrophysics, Space Physics and Engineering Research, Baylor University, Waco, TX 76798 (United States)

    2009-10-07

    In this paper hydrodynamic and kinetic approaches to model low-pressure capacitively coupled complex radio-frequency discharges are discussed and applied to discharges under micro-gravity. Complex plasmas contain dust grains with a large negative charge and are characterized by a strong coupling between the properties of the plasma and those of the dust grains. After a discussion of the physics and methods involved, examples are presented from modelling of experiments under micro-gravity in the PKE-Nefedov reactor on board the International Space Station. These discharges are simulated with a 2D cylindrically symmetric hydrodynamic model. Kinetic effects are studied with a 1D particle-in-cell plus Monte Carlo model in which capture and scattering by dust grains is included. Since experiments are often performed at low pressures, the electron energy distribution function is no longer determined by the local plasma properties. This has consequences for the charging of the dust. Results of simulations with this model are compared with the hydrodynamic results. In addition, we address the behaviour of the dust charge in decaying plasmas.

  6. Modeling the hydrodynamics of Phloem sieve plates

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele

    2012-01-01

    understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species...... are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway....

  7. Hydrodynamic characterization of Corpus Christi Bay through modeling and observation.

    Science.gov (United States)

    Islam, Mohammad S; Bonner, James S; Edge, Billy L; Page, Cheryl A

    2014-11-01

    Christi Bay is a relatively flat, shallow, wind-driven system with an average depth of 3-4 m and a mean tidal range of 0.3 m. It is completely mixed most of the time, and as a result, depth-averaged models have, historically, been applied for hydrodynamic characterization supporting regulatory decisions on Texas coastal management. The bay is highly stratified during transitory periods of the summer with low wind conditions. This has important implications on sediment transport, nutrient cycling, and water quality-related issues, including hypoxia which is a key water quality concern for the bay. Detailed hydrodynamic characterization of the bay during the summer months included analysis of simulation results of 2-D hydrodynamic model and high-frequency (HF) in situ observations. The HF radar system resolved surface currents, whereas an acoustic Doppler current profiler (ADCP) measured current at different depths of the water column. The developed model successfully captured water surface elevation variation at the mouth of the bay (i.e., onshore boundary of the Gulf of Mexico) and at times within the bay. However, large discrepancies exist between model-computed depth-averaged water currents and observed surface currents. These discrepancies suggested the presence of a vertical gradient in the current structure which was further substantiated by the observed bi-directional current movement within the water column. In addition, observed vertical density gradients proved that the water column was stratified. Under this condition, the bottom layer became hypoxic due to inadequate mixing with the aerated surface water. Understanding the disparities between observations and model predictions provides critical insights about hydrodynamics and physical processes controlling water quality.

  8. Simulating Wind Driven Waves in the Strait of Hormuz using MIKE21 (Simulasi Gelombang Angin di Selat Hormuz Menggunakan MIKE21

    Directory of Open Access Journals (Sweden)

    Faeghe Eslami Mehdiabadi

    2015-03-01

    Full Text Available Daerah pesisir di bumi adalah salah satu zona paling dinamis yang dipengaruhi oleh berbagai parameter seperti gelombang, arus, dan badai. Untuk mengelola serta mengkontrol zona tersebut adalah penting untuk mempelajari hidrodinamika daerah. Penelitian ini menggunakan MIKE 21/3 coupled Model FM untuk melihat gelombang (wind driven waves di sekitar Pulau Larak di Selat Hormuz. Untuk mensimulasikan pola gelombang di wilayah tersebut digunakan irregular triangular grid.  Pola arus di sekitar pulau dipelajari untuk jangka waktu satu tahun. Ditemukan bahwa gelombang yang ditimbulkan karena arus di sekitar pantai utara pulau relatif lemah. Terlihat pula bahwa gelombang yang ada di daerah tersebut terutama ke arah timur laut. Tinggi gelombang rata-rata di surfzone adalah sekitar 0,5 m., Dengan kecepatan arus sekitar 0,2 m.s-1. Mengingat angin menang dan arah gelombang, disimpulkan bahwa pantai utara Pulau Larak tempat yang cocok untuk konstruksi pelabuhan dan kegiatan memancing. Kata kunci: gelombang, arus, MIKE, Pulau Larak Coastal areas on earth are among the most dynamic zones which affected by different parameters such as waves, currents, and storms. To manage and control such a zone it is essential to study the hydrodynamic of the area. MIKE 21/3 Coupled Model FM was used to investigate the wind driven waves around Larak Island located in the Strait of Hormuz. To simulate the pattern of the wave in the area irregular triangular grid was applied. The pattern of current around the Island was studied for a one year period of simulation. It was found that the current induced wave break around the Northern coast of the Island is relatively weak. It was also observed that the prevailed wave in the area is mainly toward the Northeast. The averaged wave height in the surfzone is about 0.5 m., with the current velocity of about 0.2 m.s-1. Considering the prevailed wind and wave direction, it was concluded that the northern coasts of the Larak Island are

  9. Hydrodynamic Modeling on Suciu River (Maramures County

    Directory of Open Access Journals (Sweden)

    Năsui Daniel

    2016-06-01

    Full Text Available The GIS database containing the topographic and land use information was made in 2012, followed by field measurements surveys in 2013 and 2014. A number of 11 cross-sections were topographically apprised in the valley along the 11 km river reach. The geometric data requirements for the modeling software were prepared in ESRI’s ArcGIS™ 9.2 software using the HEC-GeoRAS extension. The steady flow data was edited in the HEC-RAS one-dimensional flow modeling software. Four scenarios were used for the river discharge, from normal to overflow. The results come in different forms, from tabular output, to stage hydrograph, to velocity distribution or 3D diagrams, all of which give a clear vision on the overflow high risk areas. The results were exported back to the GIS extension for additional spatial operations. Flow velocity maps were generated for each discharge scenario. Although the scenarios included very high discharge values, the flood impact on people assets is minimal. The reasons for this are the high slope of the riverbed and the proper placement in the floodplain, due mainly to the flood management works that took place after the 1970 flood.

  10. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  11. Differential invariants in nonclassical models of hydrodynamics

    Science.gov (United States)

    Bublik, Vasily V.

    2017-10-01

    In this paper, differential invariants are used to construct solutions for equations of the dynamics of a viscous heat-conducting gas and the dynamics of a viscous incompressible fluid modified by nanopowder inoculators. To describe the dynamics of a viscous heat-conducting gas, we use the complete system of Navier—Stokes equations with allowance for heat fluxes. Mathematical description of the dynamics of liquid metals under high-energy external influences (laser radiation or plasma flow) includes, in addition to the Navier—Stokes system of an incompressible viscous fluid, also heat fluxes and processes of nonequilibrium crystallization of a deformable fluid. Differentially invariant solutions are a generalization of partially invariant solutions, and their active study for various models of continuous medium mechanics is just beginning. Differentially invariant solutions can also be considered as solutions with differential constraints; therefore, when developing them, the approaches and methods developed by the science schools of academicians N. N. Yanenko and A. F. Sidorov will be actively used. In the construction of partially invariant and differentially invariant solutions, there are overdetermined systems of differential equations that require a compatibility analysis. The algorithms for reducing such systems to involution in a finite number of steps are described by Cartan, Finikov, Kuranishi, and other authors. However, the difficultly foreseeable volume of intermediate calculations complicates their practical application. Therefore, the methods of computer algebra are actively used here, which largely helps in solving this difficult problem. It is proposed to use the constructed exact solutions as tests for formulas, algorithms and their software implementations when developing and creating numerical methods and computational program complexes. This combination of effective numerical methods, capable of solving a wide class of problems, with

  12. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  13. Hydrodynamic behavior of tumor cells in a confined model microvessel

    Science.gov (United States)

    Khan, Zeina S.; Vanapalli, Siva A.

    2012-02-01

    An important step in cancer metastasis is the hydrodynamic transport of circulating tumor cells (CTCs) through microvasculature. In vivo imaging studies in mice models show episodes of confined motion and trapping of tumor cells at microvessel bifurcations, suggesting that hydrodynamic phenomena are important processes regulating CTC dissemination. Our goal is to use microfluidics to understand the interplay between tumor cell rheology, confinement and fluid forces that may help to identify physical factors determining CTC transport. We use leukemia cells as model CTCs and mimic the in vivo setting by investigating their motion in a confined microchannel with an integrated microfluidic manometer to measure time variations in the excess pressure drop during cell motion. Using image analysis, variations in excess pressure drop, cell shape and cell velocity are simultaneously quantified. We find that the throughput of the technique is high enough ( 100 cells/min) to assess tumor cell heterogeneity. Therefore, in addition to measuring the hydrodynamic response of tumor cells in confined channels, our results indicate that the microfluidic manometer device could be used for rapid mechanical phenotyping of tumor cells.

  14. Hydrodynamic model of temperature change in open ionic channels.

    Science.gov (United States)

    Chen, D P; Eisenberg, R S; Jerome, J W; Shu, C W

    1995-12-01

    Most theories of open ionic channels ignore heat generated by current flow, but that heat is known to be significant when analogous currents flow in semiconductors, so a generalization of the Poisson-Nernst-Planck theory of channels, called the hydrodynamic model, is needed. The hydrodynamic theory is a combination of the Poisson and Euler field equations of electrostatics and fluid dynamics, conservation laws that describe diffusive and convective flow of mass, heat, and charge (i.e., current), and their coupling. That is to say, it is a kinetic theory of solute and solvent flow, allowing heat and current flow as well, taking into account density changes, temperature changes, and electrical potential gradients. We integrate the equations with an essentially nonoscillatory shock-capturing numerical scheme previously shown to be stable and accurate. Our calculations show that 1) a significant amount of electrical energy is exchanged with the permeating ions; 2) the local temperature of the ions rises some tens of degrees, and this temperature rise significantly alters for ionic flux in a channel 25 A long, such as gramicidin-A; and 3) a critical parameter, called the saturation velocity, determines whether ionic motion is overdamped (Poisson-Nernst-Planck theory), is an intermediate regime (called the adiabatic approximation in semiconductor theory), or is altogether unrestricted (requiring the full hydrodynamic model). It seems that significant temperature changes are likely to accompany current flow in the open ionic channel.

  15. Modeling of dynamically loaded hydrodynamic bearings at low Sommerfeld numbers

    DEFF Research Database (Denmark)

    Thomsen, Kim

    by environment and other wind turbine components. In this work a numerical multiphysics bearing model is developed in order to allow for accurate performance prediction of hydrodynamic bearings subjected to the challenging conditions that exist in modern wind turbines. This requires the coupling of several...... performance and related phenomena: • a new wear model is proposed which can, with only moderate efforts, be implemented into existing EHD models. • it is discovered that radial tilting pad bearings can exhibit discontinuity effects when subjected high dynamic loads. • the influence of compliant liners...

  16. Use of hydrologic and hydrodynamic modeling for ecosystem restoration

    Science.gov (United States)

    Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.

    2011-01-01

    Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.

  17. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    Science.gov (United States)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.

    2017-04-01

    We present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  18. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.

    2017-04-01

    We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  19. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    Directory of Open Access Journals (Sweden)

    Yujun Yi

    2017-01-01

    Full Text Available The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon, which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movement in this project. Preissmann four-point partial-node implicit scheme was used to solve the governing equations in this study. Water flow and pollutant movement were appropriately simulated and the results indicated that this water quality model was comparable to MIKE 11 and had a good performance and accuracy. Simulation accuracy and model uncertainty were analyzed. Based on the validated water quality model, six pollution scenarios (Q1 = 10 m3/s, Q2 = 30 m3/s, and Q3 = 60 m3/s for volatile phenol (VOP and contaminant mercury (Hg were simulated for the MRP. Emergent pollution accidents were forecasted and changes of water quality were analyzed according to the simulations results, which helped to guarantee continuously transferring water for a large water transfer project.

  20. Validation of a Global Hydrodynamic Flood Inundation Model

    Science.gov (United States)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  1. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics.

    Science.gov (United States)

    Persson, Rasmus A X; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  2. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  3. New equation of state models for hydrodynamic applications

    Science.gov (United States)

    Young, David A.; Barbee, Troy W.; Rogers, Forrest J.

    1998-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  4. Radiation Hydrodynamical Models for Type I Superluminous Supernovae

    Science.gov (United States)

    Nomoto, Ken'ichi; Sorokina, Elena; Blinnikov, Sergei; Tolstov, Alexey; Bersten, Melina; Quimby, Robert

    The physical origin of Type I superluminous supernovae (SLSNe-I), whose luminosities are 10 to 100 times brighter than normal core-collapse supernovae, remains still unknown. Radioactive-decays, magnetars, and circumstellar interactions have been proposed for the power source the light curves, although no definitive conclusions have been reached yet. Since most of light curve studies have been based on simplified semi-analytic models, we have constructed detailed light curve models for various mass of stars including very massive ones and large amount of mass loss with radiation hydrodynamical calculations. Here we focus on the magnetar and circumstellar interaction models and compare their rising time, peak luminosity, width, decline rate of the light curves with observations which show quite a large diversities. We then discuss how to discriminate these models, relevant models parameters, their evolutionary origins, possible roles of chemical enrichment of the early universe, and implications for the identifications of first stars.

  5. Exobase properties of hydrodynamic and kinetic models of thermal escape from planetary atmospheres and notion of slow hydrodynamic escape

    Science.gov (United States)

    Volkov, Alexey N.

    2017-12-01

    Exobase parameters obtained based on one-dimensional spherically symmetric hydrodynamic Parker's and kinetic models of thermal escape are studied parametrically for monatomic and diatomic gases. For source parameters, when Parker's and kinetic models predict similar escape rates and atmospheric structures well below the exobase, the exobase parameters obtained based on the both models are different. Parker's model systematically underestimates the exobase distance and overestimates the exobase Jeans parameter. The assumption that the escape rate is equal to the Jeans escape rate at the exobase is not satisfied in both kinetic and hydrodynamic simulations. The ratio of the escape rate to the Jeans rate at the exobase predicted by the hydrodynamics model can be either a few times higher or orders of magnitude smaller than unity. The kinetic model predicts systematic enhancement of the escape rate compared to the Jeans rate at the exobase. This enhancement can be attributed to the bulk velocity only if the exobase Jeans parameter is smaller than 5. This is the domain of slow hydrodynamic escape. At larger exobase Jeans parameters, the enhancement of the escape rate is attributed to non-equilibrium distribution of molecular velocities. In the kinetic solutions obtained for the Maxwell gas, the escape rate is about 2-2.5 of the Jeans rate when the ratio of the mean free path of gas molecules to the atmospheric scale height is ˜0.2. This finding can be used to set up boundary conditions in the hydrodynamic model in order to bring it into agreement with the kinetic model.

  6. Hydrodynamics and water quality models applied to Sepetiba Bay

    Science.gov (United States)

    Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo

    2006-10-01

    A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.

  7. Correlation lengths in hydrodynamic models of active nematics.

    Science.gov (United States)

    Hemingway, Ewan J; Mishra, Prashant; Marchetti, M Cristina; Fielding, Suzanne M

    2016-09-28

    We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstrophy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.

  8. Floodplain hydrodynamic modelling of the Lower Volta River in Ghana

    Directory of Open Access Journals (Sweden)

    Frederick Yaw Logah

    2017-12-01

    Full Text Available The impacts of dam releases from re-operation scenarios of the Akosombo and Kpong hydropower facilities on downstream communities along the Lower Volta River were examined through hydrodynamic modelling using the HEC-RAS hydraulic model. The model was used to simulate surface water elevation along the river reach for specified discharge hydrographs from proposed re-operation dam release scenarios. The morphology of the river and its flood plains together with cross-sectional profiles at selected river sections were mapped and used in the hydrodynamic modelling. In addition, both suspended and bed-load sediment were sampled and analysed to determine the current sediment load of the river and its potential to carry more sediment. The modelling results indicate that large areas downstream of the dam including its flood plains would be inundated if dam releases came close to or exceeded 2300 m3/s. It is therefore recommended to relocate communities along the banks and in the flood plains of the Lower Volta River when dam releases are to exceed 2300 m3/s. Suspended sediment transport was found to be very low in the Lower Volta River and the predominant soil type in the river banks and bed is sandy soil. Thus, the geomorphology of the river can be expected to change considerably with time, particularly for sustained high releases from the Akosombo and Kpong dams. The results obtained from this study form a basis for assessing future sedimentation problems in the Lower Volta River and for underpinning the development of sediment control and management strategies for river basins in Ghana. Keywords: Geomorphology, HEC-RAS model, Dam release, Floodplain, Lower Volta River, Ghana

  9. Challenges of citizen science contributions to modelling hydrodynamics of floods

    Science.gov (United States)

    Assumpção, Thaine Herman; Popescu, Ioana; Jonoski, Andreja; Solomatine, Dimitri P.

    2017-04-01

    Citizen science is an established mechanism in many fields of science, including ecology, biology and astronomy. Citizen participation ranges from collecting and interpreting data towards designing experiments with scientists and cooperating with water management authorities. In the environmental sciences, its potential has begun to be explored in the past decades and many studies on the applicability to water resources have emerged. Citizen Observatories are at the core of several EU-funded projects such as WeSenseIt, GroundTruth, GroundTruth 2.0 and SCENT (Smart Toolbox for Engaging Citizens into a People-Centric Observation Web) that already resulted in valuable contributions to the field. Buytaert et al. (2014) has already reviewed the role of citizen science in hydrology. The work presented here aims to complement it, reporting and discussing the use of citizen science for modelling the hydrodynamics of floods in a variety of studies. Additionally, it highlights the challenges that lie ahead to utilize more fully the citizen science potential contribution. In this work, focus is given to each component of hydrodynamic models: water level, velocity, flood extent, roughness and topography. It is addressed how citizens have been contributing to each aspect, mainly considering citizens as sensors and citizens as data interpreters. We consider to which kind of model (1D or 2D) the discussed approaches contribute and what their limitations and potential uses are. We found that although certain mechanisms are well established (e.g. the use of Volunteer Geographic Information for soft validation of land-cover and land-use maps), the applications in a modelling context are rather modest. Also, most studies involving models are limited to replacing traditional data with citizen data. We recommend that citizen science continue to be explored in modelling frameworks, in different case studies, taking advantage of the discussed mechanisms and of new sensor technologies

  10. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    Journal Article 3. DATES COVERED (From - To) 12 May 2015 – 06 Oct 2015 4. TITLE AND SUBTITLE A Tightly Coupled Non-Equilibrium Magneto- Hydrodynamic ...development a tightly coupled magneto- hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE... hydrodynamic model for Inductively Coupled RF Plasmas A. Munafò,1, a) S. A. Alfuhaid,1, b) J.-L. Cambier,2, c) and M. Panesi1, d) 1)Department of

  11. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  12. Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    M. H. Dao

    2011-02-01

    Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.

  13. Modelling of hydrodynamics and mecury transport in lake Velenje. Part 2, Modelling and model verification

    OpenAIRE

    Kotnik, Jože; Žagar, Dušan; Rajar, Rudi; Horvat, Milena

    2004-01-01

    PCFLOW3D - a three-dimensional mathematical model that was developed at the Chair of Fluid Mechanics of the Faculty of Civil and Geodetic Engineering, University of Ljubljana, was used for hydrodynamic and Hg transport simulations in Lake Velenje. The model is fully non-linear and computes three velocity components, water elevation and pressure. Transport-dispersion equations for salinity and heat (and/or any pollutant) are further used to compute the distributions of these par...

  14. GLOFRIM v1.0 – A globally applicable computational framework for integrated hydrological–hydrodynamic modelling

    NARCIS (Netherlands)

    Hoch, J.M.; Neal, Jeffrey; Baart, Fedor; van Beek, L.P.H.; Winsemius, Hessel; Bates, Paul; Bierkens, M.F.P.

    2017-01-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological–hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global

  15. Hydrodynamic modelling of small upland lakes under strong wind forcing

    Science.gov (United States)

    Morales, L.; French, J.; Burningham, H.

    2012-04-01

    Small lakes (Area Stokes equations using a 3D unstructured mesh and a finite volume scheme. The model is forced by meteorological boundary conditions. Improvements made to the FVCOM code include a new graphical user interface to pre- and post process the model input and results respectively, and a JONSWAT wave model to include the effects of wind-wave induced bottom stresses on lake sediment dynamics. Modelled internal scale waves are validated against summer temperature measurements acquired from a thermistor chain deployed at the deepest part of the lake. Seiche motions were validated using data recorded by high-frequency level sensors around the lake margins, and the velocity field and the circulation patterns were validated using the data recorded by an ADCP and GPS drifters. The model is shown to reproduce the lake hydrodynamics and reveals well-developed seiches at different frequencies superimposed on wind-driven circulation patterns that appear to control the distribution of bottom sediments in this small upland lake.

  16. Using radiotracer techniques for coastal hydrodynamic model evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, C.E. E-mail: ceh@ansto.gov.au; Airey, P.L.; Duran, E.B.; Miller, B.M.; Sombrito, E

    2004-07-01

    A three-dimensional (3D) water circulation and contaminant transport model of Manila Bay has been developed with the aim of better understanding the formation and movement of harmful algal blooms. Radiotracer techniques were used to evaluate the model by recording the dispersion of a tracer at depths of 2 and 15 m near the injection point. The selected tracer was {sup 99m}Tc eluted from a molybdenum/technetium medical generator. The rationale for the choice of the tracer and the location of the injection is discussed. At 2 m the transport was dominated by the prevailing winds, and at 15 m by tidally induced currents. The development of the hydrodynamic model and its experimental evaluation were iterative processes. The experimental study confirmed the need for full 3D modelling of Manila Bay; quantified the impact of the prevailing wind field on contaminant dispersion near the injection point; and allowed the calculation of transverse dispersivity to guide the selection of parameter values used in the overall model.

  17. Simulations of Model Microswimmers with Fully Resolved Hydrodynamics

    Science.gov (United States)

    Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi

    2017-10-01

    Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that

  18. Hydrodynamics beyond Navier-Stokes: The slip flow model

    Science.gov (United States)

    Yudistiawan, Wahyu P.; Ansumali, Santosh; Karlin, Iliya V.

    2008-07-01

    Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice Boltzmann (LB) models to hydrodynamics beyond the continuum limit [S. Ansumali , Phys. Rev. Lett. 98, 124502 (2007)]. In this paper, we present a systematic study of the simplest LB kinetic equation—the nine-bit model in two dimensions—in order to quantify it as a slip flow approximation. Details of the aforementioned analytical solution are presented, and results are extended to include a general shear- and force-driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state flows for all values of rarefaction parameter (Knudsen number). Results are compared with the slip flow solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the Navier-Stokes approximation.

  19. Hydrodynamic Modeling of Nokoué Lake in Benin

    Directory of Open Access Journals (Sweden)

    Josué Zandagba

    2016-12-01

    Full Text Available Nokoué Lake is a complex ecosystem, the understanding of which requires control of physical processes that have occurred. For this, the Surface Water Modeling System (SMS hydrodynamic model was calibrated and validated on the water depth data. The results of these simulations show a good match between the simulated and observed data for bottom roughness and turbulent exchange coefficients, of 0.02 m−1/3·s and 20 m2/s respectively. Once the ability of the model to simulate the hydrodynamics of the lake is testified, the model is used to simulate water surface elevation, exchanged flows and velocities. The simulation shows that the tidal amplitude is maximum at the inlet of the channel and decreases gradually from the inlet towards the lagoon’s main body. The propagation of the tidal wave is characterized by the dephasing and the flattening of the amplitude tide, which increases as we move away from the channel. This dephasing is characterized by a high and low tides delay of about 1 or 4 h and also depends on the tide amplitude and location. The velocities inside the lake are very low and do not exceed 0.03 m/s. The highest are obtained at the entrance of the channel. In a flood period, in contrast with the low-water period, incoming flows are higher than outflows, reinforced by the amplitude of the tide. An average renewal time of the lake has been estimated and corresponds during a flood period to 30 days for an average amplitude tide and 26.3 days on a high amplitude tide. In a low water period it is 40.2 days for an average amplitude tide and 30 days for a high amplitude tide. From the results obtained, several measures must be taken into account for the rational management of the lake water resources. These include a dam construction at the lake upstream, to control the river flows, and the dredging of the channel to facilitate exchanges with the sea.

  20. Hydrodynamic Modeling of Oxidizer-Rich Staged Combustion Injector Flow

    Science.gov (United States)

    Harper, Brent (Technical Monitor); Canino, J. V.; Heister, S. D.; Garrison, L. A.

    2004-01-01

    The main objective of this work is to determine the unsteady hydrodynamic characteristics of coaxial swirl atomizers of interest in oxidizer-rich staged combustion (ORSC) liquid rocket engines. To this end, the pseudo-density (homogeneous flow) treatment combined with the Marker-and-Cell (MAC) numerical algorithm has been used to develop an axisymmetric with swirl, two-phase, unsteady model. The numerical model is capable of assessing the time-dependent orifice exit conditions and internal mixing for arbitrary fuel and oxidizer gas injection conditions. Parametric studies have been conducted to determine the effect of geometry, gas properties, and liquid properties on the exit massflow rate and velocity. It has been found that the frequency at which the liquid film oscillates increases as the density ratio and thickness increase, decreases as film thickness and liquid swirl velocity increase, and is unaffected by the mixing length. Additionally, it has been determined that the variation in the massflow rate increases as the liquid swirl velocity and liquid film thickness increase, and decreases as the density ratio, collar thickness, and mixing length increase.

  1. Galaxy protoclusters in semi-analytic and hydrodynamic models

    Science.gov (United States)

    Lovell, Christopher; Thomas, Peter; Wilkins, Stephen

    2018-01-01

    We present an analysis of galaxy protoclusters in the L-Galaxies semi-analytic model and C-Eagle hydrodynamic simulations. Searching for protoclusters on a scale of ~ 10 cMpc gives an excellent compromise between the completeness and purity of their galaxy populations, leads to high distinction from the field in overdensity space, and allows accurate determination of the descendant cluster mass. This scale is valid over a range of redshifts and selection criteria. We present a procedure for estimating, given a measured galaxy overdensity, the protocluster probability and its descendant cluster mass for a range of modelling assumptions, particularly taking into account the shape of the measurement aperture. This procedure produces lower protocluster probabilities compared to previous estimates using fixed size apertures. The relationship between AGN and protoclusters is also investigated, and shows significant evolution with redshift; at $z \\sim 2$ the fraction of protoclusters traced by AGN is high, but the fraction of all AGN in protoclusters is low, whereas at $z \\geqslant 5$ the fraction of protoclusters containing AGN is low, but most AGN are in protoclusters.We also find evidence for the emergence of a passive sequence in protoclusters at $z \\sim 2$.

  2. Discussion of Stokes' hypothesis through the smoothed particle hydrodynamics model

    Science.gov (United States)

    Colagrossi, Andrea; Durante, Danilo; Bonet Avalos, Josep; Souto-Iglesias, Antonio

    2017-08-01

    Stokes' hypothesis, the zeroing of the bulk viscosity in a Newtonian fluid, is discussed in this paper. To this aim, a continuum macroscopic fluid domain is initially modeled as a Hamiltonian system of discrete particles, for which the interparticle dissipative forces are required to be radial in order to conserve the angular momentum. The resulting system of particles is then reconverted to the continuum domain via the framework of the smoothed particle hydrodynamics (SPH) model. Since an SPH-consistent approximation of the Newtonian viscous term in the momentum equation incorporates interparticle radial as well as nonradial terms, it is postulated that the latter must be null. In the present work it is shown that this constraint implies that first and second viscosities are equal, resulting in a positive value for the bulk viscosity, in contradiction to the cited Stokes' hypothesis. Moreover, it is found that this postulate leads to bulk viscosity coefficients close to values found in the experimental literature for monoatomic gases and common liquids such as water.

  3. Computational modeling and analysis of the hydrodynamics of human swimming

    Science.gov (United States)

    von Loebbecke, Alfred

    Computational modeling and simulations are used to investigate the hydrodynamics of competitive human swimming. The simulations employ an immersed boundary (IB) solver that allows us to simulate viscous, incompressible, unsteady flow past complex, moving/deforming three-dimensional bodies on stationary Cartesian grids. This study focuses on the hydrodynamics of the "dolphin kick". Three female and two male Olympic level swimmers are used to develop kinematically accurate models of this stroke for the simulations. A simulation of a dolphin undergoing its natural swimming motion is also presented for comparison. CFD enables the calculation of flow variables throughout the domain and over the swimmer's body surface during the entire kick cycle. The feet are responsible for all thrust generation in the dolphin kick. Moreover, it is found that the down-kick (ventral position) produces more thrust than the up-kick. A quantity of interest to the swimming community is the drag of a swimmer in motion (active drag). Accurate estimates of this quantity have been difficult to obtain in experiments but are easily calculated with CFD simulations. Propulsive efficiencies of the human swimmers are found to be in the range of 11% to 30%. The dolphin simulation case has a much higher efficiency of 55%. Investigation of vortex structures in the wake indicate that the down-kick can produce a vortex ring with a jet of accelerated fluid flowing through its center. This vortex ring and the accompanying jet are the primary thrust generating mechanisms in the human dolphin kick. In an attempt to understand the propulsive mechanisms of surface strokes, we have also conducted a computational analysis of two different styles of arm-pulls in the backstroke and the front crawl. These simulations involve only the arm and no air-water interface is included. Two of the four strokes are specifically designed to take advantage of lift-based propulsion by undergoing lateral motions of the hand

  4. Modeling Free-surface Solitary Waves with Smoothed Particle Hydrodynamics

    National Research Council Canada - National Science Library

    Balázs Tóth

    2017-01-01

    A three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) solver is presented and applied to simulate free-surface solitary waves generated in a quasi two dimensional dam-break experiment...

  5. Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, J.C.; Drews, Martin

    2014-01-01

    A major challenge in the emerging research field of coupling of existing regional climate models (RCMs) and hydrology/land-surface models is the computational interaction between the models. Here we present results from a full two-way coupling of the HIRHAM RCM over a 4000 km × 2800 km domain at 11...

  6. Gold-standard performance for 2D hydrodynamic modeling

    Science.gov (United States)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  7. Hydrodynamic model of the open-pit mine “Buvač” (Republic of Srpska

    Directory of Open Access Journals (Sweden)

    Papić Petar

    2013-09-01

    Full Text Available Projecting of the dewatering system of the open-pit mine “Buvač” (Republic of Srpska, Bosnia and Herzegovina is based on the use of hydrodynamic model of groundwater regime. Creating the hydrodynamic model of the open-pit mine “Buvač“ was made in phases, which began by basic interpretation of collected data, along with schematization of the groundwater flow and flow conditions, and finally, forming and calibration of model. Hydrodynamic model was created as multilayer model with eight layers. Calibration of the hydrodynamic model is the starting point for making prognosis calculation in order to create the most optimal system of open-pit mine protection from groundwater. The results of model calibration indicated that the rivers Gomjenica and Bistrica, precipitation and inflow from karstified rocks are the primary sources of recharge of the limonite ore body “Buvač”.

  8. Hydrodynamic modeling of accretion shocks on a star with radiative transport and a chromospheric model

    Science.gov (United States)

    de Sá, L.; Chièze, J.-P.; Stehlé, C.; Hubeny, I.; Delahaye, F.; Lanz, T.

    2012-12-01

    The aim of the project (ANR STARSHOCK) is to understand the dynamics and the radiative properties of accretion columns, linking the circumstellar disk to the surface photosphere of Young Stellar Objects. The hydrodynamics is computed first, using a high resolution hydrodynamic 1D ALE code (ASTROLABE) coupled to radiative transfer and line cooling, along with a model for the acoustic heating of the chromospheric plasma. Spectra are then post-processed with a 1D radiative transfer code (SYNSPEC), using DFE solver and an extended atomic database covering a wavelength range from X rays to visible.

  9. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    Science.gov (United States)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  10. Hydrodynamics in a cold-model jetting fluidized-bed gasifier with a binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K.; Zhang, J.; Zhang, B. [University of Petroleum, Beijing (China)

    2004-12-01

    The average properties of binary system defined by Goossens and others are incorporated into an Eulerian-Eulerian Computational Fluid Dynamics (CFD) model for simulating the hydrodynamics in a cold model of jetting fluidized bed gasifiers. Some of the essential hydrodynamic parameters, including gas - and solid-velocity profiles, time-averaged voidage profiles, and jet penetration height, are investigated in this paper. These results show the CFD approach is an effective tool for predicting hydrodynamics in jetting fluidized beds with multi-component mixture. 15 refs., 6 figs., 3 tabs.

  11. [Expression of Hydrodynamic Injection-mediated PD-L1 in Myeloablative Conditioning Mouse Model].

    Science.gov (United States)

    Li, Xiao-Fan; Li, Nai-Nong; Yang, Feng-E; Chen, Yuan-Zhong

    2015-10-01

    To establish the mouse model for the expression of PD-L1 by hydrodynamic injection and to study the effects of myeloablative conditioning on hydrodynamic injection-mediated PD-L1 expression. Plasmid amplification, hydrodynamic injection, collagenase perfusion, real time PCR, ELISA and flow cytometry were applied to test the expression and function of PD-L1. Also, animal models were set up to test the effects of chemical or radiactive myeloablative conditioning on hydrodynamic injection-mediated PD-L1 expression. The expression of PD-L1 mRNA and protein could be detected as early as 8 h after hyrodynamic injection and reached peak expression by 24 h, and returned to baseline level by 7 d after injection. Serum PD-L1 level reached to 100 µg/ml as early as 24 h after injection and plateaued at 7 d after injection. Serum PD-L1 persisted for 3 weeks and declined to baseline after 1 month of hydrodynamic injection. The PD-L1 function induced by hydrodynamic injection was consistent with literature reports. At each time point, the PD-L1 expression was not different significantly between the myeloablative conditioning group and control group; the mice transfected with PD-L1 showed a higher survival rate than that in control group. Myeloablative conditioning does not affect hydrodynamic injection-mediated PD-L1 expression, indicating that the PD-L1 can be used in HSCT mouse model.

  12. Mixed boundary-value problems for quantum hydrodynamic models with semiconductors in thermal equilibrium

    Directory of Open Access Journals (Sweden)

    Jianwei Dong

    2005-11-01

    Full Text Available We show the existence of solutions for mixed boundary-value problems that model quantum hydrodynamics in thermal equilibrium. Also we find the semi-classical limit of the solutions.

  13. Hydrodynamic modeling of the mouth of the Columbia River, Oregon and Washington, 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A process-based numerical model of the mouth of the Columbia River (MCR) and estuary, Oregon and Washington, was applied to simulate hydrodynamic conditions for the...

  14. Modeling Hydrodynamic State of Oil and Gas Condensate Mixture in a Pipeline

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2016-01-01

    Based on the developed model a calculation method was obtained which is used to analyze hydrodynamic state and composition of hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change.

  15. Mike Pentz showing visitors around CESAR

    CERN Multimedia

    CERN PhotoLab

    1964-01-01

    Mike Pentz, leader of the CESAR Group, shows visitors around the 2 MeV electron storage ring. Here they are in the vault of the injector (a 2 MV van de Graaff generator), next to the 2 beam lines, one leading to the ring, the other to the spectrometer.

  16. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

    2010-11-30

    The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

  17. A Full Hydrodynamic Modelling of 2D Breaker Bar Development

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; Fredsøe, Jørgen

    2011-01-01

    zone. The temporal change of a cross shore beach profile under both regular and bichromatic waves is considered. The dependency on the morphological time scale on the regularity of the incident waves is discussed. The feedback onto the hydrodynamics due to a changing bed level is discussed in the case...

  18. Hydrodynamic model for picosecond propagation of laser-created nanoplasmas

    CERN Document Server

    Saxena, Vikrant; Ziaja, Beata; Santra, Robin

    2015-01-01

    The interaction of a free-electron-laser pulse with a moderate or large size cluster is known to create a quasi-neutral nanoplasma, which then expands on hydrodynamic timescale, i.e., $>1$ ps. To have a better understanding of ion and electron data from experiments derived from laser-irradiated clusters, one needs to simulate cluster dynamics on such long timescales for which the molecular dynamics approach becomes inefficient. We therefore propose a two-step Molecular Dynamics-Hydrodynamic scheme. In the first step we use molecular dynamics code to follow the dynamics of an irradiated cluster until all the photo-excitation and corresponding relaxation processes are finished and a nanoplasma, consisting of ground-state ions and thermalized electrons, is formed. In the second step we perform long-timescale propagation of this nanoplasma with a computationally efficient hydrodynamic approach. In the present paper we examine the feasibility of a hydrodynamic two-fluid approach to follow the expansion of spherica...

  19. Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.

    Science.gov (United States)

    Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.

    2015-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.

  20. A Flood Risk Assessment of the LaHave River Watershed, Canada Using GIS Techniques and an Unstructured Grid Combined River-Coastal Hydrodynamic Model

    Directory of Open Access Journals (Sweden)

    Kevin McGuigan

    2015-09-01

    Full Text Available A flexible mesh hydrodynamic model was developed to simulate flooding of the LaHave River watershed in Nova Scotia, Canada, from the combined effects of fluvial discharge and ocean tide and surge conditions. The analysis incorporated high-resolution lidar elevation data, bathymetric river and coastal chart data, and river cross-section information. These data were merged to generate a seamless digital elevation model which was used, along with river discharge and tidal elevation data, to run a two-dimensional hydrodynamic model to produce flood risk predictions for the watershed. Fine resolution topography data were integrated seamlessly with coarse resolution bathymetry using a series of GIS tools. Model simulations were carried out using DHI Mike 21 Flexible Mesh under a variety of combinations of discharge events and storm surge levels. Discharge events were simulated for events that represent a typical annual maximum runoff and extreme events, while tide and storm surge events were simulated by using the predicted tidal time series and adding 2 and 3 m storm surge events to the ocean level seaward of the mouth of the river. Model output was examined and the maximum water level for the duration of each simulation was extracted and merged into one file that was used in a GIS to map the maximum flood extent and water depth. Upstream areas were most vulnerable to fluvial discharge events, the lower estuary was most vulnerable to the effect of storm surge and sea-level rise, and the Town of Bridgewater was influenced by the combined effects of discharge and storm surge. To facilitate the use of the results for planning officials, GIS flood risk layers were intersected with critical infrastructure, identifying the roads, buildings, and municipal sewage infrastructure at risk under each flood scenario. Roads were converted to points at 10 m spacing for inundated areas and appended with the flood depth calculated from the maximum water level

  1. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  2. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    Science.gov (United States)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  3. Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations.

    Science.gov (United States)

    Melaku Canu, Donata; Aveytua-Alcázar, Leslie; Camacho-Ibar, Victor F; Querin, Stefano; Solidoro, Cosimo

    2016-07-15

    We investigated the physical dynamics of San Quintin Bay, a coastal lagoon located on the Pacific coast of northern Baja California, Mexico. We implemented, validated and used a finite element 2-D hydrodynamic model to characterize the spatial and temporal variability of the hydrodynamic of the bay in response to variability in the tidal regime and in meteorological forcing patterns. Our analysis of general circulation, residual currents, residence times, and tidal propagation delays allowed us to characterize spatial variability in the hydrodynamic basin features. The eulerian water residence time is -on average and under reference conditions- approximately 7days, although this can change significantly by region and season and under different tidal and meteorological conditions. Ocean upwelling events that bring colder waters into the bay mouth affect hydrodynamic properties in all areas of the lagoon and may affect ecological dynamics. A return to pre-upwelling conditions would take approximately 10days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Modelling centrifugal partition chromatography separation behavior to characterize influencing hydrodynamic effects on separation efficiency.

    Science.gov (United States)

    Schwienheer, C; Krause, J; Schembecker, G; Merz, J

    2017-04-07

    In addition to the selection or adjustment of phase systems to gain a suitable partition coefficient for the target molecule, the separation efficiency in centrifugal partition chromatography (CPC) is strongly influenced by the hydrodynamic interactions of the mobile and the stationary phase in the chambers. Thus, the hydrodynamic interactions must be investigated and understood in order to enhance a CPC separation run. Different hydrodynamic effects like mass transfer, back mixing and the non-ideal behavior of stationary phase, which cannot be determined directly, are known, but quantifying these effects and their influence on separation performance is barely achieved. In order to understand their influence, a physically detailed mathematical model of a CPC chamber was developed. The model includes a parameter representing the hydrodynamic effects mentioned above and is able to determine the parameters significance by fitting them to separation experiment data. The acquired knowledge is used to correlate the effects of the hydrodynamic influences on the separation performance and can be used to forecast hydrodynamic and separation behavior in a CPC device. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain.

  6. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    Science.gov (United States)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  7. Hydrodynamic modelling in the Polish Zone of the Baltic Sea - an overview of Polish achievements

    Directory of Open Access Journals (Sweden)

    Ewa Jasińska

    2003-03-01

    Full Text Available This paper gives a general overview of Polish experience and achievements with regard to hydrodynamic modelling in the Polish zone of the Baltic Sea. The first work started already at the end of the sixties when the first 1D and 2D hydrodynamic models were set up. With the development of numerical methods and increasing computational power a number of 1D, 2D and 3D models were set up and tested. Global, regional and local models cover the most important water bodies,i.e. the Pomeranian Bay - Szczecin Lagoon and Gulf of Gdansk - Vistula Lagoon systems.

  8. Recent extensions of the residence time distribution concept: unsteady state conditions and hydrodynamic model developments

    Directory of Open Access Journals (Sweden)

    Claudel S.

    2000-01-01

    Full Text Available Two recent extensions of the residence time distribution concept are developed. The first one concerns the use of this method under transient conditions, a concept theoretically treated but rarely confirm by relevant experiments. In the present work, two experimental set-ups have been used to verify some limits of the concept. The second extension is devoted to the development of hydrodynamic models. Up to now, the hydrodynamics of the process are either determined by simple models (mixing cells in series, plug flow reactor with axial dispersion or by the complex calculation of the velocity profile obtained via the Navier-Stokes equations. An alternative is to develop a hydrodynamic model by use of a complex network of interconnected elementary reactors. Such models should be simple enough to be derived easily and sufficiently complex to give a good representation of the behavior of the process.

  9. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  10. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  11. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  12. Numerical modeling of ocean hydrodynamics with variational assimilation of observational data

    Science.gov (United States)

    Zalesny, V. B.; Agoshkov, V. I.; Shutyaev, V. P.; Le Dimet, F.; Ivchenko, B. O.

    2016-07-01

    Models and methods of the numerical modeling of ocean hydrodynamics dating back to the pioneering works of A.S. Sarkisyan are considered, with emphasis on the formulation of problems and algorithms of mathematical modeling and the four-dimensional variational assimilation of observational data. An algorithm is proposed for studying the sensitivity of the optimal solution to observational data errors in a seasurface temperature assimilation problem in order to retrieve heat fluxes on the surface. An example of a solution of the optimal problem of the World Ocean hydrodynamics with the assimilation of climatic temperature and salinity observations is offered.

  13. Integrated methodology for constructing a quantified hydrodynamic model for application to clastic petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Honarpour, M. M.; Schatzinger, R. A.; Szpakiewicz, M. J.; Jackson, S. R.; Sharma, B.; Tomutsa, L.; Chang, M. M.

    1990-01-01

    A comprehensive, multidisciplinary, stepwise methodology is developed for constructing and integration geological and engineering information for predicting petroleum reservoir performance. This methodology is based on our experience in characterizing shallow marine reservoirs, but it should also apply to other deposystems. The methodology is presented as Part 1 of this report. Three major tasks that must be studied to facilitate a systematic approach for constructing a predictive hydrodynamic model for petroleum reservoirs are addressed: (1) data collection, organization, evaluation, and integration; (2) hydrodynamic model construction and verification; and (3) prediction and ranking of reservoir parameters by numerical simulation using data derived from the model. 39 refs., 62 figs., 13 tabs.

  14. Slow hydrodynamic regime to model B supergiant winds

    Science.gov (United States)

    Venero, R. O. J.; Cidale, L. S.; Cure, M.; Haucke, M.

    2017-10-01

    Current hydrodynamic solutions for the winds of early-type stars are obtained from the theory of rotating stars with radiation-driven winds. These solutions are separated into two main branches: the fast solution and the slow solutions. The first set is the standard CAK solution, while the second set corresponds to a group of solutions with still poorly known properties. In this work we study the properties of the slow wind regime derived for different values of the line force parameters, and compute the resulting line profiles. Then we fit our synthetic line profiles with observed ones, in order to evaluate the ability of the slow solution to represent the variety of features observed in line profiles originated along the winds. We find that the winds of B supergiants can be well-represented by the slow regime, a result that could give new insights into the true nature of the outflows in early-type stars.

  15. Modelling free surface flows with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    L.Di G.Sigalotti

    2006-01-01

    Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.

  16. Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations

    NARCIS (Netherlands)

    Thieulot, C; Janssen, LPBM; Espanol, P

    We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Espanol and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by

  17. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2010-12-20

    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  18. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models

    Directory of Open Access Journals (Sweden)

    Paola Patiño

    2012-04-01

    Full Text Available Hydrodynamic phenomena take place within water treatment plants associated with physical, operational and environmental factors which can affect the water quality. This study evaluated a hydraulic clarifier’s hydrodynamic pattern using sludge recirculation through continuous tracer test leading to determining hydraulic behaviour indicators and simplified flow models. The clarifier had dual flow with a predominantly complete mixture during the hours in which higher temperatures were reported for affluent water compared to those reported inside the reactor, causing the formation of density currents promoting mixing in the reactor and increased turbidity in the effluent. The hydraulic indicators and the Wolf-Resnick model had higher sensitivity to the influence of temperature on reactor hydrodynamics.

  19. Hybrid polygon and hydrodynamic nebula modeling with multi-waveband radiation transfer in astrophysics

    Science.gov (United States)

    Steffen, W.; Koning, N.

    2017-07-01

    We demonstrate the potential for research and outreach of mixed polygon and hydrodynamic modeling and multi-waveband rendering in the interactive 3-D astrophysical virtual laboratory Shape. In 3-D special effects and animation software for the mass media, computer graphics techniques that mix polygon and numerical hydrodynamics have become common place. In astrophysics, however, interactive modeling with polygon structures has only become available with the software Shape. Numerical hydrodynamic simulations and their visualization are usually separate, while in Shape it is integrated with the polygon modeling approach that requires no programming by the user. With two generic examples, we demonstrate that research and outreach modeling can be achieved with techniques similar to those used in the media industry with the added capability for physical rendering at any wavelength band, yielding more realistic radiation modeling. Furthermore, we show how the hydrodynamics and the polygon mesh modeling can be mixed to achieve results that are superior to those obtained using either one of these modeling techniques alone.

  20. A first computational framework for integrated hydrologic-hydrodynamic inundation modelling

    Science.gov (United States)

    Hoch, Jannis; Baart, Fedor; Neal, Jeffrey; van Beek, Rens; Winsemius, Hessel; Bates, Paul; Bierkens, Marc

    2017-04-01

    To provide detailed flood hazard and risk estimates for current and future conditions, advanced modelling approaches are required. Currently, many approaches are however built upon specific hydrologic or hydrodynamic model routines. By applying these routines in stand-alone mode important processes cannot accurately be described. For instance, global hydrologic models (GHM) run at coarse spatial resolution which does not identify locally relevant flood hazard information. Moreover, hydrologic models generally focus on correct computations of water balances, but employ less sophisticated routing schemes such as the kinematic wave approximation. Hydrodynamic models, on the other side, excel in the computations of open water flow dynamics, but are highly dependent on specific runoff or observed discharge for their input. In most cases hydrodynamic models are forced by applying discharge at the boundaries and thus cannot account for water sources within the model domain. Thus, discharge and inundation dynamics at reaches not fed by upstream boundaries cannot be modelled. In a recent study, Hoch et al. (HESS, 2017) coupled the GHM PCR-GLOBWB with the hydrodynamic model Delft3D Flexible Mesh. A core element of this study was that both models were connected on a cell-by-cell basis which allows for direct hydrologic forcing within the hydrodynamic model domain. The means for such model coupling is the Basic Model Interface (BMI) which provides a set of functions to directly access model variables. Model results showed that discharge simulations can profit from model coupling as their accuracy is higher compared to stand-alone runs. Model results of a coupled simulation clearly depend on the quality of the individual models. Depending on purpose, location or simply the models at hand, it would be worthwhile to allow a wider range of models to be coupled. As a first step, we present a framework which allows coupling of PCR-GLOBWB to both Delft3D Flexible Mesh and LISFLOOD

  1. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  2. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Directory of Open Access Journals (Sweden)

    Mazda Biglari

    2016-06-01

    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  3. Hydrodynamic Hunters.

    Science.gov (United States)

    Jashnsaz, Hossein; Al Juboori, Mohammed; Weistuch, Corey; Miller, Nicholas; Nguyen, Tyler; Meyerhoff, Viktoria; McCoy, Bryan; Perkins, Stephanie; Wallgren, Ross; Ray, Bruce D; Tsekouras, Konstantinos; Anderson, Gregory G; Pressé, Steve

    2017-03-28

    The Gram-negative Bdellovibrio bacteriovorus (BV) is a model bacterial predator that hunts other bacteria and may serve as a living antibiotic. Despite over 50 years since its discovery, it is suggested that BV probably collides into its prey at random. It remains unclear to what degree, if any, BV uses chemical cues to target its prey. The targeted search problem by the predator for its prey in three dimensions is a difficult problem: it requires the predator to sensitively detect prey and forecast its mobile prey's future position on the basis of previously detected signal. Here instead we find that rather than chemically detecting prey, hydrodynamics forces BV into regions high in prey density, thereby improving its odds of a chance collision with prey and ultimately reducing BV's search space for prey. We do so by showing that BV's dynamics are strongly influenced by self-generated hydrodynamic flow fields forcing BV onto surfaces and, for large enough defects on surfaces, forcing BV in orbital motion around these defects. Key experimental controls and calculations recapitulate the hydrodynamic origin of these behaviors. While BV's prey (Escherichia coli) are too small to trap BV in hydrodynamic orbit, the prey are also susceptible to their own hydrodynamic fields, substantially confining them to surfaces and defects where mobile predator and prey density is now dramatically enhanced. Colocalization, driven by hydrodynamics, ultimately reduces BV's search space for prey from three to two dimensions (on surfaces) even down to a single dimension (around defects). We conclude that BV's search for individual prey remains random, as suggested in the literature, but confined, however-by generic hydrodynamic forces-to reduced dimensionality. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2016-01-01

    -concentration field coupled to the continuity and Navier–Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model...... is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility...

  5. Autogrammid, oma aja märk / Mike Lawrence

    Index Scriptorium Estoniae

    Lawrence, Mike

    2004-01-01

    Autogrammide kogumisest, nende ehtsusest, sportlastele kuulunud esemete kollektsioneerimisest. Lisatud: Kollektsionääride maiuspalu. Autor Mike Lawrence on oksjonifirma Bonhams/Brooks konsultant, ajakirjanik

  6. Temperature Dynamics Investigation At Small And Shallow Lakes Using Hydrodynamic Model

    NARCIS (Netherlands)

    Abbasi, A.; van de Giesen, N.C.; Piasecki, M

    2014-01-01

    A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or

  7. Hydrodynamic model approach to the formation of plasmonic wakes in graphene

    DEFF Research Database (Denmark)

    Chaves, A. J.; Peres, N. M. R.; Smirnov, G.

    2017-01-01

    Using the hydrodynamic model in the electrostatic approximation, we describe the formation of graphene surface plasmons when a nearby charge is in motion either perpendicular or parallel to a graphene sheet. In the first case, the electron-energy loss (EEL) spectrum of the electron is computed...

  8. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    Science.gov (United States)

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein: EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  9. Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach

    Science.gov (United States)

    Ilievski, Enej; De Nardis, Jacopo

    2017-08-01

    We outline a general formalism of hydrodynamics for quantum systems with multiple particle species which undergo completely elastic scattering. In the thermodynamic limit, the complete kinematic data of the problem consist of the particle content, the dispersion relations, and a universal dressing transformation which accounts for interparticle interactions. We consider quantum integrable models and we focus on the one-dimensional fermionic Hubbard model. By linearizing hydrodynamic equations, we provide exact closed-form expressions for Drude weights, generalized static charge susceptibilities, and charge-current correlators valid on the hydrodynamic scale, represented as integral kernels operating diagonally in the space of mode numbers of thermodynamic excitations. We find that, on hydrodynamic scales, Drude weights manifestly display Onsager reciprocal relations even for generic (i.e., noncanonical) equilibrium states, and establish a generalized detailed balance condition for a general quantum integrable model. We present exact analytic expressions for the general Drude weights in the Hubbard model, and explain how to reconcile different approaches for computing Drude weights from the previous literature.

  10. Smoothed particle hydrodynamics model for phase separating fluid mixtures. II. Diffusion in a binary mixture

    NARCIS (Netherlands)

    Thieulot, C; Janssen, LPBM; Espanol, P

    A previously formulated smoothed particle hydrodynamics model for a phase separating mixture is tested for the case when viscous processes are negligible and only mass and energy diffusive processes take place. We restrict ourselves to the case of a binary mixture that can exhibit liquid-liquid

  11. Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing

    DEFF Research Database (Denmark)

    Carretta, Y.; Bech, Jakob Ilsted; Legrand, N.

    2017-01-01

    This paper presents a new finite element model capable of predicting the onset of micro-plasto-hydrodynamic (MPH) lubrication and the amount of lubricant escaping from surface pockets in metal forming.The present approach is divided in two steps. First, a simulation at the macroscopic level is co...

  12. METHODS OF PHYSICAL MODELING OF HYDRODYNAMIC PROCESSES AT CASTING OF ALLOYS

    Directory of Open Access Journals (Sweden)

    V. Ju. Stetsenko

    2012-01-01

    Full Text Available The method of physical modeling of hydrodynamic processes of alloys molding is developed. It is shown that as a liquid it is necessary to use water and diethyl ether at molding of steel, silumins, tin-base bronzes and waterglycerine solutions.

  13. Removal of river embankments and the modelled effects on river-floodplain hydrodynamics

    Science.gov (United States)

    Clilverd, Hannah; Thompson, Julian; Heppell, Kate; Sayer, Carl; Axmacher, Jan

    2015-04-01

    The channelization and embankment of rivers has led to major ecological degradation of aquatic habitats worldwide. River restoration, which often includes the removal of previously constructed barriers between a river and its floodplain, is now being widely used to create favourable hydrological conditions for target species or processes. However the effects of river restoration on hydraulic and hydrological processes are complex, and are often difficult to determine due to the infrequency of long-term monitoring programmes before and after restoration works. To examine the hydrological impacts of embankment removal under a variety of possible hydrological conditions, we developed coupled hydrological/hydraulic models of pre-embankment and post-embankment conditions at a wet grassland meadow in Norfolk, UK using the MIKE-SHE/MIKE 11 system. Groundwater hydrology and climate were monitored between 2007 and 2010 with river inflows being provided from an upstream gauging station. The embanked model was calibrated and validated with observed groundwater data for two consecutive 12-month periods, after which the restored topography was applied to the model and validated for a subsequent 12-month period. The restored model was then run for the same period as the embanked model (i.e. with the same river inflow, precipitation, and potential evapotranspiration data) to remove interannual climate variability and enable a direct comparison between models. Modelled groundwater levels compared well with piezometer observations and reproduced the observed rapid groundwater response to high magnitude rainfall and river flow events. Removal of the embankments resulted in frequent localised flooding at the river edge, widespread floodplain inundation at flows greater than 1.9 m3 sec-1, as well as higher groundwater levels and greater subsurface storage. Restoration had only a minor effect on flood peak attenuation (maximum 5% flood peak reduction), likely due to the small size of

  14. A linked hydrodynamic and water quality model for the Salton Sea

    Science.gov (United States)

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  15. Hydrodynamics challenge problem

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keasler, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gokhale, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-09

    The hydrodynamics challenge problem represents a classical HPC physics problem, namely high deformation event modeling via Lagrangian shock hydrodynamics. This challenge problem solves the Sedov blast wave problem for one material in three dimensions. The problem has an analytic solution, and can be scaled to arbitrarily large problem sizes. The reference code is drawn from a production LLNL hydrodynamics code.

  16. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider

    Science.gov (United States)

    Wang, Zhen-yu; Yu, Jian-cheng; Zhang, Ai-qun; Wang, Ya-xing; Zhao, Wen-tao

    2017-12-01

    Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.

  17. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.

  18. Depth-Averaged Non-Hydrostatic Hydrodynamic Model Using a New Multithreading Parallel Computing Method

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2017-03-01

    Full Text Available Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic model can accurately simulate flows that feature vertical accelerations. The model’s low computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic hydrodynamic model based on a multithreading parallel computing method. The horizontal momentum equation is obtained by integrating the Navier–Stokes equations from the bottom to the free surface. The vertical momentum equation is approximated by the Keller-box scheme. A two-step method is used to solve the model equations. A parallel strategy based on block decomposition computation is utilized. The original computational domain is subdivided into two subdomains that are physically connected via a virtual boundary technique. Two sub-threads are created and tasked with the computation of the two subdomains. The producer–consumer model and the thread lock technique are used to achieve synchronous communication between sub-threads. The validity of the model was verified by solitary wave propagation experiments over a flat bottom and slope, followed by two sinusoidal wave propagation experiments over submerged breakwater. The parallel computing method proposed here was found to effectively enhance computational efficiency and save 20%–40% computation time compared to serial computing. The parallel acceleration rate and acceleration efficiency are approximately 1.45% and 72%, respectively. The parallel computing method makes a contribution to the popularization of non-hydrostatic models.

  19. Modeling hydrodynamic instabilities of double ablation fronts in inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    Yanez C.

    2013-11-01

    Full Text Available A linear Rayleigh-Taylor instability theory of double ablation (DA fronts is developed for direct-drive inertial confinement fusion. Two approaches are discussed: an analytical discontinuity model for the radiation dominated regime of very steep DA front structure, and a numerical self-consistent model that covers more general hydrodynamic profiles behaviours. Dispersion relation results are compared to 2D simulations.

  20. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  1. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  2. Mike"s Conker: a collaborative nonlinear knowledge elicitation repository for mobile HCI practitioners

    Science.gov (United States)

    Mohamedally, Dean; Edlich, Stefan; Zaphiris, Panayiotis; Petrie, Helen

    2005-03-01

    In the field of Human Computer Interaction (HCI), we use a variety of Knowledge Elicitation (KE) techniques to capture user cognitive issues e.g. via interviews, paper prototyping, card sorting, focus group debates and more. MIKE (Mobile Interactive Knowledge Elicitation) is an ongoing research direction to enhance the KE capabilities of HCI practitioners via mobile and electronic methods. MIKE tools are a suite of Mobile HCI software and hardware configurations for a variety of mobile platforms. With MIKE's CONKER we describe a Collaborative Non-linear Knowledge Elicitation Repository for HCI practitioners. Its intention is to provide a scalable infrastructure for supporting the management and collaborative retrieval of mobile based KE datasets. Some of its functional design requirements include HCI practitioner profiles management, managing experimental progress from dispersed mobile HCI teams, timetabling expenditures for time critical empirical capture and participant management, and enabling concurrent HCI specialists to compare elicited mobile data. Further expansion of the CONKER system will include incorporation of distributed psychometric analysis methods. CONKER is realized as a sourceforge-alike Web-Portal using state-of-the-art web-framework technologies. We describe several approaches to the capturing and management of HCI data and how CONKER makes this available to the HCI community.

  3. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  4. Modeling the hydrodynamic responses to land reclamation in different regions of a semi-enclosed bay

    Science.gov (United States)

    Yang, Y.; Chui, T. F. M.

    2016-12-01

    Water area in bays has been reclaimed to meet the increasing land demand for development. Numbers of studies have examined the hydrodynamic impacts induced by land reclamations in semi-enclosed bays such as San Francisco Bay in the U.S., Tokyo Bay in Japan, and Jiaozhou Bay in China. However, they have not compared the impacts of land reclamations taken place in different regions. The Deep Bay in China was selected as a case study to evaluate and compare the hydrodynamic responses to land reclamations that narrows the bay mouth and that causes water surface loss inside of the bay. A numerical model was employed to simulate the hydrodynamics throughout the bay and to examine the differences in impacts through scenario experiments. The model was validated using the observations of water elevation, currents, and salinity. To indicate the changes in hydrodynamics, tidal prism, current field, tidal energy flux, and water age were computed. Simulation results show that narrowing the bay mouth length by 30% with ??% loss of its original water surface area would increase the total energy flux entering the bay by 26 %, while 14% loss of its original water surface area in middle bay would decrease the total energy entering the bay by 23%. The two regions of reclamations have both resulted in substantial but different changes in current field, the spatial distribution of tidal energy flux and water age. For example, the reclamation at bay mouth has increased the current velocity and tidal energy flux at the bay mouth while that inside of the bay has streamlined the current field and increased the velocity in the inner bay. The water age throughout the bay has been reduced by 5.1% and 13.7% respectively in the two scenarios, increasing the water exchange ability of the bay with the adjacent sea. This study is beneficial to other semi-enclosed bays considering land reclamations, facilitating quick and preliminary estimations of hydrodynamic impacts for planning and management.

  5. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)

    1998-01-01

    The classical Landau/Levich models of liquid propellant combustion, which serve as seminal examples of hydrodynamic instability in reactive systems, have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and/or temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity, surface tension and viscosity on the hydrodynamic instability of the propagating liquid/gas interface. In particular, a composite asymptotic expression, spanning three distinguished wavenumber regimes, is derived for both cellular and pulsating hydrodynamic neutral stability boundaries A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. For the case of cellular (Landau) instability, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that cellular hydrodynamic instability in this context is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(l) wavenumber disturbances. It is also demonstrated that, in the large wavenumber regime, surface tension and both liquid and gas viscosity all produce comparable stabilizing effects in the large-wavenumber regime, thereby providing significant modifications to previous analyses of Landau instability in which one or more of these effects were neglected. In contrast

  6. A Hydrodynamic Model of The Human Leg Circulation.

    Science.gov (United States)

    Klabunde, Richard E.; McDowell, Donald E.

    1984-01-01

    Describes the construction and use of a life-size model which shows blood flow under normal and pathological conditions. Four experimental procedures (single vessel occlusion, dilation of distal vascular bed, single artery stenosis, and multiple artery stenoses) typical of those demonstrated by the model are discussed and diagrammed. (DH)

  7. Validation Hydrodynamic Models of Three Topological Models of Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alxander

    2014-10-01

    Full Text Available A methodology was developed to analyze boundary conditions, the size of the mesh and the turbulence of a mathematical model of CFD, which could explain hydrodynamic behavior on facultative stabilization ponds, FSP, built to pilot scale: conventional pond, CP, baffled pond, BP, and baffled-mesh pond, BMP. Models dispersion studies were performed in field for validation, taking samples into and out of the FSP, the information was used to carry out CFD model simulations of the three topologies. Evaluated mesh sizes ranged from 500,000 to 2,000,000 elements. The boundary condition in Pared surface-free slip showed good qualitative behavior and the turbulence model κ–ε Low Reynolds yielded good results. The biomass contained in LFS generates interference on dispersion studies and should be taken into account in assessing the CFD modeling, the tracer injection times, its concentration at the entrance, the effect of wind on CFD, and the flow models adopted as a basis for modeling are parameters to be taken into account for the CFD model validation and calibration.

  8. A viscous quantum hydrodynamics model based on dynamic density functional theory.

    Science.gov (United States)

    Diaw, Abdourahmane; Murillo, Michael S

    2017-11-10

    Dynamic density functional theory (DDFT) is emerging as a useful theoretical technique for modeling the dynamics of correlated systems. We extend DDFT to quantum systems for application to dense plasmas through a quantum hydrodynamics (QHD) approach. The DDFT-based QHD approach includes correlations in the the equation of state self-consistently, satisfies sum rules and includes irreversibility arising from collisions. While QHD can be used generally to model non-equilibrium, heterogeneous plasmas, we employ the DDFT-QHD framework to generate a model for the electronic dynamic structure factor, which offers an avenue for measuring hydrodynamic properties, such as transport coefficients via x-ray Thomson scattering.

  9. A Possible Universe in Pulsation by Using a Hydro-Dynamical Model for Gravity

    Directory of Open Access Journals (Sweden)

    Corneliu BERBENTE

    2016-12-01

    Full Text Available By using a hydro-dynamical model for gravity previously given by the author, a pulsating universe is possible to describe. This is possible because two hydro-dynamical sources are in attraction both when they are emitting and absorbing fluid. In our model, bodies (matter and energy are interacting via an incompressible fluid made of gravitons (photon-like particles having a wave length of the order of magnitude of the radius of universe. One considers the universe uniform at large scale, the effects of general relativity type being local and negligible at global scale. An “elastic sphere” model for the universe is suggested to describe the possible inversion. The expansion of the universe stops when the “elastic energy” overcomes the kinetic one; this takes place near the point of maximal emission speed of the fluid of gravitons. The differential equation for the universe in expansion is adapted to contraction. Analytical solutions are given.

  10. A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells

    Science.gov (United States)

    2014-08-01

    proposed a mathematical model for cell cleavage for the sea urchin by considering chemotactic motion of the centro- somes. In [23], the author...approach to study the cellular morphological change during cytokinesis. In this model, the force along the contracting ring or cytokinetic ring induced by...during cytokinesis, surface tension of the cell membrane also contributes to this process by retaining the morphological integrity of the offspring

  11. Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation

    Science.gov (United States)

    Vogel, Ronald L.; Brown, Christopher W.

    2016-07-01

    Improving forecasts of salinity from coastal hydrodynamic models would further our predictive capacity of physical, chemical, and biological processes in the coastal ocean. However, salinity is difficult to estimate in coastal and estuarine waters at the temporal and spatial resolution required. Retrieving sea surface salinity (SSS) using satellite ocean color radiometry may provide estimates with reasonable accuracy and resolution for coastal waters that could be assimilated into hydrodynamic models to improve SSS forecasts. We evaluated the applicability of satellite SSS retrievals from two algorithms for potential assimilation into National Oceanic and Atmospheric Administration's Chesapeake Bay Operational Forecast System (CBOFS) hydrodynamic model. Of the two satellite algorithms, a generalized additive model (GAM) outperformed that of an artificial neural network (ANN), with mean bias and root-mean-square error (RMSE) of 1.27 and 3.71 for the GAM and 3.44 and 5.01 for the ANN. However, the RMSE for the SSS predicted by CBOFS (2.47) was lower than that of both satellite algorithms. Given the better precision of the CBOFS model, assimilation of satellite ocean color SSS retrievals will not improve CBOFS forecasts of SSS in Chesapeake Bay. The bias in the GAM SSS retrievals suggests that adding a variable related to precipitation may improve its performance.

  12. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  13. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-08-01

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  14. Thermal and hydrodynamic modelling of active catheters for interventional radiology.

    Science.gov (United States)

    Marchandise, Emilie; Flaud, Patrice; Royon, Laurent; Blanc, Raphaël; Szewczyk, Jérome

    2011-07-01

    Interventional radiologists desire to improve their operating tools such as catheters. Active catheters in which the tip is moved using shape memory alloy actuators activated using the Joule effect present a promising approach for easier navigation in the small vessels. However, the increase in temperature caused by this Joule effect must be controlled in order to prevent damage to blood cells and tissues. This paper is devoted to the simulation and experimental validation of a fluid-thermal model of an active catheter prototype. Comparisons between computer-predicted and experimentally measured temperatures are presented for both experiments in air and water at 37°C. Good agreement between the computational and experimental results is found, demonstrating the validity of the developed computer model. These comparisons enable us to highlight some important issues in the modelling process and to determine the optimal current for the activation of the catheter.

  15. The application of single particle hydrodynamics in continuum models of multiphase flow

    Science.gov (United States)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  16. Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir

    Science.gov (United States)

    Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming

    2017-12-01

    Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.

  17. Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mikaelian, K O

    2008-06-10

    We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A/B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A/B/A configurations like air/SF{sub 6}/air gas-curtain experiments. We first consider conventional shock tubes that have a 'fixed' boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a 'free' boundary--a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction towards the interface(s). Complex acceleration histories are achieved, relevant for Inertial Confinement Fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities, and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other, and remain to be verified experimentally.

  18. Hydrodynamic And Water Quality Surrogate Modeling For Reservoir Operation

    NARCIS (Netherlands)

    Aguilar Lopez, J.P.; Andel, Schalk Jan Van; Werner, M; Solomatine, D.P.; Piasecki, M

    2014-01-01

    Data for water management is increasingly easy to access, it has finer spatial and temporal resolution, and it is available from various sources. Precipitation data can be obtained from meteorological stations, radar, satellites and weather models. Land use data is also available from different

  19. Hydrodynamic Modelling and Experimental Analysis of FE-DMFC Stacks

    Science.gov (United States)

    Kablou, Yashar

    Direct methanol fuel cells (DMFCs) present some unique features such as having liquid fuel, quick refueling process, compact design and high energy density. These characteristics make them incredibly suitable as a promising power source for portable electronic applications, such as cell phones or laptop computers. Despite of these positive aspects, the commercial development of DMFCs has nevertheless been hindered by some important issues such as, carbon dioxide formation at the anode compartment and, methanol crossover through the membrane. Many researchers have tried to model the two-phase flow behavior inside the DMFC anode compartment using the "homogenous flow modelling" approach, which has proven to be inaccurate specially when dealing with DMFC stacks. On the other hand, several strategies to prevent methanol crossover have been suggested in the literature, including the use of a flowing electrolyte between the DMFC anode and cathode compartments. Preliminary tests on flowing electrolyte direct methanol fuel cells (FE-DMFCs) have shown promising results; however, further investigation should be carried out on the stack level. In the first part of this study, a quasi two-dimensional numerical model was developed, to predict the two-phase flow behavior within the DMFC anode compartment, both in single cell and stack levels. Various types of flow modelling approaches and void fraction correlations were utilized to estimate the pressure drop across the anode compartment. It was found that the "separated flow modelling" approach, as well as CISE correlation for void fraction (developed at the CISE labs in Milan), yield the best results. In the second part, a five-cell FE-DMFC stack unit with a parallel serpentine flow bed design and U-type manifold configuration, was developed and tested at various operating conditions. It was found that, the flowing electrolyte effectively reduced methanol crossover and, improved the stack performance.

  20. Development of hydrodynamic analysis model for IRWST/Sparger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Nyung; Lee, Kyung Won; Yum, Sang Hoo; Yoon, Sung Sik [Kyung Hee University, Seoul (Korea)

    2001-04-01

    One of the design improvements of the KNGR(Korean Next Generation Reactor) which is advanced to safety and economy is the adoption of IRWST(In-Containment Refueling Water Storage Tank). The IRWST, installed inside of the containment building, has more designed purpose than merely the location change of the tank. Since the design functions of the IRWST is similar to these of the BWR's suppression pool, theoretical models applicable to BWR's suppression pool can be mostly applied to the IRWST. But for the PWR, the geometry of the sparger, the operation mode and the steam quantity and temperature and pressure of discharged fluid from primary system to IRWST through PSV or SDV may be different from those of BWR. Also there is some defects in detailed parts of condensation model. Therefore we, as the first nation to construct PWR with IRWST, must carry out profound research for there problems such that the results can be utilized and localized as an exclusive technology. To analyze steam condensation in IRWST, BWR operating experience, experimental data, design parameter of IRWST and wide range of literature review were consulted. Through the review, the point at issue in operating experience, every condensation and thermal-hydrolic phenomena in IRWST are throughly analyzed and the dominant parameters are found to be subcooled temperature and mass flow rate. This research has been understood the various theoretical and experimental models related to the phenomena and investigated the references about the concept and the design of KNGR's IRWST. The research has covered details of pipe clearing and boundary conditions, numerical method, bubble behavior and analytical method, distribution of velocity and pressure in sparger, load effect on structures, model of chugging and thermal stratification. These models were qualified for design and safety evaluation of Nuclear Power Plant. 15 refs., 22 figs., 4 tabs. (Author)

  1. Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics

    Science.gov (United States)

    Di Michele, Federica; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella

    2017-08-01

    In this paper we study the hybrid quantum hydrodynamic model for nano-sized bipolar semiconductor devices in thermal equilibrium. By introducing a hybrid version of the Bhom potential, we derive a bipolar hybrid quantum hydrodynamic model, which is able to account for quantum effects in a localized region of the device for both electrons and holes. Coupled with Poisson equation for the electric potential, the steady-state system is regionally degenerate in its ellipticity, due to the quantum effect only in part of the device. This regional degeneracy of ellipticity makes the study more challenging. The main purpose of the paper is to investigate the existence and uniqueness of the weak solutions to this new type of equations. We first establish the uniform boundedness of the smooth solutions to the modified bipolar quantum hydrodynamic model by the variational method, then we use the compactness technique to prove the existence of weak solutions to the original hybrid system by taking hybrid limit. In particular, we account for two different kinds of hybrid behaviour. We perform the first hybrid limit when both electrons and holes behave quantum in a given region of the device, and the second one when only one carrier exhibits hybrid behaviour, whereas the other one is presented classically in the whole domain. The semi-classical limit results are also obtained. Finally, the theoretical results are tested numerically on a simple toy model.

  2. Numerical analysis of a two-pion correlation function based on a hydrodynamical model

    CERN Document Server

    Morita, K; Nakamura, H; Nonaka, C; Morita, Kenji; Muroya, Shin; Nakamura, Hiroki; Nonaka, Chiho

    2000-01-01

    We will numerically investgate two-particle correlation function of CERN--SPS 158 A GeV Pb+Pb central collisions in detail based on a (3+1)-dimensional relativistic hydrodynamical model with first order phase transition. We use the Yano-Koonin-Podgoretski\\u{\\i} parametrization as well as the usual Cartesian parametrization and analyze the pair momentum dependence of HBT radii extracted from the parametrizations. We find that the interpretation of the temporal radius parameters as the time duration in YKP parametrization is not available for the hydrodynamical model where the source became opaque naturally because of expansion and surface dominant freeze-out. Finally, effect of the phase transition on the source opacity is also discussed.

  3. Dissipative quantum hydrodynamics model of x-ray Thomson scattering in dense plasmas

    Science.gov (United States)

    Diaw, Abdourahmane; Murillo, Michael

    2017-10-01

    X-ray Thomson scattering (XRTS) provides detailed diagnostic information about dense plasma experiments. The inferences made rely on an accurate model for the form factor, which is typically expressed in terms of a well-known response function. Here, we develop an alternate approach based on quantum hydrodynamics using a viscous form of dynamical density functional theory. This approach is shown to include the equation of state self-consistently, including sum rules, as well as irreversibility arising from collisions. This framework is used to generate a model for the scattering spectrum, and it offers an avenue for measuring hydrodynamic properties, such as transport coefficients, using XRTS. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).

  4. Finite Element Modelling of the Hydrodynamic Environment of a Small ROV

    Directory of Open Access Journals (Sweden)

    Ren Guang

    1993-07-01

    Full Text Available This paper addresses a practical problem, namely, modeling the hydrodynamic environment of a small ROV. This has become the problem of solving time-dependent incompressible Navier-Stokes equations with moving boundaries and a new method is developed to solve it. Navier-Stokes equations expressed in a moving-body-fixed coordinate frame with moving boundaries are derived and solved by a proposed finite element method which is a modified velocity correction procedure (Ren and Utnes 1993. The present method is implemented in the C language on a SUN/Sparc Station. The algorithm and program are demonstrated by solving a classic driven cavity flow problem and a simplified model of the hydrodynamic environment of a small ROV, which is a moving boundary problem. The results from the driven cavity flow problem are compared to previous work. A definition is also given of the moving boundary problem (MBP related to the solution of Navier-Stokes equations.

  5. Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2015-03-01

    Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.

  6. van der Waals normal form for a one-dimensional hydrodynamic model.

    Science.gov (United States)

    Cartes, C; Clerc, M G; Soto, R

    2004-09-01

    Phase separation in a fluidized granular system is studied. We consider a one-dimensional hydrodynamic model that mimics a two-dimensional fluidized granular system with a vibrating wall and without gravity, which exhibits a phase separation. Close to the critical point, by means of an adiabatic elimination of the temperature, we deduce the van der Waals normal form, which is the equation that describes the slow dynamics of the system and predicts the qualitative behavior in different regions of parameters. This allows us to understand the origin of the effective viscosity and the spatial saturation at the onset of the bifurcation. The hydrodynamic model and van der Waals normal form exhibit a behavior similar to the one observed in molecular dynamics simulations.

  7. CISOCUR - Hydrodynamic circulation in the Curonian Lagoon inferred through stable isotope measurements and numerical modelling

    Science.gov (United States)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas

    2013-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model

  8. Flood hazard maps from SAR data and global hydrodynamic models

    Science.gov (United States)

    Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe

    2015-04-01

    With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single

  9. Hydrodynamic Modelling and Layout Optimisation of Wave Energy Converter Arrays

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé

    2017-01-01

    This PhD thesis explores mathematical models for recreation of small-amplitude ocean waves and their interaction with assemblies of oscillating wave energy converters. Underpinned by the simulation capabilities associated with these models, algorithms seeking optimal arrangements between devices...... in various positions and orientations are finally investigated. This thesis intends in this way to offer a practical approach to the analysis of wave energy converters when they operate together as an array and the optimal design of array layouts. The topics covered by the text include propagation of waves...... around solid bodies, generation of waves by oscillating bodies, wave transformation due to slowly-varying water depth conditions, basic principles of wave power extraction by oscillating bodies, and optimal formation of arrays of wave energy converters....

  10. Boussinesq modeling of wave-induced hydrodynamics in coastal wetlands

    Science.gov (United States)

    Chakrabarti, Agnimitro; Brandt, Steven R.; Chen, Qin; Shi, Fengyan

    2017-05-01

    In this paper, an improved formulation of the vegetation drag force, applicable for the fully nonlinear Boussinesq equations and based on the use of the depth-varying, higher-order expansion of the horizontal velocity, in the quadratic vegetation drag law has been presented. The model uses the same numerical schemes as FUNWAVE TVD but is based on the CACTUS framework. The model is validated for wave height and setup, against laboratory experiments with and without vegetation cover. The wave attenuation results using the improved formulation were compared with those using the first-order reference velocity as well as with analytical solutions using linear wave theory. The analytical solution using the depth-varying velocity, predicted by the linear wave theory, was shown to match the model results with the fully expanded velocity approach very well for all wave cases, except under near-emergent and emergent conditions (when the ratio of stem height to water depth is greater than 0.75) and when the Ursell (Ur) number is less than 5. Simulations during peak storm waves, during Hurricane Isaac, showed that vegetation is very effective in reducing setup on platforms and in reducing the wave energy within the first few hundred meters.

  11. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p combustion have been observed at low pressures in hydroxylammonium nitrate (HAN)-based liquid propellants, which often exhibit negative pressure sensitivities. While nonsteady combustion may correspond to secondary and higher-order bifurcations above the cellular boundary, it may also be a manifestation of this pulsating type of hydrodynamic instability. In the present work, a nonzero temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation

  12. Vertical structures induced by propeller moonlets: Comparison of hydrodynamical model and N-body box simulations

    Science.gov (United States)

    Hoffmann, H.; Seiß, M.; Salo, H.; Spahn, F.

    2014-04-01

    Small moonlets in Saturn's rings induce propeller called structures into the surrounding ring material. Images of Saturn's rings, taken by the Cassini spacecraft near Saturn's equinox in 2009, show shadows cast by these propellers [1], offering the opportunity to study their vertical structure. We compare results from an extended hydrodynamical propeller model with results from local N-body box simulations of propeller structures. In the hydrodynamical model, maximal propeller heights are determined from the gravitational scattering of the ring particles by the moonlet. Afterwards the disturbed balance of viscous heating and collisional cooling is considered as main mechanism of the propeller height relaxation [2]. For the N-body box simulations we use the code by Salo [3], which was also applied in the propeller simulations of [4] and [5]. We find that the exponential height relaxation predicted by the hydrodynamical modelling is confirmed by N-body simulations of non-self gravitating ring particles. By projecting the propeller height evolution of the hydrodynamical model into observations of the shadows cast by the Earhart propeller, we determine the exponential cooling constant of the height relaxation. With this cooling constant we estimate collision frequencies of about 6 collisions per particle per orbit in the propeller gap region or about 11 collisions per particle per orbit in the propeller wake region of the Earhart propeller. The N-body simulations lead to maximal propeller heights between 60 to 70 percent of the Hill radius of the corresponding moonlet. Moonlet sizes estimated by this relation are in fair agreement with size estimates from radial propeller scalings [5, 6] for propeller structures with observed shadows.

  13. Hydrodynamic Modeling Analysis to Support Nearshore Restoration Projects in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Zhaoqing Yang

    2014-01-01

    Full Text Available To re-establish the intertidal wetlands with full tidal exchange and improve salmonid rearing habitat in the Skagit River estuary, State of Washington, USA, a diked agriculture farm land along the Skagit Bay front is proposed to be restored to a fully functional tidal wetland. The complex and dynamic Skagit River estuarine system calls for the need of a multi-facet and multi-dimensional analysis using observed data, numerical and analytical methods. To assist the feasibility study of the restoration project, a hydrodynamic modeling analysis was conducted using a high-resolution unstructured-grid coastal ocean model to evaluate the hydrodynamic response to restoration alternatives and to provide guidance to the engineering design of a new levee in the restoration site. A set of parameters were defined to quantify the hydrodynamic response of the nearshore restoration project, such as inundation area, duration of inundation, water depth and salinity of the inundated area. To assist the design of the new levee in the restoration site, the maximum water level near the project site was estimated with consideration of extreme high tide, wind-induced storm surge, significant wave height and future sea-level rise based on numerical model results and coastal engineering calculation.

  14. Modified-Gravity-GADGET: a new code for cosmological hydrodynamical simulations of modified gravity models

    Science.gov (United States)

    Puchwein, Ewald; Baldi, Marco; Springel, Volker

    2013-11-01

    We present a new massively parallel code for N-body and cosmological hydrodynamical simulations of modified gravity models. The code employs a multigrid-accelerated Newton-Gauss-Seidel relaxation solver on an adaptive mesh to efficiently solve for perturbations in the scalar degree of freedom of the modified gravity model. As this new algorithm is implemented as a module for the P-GADGET3 code, it can at the same time follow the baryonic physics included in P-GADGET3, such as hydrodynamics, radiative cooling and star formation. We demonstrate that the code works reliably by applying it to simple test problems that can be solved analytically, as well as by comparing cosmological simulations to results from the literature. Using the new code, we perform the first non-radiative and radiative cosmological hydrodynamical simulations of an f (R)-gravity model. We also discuss the impact of active galactic nucleus feedback on the matter power spectrum, as well as degeneracies between the influence of baryonic processes and modifications of gravity.

  15. Development of a Hydrodynamic Model of Puget Sound and Northwest Straits

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Khangaonkar, Tarang P.

    2007-12-10

    The hydrodynamic model used in this study is the Finite Volume Coastal Ocean Model (FVCOM) developed by the University of Massachusetts at Dartmouth. The unstructured grid and finite volume framework, as well as the capability of wetting/drying simulation and baroclinic simulation, makes FVCOM a good fit to the modeling needs for nearshore restoration in Puget Sound. The model domain covers the entire Puget Sound, Strait of Juan de Fuca, San Juan Passages, and Georgia Strait at the United States-Canada Border. The model is driven by tide, freshwater discharge, and surface wind. Preliminary model validation was conducted for tides at various locations in the straits and Puget Sound using National Oceanic and Atmospheric Administration (NOAA) tide data. The hydrodynamic model was successfully linked to the NOAA oil spill model General NOAA Operational Modeling Environment model (GNOME) to predict particle trajectories at various locations in Puget Sound. Model results demonstrated that the Puget Sound GNOME model is a useful tool to obtain first-hand information for emergency response such as oil spill and fish migration pathways.

  16. An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior

    Science.gov (United States)

    Xue, Pengfei; Schwab, David J.; Hu, Song

    2015-07-01

    Lake Superior, the largest lake in the world by surface area and third largest by volume, features strong spatiotemporal thermal variability due to its immense size and complex bathymetry. The objectives of this study are to document our recent modeling experiences on the simulation of the lake thermal structure and to explore underlying dynamic explanations of the observed modeling success. In this study, we use a three-dimensional hydrodynamic model (FVCOM—Finite Volume Community Ocean Model) and an assimilative weather forecasting model (WRF—Weather Research and Forecasting Model) to study the annual heating and cooling cycle of Lake Superior. Model experiments are carried out with meteorological forcing based on interpolation of surface weather observations, on WRF and on Climate Forecast System Reanalysis (CFSR) reanalysis data, respectively. Model performance is assessed through comparison with satellite products and in situ measurements. Accurate simulations of the lake thermal structure are achieved through (1) adapting the COARE algorithm in the hydrodynamic model to derive instantaneous estimates of latent/sensible heat fluxes and upward longwave radiation based on prognostic surface water temperature simulated within the model as opposed to precomputing them with an assumed surface water temperature; (2) estimating incoming solar radiation and downward longwave radiation based on meteorological measurements as opposed to meteorological model-based estimates; (3) using the weather forecasting model to provide high-resolution dynamically constrained wind fields as opposed to wind fields interpolated from station observations. Analysis reveals that the key to the modeling success is to resolve the lake-atmosphere interactions and apply appropriate representations of different meteorological forcing fields, based on the nature of their spatiotemporal variability. The close agreement between model simulation and observations also suggests that the 3-D

  17. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    Science.gov (United States)

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  18. Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model

    Science.gov (United States)

    Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan

    2016-10-01

    Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.

  19. Event-plane dependent di-hadron correlations with harmonic vn subtraction in a hydrodynamic model

    Science.gov (United States)

    Castilho, Wagner M.; Qian, Wei-Liang; Hama, Yogiro; Kodama, Takeshi

    2018-02-01

    In this work, a hydrodynamic study of the di-hadron azimuthal correlations for the Au+Au collisions at 200 GeV is carried out. The correlations are evaluated using the ZYAM method for the centrality windows as well as the transverse momentum range in accordance with the existing data. Event-plane dependence of the correlation is obtained after the subtraction of contributions from the most dominant harmonic coefficients. In particular, the contribution from the triangular flow, v3, is removed from the proper correlations following the procedure implemented by the STAR collaboration. The resultant structure observed in the correlations was sometimes attributed to the mini-jet dynamics, but the present calculations show that a pure hydrodynamic model gives a reasonable agreement with the main feature of the published data. A brief discussion on the physical content of the present findings is presented.

  20. Calibration of HEC-Ras hydrodynamic model using gauged discharge data and flood inundation maps

    Science.gov (United States)

    Tong, Rui; Komma, Jürgen

    2017-04-01

    The estimation of flood is essential for disaster alleviation. Hydrodynamic models are implemented to predict the occurrence and variance of flood in different scales. In practice, the calibration of hydrodynamic models aims to search the best possible parameters for the representation the natural flow resistance. Recent years have seen the calibration of hydrodynamic models being more actual and faster following the advance of earth observation products and computer based optimization techniques. In this study, the Hydrologic Engineering River Analysis System (HEC-Ras) model was set up with high-resolution digital elevation model from Laser scanner for the river Inn in Tyrol, Austria. 10 largest flood events from 19 hourly discharge gauges and flood inundation maps were selected to calibrate the HEC-Ras model. Manning roughness values and lateral inflow factors as parameters were automatically optimized with the Shuffled complex with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complex Evolution (SCE-UA). Different objective functions (Nash-Sutcliffe model efficiency coefficient, the timing of peak, peak value and Root-mean-square deviation) were used in single or multiple way. It was found that the lateral inflow factor was the most sensitive parameter. SP-UCI algorithm could avoid the local optimal and achieve efficient and effective parameters in the calibration of HEC-Ras model using flood extension images. As results showed, calibration by means of gauged discharge data and flood inundation maps, together with objective function of Nash-Sutcliffe model efficiency coefficient, was very robust to obtain more reliable flood simulation, and also to catch up with the peak value and the timing of peak.

  1. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  2. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal

    Science.gov (United States)

    Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J.

    2007-01-01

    A habitat suitability index (HSI) model was developed for a water quality sensitive fish (Greater Redhorse) and macroinvertebrate (Plecoptera) species to determine the restoration success of the St. John Dam removal for the Sandusky River (Ohio). An ArcGIS?? model was created for pre- and post-dam removal scenarios. Inputs to the HSI model consist of substrate distributions from river surveys, and water level and velocity time series, outputs from a hydrodynamic model. The ArcGIS?? model predicted habitat suitability indices at 45 river cross-sections in the hydrodynamic model. The model was programmed to produce polygon layers, using graphical user interfaces that were displayed in the ArcGIS?? environment. The results of the model clearly show an increase of habitat suitability from pre- to post-dam removal periods and in the former reservoir. The change in suitability of the model is attributed mostly to the change in depth in the river following the dam removal for both the fish and invertebrate species. The results of the invertebrate model followed the same positive trend as species enumerations from the river basin. ?? 2007 Elsevier B.V. All rights reserved.

  3. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary

    Science.gov (United States)

    Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.

    2017-11-01

    Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known

  4. A Modelling Approach to Multibody Dynamics of Fluid Power Machinery with Hydrodynamic Lubrication

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2013-01-01

    The efficiency potential of the digital displacement technology and the increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for development of high efficiency fluid power machinery. Modelling and analysis of fluid power machinery loss mecha...... to be coupled with multibody dynamics models. The focus of the current paper is an approach where the transient pressure field in hydrodynamic lubricated joint clearances are modelled by a set of control volumes and coupled with the fluid power machinery mechanics....

  5. Non-relativistic limit of the compressible Navier-Stokes-Fourier-P1 approximation model arising in radiation hydrodynamics

    OpenAIRE

    Jiang, Song; Li, Fucai; Xie, Feng

    2015-01-01

    As is well-known that the general radiation hydrodynamics models include two mainly coupled parts: one is macroscopic fluid part, which is governed by the compressible Navier-Stokes-Fourier equations, another is radiation field part, which is described by the transport equation of photons. Under the two physical approximations: "gray" approximation and P1 approximation, one can derive the so-called Navier-Stokes-Fourier-P1 approximation radiation hydrodynamics model from the general one. In t...

  6. Hydrodynamic and Sediment Modelling within a Macro Tidal Estuary: Port Curtis Estuary, Australia

    Directory of Open Access Journals (Sweden)

    Ryan J. K. Dunn

    2015-07-01

    Full Text Available An understanding of sediment transport processes and resultant concentration dynamics in estuaries is of great importance to engineering design awareness and the management of these environments. Predictive modelling approaches provide an opportunity to investigate and address potential system responses to nominated events, changes, or conditions of interest, often on high temporal and spatial resolution scales. In this study, a three-dimensional hydrodynamic model and wave model were validated and applied to generate forcing conditions for input into a sediment transport model for the period 7 May 2010–30 October 2010 within a macro tidal estuary, Port Curtis estuary (Australia. The hydrodynamic model was verified against surface and near-bottom current measurements. The model accurately reproduced the variations of surface and near-bottom currents at both a mid-estuary and upper-estuary location. Sediment transport model predictions were performed under varying meteorological conditions and tidal forcing over a 180-day period and were validated against turbidity data collected at six stations within Port Curtis estuary. The sediment transport model was able to predict both the magnitudes of the turbidity levels and the modulation induced by the neap and spring tides and wind-wave variations. The model-predicted (converted turbidity levels compared favourably with the measured surface water turbidity levels at all six stations. The study results have useful practical application for Port Curtis estuary, including providing predictive capabilities to support the selection of locations for monitoring/compliance sites.

  7. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    Science.gov (United States)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  8. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  9. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  10. Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings

    Science.gov (United States)

    Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.

    2005-01-01

    A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.

  11. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  12. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1; The Numerical Model

    Science.gov (United States)

    Liu, Wei; Petrosian, Vahe; Mariska, John T.

    2009-01-01

    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a -10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a non thermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

  13. Hydrodynamic Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-07-17

    We study a hydrodynamic Cucker-Smale-type model with time delay in communication and information processing, in which agents interact with each other through normalized communication weights. The model consists of a pressureless Euler system with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally, we show the presence of a critical phenomenon for the Eulerian system posed in the spatially one-dimensional setting.

  14. Hydrodynamic modelling and global datasets: Flow connectivity and SRTM data, a Bangkok case study.

    Science.gov (United States)

    Trigg, M. A.; Bates, P. B.; Michaelides, K.

    2012-04-01

    The rise in the global interconnected manufacturing supply chains requires an understanding and consistent quantification of flood risk at a global scale. Flood risk is often better quantified (or at least more precisely defined) in regions where there has been an investment in comprehensive topographical data collection such as LiDAR coupled with detailed hydrodynamic modelling. Yet in regions where these data and modelling are unavailable, the implications of flooding and the knock on effects for global industries can be dramatic, as evidenced by the recent floods in Bangkok, Thailand. There is a growing momentum in terms of global modelling initiatives to address this lack of a consistent understanding of flood risk and they will rely heavily on the application of available global datasets relevant to hydrodynamic modelling, such as Shuttle Radar Topography Mission (SRTM) data and its derivatives. These global datasets bring opportunities to apply consistent methodologies on an automated basis in all regions, while the use of coarser scale datasets also brings many challenges such as sub-grid process representation and downscaled hydrology data from global climate models. There are significant opportunities for hydrological science in helping define new, realistic and physically based methodologies that can be applied globally as well as the possibility of gaining new insights into flood risk through analysis of the many large datasets that will be derived from this work. We use Bangkok as a case study to explore some of the issues related to using these available global datasets for hydrodynamic modelling, with particular focus on using SRTM data to represent topography. Research has shown that flow connectivity on the floodplain is an important component in the dynamics of flood flows on to and off the floodplain, and indeed within different areas of the floodplain. A lack of representation of flow connectivity, often due to data resolution limitations, means

  15. Hybrid methods for simulating hydrodynamics and heat transfer in multiscale (1D-3D) models

    Science.gov (United States)

    Filimonov, S. A.; Mikhienkova, E. I.; Dekterev, A. A.; Boykov, D. V.

    2017-09-01

    The work is devoted to application of different-scale models in the simulation of hydrodynamics and heat transfer of large and/or complex systems, which can be considered as a combination of extended and “compact” elements. The model consisting of simultaneously existing three-dimensional and network (one-dimensional) elements is called multiscale. The paper examines the relevance of building such models and considers three main options for their implementation: the spatial and the network parts of the model are calculated separately; spatial and network parts are calculated simultaneously (hydraulically unified model); network elements “penetrate” the spatial part and are connected through the integral characteristics at the tube/channel walls (hydraulically disconnected model). Each proposed method is analyzed in terms of advantages and disadvantages. The paper presents a number of practical examples demonstrating the application of multiscale models.

  16. MODEL OF HYDRODYNAMIC MIXING OF CARBONIC POWDERS IN VACUUMATOR, USED IN STEEL-MAKING OF RUP “BMZ”

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2005-01-01

    Full Text Available The mathematical model of the mixing and dissolving process of carbonic powder in a system '"vacuumator-bowl” under influence of circulating argon is offered. The spatial distribution of hydrodynamic currents at mixing of carbonic powder, received on the basis of computer calculations is presented. The character of distribution of hydrodynamic speeds of melt (circulating currents in industrial bowl and vacuumator for different time slots of mixing is determined. 

  17. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  18. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    Science.gov (United States)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  19. Modeling of bioreactor hydrodynamic environment and its effects on tissue growth.

    Science.gov (United States)

    Bilgen, Bahar; Barabino, Gilda A

    2012-01-01

    The design of optimal bioreactor systems for tissue engineering applications requires a sophisticated understanding of the complexities of the bioreactor environment and the role that it plays in the formation of engineered tissues. To this end, a tissue growth model is developed to characterize the tissue growth and extracellular matrix synthesis by chondrocytes seeded and cultivated on polyglycolic acid scaffolds in a wavy-walled bioreactor for a period of 4 weeks. This model consists of four components: (1) a computational fluid dynamics (CFD) model to characterize the complex hydrodynamic environment in the bioreactor, (2) a kinetic growth model to characterize the cell growth and extracellular matrix production dynamics, (3) an artificial neural network (ANN) that empirically correlates hydrodynamic parameters with kinetic constants, and (4) a second ANN that correlates the biochemical composition of constructs with their material properties. In tandem, these components enable the prediction of the dynamics of tissue growth, as well as the final compositional and mechanical properties of engineered cartilage. The growth model methodology developed in this study serves as a tool to predict optimal bioprocessing conditions required to achieve desired tissue properties.

  20. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  1. Hydrodynamic and Inundation Modeling of China’s Largest Freshwater Lake Aided by Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-04-01

    Full Text Available China’s largest freshwater lake, Poyang Lake, is characterized by rapid changes in its inundation area and hydrodynamics, so in this study, a hydrodynamic model of Poyang Lake was established to simulate these long-term changes. Inundation information was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS remote sensing data and used to calibrate the wetting and drying parameter by assessing the accuracy of the simulated inundation area and its boundary. The bottom friction parameter was calibrated using current velocity measurements from Acoustic Doppler Current Profilers (ADCP. The results show the model is capable of predicting the inundation area dynamic through cross-validation with remotely sensed inundation data, and can reproduce the seasonal dynamics of the water level, and water discharge through a comparison with hydrological data. Based on the model results, the characteristics of the current velocities of the lake in the wet season and the dry season of the lake were explored, and the potential effect of the current dynamic on water quality patterns was discussed. The model is a promising basic tool for prediction and management of the water resource and water quality of Poyang Lake.

  2. Note on the hydrodynamic description of thin nematic films: Strong anchoring model

    KAUST Repository

    Lin, Te-Sheng

    2013-01-01

    We discuss the long-wave hydrodynamic model for a thin film of nematic liquid crystal in the limit of strong anchoring at the free surface and at the substrate. We rigorously clarify how the elastic energy enters the evolution equation for the film thickness in order to provide a solid basis for further investigation: several conflicting models exist in the literature that predict qualitatively different behaviour. We consolidate the various approaches and show that the long-wave model derived through an asymptotic expansion of the full nemato-hydrodynamic equations with consistent boundary conditions agrees with the model one obtains by employing a thermodynamically motivated gradient dynamics formulation based on an underlying free energy functional. As a result, we find that in the case of strong anchoring the elastic distortion energy is always stabilising. To support the discussion in the main part of the paper, an appendix gives the full derivation of the evolution equation for the film thickness via asymptotic expansion. © 2013 AIP Publishing LLC.

  3. Hydrodynamic models of gas-liquid two-phase flow in porous media

    Directory of Open Access Journals (Sweden)

    B GutiérrezR

    2016-09-01

    Full Text Available Equations and models describing the hydrodynamic of gas-liquid two-phase flows in porous media have become increasingly necessary in order to predict their main features throughout porous networks. The main subject of this research was to study the influence of capillary, viscous and inertial forces and flow configurations on the hydrodynamic features of a gas-liquid two-phase flow in a glass micromodel. Experimental results were obtained and compared with those predicted by three published models. The Fundamental Forces Balance and the Fluid-Fluid Interface models did not describe accurately experimental behavior even when the first of them considers particular characteristics of flow patterns. Semi-empirical models such as The Relative Permeability can describe physical flow characteristics and can also be modified to include different effects not initially considered. Traditionally, relative permeabilities have been associated almost exclusively with saturation conditions. However, it was concluded in this research that liquid relative permeability is function of saturation conditions but also depends on flow patterns and Capillary number.

  4. Hydrodynamic modeling of a reservoir used to supply water to Belem (Lake Agua Preta, Para, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Lourdes Souza Santos

    2015-07-01

    Full Text Available Lake Agua Preta is used by the Sanitation Company of Para (Cosanpa to supply water to the Belem Metropolitan Region. This study aims to use the Base System Modeling Program Environmental Hydrodynamics (Sisbahia model to simulate seasonal hydrodynamic conditions in the lake and identify areas with the greatest silting. The model results revealed an identical distribution of the velocity module for each month of the year. However, at the outlet of the lake, a water channel variation speed of 0.28–0.32 m s-1 was observed. Furthermore, at the inlet of the lake, vortex silting tended to occur, as verified by bathymetry. Sedimentation mainly occurred during periods of low rainfall, which is when Cosanpa increases the inflow of water to maintain the reservoir level and this leads to an increase in sediments in suspension. With the model, it was possible to identify locations with higher rates of sedimentation, and in the future, such data can serve as an effective tool for managing this water resource.

  5. Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction

    Directory of Open Access Journals (Sweden)

    Groenenboom P. H. L.

    2009-06-01

    Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.

  6. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    Science.gov (United States)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  7. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of

  8. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model

    Science.gov (United States)

    Afshari, Shahab; Tavakoly, Ahmad A.; Rajib, Mohammad Adnan; Zheng, Xing; Follum, Michael L.; Omranian, Ehsan; Fekete, Balázs M.

    2018-01-01

    The objective of this study is to compare two new generation low-complexity tools, AutoRoute and Height Above the Nearest Drainage (HAND), with a two-dimensional hydrodynamic model (Hydrologic Engineering Center-River Analysis System, HEC-RAS 2D). The assessment was conducted on two hydrologically different and geographically distant test-cases in the United States, including the 16,900 km2 Cedar River (CR) watershed in Iowa and a 62 km2 domain along the Black Warrior River (BWR) in Alabama. For BWR, twelve different configurations were set up for each of the models, including four different terrain setups (e.g. with and without channel bathymetry and a levee), and three flooding conditions representing moderate to extreme hazards at 10-, 100-, and 500-year return periods. For the CR watershed, models were compared with a simplistic terrain setup (without bathymetry and any form of hydraulic controls) and one flooding condition (100-year return period). Input streamflow forcing data representing these hypothetical events were constructed by applying a new fusion approach on National Water Model outputs. Simulated inundation extent and depth from AutoRoute, HAND, and HEC-RAS 2D were compared with one another and with the corresponding FEMA reference estimates. Irrespective of the configurations, the low-complexity models were able to produce inundation extents similar to HEC-RAS 2D, with AutoRoute showing slightly higher accuracy than the HAND model. Among four terrain setups, the one including both levee and channel bathymetry showed lowest fitness score on the spatial agreement of inundation extent, due to the weak physical representation of low-complexity models compared to a hydrodynamic model. For inundation depth, the low-complexity models showed an overestimating tendency, especially in the deeper segments of the channel. Based on such reasonably good prediction skills, low-complexity flood models can be considered as a suitable alternative for fast

  9. Source tracking using microbial community fingerprints: Method comparison with hydrodynamic modelling.

    Science.gov (United States)

    McCarthy, D T; Jovanovic, D; Lintern, A; Teakle, I; Barnes, M; Deletic, A; Coleman, R; Rooney, G; Prosser, T; Coutts, S; Hipsey, M R; Bruce, L C; Henry, R

    2017-02-01

    Urban estuaries around the world are experiencing contamination from diffuse and point sources, which increases risks to public health. To mitigate and manage risks posed by elevated levels of contamination in urban waterways, it is critical to identify the primary water sources of contamination within catchments. Source tracking using microbial community fingerprints is one tool that can be used to identify sources. However, results derived from this approach have not yet been evaluated using independent datasets. As such, the key objectives of this investigation were: (1) to identify the major sources of water responsible for bacterial loadings within an urban estuary using microbial source tracking (MST) using microbial communities; and (2) to evaluate this method using a 3-dimensional hydrodynamic model. The Yarra River estuary, which flows through the city of Melbourne in South-East Australia was the focus of this study. We found that the water sources contributing to the bacterial community in the Yarra River estuary varied temporally depending on the estuary's hydrodynamic conditions. The water source apportionment determined using microbial community MST correlated to those determined using a 3-dimensional hydrodynamic model of the transport and mixing of a tracer in the estuary. While there were some discrepancies between the two methods, this investigation demonstrated that MST using bacterial community fingerprints can identify the primary water sources of microorganisms in an estuarine environment. As such, with further optimization and improvements, microbial community MST has the potential to become a powerful tool that could be practically applied in the mitigation of contaminated aquatic systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The optimization of high resolution topographic data for 1D hydrodynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Ales, Ronovsky, E-mail: ales.ronovsky@vsb.cz; Michal, Podhoranyi [IT4Innovations National Supercomputing Center, VŠB-Technical University of Ostrava, Studentská 6231/1B, 708 33 Ostrava (Czech Republic)

    2016-06-08

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  11. Calculation of Hydrodynamic Properties for G-Quadruplex Nucleic Acid Structures from in silico Bead Models

    Science.gov (United States)

    Le, Huy T.; Buscaglia, Robert; Dean, William L.; Chaires, Jonathan B.; Trent, John O.

    2012-01-01

    Nucleic acids enriched in guanine bases can adopt unique quadruple helical tertiary structures known as G-quadruplexes. G-quadruplexes have emerged as attractive drug targets as many G-quadruplex-forming sequences have been discovered in functionally critical sites within the human genome, including the telomere, oncogene promoters, and mRNA processing sites. A single G-quadruplex-forming sequence can adopt one of multiple folding topologies often resulting in a lack of a single definitive atomic-level resolution structure for many of these sequences and a major challenge to the discovery of G-quadruplex-selective small molecule drugs. Low-resolution techniques employed to study G-quadruplex structures (e.g. CD spectroscopy) are often unable to discern between G-quadruplex structural ensembles while high-resolution techniques (e.g. NMR spectroscopy) can be overwhelmed by a highly polymorphic system. Hydrodynamic bead modeling is an approach to studying G-quadruplex structures that could bridge the gap between low-resolution techniques and high-resolution molecular models. Here, we present a discussion of hydrodynamic bead modeling in the context of studying G-quadruplex structures, highlighting recent successes and limitations to this approach, as well as an example featuring a G-quadruplex structure formed from the human telomere. This example can easily be adapted to the investigation of any other G-quadruplex-forming sequences. PMID:22886555

  12. Pollution history of a tropical estuary revealed by combined hydrodynamic modelling and sediment geochemistry

    Science.gov (United States)

    Andrews, J. E.; Greenaway, A. M.; Bigg, G. R.; Webber, D. F.; Dennis, P. F.; Guthrie, G. A.

    1999-01-01

    Hydrodynamic modelling of water movement in Hunts Bay, a protected part of Kingston Harbour, Jamaica, shows that depth averaged tidal flows are very low. In the northeast corner of Hunts Bay, water is essentially stagnant. Even under high flow conditions, much of the Bay bottom water is `bypassed' by buoyant, lower salinity surface flows. The muddy sediments of Hunts Bay reflect these sluggish to stagnant conditions; sediment cores from the northeast corner of the Bay contain progressively higher amounts of organic matter in their upper parts (˜last 15-20 years sedimentation). Combined C/N ratios and stable carbon isotope compositions of this organic matter imply a sewage origin. Both lead and chromium metal concentrations and enrichment factors relative to average crustal shales show geographically related patterns that reflect hydrodynamic circulation predicted by modelling. In particular, metal concentrations and enrichment factors are highest at the northern end of the bay, especially in the northeast corner. Modelling confirms that stagnant conditions would occur in the northeast part of the bay even without the presence of a major causeway. The causeway may contribute to low flow conditions, but is not the principal cause of organic contamination, which is simply an excessive input of sewage.

  13. Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research

    Science.gov (United States)

    Chen, Xin; Calvisi, Diego F.

    2015-01-01

    Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have identified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for this purpose. However, several limitations apply to the latter models. Herein, we review a novel approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination with Sleeping Beauty–mediated somatic integration. This method represents a flexible, reliable, and cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can be used as an in vivo transfection method to study biochemical cross talks among multiple pathways along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer. PMID:24480331

  14. Investigation of the influence of the open cell foam models geometry on hydrodynamic calculation

    Science.gov (United States)

    Soloveva, O. V.; Solovev, S. A.; Khusainov, R. R.; Popkova, O. S.; Panenko, D. O.

    2018-01-01

    A geometrical model of the open cell foam was created as an ordered set of intersecting spheres. The proposed model closely describes a real porous cellular structure. The hydrodynamics flow was calculated on the basis of a simple model in the ANSYS Fluent software package. A pressure drop was determined, the value of which was compared with the experimental data of other authors. As a result of the conducted studies, we found that a porous structure with smoothed faces provides the smallest pressure drop with the same porosity of the package. Analysis of the calculated data demonstrated that the approximation of an elementary porous cell substantially distorts the flow field. This is undesirable in detailed modeling of the open cell foam.

  15. Anisotropic hydrodynamic modeling of 2.76 TeV Pb-Pb collisions

    Science.gov (United States)

    Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael

    2017-10-01

    We compare phenomenological results from 3 +1 D quasiparticle anisotropic hydrodynamics (aHydroQP) with experimental data collected in the CERN Large Hadron Collider 2.76 TeV Pb-Pb collisions. In particular, we present comparisons of particle spectra, average transverse momentum, elliptic flow, and Hanbury Brown-Twiss radii. The aHydroQP model relies on the introduction of a single temperature-dependent quasiparticle mass which is fit to lattice QCD data. By taking moments of the resulting Boltzmann equation, we obtain the dynamical equations used in the hydrodynamic stage which include the effects of both shear and bulk viscosities. At freeze-out, we use anisotropic Cooper-Frye freeze-out performed on a fixed-energy-density hypersurface to convert to hadrons. To model the production and decays of the hadrons we use therminator2 which is customized to sample from ellipsoidal momentum-space distribution functions. Using smooth Glauber initial conditions, we find very good agreement with many heavy-ion collision observables.

  16. Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    João Cardoso

    2017-11-01

    Full Text Available The present study investigates the hydrodynamics and heat transfer behavior of municipal solid waste (MSW gasification in a pilot scale bubbling fluidized bed reactor. A multiphase 2-D numerical model following an Eulerian-Eulerian approach within the FLUENT framework was implemented. User defined functions (UDFs were coupled to improve hydrodynamics and heat transfer phenomena, and to minimize deviations between the experimental and numerical results. A grid independence study was accomplished through comparison of the bed volume fraction profiles and by reasoning the grid accuracy and computational cost. The standard deviation concept was used to determine the mixing quality indexes. Simulated results showed that UDFs improvements increased the accuracy of the mathematical model. Smaller size ratio of the MSW-dolomite mixture revealed a more uniform mixing, and larger ratios enhanced segregation. Also, increased superficial gas velocity promoted the solid particles mixing. Heat transfer within the fluidized bed showed strong dependence on the MSW solid particles sizes, with smaller particles revealing a more effective process.

  17. A hydrodynamic model of labyrinth to study the stimulation of perilymph compartments by audioprostheses.

    Science.gov (United States)

    Urquiza, R; Oballe, O; Sánchez, J A; Casanova, R; Gago, A; Ciges, M

    2008-04-01

    The hydrodynamic model of the labyrinth spaces (LHM) is a useful tool for research on implantable audioprostheses, in particular to develop suitable actuators using MEMS technology (micro-electromechanic machine system). It has other potential applications for auditory research. The energy reaching the labyrinth fluids is crucial information for developing prostheses to substitute the tympanic-ossicular system because adequate stimulation of the cochlear partition is essential. However, in vivo measurements in human ears are not currently available. Therefore a model of the normal labyrinth resembling its hydrodynamic properties becomes a valuable tool. It could allow comparison of different processing systems, algorithms and transducers, to develop new audioprostheses and improve their effectiveness and efficiency. This work presents one LHM that emulates the conduction of the stimuli from the stapes footplate through the labyrinthine fluids, including its dimensions and physical properties, and some examples of measurements of perilymph stimulation by different audioprostheses and algorithms. RESULTS. As shown in the reported examples, this LHM provided effective measurement of acoustic stimulation across the whole human auditory frequency and intensity spectrum. Air-delivered and direct stimulation methods are possible. This provided convenient information for the actuator development and allowed comparison between different prototypes, stimulation patterns and algorithms.

  18. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints

    Science.gov (United States)

    Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard

    2017-12-01

    Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.

  19. Transient pressure changes in the vertebral canal during whiplash motion--A hydrodynamic modeling approach.

    Science.gov (United States)

    Yao, Hua-Dong; Svensson, Mats Y; Nilsson, Håkan

    2016-02-08

    In vehicle collisions, the occupant's torso is accelerated in a given direction while the unsupported head tends to lag behind. This mechanism results in whiplash motion to the neck. In whiplash experiments conducted for animals, pressure transients have been recorded in the spinal canal. It was hypothesized that the transients caused dorsal root ganglion dysfunction. Neck motion introduces volume changes inside the vertebral canal. The changes require an adaptation which is likely achieved by redistribution of blood volume in the internal vertebral venous plexus (IVVP). Pressure transients then arise from the rapid redistribution. The present study aimed to explore the hypothesis theoretically and analytically. Further, the objectives were to quantify the effect of the neck motion on the pressure generation and to identify the physical factors involved. We developed a hydrodynamic system of tubes that represent the IVVP and its lateral intervertebral vein connections. An analytical model was developed for an anatomical geometrical relation that the venous blood volume changes with respect to the vertebral angular displacement. This model was adopted in the hydrodynamic tube system so that the system can predict the pressure transients on the basis of the neck vertebral motion data from a whiplash experiment. The predicted pressure transients were in good agreement with the earlier experimental data. A parametric study was conducted and showed that the system can be used to assess the influences of anatomical geometrical properties and vehicle collision severity on the pressure generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. High-resolution modelling of 3D hydrodynamics in coastal archipelagos

    Science.gov (United States)

    Miettunen, Elina; Tuomi, Laura; Ropponen, Janne; Lignell, Risto

    2016-04-01

    Dynamics of the coastal seas are affected by eutrophication, over-fishing, coastal construction and climate change. To enable the sustainable development of these areas, monitoring and modelling of the state of the sea are needed. The Archipelago Sea, located in the northern part of the semi-enclosed and brackish water Baltic Sea, is one of the most complex coastal areas with over 40 000 small islands and islets. It is also very vulnerable area already heavily stressed with eutrophication. Applicable modelling tools are needed to support the decision making and to provide sufficiently reliable information on the effects of the planned actions on the state of the coastal waters. We used 3D hydrodynamic model COHERENS to model the Archipelago Sea area with high spatial resolution of 0.25 nmi. Boundary conditions for this limited area were provided from coarser resolution, 2 nmi, Baltic Sea grid. In order to evaluate the performance of the high-resolution coastal model implementation a comprehensive measurement dataset was gathered, including hydrographic data from three intensive monitoring stations and several more rarely visited monitoring or research stations. The hydrodynamic model was able to simulate the surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. The sharp depth gradients typical for this area provided some challenges to the modelling. There was some over mixing and related to too strong vertical currents in the steep slopes of the deeper fault lines. Also the water exchange between the more open sea and coastal areas through narrow channels between the islands is not sufficiently well reproduced with the current resolution, leading to too high bottom temperatures.

  1. Hydrodynamics with strength: scaling-invariant solutions for elastic-plastic cavity expansion models

    Science.gov (United States)

    Albright, Jason; Ramsey, Scott; Baty, Roy

    2017-11-01

    Spherical cavity expansion (SCE) models are used to describe idealized detonation and high-velocity impact in a variety of materials. The common theme in SCE models is the presence of a pressure-driven cavity or void within a domain comprised of plastic and elastic response sub-regions. In past work, the yield criterion characterizing material strength in the plastic sub-region is usually taken for granted and assumed to take a known functional form restrictive to certain classes of materials, e.g. ductile metals or brittle geologic materials. Our objective is to systematically determine a general functional form for the yield criterion under the additional requirement that the SCE admits a similarity solution. Solutions determined under this additional requirement have immediate implications toward development of new compressible flow algorithm verification test problems. However, more importantly, these results also provide novel insight into modeling the yield criteria from the perspective of hydrodynamic scaling.

  2. The potential of 3D radiation-hydrodynamics models for white dwarf asteroseismology

    Directory of Open Access Journals (Sweden)

    Tremblay P.-E.

    2013-03-01

    Full Text Available White dwarfs with hydrogen-rich atmospheres (DA are the most abundant of all degenerate objects. In recent years work has been dedicated to increase the accuracy of their model atmospheres. Most notably, convective motions are now treated with 3D radiation-hydrodynamics instead of the standard mixing-length theory. We present and describe selected 3D model atmospheres close and within the instability strip of the pulsating ZZ Ceti white dwarfs. Our 3D simulations depend only weakly on numerical parameters and compared to 1D models, they provide more realistic determinations of the depth of the convective zone. The 3D structures can then be adopted as input for asteroseismology.

  3. Macroinvertebrate response to flow changes in a subalpine stream: predictions from two-dimensional hydrodynamic models

    Science.gov (United States)

    Waddle, T.J.; Holmquist, J.G.

    2013-01-01

    Two-dimensional hydrodynamic models are being used increasingly as alternatives to traditional one-dimensional instream flow methodologies for assessing adequacy of flow and associated faunal habitat. Two-dimensional modelling of habitat has focused primarily on fishes, but fish-based assessments may not model benthic macroinvertebrate habitat effectively. We extend two-dimensional techniques to a macroinvertebrate assemblage in a high-elevation stream in the Sierra Nevada (Dana Fork of the Tuolumne River, Yosemite National Park, CA, USA). This stream frequently flows at less than 0.03?m3?s?1 in late summer and is representative of a common water abstraction scenario: maximum water abstraction coinciding with seasonally low flows. We used two-dimensional modelling to predict invertebrate responses to reduced flows that might result from increased abstraction. We collected site-specific field data on the macroinvertebrate assemblage, bed topography and flow conditions and then coupled a two-dimensional hydrodynamic model with macroinvertebrate indices to evaluate habitat across a range of low flows. Macroinvertebrate indices were calculated for the wetted area at each flow. A surrogate flow record based on an adjacent watershed was used to evaluate frequency and duration of low flow events. Using surrogate historical records, we estimated that flow should fall below 0.071?m3?s?1 at least 1?day in 82 of 95?years and below 0.028?m3?s?1 in 48 of 95?years. Invertebrate metric means indicated minor losses in response to modelled discharge reductions, but wetted area decreased substantially. Responses of invertebrates to water abstraction will likely be a function of changing habitat quantity rather than quality.

  4. Hydrodynamic Modeling of the Near-Source Environment at a Jointed Site

    Science.gov (United States)

    Snelson, C. M.; Bradley, C. R.; Steedman, D. W.; Rougier, E.

    2014-12-01

    We perform near source hydrodynamic modeling of an explosive event in granite: the first Source Physics Experiment (SPE-1). The effort includes constitutive material behavior of the rock, the optimal means for representing the granite joint response, and the best modeling approach for including both the high-deformation source region and the complex material response in the near field. Each of these factors contributes to better estimates of explosion to seismic phenomena to help the verification community. We illustrate the transition of results from increasing modeling fidelity from one-dimensional (1-D) modeling which simplifies both the source geometry and the geologic character to full, detailed three-dimensional (3-D) modeling. Both levels of modeling include an accepted explosive source model and a laboratory test-based constitutive mode for the intact granite. But the full 3-D model also explicitly models the cylindrically-shaped explosive in a grout filled borehole as well as explicit representation of rock joints as contact surfaces. These modeling attributes provide for an excellent match to recorded velocity measurements in both amplitude and character. But as explicit modeling of joints is currently impractical for a large rock volume, we modify the laboratory intact properties to implicitly include the effects of joints such as in the method of Hoek and Brown to develop a credible predictive methodology for a large region.

  5. Modeling circumstellar disc fragmentation and episodic protostellar accretion with smoothed particle hydrodynamics in cell

    Science.gov (United States)

    Stoyanovskaya, O. P.; Snytnikov, N. V.; Snytnikov, V. N.

    2017-10-01

    We discuss the ability of the smoothed particle hydrodynamics (SPH) method combined with a grid-based solver for the Poisson equation to model mass accretion onto protostars in gravitationally unstable protostellar discs. We scrutinize important features of coupling the SPH with grid-based solvers and numerical issues associated with (1) large number of SPH neighbors and (2) relation between gravitational softening and hydrodynamic smoothing length. We report results of our simulations of razor-thin disc prone to fragmentation and demonstrate that the algorithm being simple and homogeneous captures the target physical processes - disc gravitational fragmentation and accretion of gas onto the protostar caused by inward migration of dense clumps. In particular, we obtain two types of accretion bursts: a short-duration one caused by a quick inward migration of the clump, previously reported in the literature, and the prolonged one caused by the clump lingering at radial distances on the order of 15-25 au. The latter is culminated with a sharp accretion surge caused by the clump ultimately falling on the protostar.

  6. Application of the hydrodynamic predictive modeling on the example of the pumping station 'Bezdan 1'

    Directory of Open Access Journals (Sweden)

    Polomčić Dušan M.

    2014-01-01

    Full Text Available In the area of Bezdan, the construction of a new pumping station, p.s. 'Bezdan 1', on the location of the existing and nonfunctional pumping station 'Bezdan I', is envisaged. Given the position of the future pump station, a problem of digging the foundation pits in terms of protection from high groundwater levels, was noticed. This paper aims to analyze the possibilities for lowering the groundwater levels below the projected elevation, which will enable unobstructed work on the pumping station. By using the hydrodynamic analysis and its most complex and most applicable methods of three-dimensional hydrodynamic modeling of aquifer regime, based on the numerical method of finite differences, the system of protection and variations of the protection solutions from groundwater at the research location of the future p.s. 'Bezdan 1' was defined. Three variants of solution were given, and characteristics of the system of protection from groundwater were defined for each, the optimal number of drainage wells in the system and their spatial distribution and the time required for maximal effects of the lowering of the groundwater levels below the elevation of the excavation facilities of CS 'Bezdan 1'. Presented paper provides the basis for some of the methods of multicriteria optimization and the selection of the optimal variant of the system of protection from groundwater's, considering, in this way, the weight of various factors that influence the choice of the variant, such as technical, economic, environmental and safety factors.

  7. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.

    Science.gov (United States)

    Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.

  8. Vegetation Density, Root Architecture Model, and Hydrodynamic Simulation Rhizophora apiculata Bl. in Bone Bay, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Aswar Rustam

    2017-09-01

    Full Text Available Mangrove is the only ecosistem that grows and develops in the coastal area. This study was conducted to analyze the mangrove forest vegetation to create a simulation of the root sistem of Rhizophora apiculata Bl. related to its ability in the process of hydrodynamic fluid of seawater in the Lompo village, District Awangpone, Bone Regency, South Sulawesi. Criteria that used as a model reference had minimum age approximately five years and minimum height of about 2 m. The variables that measure were height, diameter, and length of the roots. The parameters of the simulation are the average speed of sea level, the dynamic pressure of seawater, as well as drag coefficient of Gulf of Bone. Based on this research, vegetation area with highest density located at second kilometer, medium density located at first kilometer, and the lowest density located at third kilometer. The average velocity of seawater, the lowest is in the natural cropping pattern of highest density, meanwhile the highest is in the parallel cropping pattern of lowest density. Dynamic pressure, the lowest is in the natural cropping pattern of highest density, meanwhile the highest is in the parallel cropping pattern of lowest density. The drag coefficient, the highest is in the natural cropping pattern of highest density, meanwhile the lowest is in the parallel cropping pattern of lowest density. Keywords: drag coefficient, hydrodynamics, mangrove, Rhizophora apiculata Bl., simulation

  9. A hydrodynamic mechanism of meteor ablation. The melt-spraying model

    Science.gov (United States)

    Girin, Oleksandr G.

    2017-10-01

    Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid

  10. Swimming without a spine: Computational modeling and analysis of the swimming hydrodynamics of the Spanish Dancer.

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2017-10-16

    Incompressible flow simulations are used to study the swimming of a Spanish Dancer (Hexabranchus sanguineus), a soft-bodied invertebrate marine gastropod that swims by combining body pitching with undulations of its large mantle. A simple model based on a field video is employed as the basis for the model and coupling of the flow with the body acceleration enables us to examine the free swimming of this animal. Simulations indicate propulsive efficiencies of up to about 57% and terminal swimming speeds of 1.33 body lengths per cycle. Examination of the effect of body planform on the swimming hydrodynamics suggests that the planform of this animal is likely adapted to enhance its swimming performance. © 2017 IOP Publishing Ltd.

  11. Numerical Modeling of Hydrodynamic and Sediment Siltation Due to Typhoon in Estuary Channel Regulation

    Directory of Open Access Journals (Sweden)

    Zhao Hongbo

    2015-09-01

    Full Text Available Oujiang Estuary is a complex tidal estuary with many channels and shoals in the East China Sea, which was affected by typhoon frequently. The navigation channel of Wenzhou Port is located in the north branch of Oujiang Estuary, which happened serious sediment siltation in many times due to typhoon impact. The regulation is considered to decrease siltaion of the channel and protect shoals as well. According to the site survey data, the mathematic model is established and validated, which simulates the hydrodynamic, sediment transport and channel siltation due to typhoon in Oujiang Estuary. The channel regulation scenario is studied by the model simulation after analysis of the silation character. It indicates that the high concentration sediment from shoals north of channel is main sediment source caused siltation in the channel, which can be prevented into the channel by the regulation scenario and decrease siltation efficiently.

  12. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    Energy Technology Data Exchange (ETDEWEB)

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  13. Tidal Hydrodynamics in the Lower Columbia River Estuary through Depth Averaged Adaptive Hydraulics Modeling

    Directory of Open Access Journals (Sweden)

    Gaurav Savant

    2014-01-01

    Full Text Available The adaptive hydraulics (AdH numerical code was applied to study tidal propagation in the Lower Columbia River (LCR estuary. The results demonstrate the readiness of this AdH model towards the further study of hydrodynamics in the LCR. The AdH model accurately replicated behavior of the tide as it propagated upstream into the LCR system. Results show that the MSf tidal component and the M4 overtidal component are generated in the middle LCR and contain a substantial amount of tidal energy. An analysis was performed to determine the causes of MSf tide amplification, and it was found that approximately 80% of the amplification occurs due to nonlinear interaction between the M2 and the S2 tidal components.

  14. Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model

    CERN Document Server

    Farrokhpanah, Amirsaman; Mostaghimi, Javad

    2016-01-01

    Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver.

  15. Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale

    Science.gov (United States)

    Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Yu. N.; Zhakhovsky, V. V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Rudenko, A. A.; Inogamov, N. A.

    2017-10-01

    Subwavelength structures (meta-atoms) with artificially engineered permittivity and permeability have shown promising applications for guiding and controlling the flow of electromagnetic energy on the nanoscale. Ultrafast laser nanoprinting emerges as a promising single-step, green and flexible technology in fabricating large-area arrays of meta-atoms through the translative or ablative modification of noble-metal thin films. Ultrafast laser energy deposition in noble-metal films produces irreversible, intricate nanoscale translative mass redistributions after resolidification of the transient thermally assisted hydrodynamic melt perturbations. Such mass redistribution results in the formation of a radially symmetric frozen surface with modified hidden nanofeatures, which strongly affect the optical response harnessed in plasmonic sensing and nonlinear optical applications. Here, we demonstrate that side-view electron microscopy and ion-beam cross sections together with low-energy electron x-ray dispersion microscopy provide exact information about such three-dimensional patterns, enabling an accurate acquisition of their cross-sectional mass distributions. Such nanoscale solidified structures are theoretically modeled, considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation, and hydrodynamic flows. A theoretical approach, separating slow and fast physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semianalytical thin-shell model is synergistically applied. These advanced characterization approaches are required for a detailed modeling of near-field electromagnetic response and pave the way to a fully automated noninvasive in-line control of a high-throughput and large-scale laser fabrication. This theoretical modeling provides an accurate prediction of scales and topographies of the laser

  16. Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea

    NARCIS (Netherlands)

    Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis

  17. Hybrid complexity modelling of changes to estuary morphology, hydrodynamics and tidal surge water levels at 10 to 200 year timescales.

    Science.gov (United States)

    French, J.; Burningham, H.

    2016-12-01

    Extreme coastal flooding is expected to increase with climate change, especially in estuaries susceptible to tidal surges. Estuary hydrodynamics are well understood and models can predict spatial variation in tide and surge water levels with skill. However, estuary morphological change alters the pathway between sources of flood risk (tides, surges) and receptors (humans, assets, activities) in vulnerable areas. Our ability to predict morphological change at timescales relevant to climate change remains limited, and this hinders quantitative assessment of changing flood risk. Reductionist hydrodynamic and sediment transport models tend to perform poorly at longer timescales and estuary morphodynamics are increasingly modelled using more `synthesist' approaches to capture landform behaviour at 10 to 100+ year timescales. However, non-linear interaction between tides and morphology means that it is useful to retain hydrodynamic complexity to resolve feedbacks between morphological change and tide/surge propagation. This paper presents a new approach to estuary morphological evolution that combines 1D simulation of tidal hydrodynamics with parameterised 2D representation of intertidal sedimentation and erosion under the influence of fetch-limited waves (Estuary Spatial Landscape Evolution Model; ESTEEM). ESTEEM is used in combination with a 2D shallow water equation model (Telemac2D) to simulate changes in 100 to 200-year flood levels that include changes in morphology due to continuing natural sedimentary processes and realignment of flood defences to accommodate sea-level rise. Results for two UK estuaries indicate that hydrodynamics and surge levels change only slightly with present defences in place. Flood defence realignment results in step-changes to the morphology and significant effects on tide and surge water levels. Evolution of the altered morphology tends to counter the hydrodynamic impact, but is sensitive to wind climate, which strongly controls

  18. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    Science.gov (United States)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem

    2017-11-01

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  19. Physical characterization of the Guadiana Estuary using the hydrodynamic model MOHID

    Science.gov (United States)

    Concepción Calero, María; García-Lafuente, Jesús; Garel, Erwan; Delgado-Cabello, Javier; Moreno-Navas, Juan; Martins, Flávio

    2017-04-01

    Guadiana Estuary is an intertidal estuary situated in SW of Iberian Peninsula, the latest 50 Km of which constitutes the natural border between Spain and Portugal. Tidal influence extends to about 80 Km upstream. The Guadiana River presents a high seasonal irregularity with wet winters and dry summers. Recently the river flow has been modified drastically by several dams constructed along the river. One of them is the Alqueva dam, opened in 2002, which is the biggest reservoir in Western Europe. It is placed to 120 Km upstream from the mouth of the estuary and is the last water control in the system being the main dam affecting the flow. A hydrodynamic model based on the MOHID system has been developed to study the hydrodynamics of the Guadiana Estuary. Tidal forcing and fresh water discharges were used in the boundary conditions. The model has been validated by comparing the model outcomes with in situ data measurements in several points along the estuary. Different scenarios have been simulated in order to know tidal progression and asymmetries in the circulation between wet and dry periods. Those phenomena are important because they influence the ecosystem and the distribution of sediments into the estuary and nearest coast. With a discharge of 300 m3/s the friction dominates over the amplification of the tide signal throughout the estuary while with smaller discharges the opposite effect occurs between 30 and 60 km. The difference in duration between floods and ebbs is greater the greater the discharge and the currents do not invert downstream at 50 Km with a discharge of 500 m3/s. Determining a regime of freshwater inputs from the Alqueva dam can be determinant to maintain the natural range of variation between dry and wet periods prior to the inauguration of the dam.

  20. A hydrodynamic model of nearshore waves and wave-induced currents

    Directory of Open Access Journals (Sweden)

    Ahmed Khaled Seif

    2011-09-01

    Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

  1. Preliminary study on performance of a coupled hydrodynamic and sediment transport model on small domain

    Science.gov (United States)

    Rasyif, Teuku M.; Kato, Shigeru; Syamsidik, Okabe, Takumi

    2017-10-01

    Numerical simulation is one of the useful tools to analyze natural phenomena in the earth such as the tsunami disaster. Several numerical models can simulate the tsunami wave from its generation, propagation, and inundation. However, most tsunami models do not include the sediment transport module. The tsunami wave actually induces a lot of sediment during the propagation in the coastal area. In the case of Indian Ocean Tsunami in 2004, massive morphological changes were caused by the tsunami waves around Sumatra coast. In Aceh, some areas eroded by the tsunami wave were living place for a local community. It is indispensable for the resident in the coastal area to estimate the risk of morphological changes due to a tsunami wave. Therefore, a model that can investigate the morphological changes due tsunami wave is necessary. The result of this model can be used to consider a countermeasure for tsunami wave impact in the coastal area, such as land-use management and planning. The COMCOT-SED model had been developed by several researchers. This model combines the hydrodynamic module and the sediment module. The aim of this study is to get general information about performance of the COMCOT-SED model and to modify the model for more accurate results. Firstly, the model was demonstrated in the ideal condition to confirm the model validity. Then, we evaluated the model performance comparing the model results and the laboratory experiment data which was conducted by other researcher. The authors found that the results of water level and bottom profile by the original model in the ideal condition are not suitable. The model modification will give us more suitable results. The modified model will be applied to simulate the tsunami wave and sediment transport in the small area.

  2. Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior

    Science.gov (United States)

    Sharma, Sapna

    2015-03-01

    In this paper, a new two-lane lattice hydrodynamic traffic flow model is proposed by considering the aggressive or timid characteristics of driver's behavior. The effect of driver's characteristic on the stability of traffic flow is examined through linear stability analysis. It is shown that for both the cases of lane changing or without lane changing the stability region significantly enlarges (reduces) as the proportion of aggressive (timid) drivers increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink-antikink soliton is derived. The effect of anticipation parameter with more aggressive (timid) drivers is also investigated and found that it has a positive (negative) effect on the stability of two-lane traffic flow dynamics. Simulation results are found consistent with the theoretical findings which confirm that the driver's characteristics play a significant role in a two-lane traffic system.

  3. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  4. Three-dimensional Modeling of Tidal Hydrodynamics in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Edward S. Gross

    2010-01-01

    Full Text Available Simulations of circulation in the San Francisco Estuary were performed with the three-dimensional TRIM3D hydrodynamic model using a generic length scale turbulence closure. The model was calibrated to reproduce observed tidal elevations, tidal currents, and salinity observations in the San Francisco Estuary using data collected during 1996-1998, a period of high and variable freshwater flow. It was then validated for 1994-1995, with emphasis on spring of 1994, a period of intensive data collection in the northern estuary. The model predicts tidal elevations and tidal currents accurately, and realistically predicts salinity at both the seasonal and tidal time scales. The model represents salt intrusion into the estuary accurately, and therefore accurately represents the salt balance. The model’s accuracy is adequate for its intended purposes of predicting salinity, analyzing gravitational circulation, and driving a particle-tracking model. Two applications were used to demonstrate the utility of the model. We estimated the components of the longitudinal salt flux and examined their dependence on flow conditions, and compared predicted salt intrusion with estimates from two empirical models.

  5. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-10-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  6. ANALYSIS OF EROSION AND SEDIMENTATION PATTERNS USING SOFTWARE OF MIKE 21 HDFM-MT IN THE KAPUAS MURUNG RIVER MOUTH CENTRAL KALIMANTAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Franto Novico

    2017-07-01

    Full Text Available The public transportation system along the Kapuas River, Central Kalimantan are highly depend on water transportation. Natural condition gives high distribution to the smoothness of the vessel traffic along the Kapuas Murung River. The local government has planned to build specific port for stock pile at the Batanjung which would face with natural phenomena of sedimentation and erosion at a river mouth. Erosion and sedimentation could be predicted not only by field observing but it is also needed hypotheses using software analysis. Hydrodynamics and transport sediment models by Mike 21 HDFM-MT software will be applied to describe the position of sedimentations and erosions at a river mouth. Model is assumed by two different river conditions, wet and dry seasons. Based on two types of conditions the model would also describe the river flow and sediment transport at spring and neap periods. Tidal fluctuations and a river current as field observation data would be verified with the result of model simulations. Based on field observation and simulation results could be known the verification of tidal has an 89.74% correlation while the river current correlation has 43.6%. Moreover, based on the simulation the sediment patterns in flood period have a larger area than ebb period. Furthermore, the erosion patterns dominantly occur during wet and dry season within ebb period. Water depths and sediment patterns should be considered by the vessels that will use the navigation channel at a river mouth.

  7. Kriis kui võimalus / Mike Seymour ; interv. Kristo Kiviorg

    Index Scriptorium Estoniae

    Seymour, Mike

    2008-01-01

    Riskijuhtimise ja kriisikommunikatsiooni spetsialist Mike Seymouri sõnul on infoühiskonna areng pannud ettevõtted olukorda, kus nad peavad olema iga hetk valmis sattuma enda suhtes vaenulikult meelestatud avalikkuse tähelepanu alla. Vt. samas: Urve Vilk. Eesti ettevõtete valmisolek kriisikommunikatsiooniks on madal

  8. Wind forcing of upland lake hydrodynamics: implementation and validation of a 3D numerical model

    Science.gov (United States)

    Morales, L.; French, J.; Burningham, H.; Evans, C.; Battarbee, R.

    2010-12-01

    Upland lakes act as important archives of environmental change, yet inferences based on the analysis of sediment cores are frequently compromised by an incomplete understanding of the hydrodynamic processes controlling the distribution and completeness of lake sediment sequences and their linkages to wider environmental factors. Many upland lakes are characterized by complex vertical and horizontal circulation patterns induced by the action of wind on the water surface. Wind forcing is important not only for the resuspension of bottom sediments in shallow marginal areas, but may also control the broader distribution of sediment accumulation. The work presented here represents the first stage of a project aimed at elucidating the linkages between wind forcing and the distribution of bottom sediments in upland lakes and the extent to which simple 'sediment focusing' models provide an adequate basis for predicting optimal locations for the acquisition of core samples for palaeolimnological analysis. As a first step, a 3D numerical hydrodynamic model is implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. This utilises the community ocean model, FVCOM, that solves the Navier-Stokes equations in 3D on an unstructured triangular mesh using the finite volume method. A new graphical user interface has been developed for FVCOM to facilitate pre- and post-processing of lake modelling problems. At Llyn Conwy, the model is forced using local meteorological data and validated against vertical temperature profiles recorded by a long-term buoy deployment and short-term observations of vertical current structure measured using an upward-looking acoustic doppler profiler and surface circulation obtained from GPS drifters. Challenges in the application of FVCOM to a small lake include the design of a mesh that ensures numerical stability whilst resolving a complex bathymetry, and the need for careful treatment of model 'spin-up'. Once calibrated, the

  9. Validating Stormwater system simulations in Edmonton Using MIKE URBAN

    Science.gov (United States)

    Gaafar, M.

    2016-12-01

    Many municipalities use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and the consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers and thus freshwater sources. This study was intended to investigate decay of NH2Cl in stormwater networks starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers. The presented work here is only the first stage of this study. The 30th Avenue basin in Edmonton was chosen as a case study, because it has various land-use types including commercial, industrial, residential and parks. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. However, this model was built to the trunk level where only the main drainage features were presented. Also, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating the real stormwater network. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. To calibrate and validate this model, data of two temporary pipe flow monitoring stations was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two

  10. Modeling the Effects of Hydrodynamic Regimes on Microbial Communities within Fluvial Biofilms: Combining Deterministic and Stochastic Processes.

    Science.gov (United States)

    Li, Yi; Wang, Chao; Zhang, Wenlong; Wang, Peifang; Niu, Lihua; Hou, Jun; Wang, Jing; Wang, Linqiong

    2015-11-03

    To fully understand the effects of hydrodynamics on a microbial community, the roles of niche-based and neutral processes must be considered in a mathematical model. To this end, a two-dimensional model combining mechanisms of immigration, dispersal, and niche differentiation was first established to describe the effects of hydrodynamics on bacterial communities within fluvial biofilms. Deterministic factors of the model were identified via the calculation of Spearman's rank correlation coefficients between parameters of hydrodynamics and the bacterial community. It was found that turbulent kinetic energy and turbulent intensity were considered as a set of reasonable predictors of community composition, whereas flow velocity and turbulent intensity can be combined together to predict biofilm bacterial biomass. According to the modeling result, the bacterial community could get its favorable assembly condition with a flow velocity ranging from 0.041 to 0.061 m/s. However, the driving force for biofilm community assembly changed with the local hydrodynamics. Individuals reproduction within the biofilm was the main driving force with flow velocity less than 0.05 m/s, while cell migration played a much more important role with velocity larger than 0.05 m/s. The developed model could be considered as a useful tool for improving the technologies of water environment protection and remediation.

  11. Hydrodynamic Modeling of Flood Dynamics and Restoration Potential of Lower Missouri River Floodplains

    Science.gov (United States)

    Lindner, G. A.

    2012-12-01

    Lower Missouri River floodplains have the potential to provide multiple ecosystem services including agricultural production, floodwater storage, nutrient processing, and provision of habitats. In this research, a 2-dimensional hydrodynamic model of a representative looped floodplain bottom of approximately 20 km is utilized to explore how floodplain inundation contributes to ecosystem benefits and costs. High resolution 2-dimensional hydrodynamic modeling provides insights into the way velocities, flood stages, residence times, and transported constituents (sediment, nutrients, and fish larvae, for example) are affected by levee geometry, floodplain vegetation patterns, and flood magnitude and duration. The utility of 2-dimensional numerical hydraulic models to represent the channel and floodplain are demonstrated at a scale relevant to understanding processes that control channel/floodplain dynamics. The sensitivity of model response to alternative land use scenarios, including levee setbacks and variable overbank roughness, is quantified using hydraulic parameters such as velocity, water level, conveyance, and residence time. The 2-dimensional models are calibrated to existing 1-dimensional modeling solutions and field measurements of water surface from 1993 and 2007 for the 2-year, 5-year, and 10-year recurrence intervals. Calibration runs with current levee configurations are matched to approximately ±0.1 meters. Simulations of alternative land use scenarios demonstrate the tradeoffs between ecological restoration and flood risk reductions. Levee setbacks with low hydraulic roughness associated with traditional row crop agriculture on the floodplains have the greatest potential for flood stage reductions, while native plant communities with higher roughness can negate the effects of the setbacks by increasing water levels due to enhanced frictional resistance. Residence times, which are presumed to be related to ecosystem services, demonstrate increasingly

  12. From the simplest equations of Hydrodynamics to science and engineering modeling skills

    Directory of Open Access Journals (Sweden)

    Juan Carlos Castro-Palacio

    2017-08-01

    Full Text Available The development of modeling skills is a very important issue in Science teaching nowadays. The present work illustrates how, from the simplest equations of hydrodynamics, it is possible to contribute to this end. Bernoulli and continuity equations are included in Physics syllabi of secondary and university levels, and can be seen as a linking between general and professional education. By means of the proposed project, students are taken through general stages which are usually present in any engineering project or research work based on modeling and simulation. such as the formulation of the problem, the statement of the Physics model, a computational simulation and the comparison between theory and experiments. This kind of project allows for the development of modeling skills and also to some other typical skills of the scientist's and engineer's profiles nowadays, such as  fitting and graphing analysis. It is common to see that secondary and  first year university courses do not contribute much to the formation of modeling skills, instead they rather contribute to particular skills from the perspective of the different subjects. On the other hand, students are usually more motivated for the modeling of real world situations than for idealized ones.

  13. Investigation of the hydrodynamic model test of forced rolling for a barge using PIV

    Directory of Open Access Journals (Sweden)

    WANG Xiaoqiang

    2017-03-01

    Full Text Available In order to study the physical details of viscous flow in ship roll motions and improve the accuracy of ship roll damping numerical simulation, the application of the Particle Image Velocimetry (PIV technique is investigated in model tests of forced ship rolling in calm water. The hydrodynamic force and flow field at the bilge region are simultaneously measured for barges at different amplitudes and frequencies in which the self-made forced rolling facility was used. In the model test, the viscous flow variation with the time around the bilge region was studied during ship rolling motion. The changes in ship roll damping coefficients with the rolling amplitude and period were also investigated. A comparison of the model test results with the Computational Fluid Dynamics(CFDresults shows that the numerical ship roll damping coefficients agree well with the model test results, while the differences in the local flow details exist between the CFD results and model test results. Further research into the model test technique and CFD application is required.

  14. Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models

    Science.gov (United States)

    Guo, Quan; Gonzalez-Perez, Violeta; Guo, Qi; Schaller, Matthieu; Furlong, Michelle; Bower, Richard G.; Cole, Shaun; Crain, Robert A.; Frenk, Carlos S.; Helly, John C.; Lacey, Cedric G.; Lagos, Claudia del P.; Mitchell, Peter; Schaye, Joop; Theuns, Tom

    2016-10-01

    We compare global predictions from the EAGLE hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, L-GALAXIES and GALFORM. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the EAGLE dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M* 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass-size relation in EAGLE is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass-metallicity relation.

  15. Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.

    Science.gov (United States)

    Dickenson, Joshua A; Sansalone, John J

    2009-11-01

    Modeling the separation of dilute particulate matter (PM) has been a topic of interest since the introduction of unit operations for clarification of rainfall-runoff. One consistent yet controversial issue is the representation of PM and PM separation mechanisms for treatment. While Newton's Law and surface overflow rate were utilized, many historical models represented PM as a lumped gravimetric index largely out of economy and lack of particle analysis methods. As a result such models did not provide information about particle fate in or through a unit operation. In this study, PM discrete phase modeling (DPM) and computational fluid dynamics (CFD) are applied to model PM fate as a function of particle size and flow rate in two common types of hydrodynamic separator (HS) units. The study examines the discretization requirements (as a discretization number, DN) and errors for particle size distributions (PSDs) that range from the common heterodisperse to a monodisperse PSD. PSDs are categorized based on granulometric indices. Results focus on ensuring modeling accuracy while examining the role of size dispersivity and overall PM fineness on DN requirements. The fate of common heterodisperse PSDs is accurately predicted for a DN of 16, whereas a single particle size index, commonly the d(50m), is limited to monodisperse PSDs in order to achieve similar accuracy.

  16. Hydrodynamical simulations of coupled and uncoupled quintessence models - I. Halo properties and the cosmic web

    Science.gov (United States)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Wales, Scott; Yepes, Gustavo

    2014-04-01

    We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard Λ cold dark matter cosmology. For each we use 2 × 10243 particles in a 250 h-1 Mpc periodic box assuming 7-year Wilkinson Microwave Anisotropy Probe cosmology. In this work we focus on the properties of haloes in the cosmic web at z = 0. The web is classified into voids, sheets, filaments and knots depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment show a substantial dependence on the underlying cosmology; for example, while Vmax shows average deviations of ≈5 per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as 20 per cent. We also find that halo spin parameters are positively correlated to the coupling, whereas halo concentrations show the opposite behaviour. Furthermore, when studying the concentration-mass relation in different environments, we find that in all cosmologies underdense regions have a larger normalization and a shallower slope. While this behaviour is found to characterize all the models, differences in the best-fitting relations are enhanced in (coupled) dark energy models, thus providing a clearer prediction for this class of models.

  17. Numerical modeling of hydrodynamics and sediment transport—an integrated approach

    Science.gov (United States)

    Gic-Grusza, Gabriela; Dudkowska, Aleksandra

    2017-10-01

    Point measurement-based estimation of bedload transport in the coastal zone is very difficult. The only way to assess the magnitude and direction of bedload transport in larger areas, particularly those characterized by complex bottom topography and hydrodynamics, is to use a holistic approach. This requires modeling of waves, currents, and the critical bed shear stress and bedload transport magnitude, with a due consideration to the realistic bathymetry and distribution of surface sediment types. Such a holistic approach is presented in this paper which describes modeling of bedload transport in the Gulf of Gdańsk. Extreme storm conditions defined based on 138-year NOAA data were assumed. The SWAN model (Booij et al. 1999) was used to define wind-wave fields, whereas wave-induced currents were calculated using the Kołodko and Gic-Grusza (2015) model, and the magnitude of bedload transport was estimated using the modified Meyer-Peter and Müller (1948) formula. The calculations were performed using a GIS model. The results obtained are innovative. The approach presented appears to be a valuable source of information on bedload transport in the coastal zone.

  18. Radiation Hydrodynamical Models for Type I Superluminous Supernovae: Constraints on Progenitors and Explosion Mechanisms

    Science.gov (United States)

    Nomoto, Ken&'Ichi; Tolstov, Alexey; Sorokina, Elena; Blinnikov, Sergei; Bersten, Melina; Suzuki, Tomoharu

    2017-11-01

    The physical origin of Type-I (hydrogen-less) superluminous supernovae (SLSNe-I), whose luminosities are 10 to 500 times higher than normal core-collapse supernovae, remains still unknown. Thanks to their brightness, SLSNe-I would be useful probes of distant Universe. For the power source of the light curves of SLSNe-I, radioactive-decays, magnetars, and circumstellar interactions have been proposed, although no definitive conclusions have been reached yet. Since most of light curve studies have been based on simplified semi-analytic models, we have constructed multi-color light curve models by means of detailed radiation hydrodynamical calculations for various mass of stars including very massive ones and large amount of mass loss. We compare the rising time, peak luminosity, width, and decline rate of the model light curves with observations of SLSNe-I and obtain constraints on their progenitors and explosion mechanisms. We particularly pay attention to the recently reported double peaks of the light curves. We discuss how to discriminate three models, relevant models parameters, their evolutionary origins, and implications for the early evolution of the Universe.

  19. Hydrodynamical-model analysis of high-energy interactions due to mesons, antiprotons and α-particles

    Science.gov (United States)

    Shivpuri, R. K.; Mian, Ajay; Gupt, Chandra

    1984-06-01

    The pseudorapidity distributions of secondary particles in 50 200 GeV meson and anti-proton interactions with various target nuclei and in α-emulsion interactions are compared with the predictions of the hydrodynamical model. The agreement between the experimental and the predicted distributions is excellent.

  20. One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions

    Science.gov (United States)

    Rohan Benjankar; Daniele Tonina; James McKean

    2014-01-01

    Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...

  1. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Science.gov (United States)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  2. Experimental validation of an analytical model for predicting the thermal and hydrodynamic capabilities of flat micro heat pipes

    OpenAIRE

    Revellin, Rémi; Rullière, Romuald; Lefèvre, Frédéric; Bonjour, Jocelyn

    2009-01-01

    Experimental validation of an analytical model for predicting the thermal and hydrodynamic capabilities of flat micro heat pipes correspondance: Corresponding author. Tel.: +33 4 7243 82 51; fax: +33 4 7243 8811. (Lefevre, Frederic) (Lefevre, Frederic) Centre de Thermique de Lyon (CETHIL) UMR 5008 CNRS-INSA-Univ. Lyon 1 Bat. Sadi Carnot--> , INSA-Lyon--> , F-69621 Villeurbanne Cedex--> -...

  3. Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment

    Science.gov (United States)

    Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia

    2015-04-01

    observe the temporal evolution of the event (e.g. the water receding). In this paper, the first outcomes of a study aiming at combining COSMO-SkyMed derived flood maps with hydrodynamic models are presented. The study is carried out within the framework of the EO-based CHange detection for Operational Flood Management (ECHO-FM) project, funded by the Italian Space Agency (ASI) as part of the research activities agreed in the cooperation between ASI and the Japan Aerospace Exploration Agency (JAXA). The flood that hit the region of Shkodër, in Albania, on January 2010, is considered as test case. The work focuses on the utility of a dense temporal series of SAR data, such as that available through CSK for this case study, used in combination with a hydrodynamic model to monitor over a long time (in the order of 3 weeks) the natural drainage of the Shkodër floodplain. It is shown that by matching the outputs of the model to SAR observations, the hydrodynamic inconsistencies in CSK estimates can be corrected.

  4. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  5. Radiation hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C.

    1982-12-31

    This course was intended to provide the participant with an introduction to the theory of radiative transfer, and an understanding of the coupling of radiative processes to the equations describing compressible flow. At moderate temperatures (thousands of degrees), the role of the radiation is primarily one of transporting energy by radiative processes. At higher temperatures (millions of degrees), the energy and momentum densities of the radiation field may become comparable to or even dominate the corresponding fluid quantities. In this case, the radiation field significantly affects the dynamics of the fluid, and it is the description of this regime which is generally the charter of radiation hydrodynamics. The course provided a discussion of the relevant physics and a derivation of the corresponding equations, as well as an examination of several simplified models. Practical applications include astrophysics and nuclear weapons effects phenomena.

  6. Flood Hazard Mapping Combining Hydrodynamic Modeling and Multi Annual Remote Sensing data

    Directory of Open Access Journals (Sweden)

    Laura Giustarini

    2015-10-01

    Full Text Available This paper explores a method to combine the time and space continuity of a large-scale inundation model with discontinuous satellite microwave observations, for high-resolution flood hazard mapping. The assumption behind this approach is that hydraulic variables computed from continuous spatially-distributed hydrodynamic modeling and observed as discrete satellite-derived flood extents are correlated in time, so that probabilities can be transferred from the model series to the observations. A prerequisite is, therefore, the existence of a significant correlation between a modeled variable (i.e., flood extent or volume and the synchronously-observed flood extent. If this is the case, the availability of model simulations over a long time period allows for a robust estimate of non-exceedance probabilities that can be attributed to corresponding synchronously-available satellite observations. The generated flood hazard map has a spatial resolution equal to that of the satellite images, which is higher than that of currently available large scale inundation models. The method was applied on the Severn River (UK, using the outputs of a global inundation model provided by the European Centre for Medium-range Weather Forecasts and a large collection of ENVISAT ASAR imagery. A comparison between the hazard map obtained with the proposed method and with a more traditional numerical modeling approach supports the hypothesis that combining model results and satellite observations could provide advantages for high-resolution flood hazard mapping, provided that a sufficient number of remote sensing images is available and that a time correlation is present between variables derived from a global model and obtained from satellite observations.

  7. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    Science.gov (United States)

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.

    2015-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  8. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    Science.gov (United States)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  9. Mathematical modeling of CSF pulsatile hydrodynamics based on fluid-solid interaction.

    Science.gov (United States)

    Masoumi, Nafiseh; Bastani, Dariush; Najarian, Siamak; Ganji, Fariba; Farmanzad, Farhad; Seddighi, Amir Saeed

    2010-06-01

    Intracranial pressure (ICP) is derived from cerebral blood pressure and cerebrospinal fluid (CSF) circulatory dynamics and can be affected in the course of many diseases. Computer analysis of the ICP time pattern plays a crucial role in the diagnosis and treatment of those diseases. This study proposes the application of Linninger et al.'s [IEEE Trans. Biomed. Eng., vol. 52, no. 4, pp. 557-565, Apr. 2005] fluid-solid interaction model of CSF hydrodynamic in ventricular system based on our clinical data from a group of patients with brain parenchyma tumor. The clinical experiments include the arterial blood pressure (ABP), venous blood pressure, and ICP in the subarachnoid space (SAS). These data were used as inputs to the model that predicts the intracranial dynamic phenomena. In addition, the model has been modified by considering CSF pulsatile production rate as the major factor of CSF motion. The approximations of ventricle enlargement, CSF pressure distribution in the ventricular system and CSF velocity magnitude in the aqueduct and foramina were obtained in this study. The observation of reversal flow in the CSF flow pattern due to brain tissue compression is another finding in our investigation. Based on the experimental results, no existence of large transmural pressure differences were found in the brain system. The measured pressure drop in the ventricular system was less than 5 Pa. Moreover, the CSF flow pattern, ICP distribution, and velocity magnitude were in good agreement with the published models and CINE (phase-contrast magnetic resonance imaging) experiments, respectively.

  10. Application of a 2D Hydrodynamic Model for Assessing Flood Risk from Extreme Storm Events

    Directory of Open Access Journals (Sweden)

    Sohan Ghimire

    2013-11-01

    Full Text Available In the wake of increasing flood disasters, there is an increasing use of flood inundation models to assess risks and impacts at different temporal and spatial scales. Assessing the impacts of extreme climatic rainfall events will require developing design rainfall profiles to represent rainfall under different conditions. Rainfall profiles of different return periods were developed using the Flood Estimation Handbook (FEH methodology for a small rural catchment of Scotland, to assess flood risks at a catchment scale. Rainfall induced runoff flows were estimated based on a set of catchment characteristics. The channel and floodplain flows were modelled using a two-dimensional hydrodynamic model-TUFLOW. The main channel was represented by a one-dimensional linear channel based on surveyed data and the floodplain topography, was represented by a digital terrain model based on Light Detection and Ranging (LiDAR. A range of hydrological events with different return periods are simulated. Results show that many residential houses and an extensive area of agricultural land are at risk of flooding from extreme events such as a 1 in 100 year flood.

  11. Hydrodynamic model of screen channel liquid acquisition devices for in-space cryogenic propellant management

    Science.gov (United States)

    Darr, S. R.; Camarotti, C. F.; Hartwig, J. W.; Chung, J. N.

    2017-01-01

    Technologies that enable the storage and transfer of cryogenic propellants in space will be needed for the next generation vehicles that will carry humans to Mars. One of the candidate technologies is the screen channel liquid acquisition device (LAD), which uses a metal woven wire mesh to separate the liquid and vapor phases so that single-phase liquid propellant can be transferred in microgravity. In this work, an experiment is carried out that provides measurements of the velocity and pressure fields in a screen channel LAD. These data are used to validate a new analytical solution of the liquid flow through a screen channel LAD. This hydrodynamic model, which accounts for non-uniform injection through the screen, is compared with the traditional pressure term summation model which assumes a constant, uniform injection velocity. Results show that the new model performs best against the new data and historical data. The velocity measurements inside the screen channel LAD are used to provide a more accurate velocity profile which further improves the new model. The result of this work is a predictive tool that will instill confidence in the design of screen channel LADs for future in-space propulsion systems.

  12. Establishment of drug-resistant HBV small-animal models by hydrodynamic injection

    Directory of Open Access Journals (Sweden)

    Junjun Cheng

    2014-08-01

    Full Text Available In antiviral therapy of hepatitis B virus (HBV infection, drug resistance remains a huge obstacle to the long-term effectiveness of nucleoside/tide analogs (NAs. Primary resistance mutation (rtM204V contributes to lamivudine (LAM-resistance, and compensatory mutations (rtL180M and rtV173L restore viral fitness and increase replication efficiency. The evaluation of new anti-viral agents against drug-resistant HBV is limited by the lack of available small-animal models. We established LAM-resistance HBV replication mice models based on clinical LAM-resistant HBV mutants. Double (rtM204V+rtL180M or triple (rtM204V+rtL180M+rtV173L lamivudine-resistant mutations were introduced into HBV expression vector, followed by hydrodynamic injection into tail vein of NOD/SCID mice. Viremia was detected on days 5, 9, 13 and 17 and liver HBV DNA was detected on day 17 after injection. The serum and liver HBV DNA levels in LAM-resistant model carrying triple mutations are the highest among the models. Two NAs, LAM and entecavir (ETV, were used to test the availability of the models. LAM and ETV inhibited viral replication on wild-type model. LAM was no longer effective on LAM-resistant models, but ETV retains a strong activity. Therefore, these models can be used to evaluate anti-viral agents against lamivudine-resistance, affording new opportunities to establish other drug-resistant HBV small-animal models.

  13. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    Science.gov (United States)

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A 30m resolution hydrodynamic model of the entire conterminous United States.

    Science.gov (United States)

    Bates, P. D.; Neal, J. C.; Smith, A.; Sampson, C.; Johnson, K.; Wing, O.

    2016-12-01

    In this paper we describe the development and validation of a 30m resolution hydrodynamic model covering the entire conterminous United States. The model can be used to simulate inundation and water depths resulting from either return period flows (so equivalent to FEMA Flood Insurance Rate Maps), hindcasts of historic events or forecasts of future river flow from a rainfall-runoff or land surface model. As topographic data the model uses the U.S. Geological Survey National Elevation Dataset or NED, and return period flows are generated using a regional flood frequency analysis methodology (Smith et al., 2015. Worldwide flood frequency estimation. Water Resources Research, 51, 539-553). Flood defences nationwide are represented using data from the US Army Corps of Engineers. Using these data flows are simulated using an explicit and highly efficient finite difference solution of the local inertial form of the Shallow Water equations identical to that implemented in the LISFLOOD-FP model. Even with this efficient numerical solution a simulation at this resolution over a whole continent is a huge undertaking, and a variety of High Performance Computing technologies therefore need to be employed to make these simulations possible. The size of the output datasets is also challenging, and to solve this we use the GIS and graphical display functions of Google Earth Engine to facilitate easy visualisation and interrogation of the results. The model is validated against the return period flood extents contained in FEMA Flood Insurance Rate Maps and real flood event data from the Texas 2015 flood event which was hindcast using the model. Finally, we present an application of the model to the Upper Mississippi river basin where simulations both with and without flood defences are used to determine floodplain areas benefitting from protection in order to quantify the benefits of flood defence spending.

  15. Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood

    Science.gov (United States)

    Ikeshima, D.; Yamazaki, D.; Kanae, S.

    2016-12-01

    CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also

  16. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    Science.gov (United States)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  17. Comparing galaxy formation in semi-analytic models and hydrodynamical simulations

    Science.gov (United States)

    Mitchell, Peter D.; Lacey, Cedric G.; Lagos, Claudia D. P.; Frenk, Carlos S.; Bower, Richard G.; Cole, Shaun; Helly, John C.; Schaller, Matthieu; Gonzalez-Perez, Violeta; Theuns, Tom

    2018-02-01

    It is now possible for hydrodynamical simulations to reproduce a representative galaxy population. Accordingly, it is timely to assess critically some of the assumptions of traditional semi-analytic galaxy formation models. We use the Eagle simulations to assess assumptions built into the Galform semi-analytic model, focussing on those relating to baryon cycling, angular momentum and feedback. We show that the assumption in Galform that newly formed stars have the same specific angular momentum as the total disc leads to a significant overestimate of the total stellar specific angular momentum of disc galaxies. In Eagle, stars form preferentially out of low specific angular momentum gas in the interstellar medium (ISM) due to the assumed gas density threshold for stars to form, leading to more realistic galaxy sizes. We find that stellar mass assembly is similar between Galform and Eagle but that the evolution of gas properties is different, with various indications that the rate of baryon cycling in Eagle is slower than is assumed in Galform. Finally, by matching individual galaxies between Eagle and Galform, we find that an artificial dependence of AGN feedback and gas infall rates on halo mass doubling events in Galform drives most of the scatter in stellar mass between individual objects. Put together our results suggest that the Galform semi-analytic model can be significantly improved in light of recent advances.

  18. Floodplain simulation for Musi River using integrated 1D/2D hydrodynamic model

    Directory of Open Access Journals (Sweden)

    Al Amin Muhammad B.

    2017-01-01

    Full Text Available This paper presents the simulation of floodplain at Musi River using integrated 1D and 2D hydrodynamic model. The 1D flow simulation was applied for the river channel with flow hydrograph as upstream boundary condition. The result of 1D flow simulation was integrated into 2D flow simulation in order to know the area and characteristics of flood inundation. The input data of digital terrain model which was used in this research had grid resolution of 10m×10m, but for 2D simulation the resolution was with grid resolution 50 m × 50 m so as to limit simulation time since the model size was big enough. The result of the simulation showed that the inundated area surrounding Musi River is about 107.44 km2 with maximum flood depth is 3.24 m, water surface velocity ranges from 0.00 to 0.83 m/s. Most of floodplain areas varied from middle to high flood hazard level, and only few areas had very high level of flood hazard especially on river side. The structural flood control measurement to be recommended to Palembang is to construct flood dike and flood gate. The non structural measurement one is to improve watershed management and socialization of flood awareness.

  19. The Importance of Spatially Heterogeneous Roughness Grids on Hydrodynamic Modeling of Coral Reefs

    Science.gov (United States)

    Hoeke, R. K.; Strolazzi, C.; Aucan, J.

    2007-05-01

    Hydrodynamics of two embayments in the Hawaiian archipelago, Hanalei Bay on the island of Kauai, and Kailua Bay, on the Island of Oahu, are estimated using a shallow-water finite-difference wave and circulation model. Both of the bay bottoms contain a mix of unconsolidated (mostly carbonate) sediment and fringing coral reefs. Model results of shoreline wave heights, shore-parallel and shore-perpendicular currents are found to vary by several orders of magnitude depending on what parameterization of bottom roughness is used. Several bottom roughness schemes are compared, including "standard" homogenous values for sediments, higher homogenous values for reefs, and spatially varying values derived from measurements of rugosity. Results from model runs using these different schemes are compared with in situ observations and indicate the importance of spatially heterogeneous roughness grids. Methods of: 1) deriving rugosity measurements from bathymetric data and 2) creating grids of hydraulic roughness lengths based on published values from the rugosity grids are presented. These methods have implications for providing near-real time bulletins and forecasts of water safety and water quality along Hawaii's coastlines.

  20. A hydrodynamic model of plasma initiation off irradiated metallic aerosols in vacuum - The diffusive regime

    Science.gov (United States)

    Chitanvis, Shirish M.

    1989-03-01

    The analogy between chemical reactions and cascade ionization is exploited to study the spatial and temporal dynamics of plasma formation in the vapor that is formed on a metallic aerosol that is being irradiated by a high-energy laser beam, in vacuum. The present hydrodynamic model is valid for relatively low laser fluences and pulses of the order of nanoseconds or less, when the diffusive approximation may be safely invoked. The main result of the paper is to show that the laser-induced plasma layer around aerosols shows a crossover, from being transparent to being opaque, as the fluence incident upon the aerosol is increased. The model of cascade ionization is used to show that for the laser fluxes for which the model is valid, the plasma in the vapor layer surrounding an aluminuim metallic sphere is not dense enough to obscure the laser beam. For flux levels of 10 to the 11th W/sq cm or higher and pulse lengths of 10 ns or longer, the plasma around individual aluminum aerosols becomes very absorbing.

  1. Hydrodynamic modelling of free water-surface constructed storm water wetlands using a finite volume technique.

    Science.gov (United States)

    Zounemat-Kermani, Mohammad; Scholz, Miklas; Tondar, Mohammad-Mahdi

    2015-01-01

    One of the key factors in designing free water-surface constructed wetlands (FWS CW) is the hydraulic efficiency (λ), which depends primarily on the retention time of the polluted storm water. Increasing the hydraulic retention time (HRT) at various flow levels will increase λ of the overall constructed wetland (CW). The effects of characteristic geometric features that increase HRT were explored through the use of a two-dimensional depth-average hydrodynamic model. This numerical model was developed to solve the equations of continuity and motions on an unstructured triangular mesh using the Galerkin finite volume formulation and equations of the k-ε turbulence model. Eighty-nine diverse forms of artificial FWS CW with 11 different aspect ratios were numerically simulated and subsequently analysed for four scenarios: rectangular CW, modified rectangular CW with rounded edges, different inlet/outlet configurations of CW, and surface and submerged obstructions in front of the inlet part of the CW. Results from the simulations showed that increasing the aspect ratio has a direct influence on the enhancement of λ in all cases. However, the aspect ratio should be at least 9 in order to achieve an appropriate rate for λ in rectangular CW. Modified rounded rectangular CW improved λ by up to 23%, which allowed for the selection of a reduced aspect ratio. Simulation results showed that CW with low aspect ratios benefited from obstructions and optimized inlet/outlet configurations in terms of improved HRT.

  2. A high resolution hydrodynamic model system suitable for novel harmful algal bloom modelling in areas of complex coastline and topography.

    Science.gov (United States)

    Aleynik, Dmitry; Dale, Andrew C; Porter, Marie; Davidson, Keith

    2016-03-01

    Fjordic coastlines provide sheltered locations for finfish and shellfish aquaculture, and are often subject to harmful algal blooms (HABs) some of which develop offshore and are then advected to impact nearshore aquaculture. Numerical models are a potentially important tool for providing early warning of such HAB events. However, the complex topography of fjordic shelf regions is a significant challenge to modelling. This is frequently compounded by complex bathymetry and local weather patterns. Existing structured grid models do not provide the resolution needed to represent these coastlines in their wider shelf context. In a number of locations advectively transported blooms of the ichthyotoxic dinoflagellate Karenia mikimotoi are of particular concern for the finfish industry. Here were present a novel hydrodynamic model of the coastal waters to the west of Scotland that is based on unstructured finite volume methodology, providing a sufficiently high resolution hydrodynamical structure to realistically simulate the transport of particles (such as K. mikimotoi cells) within nearshore waters where aquaculture sites are sited. Model-observation comparisons reveal close correspondence of tidal elevations for major semidiurnal and diurnal tidal constituents. The thermohaline structure of the model and its current fields are also in good agreement with a number of existing observational datasets. Simulations of the transport of Lagrangian drifting buoys, along with the incorporation of an individual-based biological model, based on a bloom of K. mikimotoi, demonstrate that unstructured grid models have considerable potential for HAB prediction in Scotland and in complex topographical regions elsewhere. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Sensitivity of a Floodplain Hydrodynamic Model to Satellite-Based DEM Scale and Accuracy: Case Study—The Atchafalaya Basin

    Directory of Open Access Journals (Sweden)

    Hahn Chul Jung

    2015-06-01

    Full Text Available The hydrodynamics of low-lying riverine floodplains and wetlands play a critical role in hydrology and ecosystem processes. Because small topographic features affect floodplain storage and flow velocity, a hydrodynamic model setup of these regions imposes more stringent requirements on the input Digital Elevation Model (DEM compared to upland regions with comparatively high slopes. This current study provides a systematic approach to evaluate the required relative vertical accuracy and spatial resolution of current and future satellite-based altimeters within the context of DEM requirements for 2-D floodplain hydrodynamic models. A case study is presented for the Atchafalaya Basin with a model domain of 1190 km2. The approach analyzes the sensitivity of modeled floodplain water elevation and velocity to typical satellite-based DEM grid-box scale and vertical error, using a previously calibrated version of the physically-based flood inundation model (LISFLOOD-ACC. Results indicate a trade-off relationship between DEM relative vertical error and grid-box size. Higher resolution models are the most sensitive to vertical accuracy, but the impact diminishes at coarser resolutions because of spatial averaging. The results provide guidance to engineers and scientists when defining the observation scales of future altimetry missions such as the   Surface Water and Ocean Topography (SWOT mission from the perspective of numerical modeling requirements for large floodplains of O[103] km2 and greater.

  4. Evaluation of the hydrodynamic behaviour of turbulence promoters in parallel plate electrochemical reactors by means of the dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Colli, A.N. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-08-30

    Highlights: {center_dot} The type of turbulence promoters has a strong influence on the hydrodynamics. {center_dot} The dispersion model is appropriate for expanded plastic turbulence promoters. {center_dot} The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.

  5. The kinematics of σ-drop bulges from spectral synthesis modelling of a hydrodynamical simulation

    Science.gov (United States)

    Portaluri, Elisa; Debattista, Victor P.; Fabricius, Maximillian; Cole, David R.; Corsini, Enrico M.; Drory, Niv; Rowe, Andrew; Morelli, Lorenzo; Pizzella, Alessandro; Dalla Bontà, Elena

    2017-05-01

    A minimum in stellar velocity dispersion is often observed in the central regions of disc galaxies. To investigate the origin of this feature, known as a σ-drop, we analyse the stellar kinematics of a high-resolution N-body + smooth particle hydrodynamical simulation, which models the secular evolution of an unbarred disc galaxy. We compared the intrinsic mass-weighted kinematics to the recovered luminosity-weighted ones. The latter were obtained by analysing synthetic spectra produced by a new code, syntra, that generates synthetic spectra by assigning a stellar population synthesis model to each star particle based on its age and metallicity. The kinematics were derived from the synthetic spectra as in real spectra to mimic the kinematic analysis of real galaxies. We found that the recovered luminosity-weighted kinematics in the centre of the simulated galaxy are biased to higher rotation velocities and lower velocity dispersions due to the presence of young stars in a thin and kinematically cool disc, and are ultimately responsible for the σ-drop. Our procedure for building mock observations and thus recovering the luminosity-weighted kinematics of the stars in a galaxy simulation is a powerful tool that can be applied to a variety of scientific questions, such as multiple stellar populations in kinematically decoupled cores and counter-rotating components, and galaxies with both thick and thin disc components.

  6. Characterizing urban hydrodynamic models in densely settled river-corridors: Lessons from Jakarta

    Science.gov (United States)

    Shaad, K.; Ninsalam, Y.; Padawangi, R.; Burlando, P.

    2016-12-01

    The nature and pace of urbanization in South and South-east Asia has created unique circumstances for the inter-action between social and ecological systems linked to water resources - with the growing density of population; frequent and extensive modification on the flood plain alongside governance challenges creating large segment of the settled regions exposed to water security issues and flooding risks. The densely-settled river corridor in Jakarta, with nearly 590 km of waterfront exposed to frequent flooding, captures the scale and complexity typical of these systems. Developing models that can help improve our insights into these urban areas remain a challenge. Here, we present our attempts to apply high-resolution aerial and ground based mapping methods, alongside shallow groundwater monitoring and household surveys, to characterize hydrodynamic models of varying complexity, for a 7 km stretch on the Ciliwung River in the center of Jakarta. We explore the uncertainty associated with obtaining "hydraulically representative" ground description and influence of representation of structures in flood propagation over the short-term, while linking it to the diffusive forcings from settlement acting on the floodplain-river interaction over the long-term. Connecting, thus, flooding with water availability and contamination, we speculate on the ability to scale these approaches and technologies beyond the limits of the test site.

  7. Hydrodynamic model of the collective electron resonances in C60 fullerene

    Science.gov (United States)

    Gildenburtg, V. B.; Pavlichenko, I. A.

    2017-08-01

    The polarization-response spectrum of the fullerene C60 modeled as a homogeneous spherical plasma shell is calculated in the framework of the hydrodynamic approach, allowing for the spatial dispersion caused by the Fermi-distributed valence electrons. The dipole eigenoscillation spectrum of the shell is found to contain a series of plasmons distinguished by the frequency and the radial structure. The first two of them (whose structures for C60 are the subject of discussion up to now) pass to the lower and higher surface plasmons of the plasma shell if its thickness is much larger than the Tomas-Fermi length. However, under parameter values corresponding to the C60 molecule, when these lengths are of the same order, both these plasmons (providing the main contribution to the fullerene absorption spectrum) are found to be actually volume ones in their spatial structure, and the frequency of the higher of them becomes larger than the plasma frequency (as with all the higher volume plasmons). The resonance curve of the fullerene absorption cross-section calculated on the basis of the developed model with allowance for the surface losses caused by the reflection of electrons at the shell boundaries agrees well with the experimental data.

  8. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method

    Science.gov (United States)

    Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis

    2017-01-01

    Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant density, height, and to a certain degree, diameter. Wave dissipation is mostly dependent on the variation in plant density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance for future observational and modeling work to optimize efforts and reduce exploration of parameter space.

  9. Hydrodynamic Modeling Analysis for Leque Island and zis a ba Restoration Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Jonathan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Khangaonkar, Tarang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-31

    Ducks Unlimited, Inc. in collaboration with Washington State Department of Fish and Wildlife (WDFW), and Stillaguamish Tribe of Indians have proposed the restoration of Leque Island and zis a ba (formerly Matterand) sites near the mouth of Old Stillaguamish River Channel in Port Susan Bay, Washington. The Leque Island site, which is owned by WDFW, consists of nearly 253 acres of land south of Highway 532 that is currently behind a perimeter dike. The 90-acres zis a ba site, also shielded by dikes along the shoreline, is located just upstream of Leque Island and is owned by Stillaguamish Tribes. The proposed actions consider the removal or modification of perimeter dikes at both locations to allow estuarine functions to be restored. The overall objective of the proposed projects is to remove the dike barriers to 1) provide connectivity and access between the tidal river channel and the restoration site for use by juvenile migrating salmon and 2) create a self-sustaining tidal marsh habitat. Ducks Unlimited engaged Pacific Northwest National Laboratory (PNNL) to develop a three-dimensional hydrodynamic model of the Port Susan Bay, Skagit Bay, and the interconnecting Leque Island region for use in support of the feasibility assessment for the Leque Island and zis a ba restoration projects. The objective of this modeling-based feasibility assessment is to evaluate the performance of proposed restoration actions in terms of achieving habitat goals while assessing the potential hydraulic and sediment transport impacts to the site and surrounding parcels of land.

  10. 3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation

    Science.gov (United States)

    Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2018-01-01

    Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.

  11. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  12. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    Science.gov (United States)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  13. Experimental Investigation on the Characteristics of Hydrodynamic Stabilities in Francis Hydroturbine Models

    Directory of Open Access Journals (Sweden)

    Wen-Tao Su

    2014-03-01

    Full Text Available This paper presents an experimental investigation of flow phenomena related to the characteristic frequencies of pressure fluctuation in Francis hydroturbine models. The experiments were carried out on two test rigs with two model runners having hydraulic similarities. Flow field around the guide vanes was measured with a particle image velocimetry (PIV on the first PIV test rig. Flow structures at the inlet region of runner and in draft tube at different operating conditions were visualized on another hydrodynamic test rig. Analyses of dominant frequency of unsteady hydraulic behaviors in the tested hydroturbines were performed. It was observed that the main frequency of flow over the guide vanes and the dominant frequency of channel vortex equal the blade passing frequency; the dominant frequency of flow separation at the suction side of blade inlet equals the vane passing frequency; the vortex rope in the draft tube displays a low-frequency nature. The flow instabilities and fluctuations directly influence the running of hydroturbine, thus these experimental results could provide important evidence for the stability study of a real hydroturbine.

  14. Classifying initial conditions of long GRBs modeled with relativistic radiation hydrodynamics

    Science.gov (United States)

    Rivera-Paleo, F. J.; López Núñez, C. E.; Guzmán, F. S.; González, J. A.

    2017-06-01

    We present a method to classify initial conditions of a long gamma ray bursts model sourced by a single relativistic shock. It is based on the use of artificial neural networks (ANNs) that are trained with light curves (LC) generated with radiation relativistic hydrodynamics simulations. The model we use consists in a single shock with a highly relativistic injected beam into a stratified surrounding medium with profile 1 /r2. In the process we only consider the bremsstrahlung radiation and Thomson scattering process. The initial conditions we use to train the ANN are three: the rest mass density, Lorentz factor and radiation energy density of the beam that produces the relativistic shock, together with the LC generated during the process. The classification selects the location of a box in the 3d parameter space that better fits a given LC, and in order to decrease the uncertainty of the parameters this box is refined and the classification selects a new box of smaller size.

  15. Fe-Modeling Of Starved Hydrodynamic Lubrication With Free Surface Effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Vølund, Anders; Klit, Peder

    2017-01-01

    This work concerns a new finite-element formulation for solving hydrody-namic lubrication problems that include partially flooded regions, where the lubricant film behavior is governed by free surface flow.......This work concerns a new finite-element formulation for solving hydrody-namic lubrication problems that include partially flooded regions, where the lubricant film behavior is governed by free surface flow....

  16. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    internal dynamics, to be followed in detail. This modelling effort has initiated the treatment of the open boundary conditions problem in view of the future implementation of shelf-scale real-time ocean forecasting through the sequential nesting of a hierarchy of successively embedded model domains for the downscaling of the hydrodynamics from the coarse grid Ocean General Circulation Model of the whole Mediterranean Sea to finer grids in coastal areas.

    Key words. Oceanography: general (continental shelf processes; numerical modelling Oceanography: physical (general circulation

  17. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    2003-01-01

    detail. This modelling effort has initiated the treatment of the open boundary conditions problem in view of the future implementation of shelf-scale real-time ocean forecasting through the sequential nesting of a hierarchy of successively embedded model domains for the downscaling of the hydrodynamics from the coarse grid Ocean General Circulation Model of the whole Mediterranean Sea to finer grids in coastal areas. Key words. Oceanography: general (continental shelf processes; numerical modelling Oceanography: physical (general circulation

  18. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Science.gov (United States)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  19. GLOFRIM v1.0 – A globally applicable computational framework for integrated hydrological–hydrodynamic modelling

    Directory of Open Access Journals (Sweden)

    J. M. Hoch

    2017-10-01

    Full Text Available We here present GLOFRIM, a globally applicable computational framework for integrated hydrological–hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global hydrological model PCR-GLOBWB as well as the hydrodynamic models Delft3D Flexible Mesh (DFM; solving the full shallow-water equations and allowing for spatially flexible meshing and LISFLOOD-FP (LFP; solving the local inertia equations and running on regular grids. The main advantages of the framework are its open and free access, its global applicability, its versatility, and its extensibility with other hydrological or hydrodynamic models. Before applying GLOFRIM to an actual test case, we benchmarked both DFM and LFP for a synthetic test case. Results show that for sub-critical flow conditions, discharge response to the same input signal is near-identical for both models, which agrees with previous studies. We subsequently applied the framework to the Amazon River basin to not only test the framework thoroughly, but also to perform a first-ever benchmark of flexible and regular grids on a large-scale. Both DFM and LFP produce comparable results in terms of simulated discharge with LFP exhibiting slightly higher accuracy as expressed by a Kling–Gupta efficiency of 0.82 compared to 0.76 for DFM. However, benchmarking inundation extent between DFM and LFP over the entire study area, a critical success index of 0.46 was obtained, indicating that the models disagree as often as they agree. Differences between models in both simulated discharge and inundation extent are to a large extent attributable to the gridding techniques employed. In fact, the results show that both the numerical scheme of the inundation model and the gridding technique can contribute to deviations in simulated inundation extent as we control for model forcing and boundary

  20. Integrable hydrodynamic equations for initial chiral currents and infinite hydrodynamic chains from WZNW model and string model of WZNW type with SU(2), SO(3), SP(2), SU(∞), SO(∞), SP(∞) constant torsions

    Science.gov (United States)

    Cirilo-Lombardo, D. J.; Gershun, V. D.

    2014-09-01

    The WZNW and string models are considered in terms of the initial and invariant chiral currents assuming that the internal and external torsions coincide (anticoincide) and they are the structure constants of the SU(n), SO(n), SP(n) Lie algebras. These models are the auxiliary problems in order to construct integrable equations of hydrodynamic type. It was shown that the WZNW and string models in terms of invariant chiral currents are integrable for the constant torsion associated with the structure constants of the SU(2), SO(3), SP(2) and SU(3) algebras only. The equation of motion for the density of the first Casimir operator was obtained in the form of the inviscid Burgers equation. The solution of this equation is presented through the Lambert function. Also, a new equation of motion for the initial chiral current was found. The integrable infinite hydrodynamic chains obtained from the WZNW and string models are given in terms of invariant chiral currents with the SU(2), SO(3), SP(2) and with SU(∞), SO(∞), SP(∞) constant torsions. Also, the equations of motion for the density of any Casimir operator and new infinite-dimensional equations of hydrodynamic type for the initial chiral currents through the symmetric structure constant of SU(∞), SO(∞), SP(∞) algebras are obtained.

  1. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  2. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time

    Energy Technology Data Exchange (ETDEWEB)

    Korotkin, Ivan, E-mail: i.korotkin@qmul.ac.uk; Karabasov, Sergey; Markesteijn, Anton [The School of Engineering and Material Science, Queen Mary University of London, Mile End Road, E1 4NS London (United Kingdom); Nerukh, Dmitry; Scukins, Arturs [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Farafonov, Vladimir [Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkiv (Ukraine); Pavlov, Evgen [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Faculty of Physics, Kiev National Taras Shevchenko University, Prospect Acad. Glushkova 4, Kiev 03127 (Ukraine)

    2015-07-07

    A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

  3. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

    KAUST Repository

    Qian, Tiezheng

    2009-10-29

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed. © 2009 IOP Publishing Ltd.

  4. Application of a three-dimensional hydrodynamic model to the Himmerfjärden, Baltic Sea

    Science.gov (United States)

    Sokolov, Alexander

    2014-05-01

    Himmerfjärden is a coastal fjord-like bay situated in the north-western part of the Baltic Sea. The fjord has a mean depth of 17 m and a maximum depth of 52 m. The water is brackish (6 psu) with small salinity fluctuation (±2 psu). A sewage treatment plant, which serves about 300 000 people, discharges into the inner part of Himmerfjärden. This area is the subject of a long-term monitoring program. We are planning to develop a publicly available modelling system for this area, which will perform short-term forecast predictions of pertinent parameters (e.g., water-levels, currents, salinity, temperature) and disseminate them to users. A key component of the system is a three-dimensional hydrodynamic model. The open source Delft3D Flow system (http://www.deltaressystems.com/hydro) has been applied to model the Himmerfjärden area. Two different curvilinear grids were used to approximate the modelling domain (25 km × 50 km × 60 m). One grid has low horizontal resolution (cell size varies from 250 to 450 m) to perform long-term numerical experiments (modelling period of several months), while another grid has higher resolution (cell size varies from 120 to 250 m) to model short-term situations. In vertical direction both z-level (50 layers) and sigma coordinate (20 layers) were used. Modelling results obtained with different horizontal resolution and vertical discretisation will be presented. This model will be a part of the operational system which provides automated integration of data streams from several information sources: meteorological forecast based on the HIRLAM model from the Finnish Meteorological Institute (https://en.ilmatieteenlaitos.fi/open-data), oceanographic forecast based on the HIROMB-BOOS Model developed within the Baltic community and provided by the MyOcean Project (http://www.myocean.eu), riverine discharge from the HYPE model provided by the Swedish Meteorological Hydrological Institute (http://vattenwebb.smhi.se/modelarea/).

  5. Hydrodynamic Model of Inundation Event at Confluence of Ohio and Mississippi Rivers

    Science.gov (United States)

    Kaplan, B. A.; Luke, A.; Alsdorf, D. E.

    2013-12-01

    The goal of this project is to produce an accurate 2-D hydrodynamic model of an inundation event that occurred at the confluence of the Ohio and Mississippi River. The inundation occurred in the months of April and May 2011, with the city of interest being Cairo, Illinois. In order to relieve flooding within Cairo, a Bird's Point Levee was detonated by the Army Corps of Engineers. Cairo is a small city of 2,800 people, and is prone to flooding due to its proximity to the confluence of the Ohio and Mississippi River. Cairo is also the only city in the U.S. completely surrounded by levees. The advantage of a 2-D modeling approach compared to a 1-D approach is that the floodplain geomorphological processes are more accurately represented. Understanding non-channelized flow that occurs during inundation events is a subject of growing interest, and is being addressed in other projects such as the NASA-SWOT mission scheduled for launch in 2019. The 2-D model utilized in this study is LISFLOOD-FP. LISFLOOD-FP is a 2-D finite-difference flood inundation model that has been proven to accurately simulate flood inundation for urban, coastal, and fluvial environments. LISFLOOD-FP operates using known hydraulic principles along with continuity and momentum equations to describe the flow of water through channels and floodplains. The digital elevation model used to represent the area's topography was obtained from the USGS National Elevation Data set, and our model uses input data from USGS stream gauges located upstream of the confluence of the Ohio and Mississippi River. The gauging station located in Cairo will be used for model validation. Currently, many flood simulations are being modeled with varying conditions and input files. In situ cross sectional data is being used to represent the channel. We have found that using averages of the cross sectional data do not accurately represent the river channels, so future model runs will incorporate interpolation between

  6. Modelling of the impact of biofouling on hydrodynamics downstream of a tidal turbine

    Science.gov (United States)

    Bennis, A. C.; Rivier, A.; Dauvin, J. C.

    2016-02-01

    Biological organisms, like barnacles, mussels or bryozoans, colonize rapidly an immersed surface and could form a thickness until several centimeters on it. This biofouling could modify hydrodynamics around tidal turbine by increasing drag and hence resistance and could be detrimental to the performance of turbine (e.g. Orme et al., 2001; Khor and Xiao, 2011). Our work focuses on modifications of vortices downstream of a tidal turbine due to biofouling using CFD. Fixed biological organisms are solved explicitly by the model and are considered by modifying the blade profile. Firstly an airfoil colonized by barnacles is modelled for various fouling height and spacing and results are compared to experimental and simulated data (Orme et al., 2001; Khor and Xiao, 2011) in order to assess the capacity of the model to reproduce the flow around a blade with biofouling. Then a Darrieus vertical axis tidal turbine is modelled using a dynamic mesh. Configuration with smooth clean blades is assessed by comparison with experiments and simulations made by Roa (2011) and Bossard (2012). Biological organisms with various heights, spacing and shapes are fixed on blades and wakes downstream of clean and colonized tidal turbine are compared. Vorticity fields around the tidal turbine are clearly modified when blades are colonized. Samples will be taken from location where farms are planned to be built (Alderney Race/Raz Blanchard) to characterize more precisely the characteristics of species which are liable to fix on tidal turbine.Reference:Bossard (2012). Doctoral dissertation, Université de Grenoble.Khor & Xiao. (2011). Ocean Eng, 38(10), 1065-1079. Orme et al. (2001). Marine Renewable Energy Conference, Newcastle.Roa (2011).Doctoral dissertation, Université de Grenoble.

  7. Two-link hydrodynamic model development and motion planning for underwater manipulation

    Science.gov (United States)

    Leabourne, Kortney Noell

    Underwater robots with manipulators are a key resource for marine exploration, particularly for tasks involving intervention with the environment. For missions where small vehicles equipped with manipulators are required, there can be significant dynamic coupling between the arm and the vehicle, causing the vehicle to "swim" whenever the manipulator is actuated. This interaction affects the robot's ability to achieve precise end-point placement for intervention tasks, as well as the control performance of the system as a whole. Two issues that are affected by this complex interaction have been addressed in this research. First, a new model for the drag forces on a two-link underwater swinging manipulator has been developed. This model adds three newly-defined drag coefficients that are functions of the arm configuration. Joint torque predictions calculated using the new model show significant improvement over existing models in the literature for multiple-link manipulators, which assume that the links translate only. These improvements have been demonstrated for torque predictions on a fixed-base manipulator, as well as for a control scheme for hovering the OTTER experimental vehicle during manipulation maneuvers. Second, a new analytic tool called a Dynamic Disturbance Map has been developed. This tool is a graphical representation of the coupling characteristics of an underwater arm-vehicle system and can be used for arm-joint path analysis and planning. This work captures the benefits of a similar tool developed for space-based systems, where there is only inertial coupling, allowing the extension of planning techniques for underwater systems to include hydrodynamics terms and unconstrained end-effector paths. Arm motions planned to minimize vehicle motion were demonstrated experimentally on the OTTER arm-vehicle system with significant improvements.

  8. Characterization and Modelling of LeBlanc Hydrodynamic Stabilizer: A Novel Approach for Steady and Transient State Models

    Directory of Open Access Journals (Sweden)

    Marlon Wesley Machado Cunico

    2015-01-01

    Full Text Available As result of increase of customers’ demands, products become more complexes and dynamics control increased its role into product development. As example, clothing washing machines use LeBlanc balancers in order to reduce vibration issues. Nevertheless, the behaviour of such apparatus is still hard to describe and the numerical simulation of this sort of vibration control is based on ball rings. The main goal of this work is to define and characterize a numerical model that describes the hydrodynamics balance ring in the transient state in addition to steady state models. As consequence, the behaviour of balance ring was identified in a computational fluid dynamics tool and an equation that describes restoration forces, unbalance, force phase, and eccentricity was found.

  9. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model.

    Directory of Open Access Journals (Sweden)

    Kirsten K Dietze

    Full Text Available Regulatory T cells (Tregs play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.

  10. A Mathematical Model for the Flow Resistance and the Related Hydrodynamic Dispersion Induced by River Dunes

    Directory of Open Access Journals (Sweden)

    Marilena Pannone

    2013-01-01

    Full Text Available Present work is aimed at the derivation of a simply usable equation for the total flow resistance associated with river bedforms, by a unifying approach allowing for bypassing some of the limiting restrictions usually adopted in similar types of studies. Specifically, we focused on the effect induced by the out-of-phase free surface undulations appearing in presence of sand dunes. The proposed expression, obtained by combining the balance of momentum referred to the control volume whose longitudinal dimension coincides with the dune wavelength and the energy balance integrated between its extreme sections, was tested by comparison with some laboratory experimental measurements available in the literature and referred to steady flow past fixed, variably rough bedforms. In terms of shear stress or friction factor, the proposed theory provides estimates in good agreement with the real data, especially if evaluated against the performances provided by other classical similar approaches. Moreover, when analyzed in terms of hydrodynamic dispersive properties as a function of the skin roughness on the basis of a previously derived analytical solution, the dune-covered beds seem to behave like meandering channels, responsible for a globally enhanced fluid particles longitudinal spreading, with a relatively reduced effect in the presence of less pronounced riverbed modelling.

  11. Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos; Kowal, Grzegorz [Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP (Brazil); Falceta-Gonçalves, Diego, E-mail: anderson.caproni@cruzeirodosul.edu.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio 1000, CEP 03828-000 São Paulo (Brazil)

    2017-04-01

    We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being the highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.

  12. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    Science.gov (United States)

    Dubus, G.; Lamberts, A.; Fromang, S.

    2015-09-01

    Context. Detailed modelling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Aims: Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. Methods: We have developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. Results: The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and very high energy (VHE) lightcurves, constraining the system inclination to i ≈ 35°. There is tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with constant magnetisation σ and Lorentz factor Γp of the pulsar wind. Our best compromise implies σ ≈ 1 and Γp ≈ 5 × 103, so respectively higher and lower than the typical values in pulsar wind nebulae. Conclusions: The high value of σ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require that further investigations are based on relativistic MHD simulations. Movies associated to Figs. A.1-A.4 are available in electronic form at http://www.aanda.org

  13. Numerical modelling of the extreme wave climate in the Belgian harbours: part 3. Marina of Blankenberge

    OpenAIRE

    Suzuki, T; Gruwez, V.; A. Bolle; Verwaest, T.; Mostaert, F

    2012-01-01

    The design of water and wave retaining walls and flood risk analyses need hydrodynamic boundary conditions. These boundary conditions are needed during a storm with return period 1000yrs and during the super storms which were defined in the risk analysis study. The modelling of the extreme wave climate is decoupled to the wave penetration and the lacal generation of waves by the extreme wind speed. The wave penetration is modelled with Mike 21 BW as was done for Oostende and Zeebrugge. MILDwa...

  14. Hydrodynamics of a shallow coastal lagoon with submarine groundwater discharge: a numerical modeling exercise

    Science.gov (United States)

    Casares, R.; Marino-Tapia, I.

    2013-05-01

    Coastal lagoons are subjected to physical forces that make them vulnerable to climate change and human intervention. The karstic geology along the coastal zone of Yucatan Peninsula, Mexico, forces groundwater to discharge in the sea and coastal lagoons through underground conduits that can form small but numerous and scattered underwater springs. These freshwater inputs, along with other physical forces like ocean tides and meteorological events, can have a significant effect on the circulation and residence times in coastal lagoons. Climate change consequences such as sea level rise and changing rain patterns, as well as the increasing human impact, can cause or aggravate certain environmental effects. Since coastal lagoons provide important environmental services there is a need to understand and have predictive capability to simulate the transport processes and the forces acting on them. The present study was carried out in the coastal lagoon of Celestun, located at NW Yucatan Peninsula, a region of karstic geology. The aim of this research is to understand the barotropic hydrodynamic functioning of this shallow system, taking into account the oceanographical, meteorological and hydrological forcing. Emphasis is made on the residence times in different parts of the lagoon, and the effects of freshwater inputs. For the detailed understanding of the processes the hydrodynamic numerical model DELFT3D was implemented. The model was validated with data gathered on the field during two intensive oceanographic campaigns, which included installation of CTDs and acoustic current meters at strategic sites distributed in the system, and detailed bathymetric measurements using an echosounder coupled with a differential GPS on board of a motorboat. In order to improve model performance a sensitivity analysis to the main variables involved in the model was carried out, among them: the size of the grid cells, grid depth, time step, friction coefficients, boundary conditions

  15. Modeling of the transport and deposition of polydispersed particles: Effects of hydrodynamics and spatiotemporal evolution of the deposition rate.

    Science.gov (United States)

    Ma, Enze; Ouahbi, Tariq; Wang, Huaqing; Ahfir, Nasre-Dine; Alem, Abdellah; Hammadi, Ahmed

    2017-11-11

    A time-distance-dependent deposition model is built to investigate the effects of hydrodynamic forces on the transport and deposition of polydispersed particles and the evolution of deposition rates with time and distance. Straining and the heterogeneity of the particle population are considered to play important roles in the decreasing distribution of deposition rates. Numerical simulations were applied in a series of sand column experiments at different fluid velocities for three different porous media. The effects of hydrodynamics forces are elaborated with the systematic variations of deposition dynamic parameters of the proposed model. With retention distributions with particle size as well as temporal and spatial evolutions of deposition rates, the transport and deposition mechanisms of polydispersed particles will be elucidated through the interplay of the variation of the particle size distribution of mobile particle populations and the geometrical change of the porous medium due to retention (straining and blocking). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    Science.gov (United States)

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Models for the dynamics of dust-like matter in the self-gravity field: The method of hydrodynamic substitutions

    Science.gov (United States)

    Zhuravlev, V. M.

    2017-09-01

    Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole-Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton's gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.

  18. Modelling hydrodynamics of horizontal flow steel slag filters designed to upgrade phosphorus removal in small wastewater treatment plants.

    Science.gov (United States)

    Barca, Cristian; Roche, Nicolas; Troesch, Stéphane; Andrès, Yves; Chazarenc, Florent

    2018-01-15

    Steel slag filters, if well designed and operated, may upgrade phosphorus removal in small wastewater treatment plants such as stabilization ponds and constructed wetlands. The main objective of this study was to develop a systemic modelling approach to describe changes in the hydraulic performances and internal hydrodynamics of steel slag filters under real dynamic operating conditions. The experimental retention time distribution curves (RTD curves) determined from tracer experiments performed at different times during the first year of operation of two field-scale steel slag filters were analyzed through a three stage process. First, a statistical analysis of the RTD curves was performed to determine statistical parameters of the retention time distribution. Second, classical tanks in series (TIS) and plug flow with dispersion (PFD) models were used to obtain a first evaluation of the dispersion and mixing regime. Finally, a multi-flow path TIS model, based on the assumption of several flow paths with different hydraulic properties, is proposed to accurately describe the internal hydrodynamics. Overall, the results of this study indicate that higher CaO content, round shape, and larger grain size distribution of steel slag may promote plug-like flow rather than dispersion. The results of the multi-flow path TIS model suggest that the internal hydrodynamics of steel slag filters can be primarily described by two main flow paths: (i) a faster main flow path showing higher plug flow, followed by (ii) a slower secondary flow path showing higher dispersion. The results also showed that internal hydrodynamics may change over time as a consequence of physical-chemical phenomena occurring in the filter, including accumulation of precipitates, slag hydration and carbonation, and particle segregation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of the Hydrodynamic Model for Long-Term Simulation of Water Quality Processes of the Tidal James River, Virginia

    Directory of Open Access Journals (Sweden)

    Jian Shen

    2016-11-01

    Full Text Available Harmful algal blooms (HABs have frequently occurred in the James River. The State has convened a Scientific Advisory Panel (SAP to review the James River chlorophyll-a standards. The SAP will conduct a scientific study to review the basis for setting the chlorophyll-a standards. To support the SAP study of chlorophyll-a standards, the State of Virginia has decided to develop a numerical modeling system that is capable of simulating phytoplankton and HABs. The modeling system includes a watershed model, a three-dimensional hydrodynamic model and water quality models. The focus of this study will be on the development and verification of the hydrodynamic model. In order to simulate the complex geometry of the James River, a high-resolution model has been implemented. The model has been calibrated for a long-term period of 23 years. A series of model experiments was conducted to evaluate the impact of forcings on dynamic simulation and transport time. It was found that freshwater discharge is the most sensitive for an accurate simulation of salinity and transport time. The water age predicted by the model in the tidal freshwater region represents the fluctuation of transport processes, and it has a good correlation with the algal bloom, while at the downstream, the transport time simulation agrees with the delay of the HAB in the mesohaline of the James after the HAB occurred in the Elizabeth River due to the transport processes. The results indicate that the hydrodynamic model is capable of simulating the dynamic processes of the James and driving water quality models in the James River.

  20. Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling

    Science.gov (United States)

    Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis

    2017-04-01

    Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.

  1. Modelling Growth and Form of the Scleractinian Coral Pocillopora verrucosa and the Influence of Hydrodynamics

    Science.gov (United States)

    Chindapol, Nol; Kaandorp, Jaap A.; Cronemberger, Carolina; Mass, Tali; Genin, Amatzia

    2013-01-01

    The growth of scleractinian corals is strongly influenced by the effect of water motion. Corals are known to have a high level of phenotypic variation and exhibit a diverse range of growth forms, which often contain a high level of geometric complexity. Due to their complex shape, simulation models represent an important option to complement experimental studies of growth and flow. In this work, we analyzed the impact of flow on coral's morphology by an accretive growth model coupled with advection-diffusion equations. We performed simulations under no-flow and uni-directional flow setup with the Reynolds number constant. The relevant importance of diffusion to advection was investigated by varying the diffusion coefficient, rather than the flow speed in Péclet number. The flow and transport equations were coupled and solved using COMSOL Multiphysics. We then compared the simulated morphologies with a series of Computed Tomography (CT) scans of scleractinian corals Pocillopora verrucosa exposed to various flow conditions in the in situ controlled flume setup. As a result, we found a similar trend associated with the increasing Péclet for both simulated forms and in situ corals; that is uni-directional current tends to facilitate asymmetrical growth response resulting in colonies with branches predominantly developed in the upstream direction. A closer look at the morphological traits yielded an interesting property about colony symmetry and plasticity induced by uni-directional flow. Both simulated and in situ corals exhibit a tendency where the degree of symmetry decreases and compactification increases in conjunction with the augmented Péclet thus indicates the significant importance of hydrodynamics. PMID:23326222

  2. A comparison between Smoothed-Particle Hydrodynamics and RANS Volume of Fluid method in modelling slamming

    Directory of Open Access Journals (Sweden)

    Marcus Sasson

    2016-04-01

    Full Text Available The oil and gas industry requires complex subsea infrastructure in order to develop offshore oil and gas fields. Upon installation, these components may encounter high slamming loads, stemming from impact with the water surface. This paper utilises two different numerical methods, the mesh-free Smoothed Particle Hydrodynamics (SPH approach and Reynolds Averaged Navier–Stokes (RANS Volume of Fluid (VOF method to quantify these loads on a free-falling object. The investigation is also interested in conducting a parameter study and determining the effect of varying simulation parameters on the prediction of slamming event kinematics and forces. The surface impact of a freefalling wedge was introduced as a case study and has been simulated using SPH and RANS, with the results being compared to an experimental investigation. It was found from the SPH simulations that particle resolution and the size of the SPH particle kernel are very important, whilst the diffusion term does not play an important role. The latter is due to the very transient nature of slamming events, which do not allow sufficient time for diffusion in the fluid domain. For the RANS simulations, motion of the wedge was achieved using the overset grid technique, whereby varying the discretising time step was found to have a pronounced impact on the accuracy of the captured slamming event. Through analysing the numerical data, one can observe that the RANS results correlate slightly better with the experimental data as opposed to that obtained from the SPH modelling. However, considering the robustness and quick set up of the SPH simulations, both of these two numerical approaches are considered to be promising tools for modelling more complicated slamming problems, including those potentially involving more intricate structures.

  3. COMPUTER MODELING OF HYDRODYNAMIC PARAMETERS AT BOUNDARIES OF WATER INTAKE AREA WITH FILTERING INTAKE

    Directory of Open Access Journals (Sweden)

    Boronina Lyudmila Vladimirovna

    2012-12-01

    Full Text Available Improvement of water intake technologies are of great importance. These technologies are required to provide high quality water intake and treatment; they must be sufficiently simple and reliable, and they must be easily adjustable to particular local conditions. A mathematical model of a water supply area near the filtering water intake is proposed. On its basis, a software package designated for the calculation of parameters of the supply area along with its graphical representation is developed. To improve the efficiency of water treatment plants, the authors propose a new method of their integration into the landscape by taking account of velocity distributions in the water supply area within the water reservoir where the plant installation is planned. In the proposed relationship, the filtration rate and the scattering rate at the outlet of the supply area are taken into account, and they assure more precise projections of the inlet velocity. In the present study, assessment of accuracy of the mathematical model involving the scattering of a turbulent flow has been done. The assessment procedure is based on verification of the mean values equality hypothesis and on comparison with the experimental data. The results and conclusions obtained by means of the method developed by the authors have been verified through comparison of deviations of specific values calculated through the employment of similar algorithms in MathCAD, Maple and PLUMBING. The method of the water supply area analysis, with the turbulent scattering area having been taken into account, and the software package enable to numerically estimate the efficiency of the pre-purification process by tailoring a number of parameters of the filtering component of the water intake to the river hydrodynamic properties. Therefore, the method and the software package provide a new tool for better design, installation and operation of water treatment plants with respect to filtration and

  4. Assessing Potential Algal Blooms in a Shallow Fluvial Lake by Combining Hydrodynamic Modelling and Remote-Sensed Images

    Directory of Open Access Journals (Sweden)

    Monica Pinardi

    2015-04-01

    Full Text Available Shallow fluvial lakes are dynamic ecosystems shaped by physical and biological factors and characterized by the coexistence of phytoplankton and macrophytes. Due to multiple interplaying factors, understanding the distribution of phytoplankton in fluvial lakes is a complex but fundamental issue, in the context of increasing eutrophication, climate change, and multiple water uses. We analyze the distribution of phytoplankton by combining remotely sensed maps of chlorophyll-a with a hydrodynamic model in a dammed fluvial lake (Mantua Superior Lake, Northern Italy. The numerical simulation of different conditions shows that the main hydrodynamic effects which influence algal distribution are related to the combined effect of advection due to wind forces and local currents, as well as to the presence of large gyres which induce recirculation and stagnation regions, favoring phytoplankton accumulation. Therefore, the general characters of the phytoplankton horizontal patchiness can be inferred from the results of the hydrodynamic model. Conversely, hyperspectral remote-sensing products can be used to validate this model, as they provide chlorophyll-a distribution maps. The integration of ecological, hydraulic, and remote-sensing techniques may therefore help the monitoring and protection of inland water quality, with important improvements in management actions by policy makers.

  5. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    Science.gov (United States)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.

  6. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity

    Science.gov (United States)

    Margolis, Stephen B.

    1998-01-01

    The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. It is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the large-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.

  7. Electrical Resistivity Imaging and Hydrodynamic Modeling of Convective Fingering in a Sabkha Aquifer

    Science.gov (United States)

    Van Dam, Remke; Eustice, Brian; Hyndman, David; Wood, Warren; Simmons, Craig

    2014-05-01

    Free convection, or fluid motion driven by density differences, is an important groundwater flow mechanism that can enhance transport and mixing of heat and solutes in the subsurface. Various issues of environmental and societal relevance are exacerbated convective mixing; it has been studied in the context of dense contaminant plumes, nuclear waste disposal, greenhouse gas sequestration, the impacts of sea level rise and saline intrusion on drinking water resources. The basic theory behind convective flow in porous media is well understood, but important questions regarding this process in natural systems remain unanswered. Most previous research on this topic has focused on theory and modeling, with only limited attention to experimental studies and field measurements. The few published studies present single snapshots, making it difficult to quantify transient changes in these systems. Non-invasive electrical methods have the potential to exploit the relation between solute concentrations and electrical conductance of a fluid, and thereby estimate fluid salinity differences in time and space. We present the results of a two-year experimental study at a shallow sabkha aquifer in the United Arab Emirates, about 50 km southwest of the city of Abu Dhabi along the coast of the Arabian Gulf, that was designed to explore the transient nature of free convection. Electrical resistivity tomography (ERT) data documented the presence of convective fingers following a significant rainfall event. One year later, the complex fingering pattern had completely disappeared. This observation is supported by analysis of the aquifer solute budget as well as hydrodynamic modeling of the system. The transient dynamics of the gravitational instabilities in the modeling results are in agreement with the timing observed in the time-lapse ERT data. Our experimental observations and modeling are consistent with the hypothesis that the instabilities arose from a dense brine that infiltrated

  8. Surface plasmon dispersion relation at an interface between thin metal film and dielectric using a quantum hydrodynamic model

    Science.gov (United States)

    Zhang, Y.; Gao, M. X.; Guo, B.

    2017-11-01

    The plasmon excited at the surface of a thin metal film covering on a semi-infinite dielectric substrate is investigated in detailed. The surface plasmon dispersion relation is derived and presented by using the quantum hydrodynamic theory with taking into the quantum statistical and quantum diffraction effects. The effects of the thin metal film character rs and the dielectric constant ε1 on the dispersion relations are shown and discussed, i.e., without and with quantum effects. The results show that increasing rs weakens the quantum effects while increasing ε1 can enhance the quantum effects. In addition, the plasmon dispersion relation with quantum effects is also compared to a classical model. This simple structure proposed in the paper with quantum hydrodynamic theory can be used for yielding meaningful results for studying more complex systems related to surface plasmons.

  9. Mathematical modelling of the performance of hydrodynamic couplings using hybrid models; Mathematische Modellierung des Betriebsverhaltens hydrodynamischer Kupplungen mit hybriden Modellansaetzen

    Energy Technology Data Exchange (ETDEWEB)

    Jaschke, P.

    2000-02-01

    Mathematical models of the dynamic performance of hydrodynamic couplings are developed using hybrid modelling, i.e. a combination of analytical physical modelling and black box identification. The models developed were verified by measurements on a model powertrain. [German] In dieser Arbeit werden mit Hilfe der hybriden Modellierung mathematische Modelle zur Beschreibung des dynamischen Betriebsverhaltens hydrodynamischer Kupplungen ermittelt. Die Hybride Modellierung stellt eine Kombination der analytisch physikalischen Modellierung und der Black-Box-Identifikation dar. Diese Modellierungsart ist ausgewaehlt worden, um die Vorteile der analytisch physikalischen Modellierung und der Black-Box-Identifikation hydrodynamischer Kupplungen zu verbinden und deren Nachteile gering zu halten. Auf dieser Basis ist eine Vorgehensweise vorgestellt worden, die die Ermittlung der Modelle mit wenig Aufwand ermoeglicht. Mit Hilfe der Modelltheorie wird gezeigt, wie die ermittelten mathematischen Modelle zur Simulation des dynamischen Betriebsverhaltens geometrisch aehnlicher Kupplungen unterschiedlicher Baugroessen verwendet werden koennen. Darueber hinaus wird dargelegt, wie die ermittelten Modelle mit Modellen anderer Antriebsstrangelemente gekoppelt werden koennen, um Antriebsstrangsimulationen zu ermoeglichen. Verifikationsmessungen an einem Modellantriebsstrang verdeutlichen die Guete und Verwendbarkeit der mathematischen Modelle. (orig.)

  10. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges

    Energy Technology Data Exchange (ETDEWEB)

    Timoshkin, I V; Fouracre, R A; Given, M J; MacGregor, S J [HVT Research Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George St, Glasgow, G1 1XW (United Kingdom)

    2006-11-21

    Application of a voltage pulse having a rise time of tens of nanoseconds to electrodes immersed in water results in streamer development and the formation of a highly conductive plasma channel between the electrodes. The electrical resistance of such channels decreases rapidly from a few ohms to a few tens of milliohms due to Joule heating resulting from the high current which flows through the plasma. The dynamics of the plasma resistance depend on the parameters of the discharge circuit and the medium in which the discharge takes place. The resistance of the channel reaches a minimum value approximately at the moment of the peak current for under-damped current oscillations. During the resistance collapse, the pressure inside the channel rises to several GPa, causing a rapid expansion of the channel which forms a cavity in the liquid resulting in a high power ultrasound pulse. The cavity expands to a maximum size which is dependent on the circuit driving the discharge and the properties of the plasma discharge channel. The cavity then collapses producing a second acoustic pulse. In this paper the dynamic resistance of the spark channel is described using a phenomenological model based on the plasma channel energy balance equation used by Braginskii. The model which links the hydrodynamic characteristics of the channel and the resulting cavity with the parameters of the electric driving circuit allows the development of the plasma channel and cavity to be predicted. The peak high-power ultrasound (HPU) pressures calculated using this approach are compared with the pressure values estimated by an analytical model which uses a constant value of the spark channel resistance derived from experimental data. Comparisons are also made with direct measurements of HPU output made using a Pinducer sensor. Although the model is based on a phenomenological description of the plasma channel dynamics and its resistance and requires the value of the spark constant, the results

  11. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges

    Science.gov (United States)

    Timoshkin, I. V.; Fouracre, R. A.; Given, M. J.; MacGregor, S. J.

    2006-11-01

    Application of a voltage pulse having a rise time of tens of nanoseconds to electrodes immersed in water results in streamer development and the formation of a highly conductive plasma channel between the electrodes. The electrical resistance of such channels decreases rapidly from a few ohms to a few tens of milliohms due to Joule heating resulting from the high current which flows through the plasma. The dynamics of the plasma resistance depend on the parameters of the discharge circuit and the medium in which the discharge takes place. The resistance of the channel reaches a minimum value approximately at the moment of the peak current for under-damped current oscillations. During the resistance collapse, the pressure inside the channel rises to several GPa, causing a rapid expansion of the channel which forms a cavity in the liquid resulting in a high power ultrasound pulse. The cavity expands to a maximum size which is dependent on the circuit driving the discharge and the properties of the plasma discharge channel. The cavity then collapses producing a second acoustic pulse. In this paper the dynamic resistance of the spark channel is described using a phenomenological model based on the plasma channel energy balance equation used by Braginskii. The model which links the hydrodynamic characteristics of the channel and the resulting cavity with the parameters of the electric driving circuit allows the development of the plasma channel and cavity to be predicted. The peak high-power ultrasound (HPU) pressures calculated using this approach are compared with the pressure values estimated by an analytical model which uses a constant value of the spark channel resistance derived from experimental data. Comparisons are also made with direct measurements of HPU output made using a Pinducer sensor. Although the model is based on a phenomenological description of the plasma channel dynamics and its resistance and requires the value of the spark constant, the results

  12. A Management Tool for Assessing Aquaculture Environmental Impacts in Chilean Patagonian Fjords: Integrating Hydrodynamic and Pellets Dispersion Models

    Science.gov (United States)

    Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.

    2010-05-01

    This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.

  13. A management tool for assessing aquaculture environmental impacts in Chilean Patagonian Fjords: integrating hydrodynamic and pellets dispersion models.

    Science.gov (United States)

    Tironi, Antonio; Marin, Víctor H; Campuzano, Francisco J

    2010-05-01

    This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.

  14. Modelling Hermetic Compressors Using Different Constraint Equations to Accommodate Multibody Dynamics and Hydrodynamic Lubrication

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    elements are supported by fluid film bearings, where the hydrodynamic interaction forces are described by the Reynolds equation. The system of nonlinear equations is numerically solved for three different restrictive conditions of the motion of the crank, where the third case takes into account lateral...

  15. Hydrodynamic model of a dielectric-barrier discharge in pure chlorine

    Science.gov (United States)

    Avtaeva, S. V.

    2017-08-01

    A one-dimensional hydrodynamic model of a dielectric-barrier discharge (DBD) in pure chlorine is developed, and the properties of the discharge are modeled. The discharge is excited in an 8-mm-long discharge gap between 2-mm-thick dielectric quartz layers covering metal electrodes. The DBD spatiotemporal characteristics at gas pressures of 15-100 Torr are modeled for the case in which a 100-kHz harmonic voltage with an amplitude of 8 kV is applied to the electrodes. The average power density deposited in the discharge over one voltage period is 2.5-5.8 W/cm3. It is shown that ions and electrons absorb about 95 and 5% of the discharge power, respectively. In this case, from 67 to 97% of the power absorbed by electrons is spent on the dissociation and ionization of Cl2 molecules. Two phases can be distinguished in the discharge dynamics: the active (multispike) phase, which follows the breakdown of the discharge gap, and the passive phase. The active phase is characterized by the presence of multiple current spikes, a relatively high current, small surface charge density on the dielectrics, and large voltage drop across the discharge gap. The passive phase (with no current spikes) is characterized by a low current, large surface charge density on the dielectrics, and small voltage drop across the discharge gap. The peak current density in the spikes at all pressures is about 4 mA/cm2. In the multispike phase, there are distinct space charge sheaths with thicknesses of 1.5-1.8 mm and a mean electron energy of 4.3-7 eV and the central region of quasineutral plasma with a weak electric field and a mean electron energy of 0.8-3 eV. The degree of ionization of chlorine molecules in the discharge is 0.02% at a pressure of 15 Torr and 0.01% at 100 Torr. The DBD plasma is electronegative due to the fast attachment of electrons to chlorine atoms: e + Cl2 → Cl + Cl-. The most abundant charged particles are Cl 2 + and Cl- ions, and the degree of ionization during current

  16. Pulsating Hydrodynamic Instability in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1999-01-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the disturbance-wavenumber/ pressure-sensitivity plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  17. Persistent draining crossover in DNA and other semi-flexible polymers: Evidence from hydrodynamic models and extensive measurements on DNA solutions.

    Science.gov (United States)

    Mansfield, Marc L; Tsortos, Achilleas; Douglas, Jack F

    2015-09-28

    Although the scaling theory of polymer solutions has had many successes, this type of argument is deficient when applied to hydrodynamic solution properties. Since the foundation of polymer science, it has been appreciated that measurements of polymer size from diffusivity, sedimentation, and solution viscosity reflect a convolution of effects relating to polymer geometry and the strength of the hydrodynamic interactions within the polymer coil, i.e., "draining." Specifically, when polymers are expanded either by self-excluded volume interactions or inherent chain stiffness, the hydrodynamic interactions within the coil become weaker. This means there is no general relationship between static and hydrodynamic size measurements, e.g., the radius of gyration and the hydrodynamic radius. We study this problem by examining the hydrodynamic properties of duplex DNA in solution over a wide range of molecular masses both by hydrodynamic modeling using a numerical path-integration method and by comparing with extensive experimental observations. We also considered how excluded volume interactions influence the solution properties of DNA and confirm that excluded volume interactions are rather weak in duplex DNA in solution so that the simple worm-like chain model without excluded volume gives a good leading-order description of DNA for molar masses up to 10(7) or 10(8) g/mol or contour lengths between 5 μm and 50 μm. Since draining must also depend on the detailed chain monomer structure, future work aiming to characterize polymers in solution through hydrodynamic measurements will have to more carefully consider the relation between chain molecular structure and hydrodynamic solution properties. In particular, scaling theory is inadequate for quantitative polymer characterization.

  18. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir.

    Science.gov (United States)

    Xu, Cong; Zhang, Jingjie; Bi, Xiaowei; Xu, Zheng; He, Yiliang; Gin, Karina Yew-Hoong

    2017-12-01

    An integrated 3D-hydrodynamic and emerging contaminant model was developed for better understanding of the fate and transport of emerging contaminants in Qingcaosha Reservoir. The reservoir, which supplies drinking water for nearly half of Shanghai's population, is located in Yangtze Delta. The integrated model was built by Delft3D suite, a fully integrated multidimensional modeling software. Atrazine and Bisphenol A (BPA) were selected as two representative emerging contaminants for the study in this reservoir. The hydrodynamic model was calibrated and validated against observations from 2011 to 2015 while the integrated model was calibrated against observations from 2014 to 2015 and then applied to explore the potential risk of high atrazine concentrations in the reservoir driven by agriculture activities. Our results show that the model is capable of describing the spatial and temporal patterns of water temperature, salinity and the dynamic distributions of two representative emerging contaminants (i.e. atrazine and BPA) in the reservoir. The physical and biodegradation processes in this study were found to play a crucial role in determining the fate and transport of atrazine and BPA in the reservoir. The model also provides an insight into the potential risk of emerging contaminants and possible mitigation thresholds. The integrated approach can be a very useful tool to support policy-makers in the future management of Qingcaosha Reservoir. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Theoretical hydrodynamics

    CERN Document Server

    Milne-Thomson, L M

    2011-01-01

    This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.

  20. Hydrodynamic Lubrication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Hydrodynamic Lubrication Experiment with 'Floating' Drops. Jaywant H Arakeri K R Sreenivas. General Article Volume 1 Issue 9 September 1996 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Identifying eastern Baltic cod nursery grounds using hydrodynamic modelling: knowledge for the design of Marine Protected Areas

    DEFF Research Database (Denmark)

    Hinrichsen, Hans-Harald; Kraus, Gerd; Böttcher, Uwe

    2009-01-01

    Knowledge of the spatial and temporal distribution of juvenile cod is essential to closing the life cycle in population dynamic models, and it is a prerequisite for the design of Marine Protected Areas (MPAs) aiming at the protection of juveniles. In this study, we use a hydrodynamic model...... evidence that the final destinations of juvenile cod drift routes are affected by decadal climate variability. Application of the methodology to MPA design is discussed, e.g. identifying the overlap of areas with a high probability of successful juvenile cod settlement and regions of high fishing effort...

  2. Performance analysis of coupled and uncoupled hydrodynamic and wave models in the northern Adriatic Sea

    Science.gov (United States)

    Busca, Claudia; Coluccelli, Alessandro; Valentini, Andrea; Benetazzo, Alvise; Bonaldo, Davide; Bortoluzzi, Giovanni; Carniel, Sandro; Falcieri, Francesco; Paccagnella, Tiziana; Ravaioli, Mariangela; Riminucci, Francesco; Sclavo, Mauro; Russo, Aniello

    2014-05-01

    The complex dynamics of the Adriatic Sea are the result of geographical position, orography and bathymetry, as well as rivers discharge and meteorological conditions that influence, more strongly, the shallow northern part. Such complexity requires a constant monitoring of marine conditions in order to support several activities (marine resources management, naval operations, emergency management, shipping, tourism, as well as scientific ones). Platforms, buoys and mooring located in Adriatic Sea supply almost continuously real time punctual information, which can be spatially extended, with some limitations, by drifters and remote sensing. Operational forecasting systems represent valid tools to provide a complete tridimensional coverage of the area, with a high spatial and temporal resolution. The Hydro-Meteo-Clima Service of the Emilia-Romagna Environmental Agency (ARPA-SIMC, Bologna, Italy) and the Dept. of Life and Environmental Sciences of Università Politecnica delle Marche (DISVA-UNIVPM, Ancona, Italy), in collaboration with the Institute of Marine Science of the National Research Council (ISMAR-CNR, Italy) operationally run several wave and hydrodynamic models on the Adriatic Sea. The main implementations are based on the Regional Ocean Modeling System (ROMS), the wave model Simulating WAves Nearshore (SWAN), and the coupling of the former two models in the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) system. Horizontal resolutions of the different systems range from the 2 km of AdriaROMS to the 0.5 km of the recently implemented northern Adriatic COAWST. Forecasts are produced every day for the subsequent 72 hour with hourly resolution. All the systems compute the fluxes exchanged through the interface with the atmosphere from the numerical weather prediction system named COSMO-I7, an implementation for Italy of the Consortium for Small-scale Modeling (COSMO) model, at 7 km horizontal resolution. Considering the several operational

  3. Understanding pollen tube growth: the hydrodynamic model versus the cell wall model

    NARCIS (Netherlands)

    Zonia, L.; Munnik, T.

    2011-01-01

    Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell

  4. A coupled wave-hydrodynamic model of a highly frictional atoll reef system: mechanisms for flow, connectivity, and ecological implications

    Science.gov (United States)

    Rogers, J.; Monismith, S. G.; Fringer, O. B.; Koweek, D.; Dunbar, R. B.

    2016-12-01

    We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. While high mean flow and travel time less than 20 hours appears to differentiate very productive coral regions, low temperature and moderate wave stress appear to be the most ideal conditions for high coral cover on Palmyra.

  5. UAV based hydromorphological mapping of a river reach to improve hydrodynamic numerical models

    Science.gov (United States)

    Lükő, Gabriella; Baranya, Sándor; Rüther, Nils

    2017-04-01

    Unmanned Aerial Vehicles (UAVs) are increasingly used in the field of engineering surveys. In river engineering, or in general, water resources engineering, UAV based measurements have a huge potential. For instance, indirect measurements of the flow discharge using e.g. large-scale particle image velocimetry (LSPIV), particle tracking velocimetry (PTV), space-time image velocimetry (STIV) or radars became a real alternative for direct flow measurements. Besides flow detection, topographic surveys are also essential for river flow studies as the channel and floodplain geometry is the primary steering feature of the flow. UAVs can play an important role in this field, too. The widely used laser based topographic survey method (LIDAR) can be deployed on UAVs, moreover, the application of the Structure from Motion (SfM) method, which is based on images taken by UAVs, might be an even more cost-efficient alternative to reveal the geometry of distinct objects in the river or on the floodplain. The goal of this study is to demonstrate the utilization of photogrammetry and videogrammetry from airborne footage to provide geometry and flow data for a hydrodynamic numerical simulation of a 2 km long river reach in Albania. First, the geometry of the river is revealed from photogrammetry using the SfM method. Second, a more detailed view of the channel bed at low water level is taken. Using the fine resolution images, a Matlab based code, BASEGrain, developed by the ETH in Zürich, will be applied to determine the grain size characteristics of the river bed. This information will be essential to define the hydraulic roughness in the numerical model. Third, flow mapping is performed using UAV measurements and LSPIV method to quantitatively asses the flow field at the free surface and to estimate the discharge in the river. All data collection and analysis will be carried out using a simple, low-cost UAV, moreover, for all the data processing, open source, freely available

  6. Galaxy formation in semi-analytic models and cosmological hydrodynamic zoom simulations

    Science.gov (United States)

    Hirschmann, Michaela; Naab, Thorsten; Somerville, Rachel S.; Burkert, Andreas; Oser, Ludwig

    2012-02-01

    We present a detailed comparison between numerical cosmological hydrodynamic zoom simulations and the semi-analytic model (SAM) of Somerville et al., run within merger trees extracted from the simulations. The high-resolution simulations represent 48 individual haloes with virial masses in the range ?. They include radiative H and He cooling, photoionization, star formation and thermal supernova (SN) feedback. We compare with different SAM versions including only this complement of physical processes, and also ones including SN-driven winds, metal cooling and feedback from active galactic nuclei (AGN). Our analysis is focused on the cosmic evolution of the baryon content in galaxies and its division into various components (stars, cold gas and hot gas), as well as how those galaxies acquired their gas and stellar mass. Both the SAMs and simulations are compared with observational relations between halo mass and stellar mass, and between stellar mass and star formation rate, at low and high redshifts. We find some points of agreement and some important disagreements. SAMs that include the same physical processes as the simulations reproduce the total baryon fraction in haloes and the fraction of cold gas plus stars in the central galaxy to better than 20 per cent. However, the simulations turn out to have much higher star formation efficiencies (by about a factor of 10) than the SAMs, despite nominally being both normalized to the same empirical Kennicutt relation at z= 0. Therefore the cold gas is consumed much more rapidly in the simulations, and stars form much earlier. Also, simulations show a transition from stellar mass growth that is dominated by in situ formation of stars to growth that is predominantly through accretion of stars formed in external galaxies. In SAMs, stellar growth is always dominated by in situ star formation, because they significantly underpredict the fraction of mass growth from accreted stars relative to the simulations. In addition

  7. Hydrodynamic modeling of 3He–Au collisions at sNN=200 GeV

    Directory of Open Access Journals (Sweden)

    Piotr Bożek

    2015-07-01

    Full Text Available Collective flow and femtoscopy in ultrarelativistic 3He–Au collisions are investigated within the 3+1-dimensional (3+1D viscous event-by-event hydrodynamics. We evaluate elliptic and triangular flow coefficients as functions of the transverse momentum. We find the typical long-range ridge structures in the two-particle correlations in the relative azimuth and pseudorapidity, in the pseudorapidity directions of both Au and 3He. We also make predictions for the pionic interferometric radii, which decrease with the transverse momentum of the pion pair. All features found hint on collectivity of the dynamics of the system formed in 3He–Au collisions, with hydrodynamics leading to quantitative agreement with the up-to-now released data.

  8. Hydrodynamics and water quality modelling in a regulated river segment: application on the instream flow definition

    OpenAIRE

    Lopes, Luis Filipe Gomes; Carmo, José S. Antunes Do; Cortes, Rui Manuel Vitor; de Oliveira, Daniel

    2004-01-01

    The aim of this paper is to present a global study on the hydrodynamics, water quality and their influence on aquatic fauna. The case study was conducted on a segment of the Lima river (North Portugal), downstream of the Touvedo dam, which was mainly constructed for hydroelectric power production. http://www.sciencedirect.com/science/article/B6VBS-4BHVGYD-7/1/7765917f49c0a6b3764cf34a8227cfc2

  9. Colloidal suspensions hydrodynamic retention mechanisms in model porous media; Mecanismes de retention hydrodynamique de suspensions colloidales en milieux poreux modeles

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, N.

    1996-04-19

    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs.

  10. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    Science.gov (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  11. Coastal erosion vulnerability estimations by coupling field data and hydrodynamic modeling

    Science.gov (United States)

    Finikianaki, Vasilia; Alexandrakis, George; Poulos, Serafim; Ghionis, George; Kampanis, Nikolaos

    2017-04-01

    Wind generated waves are a dominant factor of coastal zone evolution as they induce nearshore sediment movement. Significant sediment transport and the associated morphological changes of the coastal zone are related, mainly, to storm events. In this study, the effects of a severe storm event, associated with the Etesian winds, that took place from the 24th to 30th of July at Gouves beach (north coast of Crete) were monitored ([1], [2]) and subsequently simulated, with the use of the Delft3D model, in order to provide necessary data for estimating beach vulnerability. Beach vulnerability to erosion was estimated by the BVI method ([3]), which has the ability to refer to smaller sectors of an individual beach. The interaction between waves and currents, which is required for the computation of the BVI, was obtained by the coupling of two models included in Delft3D: the Delft3D - FLOW, for the hydrodynamic computations and the sediment transport processes; and the Delft3D - WAVE, for the computation of the wave field. Boundary conditions were derived from the field data, assuming a JONSWAP spectrum. Additionally, 3 observation points were used for the monitoring of the computed quantities as a function of time. Their positions coincide with those of the three Valeport Autonomous Benthic Recorders, which were deployed at water depths of 2.60m, 3.95m and 5.62m during the field measurements. The outputs of the simulation fit well with the measured data, leading to accurate forecasted results regarding the morphodynamic conditions of the study area. Bottom changes occur mainly during the first peak of the event. The model slightly overestimates the significant wave height, the current velocity in the nearshore area and the suspended sediment concentration near the bed at the observation points. Furthermore, the model predicts a shoreward increase of sediment concentration at the observation points, with the value of accumulation at the second observation point being

  12. Quantum hydrodynamic model for the enhanced moments of inertia of molecules in helium nanodroplets: Application to SF6

    Science.gov (United States)

    Lehmann, Kevin K.; Callegari, Carlo

    2002-07-01

    The increase in moment of inertia, DeltaI, of SF6 in helium nanodroplets is calculated using the quantum hydrodynamic approach [Callegari [et al.], Phys. Rev. Lett. 83, 5058 (1999); 84, 1848 (2000)], which we extend here to an explicit three-dimensional treatment. Three plausible helium densities are reconstructed by interpolation of previously published "density cuts" in terms of an expansion into cubic harmonics (several interpolation strategies are presented). This allows us to predict a value of DeltaI that ranges from as low as 30 u[middle dot]A2 to as high as 318 u[middle dot]A2. The lower limit reproduces the prediction of Kwon [et al.] [J. Chem. Phys. 113, 6469 (2000)], who use the same hydrodynamic model and an unpublished density based upon a Path Integral Monte Carlo calculation. These values can be compared with the experimentally measured DeltaI (310plus-or-minus10 u[middle dot]A2) for large (N[greater-than-or-equal, slanted]103 He atoms), and with Fixed Node, Diffusion Monte Carlo calculations by Lee, Farrelly, and Whaley [Phys. Rev. Lett. 83, 3812 (1999)], which found DeltaI=290-305 u[middle dot]A2 for N=8-20 helium atoms. The present results show that the value of DeltaI obtained from the hydrodynamic model is quite sensitive to physically reasonable variations in the helium density; therefore one has to be careful as to which density to use. Because the model is based upon the assumption that the helium is in the ground "quasienergy" state of the helium-molecule time-dependent potential, we propose that calculations should be done using densities calculated at 0 K rather than at finite temperature. We have extended our original algorithm to also handle irregular boundaries. We find that in the present case the calculated value of DeltaI only changes by a few percent.

  13. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models.

    Science.gov (United States)

    Ortega, A; Amorós, D; García de la Torre, J

    2011-08-17

    Here we extend the ability to predict hydrodynamic coefficients and other solution properties of rigid macromolecular structures from atomic-level structures, implemented in the computer program HYDROPRO, to models with lower, residue-level resolution. Whereas in the former case there is one bead per nonhydrogen atom, the latter contains one bead per amino acid (or nucleotide) residue, thus allowing calculations when atomic resolution is not available or coarse-grained models are preferred. We parameterized the effective hydrodynamic radius of the elements in the atomic- and residue-level models using a very large set of experimental data for translational and rotational coefficients (intrinsic viscosity and radius of gyration) for >50 proteins. We also extended the calculations to very large proteins and macromolecular complexes, such as the whole 70S ribosome. We show that with proper parameterization, the two levels of resolution yield similar and rather good agreement with experimental data. The new version of HYDROPRO, in addition to considering various computational and modeling schemes, is far more efficient computationally and can be handled with the use of a graphical interface. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    OpenAIRE

    Perevoznikov, Sergey; Shvetsov, Yuriy; Kamayev, Aleksey; Pakhomov, Ilia; Borisov, Viacheslav; Pazin, Gennadiy; Mirzeabasov, Oleg; Korzun, Olga

    2016-01-01

    In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional therma...

  15. Hydrodynamic, Atomic Kinetic, and Monte Carlo Radiation Transfer Models of the X-ray Spectra of Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-02-08

    We describe the results of an effort, funded by the Lawrence Livermore National Laboratory Directed Research and Development Program, to model, using FLASH time-dependent adaptive-mesh hydrodynamic simulations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport, the radiatively-driven photoionized wind and accretion flow of high-mass X-ray binaries (HMXBs). In this final report, we describe the purpose, approach, and technical accomplishments of this effort, including maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of the X-ray emission lines of the well-studied HMXB Vela X-1.

  16. Nanoflow hydrodynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.

    2011-01-01

    We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....

  17. Mike Davis, guérilla dans les sciences sociales.

    Directory of Open Access Journals (Sweden)

    Yveline Lévy-Piarroux

    2009-03-01

    Full Text Available « La plaine est morne et morte ― et la ville la mange. » Emile Verhaeren, « La plaine » in Les villes tentaculaires Le titre anglais de l’ouvrage de Mike Davis et Daniel B. Monk est Evil Paradises: Dreamworlds of Neoliberalism (2007. Les traducteurs ont conservé l’oxymore de la première formulation. Les « mondes de rêve » sont devenus « les villes hallucinées », allusion croisée à deux recueils de poésie d’Émile Verhaeren, Les campagnes hallucinées (1893 ...

  18. Uncertainty quantification in hydrodynamics bidimensional models : the case of Gironde estuary forecast model

    Science.gov (United States)

    Laborie, Vanessya; Goutal, Nicole; Ricci, Sophie; Sergent, Philippe

    2017-04-01

    In the context of the development and the implementation of data assimilation techniques in Gironde estuary for flood forecasting, a Telemac 2D model is used to calculate water depths and velocity fields at each node of an unstructured mesh. Upstream, the model boundaries are respectively La Réole and Pessac on the Garonne and Dordogne river. The maritime boundary is 32 km off the mouth of Gironde estuary, located in Verdon. This model, which contains 7351 nodes and 12838 finite elements, does not take into account overflows. It has been calibrated on 4 non-overflowing events and then validated on 6 overflowing events. In a first step, a mesh convergence study was carried out in order to evaluate the error related to the spatial discretization and to determine the mesh allowing to obtain results "independent" of it. Three additional meshes obtained by dividing the number of finite elements at each refinement by 4 were realized and used to simulate the event of 2003. It appears that a mesh of intermediate size (approximately 27000 nodes) seems required. In a second step, propagation and quantification of uncertainties by an unidirectional analysis method (creation of a set of 2000 members perturbed for each parameter and input forcings and analysis of output water depths) was carried out on the numerical parameters (wind influence coefficient, Strickler friction coefficients for 4 zones) and forcings of the model (rivers discharges and maritime boundary conditions, meteorological forcings). The objective is to determine the variation coefficient (if possible standardized by the input variation coefficient) of water depths for 13 major events between 1981 and 2016. The exploitation of 1981 event results shows a predominance of the influence of the maritime boundary conditions and the Strickler coefficient corresponding to the zone studied for the estuarine part and the confluence, to which must be added the Garonne discharge as a predominant parameter for the latter

  19. Impact of hydrodynamic injection and phiC31 integrase on tumor latency in a mouse model of MYC-induced hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lauren E Woodard

    2010-06-01

    Full Text Available Hydrodynamic injection is an effective method for DNA delivery in mouse liver and is being translated to larger animals for possible clinical use. Similarly, phiC31 integrase has proven effective in mediating long-term gene therapy in mice when delivered by hydrodynamic injection and is being considered for clinical gene therapy applications. However, chromosomal aberrations have been associated with phiC31 integrase expression in tissue culture, leading to questions about safety.To study whether hydrodynamic delivery alone, or in conjunction with delivery of phiC31 integrase for long-term transgene expression, could facilitate tumor formation, we used a transgenic mouse model in which sustained induction of the human C-MYC oncogene in the liver was followed by hydrodynamic injection. Without injection, mice had a median tumor latency of 154 days. With hydrodynamic injection of saline alone, the median tumor latency was significantly reduced, to 105 days. The median tumor latency was similar, 106 days, when a luciferase donor plasmid and backbone plasmid without integrase were administered. In contrast, when active or inactive phiC31 integrase and donor plasmid were supplied to the mouse liver, the median tumor latency was 153 days, similar to mice receiving no injection.Our data suggest that phiC31 integrase does not facilitate tumor formation in this C-MYC transgenic mouse model. However, in groups lacking phiC31 integrase, hydrodynamic injection appeared to contribute to C-MYC-induced hepatocellular carcinoma in adult mice. Although it remains to be seen to what extent these findings may be extrapolated to catheter-mediated hydrodynamic delivery in larger species, they suggest that caution should be used during translation of hydrodynamic injection to clinical applications.

  20. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    Science.gov (United States)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  1. Modeling the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics and molecular dynamics simulations.

    Science.gov (United States)

    Voulgarakis, Nikolaos K; Satish, Siddarth; Chu, Jhih-Wei

    2009-12-21

    A multiscale computational method is developed to model the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics (FHD) and molecular dynamics (MD) simulations. To capture the elastic responses that emerge at small length scales, we attach an additional rheological model parallel to the macroscopic constitutive equation of a fluid. The widely used linear Maxwell model is employed as a working choice; other models can be used as well. For a fluid that is Newtonian in the macroscopic limit, this approach results in a parallel Newtonian-Maxwell model. For water, argon, and an ionic liquid, the power spectrum of momentum field autocorrelation functions of the parallel Newtonian-Maxwell model agrees very well with those calculated from all-atom MD simulations. To incorporate thermal fluctuations, we generalize the equations of FHD to work with non-Markovian rheological models and colored noise. The fluctuating stress tensor (white noise) is integrated in time in the same manner as its dissipative counterpart and numerical simulations indicate that this approach accurately preserves the set temperature in a FHD simulation. By mapping position and velocity vectors in the molecular representation onto field variables, we bridge the non-Markovian FHD with atomistic MD simulations. Through this mapping, we quantitatively determine the transport coefficients of the parallel Newtonian-Maxwell model for water and argon from all-atom MD simulations. For both fluids, a significant enhancement in elastic responses is observed as the wave number of hydrodynamic modes is reduced to a few nanometers. The mapping from particle to field representations and the perturbative strategy of developing constitutive equations provide a useful framework for modeling the nanoscale viscoelasticity of fluids.

  2. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  3. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    Science.gov (United States)

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm

  4. A model derived from hydrodynamic simulations for extracting the size of spherical particles from the quartz crystal microbalance.

    Science.gov (United States)

    Gillissen, Jurriaan J J; Tabaei, Seyed R; Jackman, Joshua A; Cho, Nam-Joon

    2017-09-08

    One challenging aspect of quartz crystal microbalance (QCM) measurements is the characterization of adsorbed particles as the change in resonance frequency (Δf) is proportional not only to the inertia of the adsorbed layer but also to that of the hydrodynamically coupled fluid. Herein, by solving numerically the Navier-Stokes equations, we scrutinize Δf for sparsely deposited, rigid spherical particles that are firmly attached to an oscillating surface. The analysis is shown to be applicable to adsorbed, small unilamellar vesicles (SUVs) of controlled size under experimental conditions in which adhesion-induced vesicle deformation is negligible. The model supports a hydrodynamic explanation for the overtone dependence of Δf, and was fitted to experimental data concerning three monodisperse populations of SUVs with different average sizes ranging between 56 and 114 nm diameter. Using this procedure, we determined the average size of adsorbed vesicles to be within 16% of the size that was measured by dynamic light scattering experiments in bulk solution. In conclusion, this model offers a means to extract the particle size from QCM-D measurement data, with applications to biological and synthetic nanoparticles.

  5. Modelling the influence of spatially varying hydrodynamics on the cross-sectional stability of double inlet systems, doi: 10.1007/s10236-013-0657-6

    NARCIS (Netherlands)

    Brouwer, R.L.; Schuttelaars, H.M.; Roos, Pieter C.

    2013-01-01

    The cross-sectional stability of double inlet systems is investigated using an exploratory model that combines Escoffier’s stability concept for the evolution of the inlet’s cross-sectional area with a two-dimensional, depth-averaged (2DH) hydrodynamic model for tidal flow. The model geometry

  6. A hydrodynamical model for the Fermi-LAT γ-ray light curve of blazar PKS 1510-089

    Directory of Open Access Journals (Sweden)

    Cabrera J.I.

    2013-12-01

    Full Text Available A physical description of the formation and propagation of working surfaces inside the relativistic jet of the blazar PKS 1510-089 are used to model its γ -ray variability light curve using Fermi-LAT data from 2008 to 2012. The physical model is based on conservation laws of mass and momentum at the working surface as explained by Mendoza et al. (2009. The hydrodynamical description of a working surface is parametrized by the initial velocity and mass injection rate at the base of the jet. We show that periodic variations on the injected velocity profiles are able to account for the observed luminosity, fixing model parameters such as mass ejection rates of the central engine injected at the base of the jet, oscillation frequencies of the flow and maximum Lorentz factors of the bulk flow during a particular burst.

  7. Modeling of sediment transport along Mangalore coast using mike 21

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, K.S.; Dwarakish, G.S.; Jayakumar, S.

    The objective of the present study is to understand the sediment transport along Mangalore Coast and to quantify the sediment transport rates. The data used in the present study includes Wave, Wind, Tide, Naval Hydrographic Chart (Bathymetry Chart...

  8. Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy

    Science.gov (United States)

    Mirfenderesgi, Golnazalsadat; Bohrer, Gil; Matheny, Ashley M.; Fatichi, Simone; de Moraes Frasson, Renato Prata; Schäfer, Karina V. R.

    2016-07-01

    The finite difference ecosystem-scale tree crown hydrodynamics model version 2 (FETCH2) is a tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system to explicitly resolve xylem water potentials throughout the vertical extent of a tree. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal xylem water content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the intergeneric variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus level transpiration and xylem conductivity responses to changes in stem water potential. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux in comparison to more conventional models. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions.

  9. Tree-Level Hydrodynamic Approach for Modeling Aboveground Water Storage and Stomatal Conductance Highlights the Effects of Tree Hydraulic Strategy

    Science.gov (United States)

    Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Fatichi, S.; Frasson, R. P. M.; Schafer, K. V.

    2016-12-01

    The Finite-difference Ecosystem-scale Tree-Crown Hydrodynamics model version 2 (FETCH2) is a novel tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system and simulates water flow through the tree as a continuum of porous media conduits. It explicitly resolves xylem water potential throughout the tree's vertical extent. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land-surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal stemwater content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the inter-genera variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus-level transpiration and xylem conductivity responses to changes in stem water potential. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux than more conventional models.

  10. Dissecting the regulation of pollen tube growth by modelling the interplay of hydrodynamics, cell wall and ion dynamics

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2014-08-01

    Full Text Available Hydrodynamics, cell wall and ion dynamics are all important properties that regulate pollen tube growth. Currently, the two main pollen tube growth models, the cell wall model and the hydrodynamic model do not appear to be reconcilable. Here we develop an integrative model for pollen tube growth and show that our model reproduces key experimental observations: 1 that the hypertonic condition leads to a much longer oscillatory period and that the hypotonic condition halves the oscillatory period; 2 that oscillations in turgor are experimentally undetectable; 3 that increasing the extracellular calcium concentration or decreasing the pH decreases the growth oscillatory amplitude; 4 that knockout of Raba4d, a member of the Rab family of small GTPase proteins, decreases pollen tube length after germination for 24 hours. Using the model generated here, we reveal that 1 when cell wall extensibility is large, pollen tube may sustain growth at different volume changes and maintain relatively stable turgor; 2 turgor increases if cell wall extensibility decreases; 3 increasing turgor due to decrease in osmolarity in the media, although very small, increases volume change . However, increasing turgor due to decrease in cell wall extensibility decreases volume change. In this way regulation of pollen tube growth by turgor is context dependent. By changing the osmolarity in the media, the main regulatory points are extracellular osmolarity for water flow and turgor for the volume encompassed by the cell wall. However, if the viscosity of cell wall changes, the main regulatory points are turgor for water flow and wall extensibility for the volume encompassed by the cell wall. The novel methodology developed here reveals the underlying context-dependent regulatory principle of pollen tube growth.

  11. Hydrodynamic model of cells for designing systems of urban groundwater drainage

    Science.gov (United States)

    Zimmermann, Eric; Riccardi, Gerardo

    2000-08-01

    An improved mathematical hydrodynamic quasi-two-dimensional model of cells, CELSUB3, is presented for simulating drainage systems that consist of pumping well fields or subsurface drains. The CELSUB3 model is composed of an assemblage of algorithms that have been developed and tested previously and that simulate saturated flow in porous media, closed conduit flow, and flow through pumping stations. A new type of link between aquifer cells and drainage conduits is proposed. This link is verified in simple problems with well known analytical solutions. The correlation between results from analytical and mathematical solutions was considered satisfactory in all cases. To simulate more complex situations, the new proposed version, CELSUB3, was applied in a project designed to control the water-table level within a sewer system in Chañar Ladeado Town, Santa Fe Province, Argentina. Alternative drainage designs, which were evaluated under conditions of dynamic recharge caused by rainfall in a critical year (wettest year for the period of record) and a typical year, are briefly described. After analyzing ten alternative designs, the best technical-economic solution is a subsurface drainage system of closed conduits with pumping stations and evacuation channels. Résumé. Un modèle hydrodynamique perfectionné de cellules en quasi 2D, CELSUB3, est présenté dans le but de simuler des systèmes de drainage qui consistent en des champs de puits de pompage ou de drains souterrains. Le modèle CELSUB3 est composé d'un assemblage d'algorithmes développés et testés précédemment et qui simulent des écoulements en milieu poreux saturé, en conduites et dans des stations de pompage. Un nouveau type de lien entre des cellules d'aquifères et des drains est proposé. Ce lien est vérifié dans des problèmes simples dont les solutions analytiques sont bien connues. La corrélation entre les résultats des solutions analytiques et des solutions mathématiques a été consid

  12. Modeling and experimental validation of hydrodynamics in an ultrasonic batch reactor.

    Science.gov (United States)

    Ajmal, M; Rusli, S; Fieg, G

    2016-01-01

    Simulation of hydrodynamics in ultrasonic batch reactor containing immobilized enzymes as catalyst is done. A transducer with variable power and constant frequency (24 kHz) is taken as source of ultrasound (US). Simulation comprises two steps. In first step, acoustic pressure field is simulated and in second step effect of this field on particle trajectories is simulated. Simulation results are compared with experimentally determined particle trajectories using PIV Lab (particle image velocimetry). Effect of varying ultrasonic power, positioning and number of ultrasonic sources on particle trajectories is studied. It is observed that catalyst particles tend to orientate according to pattern of acoustic pressure field. An increase in ultrasonic power increases particle velocity and also brings more particles into motion. Simulation results are found to be in agreement with experimentally determined data. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. On Evaluating circulation and temperature stratification under changing water levels in Lake Mead with a 3D hydrodynamic model

    Science.gov (United States)

    Li, Y.; Acharya, K.; Chen, D.; Stone, M.; Yu, Z.; Young, M.; Zhu, J.; Shafer, D. S.; Warwick, J. J.

    2009-12-01

    Sustained drought in the western United States since 2000 has led to a significant drop (about 35 meters) in the water level of Lake Mead, the largest reservoir by volume in United States. The drought combined with rapid urban development in southern Nevada and emergence of invasive species has threatened the water quality and ecological processes in Lake Mead. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was applied to investigate lake circulation and temperature stratification in parts of Lake Mead (Las Vegas Bay and Boulder Basin) under changing water levels. Besides the inflow from Las Vegas Wash and the Colorado River, the model considered atmospheric changes as well as the boundary conditions restricted by the operation of Hoover Dam. The model was calibrated and verified by using observed data including water level, velocity, and temperature from 2003 and 2005. The model was applied to study the hydrodynamic processes at water level 366.8 m (year 2000) and at water level 338.2 m (year 2008). The high-stage simulation described the pre-drought lake hydrodynamic processes while the low-stage simulation highlighted the drawdown impact on such processes. The results showed that both inflow and wind-driven mixing process played major roles in the thermal stratification and lake circulation in both cases. However, the atmospheric boundary played a more important role than inflow temperature on thermal stratification of Lake Mead during water level decline. Further, the thermal stratification regime and flow circulation pattern in shallow lake regions (e.g.., the Boulder Basin area) were most impacted. The temperature of the lake at the high-stage was more sensitive to inflow temperatures than at low-stage. Furthermore, flow velocities decreased with the decreasing water level due to reduction in wind impacts, particularly in shallow areas of the lake. Such changes in temperature and lake current due to present drought have a

  14. Quasi 2D hydrodynamic modelling of the flooded hinterland due to dyke breaching on the Elbe River

    Directory of Open Access Journals (Sweden)

    S. Huang

    2007-01-01

    Full Text Available In flood modeling, many 1D and 2D combination and 2D models are used to simulate diversion of water from rivers through dyke breaches into the hinterland for extreme flood events. However, these models are too demanding in data requirements and computational resources which is an important consideration when uncertainty analysis using Monte Carlo techniques is used to complement the modeling exercise. The goal of this paper is to show the development of a quasi-2D modeling approach, which still calculates the dynamic wave in 1D but the discretisation of the computational units are in 2D, allowing a better spatial representation of the flow in the hinterland due to dyke breaching without a large additional expenditure on data pre-processing and computational time. A 2D representation of the flow and velocity fields is required to model sediment and micro-pollutant transport. The model DYNHYD (1D hydrodynamics from the WASP5 modeling package was used as a basis for the simulations. The model was extended to incorporate the quasi-2D approach and a Monte-Carlo Analysis was used to conduct a flood sensitivity analysis to determine the sensitivity of parameters and boundary conditions to the resulting water flow. An extreme flood event on the Elbe River, Germany, with a possible dyke breach area was used as a test case. The results show a good similarity with those obtained from another 1D/2D modeling study.

  15. Three-dimensional modelling of the hydrodynamics of the Southern Bight of the North Sea: first results

    Science.gov (United States)

    Ivanov, Evgeny; Capet, Arthur; Barth, Alexander; Delhez, Eric; Soetaert, Karline; Grégoire, Marilaure

    2017-04-01

    In the frame of the Belgian research project FaCE-It (Functional biodiversity in a Changing sedimentary Environment: Implications for biogeochemistry and food webs in a managerial setting), the impact of dredging activities and offshore wind farm installation on the spatial distribution of sediment grain size, biodiversity and biogeochemistry will be estimated in the Southern Bight of the North Sea (SBNS) with a focus on the Belgian Coastal Zone (BCZ). To reach this goal, the three-dimensional hydrodynamical model ROMS-COAWST is implemented in the SBNS in order to simulate the complex hydrodynamics and sediment transport. Two levels of nesting are used to reach a resolution of 250 m in the BCZ. The model is forced at the air-sea interface by the 6-hourly ECMWF ERA-interim atmospheric dataset and at the open boundaries by the coarse resolution model results available from CMEMS (Copernicus Marine Environment Monitoring Service), and also considers tides and 4 main rivers (Scheldt, Rhine with Maas, Thames and Seine). Two types of simulations have been performed: a 10-years climatological simulation and a simulation over 2003-2013 to investigate the interannual dynamics. The model skills are evaluated by comparing its outputs to historical data (e.g. salinity, temperature and currents) from remote sensing and in-situ. The sediment transport module will then be implemented and its outputs compared to historical and newly collected (in the frame of FaCE-iT) observations on grain size distribution as well as with satellite Suspended Particulate Matter (SPM) images. This will allow assessing the impact of substrate modification due to offshore human activities at local and regional scales.

  16. CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results

    Directory of Open Access Journals (Sweden)

    Yogang Singh

    2017-06-01

    Full Text Available Underwater gliders are buoyancy propelled vehicle which make use of buoyancy for vertical movement and wings to propel the glider in forward direction. Autonomous underwater gliders are a patented technology and are manufactured and marketed by corporations. In this study, we validate the experimental lift and drag characteristics of a glider from the literature using Computational fluid dynamics (CFD approach. This approach is then used for the assessment of the steady state characteristics of a laboratory glider designed at Indian Institute of Technology (IIT Madras. Flow behaviour and lift and drag force distribution at different angles of attack are studied for Reynolds numbers varying from 105 to 106 for NACA0012 wing configurations. The state variables of the glider are the velocity, gliding angle and angle of attack which are simulated by making use of the hydrodynamic drag and lift coefficients obtained from CFD. The effect of the variable buoyancy is examined in terms of the gliding angle, velocity and angle of attack. Laboratory model of glider is developed from the final design asserted by CFD. This model is used for determination of static and dynamic properties of an underwater glider which were validated against an equivalent CAD model and simulation results obtained from equations of motion of glider in vertical plane respectively. In the literature, only empirical approach has been adopted to estimate the hydrodynamic coefficients of the AUG that are required for its trajectory simulation. In this work, a CFD approach has been proposed to estimate the hydrodynamic coefficients and validated with experimental data. A two-mass variable buoyancy engine has been designed and implemented. The equations of motion for this two-mass engine have been obtained by modifying the single mass version of the equations described in the literature. The objectives of the present study are to understand the glider dynamics adopting a CFD approach

  17. Restoration of Haemoglobin Level Using Hydrodynamic Gene Therapy with Erythropoietin Does Not Alleviate the Disease Progression in an Anaemic Mouse Model for TGFβ1-Induced Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Pedersen, Lea Hougaard; Wogensen, Lise; Marcussen, N.

    2015-01-01

    expressed in non-haematopoietic tissue and today, Epo is recognised as a cytokine with many pleiotropic effects. We hypothesize that hydrodynamic gene therapy with Epo can restore haemoglobin levels in anaemic transgenic mice and that this will attenuate the extracellular matrix accumulation in the kidneys....... The experiment is conducted by hydrodynamic gene transfer of a plasmid encoding murine Epo in a transgenic mouse model that overexpresses TGF-β1 locally in the kidneys. This model develops anaemia due to chronic kidney disease characterised by thickening of the glomerular basement membrane, deposition...... of mesangial matrix and mild interstitial fibrosis. A group of age matched wildtype littermates are treated accordingly. After a single hydrodynamic administration of plasmid DNA containing murine EPO gene, sustained high haemoglobin levels are observed in both transgenic and wildtype mice from 7.5 ± 0.6 mmol...

  18. Hydrodynamics, temperature/salinity variability and residence time in the Chilika lagoon during dry and wet period: Measurement and modeling

    Science.gov (United States)

    Mahanty, M. M.; Mohanty, P. K.; Pattnaik, A. K.; Panda, U. S.; Pradhan, S.; Samal, R. N.

    2016-08-01

    This paper investigated the hydrodynamics, spatio-temporal variability of temperature/salinity and the residence time of tracer concentrations in a largest brackish water coastal lagoon in Asia, namely the Chilika lagoon, India. An integrated approach combined the measurement and 2D hydrodynamic-advection/dispersion model is used to simulate circulation and temperature/salinity, and estimated the water residence time in lagoon under different forcing mechanisms, such as tide, wind and freshwater discharge during the dry and wet periods. Water circulation inside the lagoon is simulated when wind is included with the tide only forcing during dry period, and freshwater influx is included with the tide and wind forcing during wet period. Under the realistic forcing conditions, the computed temporal variability of water temperature and salinity are well correlated with the measurements in both the periods. The spatial variations of water temperature within the lagoon is influenced by the meteorological conditions, tide and freshwater influx as well as the shallowness of the lagoon, whereas the salinity is spatially controlled by the freshwater influx from the riverine system and seawater intrusion through the tidal inlets. The numerical model results show that in the Chilika lagoon tidal and river influx affect significantly the residence time spatially, and is site specific. The residence time varies from values of 4-5 days in the outer channel (OC) and 132 days at the northern sector (NS) in the main body of lagoon. The current study represents a first attempt to use a combined model approach, which is therefore, a useful tool to support the ecological implication of the lagoon ecosystem.

  19. A 2D hydrodynamic-sedimentological model for gravel-bed rivers. Part I: theory and validation

    Directory of Open Access Journals (Sweden)

    Gabriel Kaless

    2013-09-01

    Full Text Available This paper presents a novel 2D-depth average model especially developed for gravel-bed rivers, named Lican-Leufú (Lican=pebble and Leufu=river, in Mapuche’s language, the native inhabitants of Central Patagonia, Argentina. The model consists of three components: a hydrodynamic, a sedimentological, and a morphological model. The flow of water is described by the depth-averaged Reynolds equations for unsteady, free-surface, shallow water flows. It includes the standard k-e model for turbulence closure. Sediment transport can be divided in different size classes (sand-gravel mixture and the equilibrium approach is used for Exner’s equation. The amour layer is also included in the structure of the model and the surface grain size distribution is also allowed to evolve. The model simulates bank slides that enable channel widening. Models predictions were tested against a flume experiment where a static armour layer was developed under conditions of sediment starvations and general good agreements were found: the model predicted adequately the sediment transport, grain size of transported material, final armour grain size distribution and bed elevation.

  20. A Coupled Model of the 1D River Network and 3D Estuary Based on Hydrodynamics and Suspended Sediment Simulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available River networks and estuaries are very common in coastal areas. Runoff from the upper stream interacts with tidal current from open sea in these two systems, leading to a complex hydrodynamics process. Therefore, it is necessary to consider the two systems as a whole to study the flow and suspended sediment transport. Firstly, a 1D model is established in the Pearl River network and a 3D model is applied in its estuary. As sufficient mass exchanges between the river network and its estuary, a strict mathematical relationship of water level at the interfaces can be adopted to couple the 1D model with the 3D model. By doing so, the coupled model does not need to have common nested grids. The river network exchanges the suspended sediment with its estuary by adding the continuity conditions at the interfaces. The coupled model is, respectively, calibrated in the dry season and the wet season. The results demonstrate that the coupled model works excellently in simulating water level and discharge. Although there are more errors in simulating suspended sediment concentration due to some reasons, the coupled model is still good enough to evaluate the suspended sediment transport in river network and estuary systems.

  1. Physical hydrodynamics

    CERN Document Server

    Guyon, Etienne; Petit, Luc; Mitescu, Catalin D

    2015-01-01

    This new edition is an enriched version of the textbook of fluid dynamics published more than 10 years ago. It retains the same physically oriented pedagogical perspective. This book emphasizes, as in the first edition, experimental inductive approaches and relies on the study of the mechanisms at play and on dimensional analysis rather than more formal approaches found in many classical textbooks in the field. The need for a completely new version also originated from the increase, over the last few decades, of the cross-overs between the mechanical and physical approaches, as is visible in international meetings and joint projects. Hydrodynamics is more widely linked today to other fields of experimental sciences: materials, environment, life sciences and earth sciences, as well as engineering sciences.

  2. Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina

    Science.gov (United States)

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    Long-term decadal-scale shoreline change is an important parameter for quantifying the stability of coastal systems. The decadal-scale coastal change is controlled by processes that occur on short time scales (such as storms) and long-term processes (such as prevailing waves). The ability to predict decadal-scale shoreline change is not well established and the fundamental physical processes controlling this change are not well understood. Here we investigate the processes that create large-scale long-term shoreline change along the Outer Banks of North Carolina, an uninterrupted 60 km stretch of coastline, using both observations and a numerical modeling approach. Shoreline positions for a 24-yr period were derived from aerial photographs of the Outer Banks. Analysis of the shoreline position data showed that, although variable, the shoreline eroded an average of 1.5 m/yr throughout this period. The modeling approach uses a three-dimensional hydrodynamics-based numerical model coupled to a spectral wave model and simulates the full 24-yr time period on a spatial grid running on a short (second scale) time-step to compute the sediment transport patterns. The observations and the model results show similar magnitudes (O(105 m3/yr)) and patterns of alongshore sediment fluxes. Both the observed and the modeled alongshore sediment transport rates have more rapid changes at the north of our section due to continuously curving coastline, and possible effects of alongshore variations in shelf bathymetry. The southern section with a relatively uniform orientation, on the other hand, has less rapid transport rate changes. Alongshore gradients of the modeled sediment fluxes are translated into shoreline change rates that have agreement in some locations but vary in others. Differences between observations and model results are potentially influenced by geologic framework processes not included in the model. Both the observations and the model results show higher rates of

  3. Contribution to the hydrodynamic modeling of groundwater in the Ain El Bel syncline Wilaya of Djelfa (Algeria)

    Science.gov (United States)

    Azlaoui, Mohamed; Nezli, Imed Eddine; Djelita, Belkhier; Boutoutaou, Djamel

    2017-02-01

    In arid and semi-arid areas, the protection and preservation of water resources is based on integrated resource managements, which will prove a fruitful way to deal with pollution and shortage of water-the source of life for man on Earth. Djelfa region, and particularly Ain El Bel, the potential water has not able to satisfy human needs,and agriculture, and industry. This article is a contribution to hydrodynamic modeling of the Barremian aquifer of Ain El Bel syncline, with "Modflow" software wich provides a deterministic two-dimensional numerical simulation in steady state and transient of underground water in the studied aquifer. The main results provided a better view of different scenarios to the piezometrics fluctuations. The established predictions show an alarming state of this aquifer, where the need for integrated management of groundwater resources is, to ensure sustainable development.

  4. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    Directory of Open Access Journals (Sweden)

    Canfield T.R.

    2011-01-01

    Full Text Available We have extended the Sub-Scale Dynamics (SSD closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  5. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Alan K [Los Alamos National Laboratory; Shashkov, Mikhail J [Los Alamos National Laboratory; Fung, Jimmy [Los Alamos National Laboratory; Canfield, Thomas R [Los Alamos National Laboratory; Kamm, James R [SNLA

    2010-10-14

    We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  6. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. VI. First chromosphere model of a late-type giant

    Science.gov (United States)

    Wedemeyer, Sven; Kučinskas, Arūnas; Klevas, Jonas; Ludwig, Hans-Günter

    2017-10-01

    Aims: Although observational data unequivocally point to the presence of chromospheres in red giant stars, no attempts have been made so far to model them using 3D hydrodynamical model atmospheres. We therefore compute an exploratory 3D hydrodynamical model atmosphere for a cool red giant in order to study the dynamical and thermodynamic properties of its chromosphere, as well as the influence of the chromosphere on its observable properties. Methods: Three-dimensional radiation hydrodynamics simulations are carried out with the CO5BOLD model atmosphere code for a star with the atmospheric parameters (Teff ≈ 4010 K, log g = 1.5, [ M / H ] = 0.0), which are similar to those of the K-type giant star Aldebaran (α Tau). The computational domain extends from the upper convection zone into the chromosphere (7.4 ≥ log τRoss ≥ - 12.8) and covers several granules in each horizontal direction. Using this model atmosphere, we compute the emergent continuum intensity maps at different wavelengths, spectral line profiles of Ca II K, the Ca II infrared triplet line at 854.2 nm, and Hα, as well as the spectral energy distribution (SED) of the emergent radiative flux. Results: The initial model quickly develops a dynamical chromosphere that is characterised by propagating and interacting shock waves. The peak temperatures in the chromospheric shock fronts reach values of up to 5000 K, although the shock fronts remain quite narrow. Similar to the Sun, the gas temperature distribution in the upper layers of red giant stars is composed of a cool component due to adiabatic cooling in the expanding post-shock regions and a hot component due to shock waves. For this red giant model, the hot component is a rather flat high-temperature tail, which nevertheless affects the resulting average temperatures significantly. Conclusions: The simulations show that the atmospheres of red giant stars are dynamic and intermittent. Consequently, many observable properties cannot be reproduced

  7. Evaluating Dead Wood Dynamics Along A River Corridor Using Kite-Blimp Imagery And 2D Hydrodynamic Models

    Science.gov (United States)

    Senter, A. E.; Pasternack, G. B.

    2011-12-01

    In higher order, wider channels, dead wood that is delivered to the wetted channel has a high probability of transporting downstream. Many other dead wood pieces can accumulate within a wide but often dry bankfull channel and along the edges of the riparian corridor. These dead wood pieces are of varying sizes - twigs to tree trunks - and may transport at unknown discharges as seasonally driven precipitation and random storms occur. The dynamics of dead wood pieces such as these were investigated along a 4th order 13-km segment of the South Yuba River, Sierra Nevada, California. The scientific questions answered in this study were: What were the bulk statistics of dead wood across multiple spatial scales: segment, reach, and morphologic unit? Was the longitudinal distribution of dead wood organized or random? As a function of discharge, what were the total percentage and number of digitized dead wood pieces per modeled wetted area? A kite-blimp was used to obtain ~4 cm resolution digital images of the river corridor in summer 2009. Images were georeferenced in ArcGIS; digitization of all visible dead wood resulted in >8000 individual polygons. During the same field season, topographic data were collected of the channel bathymetry, active channel expanse, and riparian corridor using RTK-GPS, total stations, pontoon-based echosounding, and LIDAR. SRH-2D was used to simulate 1-m resolution hydrodynamics (i.e., water surface elevations, depths, velocity vectors, and shear stresses) at 21 discharges spanning three orders of magnitude from base flow to moderate flood, also accounting for strong hydrologic seasonality. Model results were stratified and analyzed at segment, reach, and morphologic unit scales. Then hydrodynamic results at each scale were compared to dead wood data at each scale to understand the links between landforms, flows, and dead wood distributions.

  8. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  9. Hydrodynamic Modeling of the Deep Impact Mission into Comet Tempel 1

    Science.gov (United States)

    Sorli, Kya; Remington, Tané; Bruck Syal, Megan

    2018-01-01

    Kinetic impact is one of the primary strategies to deflect hazardous objects off of an Earth-impacting trajectory. The only test of a small-body impact is the 2005 Deep Impact mission into comet Tempel 1, where a 366-kg mass impactor collided at ~10 km/s into the comet, liberating an enormous amount of vapor and ejecta. Code comparisons with observations of the event represent an important source of new information about the initial conditions of small bodies and an extraordinary opportunity to test our simulation capabilities on a rare, full-scale experiment. Using the Adaptive Smoothed Particle Hydrodynamics (ASPH) code, Spheral, we explore how variations in target material properties such as strength, composition, porosity, and layering affect impact results, in order to best match the observed crater size and ejecta evolution. Benchmarking against this unique small-body experiment provides an enhanced understanding of our ability to simulate asteroid or comet response to future deflection missions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-739336-DRAFT.

  10. Evaluation of Thin Plate Hydrodynamic Stability through a Combined Numerical Modeling and Experimental Effort

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Solbrekken, G [Univ. of Missouri, Columbia, MO (United States); Jesse, C. [Univ. of Missouri, Columbia, MO (United States); Kennedy, J. [Univ. of Missouri, Columbia, MO (United States); Rivers, J. [Univ. of Missouri, Columbia, MO (United States); Schnieders, G. [Univ. of Missouri, Columbia, MO (United States)

    2017-05-01

    An experimental and computational effort was undertaken in order to evaluate the capability of the fluid-structure interaction (FSI) simulation tools to describe the deflection of a Missouri University Research Reactor (MURR) fuel element plate redesigned for conversion to lowenriched uranium (LEU) fuel due to hydrodynamic forces. Experiments involving both flat plates and curved plates were conducted in a water flow test loop located at the University of Missouri (MU), at conditions and geometries that can be related to the MURR LEU fuel element. A wider channel gap on one side of the test plate, and a narrower on the other represent the differences that could be encountered in a MURR element due to allowed fabrication variability. The difference in the channel gaps leads to a pressure differential across the plate, leading to plate deflection. The induced plate deflection the pressure difference induces in the plate was measured at specified locations using a laser measurement technique. High fidelity 3-D simulations of the experiments were performed at MU using the computational fluid dynamics code STAR-CCM+ coupled with the structural mechanics code ABAQUS. Independent simulations of the experiments were performed at Argonne National Laboratory (ANL) using the STAR-CCM+ code and its built-in structural mechanics solver. The simulation results obtained at MU and ANL were compared with the corresponding measured plate deflections.

  11. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes

    Science.gov (United States)

    Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; MacNeice, P.; Rosner, R.; Truran, J. W.; Tufo, H.

    2000-11-01

    We report on the completion of the first version of a new-generation simulation code, FLASH. The FLASH code solves the fully compressible, reactive hydrodynamic equations and allows for the use of adaptive mesh refinement. It also contains state-of-the-art modules for the equations of state and thermonuclear reaction networks. The FLASH code was developed to study the problems of nuclear flashes on the surfaces of neutron stars and white dwarfs, as well as in the interior of white dwarfs. We expect, however, that the FLASH code will be useful for solving a wide variety of other problems. This first version of the code has been subjected to a large variety of test cases and is currently being used for production simulations of X-ray bursts, Rayleigh-Taylor and Richtmyer-Meshkov instabilities, and thermonuclear flame fronts. The FLASH code is portable and already runs on a wide variety of massively parallel machines, including some of the largest machines now extant.

  12. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  13. Hydrodynamics of Turning Flocks.

    Science.gov (United States)

    Yang, Xingbo; Marchetti, M Cristina

    2015-12-18

    We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.

  14. First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations.

    Science.gov (United States)

    Iršič, Vid; Viel, Matteo; Haehnelt, Martin G; Bolton, James S; Becker, George D

    2017-07-21

    We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter (FDM) from Lyman-α forest data. Extremely light bosons with a de Broglie wavelength of ∼1  kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time, we use hydrodynamical simulations to model the Lyman-α flux power spectrum in these models and compare it to the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the intergalactic medium (IGM) that allow for jumps in the temperature of up to 5000 K, XQ-100 provides a lower limit of 7.1×10^{-22}  eV, HIRES/MIKE returns a stronger limit of 14.3×10^{-22}  eV, while the combination of both data sets results in a limit of 20×10^{-22}  eV (2σ C.L.). The limits for the analysis of the combined data sets increases to 37.5×10^{-22}  eV (2σ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power law in redshift. Light boson masses in the range 1-10×10^{-22}  eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the "small scale crisis" of the cold dark matter models.

  15. Models of the Hydrodynamic Histories of Post-AGB Stars. I. Multiflow Shaping of OH 231.8+04.2

    Energy Technology Data Exchange (ETDEWEB)

    Balick, Bruce [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Frank, Adam; Liu, Baowei [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Huarte-Espinosa, Martín, E-mail: balick@uw.edu, E-mail: afrank@pas.rochester.edu, E-mail: baowei.liu@rochester.edu, E-mail: mhuartee@central.uh.edu [Center for Advanced Comp and Data Systems, University of Houston, 4718 Calhoun Rd., Houston, TX 77204-3058 (United States)

    2017-07-10

    We present a detailed hydrodynamic model that matches the present structure of the well-observed preplanetary nebula (“pPN”) OH 231.8+04.2 (“OH231”). The purpose of the model is to present a physically justified and coherent picture of its evolutionary history from about 100 years from the start of the formation of its complex outer structures to the present. We have adopted a set of initial conditions that are heavily constrained by high-quality observations of its present structure and kinematics. The shaping of the nebula occurs while the densities of the flows are “light,” i.e., less than the surrounding AGB-wind environment. The simulations show that pairs of essentially coeval clumps and sprays of the same extent and density, but different outflow speeds, sculpted both the pair of thin axial flow “or spine” and the bulbs. The total ejected mass and momentum in the best-fit model are surprisingly large—3 M {sub ⊙} and 2.2 × 10{sup 41} gm cm s{sup −1}, respectively—however, these values are reduced by up to a factor of 10 in other models that fit the data almost as well. Our ultimate goal is to combine the present model results of masses, momenta, flow speeds, and flow geometries for OH231 with those of other models to be published in the future in order to find common attributes of their ejection histories.

  16. To the analysis of the theory of mathematical model of hydrodynamics of a bulk layer of a mix of vegetative materials

    Directory of Open Access Journals (Sweden)

    S. A. Bikov

    2012-01-01

    Full Text Available The article presents the results of research work on finding out the interdependence between the dynamic separation of the working apparatus (machine, statistic separation and the degree of filling the apparatus (machine. The final mathematic model of calculating separation - an important hydrodynamic parameter of a layer of vegetable material while extragent is being filtrated through it. The authors worked out a universal method of defining hydrodynamic characteristics of a layer of material which can be applied to any vegetable materials and their mixtures worked up as required.

  17. A Hydrodynamical Model of a Rotating Wind Source and Its Effects on the Collapse of a Rotating Core

    Directory of Open Access Journals (Sweden)

    Guillermo Arreaga-Garcia

    2015-01-01

    Full Text Available This work presents three-dimensional hydrodynamical simulations with the fully parallel GAGDET2 code, to model a rotating source that emits wind in order to study the subsequent dynamics of the wind in three independent scenarios. In the first scenario we consider several models of the wind source, which is characterized by a rotation velocity Vrot and an escape velocity Vesc, so that the models have a radially outward wind velocity magnitude Vrad given by 1, 2, 4, 6, and 8 times Vrot. In the second scenario, we study the interaction of winds emitted from a binary system in two kinds of models: one in which the source remains during the wind emission and a second one in which all the source itself becomes wind. In the third scenario we consider the interaction of a rotating source that emits wind within a collapsing and rotating core. In this scenario we consider only wind models of the second kind built over a new initial radial mesh, such that the angular velocity of the wind Ωw is 1, 100, and 1000 times the angular velocity of the core Ωc.

  18. A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach

    Science.gov (United States)

    Gaeta, Maria Gabriella; Samaras, Achilleas G.; Federico, Ivan; Archetti, Renata; Maicu, Francesco; Lorenzetti, Giuliano

    2016-09-01

    The present work describes an operational strategy for the development of a multiscale modeling system, based on a multiple-nesting approach and open-source numerical models. The strategy was applied and validated for the Gulf of Taranto in southern Italy, scaling large-scale oceanographic model results to high-resolution coupled wave-3-D hydrodynamics simulations for the area of Mar Grande in the Taranto Sea. The spatial and temporal high-resolution simulations were performed using the open-source TELEMAC suite, forced by wind data from the COSMO-ME database, boundary wave spectra from the RON buoy at Crotone and results from the Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) regarding sea levels and current fields. Model validation was carried out using data collected in the Mar Grande basin from a fixed monitoring station and during an oceanographic campaign in October 2014. The overall agreement between measurements and model results in terms of waves, sea levels, surface currents, circulation patterns and vertical velocity profiles is deemed to be satisfactory, and the methodology followed in the process can constitute a useful tool for both research and operational applications in the same field and as support of decisions for management and design of infrastructures.

  19. Burrow ventilation in the tube-dwelling shrimp Callianassa subterranea (Decapoda: thalassinidea). III. Hydrodynamic modelling and the energetics of pleopod pumping.

    NARCIS (Netherlands)

    Stamhuis, Eize; Videler, Johannes

    1998-01-01

    The process of flow generation with metachronally beating pleopods in a tubiform burrow was studied by designing a hydrodynamic model based on a thrust-drag force balance. The drag of the tube (including the shrimp) comprises components for accelerating the water into the tube entrance, for

  20. Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation

    Science.gov (United States)

    Douillet-Grellier, Thomas; Pramanik, Ranjan; Pan, Kai; Albaiz, Abdulaziz; Jones, Bruce D.; Williams, John R.

    2017-10-01

    This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.

  1. Water age prediction and its potential impacts on water quality using a hydrodynamic model for Poyang Lake, China.

    Science.gov (United States)

    Qi, Hengda; Lu, Jianzhong; Chen, Xiaoling; Sauvage, Sabine; Sanchez-Pérez, José-Miguel

    2016-07-01

    The water quality in Poyang Lake, the largest freshwater lake in China, has deteriorated steadily in recent years and local governments have made efforts to manage the potential eutrophication. In order to investigate the transport and retention processes of dissolved substances, the hydrodynamic model, Environmental Fluid Dynamics Code (EFDC) was applied by using the concept of water age. The simulated results showed agreement with the measured water level, discharge, and inundation area. The water age in Poyang Lake was significantly influenced by the variations of hydrological conditions. The annual analysis revealed that the largest averaged water age was observed during the wet year (2010) with 28.4 days at Hukou, the junction of the Yangtze River and Poyang Lake. In the normal season (April), the youngest age with 9.1 days was found. The spatial distribution of water quality derived from the remote sensing images suggested that a higher chlorophyll-a concentration, lower turbidity, and smaller water age in the eastern area of Poyang Lake might threaten the regional aquatic health. The particle tracking simulation reproduced the trajectories of the dissolved substances, indicating that the water mass with greater nutrient loading would further lead to potential environmental problems in the east lake. Moreover, the water transfer ability would be weakened due to dam (Poyang Project) construction resulting in the rising water levels in periods of regulation. Generally, this study quantified an indicative transport timescale, which could help to better understand the complex hydrodynamic processes and manage wetland ecosystems similar to Poyang Lake.

  2. Calibration of a two-dimensional hydrodynamic model for parts of the Allegheny, Monongahela, and Ohio Rivers, Allegheny County, Pennsylvania

    Science.gov (United States)

    Fulton, John W.; Wagner, Chad R.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Allegheny County Sanitary Authority, developed a validated two-dimensional Resource Management Associates2 (RMA2) hydrodynamic model of parts of the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) to help assess the effects of combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs) on the rivers. The hydrodynamic model was used to drive a water-quality model of the study area that was capable of simulating the transport and fate of fecal-indicator bacteria and chemical constituents under open-water conditions. The study area includes 14 tributary streams and parts of the Three Rivers where they enter and exit Allegheny County, an area of approximately 730 square miles (mi2). The city of Pittsburgh is near the center of the county, where the Allegheny and Monongahela Rivers join to form the headwaters of the Ohio River. The Three Rivers are regulated by a series of fixed-crest dams, gated dams, and radial (tainter) gates and serve as the receiving waters for tributary streams, CSOs, and SSOs. The RMA2 model was separated into four individual segments on the basis of the U.S. Army Corps of Engineers navigational pools in the study area (Dashields; Emsworth; Allegheny River, Pool 2; and Braddock), which were calibrated individually using measured water-surface slope, velocity, and discharge during high- and low-flow conditions. The model calibration process included the comparison of water-surface elevations at five locations and velocity profiles at more than 80 cross sections in the study area. On the basis of the calibration and validation results that included water-surface elevations and velocities, the model is a representative simulation of the Three Rivers flow patterns for discharges ranging from 4,050 to 47,400 cubic feet per second (ft3/s) on the Allegheny River, 2,550 to 40,000 ft3/s on the Monongahela River, and 10,900 to 99,000 ft3/s on the Ohio River. The Monongahela River was

  3. Modeling Evaluation of Tidal Stream Energy and the Impacts of Energy Extraction on Hydrodynamics in the Taiwan Strait

    Directory of Open Access Journals (Sweden)

    Ming-Hsi Hsu

    2013-04-01

    Full Text Available Tidal stream speeds in straits are accelerated because of geographic and bathymetric features. For instance, narrow channels and shallows can cause high tidal stream energy. In this study, water level and tidal current were simulated using a three-dimensional semi-implicit Eulerian-Lagrangian finite-element model to investigate the complex tidal characteristics in the Taiwan Strait and to determine potential locations for harnessing tidal stream energy. The model was driven by nine tidal components (M2, S2, N2, K2, K1, O1, P1, Q1, and M4 at open boundaries. The modeling results were validated with the measured data, including water level and tidal current. Through the model simulations, we found that the highest tidal currents occurred at the Penghu Channel in the Taiwan Strait. The Penghu Channel is an appropriate location for the deployment of a tidal turbine array because of its deep and flat bathymetry. The impacts of energy extraction on hydrodynamics were assessed by considering the momentum sink approach. The simulated results indicate that only minimal impacts would occur on water level and tidal current in the Taiwan Strait if a turbine array (55 turbines was installed in the Penghu Channel.

  4. Method based on the Laplace equations to reconstruct the river terrain for two-dimensional hydrodynamic numerical modeling

    Science.gov (United States)

    Lai, Ruixun; Wang, Min; Yang, Ming; Zhang, Chao

    2018-02-01

    The accuracy of the widely-used two-dimensional hydrodynamic numerical model depends on the quality of the river terrain model, particularly in the main channel. However, in most cases, the bathymetry of the river channel is difficult or expensive to obtain in the field, and there is a lack of available data to describe the geometry of the river channel. We introduce a method that originates from the grid generation with the elliptic equation to generate streamlines of the river channel. The streamlines are numerically solved with the Laplace equations. In the process, streamlines in the physical domain are first computed in a computational domain, and then transformed back to the physical domain. The interpolated streamlines are integrated with the surrounding topography to reconstruct the entire river terrain model. The approach was applied to a meandering reach in the Qinhe River, which is a tributary in the middle of the Yellow River, China. Cross-sectional validation and the two-dimensional shallow-water equations are used to test the performance of the river terrain generated. The results show that the approach can reconstruct the river terrain using the data from measured cross-sections. Furthermore, the created river terrain can maintain a geometrical shape consistent with the measurements, while generating a smooth main channel. Finally, several limitations and opportunities for future research are discussed.

  5. Suitability of a Coupled Hydrodynamic Water Quality Model to Predict Changes in Water Quality from Altered Meteorological Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Leon van der Linden

    2015-01-01

    Full Text Available Downscaled climate scenarios can be used to inform management decisions on investment in infrastructure or alternative water sources within water supply systems. Appropriate models of the system components, such as catchments, rivers, lakes and reservoirs, are required. The climatic sensitivity of the coupled hydrodynamic water quality model ELCOM-CAEDYM was investigated, by incrementally altering boundary conditions, to determine its suitability for evaluating climate change impacts. A series of simulations were run with altered boundary condition inputs for the reservoir. Air and inflowing water temperature (TEMP, wind speed (WIND and reservoir inflow and outflow volumes (FLOW were altered to investigate the sensitivity of these key drivers over relevant domains. The simulated water quality variables responded in broadly plausible ways to the altered boundary conditions; sensitivity of the simulated cyanobacteria population to increases in temperature was similar to published values. However the negative response of total chlorophyll-a suggested by the model was not supported by an empirical analysis of climatic sensitivity. This study demonstrated that ELCOM-CAEDYM is sensitive to climate drivers and may be suitable for use in climate impact studies. It is recommended that the influence of structural and parameter derived uncertainty on the results be evaluated. Important factors in determining phytoplankton growth were identified and the importance of inflowing water quality was emphasized.

  6. A method for extending stage-discharge relationships using a hydrodynamic model and quantifying the associated uncertainty

    Science.gov (United States)

    Shao, Quanxi; Dutta, Dushmanta; Karim, Fazlul; Petheram, Cuan

    2018-01-01

    Streamflow discharge is a fundamental dataset required to effectively manage water and land resources. However, developing robust stage - discharge relationships called rating curves, from which streamflow discharge is derived, is time consuming and costly, particularly in remote areas and especially at high stage levels. As a result stage - discharge relationships are often heavily extrapolated. Hydrodynamic (HD) models are physically based models used to simulate the flow of water along river channels and over adjacent floodplains. In this paper we demonstrate a method by which a HD model can be used to generate a 'synthetic' stage - discharge relationship at high stages. The method uses a both-side Box-Cox transformation to calibrate the synthetic rating curve such that the regression residuals are as close to the normal distribution as possible. By doing this both-side transformation, the statistical uncertainty in the synthetically derived stage - discharge relationship can be calculated. This enables people trying to make decisions to determine whether the uncertainty in the synthetically generated rating curve at high stage levels is acceptable for their decision. The proposed method is demonstrated in two streamflow gauging stations in north Queensland, Australia.

  7. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  8. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    Science.gov (United States)

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model

  9. Sediment mobility in the Pomeranian Bight (Baltic Sea): a case study based on sidescan-sonar images and hydrodynamic modelling

    Science.gov (United States)

    Tauber, Franz; Emeis, Kay-Christian

    2005-09-01

    Sidescan-sonar surveys were performed on a 2×4 km area of seafloor in the southern Baltic Sea (Pomeranian Bight) in 1996 and 1998. Overlapping sub-areas of the individual surveys showing characteristic details were processed into geographically referenced mosaics. Sediment types were identified from echo characteristics and by comparison with granulometric data. The sea bottom covered by the mosaics consists predominantly of sand, with subordinate lag sediments with stones and small ripple fields consisting of coarse sand to fine gravel. A comparison of the two mosaics did not reveal any significant changes of the sea bottom over the 2-year period. Characteristic sedimentary features remained almost unchanged over this period on detailed sonar images of smaller sub-areas. Substantial transport of sandy sediments can thus be excluded in the course of the observation period. Grid files of advective velocity components and orbital velocity of wave motion of a three-dimensional hydrodynamical model for the period from September 1996 to October 1997 were used to estimate the current regime in the study area for the interval between the two sidescan surveys. Comparing critical velocities for the dominant sediment types with the results of the numerical bottom current simulations and the observations from sidescan images, it is apparent that strong current events during the modelled time interval were still too weak to resuspend and transport sand of any grain size, even though maximum current velocities of 30 cm/s at the seafloor were modelled. Only a few patches of newly accumulated (acoustically soft) material (mud, fluff and/or soft plant remnants), with a horizontal extension of about 10 m at a terrain step feature, were recognised in the 1998 mosaic. Our results imply that sand deposits in the southern Baltic Sea can remain stationary over time periods of several years, and that the transport of organic material, nutrients and associated pollutants to depositional

  10. Temperature and residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and Alexandrium fundyense in Nauset estuary.

    Science.gov (United States)

    Ralston, David K; Brosnahan, Michael L; Fox, Sophia E; Lee, Krista; Anderson, Donald M

    2015-11-01

    A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated

  11. Design of a Free-running, 1/30th Froude Scaled Model Destroyer for In-situ Hydrodynamic Flow Visualization

    Science.gov (United States)

    2012-05-03

    Construction & Engineering Program Department of Mechanical Engineering Acknowledgements • Prof Chryssostomidis • Dr. Brenden Epps (Prof SEL) • Mike Soroka • MAPC – Paul Dillingham – Kyle Moseson 2 May 2012 ACS 11

  12. Hydrodynamics of fossil fishes

    Science.gov (United States)

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-01-01

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377

  13. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  14. Hydrodynamics of fossil fishes.

    Science.gov (United States)

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-08-07

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.

  15. Application of the Geophysical Scale Multi-Block Transport Modeling System to Hydrodynamic Forcing of Dredged Material Placement Sediment Transport within the James River Estuary

    Science.gov (United States)

    Kim, S. C.; Hayter, E. J.; Pruhs, R.; Luong, P.; Lackey, T. C.

    2016-12-01

    The geophysical scale circulation of the Mid Atlantic Bight and hydrologic inputs from adjacent Chesapeake Bay watersheds and tributaries influences the hydrodynamics and transport of the James River estuary. Both barotropic and baroclinic transport govern the hydrodynamics of this partially stratified estuary. Modeling the placement of dredged sediment requires accommodating this wide spectrum of atmospheric and hydrodynamic scales. The Geophysical Scale Multi-Block (GSMB) Transport Modeling System is a collection of multiple well established and USACE approved process models. Taking advantage of the parallel computing capability of multi-block modeling, we performed one year three-dimensional modeling of hydrodynamics in supporting simulation of dredged sediment placements transport and morphology changes. Model forcing includes spatially and temporally varying meteorological conditions and hydrological inputs from the watershed. Surface heat flux estimates were derived from the National Solar Radiation Database (NSRDB). The open water boundary condition for water level was obtained from an ADCIRC model application of the U. S. East Coast. Temperature-salinity boundary conditions were obtained from the Environmental Protection Agency (EPA) Chesapeake Bay Program (CBP) long-term monitoring stations database. Simulated water levels were calibrated and verified by comparison with National Oceanic and Atmospheric Administration (NOAA) tide gage locations. A harmonic analysis of the modeled tides was performed and compared with NOAA tide prediction data. In addition, project specific circulation was verified using US Army Corps of Engineers (USACE) drogue data. Salinity and temperature transport was verified at seven CBP long term monitoring stations along the navigation channel. Simulation and analysis of model results suggest that GSMB is capable of resolving the long duration, multi-scale processes inherent to practical engineering problems such as dredged material

  16. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    Science.gov (United States)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  17. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China

    Directory of Open Access Journals (Sweden)

    Gula Tang

    2016-04-01

    Full Text Available In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  18. Hydrodynamic modeling of NOM transport in UF: effects of charge density and ionic strength on effective size and sieving.

    Science.gov (United States)

    Yuan, Yanxiao; Kilduff, James E

    2009-07-15

    The transport behavior of natural organic matter (NOM) across polyethersulfone (PES) UF membranes having a range of nominal molecularweight cutoffs (MWCOs) was investigated and described with a hydrodynamic transport model. Transport of whole NOM and NOM fractionated on an anion exchange resin (IRA 958) was measured to investigate the impact of NOM size and charge density. It was found that the dominant transport mechanism, characterized by the membrane Peclet number, depended on the membrane MWCO, and transitioned from diffusion to convection at a MWCO of about 10 kDa. Increasing ionic strength significantly decreased the effective solute radius and decreased the observed rejection of charged NOM fractions, whereas no significant change was seen for neutral fractions. Using an available theoretical model for partitioning of charged solutes, the effect of ionic strength on the electrical double layer thickness can account for the observed changes in effective solute radius. These results provide insight into the role of solute charge and electrostatic interactions in NOM transport behavior.

  19. Residual circulation and thermohaline distribution of the Ría de Vigo: A 3-D hydrodynamical model

    Directory of Open Access Journals (Sweden)

    S. Torres López

    2001-07-01

    Full Text Available A three-dimensional, non-linear, baroclinic model is described and tested for the first time to study the residual circulation and the thermohaline distribution of the Ría de Vigo (NW Spain at short time scales and under different wind stress regimes. Two markedly different realistic scenarios were chosen: northerly upwelling-favourable winds and southerly downwelling-favourable winds. The numerical experiments carried out indicate that the hydrodynamic regime of the Ría de Vigo is mostly a consequence of wind events. As could be expected, moderately strong North winds reinforce the normal (positive Ría circulation, while winds blowing from the South, when sufficiently strong, reverse the typical circulation pattern and reduce the characteristic outgoing velocities and the flushing time inside the Ría. The temperature and salinity fields generated by the model in both situations were compared with observations and found to be in qualitatively good agreement, supporting the 3D velocity field distribution.

  20. Numerical Modeling Analysis of Hydrodynamic and Microbial Controls on DNAPL Pool Dissolution and Detoxification: Dehalorespirers in Co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Wesseldyke, Eric S.; Becker, Jennifer G.; Seagren, Eric A.; Mayer, Alex S.; Zhang, Changyong

    2015-04-01

    Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be “bioenhanced” via biodegradation, which increases the concentration gradient at the DNAPL–water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolution by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.

  1. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)

    Science.gov (United States)

    Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis

    2017-12-01

    Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.

  2. Modelling of Sediment Transport of the Mehadica River, Caras Severin County, Romania

    Science.gov (United States)

    Grozav, Adia; Beilicci, Robert; Beilicci, Erika

    2017-10-01

    Study case is situated in Caras-Severin County. Every sediment transport model application is different both in terms of time and space scale, study objectives, required accuracy, allocated resources, background of the study team etc. For sediment transport modelling, it is necessary to know the characteristics of the sediment in the river bed. Therefore, it is recommended to collect a number of bed sediment grap samples. These samples should be analysing in terms of grain size distribution. To solve theoretical problems of movement of water in the river Mehadica, it requires modelling of water flow in this case. Numerical modelling was performed using the program MIKE11. MIKE 11 is a user-friendly, fully dynamic, one-dimensional modelling tool for the detailed analysis, design, management and operation of both simple and complex river and channel systems. With its exceptional flexibility, speed and user friendly environment, MIKE 11 provides a complete and effective design environment for engineering, water resources, water quality management and planning applications. The Hydrodynamic (HD) module is the nucleus of the MIKE 11 modelling system and forms the basis for most modules including Flood Forecasting, Advection- Dispersion, Water Quality and Non-cohesive sediment transport modules. The MIKE 11 HD module solves the vertically integrated equations for the conservation of mass and momentum, i.e. the Saint-Venant equations. The input data are: area plan with location of cross sections; cross sections topographical data and roughness of river bed; flood discharge hydrograph. Advanced computational modules are included for description of flow over hydraulic structures, including possibilities to describe structure operation.

  3. COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Velzen, N. van [Delft Univ. of Tech., Delft (Netherlands); Verlaan, M. [National Inst. for Coastal and Marine Management (RIKZ), The Hague (Netherlands)

    2007-12-15

    A problem solving environment for data assimilation called COSTA is developed at Delft University of Technology. The goal of COSTA is to offer a modular framework where simulation models can be combined with various data assimilation methods. COSTA defines a number of building blocks called components. Examples of components are model, method, stochastic observer and state-vector. New data assimilation systems can be created by combining these components. This paper describes the application of COSTA to the WAQUA/TRIWAQ shallow water simulation model. In the past a model specific RRSQRT Kalman filter has been implemented for WAQUA/TRIWAQ. However, this implementation cannot be used in combination with other models. The WAQUA/TRIWAQ model is changed into a COSTA model component and the original RRSQRT Kalman filter is changed into a generic filter that can be used for other models as well. The new filter is now a part of the COSTA environment. The original filter contained a number of WAQUA/TRIWAQ specific aspects e.g. the drying and flooding of areas in the model. These model specific issues are identified, isolated and moved into the model component. A COSTA based implementation of WAQUA/TRIWAQ with the RRSQRT Kalman filter is realized and compared to the original system in a number of experiments. The experiments show that the COSTA based system produces the correct results and the computational overhead for using COSTA is low. The new RRSQRT Kalman filter is also combined with other COSTA models including the LOTOS-EUROS model for atmospherical transport, chemistry (chemical reaction) and deposition of air pollution on the scale of Europe. (orig.)

  4. Next-to-leading order improved perturbative QCD + saturation + hydrodynamics model for A+A collisions

    Energy Technology Data Exchange (ETDEWEB)

    Paatelainen, R.; Eskola, K.J. [Department of Physics, P.O.Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Holopainen, H. [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Niemi, H. [Department of Physics, P.O.Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Tuominen, K. [Department of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland)

    2014-06-15

    We calculate initial conditions for the hydrodynamical evolution in ultrarelativistic heavy-ion collisions at the LHC and RHIC in an improved next-to-leading order perturbative QCD + saturation framework. Using viscous relativistic hydrodynamics, we show that we obtain a good simultaneous description of the centrality dependence of charged particle multiplicities, transverse momentum spectra and elliptic flow at the LHC and at RHIC. In particular, we discuss how the temperature dependence of the shear viscosity is constrained by these data.

  5. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  6. Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast

    Directory of Open Access Journals (Sweden)

    Andrzej Jankowski

    2002-12-01

    Full Text Available This paper presents the results of an attempt to reproduce, with theaid of a numerical circulation model, the hydrological conditions observedin the coastal area of the southern Baltic in September 1989.A large fall in surface layer seawater temperature was recordedin September 1989 at two coastal stations in the vicinity ofKolobrzeg and Wladyslawowo. This upwelling-like phenomenon was assumed tobe related to the specific anemobaric situation in September 1989,however typical of this phenomenon to occur along the Polish Baltic coast(Malicki & Mietus 1994. A three-dimensional (3-D sigma-coordinatebaroclinic model of the Baltic Sea, with a horizontal resolution of~5 km and 24 sigma-levels in the vertical, was applied to investigatewater circulation and thermohaline variability. Hindcastnumerical simulation showed that the model provided a good reproductionof the temporal history of the surface seawater temperature and theduration of the upwelling-like fall, but that the model results wereunderestimated. The maxima of this large fall in the surface layertemperature at both coastal stations are closely related to the phase ofchange of the upwelling-favourable wind direction to the opposite one.The results of simulation runs showed details of upwelling developmentdue to wind field fluctuations in time and differences in shaping thetemperature and current patterns in conjunction with the variations intopography and coastline features in some areas along the Polish coast.Two different hydrodynamic regimes of water movements along the coastresulting from topographical features (the Slupsk Bank can be distinguished.From the model simulation the specific conditions for the occurrence anddevelopment of upwelling at the eastern end of the Polish coast(in the vicinity of Wladyslawowo can be deduced.

  7. Multi-level hydrodynamic modelling of a scaled 10MW TLP wind turbine

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Bredmose, Henrik; Borg, Michael

    2016-01-01

    In the present paper the accuracy of three numerical models for a scaled 10MW TLP wind turbine is assessed by comparison with test data. The three models present different levels of complexity, and therefore different degrees of accuracy can be expected. A set of load cases including irregular an...

  8. Nonlinear Dynamics and Chaos with Applications to Hydrodynamics and Hydrological Modelling

    NARCIS (Netherlands)

    Velickov, S.

    2004-01-01

    A hydroinformatics system represents an electronic knowledge encapsulator that models part of the real world and can be used for the simulation and analysis of physical, chemical and biological processes In water systems, for a better management of the aquatic environment. Thus, modelling is at the

  9. Use of hydrodynamic and benthic models for managing environmental impacts of marine aquaculture

    DEFF Research Database (Denmark)

    Henderson, A.; Gamito, S.; Karakassis, I.

    2001-01-01

    capacity or exploitation capacity in relation to nutrients and medicines release, including whole water body/regional impacts. The relationship and predictability of toxic algal blooms remains some way off. Modelling the complexities of degradation, resuspension and the effect of the scavenging process...... the tools for planning and monitoring as well as regulation, and a number of countries have well-developed policies and procedures in place which utilize modelling tools. The main impacts currently modelled are nutrient enhancement, organic waste deposition and the dispersion and deposition of medicines...... and chemicals. The release of these wastes is influenced by species- and site- specific characteristics, as well as culture and husbandry techniques. The modelling process requires consideration of definitions and limitations; standards for model development including clear objectives and justification; good...

  10. Determining the Groundwater Balance and Radius of Influence Using Hydrodynamic Modeling: Case Study of the Groundwater Source “Šumice” in Serbia

    Directory of Open Access Journals (Sweden)

    Dušan Polomčić

    2015-09-01

    Full Text Available A groundwater flow model was developed to simulate groundwater extraction from the public water supply source of the City of Kikinda. The hydrodynamic model includes the municipal groundwater source of Kikinda (“Šumice” and the Jezero Well, but also an extended area where there are groundwater sources that provide water supply to three factories (MSK, TM and LŽT Kikinda. Hydrodynamic modeling, based on the numerical method of finite differences, shows the groundwater balance of the sources in the extended area of Kikinda. The impact of the industrial water sources on the regime of the public water supply source is also be assessed. The radius of influence of the groundwater sources is determined by simulating the travel of conservative particles over a period of 200 days. The 200-day period reflected the travel time to the wells and represented the third and widest sanitary protection zone

  11. Continuous dynamic assimilation of the inner region data in hydrodynamics modelling: optimization approach

    Directory of Open Access Journals (Sweden)

    F. I. Pisnitchenko

    2008-11-01

    Full Text Available In meteorological and oceanological studies the classical approach for finding the numerical solution of the regional model consists in formulating and solving a Cauchy-Dirichlet problem. The boundary conditions are obtained by linear interpolation of coarse-grid data provided by a global model. Errors in boundary conditions due to interpolation may cause large deviations from the correct regional solution. The methods developed to reduce these errors deal with continuous dynamic assimilation of known global data available inside the regional domain. One of the approaches of this assimilation procedure performs a nudging of large-scale components of regional model solution to large-scale global data components by introducing relaxation forcing terms into the regional model equations. As a result, the obtained solution is not a valid numerical solution to the original regional model. Another approach is the use a four-dimensional variational data assimilation procedure which is free from the above-mentioned shortcoming. In this work we formulate the joint problem of finding the regional model solution and data assimilation as a PDE-constrained optimization problem. Three simple model examples (ODE Burgers equation, Rossby-Oboukhov equation, Korteweg-de Vries equation are considered in this paper. Numerical experiments indicate that the optimization approach can significantly improve the precision of the regional solution.

  12. Continuous dynamic assimilation of the inner region data in hydrodynamics modelling: optimization approach

    Science.gov (United States)

    Pisnitchenko, F. I.; Pisnichenko, I. A.; Martínez, J. M.; Santos, S. A.

    2008-11-01

    In meteorological and oceanological studies the classical approach for finding the numerical solution of the regional model consists in formulating and solving a Cauchy-Dirichlet problem. The boundary conditions are obtained by linear interpolation of coarse-grid data provided by a global model. Errors in boundary conditions due to interpolation may cause large deviations from the correct regional solution. The methods developed to reduce these errors deal with continuous dynamic assimilation of known global data available inside the regional domain. One of the approaches of this assimilation procedure performs a nudging of large-scale components of regional model solution to large-scale global data components by introducing relaxation forcing terms into the regional model equations. As a result, the obtained solution is not a valid numerical solution to the original regional model. Another approach is the use a four-dimensional variational data assimilation procedure which is free from the above-mentioned shortcoming. In this work we formulate the joint problem of finding the regional model solution and data assimilation as a PDE-constrained optimization problem. Three simple model examples (ODE Burgers equation, Rossby-Oboukhov equation, Korteweg-de Vries equation) are considered in this paper. Numerical experiments indicate that the optimization approach can significantly improve the precision of the regional solution.

  13. A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid

    Science.gov (United States)

    Peng, Cheng; Min, Haoda; Guo, Zhaoli; Wang, Lian-Ping

    2016-12-01

    A multiple-relaxation time (MRT) lattice Boltzmann (LB) model on a D2Q9 rectangular grid is designed theoretically and validated numerically in the present work. By introducing stress components into the equilibrium moments, this MRT-LB model restores the isotropy of diffusive momentum transport at the macroscopic level (or in the continuum limit), leading to moment equations that are fully consistent with the Navier-Stokes equations. The model is derived by an inverse design process which is described in detail. Except one moment associated with the energy square, all other eight equilibrium moments can be theoretically and uniquely determined. The model is then carefully validated using both the two-dimensional decaying Taylor-Green vortex flow and lid-driven cavity flow, with different grid aspect ratios. The corresponding results from an earlier model (Bouzidi et al. (2001) [28]) are also presented for comparison. The results of Bouzidi et al.'s model show problems associated with anisotropy of viscosity coefficients, while the present model exhibits full isotropy and is accurate and stable.

  14. Hydrodynamic modeling of the intrusion phenomenon in water distribution systems; Modelacion hidrodinamica del fenomeno de intrusion en tuberia de abastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Jimenez, Petra Amparo; Mora-Rodriguez, Jose de Jesus; Perez-Garcia, Rafael; Martinez-Solano, F. Javier [Universidad Politecnica de Valencia (Spain)

    2008-10-15

    This paper describes a strategy for the hydrodynamic modeling of the pathogen intrusion phenomenon in water distribution systems by the combination of a breakage with a depression situation. This scenario will be modeled computationally and experimentally. The phenomenon to be represented by both simulations is the same: the entrance of an external volume into the circulation of a main volume, known as a pathogen intrusion, as long as the main volume is potable water. To this end, a prototype and a computational model based on Computational Fluid Dynamics (CFD) are used, which allow visualizing the fields of speeds and pressures in a simulated form. With the comparison of the results of both models, conclusions will be drawn on the detail of the studied pathogen intrusion phenomenon. [Spanish] En el presente documento se describe una estrategia de modelacion del fenomeno hidrodinamico de la intrusion patogena en redes de distribucion de agua por combinacion de una rotura con una situacion de depresion. Este escenario sera modelado computacional y experimentalmente. El fenomeno que se desea representar con ambas simulaciones es el mismo: la entrada de un caudal externo a una conduccion para la que circula un caudal principal, denominado intrusion patogena, siempre y cuando el caudal principal sea agua potable. Para ello se dispone de un prototipo y un modelo computacional basado en la Dinamica de Fluidos Computacional (DFC de aqui en adelante), que permite visualizar los campos de velocidades y presiones de forma simulada. Con la comparacion de los resultados de ambos modelos se extraeran conclusiones sobre el detalle del fenomeno de la intrusion patogena estudiado.

  15. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    Directory of Open Access Journals (Sweden)

    B. Gems

    2016-06-01

    physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  16. Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Jung, Ki Won; Yang, Zhaoqing; Copping, Andrea; Deng, Z. Daniel

    2016-03-01

    An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.

  17. Combining hydrodynamic modelling with genetics: can passive larval drift shape the genetic structure of Baltic Mytilus populations?

    Science.gov (United States)

    Stuckas, Heiko; Knöbel, Loreen; Schade, Hanna; Breusing, Corinna; Hinrichsen, Hans-Harald; Bartel, Manuela; Langguth, Klaudia; Melzner, Frank

    2017-05-01

    While secondary contact between Mytilus edulis and Mytilus trossulus in North America results in mosaic hybrid zone formation, both species form a hybrid swarm in the Baltic. Despite pervasive gene flow, Baltic Mytilus species maintain substantial genetic and phenotypic differentiation. Exploring mechanisms underlying the contrasting genetic composition in Baltic Mytilus species will allow insights into processes such as speciation or adaptation to extremely low salinity. Previous studies in the Baltic indicated that only weak interspecific reproductive barriers exist and discussed the putative role of adaptation to environmental conditions. Using a combination of hydrodynamic modelling and multilocus genotyping, we investigate how oceanographic conditions influence passive larval dispersal and hybrid swarm formation in the Baltic. By combining our analyses with previous knowledge, we show a genetic transition of Baltic Mytilus species along longitude 12°-13°E, that is a virtual line between Malmö (Sweden) and Stralsund (Germany). Although larval transport only occurs over short distances (10-30 km), limited larval dispersal could not explain the position of this genetic transition zone. Instead, the genetic transition zone is located at the area of maximum salinity change (15-10 psu). Thus, we argue that selection results in weak reproductive barriers and local adaptation. This scenario could maintain genetic and phenotypic differences between Baltic Mytilus species despite pervasive introgressive hybridization. © 2017 John Wiley & Sons Ltd.

  18. The type IIP supernova 2012aw in M95: Hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Ora, M.; Botticella, M. T.; Della Valle, M. [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); Pumo, M. L.; Zampieri, L.; Tomasella, L.; Cappellaro, E.; Benetti, S. [INAF, Osservatorio Astronomico di Padova, I-35122 Padova (Italy); Pignata, G.; Bufano, F. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Bayless, A. J. [Southwest Research Institute, Department of Space Science, 6220 Culebra Road, San Antonio, TX 78238 (United States); Pritchard, T. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Taubenberger, S.; Benitez, S. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Kotak, R.; Inserra, C.; Fraser, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom); Elias-Rosa, N. [Institut de Ciències de l' Espai (CSIC-IEEC) Campus UAB, Torre C5, Za plata, E-08193 Bellaterra, Barcelona (Spain); Haislip, J. B. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Ave., Chapel Hill, NC 27599 (United States); Harutyunyan, A. [Fundación Galileo Galilei - Telescopio Nazionale Galileo, Rambla José Ana Fernández Pérez 7, E-38712 Breña Baja, TF - Spain (Spain); and others

    2014-06-01

    We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the {sup 56}Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M {sub env} ∼ 20 M {sub ☉}, progenitor radius R ∼ 3 × 10{sup 13} cm (∼430 R {sub ☉}), explosion energy E ∼ 1.5 foe, and initial {sup 56}Ni mass ∼0.06 M {sub ☉}. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M {sub ☉} of the Type IIP events.

  19. A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints

    Science.gov (United States)

    Reep, Jeffrey W.; Russell, Alexander J. B.; Tarr, Lucas A.; Leake, James E.

    2018-02-01

    Alfvénic waves have been proposed as an important energy transport mechanism in coronal loops, capable of delivering energy to both the corona and chromosphere and giving rise to many observed features of flaring and quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption that the current work removes. Via a ray-tracing method, we have implemented traveling waves in a field-aligned hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; and (3) the dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an electron beam.

  20. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model.

    Science.gov (United States)

    Su, M G; Min, Q; Cao, S Q; Sun, D X; Hayden, P; O'Sullivan, G; Dong, C Z

    2017-03-23

    One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging.

  1. Hydrodynamic modeling with grey-box method of a foil-like underwater vehicle

    Science.gov (United States)

    Liu, Xin-yu; Li, Yi-ping; Wang, Ya-xing; Feng, Xi-sheng

    2017-12-01

    In this study, a dynamic modeling method for foil-like underwater vehicles is introduced and experimentally verified in different sea tests of the Hadal ARV. The dumping force of a foil-like underwater vehicle is sensitive to swing motion. Some foil-like underwater vehicles swing periodically when performing a free-fall dive task in experiments. Models using conventional modeling methods yield solutions with asymptotic stability, which cannot simulate the self-sustained swing motion. By improving the ridge regression optimization algorithm, a grey-box modeling method based on 378 viscous drag coefficients using the Taylor series expansion is proposed in this study. The method is optimized for over-fitting and convergence problems caused by large parameter matrices. Instead of the PMM test data, the unsteady computational fluid dynamics calculation results are used in modeling. The obtained model can better simulate the swing motion of the underwater vehicle. Simulation and experimental results show a good consistency in free-fall tests during sea trials, as well as a prediction of the dive speed in the swing state.

  2. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    Energy Technology Data Exchange (ETDEWEB)

    Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be

  3. Wave and Hydrodynamic Modeling for Engineering Design of Jetties at Tangier Island in Chesapeake Bay, USA

    Directory of Open Access Journals (Sweden)

    Lihwa Lin

    2015-12-01

    Full Text Available The protection of a boat canal at the western entrance of Tangier Island, Virginia, located in the lower Chesapeake Bay, is investigated using different structural alternatives. The existing entrance channel is oriented 45 deg with respect to the local shoreline, and exposed directly to the lower Bay without any protection. The adjacent shoreline has experienced progressive erosion in recent decades by flooding due to severe storms and waves. To protect the western entrance of the channel and shoreline, five different jetty and spur combinations were proposed to reduce wave energy in the lee of jetties. Environmental forces affecting the proposed jettied inlet system are quantified using the Coastal Modeling System, consisting of a spectral wave model and a depth-averaged circulation model with sediment transport calculations. Numerical simulations were conducted for design wave conditions and a 50-year return period tropical storm at the project site. Model results show a low crested jetty of 170-m length connecting to the north shore at a 45-deg angle, and a short south spur of 25-m long, provide adequate wave-reduction benefits among the five proposed alternatives. The model simulation indicates this alternative has the minimum impact on sedimentation around the structured inlet and boat canal.

  4. Convergance experiments with a hydrodynamic model of Port Royal Sound, South Carolina

    Science.gov (United States)

    Lee, J.K.; Schaffranek, R.W.; Baltzer, R.A.

    1989-01-01

    A two-demensional, depth-averaged, finite-difference, flow/transport model, SIM2D, is being used to simulate tidal circulation and transport in the Port Royal Sound, South Carolina, estuarine system. Models of a subregion of the Port Royal Sound system have been derived from an earlier-developed model of the entire system having a grid size of 600 ft. The submodels were implemented with grid sizes of 600, 300, and 150 ft in order to determine the effects of changes in grid size on computed flows in the subregion, which is characterized by narrow channels and extensive tidal flats that flood and dewater with each rise and fall of the tide. Tidal amplitudes changes less than 5 percent as the grid size was decreased. Simulations were performed with the 300-foot submodel for time steps of 60, 30, and 15 s. Study results are discussed.

  5. An assessment of turbulence models for linear hydrodynamic stability analysis of strongly swirling jets

    CERN Document Server

    Rukes, Lothar; Oberleithner, Kilian

    2016-01-01

    Linear stability analysis has proven to be a useful tool in the analysis of dominant coherent structures, such as the von K\\'{a}rm\\'{a}n vortex street and the global spiral mode associated with the vortex breakdown of swirling jets. In recent years, linear stability analysis has been applied successfully to turbulent time-mean flows, instead of laminar base-flows, \\textcolor{black}{which requires turbulent models that account for the interaction of the turbulent field with the coherent structures. To retain the stability equations of laminar flows, the Boussinesq approximation with a spatially nonuniform but isotropic eddy viscosity is typically employed. In this work we assess the applicability of this concept to turbulent strongly swirling jets, a class of flows that is particularly unsuited for isotropic eddy viscosity models. Indeed we find that unsteady RANS simulations only match with experiments with a Reynolds stress model that accounts for an anisotropic eddy viscosity. However, linear stability anal...

  6. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport

    Science.gov (United States)

    Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.

    2011-01-01

    Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.

  7. A multi-scale GIS and hydrodynamic modelling approach to fish passage assessment: Clarence and Shoalhaven Rivers, NSW Australia

    Science.gov (United States)

    Bonetti, Rita M.; Reinfelds, Ivars V.; Butler, Gavin L.; Walsh, Chris T.; Broderick, Tony J.; Chisholm, Laurie A.

    2016-05-01

    Natural barriers such as waterfalls, cascades, rapids and riffles limit the dispersal and in-stream range of migratory fish, yet little is known of the interplay between these gradient dependent landforms, their hydraulic characteristics and flow rates that facilitate fish passage. The resurgence of dam construction in numerous river basins world-wide provides impetus to the development of robust techniques for assessment of the effects of downstream flow regime changes on natural fish passage barriers and associated consequences as to the length of rivers available to migratory species. This paper outlines a multi-scale technique for quantifying the relative magnitude of natural fish passage barriers in river systems and flow rates that facilitate passage by fish. First, a GIS-based approach is used to quantify channel gradients for the length of river or reach under investigation from a high resolution DEM, setting the magnitude of identified passage barriers in a longer context (tens to hundreds of km). Second, LiDAR, topographic and bathymetric survey-based hydrodynamic modelling is used to assess flow rates that can be regarded as facilitating passage across specific barriers identified by the river to reach scale gradient analysis. Examples of multi-scale approaches to fish passage assessment for flood-flow and low-flow passage issues are provided from the Clarence and Shoalhaven Rivers, NSW, Australia. In these river systems, passive acoustic telemetry data on actual movements and migrations by Australian bass (Macquaria novemaculeata) provide a means of validating modelled assessments of flow rates associated with successful fish passage across natural barriers. Analysis of actual fish movements across passage barriers in these river systems indicates that two dimensional hydraulic modelling can usefully quantify flow rates associated with the facilitation of fish passage across natural barriers by a majority of individual fishes for use in management

  8. Three-dimensional hydrodynamic modeling of SN 1987A from the supernova explosion till the Athena era

    Science.gov (United States)

    Orlando, Salvatore

    2016-06-01

    The proximity of SN 1987A and the wealth of observations collected at all wavelenght bands since its outburst allow us to study in details the evolution of a supernova remnant (SNR) from the immediate aftermath of the SN explosion till its expansion through the highly inhomogeneous circumstellar medium (CSM). We investigate the interaction between SN 1987A and the surrounding CSM through three-dimensional hydrodynamic modeling. The aim is to determine the contribution of shocked ejecta and shocked CSM to the detected X-ray flux and to derive the density structure of the inhomogeneous CSM and clues on the early structure of ejecta. We show that the physical model reproducing the main observables of SN 1987A reproduces also the X-ray emission of the subsequent expanding remnant, thus bridging the gap between supernovae and supernova remnants. By comparing model results with observations, we constrain the explosion energy in the range 1.2 - 1.4 × 10^(51) erg and the envelope mass in the range 15 - 17 M_{⊙}) . We find that the shape of X-ray lightcurves and spectra at early epochs (< 15 years) reflect the structure of outer ejecta. At later epochs, the shape of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, to disentangle the imprint of the supernova on the remnant emission from the effects of the remnant interaction with the environment, and to constrain the pre-supernova structure of the nebula. Finally the remnant evolution is followed for 40 years, providing predictions on the future of SN 1987A until the adventof Athena.

  9. Flow Forecasting using Deterministic Updating of Water Levels in Distributed Hydrodynamic Urban Drainage Models

    DEFF Research Database (Denmark)

    Hansen, Lisbet Sneftrup; Borup, Morten; Moller, Arne

    2014-01-01

    There is a growing requirement to generate more precise model simulations and forecasts of flows in urban drainage systems in both offline and online situations. Data assimilation tools are hence needed to make it possible to include system measurements in distributed, physically-based urban...

  10. An Idealized Meteorological-Hydrodynamic Model for Exploring Extreme Storm Surge Statistics in the North Sea

    NARCIS (Netherlands)

    Van Ledden, M.; Van den Berg, N.J.F.; De Jong, M.S.; Van Gelder, P.H.A.J.M.; Den Heijer, C.; Vrijling, J.K.; Jonkman, S.N.; Roos, P.C.; Hulscher, S.J.M.H.; Lansen, A.J.

    2014-01-01

    This paper explores an alternative method to determine extreme surge levels at the Dutch Coast. For this exploration, specific focus is on the extreme water level at Hoek van Holland, The Netherlands. The alternative method has been based on a joint probability model of the storm characteristics at

  11. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages of the ...

  12. COHERENS: A hydrodynamic model validated for the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Betty, J.; Saheed, P.P.; Carlos, F.; Vethamony, P.; Campos, E.J.D.

    especially in the southern domain, off Mangalore, where the shallow water dynamics is not only driven by the local wind forcing and tides, but also by the remotely driven currents In order to get a comprehensive picture of the prevailing dynamics, the model...

  13. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior

    Directory of Open Access Journals (Sweden)

    Ordóñez Ródenas José

    2016-01-01

    Full Text Available One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have been identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modelling of primary pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor design and the analysis of loss of flow transients triggered by pumps coast–down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast–down is also included.

  14. A Comparison Between Measured and Predicted Hydrodynamic Damping for a Jack-Up Rig Model

    DEFF Research Database (Denmark)

    Laursen, Thomas; Rohbock, Lars; Jensen, Jørgen Juncher

    1996-01-01

    An extensive set of measurements funded by the EU project Large Scale Facilities Program has been carried out on a model of a jack-up rig at the Danish Hydraulic Institute. The test serieswere conducted by MSC and include determination of base shears and overturning moments in both regular...

  15. A new approach for deriving Flood hazard maps from SAR data and global hydrodynamic models

    Science.gov (United States)

    Matgen, P.; Hostache, R.; Chini, M.; Giustarini, L.; Pappenberger, F.; Bally, P.

    2014-12-01

    With the flood consequences likely to amplify because of the growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method that integrates global flood inundation modeling and microwave remote sensing is presented. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers opportunities for estimating flood non-exceedance probabilities in a robust way. These probabilities can be attributed to historical satellite observations. Time series of SAR-derived flood extent maps and associated non-exceedance probabilities can then be combined generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. In principle, this can be done for any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. As a test case we applied the method on the Severn River (UK) and the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. The first results confirm the potentiality of the method. However, further developments on two aspects are required to improve the quality of the hazard map and to ensure the acceptability of the product by potential end user organizations. On the one hand, it is of paramount importance to

  16. Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations

    Science.gov (United States)

    Zhu, Yifei; Shcherbanev, Sergey; Baron, Brian; Starikovskaia, Svetlana

    2017-12-01

    A parallel 2D code for modeling nanosecond surface dielectric barrier discharge (nSDBD), combining a discharge description, detailed kinetics and hydrodynamics, is developed and validated. A series of experiments and numerical modeling for a single pulse nSDBD in atmospheric pressure air at a voltage amplitude of 24 kV have been performed. The measured and calculated velocity of the discharge front, electrical current, 2D map of N2 ({{{C}}}3{{{\\Pi }}}u)\\to {{{N}}}2({{{B}}}3{{{\\Pi }}}g) emission and hydrodynamic perturbations caused by the discharge on the time scale 0.2{--}5 μs are compared. The data are presented and analyzed for the negative and positive polarity of the streamers. A set of parametric calculations with different dielectric permittivities and different dielectric thicknesses is presented.

  17. Hydrodynamical model of anisotropic, polarized turbulent superfluids. I: constraints for the fluxes

    Science.gov (United States)

    Mongiovì, Maria Stella; Restuccia, Liliana

    2018-02-01

    This work is the first of a series of papers devoted to the study of the influence of the anisotropy and polarization of the tangle of quantized vortex lines in superfluid turbulence. A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is here extended, to take into consideration also these effects. The model chooses as thermodynamic state vector the density, the velocity, the energy density, the heat flux, and a complete vorticity tensor field, including its symmetric traceless part and its antisymmetric part. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu procedure. The results show that the presence of anisotropy and polarization in the vortex tangle affects in a substantial way the dynamics of the heat flux, and allow us to give a physical interpretation of the vorticity tensor here introduced, and to better describe the internal structure of a turbulent superfluid.

  18. Hydrodynamics of free surface flows modelling with the finite element method

    CERN Document Server

    Hervouet, Jean-Michel

    2007-01-01

    A definitive guide for accurate state-of-the-art modelling of free surface flows Understanding the dynamics of free surface flows is the starting point of many environmental studies, impact studies, and waterworks design. Typical applications, once the flows are known, are water quality, dam impact and safety, pollutant control, and sediment transport. These studies used to be done in the past with scale models, but these are now being replaced by numerical simulation performed by software suites called "hydro-informatic systems". The Telemac system is the leading software package worldwide, and has been developed by Electricité de France and Jean-Michel Hervouet, who is the head and main developer of the Telemac project. Written by a leading authority on Computational Fluid Dynamics, the book aims to provide environmentalists, hydrologists, and engineers using hydro-informatic systems such as Telemac and the finite element method, with the knowledge of the basic principles, capabilities, different hypothese...

  19. Emergence of the Calogero family of models in external potentials: duality, solitons and hydrodynamics

    Science.gov (United States)

    Kulkarni, Manas; Polychronakos, Alexios

    2017-11-01

    We present a first-order formulation of the Calogero model in external potentials in terms of a generating function, which simplifies the derivation of its dual form. Solitons naturally appear in this formulation as particles of negative mass. Using this method, we obtain the dual form of Calogero particles in external quartic, trigonometric and hyperbolic potentials, which were known to be integrable but had no known dual formulation. We derive the corresponding soliton solutions, generalizing earlier results for the harmonic Calogero system, and present numerical results that demonstrate the integrable nature of the soliton motion. We also give the collective fluid mechanical formulation of these models and derive the corresponding fluid soliton solutions in terms of meromorphic fields, commenting on issues of stability and integrability.

  20. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study

    NARCIS (Netherlands)

    Darmana, D.; Henket, R.L.B.; Deen, N.G.; Kuipers, J.A.M.

    2007-01-01

    This paper describes simulations that were performed with an Euler–Lagrange model that takes into account mass transfer and chemical reaction reported by Darmana et al. (2005. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model.

  1. Verification and Validation of the Coastal Modeling System. Report 3: CMS-Flow: Hydrodynamics

    Science.gov (United States)

    2011-12-01

    process to recreate the bay tidal prism. Because the bay system includes a secondary inlet to the south, Matanzas Inlet, there is some uncertainty... Matanzas River (Figure 50). Measured water levels were not correlated to a benchmark, and therefore, can only be compared to model calculations with...made over the northern Tolomato River and southern Matanzas River main channels. Four inlet throat cross-sections were made at or close to capturing

  2. Variable speed hydrodynamic model of anAuv utilizing cross tunnel thrusters

    Science.gov (United States)

    2017-09-01

    Re < 100 Laminar, strong Reynolds number dependence 100 < Re < 103 Laminar, boundary layer theory useful 103 < Re < 104 Transition to turbulence 104...vehicle’s actual depth and the model’s depth. Many of the initialization considera- tions that applied to the CTT disabled mission also apply to this...enabled mission. The actual and modeled vehicles are able to achieve the commanded depth faster than CTT disabled vehicles. There is a slight overshoot

  3. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    OpenAIRE

    B. Gems; B. Mazzorana; Hofer, T.; Sturm, M.; Gabl, R.; Aufleger, M.

    2016-01-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 30...

  4. An assessment of turbulence models for linear hydrodynamic stability analysis of strongly swirling jets

    Science.gov (United States)

    Rukes, Lothar; Paschereit, Christian Oliver; Oberleithner, Kilian

    2016-09-01

    Linear stability analysis has proven to be a useful tool in the analysis of dominant coherent structures, such as the von K\\'{a}rm\\'{a}n vortex street and the global spiral mode associated with the vortex breakdown of swirling jets. In recent years, linear stability analysis has been applied successfully to turbulent time-mean flows, instead of laminar base-flows, \\textcolor{black}{which requires turbulent models that account for the interaction of the turbulent field with the coherent structures. To retain the stability equations of laminar flows, the Boussinesq approximation with a spatially nonuniform but isotropic eddy viscosity is typically employed. In this work we assess the applicability of this concept to turbulent strongly swirling jets, a class of flows that is particularly unsuited for isotropic eddy viscosity models. Indeed we find that unsteady RANS simulations only match with experiments with a Reynolds stress model that accounts for an anisotropic eddy viscosity. However, linear stability analysis of the mean flow is shown to accurately predict the global mode growth rate and frequency if the employed isotropic eddy viscosity represents a least-squares approximation of the anisotropic eddy viscosity. Viscosities derived from the $k-\\epsilon$ model did not achieve a good prediction of the mean flow nor did they allow for accurate stability calculations. We conclude from this study that linear stability analysis can be accurate for flows with strongly anisotropic turbulent viscosity and the capability of the Boussinesq approximation in terms of URANS-based mean flow prediction is not a prerequisite.

  5. Hydrodynamic Modeling for Channel and Shoreline Stabilization at Rhodes Point, Smith Island, MD

    Science.gov (United States)

    2016-11-01

    wave height, period, direction, and water depth) along the proposed structure footprints were used for the preliminary ERDC/CHL TR-16-17 7...fringe of the marsh vegetation north and south of the entrance shorelines. Figure 2-2. Channel and jetty dimensions and cross sections. NAB...modeling study results (e.g., wave height, period, direction, and water level) along the western side of the proposed jetty footprint were used in

  6. Calibration of Linked Hydrodynamic and Water Quality Model for Santa Margarita Lagoon

    Science.gov (United States)

    2016-07-01

    anthropogenic pollutants. WASP-Eutro simulates the biogeochemical processes of aquatic plant growth and their response to nutrients (nitrogen and phosphorous...of the EFDC model was to ensure that the simulated water surface elevation, salinity , and temperature are in agreement with the corresponding data...freshwater sources and tidal exchange with the ocean. The salinity and temperatures data measured at Del Mar by Scripps Institution of Oceanography

  7. The FluxCompensator: Making Radiative Transfer Models of Hydrodynamical Simulations Directly Comparable to Real Observations

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.

    2017-11-01

    When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.

  8. Mutual coupling of hydrologic and hydrodynamic models - a viable approach for improved large-scale inundation estimates?