WorldWideScience

Sample records for hydrodynamic prognostic model

  1. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  2. Recent development of hydrodynamic modeling

    Science.gov (United States)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  3. Turbulence Models of Hydrodynamic Lubrication

    Institute of Scientific and Technical Information of China (English)

    张直明; 王小静; 孙美丽

    2003-01-01

    The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.

  4. Distributed Prognostics Based on Structural Model Decomposition

    Data.gov (United States)

    National Aeronautics and Space Administration — Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based...

  5. Hydrodynamic models of a Cepheid atmosphere

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  6. Status and future of hydrodynamical model atmospheres

    CERN Document Server

    Ludwig, H G

    2004-01-01

    Since about 25 years ago work has been dedicated to the development of hydrodynamical model atmospheres for cool stars (of A to T spectral type). Despite their obviously sounder physical foundation in comparison with standard hydrostatic models, their general application has been rather limited. In order to understand why this is, and how to progress, we review the present status of hydrodynamical modelling of cool star atmospheres. The development efforts were and are motivated by the theoretical interest of understanding the dynamical processes operating in stellar atmospheres. To show the observational impact, we discuss examples in the fields of spectroscopy and stellar structure where hydrodynamical modelling provided results on a level qualitatively beyond standard models. We stress present modelling challenges, and highlight presently possible and future observations that would be particularly valuable in the interplay between model validation and interpretation of observables, to eventually widen the ...

  7. Concordance for prognostic models with competing risks

    NARCIS (Netherlands)

    M. Wolbers (Marcel); S. Blanche (Stephane); M. Koller (Michael); J.C.M. Witteman (Jacqueline); T.A. Gerds (Thomas)

    2014-01-01

    textabstractThe concordance probability is a widely used measure to assess discrimination of prognostic models with binary and survival endpoints. We formally define the concordance probability for a prognostic model of the absolute risk of an event of interest in the presence of competing risks and

  8. Hydrodynamics of bacterial colonies: A model

    Science.gov (United States)

    Lega, J.; Passot, T.

    2003-03-01

    We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.

  9. Distributed Prognostics based on Structural Model Decomposition

    Science.gov (United States)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  10. Hydrodynamic Modeling and Its Application in AUC.

    Science.gov (United States)

    Rocco, Mattia; Byron, Olwyn

    2015-01-01

    The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling.

  11. Hydrodynamic modelling of hydrostatic magnesium extrusion

    NARCIS (Netherlands)

    Moodij, E.; Rooij, de M.B.; Schipper, D.J.

    2006-01-01

    Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown th

  12. Kinetic and hydrodynamic models of chemotactic aggregation

    CERN Document Server

    Chavanis, Pierre-Henri

    2007-01-01

    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...

  13. Chaos in hydrodynamic BL Herculis models

    CERN Document Server

    Smolec, R

    2014-01-01

    We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Pa...

  14. Brownsville Ship Channel Hydrodynamic Modeling

    Science.gov (United States)

    2012-01-01

    31  Figure 31. Laguna Madre analysis locations...wave resuspension and circulation of sediment in Laguna Madre .2 The navigation impacts are assessed by performing model simulations of the...to better resolve the shallow-water habitats, including South Bay, Bahia Grande, and South Laguna Madre . These habitats are discussed further

  15. Concordance for prognostic models with competing risks

    DEFF Research Database (Denmark)

    Wolbers, Marcel; Blanche, Paul; Koller, Michael T

    2014-01-01

    The concordance probability is a widely used measure to assess discrimination of prognostic models with binary and survival endpoints. We formally define the concordance probability for a prognostic model of the absolute risk of an event of interest in the presence of competing risks and relate i...... of the working model. We further illustrate the methods by computing the concordance probability for a prognostic model of coronary heart disease (CHD) events in the presence of the competing risk of non-CHD death.......The concordance probability is a widely used measure to assess discrimination of prognostic models with binary and survival endpoints. We formally define the concordance probability for a prognostic model of the absolute risk of an event of interest in the presence of competing risks and relate...... it to recently proposed time-dependent area under the receiver operating characteristic curve measures. For right-censored data, we investigate inverse probability of censoring weighted (IPCW) estimates of a truncated concordance index based on a working model for the censoring distribution. We demonstrate...

  16. Modeling Water Waves with Smoothed Particle Hydrodynamics

    Science.gov (United States)

    2013-09-30

    flows, such as undertow, longshore currents, and rip currents. APPROACH The approach is based on improving various aspects of the SPH code ...Smoothed Particle Hydrodynamics ( SPH ) is a meshless numerical method that is being developed for the study of nearshore waves and other Navy needs. The...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes

  17. Impact modeling with Smooth Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  18. Hydrodynamic modeling of ns-laser ablation

    Directory of Open Access Journals (Sweden)

    David Autrique

    2013-10-01

    Full Text Available Laser ablation is a versatile and widespread technique, applied in an increasing number of medical, industrial and analytical applications. A hydrodynamic multiphase model describing nanosecond-laser ablation (ns-LA is outlined. The model accounts for target heating and mass removal mechanisms as well as plume expansion and plasma formation. A copper target is placed in an ambient environment consisting of helium and irradiated by a nanosecond-laser pulse. The effect of variable laser settings on the ablation process is explored in 1-D numerical simulations.

  19. Three Dimensional Hydrodynamic Model With Multiquadtree Meshes

    Directory of Open Access Journals (Sweden)

    G. P. Vanegas

    2008-01-01

    Full Text Available This study presents a three dimensional model for the transport of conservative contaminants, which can be used for bodies of water which are affected by winds and/or tides. The model solves the equation of mass transport, based on results obtained using a hydrodynamic model for shallow waters that works in a finite volume scheme and a type of hierarchical grid, called multi-quadtree, which is adaptable to the bathymetry. To solve the vertical coordinates, the coordinate z is transformed into a sigma (σ coordinate, thus allowing the same number of layers in the vertical, regardless of depth. This hydrodynamic model is validated using two cases: a long wave propagated in a channel of variable width and bottom and wind action in a rectangular basin. Finally, the results obtained are presented for a hypothetical single port outfall in the bay of Campeche, México. The model developed here is both quick and easy to use and is efficient when compared with models presented by other authors since it uses adaptable grids which allow detailed solutions to be obtained for areas of interest such as coastlines and the area around an outfall.

  20. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  1. Diagnostic and prognostic models: applications and methods

    NARCIS (Netherlands)

    Zuithoff, N.P.A.|info:eu-repo/dai/nl/313995494

    2012-01-01

    Prediction modelling, both diagnostic and prognostic, has become a major topic in clinical research and practice. Traditionally, clinicians intuitively combine and judge the documented patient information, on e.g. risk factors and test results, to implicitly assess the probability or risk of having

  2. Multithread Hydrodynamic Modeling of a Solar Flare

    Science.gov (United States)

    Warren, Harry P.

    2006-01-01

    Past hydrodynamic simulations have been able to reproduce the high temperatures and densities characteristic of solar flares. These simulations, however, have not been able to account for the slow decay of the observed flare emission or the absence of blueshifts in high spectral resolution line profiles. Recent work has suggested that modeling a flare as a sequence of independently heated threads instead of as a single loop may resolve the discrepancies between the simulations and observations. In this paper, we present a method for computing multithread, time-dependent hydrodynamic simulations of solar flares and apply it to observations of the Masuda flare of 1992 January 13. We show that it is possible to reproduce the temporal evolution of high temperature thermal flare plasma observed with the instruments on the GOES and Yohkoh satellites. The results from these simulations suggest that the heating timescale for a individual thread is on the order of 200 s. Significantly shorter heating timescales (20 s) lead to very high temperatures and are inconsistent with the emission observed by Yohkoh.

  3. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain...

  4. A Model-based Prognostics Approach Applied to Pneumatic Valves

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain...

  5. Hydrodynamic modeling and explosive compaction of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, C.; Holt, A.; Finger, M.; Kuhl, W.

    1977-09-01

    High-density ceramics with high-strength microstructure were achieved by explosive compaction. Well-characterized Al/sub 2/O/sub 3/, AlN, and boron powders were explosively compacted in both cylindrical and flat plate geometries. In cylindrical geometries compacted densities between 91 and 98 percent of theoretical were achieved. Microhardness measurements indicated that the strength and integrity of the microstructure were comparable to conventionally fabricated ceramics, even though all samples with densities greater than 90 percent theoretical contained macrocracks. Fractured surfaces evaluated by SEM showed evidence of boundary melting. Equation of state data for porous Al/sub 2/O/sub 3/ were used to calculate the irreversible work done on the sample as a function of pressure. This was expressed as a percentage of the total sample which could be melted. Calculations show that very little melting can be expected in samples shocked to less than 3 GPa. Significant melting and grain boundary fusion can be expected in samples shocked to pressures greater than 8 GPa. Hydrodynamic modeling of right cylinder compaction with detonation at one end was attempted by using a two-dimensional computer code. The complications of this analysis led to experiments using plane shock waves. Flat-plate compaction assemblies were designed and analyzed by 2-D hydrodynamic codes. The use of porous shock attenuators was evaluated. Experiments were performed on aluminum oxide powders in plane wave geometry. Microstructure evaluations were made as a function of location in the flat plate samples. 11 figures, 1 table.

  6. An analytical model of flagellate hydrodynamics

    Science.gov (United States)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders

    2017-04-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface.

  7. A hydrodynamic model for cooperating solidary countries

    Science.gov (United States)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2017-07-01

    The goal of international trade theories is to explain the exchange of goods and services between different countries, aiming to benefit from it. Albeit the idea is very simple and known since ancient history, smart policy and business strategies need to be implemented by each subject, resulting in a complex as well as not obvious interplay. In order to understand such a complexity, different theories have been developed since the sixteenth century and today new ideas still continue to enter the game. Among them, the so called classical theories are country-based and range from Absolute and Comparative Advantage theories by A. Smith and D. Ricardo to Factor Proportions theory by E. Heckscher and B. Ohlin. In this work we build a simple hydrodynamic model, able to reproduce the main conclusions of Comparative Advantage theory in its simplest setup, i.e. a two-country world with country A and country B exchanging two goods within a genuine exchange-based economy and a trade flow ruled only by market forces. The model is further generalized by introducing money in order to discuss its role in shaping trade patterns. Advantages and drawbacks of the model are also discussed together with perspectives for its improvement.

  8. Modeling the hydrodynamics of phloem sieve plates

    Directory of Open Access Journals (Sweden)

    Kaare Hartvig Jensen

    2012-07-01

    Full Text Available Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  9. Hydrodynamics Research on Amphibious Vehicle Systems:Modeling Theory

    Institute of Scientific and Technical Information of China (English)

    JU Nai-jun

    2006-01-01

    For completing the hydrodynamics software development and the engineering application research on the amphibious vehicle systems, hydrodynamic modeling theory of the amphibious vehicle systems is elaborated, which includes to build up the dynamic system model of amphibious vehicle motion on water, gun tracking-aiming-firing, bullet hit and armored check-target, gunner operating control, and the simulation computed model of time domain for random sea wave.

  10. Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Prognostics has received considerable attention recently as an emerging sub-discipline within SHM. Prognosis is here strictly defined as “predicting the time at...

  11. Prognosis Research Strategy (PROGRESS 3: prognostic model research.

    Directory of Open Access Journals (Sweden)

    Ewout W Steyerberg

    Full Text Available Prognostic models are abundant in the medical literature yet their use in practice seems limited. In this article, the third in the PROGRESS series, the authors review how such models are developed and validated, and then address how prognostic models are assessed for their impact on practice and patient outcomes, illustrating these ideas with examples.

  12. A framework for quantifying net benefits of alternative prognostic models

    DEFF Research Database (Denmark)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit...

  13. A framework for quantifying net benefits of alternative prognostic models

    NARCIS (Netherlands)

    Rapsomaniki, Eleni; White, Ian R.; Wood, Angela M.; Thompson, Simon G.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) o

  14. Numerical Modelling of Arctic Coastal Hydrodynamics and Sediment Transport

    OpenAIRE

    Borgersen, Benedicte T

    2016-01-01

    Coastal areas are experiencing an increase in human population and activities, both in temperate and in Arctic areas. This change in the coastal areas requires that the areas are safe and reliable in order to not put human lives and economical values in danger. To be about to protect the coastal areas it is important to know the hydrodynamics and sediment transport and their effect on coastal areas. Numerical modeling of coastal hydrodynamics and sediment transport is a normal approach to...

  15. Model-based Prognostics with Concurrent Damage Progression Processes

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several...

  16. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids

    Science.gov (United States)

    Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily

    2014-01-01

    Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246

  17. Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    CERN Document Server

    Fang, Ming; Sha, Wei E I; Xiong, Xiaoyan Y Z; Wu, Xianliang

    2016-01-01

    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities f...

  18. Comparison of two prognostic models for acute pulmonary embolism

    Directory of Open Access Journals (Sweden)

    Abd-ElRahim Ibrahim Youssef

    2016-10-01

    Conclusion: (1 There is an agreement to great extent in risk stratification of APE patients by PESI and ESC prognostic models, where mortality rate is increased among high risk classes of both models, (2 ESC prognostic model is more accurate than PESI model in mortality prediction of APE patients especially in the high risk class, (3 echocardiographic evidence of RVD and elevated plasma BNP can help to identify APE patients at increased risk of adverse short-term outcome and (4 integration of RVD assessment by echocardiography and BNP to clinical findings improves the prognostic value of ESC model.

  19. Constructing stable 3D hydrodynamical models of giant stars

    Science.gov (United States)

    Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker

    2017-02-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.

  20. Constructing stable 3D hydrodynamical models of giant stars

    CERN Document Server

    Ohlmann, Sebastian T; Pakmor, Rüdiger; Springel, Volker

    2016-01-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the 1D stellar evolution code MESA. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code AREPO. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Differen...

  1. Automatization of hydrodynamic modelling in a Floreon+ system

    Science.gov (United States)

    Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David

    2017-07-01

    The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.

  2. Life cycle Prognostic Model Development and Initial Application Results

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, Brien; Hines, Wesley; Nam, Alan; Sharp, Michael; Upadhyaya, Belle [The University of Tennessee, Knoxville (United States)

    2014-08-15

    In order to obtain more accurate Remaining Useful Life (RUL) estimates based on empirical modeling, a Lifecycle Prognostics algorithm was developed that integrates various prognostic models. These models can be categorized into three types based on the type of data they process. The application of multiple models takes advantage of the most useful information available as the system or component operates through its lifecycle. The Lifecycle Prognostics is applied to an impeller test bed, and the initial results serve as a proof of concept.

  3. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics approaches capture system knowl- edge in the form of physics-based models of components that include how they fail. These methods consist of...

  4. Multiple Damage Progression Paths in Model-based Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics approaches employ do- main knowledge about a system, its components, and how they fail through the use of physics-based models. Compo- nent...

  5. Model-based Prognostics under Limited Sensing

    Data.gov (United States)

    National Aeronautics and Space Administration — Prognostics is crucial to providing reliable condition-based maintenance decisions. To obtain accurate predictions of component life, a variety of sensors are often...

  6. HYDRODYNAMICAL MODELS OF TYPE II-P SUPERNOVA LIGHT CURVES

    Directory of Open Access Journals (Sweden)

    M. C. Bersten

    2009-01-01

    Full Text Available We present progress in light curve models of type II-P supernovae (SNe II-P obtained using a newly devel- oped, one-dimensional hydrodynamic code. Using simple initial models (polytropes, we reproduced the global behavior of the observed light curves and we analyzed the sensitivity of the light curves to the variation of free parameters.

  7. Data Assimilation in Hydrodynamic Models of Continental Shelf Seas

    DEFF Research Database (Denmark)

    Sørensen, Jacob Viborg Tornfeldt

    2004-01-01

    This thesis consists of seven research papers published or submitted for publication in the period 2002-2004 together with a summary report. The thesis mainly deals with data assimilation of tide gauge data in two- and three-dimensional hydrodynamic models of the continental shelf seas. Assimilat......This thesis consists of seven research papers published or submitted for publication in the period 2002-2004 together with a summary report. The thesis mainly deals with data assimilation of tide gauge data in two- and three-dimensional hydrodynamic models of the continental shelf seas...

  8. Hydrodynamic models of a Cepheid atmosphere. I - Deep envelope models

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks has been modified to include radiative transfer effects. This modified code has been used to compute deep envelope models of a classical Cepheid with a period of 12 days. It is shown that in this particular model the hydrogen ionization region plays only a small role in producing the observed phase lag between the light and velocity curves. The cause of the bumps on the model's light curve is examined, and a mechanism is presented to explain those Cepheids with two secondary features on their light curves. This mechanism is shown to be consistent with the Hertzsprung sequence only if the evolutionary mass-luminosity law is used.

  9. Diagnostic and Prognostic Models for Generator Step-Up Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Nancy J. Lybeck; Binh T. Pham

    2014-09-01

    In 2014, the online monitoring (OLM) of active components project under the Light Water Reactor Sustainability program at Idaho National Laboratory (INL) focused on diagnostic and prognostic capabilities for generator step-up transformers. INL worked with subject matter experts from the Electric Power Research Institute (EPRI) to augment and revise the GSU fault signatures previously implemented in the Electric Power Research Institute’s (EPRI’s) Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. Two prognostic models were identified and implemented for GSUs in the FW-PHM Suite software. INL and EPRI demonstrated the use of prognostic capabilities for GSUs. The complete set of fault signatures developed for GSUs in the Asset Fault Signature Database of the FW-PHM Suite for GSUs is presented in this report. Two prognostic models are described for paper insulation: the Chendong model for degree of polymerization, and an IEEE model that uses a loading profile to calculates life consumption based on hot spot winding temperatures. Both models are life consumption models, which are examples of type II prognostic models. Use of the models in the FW-PHM Suite was successfully demonstrated at the 2014 August Utility Working Group Meeting, Idaho Falls, Idaho, to representatives from different utilities, EPRI, and the Halden Research Project.

  10. Model Adaptation for Prognostics in a Particle Filtering Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated....

  11. Model-based Prognostics with Fixed-lag Particle Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics exploits domain knowl- edge of the system, its components, and how they fail by casting the underlying physical phenom- ena in a...

  12. A Model-based Avionic Prognostic Reasoner (MAPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Model-based Avionic Prognostic Reasoner (MAPR) presented in this paper is an innovative solution for non-intrusively monitoring the state of health (SoH) and...

  13. Modeling High Resolution Flare Spectra Using Hydrodynamic Simulations

    Science.gov (United States)

    Warren, Harry; Doschek, G.

    2006-06-01

    Understanding the hydrodynamic response of the solar atmosphere to the release of energy during a flare has been a long standing problem in solar physics. Early time-dependent hydrodynamic simulations were able to reproduce the high temperatures and densities observed in solar flares, but were not able to model the observations in any detail. For example, these simulations could not account for the relatively slow decay of the observed emission or the absence of blueshifts in high spectral resolution line profiles at flare onset. We have found that by representing the flare as a succession of independently heated filaments it is possible to reproduce both the evolution of line intensity and the shape of the line profile using hydrodynamic simulations. Here we present detailed comparisons between our simulation results and several flares observed with the Yohkoh Bragg Crystal Spectrometer (BCS). Comparisons with 3D MHD simulations will also be discussed.

  14. DYNAMIC CORRECTION OF ROUGHNESS IN THE HYDRODYNAMIC MODEL

    Institute of Scientific and Technical Information of China (English)

    BAO Wei-min; ZHANG Xiao-qin; QU Si-min

    2009-01-01

    Based on the hydrodynamic model and the Xinanjiang model, the river stage forecasting model has been proposed. But its performance is not satisfactory as applied to estuary areas. River roughness is a sensitive parameter in the hydrodynamic model, and its value is related to some substantial uncertainties in the tidal river. According to roughness tests, a new method of roughness dynamic correction was developed to improve the performance of the stage model. The method was focused on the usage of observed data for the studied section, and its parameters were analyzed. Nested with the dynamic correction of roughness, the stage model was applied to the tidal reach of the Caoe River. The results demonstrate that the roughness dynamic correction can improve the simulation accuracy of the stage model, and especially has the capacity of reducing the errors at peak stages.

  15. Modelling of hydrodynamic circulation in Benoa Bay, Bali

    DEFF Research Database (Denmark)

    Ningsih, Nining Sari; Muchamad, Al Azhar

    2013-01-01

    A simulation of water level, velocity, salinity, and temperature in the Bay of Benoa has been carried out using a three-dimensional hydrodynamic Estuarine and Coastal Ocean Model incorporating a main characteristic of southward transport of the Indonesian throughflow at the offshore area of the bay...

  16. Simulation and visualization of coupled hydrodynamical, chemical and biological models

    Directory of Open Access Journals (Sweden)

    Dag Slagstad

    1997-04-01

    Full Text Available This paper briefly describes the principles of hydrodynamical and ecological modelling of marine systems and how model results are presented by use of MATLAB. Two application examples are shown. One refers to modelling and simulation of the carbon vertical transport in the Greenland Sea and the other is a study on the effect of wind pattern for the invasion success of zooplankton from the Norwegian Sea into the North Sea by use of particle tracking.

  17. Period doubling and Blazhko modulation in BL Herculis hydrodynamic models

    CERN Document Server

    Smolec, R

    2012-01-01

    We present the hydrodynamic BL Herculis-type models which display a long-term modulation of pulsation amplitudes and phases. The modulation is either strictly periodic or it is quasi-periodic, with the modulation period and modulation pattern varying from one cycle to the other. Such behaviour has not been observed in any BL Her variable so far, however, it is a common property of their lower luminosity siblings - RR Lyrae variables showing the Blazhko effect. These models provide a support for the recent mechanism proposed by Buchler & Kollath to explain this still mysterious phenomenon. In their model, a half-integer resonance that causes the period doubling effect, discovered recently in the Blazhko RR Lyrae stars, is responsible for the modulation of the pulsation as well. Although our models are more luminous than is appropriate for RR Lyrae stars, they clearly demonstrate, through direct hydrodynamic computation, that the mechanism can indeed be operational. Of great importance are models which show...

  18. MODERATE DEVIATIONS FROM HYDRODYNAMIC LIMIT OF A GINZBURG-LANDAU MODEL

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The authors consider the moderate deviations of hydrodynamic limit for Ginzburg-Landau models. The moderate deviation principle of hydrodynamic limit for a specific Ginzburg-Landau model is obtained and an explicit formula of the rate function is derived.

  19. One-dimensional XY model: Ergodic properties and hydrodynamic limit

    Science.gov (United States)

    Shuhov, A. G.; Suhov, Yu. M.

    1986-11-01

    We prove theorems on convergence to a stationary state in the course of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C *-algebra over Z 1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, we obtain an independent motion of "normal modes," which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation.

  20. Hydrodynamic modeling of semi-planing hulls with air cavities

    Directory of Open Access Journals (Sweden)

    Konstantin I. Matveev

    2015-05-01

    Full Text Available High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  1. Modeling the Hydrodynamical Properties of the QGP at RHIC

    Science.gov (United States)

    Garishvili, Irakli; Soltz, Ron; Pratt, Scott; Cheng, Micael; Glenn, Andrew; Newby, Jason; Linden-Levy, Loren; Abelev, Betty

    2010-11-01

    Comparisons of the RHIC data to various theoretical models suggest that the evolution of the QGP, a state of matter believed to be created in early stages of heavy ion collisions at RHIC, is qualitatively well described by hydrodynamics. However, the key properties of the QGP, such as initial temperature, Tinit, and the ratio of shear viscosity to entropy density of matter, η/s, are not precisely known. To constrain these properties we have developed a multi-stage hydrodynamics/hadron cascade model of heavy ion collisions which incorporates Glauber initial state conditions, pre-equilibrium flow, the UVH2+1 viscous hydro model, Cooper-Frye freezeout, and the UrQMD hadronic cascade model. To test the sensitivity of the observables to the equation of state (EoS), we use several different EoS in the hydrodynamic evolution, including those derived from the hadron resonance gas model and lattice QCD. This framework has an ability to predict key QGP observables, such as, elliptic flow, spectra, and HBT radii for various particle species. For each set of model's input parameters (Tinit, η/s and initial flow) we perform a simultaneous comparison to spectra, elliptic flow, and HBT measured at RHIC. Based on this analysis the determinations of Tinit and η/s will be presented.

  2. Self-Consistent Modeling of Reionization in Cosmological Hydrodynamical Simulations

    CERN Document Server

    Oñorbe, Jose; Lukić, Zarija

    2016-01-01

    The ultraviolet background (UVB) emitted by quasars and galaxies governs the ionization and thermal state of the intergalactic medium (IGM), regulates the formation of high-redshift galaxies, and is thus a key quantity for modeling cosmic reionization. The vast majority of cosmological hydrodynamical simulations implement the UVB via a set of spatially uniform photoionization and photoheating rates derived from UVB synthesis models. We show that simulations using canonical UVB rates reionize, and perhaps more importantly, spuriously heat the IGM, much earlier z ~ 15 than they should. This problem arises because at z > 6, where observational constraints are non-existent, the UVB amplitude is far too high. We introduce a new methodology to remedy this issue, and generate self-consistent photoionization and photoheating rates to model any chosen reionization history. Following this approach, we run a suite of hydrodynamical simulations of different reionization scenarios, and explore the impact of the timing of ...

  3. Dynamics Models of Interacting Torques of Hydrodynamic Retarder Braking Process

    Directory of Open Access Journals (Sweden)

    Wenhao Shen

    2013-01-01

    Full Text Available Hydrodynamic retarder is a kind of assist braking device, which can transfer the vehicle kinetic energy into the heat energy of working medium. There are complicated three-dimensional viscous incompressible turbulent flows in hydrodynamic retarder, so that it is difficult to represent the parameters changing phenomenon and investigate the interactional law. In order to develop a kind of reliable theoretical model for internal flow field, in this study, the dynamics models of interacting torques between impellers and working fluid were constructed based on braking energy transfer principle by using Euler theory to describe the flow state in view of time scale. The model can truly represent the dynamic braking process.

  4. Radiation Hydrodynamics Modeling of Hohlraum Energetics

    Science.gov (United States)

    Patel, Mehul V.; Mauche, Christopher W.; Jones, Ogden S.; Scott, Howard A.

    2015-11-01

    Attempts to model the energetics in NIF Hohlraums have been made with varying degrees of success, with discrepancies of 0-25% being reported for the X-ray flux (10-25% for the NIC ignition platform hohlraums). To better understand the cause(s) of these discrepancies, the effects of uncertainties in modeling thermal conduction, laser-plasma interactions, atomic mixing at interfaces, and NLTE kinetics of the high-Z wall plasma must be quantified. In this work we begin by focusing on the NLTE kinetics component. We detail a simulation framework for developing an integrated HYDRA hohlraum model with predefined tolerances for energetics errors due to numerical discretization errors or statistical fluctuations. Within this framework we obtain a model for a converged 1D spherical hohlraum which is then extended to 2D. The new model is used to reexamine physics sensitivities and improve estimates of the energetics discrepancy. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Assimilation of measurement data in hydrodynamic modeling

    Science.gov (United States)

    Karamuz, Emilia; Romanowicz, Renata J.

    2016-04-01

    This study focuses on developing methods to combine ground-based data from operational monitoring with data from satellite imaging to obtain a more accurate evaluation of flood inundation extents. The distributed flow model MIKE 11 was used to determine the flooding areas for a flood event with available satellite data. Model conditioning was based on the integrated use of data from remote measurement techniques and traditional data from gauging stations. Such conditioning of the model improves the quality of fit of the model results. The use of high resolution satellite images (from IKONOS, QuickBird e.t.c) and LiDAR Digital Elevation Model (DEM) allows information on water levels to be extended to practically any chosen cross-section of the tested section of the river. This approach allows for a better assessment of inundation extent, particularly in areas with a scarce network of gauging stations. We apply approximate Bayesian analysis to integrate the information on flood extent originating from different sources. The approach described above was applied to the Middle River Vistula reach, from the Zawichost to Warsaw gauging stations. For this part of the river the detailed geometry of the river bed and floodplain data were available. Finally, three selected sub-sections were analyzed with the most suitable satellite images of inundation area. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.

  6. Modeling the hydrodynamics of Phloem sieve plates

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele

    2012-01-01

    understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species...... are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway....

  7. Modeling the hydrodynamics in tidal networks

    NARCIS (Netherlands)

    Alebregtse, N.C.

    2016-01-01

    This thesis covers tidal propagation through networks of channels. Such networks are widespread and are often subject to discordant human and natural interests. First, the effect of a secondary channel on the tides in a main channel is explained with the use of an idealized model and the responsible

  8. Hydrodynamical Models of Gas Cloud - Galaxy Collisions

    Science.gov (United States)

    Franklin, M.; Dinge, D.; Jones, T.; Benjamin, B.

    1999-05-01

    Clouds of neutral hydrogen falling toward the Galactic plane with a speed of about 100 km/s or more are among those considered to be "high velocity clouds" (HVCs). As HVCs are often observed approaching the midplane, the collision of such clouds with the gaseous disk of the Galaxy has been proposed as a precursor event to the phenomena known as "supershells" and as a catalyst to star formation. While many previous analytic calculations have assumed that ram pressure of the resisting medium was negligible, and a ballistic approximation was valid, observations showing a correlation between speed and increased height above the plane, the opposite of what is expected for free fall, suggest otherwise. Benjamin & Danly suggested in 1997 that clouds falling at terminal velocity provide a simple explanation for the observed velocity distribution. In this work, numerical models are used to test the above hypotheses with clouds falling through a more modern model of the interstellar medium than that used in the seminal work by Tenorio-Tagle et al. (TT) in 1987. With the addition of more dense material to the model background, clouds were still able to form supershell-like remnants, though star formation does not appear to be triggered. Further, though agreement was not perfect, the terminal velocity model was found to be a better approximation for these clouds' fall than the ballistic case. Cooling was a physical process included in TT's work which was not included here, but was found to be non-negligible. Simulations which include a cooling algorithm must be done to confirm these results. This work was supported in part by NSF grant AST96-19438.

  9. A Model-based Prognostics Approach Applied to Pneumatic Valves

    Directory of Open Access Journals (Sweden)

    Matthew J. Daigle

    2011-01-01

    Full Text Available Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  10. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    Science.gov (United States)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  11. An Efficient Hydrodynamic Model for Surface Waves

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; JIN Sheng; LU Gang

    2009-01-01

    In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.

  12. Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases

    Science.gov (United States)

    Khalil, Nagi; Garzó, Vicente; Santos, Andrés

    2014-05-01

    The hydrodynamic Burnett equations and the associated transport coefficients are exactly evaluated for generalized inelastic Maxwell models. In those models, the one-particle distribution function obeys the inelastic Boltzmann equation, with a velocity-independent collision rate proportional to the γ power of the temperature. The pressure tensor and the heat flux are obtained to second order in the spatial gradients of the hydrodynamic fields with explicit expressions for all the Burnett transport coefficients as functions of γ, the coefficient of normal restitution, and the dimensionality of the system. Some transport coefficients that are related in a simple way in the elastic limit become decoupled in the inelastic case. As a byproduct, existing results in the literature for three-dimensional elastic systems are recovered, and a generalization to any dimension of the system is given. The structure of the present results is used to estimate the Burnett coefficients for inelastic hard spheres.

  13. Hydrodynamic model of Fukushima-Daiichi NPP Industrial site flooding

    CERN Document Server

    Vaschenko, V N; Gerasimenko, T V; Vachev, B

    2014-01-01

    While the Fukushima-Daiichi was designed and constructed the maximal tsunami height estimate was about 3 m based on analysis of statistical data including Chile earthquake in 1960. The NPP project industrial site height was 10 m. The further deterministic estimates TPCO-JSCE confirmed the impossibility of the industrial site flooding by a tsunami and therefore confirmed ecological safety of the NPP. However, as a result of beyond design earthquake of 11 March 2011 the tsunami height at the shore near the Fukushima-Daiichi NPP reached 15 m. This led to flooding and severe emergencies having catastrophic environmental consequences. This paper proposes hydrodynamic model of tsunami emerging and traveling based on conservative assumptions. The possibility of a tsunami wave reaching 15 m height at the Fukushima-Daiichi NPP shore was confirmed for deduced hydrodynamic resistance coefficient of 1.8. According to the model developed a possibility of flooding is determined not only by the industrial site height, magni...

  14. Modeling Spitsbergen fjords by hydrodynamic MIKE engine.

    Science.gov (United States)

    Kosecki, Szymon; Przyborska, Anna; Jakacki, Jaromir

    2013-04-01

    Two Svalbard's fjords - Hornsund (on the western side of the most southern part of Spitsbergen island) and Kongsfjorden (also on the western side of Spitsbergen island, but in the northern part) are quite different - the first one is "cold" and second one is "warm". It is obvious that both of them are under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current detaches Hornsund. But there is also freshwater stored in Spitsbergen glaciers that have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord and there is no answer which one is the most important in each fjord. Modeling could help to solve this problem - MIKE 3D model has been implemented for both fjords. Mesh-grid of the each fjord has been extended for covering shelf area. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Hornsund and Kongsfjorden. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  15. Hydrodynamic Modeling on Suciu River (Maramures County

    Directory of Open Access Journals (Sweden)

    Năsui Daniel

    2016-06-01

    Full Text Available The GIS database containing the topographic and land use information was made in 2012, followed by field measurements surveys in 2013 and 2014. A number of 11 cross-sections were topographically apprised in the valley along the 11 km river reach. The geometric data requirements for the modeling software were prepared in ESRI’s ArcGIS™ 9.2 software using the HEC-GeoRAS extension. The steady flow data was edited in the HEC-RAS one-dimensional flow modeling software. Four scenarios were used for the river discharge, from normal to overflow. The results come in different forms, from tabular output, to stage hydrograph, to velocity distribution or 3D diagrams, all of which give a clear vision on the overflow high risk areas. The results were exported back to the GIS extension for additional spatial operations. Flow velocity maps were generated for each discharge scenario. Although the scenarios included very high discharge values, the flood impact on people assets is minimal. The reasons for this are the high slope of the riverbed and the proper placement in the floodplain, due mainly to the flood management works that took place after the 1970 flood.

  16. Numerical modeling of hydrodynamic in southwestern Johor, Malaysia

    Science.gov (United States)

    Jusoh, Wan Hasliza Wan; Tangang, Fredolin; Juneng, Liew; Hamid, Mohd. Radzi Abdul

    2014-09-01

    Tanjung Piai located at the southwest of Johor, Malaysia faces severe erosion since a few decades ago. Considering the condition in this particular area, understanding of its hydrodynamic behaviour should be clearly explained. Thus, a numerical modelling has been applied in this study in order to investigate the hydrodynamic of current flow along the study area. Hydrodynamic study was carried out by applying a numerical modelling of MIKE 21 software based on flexible mesh grids. The model generally described the current flow pattern in the study area corresponding to the several flows from surrounding water regime which are Malacca Strait, Singapore Strait and Java Sea. The interaction of various water flows in the area of Tanjung Piai which is located in the middle part of the meeting of the currents to have a very complicated hydrodynamic conditions. The study area generally experienced two tidal phase in a day as the water flows is greatly influenced by the adjacent water flow from Malacca and Singapore Straits. During first tidal cycle, the most dominant flow is influenced by a single water flow which is Malacca Strait for both ebbing and flooding event. The current velocity was generally higher during this first tidal phase particularly at the tips of Tanjung Piai where severe erosion is spotted. However, the second tidal phase gives different stress to the study area as the flow is relatively dominated by both Malacca and Singapore Straits. During this phase, the meeting of current from both straits can be discovered near to the Tanjung Piai as this occurrence makes relatively slower current velocity around the study area. Basically, the numerical modelling result in this study can be considered as basic information in describing the condition of study area as it would be very useful for extensive study especially the study of sediment transport and morphological processes in the coastal area.

  17. Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin

    2006-06-30

    A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.

  18. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  19. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  20. Prognostics for Steam Generator Tube Rupture using Markov Chain model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gibeom; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Kim, Hyeonmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper will describe the prognostics method for evaluating and forecasting the ageing effect and demonstrate the procedure of prognostics for the Steam Generator Tube Rupture (SGTR) accident. Authors will propose the data-driven method so called MCMC (Markov Chain Monte Carlo) which is preferred to the physical-model method in terms of flexibility and availability. Degradation data is represented as growth of burst probability over time. Markov chain model is performed based on transition probability of state. And the state must be discrete variable. Therefore, burst probability that is continuous variable have to be changed into discrete variable to apply Markov chain model to the degradation data. The Markov chain model which is one of prognostics methods was described and the pilot demonstration for a SGTR accident was performed as a case study. The Markov chain model is strong since it is possible to be performed without physical models as long as enough data are available. However, in the case of the discrete Markov chain used in this study, there must be loss of information while the given data is discretized and assigned to the finite number of states. In this process, original information might not be reflected on prediction sufficiently. This should be noted as the limitation of discrete models. Now we will be studying on other prognostics methods such as GPM (General Path Model) which is also data-driven method as well as the particle filer which belongs to physical-model method and conducting comparison analysis.

  1. Hydrodynamic behaviour of Lattice Boltzmann and Lattice BGK models

    CERN Document Server

    Behrend, O; Warren, P

    1993-01-01

    Abstract: We present a numerical analysis of the validity of classical and generalized hydrodynamics for Lattice Boltzmann Equation (LBE) and Lattice BGK methods in two and three dimensions, as a function of the collision parameters of these models. Our analysis is based on the wave-number dependence of the evolution operator. Good ranges of validity are found for BGK models as long as the relaxation time is chosen smaller than or equal to unity. The additional freedom in the choice of collision parameters for LBE models does not seem to give significant improvement.

  2. Hydrodynamic multibead modeling: problems, pitfalls, and solutions. 2. Proteins.

    Science.gov (United States)

    Zipper, Peter; Durchschlag, Helmut

    2010-02-01

    Hydrodynamic models of proteins have been generated by recourse to crystallographic data and applying a filling model strategy in order to predict both hydrodynamic and scattering parameters. The design of accurate protein models retaining the majority of the molecule peculiarities requires usage of many beads and consideration of many serious problems. Applying the expertise obtained with ellipsoid models and pilot tests on proteins, we succeeded in constructing precise models for several anhydrous and hydrated proteins of different shape, size, and complexity. The models constructed consist of many beads (up to about 11,000) for the protein constituents (atoms, amino acid residues, groups) and preferentially bound water molecules. While in the case of small proteins, parameter predictions are straightforward, computations for giant proteins necessitate drastic reductions of the number of initially available beads. Among several auxiliary programs, our advanced hydration programs, HYDCRYST and HYDMODEL, and modified versions of García de la Torre's program HYDRO were successfully employed. This allowed the generation of realistic protein models by imaging details of their fine structure and enabled the prediction of reliable molecular parameters including intrinsic viscosities. The appearance of the models and the agreement of molecular properties and distance distribution functions p(r) of unreduced and reduced models can be used for a meticulous inspection of the data obtained.

  3. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.

    2017-04-01

    We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  4. Anticipating the Role of SWOT in Hydrologic and Hydrodynamic Modeling

    Science.gov (United States)

    Pavelsky, T.; Biancamaria, S.; Andreadis, K.; Durand, M. T.; Schumann, G.

    2015-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and CNES, the French space agency. It aims to provide the first simultaneous, space-based measurements of inundation extent and water surface elevation in rivers, lakes, and wetlands around the world. Although the orbit repeat time is approximately 21 days, many areas of the earth will be viewed multiple times during this window. SWOT will observe rivers as narrow as 50-100 m and lakes as small as 0.01-0.06 km2, with height accuracies of ~10 cm for water bodies 1 km2 in area. Because SWOT will measure temporal variations in the height, width, and slope of rivers, several algorithms have been developed to estimate river discharge solely from SWOT measurements. Additionally, measurements of lake height and area will allow estimation of variability in lake water storage. These new hydrologic measurements will provide important sources of information both hydrologic and hydrodynamic models at regional to global scales. SWOT-derived estimates of water storage change and discharge will help to constrain simulation of the water budget in hydrologic models. Measurements of water surface elevation will provide similar constraints on hydrodynamic models of river flow. SWOT data will be useful for model calibration and validation, but perhaps the most exciting applications involve assimilation of SWOT data into models to enhance model robustness and provide denser temporal sampling than available from SWOT observations alone.

  5. Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery

    Institute of Scientific and Technical Information of China (English)

    LIU Han-dan; XU Wei; WANG Shi-gang; KE Zun-ji

    2008-01-01

    Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug delivery is a method of carrying drug-loaded magnetic nanoparticles to a target tissue target under the applied magnetic field. This method increases the drug concentration in the target while reducing the adverse side-effects. Although there have been some theoretical analyses for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel. A mathematical model is presented to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. In this model, magnetic force and asymmetrical force are added, and an angular momentum equation of magnetic nanoparticles in the applied magnetic field is modeled. Engineering approximations are achieved by retaining the physically most significant items in the model due to the mathematical complexity of the motion equations. Numerical simulations are performed to obtain better insight into the theoretical model with computational fluid dynamics. Simulation results demonstrate the important parameters leading to adequate drug delivery to the target site depending on the magnetic field intensity, which coincident with those of animal experiments. Results of the analysis provide important information and suggest strategies for improving delivery in clinical application.

  6. Prognostic factors for chronic severe hepatitis and construction of a prognostic model

    Institute of Scientific and Technical Information of China (English)

    Qian Li; Gui-Yu Yuan; Ke-Cheng Tang; Guo-Wang Liu; Rui Wang; Wu-Kui Cao

    2008-01-01

    BACKGROUND:Chronic severe hepatitis is a serious illness with a high mortality rate. Discussion of prognostic judgment criteria for chronic severe hepatitis is of great value in clinical guidance. This study was designed to investigate the clinical and laboratory indices affecting the prognosis of chronic severe hepatitis and construct a prognostic model. METHODS: The clinical and laboratory indices of 213 patients with chronic severe hepatitis within 24 hours after diagnosis were analyzed retrospectively. Death or survival was limited to within 3 months after diagnosis. RESULTS: The mortality of all patients was 47.42%. Compared with the survival group, the age, basis of hepatocirrhosis, infection, degree of hepatic encephalopathy (HE) and the levels of total bilirubin (TBil), total cholesterol (CHO), cholinesterase (CHE), blood urea nitrogen (BUN), blood creatinine (Cr), blood sodium ion (Na), peripheral blood leukocytes (WBC), alpha-fetoprotein (AFP), international normalized ratio (INR) of blood coagulation and prothrombin time (PT) were signiifcantly different in the group who died, but the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB) and hemoglobin (HGB) were not different between the two groups. At the same time, a regression model, Logit (P)=1.573×Age+1.338× HE-1.608×CHO+0.011×Cr-0.109×Na+1.298×INR+11.057, was constructed by logistic regression analysis and the prognostic value of the model was higher than that of the MELD score. CONCLUSIONS:Multivariate analysis excels univariate anlysis in the prognosis of chronic severe hepatitis, and the regression model is of signiifcant value in the prognosis of this disease.

  7. Risk factors and prognostic models for perinatal asphyxia at term

    NARCIS (Netherlands)

    Ensing, S.

    2015-01-01

    This thesis will focus on the risk factors and prognostic models for adverse perinatal outcome at term, with a special focus on perinatal asphyxia and obstetric interventions during labor to reduce adverse pregnancy outcomes. For the majority of the studies in this thesis we were allowed to use data

  8. Prognostic models in obstetrics: available, but far from applicable.

    Science.gov (United States)

    Kleinrouweler, C Emily; Cheong-See, Fiona M; Collins, Gary S; Kwee, Anneke; Thangaratinam, Shakila; Khan, Khalid S; Mol, Ben Willem J; Pajkrt, Eva; Moons, Karel G M; Schuit, Ewoud

    2016-01-01

    Health care provision is increasingly focused on the prediction of patients' individual risk for developing a particular health outcome in planning further tests and treatments. There has been a steady increase in the development and publication of prognostic models for various maternal and fetal outcomes in obstetrics. We undertook a systematic review to give an overview of the current status of available prognostic models in obstetrics in the context of their potential advantages and the process of developing and validating models. Important aspects to consider when assessing a prognostic model are discussed and recommendations on how to proceed on this within the obstetric domain are given. We searched MEDLINE (up to July 2012) for articles developing prognostic models in obstetrics. We identified 177 papers that reported the development of 263 prognostic models for 40 different outcomes. The most frequently predicted outcomes were preeclampsia (n = 69), preterm delivery (n = 63), mode of delivery (n = 22), gestational hypertension (n = 11), and small-for-gestational-age infants (n = 10). The performance of newer models was generally not better than that of older models predicting the same outcome. The most important measures of predictive accuracy (ie, a model's discrimination and calibration) were often (82.9%, 218/263) not both assessed. Very few developed models were validated in data other than the development data (8.7%, 23/263). Only two-thirds of the papers (62.4%, 164/263) presented the model such that validation in other populations was possible, and the clinical applicability was discussed in only 11.0% (29/263). The impact of developed models on clinical practice was unknown. We identified a large number of prognostic models in obstetrics, but there is relatively little evidence about their performance, impact, and usefulness in clinical practice so that at this point, clinical implementation cannot be recommended. New efforts should be directed

  9. Explicit 3D continuum fracture modeling with smooth particle hydrodynamics

    Science.gov (United States)

    Benz, W.; Asphaug, E.

    1993-01-01

    Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings

  10. Prognostic relevance of morphological classification models for myelodysplastic syndromes in an era of the revised International Prognostic Scoring System.

    Science.gov (United States)

    van Spronsen, Margot F; Ossenkoppele, Gert J; Westers, Theresia M; van de Loosdrecht, Arjan A

    2016-03-01

    Numerous morphological classification models have been developed to organise the heterogeneous spectrum of myelodysplastic syndromes (MDS). While the 2008 update of the World Health Organisation (WHO) is the current standard, the publication of the revised International Prognostic Scoring System (IPSS-R) has illustrated the need for supplemental prognostic information. The aim of this study was to investigate whether morphological classification models for MDS - of both the French-American-British (FAB) group and WHO - provide reliable criteria for their classification into homogeneous and clinically relevant categories with prognostic relevance beyond the IPSS-R. We reclassified 238 MDS patients using each of the FAB, WHO 2001 and WHO 2008 criteria and studied classification categories in terms of clinical, haematological and cytogenetic features. Subsequently, we calculated prognostic scores using the IPSS-R and investigated whether the morphological classification models had significantly prognostic value in patients stratified by the IPSS-R and vice versa. By adopting the FAB, WHO 2001 and WHO 2008 classifications, MDS patients were organised into homogeneous categories with intrinsic prognostic information. However, whereas the morphological classification models showed no prognostic value beyond the IPSS-R, the IPSS-R had significant prognostic value beyond the FAB, WHO 2001 and WHO 2008 classifications. Even though morphological classification models for MDS might be clinically relevant from a prognostic point of view, their relevance in terms of risk stratification is evidently limited in light of the IPSS-R. Therefore, we suggest to stop the use of morphological classification models for MDS for risk stratification in routine clinical practice.

  11. Hydrodynamic description of spin Calogero-Sutherland model

    Science.gov (United States)

    Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio

    2009-03-01

    We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)

  12. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    Science.gov (United States)

    Persson, Rasmus A. X.; Voulgarakis, Nikolaos K.; Chu, Jhih-Wei

    2014-11-01

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  13. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  14. New equation of state models for hydrodynamic applications

    Science.gov (United States)

    Young, David A.; Barbee, Troy W.; Rogers, Forrest J.

    1998-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  15. New equation of state model for hydrodynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Barbee, T.W. III; Rogers, F.J.

    1997-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  16. New equation of state models for hydrodynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Barbee, T.W. III; Rogers, F.J. [Physics Department, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    1998-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations. {copyright} {ital 1998 American Institute of Physics.}

  17. Two dimensional hydrodynamic modeling of a high latitude braided river

    Science.gov (United States)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  18. Radiation hydrodynamical models of the inner rim in protoplanetary disks

    CERN Document Server

    Flock, M; Turner, N J; Benisty, M

    2016-01-01

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host stars mass. These close planets origins are a mystery that motivates investigating protoplanetary disks central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Ca...

  19. Physics-Based Learning Models for Ship Hydrodynamics

    CERN Document Server

    Weymouth, Gabriel D

    2014-01-01

    We present the concepts of physics-based learning models (PBLM) and their relevance and application to the field of ship hydrodynamics. The utility of physics-based learning is motivated by contrasting generic learning models for regression predictions, which do not presume any knowledge of the system other than the training data provided with methods such as semi-empirical models, which incorporate physical insights along with data-fitting. PBLM provides a framework wherein intermediate models, which capture (some) physical aspects of the problem, are incorporated into modern generic learning tools to substantially improve the predictions of the latter, minimizing the reliance on costly experimental measurements or high-resolution high-fidelity numerical solutions. To illustrate the versatility and efficacy of PBLM, we present three wave-ship interaction problems: 1) at speed waterline profiles; 2) ship motions in head seas; and 3) three-dimensional breaking bow waves. PBLM is shown to be robust and produce ...

  20. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    Science.gov (United States)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  1. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    Science.gov (United States)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  2. A two-dimensional hydrodynamic model of a tidal estuary

    Science.gov (United States)

    Walters, Roy A.; Cheng, Ralph T.

    1979-01-01

    A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.

  3. Smoothed Particle Hydrodynamics modeling of granular column collapse

    CERN Document Server

    Szewc, Kamil

    2016-01-01

    The Smoothed Particle Hydrodynamics (SPH) is a particle-based, Lagrangian method for fluid-flow simulations. In this work, fundamental concepts of this method are first briefly recalled. Then, the ability to accurately model granular materials using an introduced visco-plastic constitutive rheological model is studied. For this purpose sets of numerical calculations (2D and 3D) of the fundamental problem of the collapse of initially vertical cylinders of granular materials are performed. The results of modeling of columns with different aspect ratios and different angles of internal friction are presented. The numerical outcomes are assessed not only with respect to the reference experimental data but also with respect to other numerical methods, namely the Distinct Element Method and the Finite Element Method. In order to improve the numerical efficiency of the method, the Graphics Processing Units implementation is presented and some related issues are discussed. It is believed that this study corresponds t...

  4. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)

    2016-12-15

    A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.

  5. Model Adaptation for Prognostics in a Particle Filtering Framework

    Directory of Open Access Journals (Sweden)

    Bhaskar Saha

    2011-01-01

    Full Text Available One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the “curse of dimensionality”, i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for “well-designed” particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion and Li-Polymer batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  6. Hydrodynamic Model of Desalination by "Overlimiting" Electrodialysis with Electroconvective Vortices

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Han, Jongyoon

    2016-11-01

    In 1968, Sonin and Probstein developed a hydrodynamic theory of desalination by electrodialysis. Under a laminar flow between ion exchange membranes, linear ion concentration gradients are developed near the membranes by ion concentration polarization (ICP) in Ohmic-limiting current regimes. This linear ICP determines the relations between current, voltage, and desalting performance. Here, we revisit the hydrodynamic model with nonlinear ICP phenomenon at overlimiting currents. In this regime, electroconvective vortices on the membrane induce flat and extremely low concentration zones. Based on the previous prediction of the vortex height under shear flow, we verify that the height directly represents the amount of the removed salt because there is almost no ion in the vortices. Next, from the mass continuity of ions, the amount of the removed salts is equal to the ion flux through the membrane (i.e. current); as a result, we can develop the relations between current, voltage, and salt removal. Lastly, from these relations, power consumption and desalination cost can be calculated to find the optimal operating condition of overlimiting electrodialysis.

  7. Multi-Thread Hydrodynamic Modeling of a Solar Flare

    CERN Document Server

    Warren, H P

    2006-01-01

    Past hydrodynamic simulations have been able to reproduce the high temperatures and densities characteristic of solar flares. These simulations, however, have not been able to account for the slow decay of the observed flare emission or the absence of blueshifts in high spectral resolution line profiles. Recent work has suggested that modeling a flare as an sequence of independently heated threads instead of as a single loop may resolve the discrepancies between the simulations and observations. In this paper we present a method for computing multi-thread, time-dependent hydrodynamic simulations of solar flares and apply it to observations of the Masuda flare of 1992 January 13. We show that it is possible to reproduce the temporal evolution of high temperature thermal flare plasma observed with the instruments on the \\textit{GOES} and \\textit{Yohkoh} satellites. The results from these simulations suggest that the heating time-scale for a individual thread is on the order of 200 s. Significantly shorter heati...

  8. Challenges of citizen science contributions to modelling hydrodynamics of floods

    Science.gov (United States)

    Assumpção, Thaine Herman; Popescu, Ioana; Jonoski, Andreja; Solomatine, Dimitri P.

    2017-04-01

    Citizen science is an established mechanism in many fields of science, including ecology, biology and astronomy. Citizen participation ranges from collecting and interpreting data towards designing experiments with scientists and cooperating with water management authorities. In the environmental sciences, its potential has begun to be explored in the past decades and many studies on the applicability to water resources have emerged. Citizen Observatories are at the core of several EU-funded projects such as WeSenseIt, GroundTruth, GroundTruth 2.0 and SCENT (Smart Toolbox for Engaging Citizens into a People-Centric Observation Web) that already resulted in valuable contributions to the field. Buytaert et al. (2014) has already reviewed the role of citizen science in hydrology. The work presented here aims to complement it, reporting and discussing the use of citizen science for modelling the hydrodynamics of floods in a variety of studies. Additionally, it highlights the challenges that lie ahead to utilize more fully the citizen science potential contribution. In this work, focus is given to each component of hydrodynamic models: water level, velocity, flood extent, roughness and topography. It is addressed how citizens have been contributing to each aspect, mainly considering citizens as sensors and citizens as data interpreters. We consider to which kind of model (1D or 2D) the discussed approaches contribute and what their limitations and potential uses are. We found that although certain mechanisms are well established (e.g. the use of Volunteer Geographic Information for soft validation of land-cover and land-use maps), the applications in a modelling context are rather modest. Also, most studies involving models are limited to replacing traditional data with citizen data. We recommend that citizen science continue to be explored in modelling frameworks, in different case studies, taking advantage of the discussed mechanisms and of new sensor technologies

  9. Study of hydrodynamic model in sluice controlled river networks

    Science.gov (United States)

    Li, Yan; Zeng, Fantang

    2010-05-01

    Shiqi river network ,is situated in the Zhongshan city of Guangdong province in the P.R.China. The river network covers approximately 702.55km2 ,with a total river length of over 500km and extending over 34km from north to south and over 46km from east to west. The river network overlaps with the most densely populated and economically developed region in the Pear River Delta Economic Zone. In 2008 the region had a population of 1 846.9 thousands And a GDP of more than 8 2500 million RMB. All branches of the river network are encircled by the main rivers of Pear River Delta(PRD) network. With the economic and social development, all natural connections with the external rivers are controlled by the sluices, water body exchanges between the Shiqi river network and external rivers are significantly changed by human activities. The overall objective the research is to develop a tool for the local Environmental Protection Bureau to Understand and quantify the impact of the artificial construction on the hydrological cycle. The developed model can accurate representation of the water levels and flows in the study area, to allow accurate representation of the transport of pollutants. The river network topography is derived directly from the available database. Only the "major" rivers were included in the model, because cross-section data for the "minor" rivers are currently not available. In general, the 1D hydrodynamic model is provided with flow boundary conditions ("Q") at its upstream boundaries and with water level boundary conditions ("z") at its downstream boundaries. For all boundaries of Shiqi river network, there are no flow records available, all records are water level. To reflect the hydrodynamic process accurately, the author developed a new methods to set the hydrodynamic model's boundary. For each boundary, the boundary condition is "Z" when the sluice is open, and the boundary condition is "Q" while it is closed. The open or close condition is identified

  10. Trying to understand the ridge effect in hydrodynamic model

    CERN Document Server

    Hama, Yogiro; Grassi, Frederique; Qian, Wei-Liang

    2009-01-01

    In a recent paper, the hydrodynamic code NeXSPheRIO was used in conjunction with STAR analysis methods to study two-particle correlations as function of Delta_eta and Delta_phi. Both the ridge-like near-side and the double-hump away-side structures were obtained. However, the mechanism of ridge production was not clear. In order to understand it, we study a simple model with only one high-energy density peripheral tube in a smooth cylindrical back-ground, with longitudinal boost invariance. The results are rather surprising, but the model does produce the triple-ridge structure with one high ridge plus two lower ones placed symmetrically with respect to the former one. The shape of this structure is rather stable in a wide range of parameters.

  11. Modelling neutral hydrogen in galaxies using cosmological hydrodynamical simulations

    CERN Document Server

    Duffy, Alan R; Battye, Richard A; Booth, C M; Vecchia, Claudio Dalla; Schaye, Joop

    2011-01-01

    The characterisation of the atomic and molecular hydrogen content of high-redshift galaxies is a major observational challenge that will be addressed over the coming years with a new generation of radio telescopes. We investigate this important issue by considering the states of hydrogen across a range of structures within high-resolution cosmological hydrodynamical simulations. Additionally, our simulations allow us to investigate the sensitivity of our results to numerical resolution and to sub-grid baryonic physics (especially feedback from supernovae and active galactic nuclei). We find that the most significant uncertainty in modelling the neutral hydrogen distribution arises from our need to model a self-shielding correction in moderate density regions. Future simulations incorporating radiative transfer schemes will be vital to improve on our empirical self-shielding threshold. Irrespective of the exact nature of the threshold we find that while the atomic hydrogen mass function evolves only mildly fro...

  12. Flow harmonics within an analytically solvable viscous hydrodynamic model

    CERN Document Server

    Hatta, Yoshitaka; Torrieri, Giorgio; Xiao, Bo-Wen

    2014-01-01

    Based on a viscous hydrodynamic model with anisotropically perturbed Gubser flow and isothermal Cooper-Frye freezeout, we analytically compute the flow harmonics $v_n(p_T)$ and study how they scale with the harmonic number $n$ and transverse momentum, as well as the system size, shear and bulk viscosity coefficients, and collision energy. In particular, we find that the magnitude of shear viscous corrections grows linearly with $n$. The mixing between different harmonics is also discussed. While this model is rather simple as compared to realistic heavy-ion collisions, we argue that the scaling results presented here may be meaningfully compared to experimental data collected over many energies, system sizes, and geometries.

  13. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  14. Electrochemistry-based Battery Modeling for Prognostics

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2013-01-01

    Batteries are used in a wide variety of applications. In recent years, they have become popular as a source of power for electric vehicles such as cars, unmanned aerial vehicles, and commericial passenger aircraft. In such application domains, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. To implement such technologies, it is crucial to understand how batteries work and to capture that knowledge in the form of models that can be used by monitoring, diagnosis, and prognosis algorithms. In this work, we develop electrochemistry-based models of lithium-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles. This paper reports on the progress of such a model, with results demonstrating the model validity and accurate EOD predictions.

  15. COHERENS: A hydrodynamic model validated for the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Betty, J.; Saheed, P.P.; Carlos, F; Vethamony, P.; Campos, E.J.D

    COHERENS (COupled Hydrodynamical and Ecological model for REgioNal and Shelf seas), a 3D hydrodynamic multi-purpose model, has been implemented for the coastal and shelf seas of eastern Arabian Sea to study the flow characteristics The model has...

  16. Modeling shallow-water hydrodynamics: Rotations, rips, and rivers

    Science.gov (United States)

    Long, Joseph W.

    Hydrodynamic models are used as a diagnostic tool to understand the temporal variability of shallow-water processes that are difficult to completely resolve with traditional field measurements. For all simulations, modeled quantities are qualitatively or quantitatively compared with available measurements to gain confidence in conclusions derived from the modeled results. In this work we consider both vorticity motions and rip currents, which arise from alongshore inhomogeneities in the wave momentum flux but occur at much different time scales (O(min) vs. O(hours-weeks)). They each have an effect on sediment transport processes and dispersion of sediments or pollutants in the surf zone, which makes understanding their structure and persistence essential. The vorticity motions of interest here are associated with spatial and temporal wave height variations caused by wave grouping and can exist with either normally or obliquely incident wave conditions. We find that these flows persist for O(1000s) but their lifespan is controlled by the sequence of wave forcing rather than bottom friction as previously hypothesized. These motions can also be observed in combination with either stable or unstable alongshore currents. Our results suggest that, at times, these alongshore propagating wave group forced vortices are misinterpreted as instabilities of the alongshore current. Alternately, the rip currents considered in this research are controlled by strong wave height gradients in the surf zone generated by the refraction of incident waves over variable offshore depth contours. Thus, this type of circulation is governed by timescales associated with changing offshore wave conditions (O(hours - days)). We consider a four- week time period when variable offshore wave spectra were observed during a large-scale field experiment. The model and data are in good agreement for all wave conditions during the month and estimated model errors are similar to those found previously

  17. Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae

    Science.gov (United States)

    Pumo, M. L.; Zampieri, L.; Spiro, S.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Manicò, G.; Turatto, M.

    2017-01-01

    With the aim of improving our knowledge about the nature of the progenitors of low-luminosity Type II plateau supernovae (LL SNe IIP), we made radiation-hydrodynamical models of the well-sampled LL SNe IIP 2003Z, 2008bk and 2009md. For these three SNe, we infer explosion energies of 0.16-0.18 foe, radii at explosion of 1.8-3.5 × 1013 cm and ejected masses of 10-11.3 M⊙. The estimated progenitor mass on the main sequence is in the range ˜13.2-15.1 M⊙ for SN 2003Z and ˜11.4-12.9 M⊙ for SNe 2008bk and 2009md, in agreement with estimates from observations of the progenitors. These results together with those for other LL SNe IIP modelled in the same way enable us also to conduct a comparative study on this SN sub-group. The results suggest that (a) the progenitors of faint SNe IIP are slightly less massive and have less energetic explosions than those of intermediate-luminosity SNe IIP; (b) both faint and intermediate-luminosity SNe IIP originate from low-energy explosions of red (or yellow) supergiant stars of low to intermediate mass; (c) some faint objects may also be explained as electron-capture SNe from massive super-asymptotic giant branch stars; and (d) LL SNe IIP form the underluminous tail of the SNe IIP family, where the main parameter `guiding' the distribution seems to be the ratio of the total explosion energy to the ejected mass. Further hydrodynamical studies should be performed and compared to a more extended sample of LL SNe IIP before drawing any conclusion on the relevance of fall-back to this class of events.

  18. On the Coefficients of a Hyperbolic Hydrodynamic Model

    CERN Document Server

    Muroya, Shin

    2012-01-01

    Based on the Nakajima-Zubarev type nonequilibrium density operator, we derive a hyperbolic hydrodynamical equation. Microscopic Kubo-formulas for all coefficients in the hyperbolic hydrodynamics are obtained. Coefficients $\\alpha_{i}$'s and $\\beta_{i}$'s in the Israel-Stewart equation are given as current-weighted correlation lengths which are to be calculated in statistical mechanics.

  19. A Physics-Based Modeling Framework for Prognostic Studies

    Science.gov (United States)

    Kulkarni, Chetan S.

    2014-01-01

    Prognostics and Health Management (PHM) methodologies have emerged as one of the key enablers for achieving efficient system level maintenance as part of a busy operations schedule, and lowering overall life cycle costs. PHM is also emerging as a high-priority issue in critical applications, where the focus is on conducting fundamental research in the field of integrated systems health management. The term diagnostics relates to the ability to detect and isolate faults or failures in a system. Prognostics on the other hand is the process of predicting health condition and remaining useful life based on current state, previous conditions and future operating conditions. PHM methods combine sensing, data collection, interpretation of environmental, operational, and performance related parameters to indicate systems health under its actual application conditions. The development of prognostics methodologies for the electronics field has become more important as more electrical systems are being used to replace traditional systems in several applications in the aeronautics, maritime, and automotive fields. The development of prognostics methods for electronics presents several challenges due to the great variety of components used in a system, a continuous development of new electronics technologies, and a general lack of understanding of how electronics fail. Similarly with electric unmanned aerial vehicles, electrichybrid cars, and commercial passenger aircraft, we are witnessing a drastic increase in the usage of batteries to power vehicles. However, for battery-powered vehicles to operate at maximum efficiency and reliability, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. We develop an electrochemistry-based model of Li-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable

  20. Hydrodynamics beyond Navier-Stokes: the slip flow model.

    Science.gov (United States)

    Yudistiawan, Wahyu P; Ansumali, Santosh; Karlin, Iliya V

    2008-07-01

    Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice Boltzmann (LB) models to hydrodynamics beyond the continuum limit [S. Ansumali, Phys. Rev. Lett. 98, 124502 (2007)]. In this paper, we present a systematic study of the simplest LB kinetic equation-the nine-bit model in two dimensions--in order to quantify it as a slip flow approximation. Details of the aforementioned analytical solution are presented, and results are extended to include a general shear- and force-driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state flows for all values of rarefaction parameter (Knudsen number). Results are compared with the slip flow solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the Navier-Stokes approximation.

  1. Hydrodynamic Modeling of Nokoué Lake in Benin

    Directory of Open Access Journals (Sweden)

    Josué Zandagba

    2016-12-01

    Full Text Available Nokoué Lake is a complex ecosystem, the understanding of which requires control of physical processes that have occurred. For this, the Surface Water Modeling System (SMS hydrodynamic model was calibrated and validated on the water depth data. The results of these simulations show a good match between the simulated and observed data for bottom roughness and turbulent exchange coefficients, of 0.02 m−1/3·s and 20 m2/s respectively. Once the ability of the model to simulate the hydrodynamics of the lake is testified, the model is used to simulate water surface elevation, exchanged flows and velocities. The simulation shows that the tidal amplitude is maximum at the inlet of the channel and decreases gradually from the inlet towards the lagoon’s main body. The propagation of the tidal wave is characterized by the dephasing and the flattening of the amplitude tide, which increases as we move away from the channel. This dephasing is characterized by a high and low tides delay of about 1 or 4 h and also depends on the tide amplitude and location. The velocities inside the lake are very low and do not exceed 0.03 m/s. The highest are obtained at the entrance of the channel. In a flood period, in contrast with the low-water period, incoming flows are higher than outflows, reinforced by the amplitude of the tide. An average renewal time of the lake has been estimated and corresponds during a flood period to 30 days for an average amplitude tide and 26.3 days on a high amplitude tide. In a low water period it is 40.2 days for an average amplitude tide and 30 days for a high amplitude tide. From the results obtained, several measures must be taken into account for the rational management of the lake water resources. These include a dam construction at the lake upstream, to control the river flows, and the dredging of the channel to facilitate exchanges with the sea.

  2. Two-valley Hydrodynamical Models for Electron Transport in Gallium Arsenide: Simulation of Gunn Oscillations

    Directory of Open Access Journals (Sweden)

    A. Marcello Anile

    2002-01-01

    Full Text Available To accurately describe non-stationary carrier transport in GaAs devices, it is necessary to use Monte Carlo methods or hydrodynamical (or energy transport models which incorporate population transfer between valleys.We present here simulations of Gunn oscillations in a GaAs diode based on two-valley hydrodynamical models: the classic Bløtekjær model and two recently developed moment expansion models. Scattering parameters within the models are obtained from homogeneous Monte Carlo simulations, and these are compared against expressions in the literature. Comparisons are made between our hydrodynamical results, existing work, and direct Monte Carlo simulations of the oscillator device.

  3. Two-particle correlations in pseudorapidity in a hydrodynamic model

    CERN Document Server

    Bozek, Piotr; Olszewski, Adam

    2015-01-01

    Two-particle pseudorapidity correlations of hadrons produced in Pb+Pb collisions at 2.76 TeV at the CERN Large Hadron Collider are analyzed in the framework of a model based on viscous 3+1-dimensional hydrodynamics with the Glauber initial condition. Based on our results, we argue that the correlation from resonance decays, formed at a late stage of the evolution, produce significant effects. In particular, their contribution to the event averages of the coefficients of the expansion in the Legendre basis explain 60-70% of the experimental values. We have proposed an accurate way to compute these coefficients, independent of the binning in pseudorapidity, and tested a double expansion of the two-particle correlation function in the azimuth and pseudorapidity, which allows us to investigate the pseudorapidity correlations between harmonics of the collective flow. In our model, these quantities are also dominated by non-flow effects from the resonance decays. Finally, our method can be used to compute higher-o...

  4. Hydrodynamical models of Type II-Plateau Supernovae

    CERN Document Server

    Bersten, Melina C; Hamuy, Mario

    2011-01-01

    We present bolometric light curves of Type II-plateau supernovae (SNe II-P) obtained using a newly developed, one-dimensional Lagrangian hydrodynamic code with flux-limited radiation diffusion. Using our code we calculate the bolometric light curve and photospheric velocities of SN1999em obtaining a remarkably good agreement with observations despite the simplifications used in our calculation. The physical parameters used in our calculation are E=1.25 foe, M= 19 M_\\odot, R= 800 R_\\odot and M_{Ni}=0.056 M_\\odot. We find that an extensive mixing of 56Ni is needed in order to reproduce a plateau as flat as that shown by the observations. We also study the possibility to fit the observations with lower values of the initial mass consistently with upper limits that have been inferred from pre-supernova imaging of SN1999em in connection with stellar evolution models. We cannot find a set of physical parameters that reproduce well the observations for models with pre-supernova mass of \\leq 12 M_\\odot, although mode...

  5. Radiation-hydrodynamical modelling of underluminous type II plateau Supernovae

    CERN Document Server

    Pumo, M L; Spiro, S; Pastorello, A; Benetti, S; Cappellaro, E; Manicò, G; Turatto, M

    2016-01-01

    With the aim of improving our knowledge about the nature of the progenitors of low-luminosity Type II plateau supernovae (LL SNe IIP), we made radiation-hydrodynamical models of the well-sampled LL SNe IIP 2003Z, 2008bk and 2009md. For these three SNe we infer explosion energies of $0.16$-$0.18$ foe, radii at explosion of $1.8$-$3.5 \\times 10^{13}$ cm, and ejected masses of $10$-$11.3$\\Msun. The estimated progenitor mass on the main sequence is in the range $\\sim 13.2$-$15.1$\\Msun\\, for SN 2003Z and $\\sim 11.4$-$12.9$\\Msun\\, for SNe 2008bk and 2009md, in agreement with estimates from observations of the progenitors. These results together with those for other LL SNe IIP modelled in the same way, enable us also to conduct a comparative study on this SN sub-group. The results suggest that: a) the progenitors of faint SNe IIP are slightly less massive and have less energetic explosions than those of intermediate-luminosity SNe IIP, b) both faint and intermediate-luminosity SNe IIP originate from low-energy explo...

  6. Numerical heat conduction in hydrodynamical models of colliding hypersonic flows

    CERN Document Server

    Parkin, E R

    2010-01-01

    Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

  7. Computational modeling and analysis of the hydrodynamics of human swimming

    Science.gov (United States)

    von Loebbecke, Alfred

    Computational modeling and simulations are used to investigate the hydrodynamics of competitive human swimming. The simulations employ an immersed boundary (IB) solver that allows us to simulate viscous, incompressible, unsteady flow past complex, moving/deforming three-dimensional bodies on stationary Cartesian grids. This study focuses on the hydrodynamics of the "dolphin kick". Three female and two male Olympic level swimmers are used to develop kinematically accurate models of this stroke for the simulations. A simulation of a dolphin undergoing its natural swimming motion is also presented for comparison. CFD enables the calculation of flow variables throughout the domain and over the swimmer's body surface during the entire kick cycle. The feet are responsible for all thrust generation in the dolphin kick. Moreover, it is found that the down-kick (ventral position) produces more thrust than the up-kick. A quantity of interest to the swimming community is the drag of a swimmer in motion (active drag). Accurate estimates of this quantity have been difficult to obtain in experiments but are easily calculated with CFD simulations. Propulsive efficiencies of the human swimmers are found to be in the range of 11% to 30%. The dolphin simulation case has a much higher efficiency of 55%. Investigation of vortex structures in the wake indicate that the down-kick can produce a vortex ring with a jet of accelerated fluid flowing through its center. This vortex ring and the accompanying jet are the primary thrust generating mechanisms in the human dolphin kick. In an attempt to understand the propulsive mechanisms of surface strokes, we have also conducted a computational analysis of two different styles of arm-pulls in the backstroke and the front crawl. These simulations involve only the arm and no air-water interface is included. Two of the four strokes are specifically designed to take advantage of lift-based propulsion by undergoing lateral motions of the hand

  8. Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach

    Science.gov (United States)

    Liu, Hui; Sun, Dihua; Liu, Weining

    2016-11-01

    Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.

  9. Film rupture in the diffuse interface model coupled to hydrodynamics.

    Science.gov (United States)

    Thiele, U; Velarde, M G; Neuffer, K; Pomeau, Y

    2001-09-01

    The process of dewetting of a thin liquid film is usually described using a long-wave approximation yielding a single evolution equation for the film thickness. This equation incorporates an additional pressure term-the disjoining pressure-accounting for the molecular forces. Recently a disjoining pressure was derived coupling hydrodynamics to the diffuse interface model [L. M. Pismen and Y. Pomeau, Phys. Rev. E 62, 2480 (2000)]. Using the resulting evolution equation as a generic example for the evolution of unstable thin films, we examine the thickness ranges for linear instability and metastability for flat films, the families of stationary periodic and localized solutions, and their linear stability. The results are compared to simulations of the nonlinear time evolution. From this we conclude that, within the linearly unstable thickness range, there exists a well defined subrange where finite perturbations are crucial for the time evolution and the resulting structures. In the remainder of the linearly unstable thickness range the resulting structures are controlled by the fastest flat film mode assumed up to now for the entire linearly unstable thickness range. Finally, the implications for other forms of disjoining pressure in dewetting and for spinodal decomposition are discussed.

  10. Update on PHELIX Pulsed-Power Hydrodynamics Experiments and Modeling

    Science.gov (United States)

    Rousculp, Christopher; Reass, William; Oro, David; Griego, Jeffery; Turchi, Peter; Reinovsky, Robert; Devolder, Barbara

    2013-10-01

    The PHELIX pulsed-power driver is a 300 kJ, portable, transformer-coupled, capacitor bank capable of delivering 3-5 MA, 10 μs pulse into a low inductance load. Here we describe further testing and hydrodynamics experiments. First, a 4 nH static inductive load has been constructed. This allows for repetitive high-voltage, high-current testing of the system. Results are used in the calibration of simple circuit models and numerical simulations across a range of bank charges (+/-20 < V0 < +/-40 kV). Furthermore, a dynamic liner-on-target load experiment has been conducted to explore the shock-launched transport of particulates (diam. ~ 1 μm) from a surface. The trajectories of the particulates are diagnosed with radiography. Results are compared to 2D hydro-code simulations. Finally, initial studies are underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. Work supported by United States-DOE under contract DE-AC52-06NA25396.

  11. Magnetospheres of hot Jupiters: hydrodynamic models & ultraviolet absorption

    CERN Document Server

    Alexander, R D; Mohammed, H; Nichols, J D; Ercolano, B

    2015-01-01

    We present hydrodynamic simulations of stellar wind-magnetosphere interactions in hot Jupiters such as WASP-12b. For fiducial stellar wind rates we find that a planetary magnetic field of a few G produces a large magnetospheric cavity, which is typically 6-9 planetary radii in size. A bow shock invariably forms ahead of the magnetosphere, but the pre-shock gas is only mildly supersonic (with typical Mach numbers of $\\simeq$1.6-1.8) so the shock is weak. This results in a characteristic signature in the ultraviolet light curve: a broad absorption feature that leads the optical transit by 10-20% in orbital phase. The shapes of our synthetic light-curves are consistent with existing observations of WASP-12b, but the required near-UV optical depth ($\\tau \\sim 0.1$) can only be achieved if the shocked gas cools rapidly. We further show that radiative cooling is inefficient, so we deem it unlikely that a magnetospheric bow shock is responsible for the observed near-UV absorption. Finally, we apply our model to two ...

  12. Finite time singularities in a class of hydrodynamic models

    CERN Document Server

    Ruban, V P; Rasmussen, J J

    2001-01-01

    Models of inviscid incompressible fluid are considered, with the kinetic energy (i.e., the Lagrangian functional) taking the form ${\\cal L}\\sim\\int k^\\alpha|{\\bf v_k}|^2d^3{\\bf k}$ in 3D Fourier representation, where $\\alpha$ is a constant, $0<\\alpha< 1$. Unlike the case $\\alpha=0$ (the usual Eulerian hydrodynamics), a finite value of $\\alpha$ results in a finite energy for a singular frozen-in vortex filament. This property allows us to study the dynamics of such filaments without necessity in some regularization procedure. The linear analysis of small symmetrical deviations from a stationary solution is performed for a pair of anti-parallel vortex filaments and an analog of the Crow instability is found at small wave-numbers. A local approximate Hamiltonian is obtained for nonlinear long-scale dynamics of this system. Self-similar solutions of the corresponding equations are found analytically, which describe finite time singularity formation with all length scales decreasing like $(t^*-t)^{1/(2-\\alph...

  13. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  14. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  15. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.

    Science.gov (United States)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi

    2010-12-01

    Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed.

  16. Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy

    Science.gov (United States)

    Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat

    2016-01-01

    The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.

  17. Physics-based prognostic modelling of filter clogging phenomena

    Science.gov (United States)

    Eker, Omer F.; Camci, Fatih; Jennions, Ian K.

    2016-06-01

    In industry, contaminant filtration is a common process to achieve a desired level of purification, since contaminants in liquids such as fuel may lead to performance drop and rapid wear propagation. Generally, clogging of filter phenomena is the primary failure mode leading to the replacement or cleansing of filter. Cascading failures and weak performance of the system are the unfortunate outcomes due to a clogged filter. Even though filtration and clogging phenomena and their effects of several observable parameters have been studied for quite some time in the literature, progression of clogging and its use for prognostics purposes have not been addressed yet. In this work, a physics based clogging progression model is presented. The proposed model that bases on a well-known pressure drop equation is able to model three phases of the clogging phenomena, last of which has not been modelled in the literature yet. In addition, the presented model is integrated with particle filters to predict the future clogging levels and to estimate the remaining useful life of fuel filters. The presented model has been implemented on the data collected from an experimental rig in the lab environment. In the rig, pressure drop across the filter, flow rate, and filter mesh images are recorded throughout the accelerated degradation experiments. The presented physics based model has been applied to the data obtained from the rig. The remaining useful lives of the filters used in the experimental rig have been reported in the paper. The results show that the presented methodology provides significantly accurate and precise prognostic results.

  18. Stochastic Downscaling for Hydrodynamic and Ecological Modeling of Lakes

    Science.gov (United States)

    Schlabing, D.; Eder, M.; Frassl, M.; Rinke, K.; Bárdossy, A.

    2012-04-01

    with the help of QQ-downscaled time series. Results of water-quality and ecological modeling using data from VG is contributed by Marieke Anna Frassl under the title "Simulating the effect of meteorological variability on a lake ecosystem". Maria Magdalena Eder contributes three dimensional hydrodynamic lake simulations using VG data in a poster entitled "Advances in estimating the climate sensibility of a large lake using scenario simulations". Both posters can be found in the Session "Lakes and Inland Seas" (HS10.1).

  19. [Prognostic model of the space station contamination stage].

    Science.gov (United States)

    Zlotovol'skiĭ, V M; Smolenskaia, G S

    1998-01-01

    Forty two non-metallic materials, 8 human metabolites and a process liquid (ethylene glycol) were selected for development of a prognostic model of space station contamination by harmful trace admixtures (HTAs). Removal technologies made allowance for absorption by atmospheric condensate (AC) and filter adsorption. Calculations took in 18 HTAs representative of 8 classes of compounds. Simulation modeling allowed to determine HTA migration rates and percent ratio (1), calculate concentrations of contaminants in the atmosphere and atmospheric condensate (2), and to assess filter efficiency by comparison of loads on the filter and a refrigeration/drying set (3). Comparison of empirical and measured data permitted conclusions about adequacy of the model and its potentiality for predicting ramifications of nominal and contingency situations.

  20. Cumulative Intracranial Tumor Volume (CITV) Enhances the Prognostic Value of the Lung-Specific Graded Prognostic Assessment (GPA) Model.

    Science.gov (United States)

    Marcus, Logan P; Marshall, Deborah; Hirshman, Brian R; McCutcheon, Brandon A; Gonda, David D; Koiso, Takao; Hattangadi-Gluth, Jona A; Carter, Bob S; Yamamoto, Masaaki; Chen, Clark C

    2016-08-01

    Management of patients afflicted with brain metastasis requires tailoring of therapeutic strategies based on survival expectations. Therefore, the development of prognostic indices is of critical importance in this patient population. To determine whether the cumulative intracranial tumor volume (CITV) of brain metastasis augments the prognostic value of the lung-specific Graded Prognostic Assessment (GPA) index. Patient data were derived from 365 lung cancer patients with brain metastasis who were consecutively treated with stereotactic radiosurgery at the University of California, San Diego/San Diego Gamma Knife Center. CITV was analyzed to determine the volume cutoff that maximized sensitivity and specificity for 1-year survival. Multivariate Cox proportional hazard modeling was performed, and overall survival was estimated by the Kaplan-Meier method risk stratifying with or without this optimal CITV. The prognostic value of these models (lung-specific GPA ± CITV) was quantitatively compared with the use of net reclassification improvement (>0) and integrated discrimination improvement. For the University of California, San Diego/San Diego Gamma Knife Center cohort, the CITV cutoff that had the greatest survival discrimination at 1 year was 4 cm. The addition of CITV to the lung-specific GPA indexes significantly improved the prognostic value of lung-specific GPA, with net reclassification improvement >0 of 0.430 (95% confidence interval, 0.228-0.629) and integrated discrimination improvement of 0.029 (95% confidence interval, 0.004-0.073). These findings were validated in an independent cohort of 1638 lung cancer patients with brain metastasis who were treated with stereotactic radiosurgery at the Katsuta Hospital Mito Gamma House in Japan. In independent cohorts, the addition of CITV to the lung-specific GPA index significantly improved the prognostic value of this index. AUC, area under the receiver-operating characteristic curveBM, brain metastasis

  1. DEVELOPMENT OF TWO-DIMENSIONAL HYDRODYNAMIC AND WATER QUALITY MODEL FOR HUANGPU RIVER

    Institute of Scientific and Technical Information of China (English)

    Xu Zu-xin; Yin Hai-long

    2003-01-01

    Based on numerical computation model RMA2 and RMA4 with open source code, finite element meshes representing the study domain are created, then the finite element hydrodynamic and water quality model for Huangpu River is developed and calibrated, and the simulation results are analyzed. This developed hydrodynamic and water quality model is used to analyze the influence of discharged wastewater from planning Wastwater Treatment Plant (WWTP) on Huangpu River's water quality.

  2. Verification and Validation of the Coastal Modeling System. Report 3: CMS-Flow: Hydrodynamics

    Science.gov (United States)

    2011-12-01

    ER D C/ CH L TR -1 1- 10 Verification and Validation of the Coastal Modeling System Report 3, CMS -Flow: Hydrodynamics Co as ta l a nd...11-10 December 2011 Verification and Validation of the Coastal Modeling System Report 3, CMS -Flow: Hydrodynamics Alejandro Sánchez, Weiming Wu...of four reports toward the Verification and Validation (V&V) of the Coastal Modeling System ( CMS ). The details of the V&V study specific to the

  3. Research on Hydrodynamics Model Test for Deepsea Open-Framed Remotely Operated Vehicle

    Institute of Scientific and Technical Information of China (English)

    FAN Shi-bo; LIAN Lian; REN Ping

    2012-01-01

    This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm.The scaled model of ROV was constructed by 1∶ 1.6.Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test.And dynamics model was derived as a set of equations,describing nonlinear and coupled 5-DOF spatial motions.Rotation control motion was simulated to verify spatial model proposed.Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment,and accomplish some more challengeable and practical missions.

  4. Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms Based on Kalman Filter Estimation

    Science.gov (United States)

    Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.

  5. Modeling Hydrodynamic State of Oil and Gas Condensate Mixture in a Pipeline

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2016-01-01

    Based on the developed model a calculation method was obtained which is used to analyze hydrodynamic state and composition of hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change.

  6. Thermalization and hydrodynamization in the color-flux-tube model

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The study of transverse-momentum spectra of quarks and gluons produced by the color electric flux tube decaying through the Schwinger tunneling mechanism is reviewed. The hints for a fast hydrodynamization in the ultra-relativistic heavy-ion collisions are found.

  7. Hydrodynamic modelling of gas-particle flows in riser reactors.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Sint Annaland, van M.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1996-01-01

    Complex hydrodynamic behavior of circulating fluidized beds makes their scale-up very complicated. In particular, large-scale lateral solids segregation causes a complex two-phase flow pattern which influences significantly their performance. Lateral solids segregation has been attributed to direct

  8. Hydrodynamic model for picosecond propagation of laser-created nanoplasmas

    CERN Document Server

    Saxena, Vikrant; Ziaja, Beata; Santra, Robin

    2015-01-01

    The interaction of a free-electron-laser pulse with a moderate or large size cluster is known to create a quasi-neutral nanoplasma, which then expands on hydrodynamic timescale, i.e., $>1$ ps. To have a better understanding of ion and electron data from experiments derived from laser-irradiated clusters, one needs to simulate cluster dynamics on such long timescales for which the molecular dynamics approach becomes inefficient. We therefore propose a two-step Molecular Dynamics-Hydrodynamic scheme. In the first step we use molecular dynamics code to follow the dynamics of an irradiated cluster until all the photo-excitation and corresponding relaxation processes are finished and a nanoplasma, consisting of ground-state ions and thermalized electrons, is formed. In the second step we perform long-timescale propagation of this nanoplasma with a computationally efficient hydrodynamic approach. In the present paper we examine the feasibility of a hydrodynamic two-fluid approach to follow the expansion of spherica...

  9. Modeling of dynamically loaded hydrodynamic bearings at low Sommerfeld numbers

    DEFF Research Database (Denmark)

    Thomsen, Kim

    . The challenging main bearing operation conditions in a wind turbine pose a demanding development task for the design of a hydrodynamic bearing. In general these conditions include operation at low Reynolds numbers with frequent start and stop at high loads as well as difficult operating conditions dictated...

  10. A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    OpenAIRE

    Colosqui, Carlos E.; Kavousanakis, Michail E.; Papathanasiou, Athanasios G.; Kevrekidis, Ioannis G.

    2012-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibriu...

  11. Measures to assess the prognostic ability of the stratified Cox proportional hazards model

    DEFF Research Database (Denmark)

    (Tybjaerg-Hansen, A.) The Fibrinogen Studies Collaboration.The Copenhagen City Heart Study; Tybjærg-Hansen, Anne

    2009-01-01

    Many measures have been proposed to summarize the prognostic ability of the Cox proportional hazards (CPH) survival model, although none is universally accepted for general use. By contrast, little work has been done to summarize the prognostic ability of the stratified CPH model; such measures w...

  12. A Discussion on Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms based on Kalman Filter Estimation Applied to Prognostics of Electronics Components

    Science.gov (United States)

    Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.

  13. The importance of accounting for the uncertainty of published prognostic model estimates.

    Science.gov (United States)

    Young, Tracey A; Thompson, Simon

    2004-01-01

    Reported is the importance of properly reflecting uncertainty associated with prognostic model estimates when calculating the survival benefit of a treatment or technology, using liver transplantation as an example. Monte Carlo simulation techniques were used to account for the uncertainty of prognostic model estimates using the standard errors of the regression coefficients and their correlations. These methods were applied to patients with primary biliary cirrhosis undergoing liver transplantation using a prognostic model from a historic cohort who did not undergo transplantation. The survival gain over 4 years from transplantation was estimated. Ignoring the uncertainty in the prognostic model, the estimated survival benefit of liver transplantation was 16.7 months (95 percent confidence interval [CI], 13.5 to 20.1), and was statistically significant (p important that the precision of regression coefficients is available for users of published prognostic models. Ignoring this additional information substantially underestimates uncertainty, which can then impact misleadingly on policy decisions.

  14. A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    Science.gov (United States)

    Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.

    2004-10-01

    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high-order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same timescale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer timescale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non-hydrodynamic fields.

  15. Investigating the Effect of Damage Progression Model Choice on Prognostics Performance

    Data.gov (United States)

    National Aeronautics and Space Administration — The success of model-based approaches to systems health management depends largely on the quality of the underly- ing models. In model-based prognostics, it is...

  16. A Comparison of Filter-based Approaches for Model-based Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics approaches use domain knowledge about a system and its failure modes through the use of physics-based models. Model-based prognosis is...

  17. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  18. Prognostic model for brain metastases from lung adenocarcinoma identified with epidermal growth factor receptor mutation status.

    Science.gov (United States)

    Li, Hongwei; Wang, Weili; Jia, Haixia; Lian, Jianhong; Cao, Jianzhong; Zhang, Xiaqin; Song, Xing; Jia, Sufang; Li, Zhengran; Cao, Xing; Zhou, Wei; Han, Songye; Yang, Weihua; Xi, Yanfen; Lian, Shenming

    2017-09-01

    Several indices have been developed to predict survival of brain metastases (BM) based on prognostic factors. However, such models were designed for general brain metastases from different kinds of cancers, and prognostic factors vary between cancers and histological subtypes. Recently, studies have indicated that epidermal growth factor receptor (EGFR) mutation status may be a potential prognostic biological factor in BM from lung adenocarcinoma. Thus, we sought to define the role of EGFR mutation in prognoses and introduce a prognostic model specific for BM from lung adenocarcinoma. Data of 256 patients with BM from lung adenocarcinoma identified with EGFR mutations were collected. Independent prognostic factors were confirmed using a Cox regression model. The new prognostic model was developed based on the results of multivariable analyses. The score of each factor was calculated by six-month survival. Prognostic groups were divided into low, medium, and high risk based on the total scores. The prediction ability of the new model was compared to the three existing models. EGFR mutation and Karnofsky performance status were independent prognostic factors and were thus integrated into the new prognostic model. The new model was superior to the three other scoring systems regarding the prediction of three, six, and 12-month survival by pairwise comparison of the area under the curve. Our proposed prognostic model specific for BM from lung adenocarcinoma incorporating EGFR mutation status was valid in predicting patient survival. Further verification is warranted, with prospective testing using large sample sizes. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  19. Physics Based Modeling and Prognostics of Electrolytic Capacitors

    Science.gov (United States)

    Kulkarni, Chetan; Ceyla, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  20. Multidisciplinary Rehabilitation Treatment of Patients With Chronic Low Back Pain: A Prognostic Model for Its Outcome

    NARCIS (Netherlands)

    Hulst, van der Marije; Vollenbroek-Hutten, Miriam M.R.; Groothuis-Oudshoorn, Karin G.M.; Hermens, Hermie J.

    2008-01-01

    Objectives: (1) To determine if treatment outcome in chronic low back pain can be predicted by a predefined multivariate prognostic model based on consistent predictors from the literature and (2) to explore the value of potentially prognostic factors further. Methods: Data were derived from a rand

  1. Aircraft Anomaly Prognostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will leverage its proven Electromechanical Actuator (EMA) prognostics methodology to develop an advanced model-based actuator prognostic reasoner...

  2. Hydrodynamic models for slurry bubble column reactors. Fifth technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.

    1995-10-01

    The objective of this work is to convert our `learning gas-solid-liquid` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid, and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values.

  3. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain.

  4. Improving Computational Efficiency of Prediction in Model-based Prognostics Using the Unscented Transform

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of...

  5. The Korteweg-de Vries soliton in the lattice hydrodynamic model

    Science.gov (United States)

    Ge, H. X.

    2009-04-01

    The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but is also closely connected with the microscopic car following model. The modified Korteweg-de Vries (mKdV) equation about the density wave in congested traffic has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail in the car following model. So we devote ourselves to obtaining the KdV equation from the lattice hydrodynamic model and obtaining the KdV soliton solution describing the traffic jam. Numerical simulation is conducted, to demonstrate the nonlinear analysis result.

  6. Hydrodynamic modelling in the Polish Zone of the Baltic Sea - an overview of Polish achievements

    Directory of Open Access Journals (Sweden)

    Ewa Jasińska

    2003-03-01

    Full Text Available This paper gives a general overview of Polish experience and achievements with regard to hydrodynamic modelling in the Polish zone of the Baltic Sea. The first work started already at the end of the sixties when the first 1D and 2D hydrodynamic models were set up. With the development of numerical methods and increasing computational power a number of 1D, 2D and 3D models were set up and tested. Global, regional and local models cover the most important water bodies,i.e. the Pomeranian Bay - Szczecin Lagoon and Gulf of Gdansk - Vistula Lagoon systems.

  7. Simulation of the mixing process in FCIs with hydrodynamic fragmentation model

    Institute of Scientific and Technical Information of China (English)

    LIN Qian; CAO Xuewu

    2007-01-01

    Fuel Coolant Interactions (FCIs) are important issues in nuclear reactor severe accident analysis. In FCIs,fragmentation model of molten droplets is a key factor to estimate degree of possible damage. In this paper, the mixing process in FCIs is studied by the simulation of MIXA experiment with hydrodynamic fragmentation model. The result shows that hydrodynamic fragmentation model underestimates the fragmentation rate of high temperature molten droplets under the condition of low Weber numbers. It is concluded that models based on thermal fragmentation mechanism should be adopted to analyze the FCI process and its consequence.

  8. Plaque Brachytherapy for Uveal Melanoma: A Vision Prognostication Model

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Niloufer [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio (United States); Khan, Mohammad K. [Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia (United States); Bena, James [Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (United States); Macklis, Roger [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio (United States); Singh, Arun D., E-mail: singha@ccf.org [Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (United States)

    2012-11-01

    Purpose: To generate a vision prognostication model after plaque brachytherapy for uveal melanoma. Methods and Materials: All patients with primary single ciliary body or choroidal melanoma treated with iodine-125 or ruthenium-106 plaque brachytherapy between January 1, 2005, and June 30, 2010, were included. The primary endpoint was loss of visual acuity. Only patients with initial visual acuity better than or equal to 20/50 were used to evaluate visual acuity worse than 20/50 at the end of the study, and only patients with initial visual acuity better than or equal to 20/200 were used to evaluate visual acuity worse than 20/200 at the end of the study. Factors analyzed were sex, age, cataracts, diabetes, tumor size (basal dimension and apical height), tumor location, and radiation dose to the tumor apex, fovea, and optic disc. Univariate and multivariable Cox proportional hazards were used to determine the influence of baseline patient factors on vision loss. Kaplan-Meier curves (log rank analysis) were used to estimate freedom from vision loss. Results: Of 189 patients, 92% (174) were alive as of February 1, 2011. At presentation, visual acuity was better than or equal to 20/50 and better than or equal to 20/200 in 108 and 173 patients, respectively. Of these patients, 44.4% (48) had post-treatment visual acuity of worse than 20/50 and 25.4% (44) had post-treatment visual acuity worse than 20/200. By multivariable analysis, increased age (hazard ratio [HR] of 1.01 [1.00-1.03], P=.05), increase in tumor height (HR of 1.35 [1.22-1.48], P<.001), and a greater total dose to the fovea (HR of 1.01 [1.00-1.01], P<.001) were predictive of vision loss. This information was used to develop a nomogram predictive of vision loss. Conclusions: By providing a means to predict vision loss at 3 years after treatment, our vision prognostication model can be an important tool for patient selection and treatment counseling.

  9. Hydrodynamical Simulations of Colliding Jets: Modeling 3C 75

    Science.gov (United States)

    Molnar, S. M.; Schive, H.-Y.; Birkinshaw, M.; Chiueh, T.; Musoke, G.; Young, A. J.

    2017-01-01

    Radio observations suggest that 3C 75, located in the dumbbell shaped galaxy NGC 1128 at the center of Abell 400, hosts two colliding jets. Motivated by this source, we perform three-dimensional hydrodynamical simulations using a modified version of the GPU-accelerated Adaptive-MEsh-Refinement hydrodynamical parallel code (GAMER) to study colliding extragalactic jets. We find that colliding jets can be cast into two categories: (1) bouncing jets, in which case the jets bounce off each other keeping their identities, and (2) merging jets, when only one jet emerges from the collision. Under some conditions the interaction causes the jets to break up into oscillating filaments of opposite helicity, with consequences for their downstream stability. When one jet is significantly faster than the other and the impact parameter is small, the jets merge; the faster jet takes over the slower one. In the case of merging jets, the oscillations of the filaments, in projection, may show a feature that resembles a double helix, similar to the radio image of 3C 75. Thus we interpret the morphology of 3C 75 as a consequence of the collision of two jets with distinctly different speeds at a small impact parameter, with the faster jet breaking up into two oscillating filaments.

  10. Evaluation of a prognostic model for risk of relapse in stage I seminoma surveillance

    DEFF Research Database (Denmark)

    Chung, Peter; Daugaard, Gedske; Tyldesley, Scott

    2015-01-01

    A prognostic model for relapse risk in stage I seminoma managed by surveillance after orchiectomy has been developed but has not been independently validated. Individual data on 685 stage I seminoma surveillance patients managed between 1998 and 2005 at three cancer centers were retrospectively...... useful, highly discriminating prognostic model remains elusive in stage I seminoma surveillance as we were unable to validate the previously developed model. However, primary tumor size retained prognostic importance and a scale of relapse risk based on the unit increment of tumor size was developed...

  11. Pseudo-Hydrodynamic Approximation for Transient Computation of Energy-Transport Models in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    TANG Shao-Qiang; ZHANG Da-Peng

    2005-01-01

    @@ We propose a pseudo-hydrodynamic (PHD) model that has hyperbolic principal part. It formally converges to the corresponding energy-transport model in the limit of zero momentum relaxation time. Numerical examples have demonstrated the regularization effects of the PHD model.

  12. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  13. Recent extensions of the residence time distribution concept: unsteady state conditions and hydrodynamic model developments

    Directory of Open Access Journals (Sweden)

    S. Claudel

    2000-12-01

    Full Text Available Two recent extensions of the residence time distribution concept are developed. The first one concerns the use of this method under transient conditions, a concept theoretically treated but rarely confirm by relevant experiments. In the present work, two experimental set-ups have been used to verify some limits of the concept. The second extension is devoted to the development of hydrodynamic models. Up to now, the hydrodynamics of the process are either determined by simple models (mixing cells in series, plug flow reactor with axial dispersion or by the complex calculation of the velocity profile obtained via the Navier-Stokes equations. An alternative is to develop a hydrodynamic model by use of a complex network of interconnected elementary reactors. Such models should be simple enough to be derived easily and sufficiently complex to give a good representation of the behavior of the process.

  14. The Practicability of a Novel Prognostic Index (PI Model and Comparison with Nottingham Prognostic Index (NPI in Stage I-III Breast Cancer Patients Undergoing Surgical Treatment.

    Directory of Open Access Journals (Sweden)

    Jiahuai Wen

    Full Text Available Previous studies have indicated the prognostic value of various laboratory parameters in cancer patients. This study was to establish a prognostic index (PI model for breast cancer patients based on the potential prognostic factors.A retrospective study of 1661 breast cancer patients who underwent surgical treatment between January 2002 and December 2008 at Sun Yat-sen University Cancer Center was conducted. Multivariate analysis (Cox regression model was performed to determine the independent prognostic factors and a prognostic index (PI model was devised based on these factors. Survival analyses were used to estimate the prognostic value of PI, and the discriminatory ability of PI was compared with Nottingham Prognostic Index (NPI by evaluating the area under the receiver operating characteristics curves (AUC.The mean survival time of all participants was 123.6 months. The preoperative globulin >30.0g/L, triglyceride >1.10mmol/L and fibrinogen >2.83g/L were identified as risk factors for shorter cancer-specific survival. The novel prognostic index model was established and enrolled patients were classified as low- (1168 patients, 70.3%, moderate- (410 patients, 24.7% and high-risk groups (83 patients, 5.0%, respectively. Compared with the low-risk group, higher risks of poor clinical outcome were indicated in the moderate-risk group [Hazard ratio (HR: 1.513, 95% confidence interval (CI: 1.169-1.959, p = 0.002] and high-risk group (HR: 2.481, 95%CI: 1.653-3.724, p< 0.001.The prognostic index based on three laboratory parameters was a novel and practicable prognostic tool. It may serve as complement to help predict postoperative survival in breast cancer patients.

  15. Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect

    Institute of Scientific and Technical Information of China (English)

    Zhao Min; Sun Di-Hua; Tian Chuan

    2012-01-01

    By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model,we present a new anticipation effect lattice hydrodynamic (AELH) model,and obtain the linear stability condition of the model by applying the linear stability theory.Through nonlinear analysis,we derive the Burgers equation and Korteweg-de Vries (KdV) equation,to describe the propagating behaviour of traffic density waves in the stable and the metastable regions,respectively.The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.

  16. Integrated methodology for constructing a quantified hydrodynamic model for application to clastic petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Honarpour, M. M.; Schatzinger, R. A.; Szpakiewicz, M. J.; Jackson, S. R.; Sharma, B.; Tomutsa, L.; Chang, M. M.

    1990-01-01

    A comprehensive, multidisciplinary, stepwise methodology is developed for constructing and integration geological and engineering information for predicting petroleum reservoir performance. This methodology is based on our experience in characterizing shallow marine reservoirs, but it should also apply to other deposystems. The methodology is presented as Part 1 of this report. Three major tasks that must be studied to facilitate a systematic approach for constructing a predictive hydrodynamic model for petroleum reservoirs are addressed: (1) data collection, organization, evaluation, and integration; (2) hydrodynamic model construction and verification; and (3) prediction and ranking of reservoir parameters by numerical simulation using data derived from the model. 39 refs., 62 figs., 13 tabs.

  17. Modelling free surface flows with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    L.Di G.Sigalotti

    2006-01-01

    Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.

  18. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Jungyeoul Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyde, David Andrew Bulloch [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  19. Rayleigh-Taylor finger instability mixing in hydrodynamic shell convection models

    CERN Document Server

    Mocak, Miroslav

    2010-01-01

    Mixing processes in stars driven by composition gradients as a result of the Rayleigh-Taylor instability are not anticipated. They are supported only by hydrodynamic studies of stellar convection. We find that such mixing occurs below the bottom edge of convection zones in our multidimensional hydrodynamic shell convection models. It operates at interfaces created by off-center nuclear burning, where less dense gas with higher mean molecular weight is located above denser gas with a lower mean molecular weight. We discuss the mixing under various conditions with hydrodynamic convection models based on stellar evolutionary calculations of the core helium flash in a 1.25 Msun star, the core carbon flash in a 9.3 Msun star, and of oxygen burning shell in a star with a mass of 23 Msun. We simulate the hydrodynamic behavior of shell convection during various phases of stellar evolution with the Eulerian hydrodynamics code HERAKLES in two and three spatial dimensions. Initial models for this purpose are obtained by...

  20. Uncertainty Representation and Interpretation in Model-based Prognostics Algorithms based on Kalman Filter Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — This article discusses several aspects of uncertainty represen- tation and management for model-based prognostics method- ologies based on our experience with Kalman...

  1. A THERMO-ELECTRO-HYDRODYNAMIC MODEL FOR VIBRATION-ELECTROSPINNING PROCESS

    OpenAIRE

    Lan Xu; Liang Wang; Naeem Faraz

    2011-01-01

    In this paper, a thermo-electro-hydrodynamic model of the vibration- electrospinning process is first established. The model can offer in-depth insight into physical understanding of many complex phenomena which can not be fully explained experimentally. It is a powerful tool to controlling over physical characters.

  2. A THERMO-ELECTRO-HYDRODYNAMIC MODEL FOR VIBRATION-ELECTROSPINNING PROCESS

    Directory of Open Access Journals (Sweden)

    Lan Xu

    2011-01-01

    Full Text Available In this paper, a thermo-electro-hydrodynamic model of the vibration- electrospinning process is first established. The model can offer in-depth insight into physical understanding of many complex phenomena which can not be fully explained experimentally. It is a powerful tool to controlling over physical characters.

  3. A suspension flow model for hydrodynamics and concentration polarisation in crossflow microfiltration

    NARCIS (Netherlands)

    Kromkamp, J.; Bastiaanse, A.; Swarts, J.W.; Brans, G.B.P.W.; Sman, van der R.G.M.; Boom, R.M.

    2005-01-01

    A new computer simulation model is proposed for suspension flow in microfiltration systems. In this model, the diffusion of the suspended microparticles is governed by the mechanism of shear-induced migration. Using an Euler–Euler approach, hydrodynamics and convection–diffusion are simultaneously r

  4. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2010-12-20

    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  5. ASYMPTOTICS OF INITIAL BOUNDARY VALUE PROBLEMS OF BIPOLAR HYDRODYNAMIC MODEL FOR SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    Ju Qiangchang

    2004-01-01

    In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.

  6. A New Hydrodynamic Model for Numerical Simulation of Interacting Galaxies on Intel Xeon Phi Supercomputers

    Science.gov (United States)

    Kulikov, Igor; Chernykh, Igor; Tutukov, Alexander

    2016-05-01

    This paper presents a new hydrodynamic model of interacting galaxies based on the joint solution of multicomponent hydrodynamic equations, first moments of the collisionless Boltzmann equation and the Poisson equation for gravity. Using this model, it is possible to formulate a unified numerical method for solving hyperbolic equations. This numerical method has been implemented for hybrid supercomputers with Intel Xeon Phi accelerators. The collision of spiral and disk galaxies considering the star formation process, supernova feedback and molecular hydrogen formation is shown as a simulation result.

  7. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  8. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines

    Directory of Open Access Journals (Sweden)

    Holder Roger L

    2009-07-01

    Full Text Available Abstract Background Multiple imputation (MI provides an effective approach to handle missing covariate data within prognostic modelling studies, as it can properly account for the missing data uncertainty. The multiply imputed datasets are each analysed using standard prognostic modelling techniques to obtain the estimates of interest. The estimates from each imputed dataset are then combined into one overall estimate and variance, incorporating both the within and between imputation variability. Rubin's rules for combining these multiply imputed estimates are based on asymptotic theory. The resulting combined estimates may be more accurate if the posterior distribution of the population parameter of interest is better approximated by the normal distribution. However, the normality assumption may not be appropriate for all the parameters of interest when analysing prognostic modelling studies, such as predicted survival probabilities and model performance measures. Methods Guidelines for combining the estimates of interest when analysing prognostic modelling studies are provided. A literature review is performed to identify current practice for combining such estimates in prognostic modelling studies. Results Methods for combining all reported estimates after MI were not well reported in the current literature. Rubin's rules without applying any transformations were the standard approach used, when any method was stated. Conclusion The proposed simple guidelines for combining estimates after MI may lead to a wider and more appropriate use of MI in future prognostic modelling studies.

  9. Radiative Hydrodynamic Models of Optical and Ultraviolet Emission from M Dwarf Flares

    CERN Document Server

    Allred, J C; Carlsson, M; Hawley, S L; Abbett, William P.; Allred, Joel C.; Carlsson, Mats; Hawley, Suzanne L.

    2006-01-01

    We report on radiative hydrodynamic simulations of M dwarf stellar flares and compare the model predictions to observations of several flares. The flares were simulated by calculating the hydrodynamic response of a model M dwarf atmosphere to a beam of non-thermal electrons. Radiative backwarming through numerous soft X-ray, extreme ultraviolet, and ultraviolet transitions are also included. The equations of radiative transfer and statistical equilibrium are treated in non-LTE for many transitions of hydrogen, helium and the Ca II ion allowing the calculation of detailed line profiles and continuum radiation. Two simulations were carried out, with electron beam fluxes corresponding to moderate and strong beam heating. In both cases we find the dynamics can be naturally divided into two phases: an initial gentle phase in which hydrogen and helium radiate away much of the beam energy, and an explosive phase characterized by large hydrodynamic waves. During the initial phase, lower chromospheric material is evap...

  10. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models

    Directory of Open Access Journals (Sweden)

    Paola Patiño

    2012-04-01

    Full Text Available Hydrodynamic phenomena take place within water treatment plants associated with physical, operational and environmental factors which can affect the water quality. This study evaluated a hydraulic clarifier’s hydrodynamic pattern using sludge recirculation through continuous tracer test leading to determining hydraulic behaviour indicators and simplified flow models. The clarifier had dual flow with a predominantly complete mixture during the hours in which higher temperatures were reported for affluent water compared to those reported inside the reactor, causing the formation of density currents promoting mixing in the reactor and increased turbidity in the effluent. The hydraulic indicators and the Wolf-Resnick model had higher sensitivity to the influence of temperature on reactor hydrodynamics.

  11. A VERTICAL 2D MATHEMATICAL MODEL FOR HYDRODYNAMIC FLOWS WITH FREE SURFACE IN σ COORDINATE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Numerical models with hydrostatic pressure have been widely utilized in studying flows in rivers, estuaries and coastal areas. The hydrostatic assumption is valid for the large-scale surface flows where the vertical acceleration can be ignored, but for some particular cases the hydrodynamic pressure is important. In this paper, a vertical 2D mathematical model with non-hydrostatic pressure was implemented in the σ coordinate. A fractional step method was used to enable the pressure to be decomposed into hydrostatic and hydrodynamic components and the predictor-corrector approach was applied to integration in time domain. Finally, several computational cases were studied to validate the importance of contributions of the hydrodynamic pressure.

  12. The theoretical analysis of the lattice hydrodynamic models for traffic flow theory

    Science.gov (United States)

    Ge, H. X.; Cheng, R. J.; Lei, L.

    2010-07-01

    The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but also connected with the microscopic car following model closely. The modified Korteweg-de Vries (mKdV) equation related to the density wave in a congested traffic region has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail for the car following model. We devote ourselves to obtaining the KdV equation from the original lattice hydrodynamic models and the KdV soliton solution to describe the traffic jam. Especially, we obtain the general soliton solution of the KdV equation and the mKdV equation. We review several lattice hydrodynamic models, which were proposed recently. We compare the modified models and carry out some analysis. Numerical simulations are conducted to demonstrate the nonlinear analysis results.

  13. Hybrid polygon and hydrodynamic nebula modeling with multi-waveband radiation transfer in astrophysics

    Science.gov (United States)

    Steffen, W.; Koning, N.

    2017-07-01

    We demonstrate the potential for research and outreach of mixed polygon and hydrodynamic modeling and multi-waveband rendering in the interactive 3-D astrophysical virtual laboratory Shape. In 3-D special effects and animation software for the mass media, computer graphics techniques that mix polygon and numerical hydrodynamics have become common place. In astrophysics, however, interactive modeling with polygon structures has only become available with the software Shape. Numerical hydrodynamic simulations and their visualization are usually separate, while in Shape it is integrated with the polygon modeling approach that requires no programming by the user. With two generic examples, we demonstrate that research and outreach modeling can be achieved with techniques similar to those used in the media industry with the added capability for physical rendering at any wavelength band, yielding more realistic radiation modeling. Furthermore, we show how the hydrodynamics and the polygon mesh modeling can be mixed to achieve results that are superior to those obtained using either one of these modeling techniques alone.

  14. A first computational framework for integrated hydrologic-hydrodynamic inundation modelling

    Science.gov (United States)

    Hoch, Jannis; Baart, Fedor; Neal, Jeffrey; van Beek, Rens; Winsemius, Hessel; Bates, Paul; Bierkens, Marc

    2017-04-01

    To provide detailed flood hazard and risk estimates for current and future conditions, advanced modelling approaches are required. Currently, many approaches are however built upon specific hydrologic or hydrodynamic model routines. By applying these routines in stand-alone mode important processes cannot accurately be described. For instance, global hydrologic models (GHM) run at coarse spatial resolution which does not identify locally relevant flood hazard information. Moreover, hydrologic models generally focus on correct computations of water balances, but employ less sophisticated routing schemes such as the kinematic wave approximation. Hydrodynamic models, on the other side, excel in the computations of open water flow dynamics, but are highly dependent on specific runoff or observed discharge for their input. In most cases hydrodynamic models are forced by applying discharge at the boundaries and thus cannot account for water sources within the model domain. Thus, discharge and inundation dynamics at reaches not fed by upstream boundaries cannot be modelled. In a recent study, Hoch et al. (HESS, 2017) coupled the GHM PCR-GLOBWB with the hydrodynamic model Delft3D Flexible Mesh. A core element of this study was that both models were connected on a cell-by-cell basis which allows for direct hydrologic forcing within the hydrodynamic model domain. The means for such model coupling is the Basic Model Interface (BMI) which provides a set of functions to directly access model variables. Model results showed that discharge simulations can profit from model coupling as their accuracy is higher compared to stand-alone runs. Model results of a coupled simulation clearly depend on the quality of the individual models. Depending on purpose, location or simply the models at hand, it would be worthwhile to allow a wider range of models to be coupled. As a first step, we present a framework which allows coupling of PCR-GLOBWB to both Delft3D Flexible Mesh and LISFLOOD

  15. Prognostic models for locally advanced cervical cancer: external validation of the published models.

    Science.gov (United States)

    Lora, David; Gómez de la Cámara, Agustín; Fernández, Sara Pedraza; Enríquez de Salamanca, Rafael; Gómez, José Fermín Pérez Regadera

    2017-09-01

    To externally validate the prognostic models for predicting the time-dependent outcome in patients with locally advanced cervical cancer (LACC) who were treated with concurrent chemoradiotherapy in an independent cohort. A historical cohort of 297 women with LACC who were treated with radical concurrent chemoradiotherapy from 1999 to 2014 at the 12 de Octubre University Hospital (H12O), Madrid, Spain. The external validity of prognostic models was quantified regarding discrimination, calibration, measures of overall performance, and decision curve analyses. The review identified 8 studies containing 13 prognostic models. Different (International Federation of Gynecology and Obstetrics [FIGO] stages, parametrium involvement, hydronephrosis, location of positive nodes, and race) but related cohorts with validation cohort (5-year overall survival [OS]=70%; 5-year disease-free survival [DFS]=64%; average age of 50; and over 79% squamous cell) were evaluated. The following models exhibited good external validity in terms of discrimination and calibration but limited clinical utility: the OS model at 3 year from Kidd et al.'s study (area under the receiver operating characteristic curve [AUROC]=0.69; threshold of clinical utility [TCU] between 36% and 50%), the models of DFS at 1 year from Kidd et al.'s study (AUROC=0.64; TCU between 24% and 32%) and 2 years from Rose et al.'s study (AUROC=0.70; TCU between 19% and 58%) and the distant recurrence model at 5 years from Kang et al.'s study (AUROC=0.67; TCU between 12% and 36%). The external validation revealed the statistical and clinical usefulness of 4 prognostic models published in the literature.

  16. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  17. Development and validation of logistic prognostic models by predefined SAS-macros

    Directory of Open Access Journals (Sweden)

    Ziegler, Christoph

    2006-02-01

    Full Text Available In medical decision making about therapies or diagnostic procedures in the treatment of patients the prognoses of the course or of the magnitude of diseases plays a relevant role. Beside of the subjective attitude of the clinician mathematical models can help in providing such prognoses. Such models are mostly multivariate regression models. In the case of a dichotomous outcome the logistic model will be applied as the standard model. In this paper we will describe SAS-macros for the development of such a model, for examination of the prognostic performance, and for model validation. The rational for this developmental approach of a prognostic modelling and the description of the macros can only given briefly in this paper. Much more details are given in. These 14 SAS-macros are a tool for setting up the whole process of deriving a prognostic model. Especially the possibility of validating the model by a standardized software tool gives an opportunity, which is not used in general in published prognostic models. Therefore, this can help to develop new models with good prognostic performance for use in medical applications.

  18. Mathematical Model of Hydrodynamic Torque Converter and Analytic Description of Streamline

    Institute of Scientific and Technical Information of China (English)

    LIU Shiping; QUAN Long

    2009-01-01

    The mathematical model of a 3-element centripetal-turbine hydrodynamic torque converter and analytic description of fluid flow inside the hydrodynamic torque converter are investigated. A new torus coordinate system is proposed so as to quantitatively describe fluid movement inside the hydrodynamic torque converter. The particle movement inside the hydrodynamic torque converter is decomposed into meridional component movement and torus component movement, and a universal meridional streamline equation is derived. According to the relationship between the converter wheel velocity polygon and its blade angle, a torus streamline differential equation is established. The universal meridional streamline equation is approximated with square polynomials. The approximation error curve is given and the percentage error is not greater than 0.86%. Considered as a function of polar angle, the blade angle cotangent of each converter wheel varies linearly with polar angle. By using integral calculus, torus streamline equations are obtained. As a result, the problem of difficult flow description of the hydrodynamic torque converter is solved and a new analytic research system is established.

  19. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Directory of Open Access Journals (Sweden)

    Mazda Biglari

    2016-06-01

    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  20. LARGE-TIME BEHAVIOR OF SOLUTIONS OF QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A one-dimensional quantum hydrodynamic model (or quantum Euler-Poisson system) for semiconductors with initial boundary conditions is considered for general pressure-density function. The existence and uniqueness of the classical solution of the corresponding steady-state quantum hydrodynamic equations is proved. Furthermore, the global existence of classical solution, when the initial datum is a perturbation of the steadystate solution, is obtained. This solution tends to the corresponding steady-state solution exponentially fast as the time tends to infinity.

  1. Environmental and Water Quality Operational Studies. Physical Modeling of Reservoir Hydrodynamics.

    Science.gov (United States)

    1985-12-01

    reservoir flume (re- ferred to as the General Reservoir Hydrodynamic ( GRH ) Facility) located in the Hydraulics Laboratory of WES. In this case, the GRH was...their study. 49. GRH simulation. Data from the WES Generalized Reservoir Hydrodynamic ( GRH ) Facility was used as the prototype to make the second model...prototype comparison. The GRH is 80.0 ft long and 2.85 ft wide with a maximum depth of 3.0 ft. Details of the GRH are provided in Figure 6. 44 2.85 FT

  2. Multi-phase SPH modelling of violent hydrodynamics on GPUs

    Science.gov (United States)

    Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.

    2015-11-01

    This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.

  3. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  4. A Comparison Between Measured and Predicted Hydrodynamic Damping for a Jack-Up Rig Model

    DEFF Research Database (Denmark)

    Laursen, Thomas; Rohbock, Lars; Jensen, Jørgen Juncher

    1996-01-01

    methods.In the comparison between the model test results and the theoretical predictions, thehydro-dynamic damping proves to be the most important uncertain parameter. It is shown thata relative large hydrodynamic damping must be assumed in the theoretical calculations in orderto predict the measured...

  5. Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2016-01-01

    A continuum model is established for numerical studies of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle...

  6. Hydrodynamic models of a Cepheid atmosphere. III - Line spectrum and radius determinations

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    Line profiles are computed on the basis of the moving atmospheres from the hydrodynamic models investigated by Karp (1975). It is found that the velocity gradients in the atmosphere can be used to explain the apparent, slightly supersonic microturbulence. The total observed microturbulence is seen to be consistent with the linear sum of the classical microturbulence and that caused by the velocity gradients.

  7. Asymptotic stability of solutions to the nonisentropic hydrodynamic model for semiconductors

    Institute of Scientific and Technical Information of China (English)

    XU Jiang; FANG Da-yuan

    2008-01-01

    In this paper, the asymptotic stability of smooth solutions to the multidimensional nonisentropic hydrodynamic model for semiconductors is established, under the assumption that the initial data are a small perturbation of the stationary solutions for the thermal equilibrium state, whose proofs mainly depend on the basic energy methods.

  8. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    Science.gov (United States)

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein: EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  9. METHODS OF PHYSICAL MODELING OF HYDRODYNAMIC PROCESSES AT CASTING OF ALLOYS

    Directory of Open Access Journals (Sweden)

    V. Ju. Stetsenko

    2012-01-01

    Full Text Available The method of physical modeling of hydrodynamic processes of alloys molding is developed. It is shown that as a liquid it is necessary to use water and diethyl ether at molding of steel, silumins, tin-base bronzes and waterglycerine solutions.

  10. Uncertainty Representation and Interpretation in Model-based Prognostics Algorithms based on Kalman Filter Estimation

    Science.gov (United States)

    2012-09-01

    different decisions as com- pared to an unmanned aerial vehicle (UAV) mission reconfig- uration based on prognostics indication on power train fail- ures...Degradation Modeling Training Trajectories Test Trajectory Parameter Estimation State-space Representation Prognostics Dynamic System Realization Health...and ASME. Kai Goebel received the degree of Diplom-Ingenieur from the Technische University Munchen, Germany in 1990. He received the M.S. and Ph.D

  11. Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures

    Directory of Open Access Journals (Sweden)

    Liu Yufeng

    2011-01-01

    Full Text Available Abstract Background Multiple breast cancer gene expression profiles have been developed that appear to provide similar abilities to predict outcome and may outperform clinical-pathologic criteria; however, the extent to which seemingly disparate profiles provide additive prognostic information is not known, nor do we know whether prognostic profiles perform equally across clinically defined breast cancer subtypes. We evaluated whether combining the prognostic powers of standard breast cancer clinical variables with a large set of gene expression signatures could improve on our ability to predict patient outcomes. Methods Using clinical-pathological variables and a collection of 323 gene expression "modules", including 115 previously published signatures, we build multivariate Cox proportional hazards models using a dataset of 550 node-negative systemically untreated breast cancer patients. Models predictive of pathological complete response (pCR to neoadjuvant chemotherapy were also built using this approach. Results We identified statistically significant prognostic models for relapse-free survival (RFS at 7 years for the entire population, and for the subgroups of patients with ER-positive, or Luminal tumors. Furthermore, we found that combined models that included both clinical and genomic parameters improved prognostication compared with models with either clinical or genomic variables alone. Finally, we were able to build statistically significant combined models for pathological complete response (pCR predictions for the entire population. Conclusions Integration of gene expression signatures and clinical-pathological factors is an improved method over either variable type alone. Highly prognostic models could be created when using all patients, and for the subset of patients with lymph node-negative and ER-positive breast cancers. Other variables beyond gene expression and clinical-pathological variables, like gene mutation status or DNA

  12. The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation

    Science.gov (United States)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf

    2017-07-01

    Deterministic rainfall-runoff modelling usually assumes stationary hydrological system, as model parameters are calibrated with and therefore dependant on observed data. However, runoff processes are probably not stationary in the case of a probable maximum flood (PMF) where discharge greatly exceeds observed flood peaks. Developing hydrodynamic models and using them to build coupled hydrologic-hydrodynamic models can potentially improve the plausibility of PMF estimations. This study aims to assess the potential benefits and constraints of coupled modelling compared to standard deterministic hydrologic modelling when it comes to PMF estimation. The two modelling approaches are applied using a set of 100 spatio-temporal probable maximum precipitation (PMP) distribution scenarios. The resulting hydrographs, the resulting peak discharges as well as the reliability and the plausibility of the estimates are evaluated. The discussion of the results shows that coupling hydrologic and hydrodynamic models substantially improves the physical plausibility of PMF modelling, although both modelling approaches lead to PMF estimations for the catchment outlet that fall within a similar range. Using a coupled model is particularly suggested in cases where considerable flood-prone areas are situated within a catchment.

  13. EMPIRICAL VERIFICATION OF ANISOTROPIC HYDRODYNAMIC TRAFFIC MODEL IN TRAFFIC ANALYSIS AT INTERSECTIONS IN URBAN AREA

    Institute of Scientific and Technical Information of China (English)

    WEI Yan-fang; GUO Si-ling; XUE Yu

    2007-01-01

    In this article, the traffic hydrodynamic model considering the driver's reaction time was applied to the traffic analysis at the intersections on real roads. In the numerical simulation with the model, the pinch effect of the right-turning vehicles flow was found, which mainly leads to traffic jamming on the straight lane. All of the results in accordance with the empirical data confirm the applicability of this model.

  14. Modeling and Testing of Hydrodynamic Damping Model for a Complex-shaped Remotely-operated Vehicle for Control

    Institute of Scientific and Technical Information of China (English)

    Cheng Chin; Michael Lau

    2012-01-01

    In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle (ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.

  15. Hydrodynamical model atmospheres: Their impact on stellar spectroscopy and asteroseismology of late-type stars

    CERN Document Server

    Ludwig, Hans-G

    2016-01-01

    Hydrodynamical, i.e. multi-dimensional and time-dependent, model atmospheres of late-type stars have reached a high level of realism. They are commonly applied in high-fidelity work on stellar abundances but also allow the study of processes that are not modelled in standard, one-dimensional hydrostatic model atmospheres. Here, we discuss two observational aspects that emerge from such processes, the photometric granulation background and the spectroscopic microturbulence. We use CO5BOLD hydrodynamical model atmospheres to characterize the total granular brightness fluctuations and characteristic time scale for FGK stars. Emphasis is put on the diagnostic potential of the granulation background for constraining the fundamental atmospheric parameters. We find a clear metallicity dependence of the granulation background. The comparison between the model predictions and available observational constraints at solar metallicity shows significant differences, that need further clarification. Concerning microturbule...

  16. Simplified hydrodynamic models for the analysis of marine propellers in a wake-field

    Institute of Scientific and Technical Information of China (English)

    DURANTE D.; DUBBIOSO G.; TESTA C.

    2013-01-01

    This paper presents a comparison among different hydrodynamic models for the analysis of the unsteady loads delivered by a marine propeller working in an axial, non-uniform inflow. Specifically, for a propeller subjected to a wake-field dominated by local high-frequency changes in space, the unsteady hydroloads predicted by the Nakatake formulation are compared with those given by the Theodorsen and Sears theories, respectively. Drawbacks and potentialities of these approaches are highlighted to assess a computationally efficient hydrodynamic solver for the analysis of operating conditions where propeller blades are significantly per- turbed by a multi-harmonic onset-flow. Guidelines coming from this investigation may drive the choice of a fast and reliable un- steady propeller modeling that represents a good trade-off between accuracy of simulation and cost of computation within imple- mentation in Computational Fluid Dynamics (CFD) solvers. The hydrodynamic formulations herein proposed are validated through numerical comparisons with the (accurate but computationally expensive) propeller loads predicted by a fully 3-D panel-method Boundary Element Method (BEM) solver, suited for the analysis of propellers operating in a complex hydrodynamic environment.

  17. Numerical modelling of spallation in 2D hydrodynamics codes

    Science.gov (United States)

    Maw, J. R.; Giles, A. R.

    1996-05-01

    A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.

  18. A linked hydrodynamic and water quality model for the Salton Sea

    Science.gov (United States)

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, D.M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  19. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.

  20. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  1. Hydrodynamic surrogate models for bio-inspired micro-swimming robots

    CERN Document Server

    Tabak, Ahmet Fatih

    2013-01-01

    Research on untethered micro-swimming robots is growing fast owing to their potential impact on minimally invasive medical procedures. Candidate propulsion mechanisms of robots are based on flagellar mechanisms of micro organisms such as rotating rigid helices and traveling plane-waves on flexible rods. For design and control of swimming robots, accurate real-time models are necessary to compute trajectories, velocities and hydrodynamic forces acting on robots. Resistive force theory (RFT) provides an excellent framework for the development of real-time six degrees-of-freedom surrogate models for design optimization and control. However the accuracy of RFT-based models depends strongly on hydrodynamic interactions. Here, we introduce interaction coefficients that only multiply body resistance coefficients with no modification to local resistance coefficients on the tail. Interaction coefficients are obtained for a single specimen of Vibrio Algino reported in literature, and used in the RFT model for compariso...

  2. RESEARCH ON HYDRODYNAMIC AND WATER QUALITY MODEL FOR TIDAL RIVER NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Xu Zu-xin; Lu Shi-qiang

    2003-01-01

    Hydrodynamic and water quality model for tidal river network is set up with MIKE11 modeling system, according to the features of tidal river networks in plain area. The model was calibrated using the hydrological and water quality data of 1999, and the results show that the simulated values agree with the measured data very well. This model is used to numerically analyze the effects of low flow augmentation on hydrodynamic and water quality conditions of Suzhou Creek. The simulation results show that the flow augmentation can increase net discharge of Suzhou Creek and improve its ability of re-aeration; and its concentration of dissolved oxygen in the river networks can also increase correspondingly.

  3. Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using finite elements method

    CERN Document Server

    Hiremath, Kirankumar R; Schmidt, Frank

    2012-01-01

    Nonlocal material response distinctively changes the optical properties of nano-plasmonic scatterers and waveguides. It is described by the nonlocal hydrodynamic Drude model, which -- in frequency domain -- is given by a coupled system of equations for the electric field and an additional polarization current of the electron gas modeled analogous to a hydrodynamic flow. Recent works encountered difficulties in dealing with the grad-div operator appearing in the governing equation of the hydrodynamic current. Therefore, in these studies the model has been simplified with the curl-free hydrodynamic current approximation; but this causes spurious resonances. In this paper we present a rigorous weak formulation in the Sobolev spaces $H(\\mathrm{curl})$ for the electric field and $H(\\mathrm{div})$ for the hydrodynamic current, which directly leads to a consistent discretization based on N\\'ed\\'elec's finite element spaces. Comparisons with the Mie theory results agree well. We also demonstrate the capability of the...

  4. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    Science.gov (United States)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  5. RELAXATION TIME LIMITS PROBLEM FOR HYDRODYNAMIC MODELS IN SEMICONDUCTOR SCIENCE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.

  6. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  7. Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model

    OpenAIRE

    Farrokhpanah, Amirsaman; Samareh, Babak; Mostaghimi, Javad

    2016-01-01

    Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. ...

  8. A prognostic model for the thirty-day mortality risk after adult heart transplantation

    NARCIS (Netherlands)

    Tjang, Y.S.; Suarthana, E.; Körfer, R.; Tenderich, G.; Grobbee, D.E.; van der Heijden, G.J.M.G.

    2015-01-01

    Objective: To develop a prognostic model for the thirty-day mortality risk after adult heart transplantation. Methods: In this report we developed a prediction model for the 30-day mortality risk after adult heart transplantation. Logistic regression analysis was used to develop the model in 1,262

  9. A Hydrodynamic Modelling Framework for Strangford Lough Part 1: Tidal Model

    Directory of Open Access Journals (Sweden)

    Louise Kregting

    2014-01-01

    Full Text Available Hydrodynamic models are a powerful tool that can be used by a wide range of end users to assist in predicting the effects of both physical and biological processes on local environmental conditions. This paper describes the development of a tidal model for Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen, as well as the UK’s third Marine Nature Reserve. Using MIKE 21 modelling software, the development, calibration and performance of the model are described in detail. Strangford Lough has a complex flow pattern with high flows through the Narrows (~3.5 m/s linking the main body of the Lough to the Irish Sea and intricate flow patterns around the numerous islands. With the aid of good quality tidal and current data obtained throughout the Lough during the model development, the surface elevation and current magnitude between the observed and numerical model were almost identical with model skill >0.98 and >0.84 respectively. The applicability of the model is such that it can be used as an important tool for the prediction of important ecological processes as well as engineering applications within Strangford Lough.

  10. Validation Hydrodynamic Models of Three Topological Models of Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alxander

    2014-10-01

    Full Text Available A methodology was developed to analyze boundary conditions, the size of the mesh and the turbulence of a mathematical model of CFD, which could explain hydrodynamic behavior on facultative stabilization ponds, FSP, built to pilot scale: conventional pond, CP, baffled pond, BP, and baffled-mesh pond, BMP. Models dispersion studies were performed in field for validation, taking samples into and out of the FSP, the information was used to carry out CFD model simulations of the three topologies. Evaluated mesh sizes ranged from 500,000 to 2,000,000 elements. The boundary condition in Pared surface-free slip showed good qualitative behavior and the turbulence model κ–ε Low Reynolds yielded good results. The biomass contained in LFS generates interference on dispersion studies and should be taken into account in assessing the CFD modeling, the tracer injection times, its concentration at the entrance, the effect of wind on CFD, and the flow models adopted as a basis for modeling are parameters to be taken into account for the CFD model validation and calibration.

  11. One-dimensional hydrodynamic model generating turbulent cascade

    CERN Document Server

    Matsumoto, Takeshi

    2016-01-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analogue (enstrophy) in the inviscid case. With a large-scale forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency and self-similarity in the dynamical system structure.

  12. One-dimensional hydrodynamic model generating a turbulent cascade

    Science.gov (United States)

    Matsumoto, Takeshi; Sakajo, Takashi

    2016-05-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.

  13. Hydrodynamic modeling of granular flows in a modified Couette cell.

    Science.gov (United States)

    Jop, Pierre

    2008-03-01

    We present simulations of granular flows in a modified Couette cell, using a continuum model recently proposed for dense granular flows. Based on a friction coefficient, which depends on an inertial number, the model captures the positions of the wide shear bands. We show that a smooth transition in velocity-profile shape occurs when the height of the granular material is increased, leading to a differential rotation of the central part close to the surface. The numerical predictions are in qualitative agreement with previous experimental results. The model provides predictions for the increase of the shear band width when the rotation rate is increased.

  14. Hydrodynamics of Sakai Sugimoto model in the quenched approximation

    Science.gov (United States)

    Benincasa, Paolo; Buchel, Alex

    2006-09-01

    We study transport properties of the finite temperature Sakai-Sugimoto model. The model represents a holographic dual to (4 + 1)-dimensional supersymmetric SU (Nc) gauge theory compactified on a circle with anti-periodic boundary conditions for fermions, coupled to Nf left-handed quarks and Nf right-handed quarks localized at different points on the compact circle. We analytically compute the speed of sound and the sound wave attenuation in the quenched approximation. Since confinement/deconfinement (and the chiral symmetry restoration) phase transitions are first order in this model, we do not see any signature of these phase transitions in the transport properties.

  15. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  16. Use Of Earth Observation Data For Hydrodynamic Modelling In The Mara Wetlands

    Science.gov (United States)

    Mtamba, Joseph O. D.; van der Velde, Rogier; Ndomba, Preksedis M.; Zoltan, Verkedy; Mtalo, Felix W.; Crosato, Alessandra

    2013-12-01

    Vegetation characteristics can not only be used to derive spatial hydrodynamic roughness parameters but also to correct vegetation artefacts in freely downloadable Digital Elevation Models for hydrodynamic modelling. An exponential backscattering model for vegetation canopy height model was developed using standard deviation of cross polarization backscatter coefficient of Radarsat-2 SAR wide swath mode and in situ vegetation height data. The retrieved spatial vegetation height was used to correct vegetation artefacts in freely downloadable Advanced Spaceborne Thermal Emission and Reflectance Radiometer Global Digital Elevation Model (ASTERDEM) released in 2011. The relative spatial hydrodynamic roughness within a vegetation class was derived from cross polarization ratio. Preliminary results show that the accuracy of ASTERDEM improved the elevation estimates by root mean square error from 5.1 m to 3.0m. Simulation results using Earth Observation (EO) data for calibration and validation using an internal gauging station yielded promising Nash - Sutcliffe efficiency criterion of 0.38 and 0.45. The results shows that if high resolution DEM is available, spatial roughness parametrization using cross-polarization ratio of Synthetic Aperture Radar (SAR) imagery may be useful in modelling extensive floodplains where optimization of roughness parameter is not necessary due to computational limitations.

  17. New prognostic model for extranodal natural killer/T cell lymphoma, nasal type.

    Science.gov (United States)

    Cai, Qingqing; Luo, Xiaolin; Zhang, Guanrong; Huang, Huiqiang; Huang, Hui; Lin, Tongyu; Jiang, Wenqi; Xia, Zhongjun; Young, Ken H

    2014-09-01

    Extranodal natural killer/T cell lymphoma, nasal type (ENKTL) is an aggressive disease with a poor prognosis, requiring risk stratification in affected patients. We designed a new prognostic model specifically for ENKTL to identify high-risk patients who need more aggressive therapy. We retrospectively reviewed 158 patients who were newly diagnosed with ENKTL. The estimated 5-year overall survival rate was 39.4 %. Independent prognostic factors included total protein (TP) 100 mg/dL, and Korean Prognostic Index (KPI) score ≥2. We constructed a new prognostic model by combining these prognostic factors: group 1 (64 cases (41.0 %)), no adverse factors; group 2 (58 cases (37.2 %)), one adverse factor; and group 3 (34 cases (21.8 %)), two or three adverse factors. The 5-year overall survival (OS) rates of these groups were 66.7, 23.0, and 5.9 %, respectively (p KPI model alone (p KPI model alone.

  18. The hydrodynamical models of the cometary compact H II region

    CERN Document Server

    Zhu, Feng-Yao; Li, Juan; Zhang, Jiang-Shui; Wang, Jun-Zhi

    2015-01-01

    We have developed a full numerical method to study the gas dynamics of cometary ultra-compact (UC) H II regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a $40.9/21.9 M_\\odot$ star are simulated. In the bow-shock models, the massive star is assumed to move through dense ($n=8000~cm^{-3}$) molecular material with a stellar velocity of $15~km~s^{-1}$. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne II] 12.81\\mum and $H_2~S(2)$ lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell is mainly due to the expansion of the H II region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion...

  19. Melanoma prognostic model using tissue microarrays and genetic algorithms.

    Science.gov (United States)

    Gould Rothberg, Bonnie E; Berger, Aaron J; Molinaro, Annette M; Subtil, Antonio; Krauthammer, Michael O; Camp, Robert L; Bradley, William R; Ariyan, Stephan; Kluger, Harriet M; Rimm, David L

    2009-12-01

    As a result of the questionable risk-to-benefit ratio of adjuvant therapies, stage II melanoma is currently managed by observation because available clinicopathologic parameters cannot identify the 20% to 60% of such patients likely to develop metastatic disease. Here, we propose a multimarker molecular prognostic assay that can help triage patients at increased risk of recurrence. Protein expression for 38 candidates relevant to melanoma oncogenesis was evaluated using the automated quantitative analysis (AQUA) method for immunofluorescence-based immunohistochemistry in formalin-fixed, paraffin-embedded specimens from a cohort of 192 primary melanomas collected during 1959 to 1994. The prognostic assay was built using a genetic algorithm and validated on an independent cohort of 246 serial primary melanomas collected from 1997 to 2004. Multiple iterations of the genetic algorithm yielded a consistent five-marker solution. A favorable prognosis was predicted by ATF2 ln(non-nuclear/nuclear AQUA score ratio) of more than -0.052, p21(WAF1) nuclear compartment AQUA score of more than 12.98, p16(INK4A) ln(non-nuclear/nuclear AQUA score ratio) of < or = -0.083, beta-catenin total AQUA score of more than 38.68, and fibronectin total AQUA score of < or = 57.93. Primary tumors that met at least four of these five conditions were considered a low-risk group, and those that met three or fewer conditions formed a high-risk group (log-rank P < .0001). Multivariable proportional hazards analysis adjusting for clinicopathologic parameters shows that the high-risk group has significantly reduced survival on both the discovery (hazard ratio = 2.84; 95% CI, 1.46 to 5.49; P = .002) and validation (hazard ratio = 2.72; 95% CI, 1.12 to 6.58; P = .027) cohorts. This multimarker prognostic assay, an independent determinant of melanoma survival, might be beneficial in improving the selection of stage II patients for adjuvant therapy.

  20. Hydrodynamics for a model of a confined quasi-two-dimensional granular gas.

    Science.gov (United States)

    Brey, J Javier; Buzón, V; Maynar, P; García de Soria, M I

    2015-05-01

    The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and it vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed.

  1. Note on the hydrodynamic description of thin nematic films: strong anchoring model

    CERN Document Server

    Lin, Te-Sheng; Archer, Andrew J; Kondic, Lou; Thiele, Uwe

    2013-01-01

    We discuss the long-wave hydrodynamic model for a thin film of nematic liquid crystal in the limit of strong anchoring at the free surface and at the substrate. Our aim is to clarify how the elastic energy enters the evolution equation for the film thickness; several models exist in the literature that result in qualitatively different behaviour. We consolidate the various approaches and show that the long-wave model derived through an asymptotic expansion of the full nemato-hydrodynamic equations with consistent boundary conditions agrees with the equation one obtains by employing a thermodynamically motivated gradient dynamics formulation based on an underlying free energy functional. As a result, we find that the elastic distortion energy is always stabilising in the case of strong anchoring. To support the discussion in the main part of the paper, an appendix gives the full derivation of the evolution equation for the film thickness via asymptotic expansion.

  2. A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    CERN Document Server

    Colosqui, Carlos E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G

    2012-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which...

  3. An hydrodynamic model for the calculation of oil spills trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Emilio Ernesto; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Dinamica dos Fluidos Computacionais]. E-mails: emilio@sinmec.ufsc.br; maliska@sinmec.ufsc.br

    2000-07-01

    The aim of this paper is to present a mathematical model and its numerical treatment to forecast oil spills trajectories in the sea. The knowledge of the trajectory followed by an oil slick spilled on the sea is of fundamental importance in the estimation of potential risks for pipeline and tankers route selection, and in combating the pollution using floating barriers, detergents, etc. In order to estimate these slicks trajectories a new model, based on the mass and momentum conservation equations is presented. The model considers the spreading in the regimes when the inertial and viscous forces counterbalance gravity and takes into account the effects of winds and water currents. The inertial forces are considered for the spreading and the displacement of the oil slick, i.e., is considered its effects on the movement of the mass center of the slick. The mass loss caused by oil evaporation is also taken into account. The numerical model is developed in generalized coordinates, making the model easily applicable to complex coastal geographies. (author)

  4. Comparison of three prognostic scoring systems in a series of 146 cases of chronic myelomonocytic leukemia (CMML): MD Anderson prognostic score (MDAPS), CMML-specific prognostic scoring system (CPSS) and Mayo prognostic model. A detailed review of prognostic factors in CMML.

    Science.gov (United States)

    Calvo, Xavier; Nomdedeu, Meritxell; Santacruz, Rodrigo; Martínez, Núria; Costa, Dolors; Pereira, Arturo; Estrada, Natalia; Xicoy, Blanca; Esteve, Jordi; Nomdedeu, Benet

    2015-07-23

    Although specific prognostic models for chronic myelomonocytic leukemia (CMML) exist, few are based on large series of patients. MD Anderson prognostic score (MDAPS) has been the most useful for CMML risk assessment. Due to recent emergence of CMML-specific prognostic scoring system (CPSS) and Mayo prognostic model, we compared the three scores. One hundred forty-six CMML patients diagnosed between 1998 and 2014 were retrospectively analyzed. Univariate analysis was performed to assess prognostic impact on overall survival (OS) and leukemia-free survival (LFS) of the variables composing the scores and all items showed prognostic value on OS with the exception of the presence of circulating immature myeloid cells. Regarding LFS, only CPSS variables, bone marrow blast ≥10% and an absolute monocyte count >10×10(9)/L had an impact. When the scores were applied, all showed an impact on OS and retained their significance in multivariate analysis. By using ROC curves and C-index, CPSS showed a slightly better predictive value for mortality and leukemia transformation. Variables composing the three indexes were compared in multivariate analysis and only CPSS parameters and platelets<100×10(9)/L retained their significance. Based on these findings, by adding platelet count to CPSS, a new score was implemented (CPSS-P) showing the best risk prediction capability in our series. This study reinforces the validity of the tested scores.

  5. Thermal and hydrodynamic modelling of active catheters for interventional radiology.

    Science.gov (United States)

    Marchandise, Emilie; Flaud, Patrice; Royon, Laurent; Blanc, Raphaël; Szewczyk, Jérome

    2011-07-01

    Interventional radiologists desire to improve their operating tools such as catheters. Active catheters in which the tip is moved using shape memory alloy actuators activated using the Joule effect present a promising approach for easier navigation in the small vessels. However, the increase in temperature caused by this Joule effect must be controlled in order to prevent damage to blood cells and tissues. This paper is devoted to the simulation and experimental validation of a fluid-thermal model of an active catheter prototype. Comparisons between computer-predicted and experimentally measured temperatures are presented for both experiments in air and water at 37°C. Good agreement between the computational and experimental results is found, demonstrating the validity of the developed computer model. These comparisons enable us to highlight some important issues in the modelling process and to determine the optimal current for the activation of the catheter.

  6. Hydrodynamics of Sakai-Sugimoto model in the quenched approximation

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada) and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9 (Canada)]. E-mail: abuchel@uwo.ca

    2006-09-07

    We study transport properties of the finite temperature Sakai-Sugimoto model. The model represents a holographic dual to (4+1)-dimensional supersymmetric SU(N{sub c}) gauge theory compactified on a circle with anti-periodic boundary conditions for fermions, coupled to N{sub f} left-handed quarks and N{sub f} right-handed quarks localized at different points on the compact circle. We analytically compute the speed of sound and the sound wave attenuation in the quenched approximation. Since confinement/deconfinement (and the chiral symmetry restoration) phase transitions are first order in this model, we do not see any signature of these phase transitions in the transport properties.

  7. Hydrodynamics of Sakai-Sugimoto model in the quenched approximation

    CERN Document Server

    Benincasa, P; Benincasa, Paolo; Buchel, Alex

    2006-01-01

    We study transport properties of the finite temperature Sakai-Sugimoto model. The model represents a holographic dual to 4+1 dimensional supersymmetric SU(N_c) gauge theory compactified on a circle with anti-periodic boundary conditions for fermions, coupled to N_f left-handed quarks and N_f right-handed quarks localized at different points on the compact circle. We analytically compute the speed of sound and the sound wave attenuation in the quenched approximation. Since confinement/deconfinement (and the chiral symmetry restoration) phase transitions are first order in this model, we do not see any signature of these phase transitions in the transport properties.

  8. Numerical study on pollutant transport in Dalian bay based on hydrodynamic model

    Science.gov (United States)

    Qiao, Huiting; Li, Jin; Zhang, Hongxing; Zhao, Kaibin; Zhang, Mingliang

    2017-01-01

    Based on the depth-averaged two-dimensional shallow water and pollutant transport equation, the coupling model of water flow and water quality with explicit scheme is developed in this study. The unstructured triangular grid is adopted to locally refine the mesh around sewage outlet or in high-gradient regions of terrain change for the coupling model. The finite volume method is applied to ensure the conservation of mass for each element. This hydrodynamic model applies the Roe solver approximate Riemann solution with second-order accuracy to compute the water momentum flux on the grid interface. Taking Dalian Bay as the research object, the numerical model established is used to simulate the hydrodynamic characteristics and pollutant transport process. The computed results of the tide level, flow current and flow direction agree well with the measured data in Dalian Bay. The spatial and temporal distribution of pollutant in water are analyzed and discussed in this study. Simulated results show that the two-dimensional hydrodynamic and pollutant transport model can accurately simulate the mass transport in coastal waters, and it can provide a scientific basis on coastal water environment protection for the research water.

  9. Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation

    Science.gov (United States)

    Vogel, Ronald L.; Brown, Christopher W.

    2016-07-01

    Improving forecasts of salinity from coastal hydrodynamic models would further our predictive capacity of physical, chemical, and biological processes in the coastal ocean. However, salinity is difficult to estimate in coastal and estuarine waters at the temporal and spatial resolution required. Retrieving sea surface salinity (SSS) using satellite ocean color radiometry may provide estimates with reasonable accuracy and resolution for coastal waters that could be assimilated into hydrodynamic models to improve SSS forecasts. We evaluated the applicability of satellite SSS retrievals from two algorithms for potential assimilation into National Oceanic and Atmospheric Administration's Chesapeake Bay Operational Forecast System (CBOFS) hydrodynamic model. Of the two satellite algorithms, a generalized additive model (GAM) outperformed that of an artificial neural network (ANN), with mean bias and root-mean-square error (RMSE) of 1.27 and 3.71 for the GAM and 3.44 and 5.01 for the ANN. However, the RMSE for the SSS predicted by CBOFS (2.47) was lower than that of both satellite algorithms. Given the better precision of the CBOFS model, assimilation of satellite ocean color SSS retrievals will not improve CBOFS forecasts of SSS in Chesapeake Bay. The bias in the GAM SSS retrievals suggests that adding a variable related to precipitation may improve its performance.

  10. Hydrodynamic Forces on Reverse Tainter Valves; Hydraulic Model Investigation

    Science.gov (United States)

    2013-12-01

    FACILITY: Completion of a physical model study of the culvert valves of the Eisenhower and Snell Locks, St. Lawrence Seaway (Stockstill et al., in...evaluation of culvert valves at Eisenhower and Snell Locks, St. Lawrence Seaway. Vicksburg, MS: US Army Engineer Research and Development Center

  11. Development of hydrodynamic analysis model for IRWST/Sparger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Nyung; Lee, Kyung Won; Yum, Sang Hoo; Yoon, Sung Sik [Kyung Hee University, Seoul (Korea)

    2001-04-01

    One of the design improvements of the KNGR(Korean Next Generation Reactor) which is advanced to safety and economy is the adoption of IRWST(In-Containment Refueling Water Storage Tank). The IRWST, installed inside of the containment building, has more designed purpose than merely the location change of the tank. Since the design functions of the IRWST is similar to these of the BWR's suppression pool, theoretical models applicable to BWR's suppression pool can be mostly applied to the IRWST. But for the PWR, the geometry of the sparger, the operation mode and the steam quantity and temperature and pressure of discharged fluid from primary system to IRWST through PSV or SDV may be different from those of BWR. Also there is some defects in detailed parts of condensation model. Therefore we, as the first nation to construct PWR with IRWST, must carry out profound research for there problems such that the results can be utilized and localized as an exclusive technology. To analyze steam condensation in IRWST, BWR operating experience, experimental data, design parameter of IRWST and wide range of literature review were consulted. Through the review, the point at issue in operating experience, every condensation and thermal-hydrolic phenomena in IRWST are throughly analyzed and the dominant parameters are found to be subcooled temperature and mass flow rate. This research has been understood the various theoretical and experimental models related to the phenomena and investigated the references about the concept and the design of KNGR's IRWST. The research has covered details of pipe clearing and boundary conditions, numerical method, bubble behavior and analytical method, distribution of velocity and pressure in sparger, load effect on structures, model of chugging and thermal stratification. These models were qualified for design and safety evaluation of Nuclear Power Plant. 15 refs., 22 figs., 4 tabs. (Author)

  12. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-08-01

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  13. Multiple flux difference effect in the lattice hydrodynamic model

    Institute of Scientific and Technical Information of China (English)

    Wang Tao; Gao Zi-You; Zhao Xiao-Mei

    2012-01-01

    Considering the effect of multiple flux difference,an extended lattice model is proposed to improve the stability of traffic flow.The stability condition of the new model is obtained by using linear stability theory.The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow.The nonlinear analysis is also conducted by using a reductive perturbation method.The modified KdV (mKdV) equation near the critical point is derived and the kink-antikink solution is obtained from the mKdV equation.Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably,which is in line with the analytical result.

  14. Parallel multiscale modeling of biopolymer dynamics with hydrodynamic correlations

    CERN Document Server

    Fyta, Maria; Kaxiras, Efthimios; Melchionna, Simone; Bernaschi, Massimo; Succi, Sauro

    2007-01-01

    We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Molecular Dynamics (MD) with a mesoscopic Lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. We describe an efficient parallel implementation of the method which exhibits excellent scalability on the Blue Gene platform. We investigate both dynamical and statistical aspects of the translocation process by simulating polymers of various initial configurations and lengths. For a representative molecule size, we explore the effects of important parameters that enter in the simulation, paying particular attention to the strength of the molecule-solvent coupling and of the external electric field which drives the translocation process. Finally, we explore the connection between the generic polymers modeled in the simulation and DNA, for which interesting recent experimenta...

  15. Boussinesq modeling of wave-induced hydrodynamics in coastal wetlands

    Science.gov (United States)

    Chakrabarti, Agnimitro; Brandt, Steven R.; Chen, Qin; Shi, Fengyan

    2017-05-01

    In this paper, an improved formulation of the vegetation drag force, applicable for the fully nonlinear Boussinesq equations and based on the use of the depth-varying, higher-order expansion of the horizontal velocity, in the quadratic vegetation drag law has been presented. The model uses the same numerical schemes as FUNWAVE TVD but is based on the CACTUS framework. The model is validated for wave height and setup, against laboratory experiments with and without vegetation cover. The wave attenuation results using the improved formulation were compared with those using the first-order reference velocity as well as with analytical solutions using linear wave theory. The analytical solution using the depth-varying velocity, predicted by the linear wave theory, was shown to match the model results with the fully expanded velocity approach very well for all wave cases, except under near-emergent and emergent conditions (when the ratio of stem height to water depth is greater than 0.75) and when the Ursell (Ur) number is less than 5. Simulations during peak storm waves, during Hurricane Isaac, showed that vegetation is very effective in reducing setup on platforms and in reducing the wave energy within the first few hundred meters.

  16. Hydrodynamic and hydrostatic modelling of hydraulic journal bearings considering small displacement condition

    Science.gov (United States)

    Chen, Chi-Yin; Chuang, Jen-Chen; Tu, Jia-Ying

    2016-09-01

    This paper proposes modified coefficients for the dynamic model of hydraulic journal bearing system that integrates the hydrodynamic and hydrostatic properties. In recent years, design of hydraulic bearing for machine tool attracts worldwide attention, because hydraulic bearings are able to provide higher capacity and accuracy with lower friction, compared to conventional bearing systems. In order to achieve active control of the flow pressure and enhance the operation accuracy, the dynamic model of hydraulic bearings need to be developed. Modified coefficients of hydrostatic stiffness, hydrodynamic stiffness, and squeeze damping of the dynamic model are presented in this work, which are derived referring to small displacement analysis from literature. The proposed modified coefficients and model, which consider the pressure variations, relevant geometry size, and fluid properties of the journal bearings, are able to characterise the hydrodynamic and hydrostatic properties with better precision, thus offering the following pragmatic contribution: (1) on-line prediction of the eccentricity and the position of the shaft in the face of external force that results in vibration; (2) development of active control system to regulate the supply flow pressure and to minimize the eccentricity of the shaft. Theoretical derivation and simulation results with different vibration cases are discussed to verify the proposed techniques.

  17. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.

    Science.gov (United States)

    Buchanan, Cara; Rylander, Marissa Nichole

    2013-08-01

    The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment.

  18. A general method for generating bathymetric data for hydrodynamic computer models

    Science.gov (United States)

    Burau, J.R.; Cheng, R.T.

    1989-01-01

    To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)

  19. Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics

    Science.gov (United States)

    Di Michele, Federica; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella

    2017-08-01

    In this paper we study the hybrid quantum hydrodynamic model for nano-sized bipolar semiconductor devices in thermal equilibrium. By introducing a hybrid version of the Bhom potential, we derive a bipolar hybrid quantum hydrodynamic model, which is able to account for quantum effects in a localized region of the device for both electrons and holes. Coupled with Poisson equation for the electric potential, the steady-state system is regionally degenerate in its ellipticity, due to the quantum effect only in part of the device. This regional degeneracy of ellipticity makes the study more challenging. The main purpose of the paper is to investigate the existence and uniqueness of the weak solutions to this new type of equations. We first establish the uniform boundedness of the smooth solutions to the modified bipolar quantum hydrodynamic model by the variational method, then we use the compactness technique to prove the existence of weak solutions to the original hybrid system by taking hybrid limit. In particular, we account for two different kinds of hybrid behaviour. We perform the first hybrid limit when both electrons and holes behave quantum in a given region of the device, and the second one when only one carrier exhibits hybrid behaviour, whereas the other one is presented classically in the whole domain. The semi-classical limit results are also obtained. Finally, the theoretical results are tested numerically on a simple toy model.

  20. Data assimilation in hydrodynamic modelling: on the treatment of non-linearity and bias

    DEFF Research Database (Denmark)

    Sørensen, Jacob Viborg Tornfeldt; Madsen, Henrik

    2004-01-01

    The state estimation problem in hydrodynamic modelling is formulated. The three-dimensional hydrodynamic model MIKE 3 is extended to provide a stochastic state space description of the system and observations are related to the state through the measurement equation. Two state estimators......, the maximum a posteriori (MAP) estimator and the best linear unbiased estimator (BLUE), are derived and their differences discussed. Combined with various schemes for state and error covariance propagation different sequential estimators, based on the Kalman filter, are formulated. In this paper, the ensemble...... Kalman filter with either an ensemble or central mean state propagation and the reduced rank square root Kalman filter are implemented for assimilation of tidal gauge data. The efficient data assimilation algorithms are based on a number of assumptions to enable practical use in regional and coastal...

  1. Iceberg capsize hydrodynamics: a comparison of laboratory experiments and numerical modeling

    Science.gov (United States)

    Burton, J. C.; Cathles, L. M.; Correa-Legisos, S.; Ellowitz, J.; Darnell, K.; Zhang, W. W.; MacAyeal, D. R.

    2013-12-01

    Large icebergs are often observed to capsize in open water near fjords. During capsize, large amounts of gravitational potential energy are released which can lead to coastal tsunamis, mixing of the water column, and possibly lead to further calving at the glacier terminus. This process is rarely studied; in nature the scale and irregular timing of the events makes observations exceedingly difficult. Here we compare laboratory experiments and numerical modeling of the capsize process to better understand the coupling of the hydrodynamic forces to the solid iceberg. Although the characteristic Reynolds number is much lower for both the laboratory model and the numerical simulations, the comparison provides a starting point to quantify and identify generic features that can be estimated in the field, such as hydrodynamic pressure, water flow velocities, vertical mixing, and elastic stresses on the iceberg itself, which could lead to fracture.

  2. Order and chaos in hydrodynamic BL Her models

    CERN Document Server

    Smolec, R

    2013-01-01

    Many dynamical systems of different complexity, e.g. 1D logistic map, the Lorentz equations, or real phenomena, like turbulent convection, show chaotic behaviour. Despite huge differences, the dynamical scenarios for these systems are strikingly similar: chaotic bands are born through the series of period doubling bifurcations and merge through interior crises. Within chaotic bands periodic windows are born through the tangent bifurcations, preceded by the intermittent behaviour. This is a universal behaviour of dynamical systems (Feigenbaum 1983). We demonstrate such behaviour in models of pulsating stars.

  3. Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling

    Science.gov (United States)

    George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.

    2006-01-01

    Continual sediment accumulation in Capitol Lake since the damming of the Deschutes River in 1951 has altered the initial morphology of the basin. As part of the Deschutes River Estuary Feasibility Study (DEFS), the United States Geological Survey (USGS) was tasked to model how tidal and storm processes will influence the river, lake and lower Budd Inlet should estuary restoration occur. Understanding these mechanisms will assist in developing a scientifically sound assessment on the feasibility of restoring the estuary. The goals of the DEFS are as follows. - Increase understanding of the estuary alternative to the same level as managing the lake environment.

  4. Coupling of an Individual-Based Model of Anchovy with Lower Trophic Level and Hydrodynamic Models

    Institute of Scientific and Technical Information of China (English)

    WANG Yuheng; WEI Hao; Michio J. Kishi

    2013-01-01

    Anchovy (Engraulisjaponicus),a small pelagic fish and food of other economic fishes,is a key species in the Yellow Sea ecosystem.Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources.Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO),an individual-based model of anchovy is developed to study the influence of physical environment on anchovy's biomass variation.Seasonal variations of circulation,water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model.Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them.Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model.The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.

  5. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p nitrate (HAN)-based liquid propellants, which often exhibit negative pressure sensitivities. While nonsteady combustion may correspond to secondary and higher-order bifurcations above the cellular boundary, it may also be a manifestation of this pulsating type of hydrodynamic instability. In the present work, a nonzero temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a

  6. Prognostic Models in Adults Undergoing Physical Therapy for Rotator Cuff Disorders: Systematic Review.

    Science.gov (United States)

    Braun, Cordula; Hanchard, Nigel C; Batterham, Alan M; Handoll, Helen H; Betthäuser, Andreas

    2016-07-01

    Rotator cuff-related disorders represent the largest subgroup of shoulder complaints. Despite the availability of various conservative and surgical treatment options, the precise indications for these options remain unclear. The purpose of this systematic review was to synthesize the available research on prognostic models for predicting outcomes in adults undergoing physical therapy for painful rotator cuff disorders. The MEDLINE, EMBASE, CINAHL, Cochrane CENTRAL, and PEDro databases and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) up to October 2015 were searched. The review included primary studies exploring prognostic models in adults undergoing physical therapy, with or without other conservative measures, for painful rotator cuff disorders. Primary outcomes were pain, disability, and adverse events. Inclusion was limited to prospective investigations of prognostic factors elicited at the baseline assessment. Study selection was independently performed by 2 reviewers. A pilot-tested form was used to extract data on key aspects of study design, characteristics, analyses, and results. Risk of bias and applicability were independently assessed by 2 reviewers using the Prediction Study Risk of Bias Assessment tool (PROBAST). Five studies were included in the review. These studies were extremely heterogeneous in many aspects of design, conduct, and analysis. The findings were analyzed narratively. All included studies were rated as at high risk of bias, and none of the resulting prognostic models was found to be usable in clinical practice. There are no prognostic models ready to inform clinical practice in the context of the review question, highlighting the need for further research on prognostic models for predicting outcomes in adults who undergo physical therapy for painful rotator cuff disorders. The design and conduct of future studies should be receptive to developing methods. © 2016 American Physical Therapy

  7. Modeling hydrodynamics of large lagoons: Insights from the Albemarle-Pamlico Estuarine System

    Science.gov (United States)

    Clunies, Gregory J.; Mulligan, Ryan P.; Mallinson, David J.; Walsh, J. P.

    2017-04-01

    Large estuaries are influenced by winds over adjacent coastal ocean and land areas causing significant spatial variations in water levels, currents and surface waves. In this study we apply a numerical model to simulate hydrodynamics and waves in the Albemarle-Pamlico Estuarine System, a large and shallow back-barrier basin in eastern North Carolina, over a one-month study period (September 2008) with observations from several storm wind events of differing time scales and directions. Model performance is evaluated for a spatially varying wind field from the North American Regional Reanalysis (NARR) dataset in comparison to spatially uniform forcing from wind observations at offshore, coastal and land-based sites across the region. A spatially uniform wind field from offshore winds observations results in statistically better hydrodynamic simulations of water levels (R = 0.88) in the estuaries than NARR (R = 0.48) after comparison with measurements and indicates the importance of strong marine winds over most of the estuary surface area. The influence of a prominent bathymetric feature on hydrodynamics in Pamlico Sound is also investigated by numerically removing a 30 km long and 2-3 m deep shoal from the model grid and replacing it with an idealized depth of 6 m. The removal of the shoal increases water level setup by 14% at the estuarine shoreline, decreases current magnitudes by up to 40% in the shoal region and increases significant wave heights locally by up to 25% in the sound, indicating the importance of this relict geomorphic feature as a major control on the hydrodynamic response of the system during wind events. The results suggest that increasing the water depth over the shoal can lead to higher storm surges and wave heights with the possibility of increased inundation and erosion of the back-barrier and mainland coastal regions. The complex bathymetry and marine wind influence are critical input conditions for modeling large and shallow lagoonal

  8. Hydrodynamic prevention of eutrophication in the Bay of Brest (France), a modelling approach

    Science.gov (United States)

    Le Pape, Olivier; Menesguen, Alain

    1997-08-01

    The Bay of Brest is a semi-enclosed coastal ecosystem where primary production is nutrient-limited, even if huge nutrients loading from tributaries are present. The most striking feature of the bay is the semi-diurnal tidal influence, resulting in large water exchange with the continental shelf. A historical study of the available data has shown the steadiness of this ecosystem during the two last decades in spite of increasing eutrophic conditions. This study has focused on hydrodynamic exchange which is one of the factors supposed to explain the resistance of this ecosystem to eutrophication: this stirring hinders the formation of a persistent upper mixed layer where phytoplankton would be in contact with nutrient-rich brackish waters and available light. Moreover, horizontal tidal currents lead to huge exchanges with the Iroise Sea and, then, to big losses of nutrients and living matter. To study this hydrodynamic influence thoroughly, a physical/biological model of this bay has been developed. This box model, based on the horizontal tidal circulation, has been developed thanks to "ELISE", an ecological modelling software and, then, tuned and validated on two data sets corresponding with the years 1977 and 1993. The model has allowed us to quantify the influence of hydrodynamics, climatic conditions and biological factors on biogeochemical processes in this ecosystem. It contributes to explain the good resistance of the Bay of Brest ecosystem to eutrophic conditions; both the hydrodynamic properties of this bay and the grazing pressure have prevented it from disturbances caused by high nitrogen loading from the watersheds and explain the steadiness of phytoplankton stocks in spite of increased loading. So, these results allow us to say that, even if nitrogen inputs increase continues, phytoplankton stocks will not increase in significant proportions. Nevertheless, changes in the phytoplanktonic populations may occur if such an enrichment continues.

  9. Tunneling with a hydrodynamic pilot-wave model

    Science.gov (United States)

    Nachbin, André; Milewski, Paul A.; Bush, John W. M.

    2017-03-01

    Eddi et al. [Phys. Rev Lett. 102, 240401 (2009), 10.1103/PhysRevLett.102.240401] presented experimental results demonstrating the unpredictable tunneling of a classical wave-particle association as may arise when a droplet walking across the surface of a vibrating fluid bath approaches a submerged barrier. We here present a theoretical model that captures the influence of bottom topography on this wave-particle association and so enables us to investigate its interaction with barriers. The coupled wave-droplet dynamics results in unpredictable tunneling events. As reported in the experiments by Eddi et al. and as is the case in quantum tunneling [Gamow, Nature (London) 122, 805 (1928), 10.1038/122805b0], the predicted tunneling probability decreases exponentially with increasing barrier width. In the parameter regimes examined, tunneling between two cavities suggests an underlying stationary ergodic process for the droplet's position.

  10. Hydrodynamical Simulations of the Lyman $\\alpha$ Forest Model Comparisons

    CERN Document Server

    Machacek, M E; Meiksin, A; Anninos, P; Thayer, D; Norman, M L; Zhang, Y

    1999-01-01

    We investigate the properties of the Lyman alpha forest as predicted by numerical simulations for a range of currently viable cosmological models. This is done in order to understand the dependencies of the forest on cosmological parameters. Focusing on the redshift range from two to four, we show that: (1) most of the evolution in the distributions of optical depth, flux and column density can be understood by simple scaling relations, (2) the shape of optical depth distribution is a sensitive probe of the amplitude of density fluctuations on scales of a few hundred kpc, (3) the mean of the b distribution (a measure of the width of the absorption lines) is also very sensitive to fluctuations on these scales, and decreases as they increase. We perform a preliminary comparison to observations, where available. A number of other properties are also examined, including the evolution in the number of lines, the two-point flux distribution and the HeII opacity.

  11. Comparing Two Numerical Models in Simulating Hydrodynamics and Sediment Transport at a Dual Inlet System, West-Central Florida

    Science.gov (United States)

    2015-05-15

    1 COMPARING TWO NUMERICAL MODELS IN SIMULATING HYDRODYNAMICS AND SEDIMENT TRANSPORT AT A DUAL INLET SYSTEM, WEST-CENTRAL FLORIDA PING WANG1...numerical modeling systems, CMS and DELFT3D, in simulating the hydrodynamic and sediment transport processes. The model results are compared with...Introduction Simulating complex fields of wave, current, sediment transport , and morphology change in the vicinity of tidal inlets is a

  12. Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model

    Directory of Open Access Journals (Sweden)

    Changjun Zhu

    2013-01-01

    Full Text Available In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the monitoring data, the model parameters are calibrated and the simulation results are verified. Based on this, water quality is simulated by the two-dimensional hydrodynamics and water quality coupled model. The results indicate that the level of water quality in the north and south of lake is level III, while in the center of lake, the water quality is level II. Finally, the water environment capacity and total emmision reduction of pollutants are filtered to give some guidance for the water resources management and effective utilization in the Erhai Lake.

  13. Hydrodynamic models for slurry bubble column reactors. Fourth technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.

    1995-07-01

    The objective of this investigation is to convert our ``learning gas-solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. The simulation of Air Product methanol reactors described in this paper are continuing. Granular temperatures and viscosities have been computed. Preliminary measurements of granular temperatures using the Air Product catalysts were obtained using our CCD camera.

  14. Development of a Hydrodynamic Model of Puget Sound and Northwest Straits

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Khangaonkar, Tarang P.

    2007-12-10

    The hydrodynamic model used in this study is the Finite Volume Coastal Ocean Model (FVCOM) developed by the University of Massachusetts at Dartmouth. The unstructured grid and finite volume framework, as well as the capability of wetting/drying simulation and baroclinic simulation, makes FVCOM a good fit to the modeling needs for nearshore restoration in Puget Sound. The model domain covers the entire Puget Sound, Strait of Juan de Fuca, San Juan Passages, and Georgia Strait at the United States-Canada Border. The model is driven by tide, freshwater discharge, and surface wind. Preliminary model validation was conducted for tides at various locations in the straits and Puget Sound using National Oceanic and Atmospheric Administration (NOAA) tide data. The hydrodynamic model was successfully linked to the NOAA oil spill model General NOAA Operational Modeling Environment model (GNOME) to predict particle trajectories at various locations in Puget Sound. Model results demonstrated that the Puget Sound GNOME model is a useful tool to obtain first-hand information for emergency response such as oil spill and fish migration pathways.

  15. Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model

    Science.gov (United States)

    Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan

    2016-10-01

    Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.

  16. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    Science.gov (United States)

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  17. Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback

    CERN Document Server

    Deming, D; Deming, Drake; Harrington, Joseph

    2001-01-01

    We model the plume "splashback" phase of the SL9 collisions with Jupiter using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray radiative transport, and we present validation tests. We couple the infalling mass and momentum fluxes of SL9 plume material (from paper I) to a jovian atmospheric model. A strong and complex shock structure results. The modeled shock temperatures agree well with observations, and the structure and evolution of the modeled shocks account for the appearance of high excitation molecular line emission after the peak of the continuum light curve. The splashback region cools by radial expansion as well as by radiation. The morphology of our synthetic continuum light curves agree with observations over a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume is a shell of mass at the highest velocities, which we term the "vanguard". Portions of the vanguard ejected on shallow trajectories produce a lateral shock front, whose initial expansion a...

  18. Improving the prognostic value of disease specific Graded Prognostic Assessment (ds-GPA) model for renal cell carcinoma by incorporation of Cumulative Intracranial Tumor Volume (CITV).

    Science.gov (United States)

    Ali, Mir Amaan; Hirshman, Brian R; Wilson, Bayard; Schupper, Alexander J; Joshi, Rushikesh; Proudfoot, James A; Goetsch, Steven J; Alksne, John F; Ott, Kenneth; Aiyama, Hitoshi; Nagano, Osamu; Carter, Bob S; Chiang, Veronica; Serizawa, Toru; Yamamoto, Masaaki; Chen, Clark C

    2017-07-25

    We tested the prognostic value of cumulative intracranial tumor volume (CITV) in the context of ds-GPA model for renal cell carcinoma (RCC) patients with brain metastasis (BM) treated with stereotactic radiosurgery (SRS). Patient and tumor characteristics were collected from RCC cohorts with newly BM who underwent SRS. Univariable and multivariable logistic regression model was used to test the prognostic value of CITV, Karnofsky Performance Score (KPS), and the number of BM. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were used to assess whether CITV improved the prognostic utility of RCC ds-GPA. In univariable logistic regression models, CITV, KPS, and the number of BM independently associated with RCC patient survival. In a multivariable Cox proportional hazard model, the association between CITV and survival remained robust after controlling for KPS and the number of BM (P=.042). The incorporation of the cumulative intracranial tumor volume (CITV) into the RCC ds-GPA model (consisting of KPS and number of BM) improved prognostic accuracy with NRI>0 of 0.3156 (95% CI: 0.0883-0.5428, P=.0065) and integrated discrimination improvement (IDI) of 0.0151 (95% CI: 0.0036-0.0277, P=.0183). These findings were validated in an independent cohort of 107 SRS-treated RCC BM patients. CITV is an important prognostic variable in SRS-treated RCC patients with BM. The prognostic value of the ds-GPA scale for RCC brain metastasis was enhanced by the incorporation of CITV. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hydrodynamic models of a cepheid atmosphere. Ph.D. Thesis - Maryland Univ., College Park

    Science.gov (United States)

    Karp, A. H.

    1974-01-01

    A method for including the solution of the transfer equation in a standard Henyey type hydrodynamic code was developed. This modified Henyey method was used in an implicit hydrodynamic code to compute deep envelope models of a classical Cepheid with a period of 12(d) including radiative transfer effects in the optically thin zones. It was found that the velocity gradients in the atmosphere are not responsible for the large microturbulent velocities observed in Cepheids but may be responsible for the occurrence of supersonic microturbulence. It was found that the splitting of the cores of the strong lines is due to shock induced temperature inversions in the line forming region. The adopted light, color, and velocity curves were used to study three methods frequently used to determine the mean radii of Cepheids. It is concluded that an accuracy of 10% is possible only if high quality observations are used.

  20. External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort : prospective multicentre cohort study

    NARCIS (Netherlands)

    Lamain-de Ruiter, Marije; Kwee, Anneke; Naaktgeboren, Christiana A; de Groot, Inge; Evers, Inge M; Groenendaal, Floris; Hering, Yolanda R; Huisjes, Anjoke J M; Kirpestein, Cornel; Monincx, Wilma M; Siljee, Jacqueline E; Van 't Zelfde, Annewil; van Oirschot, Charlotte M; Vankan-Buitelaar, Simone A; Vonk, Mariska A A W; Wiegers, Therese A; Zwart, Joost J; Franx, Arie; Moons, Karel G M; Koster, Maria P H

    2016-01-01

    OBJECTIVE: To perform an external validation and direct comparison of published prognostic models for early prediction of the risk of gestational diabetes mellitus, including predictors applicable in the first trimester of pregnancy. DESIGN: External validation of all published prognostic models in

  1. Comparison of two methods of mathematical modeling in hydrodynamic sealing gap

    Directory of Open Access Journals (Sweden)

    Krutil Jaroslav

    2015-01-01

    Full Text Available The aim of work is to compare two possible methods of mathematical modeling of hydrodynamic instabilities. This comparison is performed by monitoring the formation and evolution of Taylor vortices in hydrodynamic sealing gap. Sealing gaps are a part of the hydraulic machines with the impeller, such as turbines and pumps, and they have an effect on the volumetric efficiency of these devices. This work presents two examples of sealing gaps. These examples are closed sealing gap and modified sealing gap with expansion chamber. On these two examples are applied procedures of solution contained in CFD software (ANSYS Fluent 14.5. In ANSYS Fluent is two possible basic approaches of solution this task: the moving wall method and the sliding mesh method. The result of work is monitoring the impact of the expansion chamber on the formation of hydrodynamic instabilities in the sealing gap. Another result is comparison of two used methods of mathematical modeling, which shows that both methods can be used for similar tasks.

  2. Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number.

    Science.gov (United States)

    Dadzie, S Kokou; Reese, Jason M

    2012-04-01

    There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This paper aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then, we consider Klimontovich's spatial stochastic version of the Boltzmann kinetic equation and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a subdomain of the continuum range, which the conventional Knudsen number classification does not account for appropriately. In this subdomain, it is possible to obtain a fully mechanically consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics.

  3. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  4. Modelling of tidal hydrodynamics for a tropical ecosystem with implications for pollutant dispersion (Cochin Estuary, Southwest India)

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Reddy, G.S.; Revichandran, C.; Srinivas, K.; Vijayan, P.R.; Thottam, T.J.

    Tidal circulation in the Cochin Estuary, a moderately polluted estuary along the southwest coast of India, was studied using a 2D hydrodynamic model. The predicted tides and currents showed very good agreement with measured tides. Particle...

  5. A modified murine model based on hydrodynamic injection for the analysis of chronic human hepatitis B virus infection

    National Research Council Canada - National Science Library

    QIN, BO; TU, CHUNYU; ZHANG, BO; HE, TINGTING; FU, LIJUN; XU, WENYING

    2013-01-01

    ... to ~1 million deaths per year. In the present study, a conventional murine model was introduced based on the hydrodynamic injection of engineered replication-competent HBV DNA into the tail veins of C57BL/6 mice...

  6. Combining Envisat and CryoSat-2 altimetry to inform hydrodynamic models

    DEFF Research Database (Denmark)

    Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne;

    on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were...... has been developed and linked with the MIKE 11 model, enabling the integration of any kind of water level measurements. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models and data assimilation methods can...

  7. ASYMPTOTIC LIMITS OF ONE-DIMENSIONAL HYDRODYNAMIC MODELS FOR PLASMAS AND SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper studies the zero-electron-mass limit, the quasi-neutral limit and the zerorelaxation-time limit in one-dimensional hydrodynamic models of Euler-Poisson system for plasmas and semiconductors. For each limit in the steady-state models, the author proves the strong convergence of the sequence of solutions and gives the corresponding convergence rate. In the time-dependent models, the author shows some useful estimates for the quasi-neutral limit and the zero-electron-mass limit. This study completes the analysis made in [11,12,13,14,19].

  8. Numerical modelling of coastal defences using the smoothed particle hydrodynamic method

    OpenAIRE

    Crespo, Alejandro; Altomare, Corrado; Rogers, Benedict D.; Dominguez, Jose; Gironella Cobos, Xavier

    2013-01-01

    The present paper reports the results of the application of the Smoothed Particle Hydrodynamics (SPH) method to model the wave run-up over an armour breakwater. The units that form the outer layer of the structure have been modelled in 3D to validate the response under wave attacks. The open-source GPU DualSPHysics code has been used because of its capability to simulate millions of particles required for an accurate modelling. The run-up heights have been computed and compared with empirical...

  9. Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river

    Science.gov (United States)

    Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter

    2016-04-01

    Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of

  10. Hydrodynamic and Sediment Modelling within a Macro Tidal Estuary: Port Curtis Estuary, Australia

    Directory of Open Access Journals (Sweden)

    Ryan J. K. Dunn

    2015-07-01

    Full Text Available An understanding of sediment transport processes and resultant concentration dynamics in estuaries is of great importance to engineering design awareness and the management of these environments. Predictive modelling approaches provide an opportunity to investigate and address potential system responses to nominated events, changes, or conditions of interest, often on high temporal and spatial resolution scales. In this study, a three-dimensional hydrodynamic model and wave model were validated and applied to generate forcing conditions for input into a sediment transport model for the period 7 May 2010–30 October 2010 within a macro tidal estuary, Port Curtis estuary (Australia. The hydrodynamic model was verified against surface and near-bottom current measurements. The model accurately reproduced the variations of surface and near-bottom currents at both a mid-estuary and upper-estuary location. Sediment transport model predictions were performed under varying meteorological conditions and tidal forcing over a 180-day period and were validated against turbidity data collected at six stations within Port Curtis estuary. The sediment transport model was able to predict both the magnitudes of the turbidity levels and the modulation induced by the neap and spring tides and wind-wave variations. The model-predicted (converted turbidity levels compared favourably with the measured surface water turbidity levels at all six stations. The study results have useful practical application for Port Curtis estuary, including providing predictive capabilities to support the selection of locations for monitoring/compliance sites.

  11. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    Science.gov (United States)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  12. Prognostic models for stillbirth and neonatal death in very preterm birth: A validation study

    NARCIS (Netherlands)

    E. Schuit (Ewoud); C.W.P.M. Hukkelhoven (Chantal); B.N. Manktelow (Bradley); D.N.M. Papatsonis (Dimitri); M.J.K. de Kleine (Martin); E.S. Draper (Elizabeth); E.W. Steyerberg (Ewout); Y. Vergouwe (Yvonne)

    2012-01-01

    textabstractOBJECTIVES: To validate externally 2 prognostic models for stillbirth and neonatal death in very preterm infants who are either known to be alive at the onset of labor or admitted for neonatal intensive care. PATIENTS AND METHODS: All infants, with gestational age 22 to 32 weeks, of Euro

  13. Development and validation of a prognostic model for recurrent glioblastoma patients treated with bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Urup, Thomas; Dahlrot, Rikke Hedegaard; Grunnet, Kirsten

    2016-01-01

    BACKGROUND: Predictive markers and prognostic models are required in order to individualize treatment of recurrent glioblastoma (GBM) patients. Here, we sought to identify clinical factors able to predict response and survival in recurrent GBM patients treated with bevacizumab (BEV) and irinotecan...

  14. Prognostic models for stillbirth and neonatal death in very preterm birth: A validation study

    NARCIS (Netherlands)

    E. Schuit (Ewoud); C.W.P.M. Hukkelhoven (Chantal); B.N. Manktelow (Bradley); D.N.M. Papatsonis (Dimitri); M.J.K. de Kleine (Martin); E.S. Draper (Elizabeth); E.W. Steyerberg (Ewout); Y. Vergouwe (Yvonne)

    2012-01-01

    textabstractOBJECTIVES: To validate externally 2 prognostic models for stillbirth and neonatal death in very preterm infants who are either known to be alive at the onset of labor or admitted for neonatal intensive care. PATIENTS AND METHODS: All infants, with gestational age 22 to 32 weeks, of

  15. Model of the hydrodynamic loads applied on a rotating halfbridge belonging to a circular settling tank

    Science.gov (United States)

    Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.

    2016-08-01

    The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.

  16. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  17. Simulation and Modeling of Submicron Semiconductor Devices by a New Hydrodynamic Method.

    Science.gov (United States)

    Lin, Qi.

    Robust numerical methods for the solution of the hydrodynamic model are developed and implemented for the simulation of submicron semiconductor devices. The hydrodynamic equations are reformulated into readily solvable self-adjoint forms with the aid of newly defined HD-Slotboom state variables. A new discretization strategy is developed to resolve the rapid variation in the carrier densities and carrier temperatures. The approach also yields a coefficient matrix for each discretized hydrodynamic equation, which is guaranteed to be diagonally dominant. The hydrodynamic equations are decoupled by using a Gummel block iteration method. A fixed-point iteration technique is employed to solve the discretized equations, which guarantees that each decoupled equation converges for any starting value. Furthermore, the decoupling of equations and use of the fixed-point iteration scheme obviate the need for direct solutions of large matrix equations, and thereby eliminate the need for large memory allocations. The algorithm is inherently parallel, so it can be readily implemented on parallel machines to increase computation speed. Using these methods, several simulation packages are developed for the analysis of one-dimensional (1-D) n^+-n-n^+ devices, and square electric fields, two-dimensional (2-D) & three-dimensional (3-D) MOSFET's, and two-dimensional SOI MOSFET's. Various simulation results for these devices are presented. Some one-dimensional simulation results are compared with Monte Carlo calculations, and a good agreement is observed. Also convergence, stability, and efficiency of the methods are examined by a set of numerical experiments. The device simulators are applied to investigate the hot-electron induced degradation in submicron SOI devices and EPROM's. The impact of localized interface charge on device characteristics is studied. Some measured results are used to calibrate the process parameters in the simulators so that the simulators can predict device

  18. Nuclear subsurface explosion modeling and hydrodynamic fragmentation simulation of hazardous asteroids

    Science.gov (United States)

    Premaratne, Pavithra Dhanuka

    Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.

  19. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    Science.gov (United States)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  20. Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings

    Science.gov (United States)

    Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.

    2005-01-01

    A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.

  1. The search for stable prognostic models in multiple imputed data sets

    Directory of Open Access Journals (Sweden)

    de Vet Henrica CW

    2010-09-01

    Full Text Available Abstract Background In prognostic studies model instability and missing data can be troubling factors. Proposed methods for handling these situations are bootstrapping (B and Multiple imputation (MI. The authors examined the influence of these methods on model composition. Methods Models were constructed using a cohort of 587 patients consulting between January 2001 and January 2003 with a shoulder problem in general practice in the Netherlands (the Dutch Shoulder Study. Outcome measures were persistent shoulder disability and persistent shoulder pain. Potential predictors included socio-demographic variables, characteristics of the pain problem, physical activity and psychosocial factors. Model composition and performance (calibration and discrimination were assessed for models using a complete case analysis, MI, bootstrapping or both MI and bootstrapping. Results Results showed that model composition varied between models as a result of how missing data was handled and that bootstrapping provided additional information on the stability of the selected prognostic model. Conclusion In prognostic modeling missing data needs to be handled by MI and bootstrap model selection is advised in order to provide information on model stability.

  2. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  3. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  4. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  5. Hydrodynamic modelling and global datasets: Flow connectivity and SRTM data, a Bangkok case study.

    Science.gov (United States)

    Trigg, M. A.; Bates, P. B.; Michaelides, K.

    2012-04-01

    The rise in the global interconnected manufacturing supply chains requires an understanding and consistent quantification of flood risk at a global scale. Flood risk is often better quantified (or at least more precisely defined) in regions where there has been an investment in comprehensive topographical data collection such as LiDAR coupled with detailed hydrodynamic modelling. Yet in regions where these data and modelling are unavailable, the implications of flooding and the knock on effects for global industries can be dramatic, as evidenced by the recent floods in Bangkok, Thailand. There is a growing momentum in terms of global modelling initiatives to address this lack of a consistent understanding of flood risk and they will rely heavily on the application of available global datasets relevant to hydrodynamic modelling, such as Shuttle Radar Topography Mission (SRTM) data and its derivatives. These global datasets bring opportunities to apply consistent methodologies on an automated basis in all regions, while the use of coarser scale datasets also brings many challenges such as sub-grid process representation and downscaled hydrology data from global climate models. There are significant opportunities for hydrological science in helping define new, realistic and physically based methodologies that can be applied globally as well as the possibility of gaining new insights into flood risk through analysis of the many large datasets that will be derived from this work. We use Bangkok as a case study to explore some of the issues related to using these available global datasets for hydrodynamic modelling, with particular focus on using SRTM data to represent topography. Research has shown that flow connectivity on the floodplain is an important component in the dynamics of flood flows on to and off the floodplain, and indeed within different areas of the floodplain. A lack of representation of flow connectivity, often due to data resolution limitations, means

  6. Dynamic mesh refinement for discrete models of jet electro-hydrodynamics

    CERN Document Server

    Lauricella, Marco; Pisignano, Dario; Succi, Sauro

    2015-01-01

    Nowadays, several models of unidimensional fluid jets exploit discrete element methods. In some cases, as for models aiming at describing the electrospinning nanofabrication process of polymer fibers, discrete element methods suffer a non constant resolution of the jet representation. We develop a dynamic mesh-refinement method for the numerical study of the electro-hydrodynamic behavior of charged jets using discrete element methods. To this purpose, we import ideas and techniques from the string method originally developed in the framework of free-energy landscape simulations. The mesh-refined discrete element method is demonstrated for the case of electrospinning applications.

  7. Numerical simulation and experimental study of the hydrodynamics of a modeled reef located within a current

    Institute of Scientific and Technical Information of China (English)

    姜昭阳; 梁振林; 唐衍力; 黄六一; 于定勇; 姜曼松

    2010-01-01

    The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG k–εturbulent model.The numerical simulation results are consistent with results observed by experimental means.A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of 2.3%–11.2%and that the corresponding errors of velocities vary in the range of 1.3%–15.8%. The flow field numerical result...

  8. A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect

    Institute of Scientific and Technical Information of China (English)

    Tian Chuan; Sun Di-Hua; Yang Shu-Hong

    2011-01-01

    We present a new multi-anticipation lattice hydrodynamic model based on the traffic anticipation effect in the real world.Applying the linear stability theory,we obtain the linear stability condition of the model.Through nonlinear analysis,we derive the modified Korteweg-de Vries equation to describe the propagating behaviour of a traffic density wave near the critical point.The good agreement between the simulation results and the analytical results shows that the stability of traffic flow can be enhanced when the multi-anticipation effect is considered.

  9. Numerical simulation of shock wave phenomena in hydrodynamic model of semiconductor devices

    Institute of Scientific and Technical Information of China (English)

    XU Ning; YANG Geng

    2007-01-01

    We propose a finite element method to investigate the phenomena of shock wave and to simulate the hydrodynamic model in semiconductor devices. An introduction of this model is discussed first. Then some scaling factors and a relationship between the changing variables are discussed. And then, we use a finite element method (P1-iso-P2 element) to discrete the equations. Some boundary conditions are also discussed. Finally,a sub-micron n+-n-n+ silicon diode and Si MESFET device are simulated and the results are analyzed. Numerical results show that electronic fluids are transonic under some conditions.

  10. Analysis of one- and two-particle spectra at RHIC based on a hydrodynamical model

    Indian Academy of Sciences (India)

    Tetsufumi Hirano; Kenji Morita; Shin Muroya; Chiho Nonaka

    2003-05-01

    We calculate the one-particle hadronic spectra and correlation functions of pions based on a hydrodynamical model. Parameters in the model are so chosen that the one-particle spectra reproduce experimental results of $\\sqrt{s}=130$ A$\\cdot$GeV Au + Au collisions at RHIC. Based on the numerical solution, we discuss the space-time evolution of the fluid. Two-pion correlation functions are also discussed. Our numerical solution suggests the formation of the quark–gluon plasma with large volume and low net baryon density.

  11. Activation of the operational ecohydrodynamic model (3-D CEMBS – the hydrodynamic part

    Directory of Open Access Journals (Sweden)

    L. Dzierzbicka-Głowacka

    2012-07-01

    Full Text Available The paper presents a description of the hydrodynamic part of the coupled ice-ocean model that also includes ecosystem predictive model for evaluation of the condition of the marine environment and the Baltic ecosystem, as well as a preliminary empirical verification of the operational hydrodynamic model based on the POP code in order to determine the consistence between the results obtained from the model and experimental results for the sea surface temperature.

    The current Baltic Sea model is based on the Community Earth System Model (CESM from NCAR – National Center for Atmospheric Research. CESM was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0 and the Parallel Ocean Program (POP, version 2.1. The models are coupled through the coupler (CPL7, which is based on the Model Coupling Toolkit (MCT routines. The current horizontal resolution is about 2 km (1/48 degrees. The ocean model has 21 vertical levels. The driver time step is 1440 s and it is also coupling the time step. The ocean model time step is about 480 s (8 min. Currently, the model is forced by fields from the European Center for Medium Weather Forecast. In the operational mode, 48-h atmospheric forecasts are used, which are supplied by the UM model of the Interdisciplinary Centre for Mathematical and Computational Modelling of the Warsaw University. The model of the marine ecosystem is the right tool for monitoring the state and bioproductivity of the marine ecosystem and forecasting the physical and ecological changes in the studied basin.

  12. Linking near- and far-field hydrodynamic models for simulation of desalination plant brine discharges.

    Science.gov (United States)

    Botelho, D A; Barry, M E; Collecutt, G C; Brook, J; Wiltshire, D

    2013-01-01

    A desalination plant is proposed to be the major water supply to the Olympic Dam Expansion Mining project. Located in the Upper Spencer Gulf, South Australia, the site was chosen due to the existence of strong currents and their likely advantages in terms of mixing and dilution of discharged return water. A high-resolution hydrodynamic model (Estuary, Lake and Coastal Ocean Model, ELCOM) was constructed and, through a rigorous review process, was shown to reproduce the intricate details of the Spencer Gulf dynamics, including those characterising the discharge site. Notwithstanding this, it was found that deploying typically adopted 'direct insertion' techniques to simulate the brine discharge within the hydrodynamic model was problematic. Specifically, it was found that in this study the direct insertion technique delivered highly conservative brine dilution predictions in and around the proposed site, and that these were grid and time-step dependent. To improve the predictive capability, a strategy to link validated computational fluid dynamics (CFD) predictions to hydrodynamic simulations was devised. In this strategy, environmental conditions from ELCOM were used to produce boundary conditions for execution of a suite of CFD simulations. In turn, the CFD simulations provided the brine dilutions and flow rates to be applied in ELCOM. In order to conserve mass in a system-wide sense, artificial salt sinks were introduced to the ELCOM model such that salt quantities were conserved. As a result of this process, ELCOM predictions were naturally very similar to CFD predictions near the diffuser, whilst at the same time they produced an area of influence (further afield) comparable to direct insertion methods. It was concluded that the linkage of the models, in comparison to direct insertion methods, constituted a more realistic and defensible alternative to predict the far-field dispersion of outfall discharges, particularly with regards to the estimation of brine

  13. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    Science.gov (United States)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  14. A COUPLED MODEL OF HYDRODYNAMICS AND WATER QUALITY FOR YUQIAO RESERVOIR IN HAIHE RIVER BASIN

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-bo; PENG Wen-qi; HE Guo-jian; LIU Jing-ling; WANG Yu-chun

    2008-01-01

    In order to simulate the characteristics of hydrodynamic field and mass transport processes in the Yuqiao Reservoir (YQR), a 2-D coupled model of hydrodynamics and water quality was developed, and the water-quality related state variables in this model included CODMn, TN and TP. The hydrodynamic model was driven by employing observed winds and daily measured flow data to simulate the seasonal water cycle of the reservoir. The simulation of the mass transport and transformation processes of CODMn, TN and TP was based on the unsteady diffusion equations, driven by observed meteorological forcing and external Ioadings, with the fluxes form the bottom of reservoir and the plant photosynthesis and respiration as internal sources and sinks. A finite volume method and Alternating Direction Implicit (ADI) scheme were used to solve these equations. The model was calibrated and verified by using the data observed from YQR in two different years. The results showed that in YQR, the wind-driven current was an important style of lake current, while the concentration of water quality item was decreasing from east to west because of the external pollutant loadings. There was a good agreement between the simulated and measured values, with the minimal calculation error percent of 0.1% and 2.6% and the mean error percent of 44.0% and 51.2% for TN and TP separately. The simulation also showed that, in YQR, the convection was the main process in estuaries of inflow river, and diffusion and biochemical processes dominate in center of reservoir. So it was necessary to build a pre-pond to reduce the external Ioadings into the reservoir.

  15. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  16. Development of a coupled hydrological - hydrodynamic model for probabilistic catchment flood inundation modelling

    Science.gov (United States)

    Quinn, Niall; Freer, Jim; Coxon, Gemma; Dunne, Toby; Neal, Jeff; Bates, Paul; Sampson, Chris; Smith, Andy; Parkin, Geoff

    2017-04-01

    Computationally efficient flood inundation modelling systems capable of representing important hydrological and hydrodynamic flood generating processes over relatively large regions are vital for those interested in flood preparation, response, and real time forecasting. However, such systems are currently not readily available. This can be particularly important where flood predictions from intense rainfall are considered as the processes leading to flooding often involve localised, non-linear spatially connected hillslope-catchment responses. Therefore, this research introduces a novel hydrological-hydraulic modelling framework for the provision of probabilistic flood inundation predictions across catchment to regional scales that explicitly account for spatial variability in rainfall-runoff and routing processes. Approaches have been developed to automate the provision of required input datasets and estimate essential catchment characteristics from freely available, national datasets. This is an essential component of the framework as when making predictions over multiple catchments or at relatively large scales, and where data is often scarce, obtaining local information and manually incorporating it into the model quickly becomes infeasible. An extreme flooding event in the town of Morpeth, NE England, in 2008 was used as a first case study evaluation of the modelling framework introduced. The results demonstrated a high degree of prediction accuracy when comparing modelled and reconstructed event characteristics for the event, while the efficiency of the modelling approach used enabled the generation of relatively large ensembles of realisations from which uncertainty within the prediction may be represented. This research supports previous literature highlighting the importance of probabilistic forecasting, particularly during extreme events, which can be often be poorly characterised or even missed by deterministic predictions due to the inherent

  17. Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars

    CERN Document Server

    Rechy-García, J S; Peña, M; Raga, A C

    2016-01-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astron\\'omico Nacional, San Pedro M\\'artir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguaz\\'u hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]$\\lambda$6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observa...

  18. Observations and 3D hydrodynamical models of planetary nebulae with Wolf-Rayet type central stars

    Science.gov (United States)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2017-01-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae, M 1-32 and M 3-15, with [WC] central stars located near the Galactic bulge. The observations were obtained with the 2.1-m telescope of the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both planetary nebulae, we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model - a jet moving inside an asymptotic giant branch wind - using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping through the poles. Then, we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with `close collimated lobes'.

  19. A Hydrodynamic Model for Slug Frequency in Horizontal Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    刘磊; 孙贺东; 胡志华; 周芳德

    2003-01-01

    The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrodynamic model was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the model was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30 m long and its inner diameter is 24 ram. It is observed experimentally that the interracial wave frequency at the inlet is about i to 3 times the frequency of stable slug. The slug frequencies predicted by the model fit well with Tronconi (1990) model and the experimental data. The combination of the hydrodynamic model and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the minimum frequency of interfacial wave.

  20. Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars

    Science.gov (United States)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2016-10-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping thorough the poles. Then we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with "close collimated lobes".

  1. The raspberry model for hydrodynamic interactions revisited. I. Periodic arrays of spheres and dumbbells

    Science.gov (United States)

    Fischer, Lukas P.; Peter, Toni; Holm, Christian; de Graaf, Joost

    2015-08-01

    The so-called "raspberry" model refers to the hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. This technique has been used in many simulation studies on the behavior of colloids. However, there are fundamental questions with regards to the use of this model. In this paper, we examine the accuracy with which the raspberry method is able to reproduce Stokes-level hydrodynamic interactions when compared to analytic expressions for solid spheres in simple-cubic crystals. To this end, we consider the quality of numerical experiments that are traditionally used to establish these properties and we discuss their shortcomings. We show that there is a discrepancy between the translational and rotational mobility reproduced by the simple raspberry model and present a way to numerically remedy this problem by adding internal coupling points. Finally, we examine a non-convex shape, namely, a colloidal dumbbell, and show that the filled raspberry model replicates the desired hydrodynamic behavior in bulk for this more complicated shape. Our investigation is continued in de Graaf et al. [J. Chem. Phys. 143, 084108 (2015)], wherein we consider the raspberry model in the confining geometry of two parallel plates.

  2. Dynamic simulation of hydrodynamic model of drum level wave action and sloshing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling,the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid's wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.

  3. Knee model of hydrodynamic lubrication during the gait cycle and the influence of prosthetic joint conformity.

    Science.gov (United States)

    Pascau, Antonio; Guardia, Blanca; Puertolas, José Antonio; Gómez-Barrena, Enrique

    2009-01-01

    The influence of the total joint components' elastic deformation on lubrication is generally accepted, but little is known about the influence of joint conformity under hydrodynamic lubrication based on fluid film interposition. The aim of this study was to evaluate induced pressure and stresses in the knee under fluid film lubrication during the stance phase of walking under various joint conformity conditions. A theoretical two-dimensional (2D) geometric model of knee prosthesis contact, with Dirichlet boundary conditions at both edges, and with a conformity index (CI) of 0, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 0.995, and 1.0, was used to calculate the spatiotemporal lubricant flow on a synovial fluid rheological model. With the instantaneous load as a source term, the Reynolds lubrication equation was subsequently solved following a finite volume approach in two dimensions and three dimensions. Conformity strongly influenced the peak pressure, from 47 MPa with CI = 0 to 1.4 MPa with CI = 1, with a definite behavior change from CI = 0.96. The role of hydrodynamic lubrication was restricted to early steps of the stance phase. With CI conformity > 0.96. The present model suggested the limited modifying effect of hydrodynamic lubrication in total knee replacement systems. However, its role during the early stance phase, coupled with high conformity, helps significantly to decrease compressive stresses on the polyethylene, fostering the beneficial effect of high conformity in a mixed lubrication regime. This beneficial effect may also be of great interest in total knee replacement systems based on materials with less deformation.

  4. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  5. Log-normal censored regression model detecting prognostic factors in gastric cancer: A study of 3018 cases

    Institute of Scientific and Technical Information of China (English)

    Bin-Bin Wang; Cai-Gang Liu; Ping Lu; A Latengbaolide; Yang Lu

    2011-01-01

    AIM: To investigate the efficiency of Cox proportional hazard model in detecting prognostic factors for gastric cancer.METHODS: We used the log-normal regression model to evaluate prognostic factors in gastric cancer and compared it with the Cox model. Three thousand and eighteen gastric cancer patients who received a gastrectomy between 1980 and 2004 were retrospectively evaluated. Clinic-pathological factors were included in a log-normal model as well as Cox model. The akaike information criterion (AIC) was employed to compare the efficiency of both models. Univariate analysis indicated that age at diagnosis, past history, cancer location, distant metastasis status, surgical curative degree, combined other organ resection, Borrmann type, Lauren's classification, pT stage, total dissected nodes and pN stage were prognostic factors in both log-normal and Cox models.RESULTS: In the final multivariate model, age at diagnosis,past history, surgical curative degree, Borrmann type, Lauren's classification, pT stage, and pN stage were significant prognostic factors in both log-normal and Cox models. However, cancer location, distant metastasis status, and histology types were found to be significant prognostic factors in log-normal results alone.According to AIC, the log-normal model performed better than the Cox proportional hazard model (AIC value:2534.72 vs 1693.56).CONCLUSION: It is suggested that the log-normal regression model can be a useful statistical model to evaluate prognostic factors instead of the Cox proportional hazard model.

  6. Hydrodynamic modeling of a reservoir used to supply water to Belem (Lake Agua Preta, Para, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Lourdes Souza Santos

    2015-07-01

    Full Text Available Lake Agua Preta is used by the Sanitation Company of Para (Cosanpa to supply water to the Belem Metropolitan Region. This study aims to use the Base System Modeling Program Environmental Hydrodynamics (Sisbahia model to simulate seasonal hydrodynamic conditions in the lake and identify areas with the greatest silting. The model results revealed an identical distribution of the velocity module for each month of the year. However, at the outlet of the lake, a water channel variation speed of 0.28–0.32 m s-1 was observed. Furthermore, at the inlet of the lake, vortex silting tended to occur, as verified by bathymetry. Sedimentation mainly occurred during periods of low rainfall, which is when Cosanpa increases the inflow of water to maintain the reservoir level and this leads to an increase in sediments in suspension. With the model, it was possible to identify locations with higher rates of sedimentation, and in the future, such data can serve as an effective tool for managing this water resource.

  7. Note on the hydrodynamic description of thin nematic films: Strong anchoring model

    KAUST Repository

    Lin, Te-Sheng

    2013-01-01

    We discuss the long-wave hydrodynamic model for a thin film of nematic liquid crystal in the limit of strong anchoring at the free surface and at the substrate. We rigorously clarify how the elastic energy enters the evolution equation for the film thickness in order to provide a solid basis for further investigation: several conflicting models exist in the literature that predict qualitatively different behaviour. We consolidate the various approaches and show that the long-wave model derived through an asymptotic expansion of the full nemato-hydrodynamic equations with consistent boundary conditions agrees with the model one obtains by employing a thermodynamically motivated gradient dynamics formulation based on an underlying free energy functional. As a result, we find that in the case of strong anchoring the elastic distortion energy is always stabilising. To support the discussion in the main part of the paper, an appendix gives the full derivation of the evolution equation for the film thickness via asymptotic expansion. © 2013 AIP Publishing LLC.

  8. Hydrodynamic and performance of low power turbines: conception, modelling and experimental tests

    Directory of Open Access Journals (Sweden)

    Mariana. Simão, Helena M. Ramos

    2010-05-01

    Full Text Available The present work comprises a research about hydraulic machines with the aim of optimization and the selection of adequate turbines of low power for exploitation of an available energy still unexplored in water supply systems based on analyses of 3D hydrodynamic flows and on characteristic curves which lead to the best efficiency point. The analysis is carried out based on non-dimensional parameters (i.e., discharge, head, efficiency, runner speed and mechanical power in order to be possible comparisons. Mathematical models based on the physical principles, associated to the development of volumetric and rotordynamic machines, are developed. New turbines are suggested, which are based on similar theory among turbo machines based on applications in hydraulic systems with guarantee discharge and available head. The hydrodynamic fluid mechanical analysis requires the use of complex advanced models (CFD which apply the equations of Navier-Stokes by using mathematical models of conservation laws, for the study of the turbulent flow behaviour. To determine the correlation between the flow velocity and pressure fields, the k-? model, is used in this research. Many turbines are evaluated (i.e., positive displacement (PD, pump as turbine (PAT, propeller with volute at inlet, four and five blades tubular propellers and sensitivity analyses, to the best configurations, as well as comparisons between performance curves and experimental tests. Results are presented with the appropriate range variation for each turbine type and application.

  9. Numerical Simulation of Interacting Stellar Winds Model Using Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Thronson, H. A., Jr.; Li, P. S.; Kwok, S.

    1997-12-01

    In the past decade, the Interacting Stellar Winds (ISW) model has been shown to be successful in explaining the formation of planetary nebulae, Wolf-Rayet nebulae, slow novae, and supernovae. Since analytical methods applied to the ISW model have been limited to the spherical symmetric (1D) geometry, numerical methods are necessary for axisymmetric (2D) or arbitrary (3D) geometries, such as the study of formation and evolution of planetary nebulae, and for symbiotic nova outbursts. The Smoothed Particle Hydrodynamics (SPH) algorithm has been developed to study hydrodynamics using the particle method. This algorithm has been applied in many different fields successfully. In this paper, we apply the SPH algorithm using the TREE code to the problem of interacting winds dynamics. We present three simulations: (1) the interaction of two winds in spherical symmetry to demonstrate the validity of the algorithm in dealing with ISW modeling, (2) the formation and evolution of an axisymmetric nebula in the first 500 years, and (3) the interacting-colliding winds caused by a slow nova outburst in a symbiotic system. It is the first time that the SPH algorithm has been applied to an ISW simulation. The SPH algorithm is proved to be an accurate and powerful tool in studying ISW model. This work is supported by NASA's US ISO program and the University of Calgary.

  10. Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003

    Science.gov (United States)

    Sullivan, Annette B.; Rounds, Stewart A.

    2004-01-01

    The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.

  11. The Raspberry model for hydrodynamic interactions revisited. II. The effect of confinement

    Science.gov (United States)

    de Graaf, Joost; Peter, Toni; Fischer, Lukas P.; Holm, Christian

    2015-08-01

    The so-called "raspberry" model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics schemes for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the effectiveness of the raspberry model in reproducing hydrodynamic interactions in the Stokes regime for spheres arranged in a simple-cubic crystal [Fischer et al., J. Chem. Phys. 143, 084107 (2015)]. Here, we consider the accuracy with which the raspberry model is able to reproduce such interactions for particles confined between two parallel plates. To this end, we compare our LB simulation results to established theoretical expressions and finite-element calculations. We show that there is a discrepancy between the translational and rotational mobilities when only surface coupling points are used, as also found in Part I of our joint publication. We demonstrate that adding internal coupling points to the raspberry can be used to correct said discrepancy in confining geometries as well. Finally, we show that the raspberry model accurately reproduces hydrodynamic interactions between a spherical colloid and planar walls up to roughly one LB lattice spacing.

  12. Hydrodynamic and Inundation Modeling of China’s Largest Freshwater Lake Aided by Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-04-01

    Full Text Available China’s largest freshwater lake, Poyang Lake, is characterized by rapid changes in its inundation area and hydrodynamics, so in this study, a hydrodynamic model of Poyang Lake was established to simulate these long-term changes. Inundation information was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS remote sensing data and used to calibrate the wetting and drying parameter by assessing the accuracy of the simulated inundation area and its boundary. The bottom friction parameter was calibrated using current velocity measurements from Acoustic Doppler Current Profilers (ADCP. The results show the model is capable of predicting the inundation area dynamic through cross-validation with remotely sensed inundation data, and can reproduce the seasonal dynamics of the water level, and water discharge through a comparison with hydrological data. Based on the model results, the characteristics of the current velocities of the lake in the wet season and the dry season of the lake were explored, and the potential effect of the current dynamic on water quality patterns was discussed. The model is a promising basic tool for prediction and management of the water resource and water quality of Poyang Lake.

  13. The moreau-evans hydrodynamic model applied to actual hall-héroult cells

    Science.gov (United States)

    Moreau, René J.; Ziegler, Donald

    1988-10-01

    An extension of the Moreau-Evans[1] model for Hall-Héroult cells hydrodynamics is presented. Numerical techniques are used to solve the Moreau-Evans model equations with realistic electromagnetic force fields; the predicted results are compared with those of another model which is the property of Kaiser Aluminum Company and whose results are considered as in fairly good agreement with available measurements (velocity in aluminum, for instance). The main input in this hydrodynamic model, i.e., the electromagnetic force field throughout the two liquids, was previously computed. For a given cell design these data were calculated using the electromagnetic program of Lympany and Evans.[2] For actual cells the forces were deduced from measurements of the magnetic field provided by Kaiser Aluminum Company. As expected, the cryolite flow is found to be governed by the large channels, and to be strongly dependent on the presence of such a channel between the two files of anodes. The use of numerical solution has made possible the analysis of new effects as the interfacial drag and the influence of small channels between anode blocks.

  14. Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences.

    Science.gov (United States)

    Cleary, Paul W; Prakash, Mahesh

    2004-09-15

    Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed.

  15. New control strategy for the lattice hydrodynamic model of traffic flow

    Science.gov (United States)

    Zhu, Chenqiang; Zhong, Shiquan; Li, Guangyu; Ma, Shoufeng

    2017-02-01

    The new delayed-feedback control strategy is applied for lattice hydrodynamic model of traffic flow by considering the control signal of the variation rate of the optimal velocity. The linear stability condition is derived in the frequency-domain with control theory. Then, different feedback gains under the periodic boundary scenery and on-ramp scenery are simulated. The periodic boundary scenery provides an initial small disturbance situation on the circle road, while the on-ramp scenery reproduces the disturbance triggered by the on-ramp on the open road. Both the theoretical analysis and simulations show that this new control signal has a positive effect to suppress traffic jams.

  16. Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction

    Directory of Open Access Journals (Sweden)

    Groenenboom P. H. L.

    2009-06-01

    Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.

  17. Stellar abundance analyses in the light of 3D hydrodynamical model atmospheres

    CERN Document Server

    Asplund, M

    2003-01-01

    I describe recent progress in terms of 3D hydrodynamical model atmospheres and 3D line formation and their applications to stellar abundance analyses of late-type stars. Such 3D studies remove the free parameters inherent in classical 1D investigations (mixing length parameters, macro- and microturbulence) yet are highly successful in reproducing a large arsenal of observational constraints such as detailed line shapes and asymmetries. Their potential for abundance analyses is illustrated by discussing the derived oxygen abundances in the Sun and in metal-poor stars, where they seem to resolve long-standing problems as well as significantly alter the inferred conclusions.

  18. Toward Developing a Hydrodynamic Flow & Inundation Model of the Lower Pearl River

    Science.gov (United States)

    2010-01-20

    AUTHOR(S) Paul McKay, Cheryl Ann Blain 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 73-6205-A9-5 7. PERFORMING ORGANIZATION...8/98) Prescribed by ANSI Sid. Z39.18 Toward Developing a Hydrodynamic Flow and Inundation Model of the Lower Pearl River Paul McKay and Cheryl... Ekman transport due to offshore forcing or surge tied to local storm events. Both channels of the lower Pearl are bordered by extensive floodplains

  19. Prospective independent validation of IMPACT modeling as a prognostic tool in severe traumatic brain injury.

    Science.gov (United States)

    Panczykowski, David M; Puccio, Ava M; Scruggs, Bobby J; Bauer, Joshua S; Hricik, Allison J; Beers, Sue R; Okonkwo, David O

    2012-01-01

    Clinical trials in traumatic brain injury (TBI) have been fraught with failure due in part to heterogeneity in pathology and insensitive outcome measurements. The International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) prognostic model has been purposed as a means of risk adjustment and outcome prediction for use in trial design and analysis. The purpose of this study was to evaluate the performance of the IMPACT model in predicting 6-month functional outcome and mortality using prospectively collected data at a large, Level 1 neurotrauma center. This population-based cohort study included all TBI patients ≥14 years of age admitted with a Glasgow Coma Scale (GCS) score of ≤8 (severe TBI) to the University of Pittsburgh Medical Center between July 1994 and May 2009. Clinical data were prospectively collected and linked to 6-month functional outcome (Glasgow Outcome Scale [GOS]) and mortality. The discriminatory power and calibration of the three iterations of the IMPACT model (core, extended, and lab) were assessed using multiple regression analyses and indicated by the area under the receiver operating characteristic curve (AUC). A sample of 587 patients was available for analysis; the mean age was 37.8±17 years. The median 6-month GOS was 3 (IQR 3); 6-month mortality was 41%. The prognostic models were composed of age, motor score, and pupillary reactivity (core model), Marshall grade on head CT and secondary insults (extended), and laboratory values (lab); all of these displayed good prediction ability for unfavorable outcome and mortality (unfavorable outcome AUC=0.76, 0.79, 0.76; mortality AUC=0.78, 0.83, 0.83, respectively). All model iterations displayed adequate calibration for predicting unfavorable outcome and mortality. Prospective, independent validation supports the IMPACT prognostic model's prediction of patient 6-month functional status and mortality after severe TBI. The IMPACT prognostic model is an effective

  20. Use of hydrodynamic and benthic models for managing environmental impacts of marine aquaculture

    DEFF Research Database (Denmark)

    Henderson, A.; Gamito, S.; Karakassis, I.

    2001-01-01

    Regulation to minimize impacts from aquaculture is of key concern in coastal zone management for the sustainability of the industry and the receiving environment. Market and consumer forces are presently driving much of this regulation and its implementation, Mathematical modelling can provide...... the tools for planning and monitoring as well as regulation, and a number of countries have well-developed policies and procedures in place which utilize modelling tools. The main impacts currently modelled are nutrient enhancement, organic waste deposition and the dispersion and deposition of medicines......; be accessible, user-friendly and be used with caution. Current models are considered to be limited in scope but do cover the main hydrodynamic and particulate processes. The regulation and monitoring of finfish aquaculture involving the direct use of models is apparently restricted to relatively few countries...

  1. A Modelling Approach to Multibody Dynamics of Fluid Power Machinery with Hydrodynamic Lubrication

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2013-01-01

    The efficiency potential of the digital displacement technology and the increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for development of high efficiency fluid power machinery. Modelling and analysis of fluid power machinery loss...... to be coupled with multibody dynamics models. The focus of the current paper is an approach where the transient pressure field in hydrodynamic lubricated joint clearances are modelled by a set of control volumes and coupled with the fluid power machinery mechanics....... mechanisms is necessary in order to accommodate this demand. At present fully coupled thermo-elastic models for various tribological interfaces has been presented. However, in order to analyse the interaction between tribological interfaces in fluid power pumps and motors, these interface models needs...

  2. Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models

    Science.gov (United States)

    Schneider, Raphael; Nygaard Godiksen, Peter; Villadsen, Heidi; Madsen, Henrik; Bauer-Gottwein, Peter

    2015-04-01

    Hydrological models are developed and used for flood forecasting and water resources management. Such models rely on a variety of input and calibration data. In general, and especially in data scarce areas, remote sensing provides valuable data for the parameterization and updating of such models. Satellite radar altimeters provide water level measurements of inland water bodies. So far, many studies making use of satellite altimeters have been based on data from repeat-orbit missions such as Envisat, ERS or Jason or on synthetic wide-swath altimetry data as expected from the SWOT mission. This work represents one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, using data from CryoSat-2. We present an application where CryoSat-2 data is used to improve a hydrodynamic model of the Ganges and Brahmaputra river basins in South Asia set up in the DHI MIKE 11 software. The model's parameterization and forcing is mainly based on remote sensing data, for example the TRMM 3B42 precipitation product and the SRTM DEM for river and subcatchment delineation. CryoSat-2 water levels were extracted over a river mask derived from Landsat 7 and 8 imagery. After calibrating the hydrological-hydrodynamic model against observed discharge, simulated water levels were fitted to the CryoSat-2 data, with a focus on the Brahmaputra river in the Assam valley: The average simulated water level in the hydrodynamic model was fitted to the average water level along the river's course as observed by CryoSat-2 over the years 2011-2013 by adjusting the river bed elevation. In a second step, the cross section shapes were adjusted so that the simulated water level dynamics matched those obtained from Envisat virtual station time series. The discharge calibration resulted in Nash-Sutcliffe coefficients of 0.86 and 0.94 for the Ganges and Brahmaputra. Using the Landsat river mask, the CryoSat-2 water levels show consistency along the river and are in

  3. Source tracking using microbial community fingerprints: Method comparison with hydrodynamic modelling.

    Science.gov (United States)

    McCarthy, D T; Jovanovic, D; Lintern, A; Teakle, I; Barnes, M; Deletic, A; Coleman, R; Rooney, G; Prosser, T; Coutts, S; Hipsey, M R; Bruce, L C; Henry, R

    2017-02-01

    Urban estuaries around the world are experiencing contamination from diffuse and point sources, which increases risks to public health. To mitigate and manage risks posed by elevated levels of contamination in urban waterways, it is critical to identify the primary water sources of contamination within catchments. Source tracking using microbial community fingerprints is one tool that can be used to identify sources. However, results derived from this approach have not yet been evaluated using independent datasets. As such, the key objectives of this investigation were: (1) to identify the major sources of water responsible for bacterial loadings within an urban estuary using microbial source tracking (MST) using microbial communities; and (2) to evaluate this method using a 3-dimensional hydrodynamic model. The Yarra River estuary, which flows through the city of Melbourne in South-East Australia was the focus of this study. We found that the water sources contributing to the bacterial community in the Yarra River estuary varied temporally depending on the estuary's hydrodynamic conditions. The water source apportionment determined using microbial community MST correlated to those determined using a 3-dimensional hydrodynamic model of the transport and mixing of a tracer in the estuary. While there were some discrepancies between the two methods, this investigation demonstrated that MST using bacterial community fingerprints can identify the primary water sources of microorganisms in an estuarine environment. As such, with further optimization and improvements, microbial community MST has the potential to become a powerful tool that could be practically applied in the mitigation of contaminated aquatic systems.

  4. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  5. Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model

    Science.gov (United States)

    Lazar, Karbunar; Duško, Borka; Ivan, Radović; Zoran, L. Mišković

    2016-04-01

    We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes (SWNTs) under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nano-structures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at a speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Using that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential. Project supported by the Funds from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 45005). Z. L. Mišković thanks the Natural Sciences and Engineering Research Council of Canada for Finacial Support.

  6. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis.

    Science.gov (United States)

    Colosqui, Carlos E; Kavousanakis, Michail E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G

    2013-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo-potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled fluid-solid interface is diffuse, represented by a wall probability function that ultimately controls the momentum exchange between solid and fluid phases. This approach allows us to effectively vary the slip length for a given wettability (i.e., a given static contact angle) of the solid substrate.

  7. The optimization of high resolution topographic data for 1D hydrodynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Ales, Ronovsky, E-mail: ales.ronovsky@vsb.cz; Michal, Podhoranyi [IT4Innovations National Supercomputing Center, VŠB-Technical University of Ostrava, Studentská 6231/1B, 708 33 Ostrava (Czech Republic)

    2016-06-08

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  8. A quasi-continuum hydrodynamic model for slit shaped nanochannel flow

    Science.gov (United States)

    Bhadauria, Ravi; Aluru, N. R.

    2013-08-01

    We propose a quasi-continuum hydrodynamic model for isothermal transport of Lennard-Jones fluid confined in slit shaped nanochannels. In this work, we compute slip and viscous contributions independently and superimpose them to obtain the total velocity profile. Layering of fluid near the interface plays an important role in viscous contribution to the flow, by apparent viscosity change along the confining dimension. This relationship necessitates computing density profiles, which is done using the recently proposed empirical-potential based quasi-continuum theory [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007)], 10.1063/1.2793070. Existing correlations for density dependent viscosity provided by Woodcock [AIChE J. 52, 438 (2006)], 10.1002/aic.10676 are used to compute viscosity profile in the nanopores. A Dirichlet type slip boundary condition based on a static Langevin friction model describing center-of-mass motion of fluid particles is used, the parameters of which are dependent on the fluctuations of total wall-fluid force from an equilibrium molecular dynamics simulation. Different types of corrugated surfaces are considered to study wall-fluid friction effects on boundary conditions. Proposed hydrodynamic model yields good agreement of velocity profiles obtained from non-equilibrium molecular dynamics simulations for gravity driven flow.

  9. Regional scale hydrodynamic modelling of offshore wind farm development areas off the east coast of Scotland

    Science.gov (United States)

    O'Hara Murray, Rory; Gallego, Alejandro

    2013-04-01

    There is considerable interest in Scotland, supported by the Scottish Government, in the expansion of renewable energy production. In particular, significant offshore wind energy developments are already planned in coastal waters to the east of the Forth and Tay estuaries. It is important to understand the local and cumulative environmental impact of such developments within this region, to aid licensing decisions but also to inform marine spatial planning in general. Substantial wind farm developments may affect physical processes within the region, such as tidal-, wind-, and wave-driven circulation, as well as coastal sediment transport and more complex estuarine dynamics. Such physical impacts could have ecological and, ultimately, socio-economic consequences. The Firth of Forth and Tay areas both exhibit complex estuarine characteristics due to fresh water input, complex bathymetry and coastline, and tidal mixing. Our goal is to construct an unstructured grid hydrodynamic model of the wider Firth of Forth and Tay region using the Finite-Volume Coastal Ocean Model (FVCOM), resolving the complex estuarine hydrography of the area and representing offshore wind developments. Hydrodynamic modelling will provide an accurate baseline of the hydrography in this region but also allow the assessment of the effect on the physical environment of multiple wind farm development scenarios.

  10. A hydrodynamical model of the circumstellar bubble created by two massive stars

    CERN Document Server

    van Marle, Allard Jan; Marcowith, Alexandre

    2012-01-01

    Numerical models of the wind-blown bubble of massive stars usually account only for the wind of a single star. However, since massive stars are usually formed in clusters, it would be more realistic to follow the evolution of a bubble created by several stars. We make a 2D model of the circumstellar bubble created by two massive stars: a 40 solar mass star and a 25 solar mass star and follow its evolution. The stars have a separation of approx. 16 pc and surrounded by a cold medium with a density of 20 particles per cubic cm. We use the MPI-AMRVAC hydrodynamics code to solve the conservation equations of hydrodynamics on a 2D cylindrical grid using time-dependent models for the parameters of the wind of the two stars. At the end of the stellar evolution (4.5 and 7.0 million years for the 40 and 25 solar mass stars respectively) we simulate the supernova explosion of each star. Initially, each star creates its own bubble. However, as the bubbles expand they merge, creating a combined, a-spherical bubble. The c...

  11. Reporting methods in studies developing prognostic models in cancer: a review

    Directory of Open Access Journals (Sweden)

    Waters Rachel

    2010-03-01

    Full Text Available Abstract Background Development of prognostic models enables identification of variables that are influential in predicting patient outcome and the use of these multiple risk factors in a systematic, reproducible way according to evidence based methods. The reliability of models depends on informed use of statistical methods, in combination with prior knowledge of disease. We reviewed published articles to assess reporting and methods used to develop new prognostic models in cancer. Methods We developed a systematic search string and identified articles from PubMed. Forty-seven articles were included that satisfied the following inclusion criteria: published in 2005; aiming to predict patient outcome; presenting new prognostic models in cancer with outcome time to an event and including a combination of at least two separate variables; and analysing data using multivariable analysis suitable for time to event data. Results In 47 studies, prospective cohort or randomised controlled trial data were used for model development in only 33% (15 of studies. In 30% (14 of the studies insufficient data were available, having fewer than 10 events per variable (EPV used in model development. EPV could not be calculated in a further 40% (19 of the studies. The coding of candidate variables was only reported in 68% (32 of the studies. Although use of continuous variables was reported in all studies, only one article reported using recommended methods of retaining all these variables as continuous without categorisation. Statistical methods for selection of variables in the multivariate modelling were often flawed. A method that is not recommended, namely, using statistical significance in univariate analysis as a pre-screening test to select variables for inclusion in the multivariate model, was applied in 48% (21 of the studies. Conclusions We found that published prognostic models are often characterised by both use of inappropriate methods for development

  12. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin

    Science.gov (United States)

    de Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Collischonn, Walter; Bonnet, Marie-Paule; Frappart, Frédéric; Calmant, Stephane; Bulhões Mendes, Carlos André

    2013-03-01

    In this paper, a hydrologic/hydrodynamic modeling of the Amazon River basin is presented using the MGB-IPH model with a validation using remotely sensed observations. Moreover, the sources of model errors by means of the validation and sensitivity tests are investigated, and the physical functioning of the Amazon basin is also explored. The MGB-IPH is a physically based model resolving all land hydrological processes and here using a full 1-D river hydrodynamic module with a simple floodplain storage model. River-floodplain geometry parameters were extracted from the SRTM digital elevation model, and the model was forced using satellite-derived rainfall from TRMM3B42. Model results agree with observed in situ daily river discharges and water levels and with three complementary satellite-based products: (1) water levels derived from ENVISAT altimetry data; (2) a global data set of monthly inundation extent; and (3) monthly terrestrial water storage (TWS) anomalies derived from the Gravity Recovery and Climate Experimental mission. However, the model is sensitive to precipitation forcing and river-floodplain parameters. Most of the errors occur in westerly regions, possibly due to the poor quality of TRMM 3B42 rainfall data set in these mountainous and/or poorly monitored areas. In addition, uncertainty in river-floodplain geometry causes errors in simulated water levels and inundation extent, suggesting the need for improvement of parameter estimation methods. Finally, analyses of Amazon hydrological processes demonstrate that surface waters govern most of the Amazon TWS changes (56%), followed by soil water (27%) and ground water (8%). Moreover, floodplains play a major role in stream flow routing, although backwater effects are also important to delay and attenuate flood waves.

  13. A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism

    Science.gov (United States)

    Zheng, Peng; Li, Ming; van der A, Dominic A.; van der Zanden, Joep; Wolf, Judith; Chen, Xueen; Wang, Caixia

    2017-08-01

    A new three-dimensional nearshore hydrodynamic model system is developed based on the unstructured-grid version of the third generation spectral wave model SWAN (Un-SWAN) coupled with the three-dimensional ocean circulation model FVCOM to enable the full representation of the wave-current interaction in the nearshore region. A new wave-current coupling scheme is developed by adopting the vortex-force (VF) scheme to represent the wave-current interaction. The GLS turbulence model is also modified to better reproduce wave-breaking enhanced turbulence, together with a roller transport model to account for the effect of surface wave roller. This new model system is validated first against a theoretical case of obliquely incident waves on a planar beach, and then applied to three test cases: a laboratory scale experiment of normal waves on a beach with a fixed breaker bar, a field experiment of oblique incident waves on a natural, sandy barred beach (Duck'94 experiment), and a laboratory study of normal-incident waves propagating around a shore-parallel breakwater. Overall, the model predictions agree well with the available measurements in these tests, illustrating the robustness and efficiency of the present model for very different spatial scales and hydrodynamic conditions. Sensitivity tests indicate the importance of roller effects and wave energy dissipation on the mean flow (undertow) profile over the depth. These tests further suggest to adopt a spatially varying value for roller effects across the beach. In addition, the parameter values in the GLS turbulence model should be spatially inhomogeneous, which leads to better prediction of the turbulent kinetic energy and an improved prediction of the undertow velocity profile.

  14. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  15. A new pressure relaxation closure model for one-dimensional two-material Lagrangian hydrodynamics

    Directory of Open Access Journals (Sweden)

    Rider W.J.

    2011-01-01

    Full Text Available We present a new model for closing a system of Lagrangian hydrodynamics equations for a two-material cell with a single velocity model. We describe a new approach that is motivated by earlier work of Delov and Sadchikov and of Goncharov and Yanilkin. Using a linearized Riemann problem to initialize volume fraction changes, we require that each material satisfy its own p dV equation, which breaks the overall energy balance in the mixed cell. To enforce this balance, we redistribute the energy discrepancy by assuming that the corresponding pressure change in each material is equal. This multiple-material model is packaged as part of a two-step time integration scheme. We compare results of our approach with other models and with corresponding pure-material calculations, on two-material test problems with ideal-gas or stiffened-gas equations of state.

  16. An efficient numerical model for hydrodynamic parameterization in 2D fractured dual-porosity media

    Science.gov (United States)

    Fahs, Hassane; Hayek, Mohamed; Fahs, Marwan; Younes, Anis

    2014-01-01

    This paper presents a robust and efficient numerical model for the parameterization of the hydrodynamic in fractured porous media. The developed model is based upon the refinement indicators algorithm for adaptive multi-scale parameterization. For each level of refinement, the Levenberg-Marquardt method is used to minimize the difference between the measured and predicted data that are obtained by solving the direct problem with the mixed finite element method. Sensitivities of state variables with respect to the parameters are calculated by the sensitivity method. The adjoint-state method is used to calculate the local gradients of the objective function necessary for the computation of the refinement indicators. Validity and efficiency of the proposed model are demonstrated by means of several numerical experiments. The developed numerical model provides encouraging results, even for noisy data and/or with a reduced number of measured heads.

  17. The clustering of baryonic matter. II: halo model and hydrodynamic simulations

    CERN Document Server

    Fedeli, C; Velliscig, M; Van Daalen, M; Schaye, J; Hoekstra, H

    2014-01-01

    We recently developed a generalization of the halo model in order to describe the spatial clustering properties of each mass component in the Universe, including hot gas and stars. In this work we discuss the complementarity of the model with respect to a set of cosmological simulations including hydrodynamics of different kinds. We find that the mass fractions and density profiles measured in the simulations do not always succeed in reproducing the simulated matter power spectra, the reason being that the latter encode information from a much larger range in masses than that accessible to individually resolved structures. In other words, this halo model allows one to extract information on the growth of structures from the spatial clustering of matter, that is complementary with the information coming from the study of individual objects. We also find a number of directions for improvement of the present implementation of the model, depending on the specific application one has in mind. The most relevant one...

  18. Tools and Algorithms to Link Horizontal Hydrologic and Vertical Hydrodynamic Models and Provide a Stochastic Modeling Framework

    Science.gov (United States)

    Salah, Ahmad M.; Nelson, E. James; Williams, Gustavious P.

    2010-04-01

    We present algorithms and tools we developed to automatically link an overland flow model to a hydrodynamic water quality model with different spatial and temporal discretizations. These tools run the linked models which provide a stochastic simulation frame. We also briefly present the tools and algorithms we developed to facilitate and analyze stochastic simulations of the linked models. We demonstrate the algorithms by linking the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model for overland flow with the CE-QUAL-W2 model for water quality and reservoir hydrodynamics. GSSHA uses a two-dimensional horizontal grid while CE-QUAL-W2 uses a two-dimensional vertical grid. We implemented the algorithms and tools in the Watershed Modeling System (WMS) which allows modelers to easily create and use models. The algorithms are general and could be used for other models. Our tools create and analyze stochastic simulations to help understand uncertainty in the model application. While a number of examples of linked models exist, the ability to perform automatic, unassisted linking is a step forward and provides the framework to easily implement stochastic modeling studies.

  19. Tools and Algorithms to Link Horizontal Hydrologic and Vertical Hydrodynamic Models and Provide a Stochastic Modeling Framework

    Directory of Open Access Journals (Sweden)

    Ahmad M Salah

    2010-12-01

    Full Text Available We present algorithms and tools we developed to automatically link an overland flow model to a hydrodynamic water quality model with different spatial and temporal discretizations. These tools run the linked models which provide a stochastic simulation frame. We also briefly present the tools and algorithms we developed to facilitate and analyze stochastic simulations of the linked models. We demonstrate the algorithms by linking the Gridded Surface Subsurface Hydrologic Analysis (GSSHA model for overland flow with the CE-QUAL-W2 model for water quality and reservoir hydrodynamics. GSSHA uses a two-dimensional horizontal grid while CE-QUAL-W2 uses a two-dimensional vertical grid. We implemented the algorithms and tools in the Watershed Modeling System (WMS which allows modelers to easily create and use models. The algorithms are general and could be used for other models. Our tools create and analyze stochastic simulations to help understand uncertainty in the model application. While a number of examples of linked models exist, the ability to perform automatic, unassisted linking is a step forward and provides the framework to easily implement stochastic modeling studies.

  20. Physical Modeling for Anomaly Diagnostics and Prognostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop developed an innovative, model-driven anomaly diagnostic and fault characterization system for electromechanical actuator (EMA) systems to mitigate...

  1. AGN Feedback and Cooling Flows: The Failure of Simple Hydrodynamical Models

    CERN Document Server

    Vernaleo, J C; Vernaleo, John C.; Reynolds, Christopher S.

    2005-01-01

    In recent years it has become increasingly clear that Active Galactic Nuclei, and radio-galaxies in particular, have an impact on large scale structure and galaxy formation. In principle, radio-galaxies are energetic enough to halt the cooling in the inner regions clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high resolution, three dimensional hydrodynamic simulations of jetted active galaxies which act in response to cooling-mediated accretion of an ICM atmosphere. We find that such models are incapable of producing a long term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low density channel through which the jet can freely flow, carrying its energy out of the cooling core. While this obviously highlights the need to include physics beyond the ideal hydrodynamics...

  2. Investigation of residence time and groundwater flux in Venice Lagoon: comparing radium isotope and hydrodynamical models

    Energy Technology Data Exchange (ETDEWEB)

    Rapaglia, John, E-mail: john.rapaglia@gmail.co [National Research Council of Italy, Marine Science Institute-Venice, Castello 1364/a, Venice 30122 (Italy); Ferrarin, Christian, E-mail: christian.ferrarin@ve.ismar.cnr.i [National Research Council of Italy, Marine Science Institute-Venice, Castello 1364/a, Venice 30122 (Italy); Zaggia, Luca, E-mail: luca.zaggia@ve.ismar.cnr.i [National Research Council of Italy, Marine Science Institute-Venice, Castello 1364/a, Venice 30122 (Italy); Moore, Willard S., E-mail: moore@geol.sc.ed [Department of Geological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Umgiesser, Georg, E-mail: georg.umgiesser@ve.ismar.cnr.i [National Research Council of Italy, Marine Science Institute-Venice, Castello 1364/a, Venice 30122 (Italy); Garcia-Solsona, Ester, E-mail: esther.garcia@uab.ca [Institut de Ciencia i Tecnologia Ambientals - Departament de Fisica, Universitat Autonoma de Barcelona, Bellaterra 08193 (Spain); Garcia-Orellana, Jordi, E-mail: jordi.garcia@uab.ca [Institut de Ciencia i Tecnologia Ambientals - Departament de Fisica, Universitat Autonoma de Barcelona, Bellaterra 08193 (Spain); School of Marine and Atmospheric Sciences, State University of New York, Stony Brook, NY 11794-5000 (United States); Masque, Pere, E-mail: pere.masque@uab.ca [Institut de Ciencia i Tecnologia Ambientals - Departament de Fisica, Universitat Autonoma de Barcelona, Bellaterra 08193 (Spain)

    2010-07-15

    The four naturally-occurring isotopes of radium were coupled with a previously evaluated hydrodynamic model to determine the apparent age of surface waters and to quantify submarine groundwater discharge (SGD) into the Venice Lagoon, Italy. Mean apparent age of water in the Venice Lagoon was calculated using the ratio of {sup 224}Ra to {sup 228}Ra determined from 30 monitoring stations and a mean pore water endmember. Average apparent age was calculated to be 6.0 d using Ra ratios. This calculated age was very similar to average residence time calculated for the same period using a hydrodynamic model (5.8 d). A mass balance of Ra was accomplished by quantifying each of the sources and sinks of Ra in the lagoon, with the unknown variable being attributed to SGD. Total SGD were calculated to be 4.1 {+-} 1.5, 3.8 {+-} 0.7, 3.0 {+-} 1.3, and 3.5 {+-} 1.0 x 10{sup 10} L d{sup -1} for {sup 223,224,226,228}Ra, respectively, which are an order of magnitude larger than total mean fluvial discharge into the Venice Lagoon (3.1 x 10{sup 9} L d{sup -1}). The SGD as a source of nutrients in the Venice Lagoon is also discussed and, though significant to the nutrient budget, is likely to be less important as the dominant control on SGD is recirculated seawater rather than freshwater.

  3. Model-based clustering for assessing the prognostic value of imaging biomarkers and mixed type tests.

    Science.gov (United States)

    Wang, Zheyu; Sebestyen, Krisztian; Monsell, Sarah E

    2017-09-01

    A model-based clustering method is proposed to address two research aims in Alzheimer's disease (AD): to evaluate the accuracy of imaging biomarkers in AD prognosis, and to integrate biomarker information and standard clinical test results into the diagnoses. One challenge in such biomarker studies is that it is often desired or necessary to conduct the evaluation without relying on clinical diagnoses or some other standard references. This is because (1) biomarkers may provide prognostic information long before any standard reference can be acquired; (2) these references are often based on or provide unfair advantage to standard tests. Therefore, they can mask the prognostic value of a useful biomarker, especially when the biomarker is much more accurate than the standard tests. In addition, the biomarkers and existing tests may be of mixed type and vastly different distributions. A model-based clustering method based on finite mixture modeling framework is introduced. The model allows for the inclusion of mixed typed manifest variables with possible differential covariates to evaluate the prognostic value of biomarkers in addition to standard tests without relying on potentially inaccurate reference diagnoses. Maximum likelihood parameter estimation is carried out via the EM algorithm. Accuracy measures and the ROC curves of the biomarkers are derived subsequently. Finally, the method is illustrated with a real example in AD.

  4. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  5. High-resolution modelling of 3D hydrodynamics in coastal archipelagos

    Science.gov (United States)

    Miettunen, Elina; Tuomi, Laura; Ropponen, Janne; Lignell, Risto

    2016-04-01

    Dynamics of the coastal seas are affected by eutrophication, over-fishing, coastal construction and climate change. To enable the sustainable development of these areas, monitoring and modelling of the state of the sea are needed. The Archipelago Sea, located in the northern part of the semi-enclosed and brackish water Baltic Sea, is one of the most complex coastal areas with over 40 000 small islands and islets. It is also very vulnerable area already heavily stressed with eutrophication. Applicable modelling tools are needed to support the decision making and to provide sufficiently reliable information on the effects of the planned actions on the state of the coastal waters. We used 3D hydrodynamic model COHERENS to model the Archipelago Sea area with high spatial resolution of 0.25 nmi. Boundary conditions for this limited area were provided from coarser resolution, 2 nmi, Baltic Sea grid. In order to evaluate the performance of the high-resolution coastal model implementation a comprehensive measurement dataset was gathered, including hydrographic data from three intensive monitoring stations and several more rarely visited monitoring or research stations. The hydrodynamic model was able to simulate the surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. The sharp depth gradients typical for this area provided some challenges to the modelling. There was some over mixing and related to too strong vertical currents in the steep slopes of the deeper fault lines. Also the water exchange between the more open sea and coastal areas through narrow channels between the islands is not sufficiently well reproduced with the current resolution, leading to too high bottom temperatures.

  6. ONE- AND TWO-DIMENSIONAL COUPLED HYDRODYNAMICS MODEL FOR DAM BREAK FLOW

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.

  7. Model Updating and Uncertainty Management for Aircraft Prognostic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the integration of physics-based damage propagation models with diagnostic measures of current state of health in a mathematically rigorous...

  8. Simulating pH effects in an algal-growth hydrodynamics model(1).

    Science.gov (United States)

    James, Scott C; Janardhanam, Vijayasarathi; Hanson, David T

    2013-06-01

    Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. © 2013 Phycological Society of America.

  9. A prognostic model for short term adverse events in normotensive patients with pulmonary embolism.

    Science.gov (United States)

    Agterof, Mariette J; Schutgens, Roger E G; Moumli, Noureddine; Eijkemans, M J C; van der Griend, René; Tromp, Ellen A M; Biesma, Douwe H

    2011-08-01

    Risk stratification of patients with PE has gained interest in terms of the identification of patients in whom treatment on an outpatient base can be considered. Previous studies are of limited value due to their focus on adverse clinical events within several months after diagnosis of PE. We developed a prognostic model, based on easily accessible, clinical, and laboratory parameters, to predict adverse events during the first 10 days after the diagnosis of acute PE. We have analyzed the data of 210 outpatients with confirmed PE. Collected data included medical history, pulse rate, blood pressure, NT-proBNP, and D-dimer concentrations. The primary outcome was the occurrence of adverse clinical events in a 10 day follow-up period. Our final prognostic model to predict short-term adverse events consists of NT-proBNP levels, D-dimer concentrations, pulse rate, and the occurrence of active malignancy; the total score ranges from 0 to 37 points. Patients with a low score (no active malignancy, pulse rate rate, D-dimer concentrations, and NT-proBNP levels. Our prognostic model, once prospectively validated in an independent sample of patients, can be used in the early risk stratification of PE to estimate the risk of adverse events and to differentiate between candidates for in- or out- hospital treatment. Copyright © 2011 Wiley-Liss, Inc.

  10. The strong prognostic value of KELIM, a model-based parameter from CA 125 kinetics in ovarian cancer

    DEFF Research Database (Denmark)

    You, Benoit; Colomban, Olivier; Heywood, Mark;

    2013-01-01

    Unexpected results were recently reported about the poor surrogacy of Gynecologic Cancer Intergroup (GCIG) defined CA-125 response in recurrent ovarian cancer (ROC) patients. Mathematical modeling may help describe CA-125 decline dynamically and discriminate prognostic kinetic parameters....

  11. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres

    CERN Document Server

    Prakapavicius, D; Kucinskas, A; Ludwig, H -G; Freytag, B; Caffau, E; Cayrel, R

    2013-01-01

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor 3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps ...

  12. Watershed modeling tools and data for prognostic and diagnostic

    Science.gov (United States)

    Chambel-Leitao, P.; Brito, D.; Neves, R.

    2009-04-01

    When eutrophication is considered an important process to control it can be accomplished reducing nitrogen and phosphorus losses from both point and nonpoint sources and helping to assess the effectiveness of the pollution reduction strategy. HARP-NUT guidelines (Guidelines on Harmonized Quantification and Reporting Procedures for Nutrients) (Borgvang & Selvik, 2000) are presented by OSPAR as the best common quantification and reporting procedures for calculating the reduction of nutrient inputs. In 2000, OSPAR HARP-NUT guidelines on a trial basis. They were intended to serve as a tool for OSPAR Contracting Parties to report, in a harmonized manner, their different commitments, present or future, with regard to nutrients under the OSPAR Convention, in particular the "Strategy to Combat Eutrophication". HARP-NUT Guidelines (Borgvang and Selvik, 2000; Schoumans, 2003) were developed to quantify and report on the individual sources of nitrogen and phosphorus discharges/losses to surface waters (Source Orientated Approach). These results can be compared to nitrogen and phosphorus figures with the total riverine loads measured at downstream monitoring points (Load Orientated Approach), as load reconciliation. Nitrogen and phosphorus retention in river systems represents the connecting link between the "Source Orientated Approach" and the "Load Orientated Approach". Both approaches are necessary for verification purposes and both may be needed for providing the information required for the various commitments. Guidelines 2,3,4,5 are mainly concerned with the sources estimation. They present a set of simple calculations that allow the estimation of the origin of loads. Guideline 6 is a particular case where the application of a model is advised, in order to estimate the sources of nutrients from diffuse sources associated with land use/land cover. The model chosen for this was SWAT (Arnold & Fohrer, 2005) model because it is suggested in the guideline 6 and because it

  13. From Landau`s hydrodynamical model to field theory model to field theory models of multiparticle production: a tribute to Peter...

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F.

    1996-12-31

    We review the assumptions and domain of applicability of Landau`s Hydrodynamical Model. By considering two models of particle production, pair production from strong electric fields and particle production in the linear {sigma} model, we demonstrate that many of Landau`s ideas are verified in explicit field theory calculations.

  14. Photobioreactors for microalgal cultures: A Lagrangian model coupling hydrodynamics and kinetics.

    Science.gov (United States)

    Olivieri, Giuseppe; Gargiulo, Luigi; Lettieri, Paola; Mazzei, Luca; Salatino, Piero; Marzocchella, Antonio

    2015-01-01

    Closed photobioreactors have to be optimized in terms of light utilization and overall photosynthesis rate. A simple model coupling the hydrodynamics and the photosynthesis kinetics has been proposed to analyze the photosynthesis dynamics due to the continuous shuttle of microalgae between dark and lighted zones of the photobioreactor. Microalgal motion has been described according to a stochastic Lagrangian approach adopting the turbulence model suitable for the photobioreactor configuration (single vs. two-phase flows). Effects of light path, biomass concentration, turbulence level and irradiance have been reported in terms of overall photosynthesis rate. Different irradiation strategies (internal, lateral and rounding) and several photobioreactor configurations (flat, tubular, bubble column, airlift) have been investigated. Photobioreactor configurations and the operating conditions to maximize the photosynthesis rate have been pointed out. Results confirmed and explained the common experimental observation that high concentrated cultures are not photoinhibited at high irradiance level.

  15. Effect of forward looking sites on a multi-phase lattice hydrodynamic model

    Science.gov (United States)

    Redhu, Poonam; Gupta, Arvind Kumar

    2016-03-01

    A new multi-phase lattice hydrodynamic traffic flow model is proposed by considering the effect of multi-forward looking sites on a unidirectional highway. We examined the qualitative properties of proposed model through linear as well as nonlinear stability analysis. It is shown that the multi-anticipation effect can significantly enlarge the stability region on the phase diagram and exhibit three-phase traffic flow. It is also observed that the multi-forward looking sites have prominent influence on traffic flow when driver senses the relative flux of leading vehicles. Theoretical findings are verified using numerical simulation which confirms that the traffic jam is suppressed efficiently by considering the information of leading vehicles in unidirectional multi-phase traffic flow.

  16. The effect of surface roughness on thermal-elasto-hydrodynamic model of contact mechanical seals

    Science.gov (United States)

    Wen, QingFeng; Liu, Ying; Huang, WeiFeng; Suo, ShuangFu; Wang, YuMing

    2013-10-01

    In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure deformation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal deformation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 μm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.

  17. Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model

    CERN Document Server

    Farrokhpanah, Amirsaman; Mostaghimi, Javad

    2016-01-01

    Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver.

  18. Margination of white blood cells - a computational approach by a hydrodynamic phase field model

    CERN Document Server

    Marth, Wieland

    2015-01-01

    We numerically investigate margination of white blood cells and demonstrate the dependency on a number of conditions including hematocrit, the deformability of the cells and the Reynolds number. A detailed mesoscopic hydrodynamic Helfrich-type model is derived, validated and used for the simulations to provides a quantitative description of the margination of white blood cells. Previous simulation results, obtained with less detailed models, could be confirmed, e.g. the largest probability of margination of white blood cells at an intermediate range of hematocrit values and a decreasing tendency with increasing deformability. The consideration of inertia effects, which become of relevance in small vessels, also shows a dependency and leads to less pronounced margination of white blood cells with increasing Reynolds number.

  19. Numerical analysis of submarine landslides using a smoothed particle hydrodynamics depth integral model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongtao; LI Xinzhong; LIU Peng; TAO Yanqi

    2016-01-01

    Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides. Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics (SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body’s velocity, height, and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed. The findings of this study can provide a reference for disaster warnings and pipeline route selection.

  20. Tidal Hydrodynamics in the Lower Columbia River Estuary through Depth Averaged Adaptive Hydraulics Modeling

    Directory of Open Access Journals (Sweden)

    Gaurav Savant

    2014-01-01

    Full Text Available The adaptive hydraulics (AdH numerical code was applied to study tidal propagation in the Lower Columbia River (LCR estuary. The results demonstrate the readiness of this AdH model towards the further study of hydrodynamics in the LCR. The AdH model accurately replicated behavior of the tide as it propagated upstream into the LCR system. Results show that the MSf tidal component and the M4 overtidal component are generated in the middle LCR and contain a substantial amount of tidal energy. An analysis was performed to determine the causes of MSf tide amplification, and it was found that approximately 80% of the amplification occurs due to nonlinear interaction between the M2 and the S2 tidal components.

  1. Development of prognostic models for patients with traumatic brain injury: a systematic review.

    Science.gov (United States)

    Gao, Jinxi; Zheng, Zhaocong

    2015-01-01

    Outcome prediction following traumatic brain injury (TBI) is a widely investigated field of research. Several outcome prediction models have been developed for prognosis after TBI. There are two main prognostic models: International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury (IMPACT) prognosis calculator and the Corticosteroid Randomization after Significant Head Injury (CRASH) prognosis calculator. The prognosis model has three or four levels: (1) model A included age, motor GCS, and pupil reactivity; (2) model B included predictors from model A with CT characteristics; and (3) model C included predictors from model B with laboratory parameters. In consideration of the fact that interventions after admission, such as ICP management also have prognostic value for outcome predictions and may improve the models' performance, Yuan F et al developed another prediction model (model D) which includes ICP. With the development of molecular biology, a handful of brain injury biomarkers were reported that may improve the predictive power of prognostic models, including neuron-specific enolase (NSE), glial fibrillary acid protein (GFAP), S-100β protein, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), myelin basic protein (MBP), cleaved tau protein (C-tau), spectrin breakdown products (SBDPs), and ubiquitin C-terminal hydrolase-L1 (UCH-L1), and sex hormones. A total of 40 manuscripts reporting 11 biomarkers were identified in the literature. Many substances have been implicated as potential biomarkers for TBI; however, no single biomarker has shown the necessary sensitivity and specificity for predicting outcome. The limited number of publications in this field underscores the need for further investigation. Through fluid biomarker analysis, the advent of multi-analyte profiling technology has enabled substantial advances in the diagnosis and treatment of a variety of conditions. Application of this technology to create a bio

  2. Systematic Analysis of Challenge-Driven Improvements in Molecular Prognostic Models for Breast Cancer

    Science.gov (United States)

    Margolin, Adam A.; Bilal, Erhan; Huang, Erich; Norman, Thea C.; Ottestad, Lars; Mecham, Brigham H.; Sauerwine, Ben; Kellen, Michael R.; Mangravite, Lara M.; Furia, Matthew D.; Vollan, Hans Kristian Moen; Rueda, Oscar M.; Guinney, Justin; Deflaux, Nicole A.; Hoff, Bruce; Schildwachter, Xavier; Russnes, Hege G.; Park, Daehoon; Vang, Veronica O.; Pirtle, Tyler; Youseff, Lamia; Citro, Craig; Curtis, Christina; Kristensen, Vessela N.; Hellerstein, Joseph; Friend, Stephen H.; Stolovitzky, Gustavo; Aparicio, Samuel; Caldas, Carlos; Børresen-Dale, Anne-Lise

    2013-01-01

    Although molecular prognostics in breast cancer are among the most successful examples of translating genomic analysis to clinical applications, optimal approaches to breast cancer clinical risk prediction remain controversial. The Sage Bionetworks–DREAM Breast Cancer Prognosis Challenge (BCC) is a crowdsourced research study for breast cancer prognostic modeling using genome-scale data. The BCC provided a community of data analysts with a common platform for data access and blinded evaluation of model accuracy in predicting breast cancer survival on the basis of gene expression data, copy number data, and clinical covariates. This approach offered the opportunity to assess whether a crowdsourced community Challenge would generate models of breast cancer prognosis commensurate with or exceeding current best-in-class approaches. The BCC comprised multiple rounds of blinded evaluations on held-out portions of data on 1981 patients, resulting in more than 1400 models submitted as open source code. Participants then retrained their models on the full data set of 1981 samples and submitted up to five models for validation in a newly generated data set of 184 breast cancer patients. Analysis of the BCC results suggests that the best-performing modeling strategy outperformed previously reported methods in blinded evaluations; model performance was consistent across several independent evaluations; and aggregating community-developed models achieved performance on par with the best-performing individual models. PMID:23596205

  3. Introduction of prognostic rain in ECHAM5: design and single column model simulations

    Science.gov (United States)

    Posselt, R.; Lohmann, U.

    2008-06-01

    Prognostic equations for the rain mass mixing ratio and the rain drop number concentration are introduced into the large-scale cloud microphysics parameterization of the ECHAM5 general circulation model (ECHAM5-PROG). To this end, a rain flux from one level to the next with the appropriate fall speed is introduced. This maintains rain water in the atmosphere to be available for the next time step. Rain formation in ECHAM5-PROG is, therefore, less dependent on the autoconversion rate than the standard ECHAM5 but shifts the emphasis towards the accretion rates in accordance with observations. ECHAM5-PROG is tested and evaluated with Single Column Model (SCM) simulations for two cases: the marine stratocumulus study EPIC (October 2001) and the continental mid-latitude ARM Cloud IOP (shallow frontal cloud case - March 2000). In case of heavy precipitation events, the prognostic equations for rain hardly affect the amount and timing of precipitation at the surface in different SCM simulations because heavy rain depends mainly on the large-scale forcing. In case of thin, drizzling clouds (i.e., stratocumulus), surface precipitation is sensitive to the number of sub-time steps used in the prognostic rain scheme. Cloud microphysical quantities, such as cloud liquid and rain water within the atmosphere, are sensitive to the number of sub-time steps in both considered cases. This results from the decreasing autoconversion rate and increasing accretion rate.

  4. Introduction of prognostic rain in ECHAM5: design and Single Column Model simulations

    Directory of Open Access Journals (Sweden)

    R. Posselt

    2007-10-01

    Full Text Available Prognostic equations for the rain mass mixing ratio and the rain drop number concentration are introduced into the large-scale cloud microphysics parameterization of the ECHAM5 general circulation model (ECHAM5-RAIN. For this a rain flux from one level to the next with the appropriate fall speed is introduced. This maintains rain water in the atmosphere to be available for the next time step. Rain formation in ECHAM5-RAIN is, therefore, less dependent on the autoconversion rate than the standard ECHAM5 but shifts the emphasis towards the accretion rates in accordance with observations. ECHAM5-RAIN is tested and evaluated with two cases: the continental mid-latitude ARM Cloud IOP (shallow frontal cloud case – March 2000 and EPIC (a marine stratocumulus study – October 2001. The prognostic equations for rain hardly affect the amount and timing of precipitation at the surface in different Single Column Model (SCM simulations for heavy precipitating clouds because heavy rain depends mainly on the large-scale forcing. In case of thin, drizzling clouds (i.e., stratocumulus, an increase in surface precipitation is caused by more sub-time steps used in the prognostic rain scheme until convergence is reached. Cloud microphysical quantities, such as liquid and rain water, are more sensitive to the number of sub-time steps for light precipitation. This results from the decreasing autoconversion rate and increasing accretion rate.

  5. Introduction of prognostic rain in ECHAM5: design and single column model simulations

    Directory of Open Access Journals (Sweden)

    R. Posselt

    2008-06-01

    Full Text Available Prognostic equations for the rain mass mixing ratio and the rain drop number concentration are introduced into the large-scale cloud microphysics parameterization of the ECHAM5 general circulation model (ECHAM5-PROG. To this end, a rain flux from one level to the next with the appropriate fall speed is introduced. This maintains rain water in the atmosphere to be available for the next time step. Rain formation in ECHAM5-PROG is, therefore, less dependent on the autoconversion rate than the standard ECHAM5 but shifts the emphasis towards the accretion rates in accordance with observations. ECHAM5-PROG is tested and evaluated with Single Column Model (SCM simulations for two cases: the marine stratocumulus study EPIC (October 2001 and the continental mid-latitude ARM Cloud IOP (shallow frontal cloud case – March 2000. In case of heavy precipitation events, the prognostic equations for rain hardly affect the amount and timing of precipitation at the surface in different SCM simulations because heavy rain depends mainly on the large-scale forcing. In case of thin, drizzling clouds (i.e., stratocumulus, surface precipitation is sensitive to the number of sub-time steps used in the prognostic rain scheme. Cloud microphysical quantities, such as cloud liquid and rain water within the atmosphere, are sensitive to the number of sub-time steps in both considered cases. This results from the decreasing autoconversion rate and increasing accretion rate.

  6. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1. The Numerical Model

    Science.gov (United States)

    2009-09-10

    The Astrophysical Journal, 702:1553–1566, 2009 September 10 doi:10.1088/0004-637X/702/2/1553 C© 2009. The American Astronomical Society. All rights...to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas. Key words: acceleration of particles – hydrodynamics...and can be viewed as an elementary process of sequential excitation of multiple loops. Evolution on longer timescales (say, !100 s) involves multiple

  7. A high resolution hydrodynamic model system suitable for novel harmful algal bloom modelling in areas of complex coastline and topography.

    Science.gov (United States)

    Aleynik, Dmitry; Dale, Andrew C; Porter, Marie; Davidson, Keith

    2016-03-01

    Fjordic coastlines provide sheltered locations for finfish and shellfish aquaculture, and are often subject to harmful algal blooms (HABs) some of which develop offshore and are then advected to impact nearshore aquaculture. Numerical models are a potentially important tool for providing early warning of such HAB events. However, the complex topography of fjordic shelf regions is a significant challenge to modelling. This is frequently compounded by complex bathymetry and local weather patterns. Existing structured grid models do not provide the resolution needed to represent these coastlines in their wider shelf context. In a number of locations advectively transported blooms of the ichthyotoxic dinoflagellate Karenia mikimotoi are of particular concern for the finfish industry. Here were present a novel hydrodynamic model of the coastal waters to the west of Scotland that is based on unstructured finite volume methodology, providing a sufficiently high resolution hydrodynamical structure to realistically simulate the transport of particles (such as K. mikimotoi cells) within nearshore waters where aquaculture sites are sited. Model-observation comparisons reveal close correspondence of tidal elevations for major semidiurnal and diurnal tidal constituents. The thermohaline structure of the model and its current fields are also in good agreement with a number of existing observational datasets. Simulations of the transport of Lagrangian drifting buoys, along with the incorporation of an individual-based biological model, based on a bloom of K. mikimotoi, demonstrate that unstructured grid models have considerable potential for HAB prediction in Scotland and in complex topographical regions elsewhere.

  8. Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea

    NARCIS (Netherlands)

    Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis st

  9. Prognostic analysis of orthostatic intolerance using survival model in children

    Institute of Scientific and Technical Information of China (English)

    Li Yawen; Li Hongxia; Li Xueying; Li Xiaoming; Jin Hongfang

    2014-01-01

    Background Orthostatic intolerance (Ol) is a common disease at pediatric period which has a serious impact on physical and mental health of children.The purpose of this study was to investigate the effect of related factors on the prognosis of children with Ol.Methods The subjects were 170 children with Ol,including 71 males (41.8%) and 99 females (58.2%) with age from 6 to 17 (12.0±2.6) years.The effect of related factors on the prognosis of children was studied by using univariate analysis.Then,the impact of children's age,symptom score,duration,disease subtype,and treatment on patient's prognosis was studied via analysis of COX proportional conversion model.Results Among 170 cases,48 were diagnosed with vasovagal syncope,including 28 cases of vasoinhibitory type,16 cases of mixed type,and 4 cases of cardioinhibitory type; 115 cases were diagnosed with postural tachycardia syndrome and 7 cases with orthostatic hypotension.By using univariate analysis of Cox regression,the results showed that symptom score had a marked impact on the time of symptoms improvement of children after taking medication (P <0.05),while other univariates had no impact (P >0.05).Multivariate analysis using Cox proportional hazards regression model showed that the symptom score at diagnosis had a significant effect on holding time of symptoms improvement of children after taking medication (P <0.05).Kaplan-Meier curve showed that symptom-free survival was higher in children with symptom score equal to 1 than children with symptom score equal to or greater than 2 during follow-up (P <0.05).Conclusion Symptom score is an important factor affecting the time of symptom improvement after treatment for children with Ol.

  10. hydrological and hydrodynamic modeling on la plata river basin using mgb-iph

    Science.gov (United States)

    Pontes, Paulo; Collischonn, Walter; Paiva, Rodrigo; Fan, Fernando

    2015-04-01

    In this paper, we present an improving of Large Scale Hydrological Model (MGB-IPH). The improving consists in implementing a new hydrodynamic model (Inertial) and considering of flooded areas. The Inertial model, which is a simplification of Saint-Venant equations, replaced the Muskingum-Cunge flow routing model. The Inertial equation allows represent the flow in low slope rivers, the backwater, and the tide effects. We tested the model on La Plata River Basin (3,100,000 km²) which is a complex hydrological system located on South America. The aim of this paper is assess the MGB-IPH with the Inertial model and identify regions where is required new modification on model to represent others hydrological process. Furthermore, we developed an algorithm to extract of the Digital Elevation Model the required information about unit catchment, river length and river slope, flooded areas and cross section information. For this, we used available global data, as DEM of Shuttle Radar Topography Mission and HYDROSHEDS flow direction map. We used climate data available on Climate Research Unit and satellite precipitation (MERGE). The results show that this new version of MGB-IPH can reproduce the flow on La Plata river Basin.

  11. A hydrodynamic model of nearshore waves and wave-induced currents

    Directory of Open Access Journals (Sweden)

    Ahmed Khaled Seif

    2011-09-01

    Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

  12. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model

    Science.gov (United States)

    Panda, Rabindra K.; Pramanik, Niranjan; Bala, Biplab

    2010-06-01

    Simulation of water levels at different sections of a river using physically based flood routing models is quite cumbersome, because it requires many types of data such as hydrologic time series, river geometry, hydraulics of existing control structures and channel roughness coefficients. Normally in developing countries like India it is not easy to collect these data because of poor monitoring and record keeping. Therefore, an artificial neural network (ANN) technique is used as an effective alternative in hydrologic simulation studies. The present study aims at comparing the performance of the ANN technique with a widely used physically based hydrodynamic model in the MIKE 11 environment. The MIKE 11 hydrodynamic model was calibrated and validated for the monsoon periods (June-September) of the years 2006 and 2001, respectively. Feed forward neural network architecture with Levenberg-Marquardt (LM) back propagation training algorithm was used to train the neural network model using hourly water level data of the period June-September 2006. The trained ANN model was tested using data for the same period of the year 2001. Simulated water levels by the MIKE 11HD were compared with the corresponding water levels predicted by the ANN model. The results obtained from the ANN model were found to be much better than that of the MIKE 11HD results as indicated by the values of the goodness of fit indices used in the study. The Nash-Sutcliffe index ( E) and root mean square error (RMSE) obtained in case of the ANN model were found to be 0.8419 and 0.8939 m, respectively, during model testing, whereas in case of MIKE 11HD, the values of E and RMSE were found to be 0.7836 and 1.00 m, respectively, during model validation. The difference between the observed and simulated peak water levels obtained from the ANN model was found to be much lower than that of MIKE 11HD. The study reveals that the use of Levenberg-Marquardt algorithm with eight hidden neurons in the hidden layer

  13. Reduced nonlinear prognostic model construction from high-dimensional data

    Science.gov (United States)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2017-04-01

    Construction of a data-driven model of evolution operator using universal approximating functions can only be statistically justified when the dimension of its phase space is small enough, especially in the case of short time series. At the same time in many applications real-measured data is high-dimensional, e.g. it is space-distributed and multivariate in climate science. Therefore it is necessary to use efficient dimensionality reduction methods which are also able to capture key dynamical properties of the system from observed data. To address this problem we present a Bayesian approach to an evolution operator construction which incorporates two key reduction steps. First, the data is decomposed into a set of certain empirical modes, such as standard empirical orthogonal functions or recently suggested nonlinear dynamical modes (NDMs) [1], and the reduced space of corresponding principal components (PCs) is obtained. Then, the model of evolution operator for PCs is constructed which maps a number of states in the past to the current state. The second step is to reduce this time-extended space in the past using appropriate decomposition methods. Such a reduction allows us to capture only the most significant spatio-temporal couplings. The functional form of the evolution operator includes separately linear, nonlinear (based on artificial neural networks) and stochastic terms. Explicit separation of the linear term from the nonlinear one allows us to more easily interpret degree of nonlinearity as well as to deal better with smooth PCs which can naturally occur in the decompositions like NDM, as they provide a time scale separation. Results of application of the proposed method to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical

  14. A Vertical Two-Dimensional Model to Simulate Tidal Hydrodynamics in A Branched Estuary

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-Cheng; WU Chung-Hsing

    2005-01-01

    A vertical (laterally averaged) two-dimensional hydrodynamic model is developed for tides, tidal current, and salinity in a branched estuarine system. The governing equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. An explicit scheme is employed to solve the continuity equations. The momentum and mass balance equations are solved implicitly in the Cartesian coordinate system. The tributaries are governed by the same dynamic equations. A control volume at the junctions is designed to conserve mass and volume transport in the finite difference schemes, based on the physical principle of continuum medium of fluid. Predictions by the developed model are compared with the analytic solutions of steady wind-driven circulatory flow and tidal flow. The model results for the velocities and water surface elevations coincide with analytic results. The model is then applied to the Tanshui River estuarine system. Detailed model calibration and verification have been conducted with measured water surface elevations,tidal current, and salinity distributions. The overall performance of the model is in qualitative agreement with the available field data. The calibrated and verified numerical model has been used to quantify the tidal prism and flushing rate in the Tanshui River-Tahan Stream, Hsintien Stream, and Keelung River.

  15. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-07-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  16. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-10-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  17. Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models

    Science.gov (United States)

    Guo, Quan; Gonzalez-Perez, Violeta; Guo, Qi; Schaller, Matthieu; Furlong, Michelle; Bower, Richard G.; Cole, Shaun; Crain, Robert A.; Frenk, Carlos S.; Helly, John C.; Lacey, Cedric G.; Lagos, Claudia del P.; Mitchell, Peter; Schaye, Joop; Theuns, Tom

    2016-10-01

    We compare global predictions from the EAGLE hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, L-GALAXIES and GALFORM. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the EAGLE dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M* EAGLE and L-GALAXIES there are more central passive galaxies with M* EAGLE is a factor of ≈1.5 steeper than for the two SA models. The median sizes for galaxies with M* > 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass-size relation in EAGLE is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass-metallicity relation.

  18. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  19. The Evolution-Dominated Hydrodynamic Model and the Pseudorapidity Distributions in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Z. J. Jiang

    2014-01-01

    Full Text Available By taking into account the effects of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions in the context of evolution-dominated hydrodynamic model. The leading particles are supposed to have a Gaussian rapidity distribution normalized to the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions at sNN=200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at sNN=2.76 TeV.

  20. The evolution-dominated hydrodynamic model and the pseudorapidity distributions in high energy physics

    CERN Document Server

    Jiang, Z J; Wang, J; Ma, K

    2014-01-01

    By taking into account the effects of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions in the context of evolution-dominated hydrodynamic model. The leading particles are supposed to have a Gaussian rapidity distribution normalized to the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions at sqrt(s_NN) =200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at sqrt(s_NN) =2.76 TeV.

  1. Modeling of fluid-induced vibrations and identification of hydrodynamic forces on flow control valves

    Institute of Scientific and Technical Information of China (English)

    Samad Mehrzad; Ilgar Javanshir; Ahmad Rahbar Ranji; Seyyed Hadi Taheri

    2015-01-01

    Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.

  2. Combining Envisat and CryoSat-2 altimetry to inform hydrodynamic models

    DEFF Research Database (Denmark)

    Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne

    Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Many studies have used satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason......, or synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL...... fitted to the CryoSat-2 data: In a first step, the average simulated water levels along the river were calibrated to the CryoSat-2 data by adapting the hydrodynamic cross section datums. Subsequently the simulated water level amplitudes were fitted to those obtained from Envisat virtual station time...

  3. Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin

    Science.gov (United States)

    Yilmaz, M. Tugrul; Anderson, Martha C.; Zaitchik, Ben; Hain, Chris R.; Crow, Wade T.; Ozdogan, Mutlu; Chun, Jong Ahn; Evans, Jason

    2014-01-01

    Regional evapotranspiration (ET) can be estimated using diagnostic remote sensing models, generally based on principles of energy balance closure, or with spatially distributed prognostic models that simultaneously balance both energy and water budgets over landscapes using predictive equations for land surface temperature and moisture states. Each modeling approach has complementary advantages and disadvantages, and in combination they can be used to obtain more accurate ET estimates over a variety of land and climate conditions, particularly for areas with limited ground truth data. In this study, energy and water flux estimates from diagnostic Atmosphere-Land Exchange (ALEXI) and prognostic Noah land surface models are compared over the Nile River basin between 2007 and 2011. A second remote sensing data set, generated with Penman-Monteith approach as implemented in the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 ET product, is also included as a comparative technique. In general, spatial and temporal distributions of flux estimates from ALEXI and Noah are similar in regions where the climate is temperate and local rainfall is the primary source of water available for ET. However, the diagnostic ALEXI model is better able to retrieve ET signals not directly coupled with the local precipitation rates, for example, over irrigated agricultural areas or regions influenced by shallow water tables. These hydrologic features are not well represented by either Noah or MOD16. Evaluation of consistency between diagnostic and prognostic model estimates can provide useful information about relative product skill, particularly over regions where ground data are limited or nonexistent as in the Nile basin.

  4. Modeling hydrodynamic flows in plasma fluxes when depositing metal layer on the surface of catalyst converters

    Science.gov (United States)

    Chinakhov, D. A.; Sarychev, V. D.; Granovsky, A. Yu; Solodsky, S. A.; Nevsky, S. A.; Konovalov, S. V.

    2017-01-01

    Air pollution with harmful substances resulting from combustion of liquid hydrocarbons and emitted into atmosphere became one of the global environmental problems in the late 20th century. The systems of neutralization capable to reduce toxicity of exhaust gases several times are very important for making environmentally safer combustion products discharged into the atmosphere. As revealed in the literature review, one of the most promising purification procedures is neutralization of burnt gases by catalyst converter systems. The principal working element in the converter is a catalytic layer of metals deposited on ceramics, with thickness 20-60 micron and a well-developed micro-relief. The paper presents a thoroughly substantiated new procedure of deposing a nano-scale surface layer of metal-catalyst particles, furthering the utilization of catalysts on a new level. The paper provides description of mathematical models and computational researches into plasma fluxes under high-frequency impulse input delivered to electrode material, explorations of developing Kelvin-Helmholtz, Marangoni and magnetic hydrodynamic instabilities on the surface of liquid electrode metal droplet in the nano-scale range of wavelengths to obtain a flow of nano-meter particles of cathode material. The authors have outlined a physical and mathematical model of magnetic and hydrodynamic instability for the case of melt flowing on the boundary with the molten metal with the purpose to predict the interphase shape and mutual effect of formed plasma jet and liquid metal droplet on the electrode in the nano-scale range of wavelengths at high-frequency impact on the boundary “electrode-liquid layer”.

  5. Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas

    Science.gov (United States)

    Mancini, Roberto

    2017-06-01

    In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  6. Using Enthalpy as a Prognostic Variable in Atmospheric Modelling with Variable Composition

    Science.gov (United States)

    2016-04-14

    tories, and the equation of state p = ∑ i pi = ∑ i ρiRiT = ρRT . (4) Here Ri = kB/mi are individual gas constants for each species and kB is the...relation between the mass, pressure, and temperature fields via the equation of state (4). The use of virtual temperature in Equation (11) implies that...internal energy equation as a convenient prognostic thermodynamic variable for atmospheric modelling with variable composition, including models of

  7. The dynamic coupling of a third-generation wave model and a 3D hydrodynamic model through boundary layers

    Science.gov (United States)

    Zhang, M. Y.; Li, Y. S.

    1997-08-01

    A third-generation wind wave model based on the energy balance equation taking into account the effects of time-varying currents and coupled dynamically with a semi-implicit three-dimensional hydrodynamic model incorporating the influences of time- and space-varying vertical eddy viscosity, bottom topography and wave-current interactions is presented in this paper. The wave model is synchronously coupled with the three-dimensional hydrodynamic model through the surface atmospheric turbulent boundary layer and the bottom boundary layer. The theory of Janssen (1991) (in Journal of Physical Oceanography21, 1631-1642) is used to incorporate the effects of waves on the surface boundary layer, while the theory of Grant and Maddsen (1979) [in Journal of Geophysical Research (Oceans)84, 1797-1808], which was used by Signell et al. (1990) (in Journal of Geophysical Research95, 9671-9678) on the bottom boundary layer for constant waves, is modified for the inclusion of time-varying waves. The mutual influences between waves and currents are investigated through an idealized continental shelf case and hindcastings of storm events in the sea area adjacent to Hong Kong in the northern South China Sea. Calculations are compared with other computed results and observations. Calculations show that the wave-dependent surface stress incorporated in the three-dimensional hydrodynamic model has significant impact on water surface velocities and surface elevations (over 10% higher). The inclusion of wave-dependent bottom stress also shows some effects; however, in the presence of the wave-dependent surface stress, its effect on surge levels becomes negligible. The effect of currents on waves amounts to the reduction of the significant wave height by about 8% and less for wave mean periods. However, the inclusion of the wave-dependent bottom stress in the three-dimensional hydrodynamic model has little effect on wave characteristics whether or not the wave-dependent surface stress is

  8. Mathematical modeling of the thermal and hydrodynamic structure of the cooling reservoir

    Science.gov (United States)

    Saminskiy, G.; Debolskaya, E.

    2012-04-01

    is used as a cooling reservoir for Konakovskaya power plant. It dumps the heated water in the Moshkovichevsky bay. Thermal and hydrodynamic structure of the Moshkovichevsky Bay is particular interest as the object of direct influence of heated water discharge. To study the effect of thermal discharge into the Ivankovskoe reservoir the model of the Moshkovichevsky Bay was built, which is subject to the largest thermal pollution. Step of the calculation grid is 25 meters. For further verification of the model field investigations were conducted in August-September 2011. The modeling results satisfactorily describe the thermal and hydrodynamic structure of the Moshkovichevsky Bay.

  9. Hydrodynamics of the plasma confined inside coronal loops: flare and microflare models

    Science.gov (United States)

    Betta, R.; Peres, G.; Reale, F.; Serio, S.

    The plasma contained in coronal loops behaves macroscopically like a fluid and its dynamics and evolution may be described by hydrodynamics provided mass, momentum and energy transport occurs only along magnetic field lines. In fact, coronal loops are very often observed not to change their geometry during a flare, and this suggests that the magnetic field structure may basically act to confine the plasma while chromospheric plasma evaporation and temperature increase cause the increase in brightness. In other words, though the source of the energy release in loops may be of magnetic origin, the subsequent loops response may be adequately described by hydrodynamics in those instances in which the global magnetic field does not change. We have developed such a hydrodynamic model (Peres et al. 1982), which takes into account the main physical effects such as gravity, viscosity, ionization, radiative losses and thermal conduction and which is capable of giving a correct description of the steep and dynamic transition region between the chromosphere and the corona (Betta et al. 1997). Here we show how a plasma confined inside coronal loops responds when it is subject to impulsive heating. We simulate flares by creating a sudden energy release in a localized position along the loop (although the plasma dynamics does not depend crucially on the position of energy release). The initial configuration consists of a loop in hydrostatic equilibrium and steady-state energy balance (i.e.,in which there is an average heating which balances radiation losses and thermal conduction). The hydrodynamic calculations show the formation of an evaporation front propagating from the chromosphere to the corona, while the temperature increases in the loop from the top towards the footpoints anchored in the photosphere and the transition region moves progressively downwards. When the heating is switched off the plasma cools slowly during the decay phase of the flare until a thermal

  10. Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.

    Science.gov (United States)

    Dickenson, Joshua A; Sansalone, John J

    2009-11-01

    Modeling the separation of dilute particulate matter (PM) has been a topic of interest since the introduction of unit operations for clarification of rainfall-runoff. One consistent yet controversial issue is the representation of PM and PM separation mechanisms for treatment. While Newton's Law and surface overflow rate were utilized, many historical models represented PM as a lumped gravimetric index largely out of economy and lack of particle analysis methods. As a result such models did not provide information about particle fate in or through a unit operation. In this study, PM discrete phase modeling (DPM) and computational fluid dynamics (CFD) are applied to model PM fate as a function of particle size and flow rate in two common types of hydrodynamic separator (HS) units. The study examines the discretization requirements (as a discretization number, DN) and errors for particle size distributions (PSDs) that range from the common heterodisperse to a monodisperse PSD. PSDs are categorized based on granulometric indices. Results focus on ensuring modeling accuracy while examining the role of size dispersivity and overall PM fineness on DN requirements. The fate of common heterodisperse PSDs is accurately predicted for a DN of 16, whereas a single particle size index, commonly the d(50m), is limited to monodisperse PSDs in order to achieve similar accuracy.

  11. Investigation of the hydrodynamic model test of forced rolling for a barge using PIV

    Directory of Open Access Journals (Sweden)

    WANG Xiaoqiang

    2017-03-01

    Full Text Available In order to study the physical details of viscous flow in ship roll motions and improve the accuracy of ship roll damping numerical simulation, the application of the Particle Image Velocimetry (PIV technique is investigated in model tests of forced ship rolling in calm water. The hydrodynamic force and flow field at the bilge region are simultaneously measured for barges at different amplitudes and frequencies in which the self-made forced rolling facility was used. In the model test, the viscous flow variation with the time around the bilge region was studied during ship rolling motion. The changes in ship roll damping coefficients with the rolling amplitude and period were also investigated. A comparison of the model test results with the Computational Fluid Dynamics(CFDresults shows that the numerical ship roll damping coefficients agree well with the model test results, while the differences in the local flow details exist between the CFD results and model test results. Further research into the model test technique and CFD application is required.

  12. Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models.

    Science.gov (United States)

    Witt, William C; Wen, Li; Lauder, George V

    2015-10-01

    One of the most-studied unsteady locomotor behaviors exhibited by fishes is the c-start escape response. Although the kinematics of these responses have been studied extensively and two well-defined kinematic stages have been documented, only a few studies have focused on hydrodynamic patterns generated by fishes executing escape behaviors. Previous work has shown that escape responses by bluegill sunfish generate three distinct vortex rings, each with central orthogonal jet flows, and here we extend this conclusion to two other species: stickleback and mosquitofish. Jet #1 is formed by the tail during Stage 1, and moves in the same direction as Stage-2 movement of the fish, thereby reducing final escape-velocity but also rotating the fish. Jet #2, in contrast, moves approximately opposite to the final direction of the fish's motion and contains the bulk of the total fluid-momentum powering the escape response. Jet #3 forms during Stage 2 in the mid-body region and moves in a direction approximately perpendicular to jets 1 and 2, across the direction of movement of the body. In this study, we used a mechanical controller to impulsively move passively flexible plastic panels of three different stiffnesses in heave, pitch, and heave + pitch motions to study the effects of stiffness on unsteady hydrodynamics of escape. We were able to produce kinematics very similar to those of fish c-starts and also to reproduce the 3-jet hydrodynamic pattern of the c-start using a panel of medium flexural stiffness and the combined heave + pitch motion. This medium-stiffness panel matched the measured stiffness of the near-tail region of fish bodies. This motion also produced positive power when the panel straightened during stage 2 of the escape response. More flexible and stiffer panels resulted in non-biological kinematics and patterns of flow for all motions. The use of simple flexible models with a mechanical controller and program of fish-like motion is a promising approach

  13. Radiative hydrodynamic modelling and observations of the X-class solar flare on 2011 March 9

    CERN Document Server

    Kennedy, Michael B; Allred, Joel C; Mathioudakis, Mihalis; Keenan, Francis P

    2015-01-01

    We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 seconds, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosi...

  14. Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models

    CERN Document Server

    Guo, Quan; Guo, Qi; Schaller, Matthieu; Furlong, Michelle; Bower, Richard G; Cole, Shaun; Crain, Robert A; Frenk, Carlos S; Helly, John C; Lacey, Cedric G; Lagos, Claudia del P; Mitchell, Peter; Schaye, Joop; Theuns, Tom

    2015-01-01

    We compare global predictions from the EAGLE hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, L-GALAXIES and GALFORM. All three models include the key physical processes considered to be essential for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at $z\\approx 0$. The two SA models have been applied to merger trees constructed from the EAGLE dark matter only simulation. GALFORM has been run with two prescriptions for the ram pressure stripping of hot gas from satellites: instantaneous or gradual stripping. We find that at $z\\leq 2$, both the galaxy stellar mass functions for stellar masses $M_{*} 10^{9.5} {\\rm M}_{\\odot}$ differ in some instances by an order of magnitude, while the stellar mass-size relation in EAGLE is a factor of $\\approx 2$ tighter than for the two SA models. Our results suggest the need for a revision of the galactic wind treatment in SA models and of the effect that the baryonic self-grav...

  15. The clustering of baryonic matter. II: halo model and hydrodynamic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fedeli, C. [INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy); Semboloni, E.; Velliscig, M.; Daalen, M. Van; Schaye, J.; Hoekstra, H., E-mail: cosimo.fedeli@oabo.inaf.it, E-mail: sembolon@strw.leidenuniv.nl, E-mail: velliscig@strw.leidenuniv.nl, E-mail: daalen@strw.leidenuniv.nl, E-mail: schaye@strw.leidenuniv.nl, E-mail: hoekstra@strw.leidenuniv.nl [Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden (Netherlands)

    2014-08-01

    We recently developed a generalization of the halo model in order to describe the spatial clustering properties of each mass component in the Universe, including hot gas and stars. In this work we discuss the complementarity of the model with respect to a set of cosmological simulations including hydrodynamics of different kinds. We find that the mass fractions and density profiles measured in the simulations do not always succeed in reproducing the simulated matter power spectra, the reason being that the latter encode information from a much larger range in masses than that accessible to individually resolved structures. In other words, this halo model allows one to extract information on the growth of structures from the spatial clustering of matter, that is complementary with the information coming from the study of individual objects. We also find a number of directions for improvement of the present implementation of the model, depending on the specific application one has in mind. The most relevant one is the necessity for a scale dependence of the bias of the diffuse gas component, which will be interesting to test with future detections of the Warm-Hot Intergalactic Medium. This investigation confirms the possibility to gain information on the physics of galaxy and cluster formation by studying the clustering of mass, and our next work will consist of applying the halo model to use future high-precision cosmic shear surveys to this end.

  16. Modeling laser produced plasmas with smoothed particle hydrodynamics for next generation advanced light sources

    Science.gov (United States)

    Holladay, Robert; Griffith, Alec; Murillo, Michael S.

    2016-10-01

    A computational model has been developed to study the evolution of a plasma generated by next-generation advanced light sources such as SLAC's LCLS and LANL's proposed MaRIE. Smoothed Particle Hydrodynamics (SPH) is used to model the plasma evolution because of the ease with which it handles the open boundary conditions and large deformations associated with these experiments. Our work extends the basic SPH method by utilizing a two-fluid model of an electron-ion plasma that also incorporates time dependent ionization and recombination by allowing the SPH fluid particles to have an evolving mass based on the mean ionization state of the plasma. Additionally, inter-species heating, thermal conduction, and electric fields are also accounted for. The effects of various initial conditions and model parameters will be presented, with the goal of using this framework to develop a model that can be used in the design and interpretation of future experiments. This work was supported by the Los Alamos National Laboratory Computational Physics Workshop.

  17. Brown Dwarf Model Atmospheres Based on Multi-Dimensional Radiation Hydrodynamics

    Science.gov (United States)

    Allard, France; Freytag, Bernd

    2010-11-01

    The atmospheres of Brown Dwarfs (BDs) are the site of molecular opacities and cloud formation, and control their cooling rate, radius and brightness evolution. Brown dwarfs evolve from stellar-like properties (magnetic activity, spots, flares, mass loss) to planet-like properties (electron degeneracy of the interior, cloud formation, dynamical molecular transport) while retaining, due to their fully convective interior, larger rotational velocities (≤ 30 km/s i.e. P objects. While the pure gas-phase based NextGen model atmospheres (Allard et al. 1997, Hauschildt et al. 1999) have allowed the understanding of the several populations of Very Low Mass Stars (VLMs), the AMES-Dusty models (Allard et al. 2001) based on equilibrium chemistry have reproduced some near-IR photometric properties of M and L-type brown dwarfs, and played a key role in the determination of the mass of brown dwarfs and Planetary Mass Objects (PMOs) in the eld and in young stellar clusters. In this paper, we present a new model atmosphere grid for VLMs, BDs, PMOs named BT-Settl, which includes a cloud model and dynamical molecular transport based on mixing information from 2D Radiation Hydrodynamic (RHD) simulations (Freytag et al. 2009). We also present the status of our 3D RHD simulations including rotation (Coriolis forces) of a cube on the surface of a brown dwarf. The BT-Settl model atmosphere grid will be available shortly via the Phoenix web simulator (http://phoenix.ens-lyon.fr/simulator/).

  18. 3D Gray Radiative Properties of a Radiation Hydrodynamic Model of a YSO Accretion Shock

    Science.gov (United States)

    Ibgui, L.; de Sá, L.; Stehlé, C.; Chièze, J.-P.; Orlando, S.; Hubeny, I.; Lanz, T.; Matsakos, T.; González, M.; Bonito, R.

    2014-09-01

    We present preliminary results of radiative properties of a 1D gray radiation hydrodynamic (RHD) model of an accretion shock on a young stellar object (YSO). This model takes into account the transition between the collisional equilibrium regime (local thermodynamic equilibrium, LTE), and the coronal equilibrium regime. Based on the 1D planar structure, we built a 3D cylindrical one. Most notably, the post-shock region obtained in our case is far less extended (by a factor of 10 000) than the typical one obtained with models that assume gray optically thin radiative losses. Moreover, we find that the column is optically thin in its longitudinal dimension, and in the transverse dimension, except over an extremely narrow region (≲ 700 m). Consequently, still under the gray assumption, the photons emitted by the hot slab can propagate through the column and escape freely in all directions, including towards the chromosphere. The radiation flux has therefore components that are perpendicular to the accretion column, which demonstrates that a multidimensional (2D or 3D) radiative model is necessary for such a cylindrical structure. This study needs to be taken forward and expanded, by improving the radiative treatment of the RHD model, through relaxation of both the gray and the LTE approximations for the calculation of opacities, in order to clarify the structure of the post-shock region, which is a major source of emission probed by observations.

  19. Development and application of a hydrodynamic and water quality model for riverine floodplain environments

    Science.gov (United States)

    Andrews, S. W.; Schladow, S. G.

    2007-12-01

    A two-dimensional, depth-averaged hydrodynamic and water quality model was developed to better understand the circulation, mixing, and water quality processes taking place during riverine floodplain inundation and to aid in the design of effective ecosystem restoration plans. The model utilizes several computational methods designed to accurately compute flow and transport in the contrasting river channel and floodplain environments. Model performance was tested using benchmark simulations, and the model was then applied to a restored floodplain on the lower Cosumnes River, CA, USA to examine the distribution of hydraulic residence times and implications for phytoplankton exports to the downstream Sacramento-San Joaquin Delta. Average residence times were found to be highly spatially and temporally variable and correlated with observed phytoplankton concentrations. Results from hypothetical management scenarios indicated that if the floodplain were allowed to drain faster there would be no significant effect on phytoplankton exports. The model is currently being applied to assess the potential for floodplain remediation on the Upper Truckee River, CA to reduce loadings of nitrogen, phosphorus, and suspended sediment to Lake Tahoe, CA-NV, USA.

  20. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  1. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  2. 3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries

    CERN Document Server

    Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

    2014-01-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

  3. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  4. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    Directory of Open Access Journals (Sweden)

    G. Bruni

    2014-06-01

    Full Text Available Cities are increasingly vulnerable to floods generated by intense rainfall, because of their high degree of imperviousness, implementation of infrastructures, and changes in precipitation patterns due to climate change. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction. In this paper, a detailed study of the sensitivity of urban hydrological response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar for four rainstorms were used as input into a detailed hydrodynamic sewer model for an urban catchment in Rotterdam, the Netherlands. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size, catchment sampling number (rainfall resolution vs. catchment size, runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively. Results show catchment smearing effect for rainfall resolution approaching half the catchment size, i.e. for catchments sampling numbers greater than 0.5 averaged rainfall volumes decrease about 20%. Moreover, deviations in maximum water depths, form 10 to 30% depending on the storm, occur for rainfall resolution close to storm size, describing storm smearing effect due to rainfall coarsening. Model results also show the sensitivity of modelled runoff peaks and maximum water depths to the resolution of the runoff areas and sewer density respectively. Sensitivity to temporal resolution of rainfall input seems low compared to spatial resolution, for the storms analysed in this study. Findings are in agreement with previous studies on natural catchments

  5. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Science.gov (United States)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  6. Hydrodynamic modelling and characterisation of a shallow fluvial lake: a study on the Superior Lake of Mantua

    Directory of Open Access Journals (Sweden)

    Andrea Fenocchi

    2016-04-01

    Full Text Available This paper presents a numerical modelling framework developed to simulate circulations and to generally characterise the hydrodynamics of the Superior Lake of Mantua, a shallow fluvial lake in Northern Italy. Such eutrophied basin is characterised by low winds, reduced discharges during the summer and by the presence of large lotus flower (Nelumbo nucifera meadows, all contributing to water stagnation. A hydrodynamic numerical model was built to understand how physical drivers shape basic circulation dynamics, selecting appropriate methodologies for the lake. These include a 3D code to reproduce the interaction between wind and through-flowing current, a fetch-dependent wind stress model, a porous media approach for canopy flow resistance and the consideration of wave-current interaction. The model allowed to estimate the circulation modes and water residence time distributions under identified typical ordinary, storm and drought conditions, the hydrodynamic influence of the newly-opened secondary outlet of the lake, the surface wave parameters, their influence on circulations and the bottom stress they originate, and the adaptation time scales of circulations to storm events. Some probable effects of the obtained hydrodynamic characteristics of the Superior Lake of Mantua on its biochemical processes are also introduced.

  7. Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events.

    Science.gov (United States)

    Eregno, Fasil Ejigu; Tryland, Ingun; Tjomsland, Torulv; Myrmel, Mette; Robertson, Lucy; Heistad, Arve

    2016-04-01

    This study investigated the public health risk from exposure to infectious microorganisms at Sandvika recreational beaches, Norway and dose-response relationships by combining hydrodynamic modelling with Quantitative Microbial Risk Assessment (QMRA). Meteorological and hydrological data were collected to produce a calibrated hydrodynamic model using Escherichia coli as an indicator of faecal contamination. Based on average concentrations of reference pathogens (norovirus, Campylobacter, Salmonella, Giardia and Cryptosporidium) relative to E. coli in Norwegian sewage from previous studies, the hydrodynamic model was used for simulating the concentrations of pathogens at the local beaches during and after a heavy rainfall event, using three different decay rates. The simulated concentrations were used as input for QMRA and the public health risk was estimated as probability of infection from a single exposure of bathers during the three consecutive days after the rainfall event. The level of risk on the first day after the rainfall event was acceptable for the bacterial and parasitic reference pathogens, but high for the viral reference pathogen at all beaches, and severe at Kalvøya-small and Kalvøya-big beaches, supporting the advice of avoiding swimming in the day(s) after heavy rainfall. The study demonstrates the potential of combining discharge-based hydrodynamic modelling with QMRA in the context of bathing water as a tool to evaluate public health risk and support beach management decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Gas cooling in semi-analytic models and smoothed particle hydrodynamics simulations: are results consistent?

    Science.gov (United States)

    Saro, A.; De Lucia, G.; Borgani, S.; Dolag, K.

    2010-08-01

    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical smoothed particle hydrodynamics (SPH) simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. This simplified comparison is thus not meant to be compared with observational data, but is aimed at understanding the level of agreement, at the stripped-down level considered, between two techniques that are widely used to model galaxy formation in a cosmological framework and which present complementary advantages and disadvantages. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: (i) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; (ii) while all stars associated with the BCG were formed in its progenitors in the SAM used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; (iii) SPH satellites can lose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the SAM used in this paper; (iv) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is

  9. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    Science.gov (United States)

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  10. Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models

    CERN Document Server

    Tortora, C; D'Ercole, A; Napolitano, N R; Matteucci, F

    2013-01-01

    We analyze the evolution of colour gradients predicted by the hydrodynamical models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and eps_SF, i.e. the normalization of SF rate. From the comparison with high redshift data, a full agreement with optical rest-frame observations at z < 1 is found, for models with low eps_SF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high eps_SF systems with the shallower colour gradients observed at lower z we suggest intervention of 1-2 dry mergers. We suggest that future studies should explore the impact of wet galaxy mergings...

  11. Colour gradients of high-redshift early-type galaxies from hydrodynamical monolithic models

    Science.gov (United States)

    Tortora, C.; Pipino, A.; D'Ercole, A.; Napolitano, N. R.; Matteucci, F.

    2013-10-01

    We analyse the evolution of colour gradients predicted by the hydrodynamical models of early-type galaxies (ETGs) in Pipino et al., which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and ɛSF, i.e. the normalization of SF rate. From the comparison with high-redshift data, a full agreement with optical rest-frame observations at z ≲ 1 is found, for models with low ɛSF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high ɛSF systems with the shallower colour gradients observed at lower z we suggest intervention of one to two dry mergers. We suggest that future studies should explore the impact of wet galaxy merging, interactions with environment, dust content and a variation of the initial mass function from the galactic centres to the peripheries.

  12. Modelling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies

    CERN Document Server

    Bournaud, F; Weiss, A; Renaud, F; Mastropietro, C; Teyssier, R

    2014-01-01

    We model the intensity of emission lines from the CO molecule, based on hydrodynamic simulations of spirals, mergers, and high-redshift galaxies with very high resolutions (3pc and 10^3 Msun) and detailed models for the phase-space structure of the interstellar gas including shock heating, stellar feedback processes and galactic winds. The simulations are analyzed with a Large Velocity Gradient (LVG) model to compute the local emission in various molecular lines in each resolution element, radiation transfer and opacity effects, and the intensity emerging from galaxies, to generate synthetic spectra for various transitions of the CO molecule. This model reproduces the known properties of CO spectra and CO-to-H2 conversion factors in nearby spirals and starbursting major mergers. The high excitation of CO lines in mergers is dominated by an excess of high-density gas, and the high turbulent velocities and compression that create this dense gas excess result in broad linewidths and low CO intensity-to-H2 mass r...

  13. An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area

    Science.gov (United States)

    Alias, N. A.; Mohd Sidek, L.

    2016-03-01

    The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.

  14. Validation of a global hydrodynamic flood inundation model against high resolution observation data of urban flooding

    Science.gov (United States)

    Bates, Paul; Sampson, Chris; Smith, Andy; Neal, Jeff

    2015-04-01

    In this work we present further validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model that uses highly efficient numerical algorithms (LISFLOOD-FP) to simulate flood inundation at ~1km resolution globally and then use downscaling algorithms to determine flood extent and water depth at 3 seconds of arc spatial resolution (~90m at the equator). The global model has ~150 million cells and requires ~180 hours of CPU time for a 10 year simulation period. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. This method has already been show to compare well to return period flood hazard maps derived from models built with high resolution and accuracy local data (Sampson et al., submitted), yet the output from the global flood model has not yet been compared to real flood observations. Whilst the spatial resolution of the global model is high given the size of the model domain, ~1km resolution is still coarse compared to the models typically used to simulate urban flooding and the data typically used to validate these (~25m or less). Comparison of the global model to real-world observations or urban flooding therefore represents an exceptionally stringent test of model skill. In this paper we therefore

  15. Using a Hydrodynamic Lake Model to Predict the Impact of Avalanche Events at Lake Palcacocha, Peru

    Science.gov (United States)

    Chisolm, R. E.; Somos-Valenzuela, M. A.; McKinney, D. C.; Hodges, B. R.

    2013-12-01

    Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. Many of the processes influencing GLOF risk are still poorly understood. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has posed a threat to citizens living in the watershed below, including the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level with a tunnel and reinforced dyke, but the lake has since grown to the point where the lake is once again dangerous. Overhanging ice from the Palcaraju glacier and a relatively low freeboard level make the lake vulnerable to avalanches and landslides. A siphon system has been put in place to lower the lake below the level of the tunnel, but this system is temporary and the potential reduction in the water level is limited. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics and the ensuing flood hydrograph. Empirical equations are used to determine the initial wave characteristics of an impulse wave created by three different avalanche scenarios that represent small, medium and large events. The characteristics of the initial impulse wave are used as inputs to a three-dimensional hydrodynamic model to predict the wave propagation across the lake and the moraine overtopping volume. The results from this model will be used as inputs to a downstream GLOF model to predict the impact from an outburst flood event. Additionally several scenarios are considered to evaluate the downstream impact from avalanche events with a reduction in the lake level. Use of a robust three-dimensional hydrodynamic lake model enables more

  16. The Mathematical Model of Hydrodynamics and Heat and Mass Transfer at Formation of Steel Ingots and Castings

    Directory of Open Access Journals (Sweden)

    Bondarenko V.I.

    2015-03-01

    Full Text Available The generic mathematical model and computational algorithm considering hydrodynamics, heat and mass transfer processes during casting and forming steel ingots and castings are offered. Usage domains for turbulent, convective and non-convective models are determined depending on ingot geometry and thermal overheating of the poured melt. The expert system is developed, enabling to choose a mathematical model depending on the physical statement of a problem.

  17. A 30m resolution hydrodynamic model of the entire conterminous United States.

    Science.gov (United States)

    Bates, P. D.; Neal, J. C.; Smith, A.; Sampson, C.; Johnson, K.; Wing, O.

    2016-12-01

    In this paper we describe the development and validation of a 30m resolution hydrodynamic model covering the entire conterminous United States. The model can be used to simulate inundation and water depths resulting from either return period flows (so equivalent to FEMA Flood Insurance Rate Maps), hindcasts of historic events or forecasts of future river flow from a rainfall-runoff or land surface model. As topographic data the model uses the U.S. Geological Survey National Elevation Dataset or NED, and return period flows are generated using a regional flood frequency analysis methodology (Smith et al., 2015. Worldwide flood frequency estimation. Water Resources Research, 51, 539-553). Flood defences nationwide are represented using data from the US Army Corps of Engineers. Using these data flows are simulated using an explicit and highly efficient finite difference solution of the local inertial form of the Shallow Water equations identical to that implemented in the LISFLOOD-FP model. Even with this efficient numerical solution a simulation at this resolution over a whole continent is a huge undertaking, and a variety of High Performance Computing technologies therefore need to be employed to make these simulations possible. The size of the output datasets is also challenging, and to solve this we use the GIS and graphical display functions of Google Earth Engine to facilitate easy visualisation and interrogation of the results. The model is validated against the return period flood extents contained in FEMA Flood Insurance Rate Maps and real flood event data from the Texas 2015 flood event which was hindcast using the model. Finally, we present an application of the model to the Upper Mississippi river basin where simulations both with and without flood defences are used to determine floodplain areas benefitting from protection in order to quantify the benefits of flood defence spending.

  18. Modeling rainfall-runoff processes using smoothed particle hydrodynamics with mass-varied particles

    Science.gov (United States)

    Chang, Tsang-Jung; Chang, Yu-Sheng; Chang, Kao-Hua

    2016-12-01

    In this study, a novel treatment of adopting mass-varied particles in smoothed particle hydrodynamics (SPH) is proposed to solve the shallow water equations (SWEs) and model the rainfall-runoff process. Since SWEs have depth-averaged or cross-section-averaged features, there is no sufficient dimension to add rainfall particles. Thus, SPH-SWE methods have focused on modeling discharge flows in open channels or floodplains without rainfall. With the proposed treatment, the application of SPH-SWEs can be extended to rainfall-runoff processes in watersheds. First, the numerical procedures associated with using mass-varied particles in SPH-SWEs are introduced and derived. Then, numerical validations are conducted for three benchmark problems, including uniform rainfall over a 1D flat sloping channel, nonuniform rain falling over a 1D three-slope channel with different rainfall durations, and uniform rainfall over a 2D plot with complex topography. The simulated results indicate that the proposed treatment can avoid the necessity of a source term function of mass variation, and no additional particles are needed for the increase of mass. Rainfall-runoff processes can be well captured in the presence of hydraulic jumps, dry/wet bed flows, and supercritical/subcritical/transcritical flows. The proposed treatment using mass-varied particles was proven robust and reliable for modeling rainfall-runoff processes. It can provide a new alternative for investigating practical hydrological problems.

  19. Numerical modeling of debris flow runout for a case in southwestern China with Smooth Particle Hydrodynamics

    Science.gov (United States)

    Braun, Anika; Cuomo, Sabatino; Wang, Xueliang; Zhang, Luqing

    2016-04-01

    Debris flows and landslide dams are a major natural hazard causing high socioeconomic risk in inhabited mountainous areas. This is also true for vast parts of southwestern China, which are highly prone to slope failures due to several factors, such as a humid climate with high precipitation in the summer months, geological predisposing factors with highly weathered sedimentary rocks and a high seismicity. Not only do the landslides and flooding related to landslide dams threaten residents, buildings and transportation structures, but also do flooding conditions endanger power supply, which relies in this region partly on hydropower. In order to assess the potential of landslides to block rivers, it is crucial to understand which factors influence possible run-out distances and how they can be quantified. In the study we are presenting a numerical modeling analysis for a particular case of a complex landslide in Ningnan county, southwestern China, which transformed into a debris flow and blocked the river and the major road leading through the valley after heavy rainfall. For this purpose a quasi-3D Smooth Particle Hydrodynamics (SPH) model was implemented that can account for geotechnical slope parameters, run-out distance, velocities and deposition heights. A digital terrain model and the geometry information of the landslide were used as input data in order to estimate the relevant geotechnical parameters by back-analysis. The results of the analysis can be used for the prediction of run-out distances for future events at this site and other similar sites.

  20. THE INFLUENCE OF NUMERICAL RESOLUTION ON CORONAL DENSITY IN HYDRODYNAMIC MODELS OF IMPULSIVE HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Cargill, P. J., E-mail: stephen.bradshaw@rice.edu, E-mail: p.cargill@imperial.ac.uk [Space and Atmospheric Physics, Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2013-06-10

    The effect of the numerical spatial resolution in models of the solar corona and corona/chromosphere interface is examined for impulsive heating over a range of magnitudes using one-dimensional hydrodynamic simulations. It is demonstrated that the principal effect of inadequate resolution is on the coronal density. An underresolved loop typically has a peak density of at least a factor of two lower than a resolved loop subject to the same heating, with larger discrepancies in the decay phase. The temperature for underresolved loops is also lower indicating that lack of resolution does not 'bottle up' the heat flux in the corona. Energy is conserved in the models to under 1% in all cases, indicating that this is not responsible for the low density. Instead, we argue that in underresolved loops the heat flux 'jumps across' the transition region to the dense chromosphere from which it is radiated rather than heating and ablating transition region plasma. This emphasizes the point that the interaction between corona and chromosphere occurs only through the medium of the transition region. Implications for three-dimensional magnetohydrodynamic coronal models are discussed.

  1. Constraints on Hydrodynamical Subgrid Models from Quasar Absorption Line Studies of the Simulated Circumgalactic Medium

    CERN Document Server

    Hummels, Cameron; Smith, Britton; Turk, Matthew

    2012-01-01

    Cosmological hydrodynamical simulations of galaxy evolution are increasingly able to produce realistic galaxies, but the largest hurdle remaining is in constructing subgrid models that accurately describe the behavior of stellar feedback. As an alternate way to test and calibrate such models, we propose to focus on the circumgalactic medium. To do so, we generate a suite of adaptive-mesh refinement (AMR) simulations for a Milky-Way-massed galaxy run to z=0, systematically varying the feedback implementation. We then post-process the simulation data to compute the absorbing column density for a wide range of common atomic absorbers throughout the galactic halo, including H I, Mg II, Si II, Si III, Si IV, C IV, N V, O VI, and O VII. The radial profiles of these atomic column densities are compared against several quasar absorption line studies, to determine if one feedback prescription is favored. We find that although our models match some of the observations (specifically those ions with lower ionization stre...

  2. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    CERN Document Server

    Dubus, Guillaume; Fromang, Sébastien

    2015-01-01

    Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. We developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and VHE lightcurves, constraining the system inclination to $i\\approx 35^{\\rm o}$. There is a tension between th...

  3. Reionization on Large Scales I: A Parametric Model Constructed from Radiation-Hydrodynamic Simulations

    CERN Document Server

    Battaglia, Nick; Cen, Renyue; Loeb, Abraham

    2012-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048^3 dark matter particles, 2048^3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc/h box, we show that the density and reionization-redshift fields are highly correlated on large scales (>~ 1 Mpc/h). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization-redshift field. The parametric model has three free parameters which can be reduced to one free parameter when we fit the two bias parameters to simulations results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionizati...

  4. Hydrodynamic Lyapunov modes and strong stochasticity threshold in the dynamic XY model: an alternative scenario.

    Science.gov (United States)

    Yang, Hong-Liu; Radons, Günter

    2008-01-01

    Crossover from weak to strong chaos in high-dimensional Hamiltonian systems at the strong stochasticity threshold (SST) was anticipated to indicate a global transition in the geometric structure of phase space. Our recent study of Fermi-Pasta-Ulam models showed that corresponding to this transition the energy density dependence of all Lyapunov exponents is identical apart from a scaling factor. The current investigation of the dynamic XY model discovers an alternative scenario for the energy dependence of the system dynamics at SSTs. Though similar in tendency, the Lyapunov exponents now show individually different energy dependencies except in the near-harmonic regime. Such a finding restricts the use of indices such as the largest Lyapunov exponent and the Ricci curvatures to characterize the global transition in the dynamics of high-dimensional Hamiltonian systems. These observations are consistent with our conjecture that the quasi-isotropy assumption works well only when parametric resonances are the dominant sources of dynamical instabilities. Moreover, numerical simulations demonstrate the existence of hydrodynamical Lyapunov modes (HLMs) in the dynamic XY model and show that corresponding to the crossover in the Lyapunov exponents there is also a smooth transition in the energy density dependence of significance measures of HLMs. In particular, our numerical results confirm that strong chaos is essential for the appearance of HLMs.

  5. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    Science.gov (United States)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  6. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    CERN Document Server

    da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats

    2015-01-01

    Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...

  7. Evaluation of a prognostic model for risk of relapse in stage I seminoma surveillance.

    Science.gov (United States)

    Chung, Peter; Daugaard, Gedske; Tyldesley, Scott; Atenafu, Eshetu G; Panzarella, Tony; Kollmannsberger, Christian; Warde, Padraig

    2015-01-01

    A prognostic model for relapse risk in stage I seminoma managed by surveillance after orchiectomy has been developed but has not been independently validated. Individual data on 685 stage I seminoma surveillance patients managed between 1998 and 2005 at three cancer centers were retrospectively analyzed. Variables including age and pathology of the primary tumor: small vessel invasion, tumor size, and invasion of rete testis were analyzed. Specifically median tumor size and rete testis invasion was tested to evaluate the performance of the published model. Median follow-up was 3.85 years (0.1-10.29), 88 patients relapsed and 5-year relapse-free rate was 85%. In univariate analysis, median tumor size (seminoma surveillance as we were unable to validate the previously developed model. However, primary tumor size retained prognostic importance and a scale of relapse risk based on the unit increment of tumor size was developed to help guide patients and clinicians in decision making. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Physics Based Degradation Models for Capacitor Prognostics under Thermal Overstress Conditions

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Electronics subsystems for monitoring, control, and enhanced functionality play an increasingly important role in safety critical systems. Electrolytic capacitors are an important component in several key subsystems that range from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. These capacitors are known to have comparatively low reliability, and given their criticality in electronics subsystems they are a good candidate for component level monitoring and prognostics. Prognostics provides a way to assess remaining useful life of components and systems based on their current state of health and their anticipated future use and operating conditions. Past experiences have shown that capacitor degradation and failures are quite prevalent under high electrical and thermal stress conditions that they are often subjected to during operations. Our focus in this work is on deriving a physics-based degradation model for electrolytic capacitors under thermal stress conditions. As part of our methodology, we study the effects of accelerated aging due to thermal stress on a batch of identically manufactured capacitors operating at different temperatures. This provides a framework for supplementing theoretical modeling with data collected from simultaneous experiments, which is then used to validate the derived models.

  9. Verification of the two-dimensional hydrodynamic model based on remote sensing

    Science.gov (United States)

    Sazonov, Alexey; Mikhailukova, Polina; Krylenko, Inna; Frolova, Natalya; Kireeva, Mariya

    2016-04-01

    Mathematical modeling methods are used more and more actively to evaluate possible damage, identify potential flood zone and the influence of individual factors affecting the river during the passage of the flood. Calculations were performed by means of domestic software complex «STREAM-2D» which is based on the numerical solution of two-dimensional St. Venant equations. One of the major challenges in mathematical modeling is the verification of the model. This is usually made using data on water levels from hydrological stations: the smaller the difference of the actual level and the simulated one, the better the quality of the model used. Data from hydrological stations are not always available, so alternative sources of verification, such as remote sensing, are increasingly used. The aim of this work is to develop a method of verification of hydrodynamic model based on a comparison of actual flood zone area, which in turn is determined on the basis of the automated satellite image interpretation methods for different imaging systems and flooded area obtained in the course of the model. The study areas are Lena River, The North Dvina River, Amur River near Blagoveshchensk. We used satellite images made by optical and radar sensors: SPOT-5/HRG, Resurs-F, Radarsat-2. Flooded area were calculated using unsupervised classification (ISODATA and K-mean) for optical images and segmentation for Radarsat-2. Knowing the flow rate and the water level at a given date for the upper and lower limits of the model, respectively, it is possible to calculate flooded area by means of program STREAM-2D and GIS technology. All the existing vector layers with the boundaries of flooding are included in a GIS project for flood area calculation. This study was supported by the Russian Science Foundation, project no. 14-17-00155.

  10. Can satellite-derived water surface changes be used to calibrate a hydrodynamic model?

    Science.gov (United States)

    Revilla-Romero, Beatriz; Beck, Hylke; Salamon, Peter; Burek, Peter; de Roo, Ad; Thielen, Jutta

    2015-04-01

    The limited availability of recent ground observational data is one of the main challenges for validation of hydrodynamic models. This is especially relevant for real-time global applications such as flood forecasting models. In this study, we aim to use remotely-sensed data from the Global Flood Detection System (GFDS) as a proxy of river discharge time series and test its value through calibration of the hydrological model LISFLOOD. This was carried out for the time period 1998-2010 at 40 sites in Africa, Europe, North America and South America by calibrating the parameters that control the flow routing and groundwater processes. We compared the performance of the calibrated simulated discharge time series that used satellite-derived data with the ground discharge time series. Furthermore, we compared it with the independent calibrated run that used ground data and also, to the non-calibrated simulated discharge time series. The non-calibrated set up used a set of parameters which values were predefined by expert-knowledge. This is currently being used by the LISFLOOD set up model embedded in the pre-operational Global Flood Awareness System (GloFAS). The results of this study showed that the satellite surface water changes from the Global Flood Detection System can be used as a proxy of river discharge data, through the demonstration of its added value for model calibration and validation. Using satellite-derived data, the skill scores obtained by the calibrated simulated model discharge improved when comparing to non-calibrated simulated time series. Calibration, post-processing and data assimilation strategies of satellite data as a proxy for streamflow data within the global hydrological model are outlined and discussed.

  11. Outcome Prediction after Traumatic Brain Injury: Comparison of the Performance of Routinely Used Severity Scores and Multivariable Prognostic Models

    Science.gov (United States)

    Majdan, Marek; Brazinova, Alexandra; Rusnak, Martin; Leitgeb, Johannes

    2017-01-01

    Objectives: Prognosis of outcome after traumatic brain injury (TBI) is important in the assessment of quality of care and can help improve treatment and outcome. The aim of this study was to compare the prognostic value of relatively simple injury severity scores between each other and against a gold standard model – the IMPACT-extended (IMP-E) multivariable prognostic model. Materials and Methods: For this study, 866 patients with moderate/severe TBI from Austria were analyzed. The prognostic performances of the Glasgow coma scale (GCS), GCS motor (GCSM) score, abbreviated injury scale for the head region, Marshall computed tomographic (CT) classification, and Rotterdam CT score were compared side-by-side and against the IMP-E score. The area under the receiver operating characteristics curve (AUC) and Nagelkerke's R2 were used to assess the prognostic performance. Outcomes at the Intensive Care Unit, at hospital discharge, and at 6 months (mortality and unfavorable outcome) were used as end-points. Results: Comparing AUCs and R2s of the same model across four outcomes, only little variation was apparent. A similar pattern is observed when comparing the models between each other: Variation of AUCs 0.83 and R2 > 0.42 for all outcomes): AUCs were worse by 0.10–0.22 (P prognosis. However, it is confirmed that well-developed multivariable prognostic models outperform these scores significantly and should be used for prognosis in patients after TBI wherever possible.

  12. Sensitivity of a Floodplain Hydrodynamic Model to Satellite-Based DEM Scale and Accuracy: Case Study—The Atchafalaya Basin

    Directory of Open Access Journals (Sweden)

    Hahn Chul Jung

    2015-06-01

    Full Text Available The hydrodynamics of low-lying riverine floodplains and wetlands play a critical role in hydrology and ecosystem processes. Because small topographic features affect floodplain storage and flow velocity, a hydrodynamic model setup of these regions imposes more stringent requirements on the input Digital Elevation Model (DEM compared to upland regions with comparatively high slopes. This current study provides a systematic approach to evaluate the required relative vertical accuracy and spatial resolution of current and future satellite-based altimeters within the context of DEM requirements for 2-D floodplain hydrodynamic models. A case study is presented for the Atchafalaya Basin with a model domain of 1190 km2. The approach analyzes the sensitivity of modeled floodplain water elevation and velocity to typical satellite-based DEM grid-box scale and vertical error, using a previously calibrated version of the physically-based flood inundation model (LISFLOOD-ACC. Results indicate a trade-off relationship between DEM relative vertical error and grid-box size. Higher resolution models are the most sensitive to vertical accuracy, but the impact diminishes at coarser resolutions because of spatial averaging. The results provide guidance to engineers and scientists when defining the observation scales of future altimetry missions such as the   Surface Water and Ocean Topography (SWOT mission from the perspective of numerical modeling requirements for large floodplains of O[103] km2 and greater.

  13. Model-based prognostics for batteries which estimates useful life and uses a probability density function

    Science.gov (United States)

    Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor)

    2012-01-01

    This invention develops a mathematical model to describe battery behavior during individual discharge cycles as well as over its cycle life. The basis for the form of the model has been linked to the internal processes of the battery and validated using experimental data. Effects of temperature and load current have also been incorporated into the model. Subsequently, the model has been used in a Particle Filtering framework to make predictions of remaining useful life for individual discharge cycles as well as for cycle life. The prediction performance was found to be satisfactory as measured by performance metrics customized for prognostics for a sample case. The work presented here provides initial steps towards a comprehensive health management solution for energy storage devices.

  14. Smoothed particle hydrodynamics model of non-aqueous phase liquid flow and dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Meakin, Paul; Ward, Anderson L.

    2009-01-01

    A smoothed particle hydrodynamics model was developed to simulate the flow of mixtures of aqueous and non-aqueous phase liquids in porous media and the dissolution of the non-aqueous phase in the aqueous phase. The model was used to study the effects of pore-scale heterogeneity and anisotropy on the steady state dense non-aqueous phase liquid (DNAPL) saturation when gravity driven DNAPL displaces water from initially water saturated porous media. Pore-scale anisotropy was created by using co-oriented non overlapping elliptically shaped grains to represent the porous media. After a steady state DNAPL saturation was reached, water was injected until a new steady state DNAPL saturation was reached. The amount of trapped DNAPL was found to be greater when DNAPL is displaced in the direction of the major axes of the soil grains than when it is displaced in the direction of the minor axes of the soil grains. The amount of trapped DNAPL was also found to increase with decreasing initial saturation of the continuous DNAPL phase. For the conditions used in our simulations, the saturation of the trapped NAPL with a smaller initial DNAPL saturation was more than 3 times larger than the amount of trapped DNAPL with a larger initial saturation. These simulations were carried out assuming that the DNAPL did not dissolve in water. Simulations including the effect of dissolution of DNAPL in the aqueous phase were also performed, and effective (macroscopic) mass transfer coefficients were determined.

  15. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  16. A non-hydrodynamical model for acceleration of line-driven winds in Active Galactic Nuclei

    CERN Document Server

    Risaliti, G

    2009-01-01

    We present a study of the acceleration phase of line-driven winds in AGNs, in order to examine the physical conditions for the existence of such winds for a wide variety of initial conditions. We built a simple and fast non-hydrodynamic model, QWIND, where we assume that a wind is launched from the accretion disc at supersonic velocities of the order of a few 10^2 km/s and we concentrate on the subsequent supersonic phase. We show that this model can produce a wind with terminal velocities of the order of 10^4 km/s. There are three zones in the wind, only the middle one of which can launch a wind: in the inner zone the wind is too ionized and so experiences only the Compton radiation force which is not effective in accelerating gas. This inner failed wind however plays an important role in shielding the next zone, lowering the ionization parameter there. In the middle zone the lower ionization of the gas leads to a much larger radiation force and the gas achieves escape velocity This middle zone is quite thin...

  17. Modelling the hydrodynamic conditions associated with Dinophysis blooms in Galicia (NW Spain).

    Science.gov (United States)

    Ruiz-Villarreal, Manuel; García-García, Luz M; Cobas, Marcos; Díaz, Patricio A; Reguera, Beatriz

    2016-03-01

    The northwestern Iberian coast (Galician Rías and shelf) is frequently affected by toxic harmful algal blooms (HABs) (mainly Dinophysis spp.), leading to lengthy harvesting closures in a region where aquaculture has a strong socioeconomic impact. The project ASIMUTH (http://www.asimuth.eu) aimed to develop forecasting capabilities to warn of impending HABs along the European Atlantic coast. Simulations with the ROMS model (hydrodynamical and ecological simulations complemented with Lagrangian particle tracking simulations) of the Galician coastal circulation have been performed in the framework of the ASIMUTH project to characterize and forecast oceanographic conditions before and during HAB periods. In this work, we present the Galician ASIMUTH forecast system and demonstrate its skill in predicting HAB transport and its usefulness to provide assessment for the management of the areas affected by toxic outbreaks. Experience gained during DSP events in 2005 and 2013 is shown. We also describe the Galician pilot HAB bulletins, aimed at distributing forecasts of HAB events that might induce closures of harvesting areas or, when the areas are already closed, at giving information on forthcoming oceanographic conditions that could favour or hamper the opening of an area. Our results show that the model forecasts and the bulletins can provide early warning of the risk of Dinophysis spp. events and the risk of closures linked to the presence of DSP toxins above regulatory levels in harvesting areas.

  18. A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics

    Science.gov (United States)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina

    2010-12-01

    We present a novel smoothed particle hydrodynamics (SPH) method for diffusion equations subject to Neumann and Robin boundary conditions. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to implement in numerical methods when the boundary geometry is complex. The new method presented here is based on the approximation of the sharp boundary with a diffuse interface and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method. The paper discusses the details of the method and the criteria for the width of the diffuse interface. The method is used to simulate diffusion and reactions in a domain bounded by two concentric circles and reactive flow between two parallel plates and its accuracy is demonstrated through comparison with analytical and finite difference solutions. To further illustrate the capabilities of the model, a reactive flow in a porous medium was simulated and good convergence properties of the model are demonstrated.

  19. The Expected Duration of Gamma-Ray Bursts in the Impulsive Hydrodynamic Models

    CERN Document Server

    Mitra, A

    1997-01-01

    Depending upon the various models and assumptions, the existing literature on Gamma Ray Bursts (GRBs) mentions that the gross theoretical value of the duration of the burst in the hydrodynamical models is tau~r^2/(eta^2 c), where r is the radius at which the blastwave associated with the fireball (FB) becomes radiative and sufficiently strong. Here eta = E/Mc^2, c is the speed of light, E is initial lab frame energy of the FB, and M is the baryonic mass of the same (Rees and Meszaros 1992). However, within the same basic framework, some authors (like Katz and Piran) have given tau ~ r^2 /(eta c). We intend to remove this confusion by considering this problem at a level deeper than what has been considered so far. Our analysis shows that none of the previously quoted expressions are exactly correct and in case the FB is produced impulsively and the radiative processes responsible for the generation of the GRB are sufficiently fast, its expected duration would be tau ~ar^2/(eta^2 c), where a~O(10^1). We further...

  20. Modeling of thermal and hydrodynamic aspects of molten jet/water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.K.; Blomquist, C.A.; Spencer, B.W. (Argonne National Lab., IL (USA))

    1989-01-01

    In order to predict the effect of a fuel-coolant interaction after a hypothetical core-melt-down accident, a phenomenological model has been developed to describe the thermal and hydrodynamic behavior of a high-temperature molten jet when it interacts with saturated or subcooled water in a film boiling regime. The mechanisms of jet-material erosion were analyzed by Kelvin-Helmholtz instabilities on the coherent column and by boundary layer stripping on the leading edge. The heat transfer coefficient, vapor-film thickness, and net steam generation, all of which strongly affect the jet-breakup behavior, were solved analytically. It was found that the jet breakup (or erosion) depends strongly on the steam generation from the jet/water interaction. The jet-breakup length (i.e., penetration distance) was found to be sensitive to the initial jet temperature, water subcooling, and the physical state of the ambient water. The jet-breakup length and leading-edge velocity of the Wood's metal/water experiments are predicted well by the current model for the cases where a continuous vapor film exists. 14 refs., 13 figs.

  1. Hydrodynamical simulations of coupled and uncoupled quintessence models I: Halo properties and the cosmic web

    CERN Document Server

    Carlesi, Edoardo; Lewis, Geraint F; Wales, Scott; Yepes, Gustavo

    2014-01-01

    We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard \\LCDM\\ cosmology. For each we use $2\\times1024^3$ particles in a $250$\\hMpc\\ periodic box assuming WMAP7 cosmology. In this work we focus on the properties of haloes in the cosmic web at $z=0$. The web is classified into \\emph{voids}, \\emph{sheets}, \\emph{filaments} and \\emph{knots} depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment shows a substantial dependence on the underlying cosmology; for example, while $V_{\\rm max}$ shows average deviations of $\\approx5$ per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as $20$ per cent. ...

  2. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects

    Science.gov (United States)

    Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.

    2016-05-01

    Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.

  3. Hydrodynamic model of bacterial tumbling near a non-slip surface

    Science.gov (United States)

    Sheng, Jian; Molaei, Mehdi

    2013-11-01

    To swim forward, wild type Escherichia coli bacteria rotate their helical flagella CCW to form a bundle; to tumble, one or more flagella rotate CW to initiate flagella unbundling and polymorphic transformation that leads to a significant change in cell orientation in comparison to original swimming direction. These random change of direction increases bacterial dispersion and also is long speculated to be a mechanism for perichtricous bacteria to escape from a surface. Our recent experimental results show that the tumbling frequency is substantially suppressed near a solid surface by 50%, and the bacterium tends to start a new run in the direction parallel to the surface. This suppression occurs at two cell length (including flagella) away from the surface whereby steric hindrance plays less significant role. Here we propose an analytical model based on hydrodynamic interaction between flagella and the solid surface. We utilize Slender Body Theory combined with the image system of the singularities for the Stoke-flow to quantify the flow around the bacterial flagella in the presence of a no-slip surface. The model includes two non-identical rigid helical flagella representing a bundle and single flagellum. We have showed that in the bulk, a repulsive force among flagella initiates the unbundling and consequently tumbling; however, in presence of a solid surface, the force is strongly mitigated that stabilize the bundle and suppress the tumbling. NIH, NSF, GoMRI.

  4. Hydrodynamic Models of Line-Driven Accretion Disk Winds II Adiabatic Winds from Nonisothermal Disks

    CERN Document Server

    Pereyra, N A; Blondin, J M; Pereyra, Nicolas Antonio; Kallman, Timothy R.; Blondin, John M.

    2000-01-01

    We present here numerical hydrodynamic simulations of line-driven accretion disk winds in cataclysmic variable systems. We calculate wind mass-loss rate, terminal velocities, and line profiles for CIV (1550 A) for various viewing angles. The models are 2.5-dimensional, include an energy balance condition, and calculate the radiation field as a function of position near an optically thick accretion disk. The model results show that centrifugal forces produce collisions of streamlines in the disk wind which in turn generate an enhanced density region, underlining the necessity of two dimensional calculations where these forces may be represented. For disk luminosity Ldisk = Lsun, white dwarf mass Mwd = 0.6 Msun, and white dwarf radii Rwd = 0.01 Rsun, we obtain a wind mass-loss rate of dMwind/dt = 8.0E-12 Msun/yr, and a terminal velocity of ~3000 km/s. The line profiles we obtain are consistent with observations in their general form, in particular in the maximum absorption at roughly half the terminal velocity ...

  5. Hydrodynamic Modeling Analysis for Leque Island and zis a ba Restoration Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Jonathan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Khangaonkar, Tarang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-31

    Ducks Unlimited, Inc. in collaboration with Washington State Department of Fish and Wildlife (WDFW), and Stillaguamish Tribe of Indians have proposed the restoration of Leque Island and zis a ba (formerly Matterand) sites near the mouth of Old Stillaguamish River Channel in Port Susan Bay, Washington. The Leque Island site, which is owned by WDFW, consists of nearly 253 acres of land south of Highway 532 that is currently behind a perimeter dike. The 90-acres zis a ba site, also shielded by dikes along the shoreline, is located just upstream of Leque Island and is owned by Stillaguamish Tribes. The proposed actions consider the removal or modification of perimeter dikes at both locations to allow estuarine functions to be restored. The overall objective of the proposed projects is to remove the dike barriers to 1) provide connectivity and access between the tidal river channel and the restoration site for use by juvenile migrating salmon and 2) create a self-sustaining tidal marsh habitat. Ducks Unlimited engaged Pacific Northwest National Laboratory (PNNL) to develop a three-dimensional hydrodynamic model of the Port Susan Bay, Skagit Bay, and the interconnecting Leque Island region for use in support of the feasibility assessment for the Leque Island and zis a ba restoration projects. The objective of this modeling-based feasibility assessment is to evaluate the performance of proposed restoration actions in terms of achieving habitat goals while assessing the potential hydraulic and sediment transport impacts to the site and surrounding parcels of land.

  6. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects

    CERN Document Server

    Schäfer, Christoph M; Maindl, Thomas I; Speith, Roland; Scherrer, Samuel; Kley, Wilhelm

    2016-01-01

    Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. We find an impressive performance gain using NVIDIA consumer devices compared to ou...

  7. Phenomenological model for torsional galloping of an elastic flat plate due to hydrodynamic loads

    Institute of Scientific and Technical Information of China (English)

    FERNANDES Antonio Carlos; ARMANDEI Mohammadmehdi

    2014-01-01

    This study investigates the torsional galloping phenomenon, an instability type flow-induced oscillation, in an elastic stru-cture due to hydrodynamic loads into the water current. The structure applied here is a rectangular flat plate with an elastic axis in its mid-chord length. The elasticity is provided by torsion spring. The flat plate has only one degree of freedom which is rotation in pure yaw about its axis. It is observed that as the current speed is higher than a critical velocity, the flat plate becomes unstable. The instability leads to torsional galloping occurrence, as a result of which the flat plate begins to yaw about the elastic axis. By testing two different chord lengths each with several torsion spring rates, the flat plate behavior is investigated and three different responses are recognized. Then, a phenomenological model is developed with the original kernel in the form of the van der Pol-Duffing equa-tion. The model explains these three responses observed experimentally.

  8. Experimental Investigation on the Characteristics of Hydrodynamic Stabilities in Francis Hydroturbine Models

    Directory of Open Access Journals (Sweden)

    Wen-Tao Su

    2014-03-01

    Full Text Available This paper presents an experimental investigation of flow phenomena related to the characteristic frequencies of pressure fluctuation in Francis hydroturbine models. The experiments were carried out on two test rigs with two model runners having hydraulic similarities. Flow field around the guide vanes was measured with a particle image velocimetry (PIV on the first PIV test rig. Flow structures at the inlet region of runner and in draft tube at different operating conditions were visualized on another hydrodynamic test rig. Analyses of dominant frequency of unsteady hydraulic behaviors in the tested hydroturbines were performed. It was observed that the main frequency of flow over the guide vanes and the dominant frequency of channel vortex equal the blade passing frequency; the dominant frequency of flow separation at the suction side of blade inlet equals the vane passing frequency; the vortex rope in the draft tube displays a low-frequency nature. The flow instabilities and fluctuations directly influence the running of hydroturbine, thus these experimental results could provide important evidence for the stability study of a real hydroturbine.

  9. Evaluation of the hydrodynamic behaviour of turbulence promoters in parallel plate electrochemical reactors by means of the dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Colli, A.N. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-08-30

    Highlights: {center_dot} The type of turbulence promoters has a strong influence on the hydrodynamics. {center_dot} The dispersion model is appropriate for expanded plastic turbulence promoters. {center_dot} The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.

  10. Hydrodynamic model for expansion and collisional relaxation of x-ray laser-excited multi-component nanoplasma

    CERN Document Server

    Saxena, Vikrant

    2016-01-01

    The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundreds femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasma. The model equations are derived by taking the moments of the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case: expanding spherical Ar nanoplasma are obtained. With this model we complete the two-step approach to simul...

  11. Implementation of a simple model for linear and nonlinear mixing at unstable fluid interfaces in hydrodynamics codes

    Energy Technology Data Exchange (ETDEWEB)

    Ramshaw, J D

    2000-10-01

    A simple model was recently described for predicting the time evolution of the width of the mixing layer at an unstable fluid interface [J. D. Ramshaw, Phys. Rev. E 58, 5834 (1998); ibid. 61, 5339 (2000)]. The ordinary differential equations of this model have been heuristically generalized into partial differential equations suitable for implementation in multicomponent hydrodynamics codes. The central ingredient in this generalization is a nun-diffusional expression for the species mass fluxes. These fluxes describe the relative motion of the species, and thereby determine the local mixing rate and spatial distribution of mixed fluid as a function of time. The generalized model has been implemented in a two-dimensional hydrodynamics code. The model equations and implementation procedure are summarized, and comparisons with experimental mixing data are presented.

  12. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  13. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  14. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  15. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  16. Rectal Adenocarcinoma: Proposal for a Model Based on Pretreatment Prognostic Factors

    Science.gov (United States)

    Cabanillas, Fernando; Freire, Viviana; Nieves-Plaza, Mariely; Quevedo, Gerardo; Echenique, Ignacio A.

    2012-01-01

    Objective Currently the choice of chemotherapy regimen in rectal cancer is made prior to surgery in contrast to colon cancer where it is made postoperatively after the pathological stage has been determined. If we could identify which are the important pretreatment prognostic factors in rectal cancer, we could then target those patients with unfavorable features to investigate potentially more effective preoperative chemotherapy regimens aimed at those with unfavorable features. The present study aims to determine pre-treatment prognostic factors that are associated with an unfavorable outcome. Methods A retrospective review of 99 rectal cancer patients operated at the Hospital Auxilio Mutuo and Hospital San Pablo was done. Sociodemographic characteristics, clinical and treatment data was collected. Results 54% were males. The mean ± sd age was 62.2 ± 10.4. In age-adjusted Cox model, male gender [HR (95%CI): 3.32 (1.09–10.13)], mucinous carcinoma [HR (95%CI): 3.67 (1.25–10.77)], and clinical stages II & III [HR (95%CI): 8.19 (1.08–62.08)] were predictors of poor prognosis. In multivariate age-adjusted analysis, a tendency towards a poorer prognosis was observed for male patients [HR: 2.60] CEA level ≥ 5ng/ml [HR: 2.55], mucinous carcinoma [HR:2.96], and clinical stages II & III [HR:4.96], although results were not statistically significant (p>0.05), Conclusion Although current therapeutic results are relatively favorable with preoperative 5-Fluorouracil (5FU) and radiotherapy, future clinical trials should address the management of those cases with adverse pretreatment prognostic factors so that they can be treated with potentially more effective albeit more toxic chemotherapy regimens. PMID:22783696

  17. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    internal dynamics, to be followed in detail. This modelling effort has initiated the treatment of the open boundary conditions problem in view of the future implementation of shelf-scale real-time ocean forecasting through the sequential nesting of a hierarchy of successively embedded model domains for the downscaling of the hydrodynamics from the coarse grid Ocean General Circulation Model of the whole Mediterranean Sea to finer grids in coastal areas.

    Key words. Oceanography: general (continental shelf processes; numerical modelling Oceanography: physical (general circulation

  18. Geoinformational prognostic model of mudflows hazard and mudflows risk for the territory of Ukrainian Carpathians

    Science.gov (United States)

    Chepurna, Tetiana B.; Kuzmenko, Eduard D.; Chepurnyj, Igor V.

    2017-06-01

    The article is devoted to the geological issue of the space-time regional prognostication of mudflow hazard. The methodology of space-time prediction of mudflows hazard by creating GIS predictive model has been developed. Using GIS technologies the relevant and representative complex of significant influence of spatial and temporal factors, adjusted to use in the regional prediction of mudflows hazard, were selected. Geological, geomorphological, technological, climatic, and landscape factors have been selected as spatial mudflow factors. Spatial analysis is based on detection of a regular connection of spatial factor characteristics with spatial distribution of the mudflow sites. The function of a standard complex spatial index (SCSI) of the probability of the mudflow sites distribution has been calculated. The temporal, long-term prediction of the mudflows activity was based on the hypothesis of the regular reiteration of natural processes. Heliophysical, seismic, meteorological, and hydrogeological factors have been selected as time mudflow factors. The function of a complex index of long standing mudflow activity (CIMA) has been calculated. The prognostic geoinformational model of mudflow hazard up to 2020 year, a year of the next peak of the mudflows activity, has been created. Mudflow risks have been counted and carogram of mudflow risk assessment within the limits of administrative-territorial units has been built for 2020 year.

  19. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    Science.gov (United States)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  20. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Science.gov (United States)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  1. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China

    Institute of Scientific and Technical Information of China (English)

    Lei Zhao; Xiaoling Zhang; Yong Liu; Bin He; Xiang Zhu; Rui Zou; Yuanguan Zhu

    2012-01-01

    Lake Fuxian is the largest deep freshwater lake in China.Although its average water quality meets Class Ⅰ of the China National Water Quality Standard(CNWQS),i.e.,GB3838-2002,monitoring data indicate that the water quality approaches the Class Ⅱ threshold in some areas.Thus it is urgent to reduce the watershed load through the total maximum daily load(TMDL)program.A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian,simulating flow circulation and pollutant fate and transport.The model development process consists of several steps,including grid generation,initial and boundary condition configurations,and model calibration processes.The model accurately reproduced the observed water surface elevation,spatiotemporal variations in temperature,and total nitrogen(TN),total phosphorus(TP),and chemical oxygen demand(COD)concentrations,suggesting a reasonable numerical representation of the prototype system for further TMDL analyses.The TMDL was calculated using two interpretations of the water quality standards for Class Ⅰ of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations.Analysis of the first scenario indicated that the TN,TP and COD loads should be reduced by 66%,68% and 57%,respectively.Water quality was the highest priority; however,local economic development and cost feasibility for load reduction can pose significant issues.In the second interpretation,the model results showed that,under the existing conditions,the average water quality meets the Class Ⅰ standard and therefore load reduction is unnecessary.Future studies are needed to conduct risk and cost assessments for realistic decision-making.

  2. SEMICONDUCTOR DEVICES Structure optimization of a uni-traveling-carrier photodiode with introduction of a hydro-dynamic model

    Science.gov (United States)

    Guoyu, Li; Yejin, Zhang; Xiaojian, Li; Lilin, Tian

    2010-10-01

    Characteristics of a uni-traveling-carrier photodiode (UTC-PD) are investigated. A hydro-dynamic model is introduced which takes into account the electrons' velocity overshoot in the depletion region, which is a more accurate high speed device than using the normal drift—diffuse model. Based on previous results, two modified UTC-PDs are presented, and an optimized device is obtained, the bandwidth of which is more than twice that of the original.

  3. Hydrodynamic Effects on Drug Dissolution and Deaggregation in the Small Intestine-A Study with Felodipine as a Model Drug.

    Science.gov (United States)

    Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil

    2015-09-01

    The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. A coupled three-dimensional hydrodynamic model for predicting hypolimnetic oxygenation and epilimnetic mixing in a shallow eutrophic reservoir

    Science.gov (United States)

    Chen, Shengyang; Lei, Chengwang; Carey, Cayelan C.; Gantzer, Paul A.; Little, John C.

    2017-01-01

    Artificial mixing and hypolimnetic oxygenation are two common methods for improving water quality in reservoirs. To examine the effects of their operation on the thermal structure of the water column, we used a three-dimensional hydrodynamic model coupled with a newly developed water-jet model and an existing linear bubble-plume model in conjunction with whole-reservoir in situ mixing experiments in a drinking-water reservoir. This reservoir has a side-stream supersaturation (SSS) hypolimnetic oxygenation system and a bubble-plume epilimnetic mixing (EM) system installed to reduce hypolimnetic hypoxia and algal blooms. The results show that the SSS successfully adds dissolved oxygen to the hypolimnion without destratifying the reservoir, whereas the EM, located at the lower metalimnetic boundary, deepens this boundary and partially mixes the metalimnion and epilimnion. The newly developed water-jet model coupled with the hydrodynamic model can successfully predict the variation of the thermal structure in the reservoir. The extent to which the SSS and EM systems affect the thermal structure of the reservoir is also quantified by further application of the coupled hydrodynamic model.

  5. A Prognostic Model for One-year Mortality in Patients Requiring Prolonged Mechanical Ventilation

    Science.gov (United States)

    Carson, Shannon S.; Garrett, Joanne; Hanson, Laura C.; Lanier, Joyce; Govert, Joe; Brake, Mary C.; Landucci, Dante L.; Cox, Christopher E.; Carey, Timothy S.

    2009-01-01

    Objective A measure that identifies patients who are at high risk of mortality after prolonged ventilation will help physicians communicate prognosis to patients or surrogate decision-makers. Our objective was to develop and validate a prognostic model for 1-year mortality in patients ventilated for 21 days or more. Design Prospective cohort study. Setting University-based tertiary care hospital Patients 300 consecutive medical, surgical, and trauma patients requiring mechanical ventilation for at least 21 days were prospectively enrolled. Measurements and Main Results Predictive variables were measured on day 21 of ventilation for the first 200 patients and entered into logistic regression models with 1-year and 3-month mortality as outcomes. Final models were validated using data from 100 subsequent patients. One-year mortality was 51% in the development set and 58% in the validation set. Independent predictors of mortality included requirement for vasopressors, hemodialysis, platelet count ≤150 ×109/L, and age ≥50. Areas under the ROC curve for the development model and validation model were 0.82 (se 0.03) and 0.82 (se 0.05) respectively. The model had sensitivity of 0.42 (se 0.12) and specificity of 0.99 (se 0.01) for identifying patients who had ≥90% risk of death at 1 year. Observed mortality was highly consistent with both 3- and 12-month predicted mortality. These four predictive variables can be used in a simple prognostic score that clearly identifies low risk patients (no risk factors, 15% mortality) and high risk patients (3 or 4 risk factors, 97% mortality). Conclusions Simple clinical variables measured on day 21 of mechanical ventilation can identify patients at highest and lowest risk of death from prolonged ventilation. PMID:18552692

  6. Hydrodynamic Lyapunov modes and strong stochasticity threshold in Fermi-Pasta-Ulam models.

    Science.gov (United States)

    Yang, Hong-Liu; Radons, Günter

    2006-06-01

    The existence of a strong stochasticity threshold (SST) has been detected in many Hamiltonian lattice systems, including the Fermi-Pasta-Ulam (FPU) model, which is characterized by a crossover of the system dynamics from weak to strong chaos with increasing energy density epsilon. Correspondingly, the relaxation time to energy equipartition and the largest Lyapunov exponent exhibit different scaling behavior in the regimes below and beyond the threshold value. In this paper, we attempt to go one step further in this direction to explore further changes in the energy density dependence of other Lyapunov exponents and of hydrodynamic Lyapunov modes (HLMs). In particular, we find that for the FPU-beta and FPU-alpha(beta) models the scalings of the energy density dependence of all Lyapunov exponents experience a similar change at the SST as that of the largest Lyapunov exponent. In addition, the threshold values of the crossover of all Lyapunov exponents are nearly identical. These facts lend support to the point of view that the crossover in the system dynamics at the SST manifests a global change in the geometric structure of phase space. They also partially answer the question of why the simple assumption that the ambient manifold representing the system dynamics is quasi-isotropic works quite well in the analytical calculation of the largest Lyapunov exponent. Furthermore, the FPU-beta model is used as an example to show that HLMs exist in Hamiltonian lattice models with continuous symmetries. Some measures are defined to indicate the significance of HLMs. Numerical simulations demonstrate that there is a smooth transition in the energy density dependence of these variables corresponding to the crossover in Lyapunov exponents at the SST. In particular, our numerical results indicate that strong chaos is essential for the appearance of HLMs and those modes become more significant with increasing degree of chaoticity.

  7. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

    KAUST Repository

    Qian, Tiezheng

    2009-10-29

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed. © 2009 IOP Publishing Ltd.

  8. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Qian Tiezheng; Wu Congmin; Lei Siu Long; Wang Xiaoping [Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sheng Ping, E-mail: maqian@ust.h [Department of Physics and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2009-11-18

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed.

  9. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows.

    Science.gov (United States)

    Qian, Tiezheng; Wu, Congmin; Lei, Siu Long; Wang, Xiao-Ping; Sheng, Ping

    2009-11-18

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed.

  10. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time

    Energy Technology Data Exchange (ETDEWEB)

    Korotkin, Ivan, E-mail: i.korotkin@qmul.ac.uk; Karabasov, Sergey; Markesteijn, Anton [The School of Engineering and Material Science, Queen Mary University of London, Mile End Road, E1 4NS London (United Kingdom); Nerukh, Dmitry; Scukins, Arturs [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Farafonov, Vladimir [Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkiv (Ukraine); Pavlov, Evgen [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Faculty of Physics, Kiev National Taras Shevchenko University, Prospect Acad. Glushkova 4, Kiev 03127 (Ukraine)

    2015-07-07

    A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

  11. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  12. Modeling the chemical evolution of Omega Centauri using three-dimensional hydrodynamical simulations

    CERN Document Server

    Marcolini, A; D'Ercole, A; Gibson, B K; Ferraro, F R

    2007-01-01

    We present a hydrodynamical and chemical model for the globular cluster Omega Cen, under the assumption that it is the remnant of an ancient dwarf spheroidal galaxy (dSph), the bulk of which was disrupted and accreted by our Galaxy ~10 Gyr ago. We highlight the very different roles played by Type II and Type Ia supernovae (SNe) in the chemical enrichment of the inner regions of the putative parent dSph. While the SNe II pollute the interstellar medium rather uniformly, the SNe Ia ejecta may remain confined inside dense pockets of gas as long as succesive SNe II explosions spread them out. Stars forming in such pockets have lower alpha-to-iron ratios than the stars forming elsewhere. Owing to the inhomogeneous pollution by SNe Ia, the metal distribution of the stars in the central region differs substantially from that of the main population of the dwarf galaxy, and resembles that observed in Omega Cen. This inhomogeneous mixing is also responsible for a radial segregation of iron-rich stars with depleted [alp...

  13. Optical response of cylindrical multilayers in the context of hydrodynamic convection-diffusion model

    Science.gov (United States)

    Dong, Tianyu; Shi, Yi; Lu, Lizhen; Chen, Feng; Ma, Xikui; Mittra, Raj

    2016-09-01

    In this work, we generalize the cascading scattering matrix algorithm for calculating the optical response of concentric multilayered structures comprised of either plasmonic metal or dielectric, within the framework of hydrodynamic convection-diffusion model of electrodynamics. Two additional boundary conditions, namely, the continuity of first order pressure of free electron density and the continuity of normal components of free charge velocity, respectively, are adopted in order to handle the behaviour at interfaces involving metals. Scattering matrices at interfaces can be readily obtained and cascaded to obtain the modal coefficients in each layer by expanding electromagnetic waves in harmonic modes with cylindrical vector wave functions. We have validated the proposed method by analyzing the optical responses of several configurations of nanostructures, including a bi-metallic nanocylinder and a hyperlens. We found that nonlocal effects can be important for small structures, when the characteristic size is comparable to the Fermi wavelength. The proposed method shows its capability and flexibility to solve hybrid metal-dielectric multilayer structures even when the number of layers is large. Although we have discussed our method in the context of the retarded radiation regime, it can be applied in quasi-static scenarios without any difficulties. Furthermore, it may be extended to solve similar problems in other areas of physics, such as acoustics.

  14. Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS

    Science.gov (United States)

    Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.

    2010-11-01

    The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).

  15. A Mathematical Model for the Flow Resistance and the Related Hydrodynamic Dispersion Induced by River Dunes

    Directory of Open Access Journals (Sweden)

    Marilena Pannone

    2013-01-01

    Full Text Available Present work is aimed at the derivation of a simply usable equation for the total flow resistance associated with river bedforms, by a unifying approach allowing for bypassing some of the limiting restrictions usually adopted in similar types of studies. Specifically, we focused on the effect induced by the out-of-phase free surface undulations appearing in presence of sand dunes. The proposed expression, obtained by combining the balance of momentum referred to the control volume whose longitudinal dimension coincides with the dune wavelength and the energy balance integrated between its extreme sections, was tested by comparison with some laboratory experimental measurements available in the literature and referred to steady flow past fixed, variably rough bedforms. In terms of shear stress or friction factor, the proposed theory provides estimates in good agreement with the real data, especially if evaluated against the performances provided by other classical similar approaches. Moreover, when analyzed in terms of hydrodynamic dispersive properties as a function of the skin roughness on the basis of a previously derived analytical solution, the dune-covered beds seem to behave like meandering channels, responsible for a globally enhanced fluid particles longitudinal spreading, with a relatively reduced effect in the presence of less pronounced riverbed modelling.

  16. Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling

    Science.gov (United States)

    Umgiesser, Georg; Ferrarin, Christian; Cucco, Andrea; De Pascalis, Francesca; Bellafiore, Debora; Ghezzo, Michol; Bajo, Marco

    2014-04-01

    A comparison study between 10 Mediterranean lagoons has been carried out by means of the 3-D numerical model SHYFEM. The investigated basins are the Venice and Marano-Grado lagoons in the Northern Adriatic Sea, the Lesina and Varano lagoons in the Southern Adriatic Sea, the Taranto basin in the Ionian Sea, the Cabras Lagoon in Sardinia, the Ganzirri and Faro lagoons in Sicily, the Mar Menor in Spain, and the Nador Lagoon in Morocco. This study has been focused on hydrodynamics in terms of exchange rates, transport time scale, and mixing. Water exchange depends mainly on the inlet shape and tidal range, but also on the wind regimes in the case of multi-inlet lagoons. Water renewal time, which is mostly determined by the exchange rate, is a powerful concept that allows lagoons to be characterized with a time scale. In the case of the studied lagoons, the renewal time ranged from few days in the Marano-Grado Lagoon up to 1 year in the case of the Mar Menor. The analysis of the renewal time frequency distribution allows identifying subbasins. The numerical study proved to be a useful tool for the intercomparison and classification of the lagoons. These environments range from a leaky type to a choked type of lagoons and give a representative picture of the lagoons situated around the Mediterranean basin. Mixing efficiency turns out to be a function of the morphological complexity, but also of the forcings acting on the system.

  17. Hydrodynamic Models of Radio Galaxy Morphology: Winged and X-shaped Sources

    CERN Document Server

    Hodges-Kluck, Edmund J

    2011-01-01

    We present three-dimensional hydrodynamic models of radio galaxies interacting with initially relaxed hot atmospheres and explore the significant off-axis radio lobe structures which result under certain conditions. With a focus on the "winged" and "X-shaped" radio galaxy population, we confirm the importance of observed trends such as the connection of wing formation with jets co-aligned with the major axis of the surrounding atmosphere. These wings are formed substantially by the deflection of lobe plasma flowing back from the hot spots (backflow) and develop in two stages: supersonic expansion of an overpressured cocoon at early times followed by buoyant expansion at later times. We explore a limited parameter space of jet and atmosphere properties and find that the most prominent wings are produced when a decaying jet is injected into a small, dense, highly elliptical atmosphere. On the basis of this search, we argue that the deflection of backflow by gradients in the hot atmosphere is a strong candidate ...

  18. Cross-National Validation of Prognostic Models Predicting Sickness Absence and the Added Value of Work Environment Variables

    NARCIS (Netherlands)

    Roelen, Corne A. M.; Stapelfeldt, Christina M.; Heymans, Martijn W.; van Rhenen, Willem; Labriola, Merete; Nielsen, Claus V.; Bultmann, Ute; Jensen, Chris

    2015-01-01

    Purpose To validate Dutch prognostic models including age, self-rated health and prior sickness absence (SA) for ability to predict high SA in Danish eldercare. The added value of work environment variables to the models' risk discrimination was also investigated. Methods 2,562 municipal eldercare w

  19. Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model

    Science.gov (United States)

    Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.

    2015-06-01

    A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.

  20. Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability

    Directory of Open Access Journals (Sweden)

    M. Saito

    2014-08-01

    Full Text Available This study investigates the capacity of a prognostic biosphere model to simulate global variability in atmospheric CO2 concentrations and vegetation carbon dynamics under current environmental conditions. Global data sets of atmospheric CO2 concentrations, above-ground biomass (AGB, and net primary productivity (NPP in terrestrial vegetation were assimilated into the biosphere model using an inverse modeling method combined with an atmospheric transport model. In this process, the optimal physiological parameters of the biosphere model were estimated by minimizing the misfit between observed and modeled values, and parameters were generated to characterize various biome types. Results obtained using the model with the optimized parameters correspond to the observed seasonal variations in CO2 concentration and their annual amplitudes in both the Northern and Southern Hemispheres. In simulating the mean annual AGB and NPP, the model shows improvements in estimating the mean magnitudes and probability distributions for each biome, as compared with results obtained using prior simulation parameters. However, the model is less efficient in its simulation of AGB for forest type biomes. This misfit suggests that more accurate values of input parameters, specifically, grid mean AGB values and seasonal variabilities in physiological parameters, are required to improve the performance of the simulation model.