WorldWideScience

Sample records for hydrodynamic cavitation induced

  1. Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation

    Science.gov (United States)

    Gogate, Parag R.; Pandit, Aniruddha B.

    Hydrodynamic Cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for harnessing the spectacular effects of cavitation in physical and chemical processing. The present chapter covers the basics of hydrodynamic cavitation including the considerations for the bubble dynamics analysis, reactor designs and recommendations for optimum operating parameters. An overview of applications in different areas of physical, chemical and biological processing on scales ranging from few grams to several hundred kilograms has also been presented. Since hydrodynamic cavitation was initially proposed as an alternative to acoustic cavitation, it is necessary to compare the efficacy of both these modes of cavitations for a variety of applications and hence comparisons have been discussed either on the basis of energy efficiency or based on the scale of operation. Overall it appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.

  2. Hydrodynamic cavitation for sonochemical effects.

    Science.gov (United States)

    Moholkar, V S; Kumar, P S; Pandit, A B

    1999-03-01

    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.

  3. Degradation of chlorocarbons driven by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L.; Ondruschka, B.; Braeutigam, P. [Institut fuer Technische Chemie und Umweltchemie, Friedrich-Schiller-Universitaet Jena, Jena (Germany)

    2007-05-15

    To provide an efficient lab-scale device for the investigation of the degradation of organic pollutants driven by hydrodynamic cavitation, the degradation kinetics of chloroform and carbon tetrachloride and the increase of conductivity in aqueous solutions were measured. These are values which were not previously available. Under hydrodynamic cavitation conditions, the degradation kinetics for chlorocarbons was found to be pseudo first-order. Meanwhile, C-H and C-Cl bonds are broken, and Cl{sub 2}, Cl{sup .}, Cl{sup -} and other ions released can increase the conductivity and enhance the oxidation of KI in aqueous solutions. The upstream pressures of the orifice plate, the cavitation number, and the solution temperature have substantial effects on the degradation kinetics. A decreased cavitation number can result in more cavitation events and enhances the degradation of chlorocarbons and/or the oxidation of KI. A decrease in temperature is generally favorable to the cavitation chemistry. Organic products from the degradation of carbon tetrachloride and chloroform have demonstrated the formation and recombination of free radicals, e.g., CCl{sub 4}, C{sub 2}Cl{sub 4}, and C{sub 2}Cl{sub 6} are produced from the degradation of CHCl{sub 3}. CHCl{sub 3} and C{sub 2}Cl{sub 6} are produced from the degradation of CCl{sub 4}. Both the chemical mechanism and the reaction kinetics of the degradation of chlorocarbons induced by hydrodynamic cavitation are consistent with those obtained from the acoustic cavitation. Therefore, the technology of hydrodynamic cavitation should be a good candidate for the removal of organic pollutants from water. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. A theoretical study of hydrodynamic cavitation.

    Science.gov (United States)

    Arrojo, S; Benito, Y

    2008-03-01

    The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.

  5. Modeling hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.S.; Pandit, A.B. [Mumbai Univ. (India). Chemical Engineering Div.

    1999-12-01

    Cavitation as a source and method of energy input for chemical processing is increasingly studied due to its ability to generate localized high temperatures and pressures under nearly ambient conditions. Compared to cavitation generated by ultrasound, hydrodynamic cavitation has been proved to be a very energy-efficient alternative. A simple and unified model has been developed to study the cavitation phenomena in hydraulic systems with emphasis on the venturi tube and high-speed homogenizer. The model has been found to be satisfactory in explaining the effect of operating variables and equipment geometry on two different modes of cavitation generation qualitatively and in some cases quantitatively. (orig.)

  6. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Stražar, Marjeta; Heath, Ester

    2014-05-01

    In this study, the removal of clofibric acid, ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac residues from wastewater, using a novel shear-induced cavitation generator has been systematically studied. The effects of temperature, cavitation time and H2O2 dose on removal efficiency were investigated. Optimisation (50°C; 15 min; 340 mg L(-1) of added H2O2) resulted in removal efficiencies of 47-86% in spiked deionised water samples. Treatment of actual wastewater effluents revealed that although matrix composition reduces removal efficiency, this effect can be compensated for by increasing H2O2 dose (3.4 g L(-1)) and prolonging cavitation time (30 min). Hydrodynamic cavitation has also been investigated as either a pre- or a post-treatment step to biological treatment. The results revealed a higher overall removal efficiency of recalcitrant diclofenac and carbamazepine, when hydrodynamic cavitation was used prior to as compared to post biological treatment i.e., 54% and 67% as compared to 39% and 56%, respectively. This is an important finding since diclofenac is considered as a priority substance to be included in the EU Water Framework Directive. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels.

    Science.gov (United States)

    Podbevsek, D; Colombet, D; Ledoux, G; Ayela, F

    2018-05-01

    We have performed hydrodynamic cavitation experiments with an aqueous luminol solution as the working fluid. Light emission, together with the high frequency noise which characterizes cavitation, was emitted by the two-phase flow, whereas no light emission from luminol was recorded in the single phase liquid flow. Light emission occurs downstream transparent microdiaphragms. The maximum level of the recorded signal was around 180 photons per second with flow rates of 380 µl/s, that corresponds to a real order of magnitude of the chemiluminescence of 75,000 photons per second. The yield of emitted photons increases linearly with the pressure drop, which is proportional to the square of the total flow rate. Chemiluminescence of luminol is a direct and a quantitative demonstration of the presence of OH hydroxyl radicals created by hydrodynamic cavitation. The presented method could be a key to optimize channel geometry for processes where radical production is essential. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Shear viscosity, cavitation and hydrodynamics at LHC

    International Nuclear Information System (INIS)

    Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.

    2011-01-01

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  9. Effects of Hydrodynamic Cavitation of a Restriction Orifice on Crud-like Deposits

    International Nuclear Information System (INIS)

    Kim, Seong Man; Lee, Seung Won; Park, Sung Dae; Kang, Sarah; Seo, Han; Bang, In Cheol

    2011-01-01

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core has shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice fundamentally

  10. Effects of Hydrodynamic Cavitation of a Restriction Orifice on Crud-like Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Man; Lee, Seung Won; Park, Sung Dae; Kang, Sarah; Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2011-10-15

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core has shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice fundamentally

  11. Use of hydrodynamic cavitation in (waste)water treatment.

    Science.gov (United States)

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Application of Hydrodynamic Cavitation for Food and Bioprocessing

    Science.gov (United States)

    Gogate, Parag R.

    Hydrodynamic cavitation can be simply generated by the alterations in the flow field in high speed/high pressure devices and also by passage of the liquid through a constriction such as orifice plate, venturi, or throttling valve. Hydrodynamic cavitation results in the formation of local hot spots, release of highly reactive free radicals, and enhanced mass transfer rates due to turbulence generated as a result of liquid circulation currents. These conditions can be suitably applied for intensification of different bioprocessing applications in an energy-efficient manner as compared to conventionally used ultrasound-based reactors. The current chapter aims at highlighting different aspects related to hydrodynamic cavitation, including the theoretical aspects for optimization of operating parameters, reactor designs, and overview of applications relevant to food and bioprocessing. Some case studies highlighting the comparison of hydrodynamic cavitation and acoustic cavitation reactors will also be discussed.

  13. Experimental investigation of hydrodynamic cavitation through orifices of different geometries

    Science.gov (United States)

    Rudolf, Pavel; Kubina, Dávid; Hudec, Martin; Kozák, Jiří; Maršálek, Blahoslav; Maršálková, Eliška; Pochylý, František

    Hydrodynamic cavitation in single and multihole orifices was experimentally investigated to assess their hydraulic characteristics: loss coefficients, inception cavitation number, cavitation number for transition to supercavitation. Significant difference for singlehole and multihole orifices was observed in terms of the measured loss coefficient. It is significantly more effective to use multihole orifices, where energy dissipation is much lower.It was found that using scaling factor given by ratio of orifice thickness suggests linear behaviour of both loss coefficient and inception cavitation number. Orifices seem to be convenient choice as flow constriction devices inducing cavitation due to their simplicity.

  14. Experimental investigation of hydrodynamic cavitation through orifices of different geometries

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2017-01-01

    Full Text Available Hydrodynamic cavitation in single and multihole orifices was experimentally investigated to assess their hydraulic characteristics: loss coefficients, inception cavitation number, cavitation number for transition to supercavitation. Significant difference for singlehole and multihole orifices was observed in terms of the measured loss coefficient. It is significantly more effective to use multihole orifices, where energy dissipation is much lower.It was found that using scaling factor given by ratio of orifice thickness suggests linear behaviour of both loss coefficient and inception cavitation number. Orifices seem to be convenient choice as flow constriction devices inducing cavitation due to their simplicity.

  15. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    Science.gov (United States)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  16. Hemolytic potential of hydrodynamic cavitation.

    Science.gov (United States)

    Chambers, S D; Bartlett, R H; Ceccio, S L

    2000-08-01

    The purpose of this study was to determine the hemolytic potentials of discrete bubble cavitation and attached cavitation. To generate controlled cavitation events, a venturigeometry hydrodynamic device, called a Cavitation Susceptibility Meter (CSM), was constructed. A comparison between the hemolytic potential of discrete bubble cavitation and attached cavitation was investigated with a single-pass flow apparatus and a recirculating flow apparatus, both utilizing the CSM. An analytical model, based on spherical bubble dynamics, was developed for predicting the hemolysis caused by discrete bubble cavitation. Experimentally, discrete bubble cavitation did not correlate with a measurable increase in plasma-free hemoglobin (PFHb), as predicted by the analytical model. However, attached cavitation did result in significant PFHb generation. The rate of PFHb generation scaled inversely with the Cavitation number at a constant flow rate, suggesting that the size of the attached cavity was the dominant hemolytic factor.

  17. Towards the concept of hydrodynamic cavitation control

    Science.gov (United States)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    1997-02-01

    A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an ‘ultrasonic nuclei manipulator (UNM)’. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.

  18. Hydrodynamic cavitation: from theory towards a new experimental approach

    Science.gov (United States)

    Lucia, Umberto; Gervino, Gianpiero

    2009-09-01

    Hydrodynamic cavitation is analysed by a global thermodynamics principle following an approach based on the maximum irreversible entropy variation that has already given promising results for open systems and has been successfully applied in specific engineering problems. In this paper we present a new phenomenological method to evaluate the conditions inducing cavitation. We think this method could be useful in the design of turbo-machineries and related technologies: it represents both an original physical approach to cavitation and an economical saving in planning because the theoretical analysis could allow engineers to reduce the experimental tests and the costs of the design process.

  19. Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process.

    Science.gov (United States)

    Torabi Angaji, Mahmood; Ghiaee, Reza

    2015-03-01

    A pilot scale hydrodynamic cavitation (HC) reactor, using iron metal blades, as the heterogeneous catalyst, with no external source of H₂O₂ was developed for catalytic decontamination of unsymmetrical dimethylhydrazine (UDMH) waste water. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The effects of the applied catalyst, pH of the initial solution (1.0-9.7), initial UDMH concentration (2-15 mg/l), inlet pressure (5.5-7.8bar), and downstream pressure (2-6 bar), have been investigated. The results showed that the highest cavitation yield can be obtained at pH 3 and initial UDMH concentration of 10mg/l. Also, an increase in the inlet pressure would lead to an increase in the extent of UDMH degradation. In addition, the optimum value of 3 bar was determined for the downstream pressure that resulted to 98.6% degradation of UDMH after 120 min of processing time. Neither n-nitrosodimethylamine (NDMA) nor any other toxic byproduct (/end-product) was observed in the investigated samples. Formic acid and acetic acid, as well as nitromethane, were identified as oxidation by-products. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of UDMH. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue.

    Science.gov (United States)

    Itah, Zeynep; Oral, Ozlem; Perk, Osman Yavuz; Sesen, Muhsincan; Demir, Ebru; Erbil, Secil; Dogan-Ekici, A Isin; Ekici, Sinan; Kosar, Ali; Gozuacik, Devrim

    2013-11-01

    Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.

  1. Investigation on Hydrodynamic Cavitation of a Restriction Orifice and Static Mixer on Crud-like Deposits

    International Nuclear Information System (INIS)

    Kim, Seong Man; Lee, Seung Won; Park, Seong Dae; Kang, Sa Rah; Seo, Han; Bang, In Cheol

    2012-01-01

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core have shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice and static mixer fundamentally

  2. Investigation on Hydrodynamic Cavitation of a Restriction Orifice and Static Mixer on Crud-like Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Man; Lee, Seung Won; Park, Seong Dae; Kang, Sa Rah; Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-05-15

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core have shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice and static mixer fundamentally

  3. Hydrodynamic cavitation: a bottom-up approach to liquid aeration

    NARCIS (Netherlands)

    Raut, J.S.; Stoyanov, S.D.; Duggal, C.; Pelan, E.G.; Arnaudov, L.N.; Naik, V.M.

    2012-01-01

    We report the use of hydrodynamic cavitation as a novel, bottom-up method for continuous creation of foams comprising of air microbubbles in aqueous systems containing surface active ingredients, like proteins or particles. The hydrodynamic cavitation was created using a converging-diverging nozzle.

  4. Metal of cavitation erosion of a hydrodynamic reactor

    Science.gov (United States)

    Zakirzakov, A. G.; Brand, A. E.; Petryakov, V. A.; Gordievskaya, E. F.

    2017-02-01

    Cavitation erosion is a major cause of the petroleum equipment hydraulic erosion, which leads to the metal weight loss of the equipment and its breakdown, which can be followed by the full stop of the plant or company work. The probability of the metal weight loss and equipment failure can be reduced by the use of special protective coatings or rivets, made of the sacrificial metals, the use of which significantly increases the service life and the production equipment reliability. The article investigates the cavitation erosion effect, occurred under the condition of the advanced hydrodynamic cavitation on the hydrodynamic cavitation reactor. This article presents the results of the experiments and recommendations for increasing the operational resource.

  5. Biomedical device prototype based on small scale hydrodynamic cavitation

    Science.gov (United States)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  6. Biomedical device prototype based on small scale hydrodynamic cavitation

    Directory of Open Access Journals (Sweden)

    Morteza Ghorbani

    2018-03-01

    Full Text Available This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH. The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  7. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    OpenAIRE

    Ferrari, A.

    2017-01-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles ...

  8. Cavitation instabilities and rotordynamic effects in turbopumps and hydroturbines turbopump and inducer cavitation, experiments and design

    CERN Document Server

    Salvetti, Maria

    2017-01-01

    The book provides a detailed approach to the physics, fluid dynamics, modeling, experimentation and numerical simulation of cavitation phenomena, with special emphasis on cavitation-induced instabilities and their implications on the design and operation of high performance turbopumps and hydraulic turbines. The first part covers the fundamentals (nucleation, dynamics, thermodynamic effects, erosion) and forms of cavitation (attached cavitation, cloud cavitation, supercavitation, vortex cavitation) relevant to hydraulic turbomachinery, illustrates modern experimental techniques for the characterization, visualization and analysis of cavitating flows, and introduces the main aspects of the hydrodynamic design and performance of axial inducers, centrifugal turbopumps and hydo-turbines. The second part focuses on the theoretical modeling, experimental analysis, and practical control of cavitation-induced fluid-dynamic and rotordynamic instabilities of hydraulic turbomachinery, with special emphasis on cavitating...

  9. VibroCav : Hydrodynamic Vibration and Cavitation Technology

    NARCIS (Netherlands)

    Bakker, T.W.

    2012-01-01

    Vibration and cavitation can be generated in many ways and serve many useful purposes. This study describes physical aspects of useful vibration and cavitation for a broad spectrum of applications at atmospheric or elevated pressures. After a review of available devices, hydrodynamic

  10. Modeling of hydrodynamic cavitation reactors: a unified approach

    NARCIS (Netherlands)

    Moholkar, V.S.; Pandit, A.B.

    2001-01-01

    An attempt has been made to present a unified theoretical model for the cavitating flow in a hydrodynamic cavitation reactor using the nonlinear continuum mixture model for two-phase flow as the basis. This model has been used to describe the radial motion of bubble in the cavitating flow in two

  11. An experimental investigation of hydrodynamic cavitation in micro-Venturis

    Science.gov (United States)

    Mishra, Chandan; Peles, Yoav

    2006-10-01

    The existence of hydrodynamic cavitation in the flow of de-ionized water through micro-Venturis has been witnessed in the form of traveling bubble cavitation and fully developed streamer bubble/supercavitation, and their mechanisms have been discussed. High-speed photography and flow visualization disclose inchoate cavitation bubbles emerging downstream from the micro-Venturi throat and the presence of a single streamer bubble/supercavity, which is equidistant from the micro device walls. The supercavity initiates inside the diffuser section and extends until the microchannel exit and proceeds to bifurcate the incoming flow. This article strives to provide numerical data and experimental details of hydrodynamic cavitation taking place within micro-Venturis.

  12. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation.

    Science.gov (United States)

    Šarc, Andrej; Stepišnik-Perdih, Tadej; Petkovšek, Martin; Dular, Matevž

    2017-01-01

    Within the last years there has been a substantial increase in reports of utilization of hydrodynamic cavitation in various applications. It has came to our attention that many times the results are poorly repeatable with the main reason being that the researchers put significant emphasis on the value of the cavitation number when describing the conditions at which their device operates. In the present paper we firstly point to the fact that the cavitation number cannot be used as a single parameter that gives the cavitation condition and that large inconsistencies in the reports exist. Then we show experiments where the influences of the geometry, the flow velocity, the medium temperature and quality on the size, dynamics and aggressiveness of cavitation were assessed. Finally we show that there are significant inconsistencies in the definition of the cavitation number itself. In conclusions we propose a number of parameters, which should accompany any report on the utilization of hydrodynamic cavitation, to make it repeatable and to enable faster progress of science and technology development. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biodiesel production through hydrodynamic cavitation and performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amit; Verma, Ashish; Kachhwaha, S.S.; Maji, S. [Department of Mechanical Engineering, Delhi College of Engineering, Bawana Road, Delhi 110042 (India)

    2010-03-15

    This paper presents the details of development of a biodiesel production test rig based on hydrodynamic cavitation followed by results of experimental investigation carried out on a four cylinder, direct injection water cooled diesel engine operating on diesel and biodiesel blend of Citrullus colocyntis (Thumba) oil. The experiment covers a wide range of engine rpm. Results show that biodiesel of Thumba oil produced through hydrodynamic cavitation technique can be used as an alternative fuel with better performance and lower emissions compared to diesel. The most significant conclusions are that (1) Biodiesel production through hydrodynamic cavitation technique seems to be a simple, efficient, time saving, eco-friendly and industrially viable process. (2) 30% biodiesel blend of Thumba oil shows relatively higher brake power, brake thermal efficiency, reduced bsfc and smoke opacity with favourable p-{theta} diagram as compared to diesel. (author)

  14. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite

    Directory of Open Access Journals (Sweden)

    Shirish H. Sonawane

    2010-01-01

    Full Text Available A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH2 concentration were investigated. It was observed that the orifice diameter and its geometry had significant effect on the carbonation process. The reaction rate was significantly faster than that observed in a conventional carbonation process. The particle size was significantly affected by the reactor geometry. The results showed that an orifice with 5 holes of 1 mm size resulted in the particle size reduction to 37 nm. The experimental investigation reveals that hydrodynamic cavitation may be more energy efficient.

  16. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation.

    Science.gov (United States)

    Yi, Chunhai; Lu, Qianqian; Wang, Yun; Wang, Yixuan; Yang, Bolun

    2018-05-01

    In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88-176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation.

    Science.gov (United States)

    Kosel, Janez; Gutiérrez-Aguirre, Ion; Rački, Nejc; Dreo, Tanja; Ravnikar, Maja; Dular, Matevž

    2017-11-01

    The aim of this study was to accurately quantify the impact of hydrodynamic cavitation on the infectivity of bacteriophage MS2, a norovirus surrogate, and to develop a small scale reactor for testing the effect of hydrodynamic cavitation on human enteric viruses, which cannot be easily prepared in large quantities. For this purpose, 3 mL scale and 1 L scale reactors were constructed and tested. Both devices were efficient in generating hydrodynamic cavitation and in reducing the infectivity of MS2 virus. Furthermore, they reached more than 4 logs reductions of viral infectivity, thus confirming the scalability of hydrodynamic cavitation for this particular application. As for the mechanism of page inactivation, we suspect that cavitation generated OH - radicals formed an advanced oxidation process, which could have damaged the host's recognition receptors located on the surface of the bacteriophage. Additional damage could arise from the high shear forces inside the cavity. Moreover, the effectiveness of the cavitation was higher for suspensions containing low initial viral titers that are in similar concentration to the ones found in real water samples. According to this, cavitation generators could prove to be a useful tool for treating virus-contaminated wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Control of hydrodynamic cavitation using ultrasonic

    Science.gov (United States)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    2003-11-01

    Hydrodynamic cavitation is known to have many harmful effects like surface damage and generation of noise. We investigated the use of ultrasonics to control traveling bubble cavitation. Ultrasonic pressure field, produced by a piezoelectric crystal, was applied to modify the nuclei size distribution. Effects of continuous-wave (CW) and pulsed excitations were studied. At low dissolved gas content the CW-mode performed better than the pulsed one, whereas for high gas content the pulsed one was more effective. The dominant mechanisms were Bjerknes force and rectified diffusion in these two cases. Simultaneous excitation by two crystals in CW and pulsed modes was seen to control cavitation better.

  19. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.

    Science.gov (United States)

    Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente

    2014-01-01

    The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.

    Science.gov (United States)

    Joshi, Ravi K; Gogate, Parag R

    2012-05-01

    The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Anaerobic Digestion of Cattle Manure Influenced by Swirling Jet Induced Hydrodynamic Cavitation.

    Science.gov (United States)

    Langone, Michela; Soldano, Mariangela; Fabbri, Claudio; Pirozzi, Francesco; Andreottola, Gianni

    2018-04-01

    In this work, a modified swirling jet-induced cavitation has been employed for increasing anaerobic digestion efficiency of cattle manure. The hydrodynamic cavitation (HC) treatment improved the organic matter solubilization and the anaerobic biodegradability of cattle manure. The degree of disintegration increased by 5.8, 8.9, and 15.8% after the HC treatment at 6.0, 7.0, and 8.0 bars, respectively. However, the HC treatment at 7.0 bars had better results in terms of methane production. This result may be attributed to the possible formation of toxic and refractory compounds at higher inlet pressures, which could inhibit the methanization process. Further, total Kjeldahl nitrogen content was found to decrease with increasing inlet pressures, as the pH and the turbulent mixing favored the ammonia stripping processes. HC treatment decreased the viscosity of the treated cattle manure, favoring the manure pumping and mixing. Considerations on the energy input due to the HC pre-treatment and the energy output due to the enhanced methane yield have been presented. A positive energy balance can be obtained looking at the improved operational practices in the anaerobic digesters after the implementation of the HC pre-treatment.

  2. Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOCl.

    Science.gov (United States)

    Mancuso, Giuseppe; Langone, Michela; Laezza, Marco; Andreottola, Gianni

    2016-09-01

    A hydrodynamic cavitation reactor (Ecowirl) based on swirling jet-induced cavitation has been used in order to allow the degradation of a waste dye aqueous solution (Rhodamine B, RhB). Cavitation generated by Ecowirl reactor was directly compared with cavitation generated by using multiple hole orifice plates. The effects of operating conditions and parameters such as pressure, pH of dye solution, initial concentration of RhB and geometry of the cavitating devices on the degradation rate of RhB were discussed. In similar operative conditions, higher extents of degradation (ED) were obtained using Ecowirl reactor rather than orifice plate. An increase in the ED from 8.6% to 14.7% was observed moving from hole orifice plates to Ecowirl reactor. Intensification in ED of RhB by using hydrodynamic cavitation in presence of NaOCl as additive has been studied. It was found that the decolourization was most efficient for the combination of hydrodynamic cavitation and chemical oxidation as compared to chemical oxidation and hydrodynamic cavitation alone. The value of ED of 83.4% was reached in 37min using Ecowirl combined with NaOCl (4.0mgL(-1)) as compared to the 100min needed by only mixing NaOCl at the same concentration. At last, the energetic consumptions of the cavitation devices have been evaluated. Increasing the ED and reducing the treatment time, Ecowirl reactor resulted to be more energy efficient as compared to hole orifice plates, Venturi and other swirling jet-induced cavitation devices, as reported in literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Statistical analysis of hydrodynamic cavitation events

    Science.gov (United States)

    Gimenez, G.; Sommer, R.

    1980-10-01

    The frequency (number of events per unit time) of pressure pulses produced by hydrodynamic cavitation bubble collapses is investigated using statistical methods. The results indicate that this frequency is distributed according to a normal law, its parameters not being time-evolving.

  4. Analysis on transient hydrodynamic characteristics of cavitation process for reactor coolant pump

    International Nuclear Information System (INIS)

    Wang Xiuli; Wang Peng; Yuan Shouqi; Zhu Rongsheng; Fu Qiang

    2014-01-01

    The reactor coolant pump hydrodynamic characteristics at different cavitation conditions were studied by using flow field analysis software ANSYS CFX, and the corresponding data were processed and analyzed by using Morlet wavelet transform and fast Fourier transform. The results show that gas content presents the law of exponential function with the pressure reduction or time increase. In the cavitation primary condition, the pulsation frequency of head for the reactor coolant pump is mainly low frequency, and the main frequency of pressure pulsation is still rotation frequency while the effect of the pressure pulsation caused by cavitation on main frequency is not obvious. With the development of cavitation, the pressure fluctuation induced by cavitation becomes more serious especially for the main frequency, secondary frequency and pulsating amplitude while the head pulsation frequency is given priority to low frequency pulse. Under serious cavitation condition, the head pulsation frequency is given priority to irregular changes of pulse high frequency, and also contains almost regular changes of low frequency. (authors)

  5. Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation.

    Science.gov (United States)

    Morison, K R; Hutchinson, C A

    2009-01-01

    The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24 kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7 bar. Hydrodynamic cavitation had a maximum efficiency of about 5 x 10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8 x 10(-11) mol J(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.

  6. Experimental investigation of cavitation induced air release

    Science.gov (United States)

    Kowalski, Karoline; Pollak, Stefan; Hussong, Jeanette

    Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.

  7. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    Science.gov (United States)

    Ferrari, A.

    2017-03-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.

  8. Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment.

    Science.gov (United States)

    Perk, Osman Yavuz; Şeşen, Muhsincan; Gozuacik, Devrim; Koşar, Ali

    2012-09-01

    The objective of this study is to reveal the potential of micro scale hydrodynamic bubbly cavitation for the use of kidney stone treatment. Hydrodynamically generated cavitating bubbles were targeted to the surfaces of 18 kidney stone samples made of calcium oxalate, and their destructive effects were exploited in order to remove kidney stones in in vitro experiments. Phosphate buffered saline (PBS) solution was used as the working fluid under bubbly cavitating conditions in a 0.75 cm long micro probe of 147 μm inner diameter at 9790 kPa pressure. The surface of calcium oxalate type kidney stones were exposed to bubbly cavitation at room temperature for 5 to 30 min. The eroded kidney stones were visually analyzed with a high speed CCD camera and using SEM (scanning electron microscopy) techniques. The experiments showed that at a cavitation number of 0.017, hydrodynamic bubbly cavitation device could successfully erode stones with an erosion rate of 0.31 mg/min. It was also observed that the targeted application of the erosion with micro scale hydrodynamic cavitation may even cause the fracture of the kidney stones within a short time of 30 min. The proposed treatment method has proven to be an efficient instrument for destroying kidney stones.

  9. Occurrence of hydrodynamic cavitation.

    Science.gov (United States)

    Nosov, V R; Gómez-Mancilla, J C; Meda-Campaña, J A

    2011-01-01

    In this paper, the conditions under which cavitation (or liquid film rupture) can or cannot occur in thin layers of moving liquid are derived for three typical cases. At the same time, expressions depending on geometrical and movement parameters, where cavitation might start, are given. The results are obtained using simple engineering terms, which can be used in cases whether it is necessary to avoid cavitation or to induce it.

  10. Comparison of Nannochloropsis sp. cells disruption between hydrodynamic cavitation and conventional extraction

    Directory of Open Access Journals (Sweden)

    Setyawan Martomo

    2018-01-01

    Full Text Available Biodiesel production from microalgae is one of the solution of the future energy problem, but its production cost is still high. One of the costly stages of this process is the lipid extraction process. It can be reduced by microalgae cell disruption. One of the mechanical method to cell disruption with the lowest energy requirement is hydrodynamic cavitation. This aim of this study is to evaluate the distribution coefficient and the mass transfer coefficient value of lipid extraction of Nannochloropsis sp. assisted by hydrodynamic cavitation and compare with conventional extraction. The hydrodynamic cavitation extraction was done at 34 °C, 1 atm. The conventional extraction was done at 34 °C, 1 atm with stirring speed 260 and 1000 rpm. The experimental result shows that the distribution coefficient dependent on the temperature with the values for 50, 44, 38 and 34 °C were 0.502, 0.394, 0.349, and 0.314 respectively. And it was according to Van’ Hoff equation with the values of ΔH° was 20.718 kJ/mol and ΔS° was 58.05 J/mol/K. The hydrodynamic cavitation extraction was faster than conventional. The mass transfer coefficient values for hydrodynamic cavitation, conventional 260 rpm and 1000 rpm were 7.373, 0.534 and 0.121 1/s respectively.

  11. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  12. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-21

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s -1 ) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  13. Experimental investigation of cavitation induced air release

    Directory of Open Access Journals (Sweden)

    Kowalski Karoline

    2017-01-01

    Full Text Available Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.

  14. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    Science.gov (United States)

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  15. Oxidation of alkylarenes to the corresponding acids using aqueous potassium permanganate by hydrodynamic cavitation.

    Science.gov (United States)

    Ambulgekar, G V; Samant, S D; Pandit, A B

    2004-05-01

    Oxidation of toluene using aqueous potassium permanganate was studied under heterogeneous condition in the presence of hydrodynamic cavitation and compared with the results of the reaction under acoustic cavitation. Various parameters, such as quantity of potassium permanganate, toluene to aqueous phase ratio, reaction time and cavitation parameters such as orifice plate, and pump discharge pressure were optimized. The reaction was found to be considerably accelerated at ambient temperature in the presence of cavitation. On comparison, it was found that when 1 kJ of energy was passed to the reaction mixture in the case of acoustic cavitation, the product obtained was 4.63 x 10(-6) mol, whereas when 1 kJ of energy was passed to the reaction mixture in the case of hydrodynamic cavitation the product obtained was 2.70 x 10(-5) mol. Hence, about six times more product would be obtained in the case of hydrodynamic cavitation than in the case of acoustic cavitation at same energy dissipation. It has been observed that further optimization is possible.

  16. Numerical and experimental study of a hydrodynamic cavitation tube

    Science.gov (United States)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  17. Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods.

    Science.gov (United States)

    Milly, P J; Toledo, R T; Harrison, M A; Armstead, D

    2007-11-01

    Hydrodynamic cavitation is the formation of gas bubbles in a fluid due to pressure fluctuations induced by mechanical means. Various high-acid (pH hydrodynamic cavitation reactor to determine if commercial sterility can be achieved at reduced processing temperatures. Sporicidal properties of the process were also tested on a low-acid (pH > [corrected] 4.6) fluid food. Fluid foods were pumped under pressure into a hydrodynamic cavitation reactor and subjected to 2 rotor speeds and flow rates to achieve 2 designated exit temperatures. Thermal inactivation kinetics were used to determine heat-induced lethality for all organisms. Calcium-fortified apple juice processed at 3000 and 3600 rpm rotor speeds on the reactor went through a transient temperature change from 20 to 65.6 or 76.7 degrees C and the total process lethality exceeded 5-log reduction of Lactobacillus plantarum and Lactobacillus sakei cells, and Zygosaccharomyces bailii cells and ascospores. Tomato juice inoculated with Bacillus coagulans spores and processed at 3000 and 3600 rpm rotor speeds endured a transient temperature from 37.8 to 93.3 or 104.4 degrees C with viable CFU reductions of 0.88 and 3.10 log cycles, respectively. Skim milk inoculated with Clostridium sporogenes putrefactive anaerobe 3679 spores and processed at 3000 or 3600 rpm rotor speeds endured a transient temperature from 48.9 to 104.4 or 115.6 degrees C with CFU reductions of 0.69 and 2.84 log cycles, respectively. Utilizing hydrodynamic cavitation to obtain minimally processed pasteurized low-acid and commercially sterilized high-acid fluid foods is possible with appropriate process considerations for different products.

  18. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hydrodynamic cavitation: characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice.

    Science.gov (United States)

    Milly, P J; Toledo, R T; Kerr, W L; Armstead, D

    2008-08-01

    A Shockwave Power Reactor consisting of an annulus with a rotating pock-marked inner cylinder was used to induce hydrodynamic cavitation in calcium-fortified apple juice flowing in the annular space. Lethality on Saccharomyces cerevisiae was assessed at processing temperatures of 65 and 76.7 degrees C. Details of the novel equipment design were presented and energy consumption was compared to conventional and pulsed electric fields processing technologies. The mean log cycle reduction of S. cerevisiae was 6.27 CFU/mL and all treatments resulted in nonrecoverable viable cells. Induced lethality from hydrodynamic cavitation on S. cerevisiae exceeded the predicted values based on experimentally determined thermal resistance. Rotation of 3000 and 3600 rpm at flow rates greater than 1.0 L/min raised product temperature from 20 to 65.6 or 76.7 degrees C, respectively, and energy input was less than 220 kJ/kg. Conversion efficiency from electrical to thermal was 55% to 84%. Hydrodynamic cavitation enhanced lethality of spoilage microorganisms in minimally processed juices and reduced energy usage.

  20. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2014-05-01

    Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2-4 bar) and initial pH of the solution (4-7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Hydrodynamic Cavitation through “Labs on a Chip”: From Fundamentals to Applications

    Directory of Open Access Journals (Sweden)

    Ayela Frederic

    2017-07-01

    Full Text Available Monitoring hydrodynamic cavitation of liquids through “labs on a chip” (i.e. microchannels with a shrinkage, such as microdiaphragms or microventuris is an improvement in experimental approaches devoted to study the mechanisms involved in these multiphase flows. The small sizes of the reactors do not require big substructures. Flow rates of around 1 L/h make possible the characterisation of rare, toxic or expensive pure fluids or mixtures. Moreover, because of that microfluidic approach, an unique inception of the cavitation from a laminar flow regime is also possible, that provides precious databases for simulation or modelisation. Lastly, “labs on a chip” are an extremely versatile solution to perform novel experiments, as they are embeddable in tools basically designed to proceed with small samples (confocal microscopy, spectroscopy. We present here a summary of the former experiments performed by our team, concerning the fundamental aspects of hydrodynamic cavitation in a microchannel. We have recorded, with thermosensitive nanoparticles dispersed in water, the thermal signature of the growth and collapse of bubbles. We were also able to monitor the cavitation flow regime from a laminar single liquid phase. We are currently involved in applicative studies of hydrodynamic cavitation in microchannels, and preliminary results concerning liquid phase exfoliation of graphene will be also presented.

  2. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  3. Killing rate of colony count by hydrodynamic cavitation due to square multi-orifice plates

    Science.gov (United States)

    Dong, Zhiyong; Zhao, Wenqian

    2018-02-01

    Currently,in water supply engineering, the conventional technique of disinfection by chlorination is employed to kill pathogenic microorganisms in raw water. However, chlorine reacts with organic compounds in water and generates disinfection byproducts (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs) etc. These byproducts are of carcinogenic, teratogenic and mutagenic effects, which seriously threaten human health. Hydrodynamic cavitation is a novel technique of drinking water disinfection without DBPs. Effects of orifice size, orifice number and orifice layout of multi-orifice plate, cavitation number, cavitation time and orifice velocity on killing pathogenic microorganisms by cavitation were investigated experimentally in a self-developed square multi-orifice plate-type hydrodynamic cavitation device. The experimental results showed that cavitation effects increased with decrease in orifice size and increase in orifice number, cavitation time and orifice velocity. Along with lowering in cavitation number, there was an increase in Reynolds shear stress,thus enhancing the killing rate of pathogenic microorganism in raw water. In addition, the killing rate by staggered orifice layout was greater than that by checkerboard-type orifice layout.

  4. Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids

    Science.gov (United States)

    Medrano, M.; Zermatten, P. J.; Pellone, C.; Franc, J. P.; Ayela, F.

    2011-12-01

    An experimental study of hydrodynamic cavitation downstream microdiaphragms and microventuris is presented. Deionized water and nanofluids have been characterized within silicon-Pyrex micromachined devices with hydraulic diameters ranging from 51 μm to 104 μm. The input pressure could reach up to 10 bars, and the flow rate was below 1 liter per hour. The output pressure of the devices was fixed at values ranging from 0.3 bar to 2 bars, so that it was possible to study the evolution of the cavitation number as a function of the Reynolds number in the orifice of the diaphragms or in the throat of the venturis. A delay on the onset of cavitation has been recorded for all the devices when they are fed with deionized water, because of the metastability of the liquid and because of the lack of roughness of the walls. For the first time, hydrodynamic cavitation of nanofluids (nanoparticles dispersed into the liquid) has been considered. The presence of nano-aggregates in the liquid does not exhibit any noticeable effect on the cavitation threshold through the venturis. However, such a presence has a strong influence on the cavitation onset in microdiaphragms: above a critical volume solid concentration of ≈10-5, the metastability is broken and the nanofluids behave as tap water filled up with large nuclei. These microdevices, where a low amount of fluid is required to reach cavitating flows, appear to be useful tools in order to study cavitating phenomena in localized area with specific fluids.

  5. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  6. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation.

    Science.gov (United States)

    Kelkar, Mandar A; Gogate, Parag R; Pandit, Aniruddha B

    2008-03-01

    Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of 90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.

  7. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process.

    Science.gov (United States)

    Arrojo, S; Nerín, C; Benito, Y

    2007-03-01

    The generation of OH* radicals inside hydrodynamic cavitation bubbles was monitored using a salicylic acid dosimeter. The reaction of this scavenger with OH* produces 2,5-dihydroxybenzoic acid (2,5-DHB) and, to a lesser degree, 2,3-DHB. The former, is a specific reaction product that can be determined with a very high sensitivity using HPLC-IF. This method has been applied to study the influence of the flow-rate and the solution pH for a given cavitation chamber geometry. The salicylic dosimetry has proven especially suitable for the characteristic time scales of hydrodynamic cavitation (higher than those of ultrasonic cavitation), which usually gives rise to recombination of radicals before they can reach the liquid-phase. Working at low pH the hydrophobic salicylic acid migrates to the gas-liquid interface and reacts with the OH* radicals, increasing the trapping efficiency of the dosimeter. Hydrodynamic cavitation works as a very low frequency sonochemical reactor, and therefore its potential as an Advanced Oxidation Process might be limited to reactions at the gas-liquid interface and inner bubble (i.e. with volatiles and/or hydrophobic substances).

  8. Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.

    Science.gov (United States)

    Adair, Alexander; Mastikhin, Igor V; Newling, Benedict

    2018-06-01

    The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Inducer Hydrodynamic Load Measurement Devices

    Science.gov (United States)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  10. Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation.

    Science.gov (United States)

    Balasundaram, B; Harrison, S T L

    2006-01-01

    Hydrodynamic cavitation results in flow restriction in a flow system causing rapid pressure fluctuations and significant fluid forces. These can be harnessed to mediate microbial cell damage. Hydrodynamic cavitation was studied for the partial disruption of E. coli and selective release of specific proteins relative to the total soluble protein. The effects of the cavitation number, the number of passes, and the specific growth rate of E. coli on the release of periplasmic and cytoplasmic proteins were studied. At the optimum cavitation number of 0.17 for this experimental configuration, 48% of the total soluble protein, 88% of acid phosphatase, and 67% of beta-galactosidase were released by hydrodynamic cavitation in comparison with the maximum release attained using multiple passes through the French Press. The higher release of the acid phosphatase over the total soluble protein suggested preferred release of periplasmic compounds. This was supported by SDS-PAGE analysis. The absence of micronization of cell material resulting in the potential for ease of solid-liquid separation downstream of the cell disruption operation was confirmed by TEM microscopy. E. coli cells cultivated at a higher specific growth rate (0.36 h(-1)) were more easily disrupted than slower grown cells (0.11 h(-1)). The specific activity of the enzyme of interest released by hydrodynamic cavitation, defined as the units of enzyme in solution per milligram of total soluble protein, was greater than that obtained on release by the French Press, high-pressure homogenization, osmotic shock, and EDTA treatment. The selectivity offered indicates the potential of enzyme release by hydrodynamic cavitation to ease the purification in the subsequent downstream processing.

  11. Degradation of BTEX in aqueous solution by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Braeutigam, P.; Wu, Z.-L.; Stark, A.; Ondruschka, B. [Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University, Jena (Germany)

    2009-05-15

    A self-made low-pressure device (up to 100 psi) for hydrodynamic cavitation was tested with the reaction of BTEX (benzene, toluene, ethylbenzene, and xylenes) in water. Experimental parameters, such as inlet pressure, solution temperature, and concentration of the chosen substrates, as well as the effect of different restrictions were investigated. The energy efficiency of the process was measured in comparison to two acoustic cavitation systems (24 and 850 kHz). The products of the BTEX degradation were identified and a pyrolytic degradation pathway is concluded. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Ultrafast cavitation induced by an X-ray laser in water drops

    Science.gov (United States)

    Stan, Claudiu; Willmott, Philip; Stone, Howard; Koglin, Jason; Liang, Mengning; Aquila, Andrew; Robinson, Joseph; Gumerlock, Karl; Blaj, Gabriel; Sierra, Raymond; Boutet, Sebastien; Guillet, Serge; Curtis, Robin; Vetter, Sharon; Loos, Henrik; Turner, James; Decker, Franz-Josef

    2016-11-01

    Cavitation in pure water is determined by an intrinsic heterogeneous cavitation mechanism, which prevents in general the experimental generation of large tensions (negative pressures) in bulk liquid water. We developed an ultrafast decompression technique, based on the reflection of shock waves generated by an X-ray laser inside liquid drops, to stretch liquids to large negative pressures in a few nanoseconds. Using this method, we observed cavitation in liquid water at pressures below -100 MPa. These large tensions exceed significantly those achieved previously, mainly due to the ultrafast decompression. The decompression induced by shock waves generated by an X-ray laser is rapid enough to continue to stretch the liquid phase after the heterogeneous cavitation occurs in water, despite the rapid growth of cavitation nanobubbles. We developed a nucleation-and-growth hydrodynamic cavitation model that explains our results and estimates the concentration of heterogeneous cavitation nuclei in water.

  13. Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers

    NARCIS (Netherlands)

    Rooze, J.; Andre, M.; Gulik, van der G.J.S.; Fernandez-Rivas, D.; Gardeniers, J.G.E.; Rebrov, E.; Schouten, J.C.; Keurentjes, J.T.F.

    2012-01-01

    Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 µm2 rectangular micro channel and in a circular 750 µm diameter milli channel has

  14. Disruption of Brewers' yeast by hydrodynamic cavitation: Process variables and their influence on selective release.

    Science.gov (United States)

    Balasundaram, B; Harrison, S T L

    2006-06-05

    Intracellular products, not secreted from the microbial cell, are released by breaking the cell envelope consisting of cytoplasmic membrane and an outer cell wall. Hydrodynamic cavitation has been reported to cause microbial cell disruption. By manipulating the operating variables involved, a wide range of intensity of cavitation can be achieved resulting in a varying extent of disruption. The effect of the process variables including cavitation number, initial cell concentration of the suspension and the number of passes across the cavitation zone on the release of enzymes from various locations of the Brewers' yeast was studied. The release profile of the enzymes studied include alpha-glucosidase (periplasmic), invertase (cell wall bound), alcohol dehydrogenase (ADH; cytoplasmic) and glucose-6-phosphate dehydrogenase (G6PDH; cytoplasmic). An optimum cavitation number Cv of 0.13 for maximum disruption was observed across the range Cv 0.09-0.99. The optimum cell concentration was found to be 0.5% (w/v, wet wt) when varying over the range 0.1%-5%. The sustained effect of cavitation on the yeast cell wall when re-circulating the suspension across the cavitation zone was found to release the cell wall bound enzyme invertase (86%) to a greater extent than the enzymes from other locations of the cell (e.g. periplasmic alpha-glucosidase at 17%). Localised damage to the cell wall could be observed using transmission electron microscopy (TEM) of cells subjected to less intense cavitation conditions. Absence of the release of cytoplasmic enzymes to a significant extent, absence of micronisation as observed by TEM and presence of a lower number of proteins bands in the culture supernatant on SDS-PAGE analysis following hydrodynamic cavitation compared to disruption by high-pressure homogenisation confirmed the selective release offered by hydrodynamic cavitation. Copyright 2006 Wiley Periodicals, Inc.

  15. Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers

    NARCIS (Netherlands)

    Rooze, J.; André, M.; van der Gulik, G-J.S.; Fernandez Rivas, David; Gardeniers, Johannes G.E.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.

    2012-01-01

    Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 μm2 rectangular micro channel and in a circular 750 μm diameter milli channel has

  16. A review and assessment of hydrodynamic cavitation as a technology for the future.

    Science.gov (United States)

    Gogate, Parag R; Pandit, Aniruddha B

    2005-01-01

    In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.

  17. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants.

    Science.gov (United States)

    Boczkaj, Grzegorz; Gągol, Michał; Klein, Marek; Przyjazny, Andrzej

    2018-01-01

    Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O 3 /H 2 O 2 /Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H 2 O 2 , hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H 2 O 2 as an external oxidant and it should be controlled during treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation

    Science.gov (United States)

    Qiu, X.; Cherief, W.; Colombet, D.; Ayela, F.

    2017-04-01

    We present a simple process to perform microchannels in which cavitating two phase flows are easily producible. Up to now, hydrodynamic cavitation ‘on a chip’ was reached with small flow rates inside microchannels whose micromachining had involved a deep reactive ion etching (D-RIE). The process we present here does not require a D-RIE reactor, as it is only funded on a wet etching of silicon. It leads to a so-called microstep profile, and large cavitating flow rates become possible together with moderate pressure drops.

  19. A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation

    International Nuclear Information System (INIS)

    Qiu, X; Cherief, W; Colombet, D; Ayela, F

    2017-01-01

    We present a simple process to perform microchannels in which cavitating two phase flows are easily producible. Up to now, hydrodynamic cavitation ‘on a chip’ was reached with small flow rates inside microchannels whose micromachining had involved a deep reactive ion etching (D-RIE). The process we present here does not require a D-RIE reactor, as it is only funded on a wet etching of silicon. It leads to a so-called microstep profile, and large cavitating flow rates become possible together with moderate pressure drops. (technical note)

  20. Harness cavitation to improve processing

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, A.G.; Moholkar, V.S. [Univ. of Bombay (India)

    1996-07-01

    Mention cavitation to most chemical engineers, and they undoubtedly think of it as an operational problem. Indeed, the rapid creation and then collapse of bubbles, which is after all what cavitation involves, can destroy pumps and erode other equipment. Cavitation, however, also can have a positive side--presuming it is designed for and not unplanned. In this article, the authors look at how cavitation can be harnessed to improve processes, and the mechanisms for inducing cavitation--ultrasonics and hydrodynamics--and their likely roles. Sonication, that is, the use of ultrasound, is the conventional approach for creating cavitation, and so they turn to it first. Over the past few years, a number of groups have attempted to solve the problem of scale-up and design of ultrasonic reactors. The authors review the systems that already exist and also explore a simpler and efficient alternative to the ultrasonic reactor, the hydrodynamic cavitation reactor.

  1. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Bote, Sayli D; Gogate, Parag R

    2014-09-01

    The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20-60 ppm), pressure (1-8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5-8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20-80 ppm), Fenton's reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    Science.gov (United States)

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  3. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation.

    Science.gov (United States)

    Ji, Jianbing; Wang, Jianli; Li, Yongchao; Yu, Yunliang; Xu, Zhichao

    2006-12-22

    An alkali-catalyzed biodiesel production method with power ultrasonic (19.7 kHz) has been developed that allows a short reaction time and high yield because of emulsification and cavitation of the liquid-liquid immiscible system. Orthogonality experiments were employed to evaluate the effects of synthesis parameters. Furthermore, hydrodynamic cavitation was used for biodiesel production in comparison to ultrasonic method. Both methods were proved to be efficient, and time and energy saving for the preparation of biodiesel by transesterification of soybean oil.

  4. Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation.

    Science.gov (United States)

    Wu, Zhilin; Shen, Haifeng; Ondruschka, Bernd; Zhang, Yongchun; Wang, Weimin; Bremner, David H

    2012-10-15

    A suspension of Microcystis aeruginosa (30 μg L(-1)chlorophyll a) was circulated in a hydrodynamic cavitation device and ozone was introduced at the suction side of the pump. The removal of algae over 10 min using hydrodynamic cavitation alone and ozone alone is less than 15% and 35%, respectively. The destruction of algae rises significantly from 24% in the absence of the orifice to 91% with the optimized orifice on 5 min of processing using hydrodynamic cavitation along with ozone (HC/O(3)) and the utilization of ozone increases from 32% to 61%. Interestingly, the suction process is more effective than the extrusion method (positive pressure) and the optimal bulk temperature for algal elimination was found to be 20 °C. Increasing the input concentration of ozone is favorable for the removal of algae but leads to a greater loss of ozone and a decrease in the utilization of ozone. Under the optimal conditions, the algal cells and chlorophyll a are completely destroyed in 10 min by use of the hybrid method. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Influences of hydrodynamic conditions, nozzle geometry on appearance of high submerged cavitating jets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available Based on visualization results of highly-submerged cavitating water jet obtained with digital camera, the influences of related parameters such as: injection pressure, nozzle diameter and geometry, nozzle mounting (for convergent / divergent flow, cavitation number and exit jet velocity, were investigated. In addition, the influence of visualization system position was also studied. All the parameters have been found to be of strong influence on the jet appearance and performance. Both hydro-dynamical and geometrical parameters are playing the main role in behavior and intensity of cavitation phenomenon produced by cavitating jet generator. Based on our considerable previous experience in working with cavitating jet generator, the working conditions were chosen in order to obtain measurable phenomenon. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  6. CFD analysis of the hydrodynamic and cavitation performances of modified NACA 4418 hydrofoil

    International Nuclear Information System (INIS)

    Markov, Zoran; Popovski, Predrag; Lipej, Andrej

    2001-01-01

    The paper presents the analysis of the possibilities of using Computational Fluid Dynamics technology for calculating of the flow parameters in a cavitation tunnel. Different turbulence models are used to perform the calculations. Comparison of the results from the experimental work and the CFD-TASC flow analysis are presented. Cavitation is addressed as a particular phenomenon, but also its influence on the hydrodynamic parameters. Constant enthalpy vaporization model is used for this purpose and the results will be compared with the photos taken during the cavitation investigation in the tunnel. (Original)

  7. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.

    Science.gov (United States)

    Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K

    2013-01-01

    The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.

    Science.gov (United States)

    Gore, Mohan M; Saharan, Virendra Kumar; Pinjari, Dipak V; Chavan, Prakash V; Pandit, Aniruddha B

    2014-05-01

    In the present work, degradation of reactive orange 4 dye (RO4) has been investigated using hydrodynamic cavitation (HC) and in combination with other AOP's. In the hybrid techniques, combination of hydrodynamic cavitation and other oxidizing agents such as H2O2 and ozone have been used to get the enhanced degradation efficiency through HC device. The hydrodynamic cavitation was first optimized in terms of different operating parameters such as operating inlet pressure, cavitation number and pH of the operating medium to get the maximum degradation of RO4. Following the optimization of HC parameters, the degradation of RO4 was carried out using the combination of HC with H2O2 and ozone. It has been found that the efficiency of the HC can be improved significantly by combining it with H2O2 and ozone. The mineralization rate of RO4 increases considerably with 14.67% mineralization taking place using HC alone increases to 31.90% by combining it with H2O2 and further increases to 76.25% through the combination of HC and ozone. The synergetic coefficient of greater than one for the hybrid processes of HC+H2O2 and HC+Ozone has suggested that the combination of HC with other oxidizing agents is better than the individual processes for the degradation of dye effluent containing RO4. The combination of HC with ozone proves to be the most energy efficient method for the degradation of RO4 as compared to HC alone and the hybrid process of HC and H2O2. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    OpenAIRE

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domai...

  10. Surface mechanics design by cavitation peening

    Directory of Open Access Journals (Sweden)

    Hitoshi Soyama

    2015-07-01

    Full Text Available Although impacts at cavitation bubble collapses cause severe damage in hydraulic machineries, the cavitation impacts can be utilised for surface mechanics design such as introduction of compressive residual stress and/or improvement of fatigue strength. The peening method using the cavitation impacts was called as cavitation peening. In order to reveal the peening intensity of hydrodynamic cavitation and laser cavitation, the arc height of Almen strip and duralumin plate were measured. In the case of hydrodynamic cavitation, cavitation was generated by injecting a high speed water jet into water with a pressurised chamber and an open chamber, and the cavitating jet in air was also examined. The laser cavitation was produced by a pulse laser, and a high speed observation using a high speed video camera was carried out to clarify laser abrasion and laser cavitation with detecting noise by a hydrophone. It was concluded that the peening intensity by using the cavitating jet in water with the pressurized chamber was most aggressive, and the impact induced by the laser cavitation was larger than that of the laser abrasion at the present condition.

  11. Disinfection of Escherichia coli bacteria using hybrid method of ozonation and hydrodynamic cavitation with orifice plate

    Science.gov (United States)

    Karamah, Eva F.; Ghaudenson, Rioneli; Amalia, Fitri; Bismo, Setijo

    2017-11-01

    This research aims to evaluate the performance of hybrid method of ozonation and hydrodynamic cavitation with orifice plate on E.coli bacteria disinfection. In this research, ozone dose, circulation flowrate, and disinfection method were varied. Ozone was produced by commercial ozonator with ozone dose of 64.83 mg/hour, 108.18 mg/hour, and 135.04 mg/hour. Meanwhile, hydrodynamic cavitation was generated by an orifice plate. The disinfection method compared in this research were: hydrodynamic cavitation, ozonation, and the combination of both. The best result on each method was achieved on the 60th minutes and with a circulation flowrate of 7 L/min. The hybrid method attained final concentration of 0 CFU/mL from the initial concentration of 2.10 × 105 CFU/mL. The ozonation method attained final concentration of 0 CFU/mL from the initial concentration of 1.32 × 105 CFU/mL. Cavitation method gives the least disinfection with final concentration of 5.20 × 104 CFU/mL from the initial concentration of 2.17 × 105 CFU/mL. In conclusion, hybrid method gives a faster and better disinfection of E.coli than each method on its own.

  12. Inactivation of Heterosigma akashiwo in ballast water by circular orifice plate-generated hydrodynamic cavitation.

    Science.gov (United States)

    Feng, Daolun; Zhao, Jie; Liu, Tian

    2016-01-01

    The discharge of alien ballast water is a well-known, major reason for marine species invasion. Here, circular orifice plate-generated hydrodynamic cavitation was used to inactivate Heterosigma akashiwo in ballast water. In comparison with single- and multihole orifice plates, the conical-hole orifice plate yielded the highest inactivation percentage, 51.12%, and consumed only 6.84% energy (based on a 50% inactivation percentage). Repeating treatment, either using double series-connection or circling inactivation, elevated the inactivation percentage, yet consumed much more energy. The results indicate that conical-hole-generated hydrodynamic cavitation shows great potential as a pre-inactivation method for ballast water treatment.

  13. On the hydrodynamics of rocket propellant engine inducers and turbopumps

    International Nuclear Information System (INIS)

    D'Agostino, L

    2013-01-01

    The lecture presents an overview of some recent results of the work carried out at Alta on the hydrodynamic design and rotordynamic fluid forces of cavitating turbopumps for liquid propellant feed systems of modern rocket engines. The reduced order models recently developed for preliminary geometric definition and noncavitating performance prediction of tapered-hub axial inducers and centrifugal turbopumps are illustrated. The experimental characterization of the rotordynamic forces acting on a whirling four-bladed, tapered-hub, variable-pitch high-head inducer, under different load and cavitation conditions is presented. Future perspectives of the work to be carried out at Alta in this area of research are briefly illustrated

  14. Intensification of biogas production using pretreatment based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Gogate, Parag R; Csoka, Levente; Dregelyi-Kiss, Agota; Horvath, Miklos

    2016-05-01

    The present work investigates the application of hydrodynamic cavitation (HC) for the pretreatment of wheat straw with an objective of enhancing the biogas production. The hydrodynamic cavitation reactor is based on a stator and rotor assembly. The effect of three different speeds of rotor (2300, 2500, 2700 rpm), wheat straw to water ratios (0.5%, 1% and 1.5% wt/wt) and also treatment times as 2, 4 and 6 min have been investigated in the work using the design of experiments (DOE) approach. It was observed that the methane yield of 31.8 ml was obtained with untreated wheat straw whereas 77.9 ml was obtained with HC pre-treated wheat straw confirming the favourable changes during the pre-treatment. The combined pre-treatment using KOH and HC gave maximum yield of biogas as 172.3 ml. Overall, it has been established that significant enhancement in the biogas production can be obtained due to the pretreatment using HC which can also be further intensified by combination with chemical treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Numerical solution for gate induced vibration due to under flow cavitation

    International Nuclear Information System (INIS)

    Sadrnezhad, S. A.

    2001-01-01

    Among the many forces to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting of vapor bubbles. The second hydrodynamic effect is dynamic excitation mechanism of the structure. In fluid-structure interaction, both the structure behavior and fluid are considered linear. Fluids can take some tension the extent of which depends on concentration and size of micro bubbles present; nevertheless, if the absolute pressure drops to a value close to the vapor pressure of the fluid, bubbles are formed and cavitation phenomena occurs. In this paper a fixed-wheel gate under the head pressure of a reservoir is considered to be affected by under flow cavitation. Normally, partially opened gates induce energy dissipation resulting in high turbulence, causing negative pressure and cavitation at the back and this exits the gate vibration. Moreover, there are several mechanisms which may cause heavy, self-excited vibration. According to the proposed method, a time function presenting the oscillation and pressure fluctuation in the vicinity of gate lip is estimated. This estimation is based on the parameters obtained from a two dimensional solution of flow under the gate lip. Accordingly, periodic time variable nodal forces are calculated and applied to gate lip element nodes. A transient dynamic solution of the gate, while its lip is sustaining nodal forces is estimated as time function. The results for the most server modal deformation of the structure time history of some critical elements and variation of equivalent force versus time are presented

  16. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  17. Effect of hydrodynamic cavitation on the rate of OH-radical formation in the presence of hydrogen peroxide

    Science.gov (United States)

    Aseev, D. G.; Batoeva, A. A.

    2014-01-01

    It is shown experimentally that hydrogen peroxide is the source of OH-radicals at low-pressure hydrodynamic cavitation. Major preconditions for the intensification of oxidative destruction processes in organic pollutants with an added cavitation stimulus are determined.

  18. Energy Efficiency for Biodiesel Production by Combining Two Orifices in Hydrodynamic Cavitation Reactor

    OpenAIRE

    Mahlinda, Mahlinda; Djafar, Fitriana

    2014-01-01

    Research of energy efficiency for biodiesel production process by combining two orifices on  hydrodynamic cavitation reactor had been carried out. The aim of this reseach was to studied effect of the number of orifices toward increasing temperature without using external energy source to produce biodiesel that generated by cavitation effects on orifices. The results of preliminary research showed by combining two orifices arranged in series can produce the highest thermal energy reached 48oC....

  19. Interaction mechanism of double bubbles in hydrodynamic cavitation

    Science.gov (United States)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  20. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    Science.gov (United States)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  1. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    Directory of Open Access Journals (Sweden)

    H. Soyama

    2016-04-01

    Full Text Available In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  2. Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate.

    Science.gov (United States)

    Bis, M; Montusiewicz, A; Ozonek, J; Pasieczna-Patkowska, S

    2015-09-01

    In this study, the application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate was investigated. Three configurations of cavitation device were examined and operational parameters of the process were selected. The study indicated that the orifice plate with a 3/10mm diameter conical concentric hole, characterized by the cavitation number of 0.033, is a reasonable choice to ensure the enhanced biodegradability of mature leachate. Using such a configuration and maintaining 30 recirculation passes through the cavitation zone at inlet pressure of 7 bar, the highest increase of biodegradability index (BI) of approximately 22% occurred, i.e., from the value of 0.046 to 0.056. The FT-IR/PAS analysis confirmed a degradation of refractory compounds that typically prevail in mature leachate. An evaluation of energy efficiency was made in terms of the actual consumed energy measured by using the Kyoritsu KEW6310 Power Quality Tester. A cavitational yield of 9.8 mg COD kJ(-1) was obtained for the optimum configuration and 30 recirculation passes. Regarding energy efficiency, the application of 10 cavitation cycles appeared to be the most profitable. This was due to an almost threefold higher cavitational yield of 27.5 mg COD kJ(-1). However, the preferable option should be selected by considering a satisfactory effect in the biodegradability enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synergetic effect of combination of AOP's (hydrodynamic cavitation and H2O2) on the degradation of neonicotinoid class of insecticide

    International Nuclear Information System (INIS)

    Raut-Jadhav, Sunita; Saharan, Virendra Kumar; Pinjari, Dipak; Sonawane, Shirish; Saini, Daulat; Pandit, Aniruddha

    2013-01-01

    Highlights: • Degradation of imidacloprid using hydrodynamic cavitation based techniques. • Combination of hydrodynamic cavitation and H 2 O 2 shows substantial synergetic effect. • Synergetic coefficient of combined process is 22.79. • Degradation mechanism of imidacloprid has been proposed. -- Abstract: In the present work, degradation of imidacloprid (neonicotinoid class of insecticide) in aqueous solution has been systematically investigated using hydrodynamic cavitation and combination of hydrodynamic cavitation (HC) and H 2 O 2 . Initially, effect of different operating parameters such as inlet pressure to the cavitating device (5–20 bar) and operating pH (2–7.5) has been investigated. Optimization of process parameters was followed by the study of effect of combination of HC and H 2 O 2 process on the rate of degradation of imidacloprid. Significant enhancement in the rate of degradation of imidacloprid has been observed using HC + H 2 O 2 process which lead to a complete degradation of imidacloprid in 45 min of operation using optimal molar ratio of imidacloprid:H 2 O 2 as 1:40. Substantial synergetic effect has been observed using HC + H 2 O 2 process which confer the synergetic coefficient of 22.79. An attempt has been made to investigate and compare the energy efficiency and extent of mineralization of individual and combined processes applied in the present work. Identification of the byproducts formed during degradation of imidacloprid has also been done using LC–MS analysis. The present work has established a fact that hydrodynamic cavitation in combination with H 2 O 2 can be effectively used for degradation of imidacloprid

  4. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution.

    Science.gov (United States)

    Raut-Jadhav, Sunita; Saini, Daulat; Sonawane, Shirish; Pandit, Aniruddha

    2016-01-01

    Methomyl, a carbamate pesticide, is classified as a pesticide of category-1 toxicity and hence shows harmful effects on both human and aquatic life. In the present work, the degradation of methomyl has been studied by using hydrodynamic cavitation reactor (HC) and its combination with intensifying agents such as H2O2, fenton reagent and ozone (hybrid processes). Initially, the optimization of operating parameters such pH and inlet pressure to the cavitating device (circular venturi) has been carried out for maximizing the efficacy of hydrodynamic cavitation. Further degradation study of methomyl by the application of hybrid processes was carried out at an optimal pH of 2.5 and the optimal inlet pressure of 5 bar. Significant synergetic effect has been observed in case of all the hybrid processes studied. Synergetic coefficient of 5.8, 13.41 and 47.6 has been obtained by combining hydrodynamic cavitation with H2O2, fenton process and ozone respectively. Efficacy of individual and hybrid processes has also been obtained in terms of energy efficiency and extent of mineralization. HC+Ozone process has proved to be the most effective process having highest synergetic coefficient, energy efficiency and the extent of mineralization. The study has also encompassed the identification of intermediate by-products generated during the degradation and has proposed the probable degradation pathway. It has been conclusively established that hydrodynamic cavitation in the presence of intensifying agents can effectively be used for complete degradation of methomyl. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    Science.gov (United States)

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.

  6. Cavitation Inception Scale Effects. 1. Nuclei Distributions in Natural Waters. 2. Cavitation Inception in a Turbulent Shear Flow.

    Science.gov (United States)

    1987-05-01

    cavitation is pressure-controlled. The term hydrodynamic cavitation is some- times used to stress the dominant role of dynamic pressure in the cavitation...Diffraction Pattern of Opaque and Transparent Objects with Coherent Back- ground," Optica Acta, 11, 183-193. Peterson, F.B. (1972), " Hydrodynamic Cavitation and

  7. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone.

    Science.gov (United States)

    Barik, Arati J; Gogate, Parag R

    2016-05-01

    The degradation of 4-chloro 2-aminophenol (4C2AP), an acute toxic organic compound, has been studied using different approaches based on the hydrodynamic cavitation (HC) with orifice plate as cavitating device, photolysis (UV) and ozonation (O3). The dependency of extent of degradation on operating parameters like operating pressure (2-5 bar), initial pH (3-8) and temperature (30-38 °C) have been established initially to maximize the efficacy of hydrodynamic cavitation. Subsequently the degradation has been studied using combined treatment strategies as HC+UV, HC+O3, UV+O3 and HC+UV+O3 at the established optimum parameters of operating temperature as 30 °C, initial pH of 6 and inlet pressure of 4 bar. The maximum extent of degradation as 96.85% and 73.6% reduction in TOC has been obtained using hydrodynamic cavitation in combination with UV photolysis and ozonation under the optimized operating conditions. The degradation products of 4C2AP have been identified using GC-MS. The present work has clearly established the efficacy of combined treatment approach (HC+UV+O3) for the removal of organic pollutant for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Acoustic cavitation studies

    Science.gov (United States)

    Crum, L. A.

    1981-09-01

    The primary thrust of this study was toward a more complete understanding of general aspects of acoustic cavitation. The effect of long-chain polymer additives on the cavitation threshold was investigated to determine if they reduced the acoustic cavitation threshold in a similar manner to the observed reduction in the cavitation index in hydrodynamic cavitation. Measurements were made of the acoustic cavitation threshold as a function of polymer concentration for additives such as guar gum and polyethelene oxide. The measurements were also made as a function of dissolved gas concentration, surface tension and viscosity. It was determined that there was a significant increase in the acoustic cavitation threshold for increased concentrations of the polymer additives (measurable effects could be obtained for concentrations as low as a few parts per million). One would normally expect that an additive that reduces surface tension to decrease the pressure required to cause a cavity to grow and thus these additives, at first thought, should reduce the threshold. However, even in the hydrodynamic case, the threshold was increased. In both of the hydrodynamic cases considered, the explanation for the increased threshold was given in terms of changed fluid dynamics rather than changed physical properties of the fluid.

  9. Influence of the bubbles on the turbulence in the liquid in hydrodynamic cavitation through a venturi

    Science.gov (United States)

    Fuzier, Sylvie; Coutier Delgosha, Olivier; Coudert, S. Ébastien; Dazin, Antoine

    2011-11-01

    The physical description of hydrodynamic cavitation is complex as it includes strongly unsteady, turbulent and phase change phenomena. Because the bubbles in the cavitation area render this zone opaque, nonintrusive experimental observation inside this zone is difficult and little is known about the detailed bubble, flow structure and physics inside. A novel approach using LIF-PIV to investigate the dynamics inside the cavitation area generated through a venturi is presented. The velocity in the liquid and of the bubbles are measured simultaneously and correlated with areas of various bubble structure. The influence of the bubble structure on the turbulence in the liquid is also studied.

  10. Influence of hydrodynamic cavitation on the rheological properties and microstructure of formulated Greek-style yogurts.

    Science.gov (United States)

    Meletharayil, G H; Metzger, L E; Patel, Hasmukh A

    2016-11-01

    With limited applications of acid whey generated during the manufacture of Greek yogurts, an alternate processing technology to sidestep the dewheying process was developed. Milk protein concentrate (MPC) and carbon dioxide-treated milk protein concentrate (TMPC) were used as sources of protein to fortify skim milk to 9% (wt/wt) protein for the manufacture of Greek-style yogurts (GSY). The GSY bases were inoculated and fermented with frozen direct vat set yogurt culture to a pH of 4.6. Owing to the difference in buffering of MPC and TMPC, GSY with TMPC and MPC exhibited different acidification kinetics, with GSY containing TMPC having a lower fermentation time. The GSY with TMPC had a titratable acidity of 1.45% lactic acid and was comparable to acidity of commercial Greek yogurt (CGY). Hydrodynamic cavitation at 4 different rotor speeds (0, 15, 30, and 60 Hz) as a postfermentation tool reduced the consistency coefficient (K) of GSY containing TMPC from 79.4 Pa·s n at 0 Hz to 17.59 Pa·s n at 60 Hz. Similarly for GSY containing MPC, K values decreased from 165.74 Pa·s n at 0 Hz to 53.04 Pa·s n at 60 Hz. The apparent viscosity (η 100 ) was 0.25 Pa·s for GSY containing TMPC and 0.66 Pa·s for GSY containing MPC at 60 Hz. The CGY had a η 100 value of 0.74 Pa·s. Small amplitude rheological analysis performed on GSY indicated a loss of elastic modulus dependency on frequency caused by the breakdown of protein interactions with increasing cavitator rotor speeds. A steady decrease in hardness and adhesiveness values of GSY was observed with increasing cavitational intensities. Numbers of grains with a perimeter of >1mm of cavitated GSY with TMPC and MPC were 35 and 13 grains/g of yogurt, respectively, and were lower than 293 grains/g observed in CGY. The water-holding capacity of GSY was higher than that observed for a commercial strained Greek yogurt. The ability to scale up the process of hydrodynamic cavitation industrially, and the ease of controlling events of

  11. Synergetic effect of combination of AOP's (hydrodynamic cavitation and H₂O₂) on the degradation of neonicotinoid class of insecticide.

    Science.gov (United States)

    Raut-Jadhav, Sunita; Saharan, Virendra Kumar; Pinjari, Dipak; Sonawane, Shirish; Saini, Daulat; Pandit, Aniruddha

    2013-10-15

    In the present work, degradation of imidacloprid (neonicotinoid class of insecticide) in aqueous solution has been systematically investigated using hydrodynamic cavitation and combination of hydrodynamic cavitation (HC) and H2O2. Initially, effect of different operating parameters such as inlet pressure to the cavitating device (5-20 bar) and operating pH (2-7.5) has been investigated. Optimization of process parameters was followed by the study of effect of combination of HC and H2O2 process on the rate of degradation of imidacloprid. Significant enhancement in the rate of degradation of imidacloprid has been observed using HC+H2O2 process which lead to a complete degradation of imidacloprid in 45 min of operation using optimal molar ratio of imidacloprid:H2O2 as 1:40. Substantial synergetic effect has been observed using HC+H2O2 process which confer the synergetic coefficient of 22.79. An attempt has been made to investigate and compare the energy efficiency and extent of mineralization of individual and combined processes applied in the present work. Identification of the byproducts formed during degradation of imidacloprid has also been done using LC-MS analysis. The present work has established a fact that hydrodynamic cavitation in combination with H2O2 can be effectively used for degradation of imidacloprid. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    Science.gov (United States)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  13. Synergetic effect of combination of AOP's (hydrodynamic cavitation and H{sub 2}O{sub 2}) on the degradation of neonicotinoid class of insecticide

    Energy Technology Data Exchange (ETDEWEB)

    Raut-Jadhav, Sunita [Vishwakarma Institute of Technology, Pune 411037 (India); Saharan, Virendra Kumar [Chemical Engineering Department, M. N. I. T, Jaipur, Rajasthan, 302001 (India); Pinjari, Dipak [Chemical Engineering Department, Institute of Chemical Technology, (ICT), Matunga, Mumbai, 400019 (India); Sonawane, Shirish, E-mail: shirishsonawane09@gmail.com [Chemical Engineering Department, N. I. T Warangal, Andhra Pradesh 506004 (India); Saini, Daulat, E-mail: dsaini2010@gmail.com [National Chemical Laboratory, Pune, 411008 (India); Pandit, Aniruddha, E-mail: dr.pandit@gmail.com [Chemical Engineering Department, Institute of Chemical Technology, (ICT), Matunga, Mumbai, 400019 (India)

    2013-10-15

    Highlights: • Degradation of imidacloprid using hydrodynamic cavitation based techniques. • Combination of hydrodynamic cavitation and H{sub 2}O{sub 2} shows substantial synergetic effect. • Synergetic coefficient of combined process is 22.79. • Degradation mechanism of imidacloprid has been proposed. -- Abstract: In the present work, degradation of imidacloprid (neonicotinoid class of insecticide) in aqueous solution has been systematically investigated using hydrodynamic cavitation and combination of hydrodynamic cavitation (HC) and H{sub 2}O{sub 2}. Initially, effect of different operating parameters such as inlet pressure to the cavitating device (5–20 bar) and operating pH (2–7.5) has been investigated. Optimization of process parameters was followed by the study of effect of combination of HC and H{sub 2}O{sub 2} process on the rate of degradation of imidacloprid. Significant enhancement in the rate of degradation of imidacloprid has been observed using HC + H{sub 2}O{sub 2} process which lead to a complete degradation of imidacloprid in 45 min of operation using optimal molar ratio of imidacloprid:H{sub 2}O{sub 2} as 1:40. Substantial synergetic effect has been observed using HC + H{sub 2}O{sub 2} process which confer the synergetic coefficient of 22.79. An attempt has been made to investigate and compare the energy efficiency and extent of mineralization of individual and combined processes applied in the present work. Identification of the byproducts formed during degradation of imidacloprid has also been done using LC–MS analysis. The present work has established a fact that hydrodynamic cavitation in combination with H{sub 2}O{sub 2} can be effectively used for degradation of imidacloprid.

  14. Applying the technology of hydrodynamic cavitation treatment of high-viscosity oils to increase the efficiency of transportation

    Science.gov (United States)

    Brand, A. E.; Vershinina, S. V.; Vengerov, A. A.; Mostovaya, N. A.

    2015-10-01

    The article investigates the possibility of applying hydrodynamic cavitation treatment to reduce oil viscosity in Russian pipeline transportation system and increase its performance. The result of laboratory tests and suggestions on technology application are given

  15. Hydrodynamic cavitation applied to industrial wastewater; Tratamiento de efluentes industriales mediante cavitacion hidrodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Benito, Y; Arrojo, S

    2006-07-01

    The use environmental technology of the phenomenon known as cavitation has opened in the last new years alternatives for the treatment especially for industrial effluents. CIEMAT has designed and constructed a plant of cavitation hydrodynamics to take to end experiments that it allows us to show the possibilities of this technology as process of advanced oxidation of low cost. The experimentation has been made with water contaminated by substances like toluene and some derivatives, chloride organic compounds, xylenes, ammonia, wastewater from the ended of leather sector, there being achieved important reductions of the DQO (of the order of 60%) in short times. This work shows the results obtained in the experimentation of waters contaminated with toluene and p-nitrophenol. (Author)

  16. Hydrodynamic Cavitation through “Labs on a Chip”: From Fundamentals to Applications

    OpenAIRE

    Ayela , Frederic; Cherief , Wahid; Colombet , Damien; Ledoux , Gilles; Martini , Mateo; Mossaz , Stephane; Podbevsek , Darjan; Qiu , Xiaoyu; Tillement , Olivier

    2017-01-01

    International audience; Monitoring hydrodynamic cavitation of liquids through “labs on a chip” (i.e. microchannels with a shrinkage, such as microdiaphragms or microventuris) is an improvement in experimental approaches devoted to study the mechanisms involved in these multiphase flows. The small sizes of the reactors do not require big substructures. Flow rates of around 1 L/h make possible the characterisation of rare, toxic or expensive pure fluids or mixtures. Moreover, because of that mi...

  17. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    Science.gov (United States)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.

    2016-10-01

    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  18. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2013-09-01

    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The efficiency of a new hydrodynamic cavitation pilot system on Artemia salina cysts and natural population of copepods and bacteria under controlled mesocosm conditions.

    Science.gov (United States)

    Cvetković, Martina; Grego, Mateja; Turk, Valentina

    2016-04-15

    A study of the efficiency of hydrodynamic cavitation and separation was carried out to evaluate an innovative, environmentally safe and acceptable system for ballast water treatment for reducing the risk of introducing non-native species worldwide. Mesocosm experiments were performed to assess the morphological changes and viability of zooplankton (copepods), Artemia salina cysts, and the growth potential of marine bacteria after the hydrodynamic cavitation treatment with a different number of cycles. Our preliminary results confirmed the significant efficiency of the treatment since more than 98% of the copepods and A. salina cysts were damaged, in comparison with the initial population. The efficiency increased with the number of the hydrodynamic cavitation cycles, or in combination with a separation technique for cysts. There was also a significant decrease in bacterial abundance and growth rate, compared to the initial number and growth potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Pump cavitation and inducer design

    International Nuclear Information System (INIS)

    Heslenfeld, M.W.; Hes, M. de

    2002-01-01

    Details of past work on sodium pump development and cavitation studies executed mainly for SNR 300 were reported earlier. Among the requirements for large sodium pumps are long life (200000 hours up to 300000 hours) and small size of impeller and pump, fully meeting the process and design criteria. These criteria are the required 'Q, H, r characteristics' in combination with a low NPSH value and the avoidance of cavitation damage to the pump. The pump designer has to develop a sound hydraulic combination consisting of suction arrangement, impeller design and diffuser. On the other hand the designer is free to choose an optimal pump speed. The pump speed in its turn influences the rotor dynamic pump design and the pump drive. The introduction of the inducer as an integral part of the pump design is based on following advantages: no tip cavitation; (possible) cavitation bubbles move to the open centre due to centrifugal forces on the fluid; the head of the inducer improves the inlet conditions of the impeller. The aim of an inducer is the increase in the suction specific speed (SA value) of a pump whereby the inducer functions as a pressure source improving the impeller inlet conditions. With inducer-impeller combinations values up to SA=15000 are realistic. With the use of an inducer the overall pump sizes can be reduced with Ca. 30%. Pumps commonly available have SA values up to a maximum of ca. 10000. A development programme was executed for SNR 300 in order to reach an increase of the suction specific speed of the impeller from SA 8200 to SA 11000. Further studies to optimize pumps design for the follow up line introduced the 'inducer acting as a pre-impeller' development. This programme was executed in the period 1979-1981. At the FDO premises a scale 1 2.8 inducer impeller combination with a suction specific speed SA=15000 was developed, constructed and tested at the water test rig. This water test rig is equipped with a perspex pipe allowing also visualisation

  1. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Yu, Shuili

    2014-10-01

    Algal blooms are a seasonal problem in eutrophic water bodies, and novel approaches to algal removal are required. The effect of hydrodynamic cavitation (HC) on the removal of Microcystis aeruginosa was investigated using a laboratory scale device. Samples treated by HC were subsequently grown under illuminated culture conditions. The results demonstrated that a short treatment with HC could effectively settle naturally growing M. aeruginosa without breaking cells. Algal cell density and chlorophyll-a of a sample treated for 10 min were significantly decreased by 88% andv 94%, respectively, after 3 days culture. Various HC operating parameters were investigated, showing that inhibition of M. aeruginosa growth mainly depended on treatment time and pump pressure. Electron microscopy confirmed that sedimentation of algae was attributable to the disruption of intracellular gas vesicles. Damage to the photosynthetic apparatus also contributed to the inhibition of algal growth. Free radicals produced by the cavitation process could be as an indirect indicator of the intensity of HC treatment, although they inflicted minimal damage on the algae. In conclusion, we suggest that HC represents a potentially highly effective and sustainable approach to the removal of algae from water systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Travelling Bubble Cavitation and Resulting Noise.

    Science.gov (United States)

    1981-03-02

    pp. 22-26, 1968. 16. Il’ichev, V. I. "Statistical Model of the Onset of Hydrodynamic Cavitation Noise," Sixth All-Union Acoustic Conference...Collected Papers, Moscow, 1968. 17. Lyamshev, L. M. "On the Theory of Hydrodynamic Cavitation Noise," Soviet Physics-Acoustics, Vol. 15, pp. 494-498, 1970. 18

  3. Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation

    Science.gov (United States)

    1990-06-25

    Bubbles 6.1 Introduction The detailed relationship between the collapse mechanism of hydrodynamic cavitation bubbles and the resulting noise generation is...Contribution to 11th International Towing Tank Conference. Il’ichev, V. I. 1968. Statistical Model of the Onset of Hydrodynamic Cavitation Noise. Soviet...On the Theory of Hydrodynamic Cavitation Noise. Soviet Physics-Acoustics, Vol. 15, pp. 494-498. Marboe, M. L., Billet, M. L. and Thompson, D. E. 1986

  4. Surface mechanics design by cavitation peening

    OpenAIRE

    Hitoshi Soyama

    2015-01-01

    Although impacts at cavitation bubble collapses cause severe damage in hydraulic machineries, the cavitation impacts can be utilised for surface mechanics design such as introduction of compressive residual stress and/or improvement of fatigue strength. The peening method using the cavitation impacts was called as cavitation peening. In order to reveal the peening intensity of hydrodynamic cavitation and laser cavitation, the arc height of Almen strip and duralumin plate were measured. In the...

  5. Energy Efficiency for Biodiesel Production by Combining Two Orifices in Hydrodynamic Cavitation Reactor

    Directory of Open Access Journals (Sweden)

    Mahlinda Mahlinda

    2014-12-01

    Full Text Available Research of energy efficiency for biodiesel production process by combining two orifices on  hydrodynamic cavitation reactor had been carried out. The aim of this reseach was to studied effect of the number of orifices toward increasing temperature without using external energy source to produce biodiesel that generated by cavitation effects on orifices. The results of preliminary research showed by combining two orifices arranged in series can produce the highest thermal energy reached 48oC. Result of biodiesel production showed that yield of the highest biodiesel was 96.34% using molar ratio a methanol:oil with comparison 6:1, KOH as catalyst (1% for 50 minutes processing time. For biodiesel quality testing showed all selected parameter met the requirements of the Indonesian National Standard (SNI 04-7182:2006. Identification of biodiesel compound using GCMS showed the biodiesel compounds consisted of methyl oleate, methyl palmitate, acid linoleid, methyl stearate, palmitic acid and oleic acid with the total contents 98.39%.

  6. Development of a novel electric field-assisted modified hydrodynamic cavitation system for disintegration of waste activated sludge.

    Science.gov (United States)

    Jung, Kyung-Won; Hwang, Min-Jin; Yun, Yeo-Myeong; Cha, Min-Jung; Ahn, Kyu-Hong

    2014-09-01

    In this current study, we present a modified hydrodynamic cavitation device that combines an electric field to substitute for the chemical addition. A modified HC system is basically an orifice plate and crisscross pipe assembly, in which the crisscross pipe imparts some turbulence, which creates collision events. This study shows that for maximizing disintegration, combining HC system, which called electric field-assisted modified orifice plate hydrodynamic cavitation (EFM-HC) in this study, with an electric field is important. Various HC systems were compared in terms of disintegration of WAS, and, among them, the EFM-HC system exhibited the best performance with the highest disintegration efficiency of 47.0±2.0% as well as the destruction of WAS morphological characteristics. The experimental results clearly show that a conventional HC system was successfully modified. In addition, electric field has a great potential for efficient disintegration of WAS for as a additional option in a combination treatment. This study suggests continued research in this field may lead to an appropriate design for commercial use. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    Science.gov (United States)

    Haniff, S.; Taylor, P. A.

    2017-11-01

    We conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressure pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.

  8. Luminescence from hydrodynamic cavitation. Method and preliminary analysis

    International Nuclear Information System (INIS)

    Leighton, T.; Farhat, M.; Field, J.

    2001-01-01

    This report describes a photon-counting study of the cavitation luminescence produced by flow over a hydrofoil. The object was to obtain quantitative data on the number of photons emitted for various flow conditions and to study the link between the light output and the potential for cavitation damage. The flow experiments were performed in a cavitation tunnel capable of achieving flow velocities of up to ca. 50 m s -1 in the test sections. The experimental hydrofoil was a NACA 009 blade. Parameters varied were the flow velocity, the incident angle of the hydrofoil and the cavitation index. The results show that significant photon counts are recorded when leading edge cavitation takes place and U-shaped vortices (cavities) shed from the main cavity. The photon count increases dramatically as the flow velocity increases or the cavitation index is reduced. Departure from a Poisson distribution in the arrival times of photons at the detector may be related to the way vortices shed from the main cavity. Finally, there is a clear correlation between light output and the conditions which could cause cavitation damage. (author)

  9. Luminescence from hydrodynamic cavitation. Method and preliminary analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, T.; Farhat, M.; Field, J. [and others

    2001-06-01

    This report describes a photon-counting study of the cavitation luminescence produced by flow over a hydrofoil. The object was to obtain quantitative data on the number of photons emitted for various flow conditions and to study the link between the light output and the potential for cavitation damage. The flow experiments were performed in a cavitation tunnel capable of achieving flow velocities of up to ca. 50 m s{sup -1} in the test sections. The experimental hydrofoil was a NACA 009 blade. Parameters varied were the flow velocity, the incident angle of the hydrofoil and the cavitation index. The results show that significant photon counts are recorded when leading edge cavitation takes place and U-shaped vortices (cavities) shed from the main cavity. The photon count increases dramatically as the flow velocity increases or the cavitation index is reduced. Departure from a Poisson distribution in the arrival times of photons at the detector may be related to the way vortices shed from the main cavity. Finally, there is a clear correlation between light output and the conditions which could cause cavitation damage. (author)

  10. Deformation-induced martensite and resistance to cavitation erosion

    International Nuclear Information System (INIS)

    Richman, R.H.

    1995-01-01

    Exposure to cavitating liquids can induce surface transformation in metastable alloys, notably the 18Cr-8Ni class of stainless steels. The question of whether such transformation contributes to erosion resistance has not been resolved. To address that issue, two metastable stainless steels (Types 301 and 304L) and a near-equiatomic NiTi alloy were subjected to cavitation. Magnetic measurements during and after cavitation erosion indicate that substantial reversion of deformation-induced martensite occurs in the highly deformed surface layers of the stainless steels. Thus, cyclic formation and reversion of martensite is deduced to be a non-trivial energy-adsorption mechanism in those steels. The extreme case of cyclic induction and essentially complete reversion of martensite is illustrated by superelastic NiTi, which is extraordinarily resistant to cavitation damage. (orig.)

  11. Treatment of cyanide containing wastewater using cavitation based approach.

    Science.gov (United States)

    Jawale, Rajashree H; Gogate, Parag R; Pandit, Aniruddha B

    2014-07-01

    Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    International Nuclear Information System (INIS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-01-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation. (paper)

  13. Eutrophic water purification efficiency using a combination of hydrodynamic cavitation and ozonation on a pilot scale.

    Science.gov (United States)

    Li, Wei-Xin; Tang, Chuan-Dong; Wu, Zhi-Lin; Wang, Wei-Min; Zhang, Yu-Feng; Zhao, Yi; Cravotto, Giancarlo

    2015-04-01

    This paper presents the purification of eutrophic water using a combination of hydrodynamic cavitation (HC) and ozonation (O3) at a continuous flow of 0.8 m(3) h(-1) on a pilot scale. The maximum removal rate of chlorophyll a using O3 alone and the HC/O3 combination was 62.3 and 78.8%, respectively, under optimal conditions, where the ozone utilization efficiency was 64.5 and 94.8% and total energy consumption was 8.89 and 8.25 kWh m(-3), respectively. Thus, the removal rate of chlorophyll a and the ozone utilization efficiency were improved by 26.5% and 46.9%, respectively, by using the combined technique. Meanwhile, total energy consumption was reduced by 7.2%. Turbidity linearly decreased with chlorophyll a removal rate, but no linear relationship exists between the removal of COD or UV254 and chlorophyll a. As expected, the suction-cavitation-assisted O3 exhibited higher energy efficiency than the extrusion-cavitation-assisted O3 and O3 alone methods.

  14. Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process.

    Science.gov (United States)

    Bremner, David H; Carlo, Stefano Di; Chakinala, Anand G; Cravotto, Giancarlo

    2008-04-01

    The mineralisation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of zero-valent iron and hydrogen peroxide (the advanced Fenton process--AFP) whilst being subjected to acoustic or hydrodynamic cavitation is reported. If the reaction is merely stirred then there is 57% removal of TOC whilst on irradiation the figure is 64% although the latter reaction is more rapid. Use of ultrasound alone results in only 11% TOC removal in 60 min of treatment time. Addition of iron powder marginally enhances the extent of degradation but an appreciable increase is observed in the presence of hydrogen peroxide which acts as a source for hydroxyl radicals by Fenton chemistry as well as by dissociation in the presence of ultrasound. The use of hydrodynamic cavitation in conjunction with the advanced Fenton process has also been found to be a useful tool for continuous remediation of water contaminated with 2,4-D. After 20 min of treatment the residual TOC is reduced to 30% and this probably represents the remaining highly recalcitrant small organic molecules.

  15. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment.

    Science.gov (United States)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos

    2018-06-01

    Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.

  16. Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study.

    Science.gov (United States)

    Terán Hilares, Ruly; de Almeida, Gabriela Faria; Ahmed, Muhammad Ajaz; Antunes, Felipe A F; da Silva, Silvio Silvério; Han, Jong-In; Santos, Júlio César Dos

    2017-07-01

    Hydrodynamic cavitation (HC), which is a highly destructive force, was employed for pretreatment of sugarcane bagasse (SCB). The efficacy of HC was studied using response surface methodology (RSM) with determining parameters varied: inlet pressure of 1-3bar, temperature of 40-70°C, and alkaline concentration of 0.1-0.3M. At the best condition (3bar, 70°C and 0.3M NaOH), 93.05% and 94.45% of hydrolysis yield of cellulose and hemicellulose, respectively, were obtained within 30min of pretreatment time. Also, pretreatment time higher than 10min had little to do regarding to SCB composition changes using different orifice plates (16 and 27 holes, with corresponding cavitation number of 0.017 and 0.048, respectively), with higher hydrolysis yield observed at 20min of process. Therefore, HC-based approach could lead to a high yield of hydrolysis, as long as a treatment condition was right; it could be so at mild conditions and at short running time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field

    Science.gov (United States)

    Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.

    2004-03-01

    The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.

  18. Pilot scale intensification of rubber seed (Hevea brasiliensis) oil via chemical interesterification using hydrodynamic cavitation technology.

    Science.gov (United States)

    Bokhari, Awais; Yusup, Suzana; Chuah, Lai Fatt; Klemeš, Jiří Jaromír; Asif, Saira; Ali, Basit; Akbar, Majid Majeed; Kamil, Ruzaimah Nik M

    2017-10-01

    Chemical interesterification of rubber seed oil has been investigated for four different designed orifice devices in a pilot scale hydrodynamic cavitation (HC) system. Upstream pressure within 1-3.5bar induced cavities to intensify the process. An optimal orifice plate geometry was considered as plate with 1mm dia hole having 21 holes at 3bar inlet pressure. The optimisation results of interesterification were revealed by response surface methodology; methyl acetate to oil molar ratio of 14:1, catalyst amount of 0.75wt.% and reaction time of 20min at 50°C. HC is compared to mechanical stirring (MS) at optimised values. The reaction rate constant and the frequency factor of HC were 3.4-fold shorter and 3.2-fold higher than MS. The interesterified product was characterised by following EN 14214 and ASTM D 6751 international standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cavitation simulation on marine propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo

    Cavitation on marine propellers causes thrust breakdown, noise, vibration and erosion. The increasing demand for high-efficiency propellers makes it difficult to avoid the occurrence of cavitation. Currently, practical analysis of propeller cavitation depends on cavitation tunnel test, empirical...... criteria and inviscid flow method, but a series of model test is costly and the other two methods have low accuracy. Nowadays, computational fluid dynamics by using a viscous flow solver is common for practical industrial applications in many disciplines. Cavitation models in viscous flow solvers have been...... hydrofoils and conventional/highly-skewed propellers are performed with one of three cavitation models proven in 2D analysis. 3D cases also show accuracy and robustness of numerical method in simulating steady and unsteady sheet cavitation on complicated geometries. Hydrodynamic characteristics of cavitation...

  20. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    Science.gov (United States)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  1. Characterization of Axial Inducer Cavitation Instabilities via High Speed Video Recordings

    Science.gov (United States)

    Arellano, Patrick; Peneda, Marinelle; Ferguson, Thomas; Zoladz, Thomas

    2011-01-01

    Sub-scale water tests were undertaken to assess the viability of utilizing high resolution, high frame-rate digital video recordings of a liquid rocket engine turbopump axial inducer to characterize cavitation instabilities. These high speed video (HSV) images of various cavitation phenomena, including higher order cavitation, rotating cavitation, alternating blade cavitation, and asymmetric cavitation, as well as non-cavitating flows for comparison, were recorded from various orientations through an acrylic tunnel using one and two cameras at digital recording rates ranging from 6,000 to 15,700 frames per second. The physical characteristics of these cavitation forms, including the mechanisms that define the cavitation frequency, were identified. Additionally, these images showed how the cavitation forms changed and transitioned from one type (tip vortex) to another (sheet cavitation) as the inducer boundary conditions (inlet pressures) were changed. Image processing techniques were developed which tracked the formation and collapse of cavitating fluid in a specified target area, both in the temporal and frequency domains, in order to characterize the cavitation instability frequency. The accuracy of the analysis techniques was found to be very dependent on target size for higher order cavitation, but much less so for the other phenomena. Tunnel-mounted piezoelectric, dynamic pressure transducers were present throughout these tests and were used as references in correlating the results obtained by image processing. Results showed good agreement between image processing and dynamic pressure spectral data. The test set-up, test program, and test results including H-Q and suction performance, dynamic environment and cavitation characterization, and image processing techniques and results will be discussed.

  2. Hydrodynamic cavitation to prevent legionella and scaling; Hydrodynamische cavitatie voorkomt legionella en kalk

    Energy Technology Data Exchange (ETDEWEB)

    Van Baarle, D. (ed.)

    2006-03-15

    To prevent biofouling, legionella, scaling and corrosion in heat exchangers or cooling systems chemicals are added to the process and the cooling water. An alternative is the use of so-called hydrodynamic cavitation. [Dutch] Om biofouling, kalkaanslag en corrosie tegen te gaan, worden chemicalien aan proces en koelwater toegevoegd. Er is nu ook een chemicalienvrij mechanisch alternatief om legionellavorming, corrosie en kalkafzet tegen te gaan: hydrodynamische cavitatie. Door water in een vortex-stroom te leiden ontstaan er cavitatiekrachten die (legionella)bacterieen doden en CaCO{sub 3} omvormen tot filtreerbare colloiden. Doordat het in het water aanwezige kalk niet neerslaat, verbeter de prestatie van de warmtewisselaars.

  3. Solution to valve failures at Braidwood induced by service water cavitation

    International Nuclear Information System (INIS)

    Ozol, J.; Schipiour, B.K.; Wix, J.E.

    1994-01-01

    Control valves throttle fluid from a high pressure to a lower pressure. On water systems, this throttling process may be accompanied by cavitation, which induces valve noise, vibration, and material damage. Extensive and significant caviation erosion has been experienced the last 10 years in most service water control valve bodies, downstream flanges, and reducers at Braidwood Station. There have been 40 different and distinct cavitation-induced failures in the service water system at Braidwood Station. These failures have created significant costs and continue to be a lingering source of operational maintenance costs to the Commonwealth Edison Company, which is incurring significant financial losses. It should be noted that almost all service water control valves experience some cavitation effects. Cavitation and cavitation damage are complex and elusive phenomena for which no single, simple analytical model exists. The purpose of this paper is to explain features of service water control valve cavitation failures and some of the solutions used by Commonwealth Edison at their six nuclear stations. The paper discusses the following: (1) Braidwood's history of erosion from cavitation; (2) Erosion-corrosion considerations; (3) The Instrument Society of America's valve sizing equations and how they relate to cavitation; (4) Methods to eliminate cavitation; (5) Corrective actions and practical approaches used by Commonwealth Edison to eliminate cavitation

  4. On the role of cavitation in particle collection in flotation - A critical review. II

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.A.; Xu, Z.H.; Finch, J.A.; Masliyah, J.H.; Chow, R.S. [Alberta Research Council, Edmonton, AB (Canada)

    2009-04-15

    Research in applying hydrodynamic cavitation to recovery of natural resources during the last decade is reviewed. The existence and formation of tiny bubbles or gas nuclei (diameter from microns down to nano sizes) in natural water were verified from both direct and in-direct measurements, providing a foundation for applying hydrodynamic cavitation to flotation systems. The interactions between tiny bubbles and fine particles in aqueous slurry were analysed. Tiny bubbles generated by hydrodynamic cavitation increased contact angle of solids and hence attachment force, bridge fine particles to form aggregates, minimize slime coating, remove oxidation layers on particle surfaces, and in hence reduce reagents consumption. Experiments revealed that the energy dissipation levels for cavity formation in a flowing liquid could be much lower than predicted, depending on the content of dissolved gases, presence of free gas nuclei and design of cavitation tubes. Application of hydrodynamic cavitation to fine and coarse particle flotation, high intensity conditioning, oil agglomeration of fine coal, and oil sands processing has confirmed the role of tiny bubbles formed by cavitation in improving recovery efficiency. Increased flotation kinetics by hydrodynamic cavitation could be attributed to a dual role: some collapsing cavity bubbles serving to break interfacial layers on particle surfaces while other cavity bubbles attaching to those freshly exposed mineral surfaces. The role of water vapor and other gases within cavity bubbles in particle-bubble attachment remains to be explored. Incorporating hydrodynamic cavitation into flotation systems to take advantage of its unique features is expected to develop the next generation of flotation machines.

  5. Study on cavitation effect of mechanical seals with laser-textured porous surface

    Science.gov (United States)

    Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.

    2012-11-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  6. Study on cavitation effect of mechanical seals with laser-textured porous surface

    International Nuclear Information System (INIS)

    Liu, T; Chen, H l; Liu, Y H; Wang, Q; Liu, Z B; Hou, D H

    2012-01-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  7. Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis

    Science.gov (United States)

    Krausz, Ivo Michael

    The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation

  8. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME produced through hydrodynamic cavitation process

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2018-03-01

    Full Text Available In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester blended with diesel in proportions of 10%, 20%, 30% and 50% by volume and pure diesel was used as fuel. Engine performance (specific fuel consumption and brake thermal efficiency and exhaust emission (CO, CO2 and NOx were measured to evaluate the behaviour of the diesel engine running on biodiesel. The results show that the brake thermal efficiency of diesel is higher and brake specific fuel consumption is lower at all loads followed by blends of SOME and diesel. The performance parameter for B10, B20, B30 and B50 were also closer to diesel and the CO emission was found to be lesser than diesel while there was a slight increase in the CO2 and NOx. SOME produced by using hydrodynamic cavitation seems to be efficient, time saving and industrially viable. The experimental results revel that SOME-diesel blends up to 50% (v/v can be used in a diesel engine without modifications. Keywords: Performance, Emission, Diesel engine, Schleichera Oleosa Oil, Biodiesel hydrodynamic cavitation (HC

  9. Experimental investigation of a cavitating backward-facing step flow

    International Nuclear Information System (INIS)

    Maurice, G; Djeridi, H; Barre, S

    2014-01-01

    The present study is the first part of global experimental work which is intended to produce a refined database of liquid and vapor phases and to improve CFD modeling of turbulent cavitating flows which can occur in rocket engine turbo-pump inducers. The purpose of the present experimental study is to get a better understanding of the dynamics of the liquid phase in a cavitating backward facing step flow and provide a refined database for the physical analysis of interaction between turbulence and cavitation. The backward facing step flow provides us a well-known test case to compare vortex dynamics and a realistic industrial configuration such as backflow in turbo machinery. Experiments were conducted in the hydrodynamic tunnel of CREMHyG at Grenoble,which was especially designed to study cavitating shear flows at high Reynolds numbers. To highlight the liquid phase topology and dynamics such as large vortex structures, free shear layer instability, reattachment wall interaction and reverse flow, the flow is characterized by Laser Induced Fluoresence Particles Image Velocimetry (PIV-LIF) measurements techniques and by Laser Doppler Velocimetry (LDV) techniques using spectral analysis to characterize the vortex shedding dynamics. The liquid phase was analyzed at different cavitation levels corresponding to 1% to 45% of void ratio range inside the shear layer, recirculation area and reattachment zone. The mean and fluctuating liquid velocities are clearly modified by the vapor phase and the scale of the vortical structures tends to be smaller inducing a destructuration of turbulence by cavitation

  10. A parametrical study of disinfection with hydrodynamic cavitation.

    Science.gov (United States)

    Arrojo, S; Benito, Y; Tarifa, A Martínez

    2008-07-01

    The physical and chemical conditions generated by cavitation bubbles can be used to destroy microorganisms and disinfect wastewater. The effect of different cavitation chamber designs and diverse operational parameters on the inactivation rate of Escherichia coli have been studied and used to understand the mechanisms involved in cell disruption.

  11. The synthesis of nanostructured, phase pure catalysts by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.R.; Sunstrom, J.E.; Marshik-Geurts, B.J. [Worcester Polytechnic Institute, Worcester, MA (United States)

    1995-12-01

    A new process for the synthesis of advanced catalytic materials based on performing the synthesis under hydrodynamic cavitation conditions has been discovered. This continuous process for catalyst synthesis resulted in the formation of both supported and unsupported catalysts. The advantage of the process over classical methods of synthesis is that it permits the formation of a wide variety of nanostructured catalysts in exceptionally high phase purities. The synthesis of platinum and palladium catalysts supported on alumina and other supports resulted in high dispersions of the noble metals. The synthesis of alpha, beta- and gamma-bismuth molybdates resulted in catalysts having superior phase purities as compared to several other classical methods of synthesis. The beta-bismuth molybdate was synthesized directly onto Cabosil. These studies showed that the particle size of the active component could be varied from a few manometers to much larger grains. The process enabled the synthesis of other complex metal oxides like perovskites as pure phases. The process uses a commercially available Microfluidizer.

  12. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)

    2014-07-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  13. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    International Nuclear Information System (INIS)

    Fong, C.; Lee, Y.C.; Yeh, T.K.

    2014-01-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  14. Some Cavitation Properties of Liquids

    Directory of Open Access Journals (Sweden)

    K. D. Efremova

    2016-01-01

    Full Text Available Cavitation properties of liquid must be taken into consideration in the engineering design of hydraulic machines and hydro devices when there is a possibility that in their operation an absolute pressure in the liquid drops below atmospheric one, and for a certain time the liquid is in depression state. Cold boiling, which occurs at a comparatively low temperature under a reduced absolute pressure within or on the surface of the liquid is regarded as hydrostatic cavitation if the liquid is stationary or as hydrodynamic cavitation, if the liquid falls into conditions when in the flow cross-section there is a sharply increasing dynamic pressure and a dropping absolute pressure.In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure of the degassed liquid drops to the saturated vapour pressure, and the air dissolved in the liquid, leaving the intermolecular space, is converted into micro-bubbles of combined air and becomes a generator of cavitation “nuclei”. A quantitative estimate of the minimum allowable absolute pressure in a real, fully or partially degassed liquid at which a hydrostatic cavitation occurs is of practical interest.Since the pressure of saturated vapour of a liquid is, to a certain extent, related to the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including air solution in a liquid, as a solute may weaken intermolecular bonds and affect the pressure value of the saturated solvent vapour. In the experiment to carry out vacuum degassing of liquids was used a hydraulic air driven vacuum pump.The paper presents hydrostatic and hydrodynamic degassing liquid processes used in the experiment.The experimental studies of the cavitation properties of technical liquids (sea and distilled water, saturated NaCl solution, and pure glycerol and as a 49/51% solution in water, mineral oil and jet fuel enabled

  15. Large eddy simulation of hydrodynamic cavitation

    Science.gov (United States)

    Bhatt, Mrugank; Mahesh, Krishnan

    2017-11-01

    Large eddy simulation is used to study sheet to cloud cavitation over a wedge. The mixture of water and water vapor is represented using a homogeneous mixture model. Compressible Navier-Stokes equations for mixture quantities along with transport equation for vapor mass fraction employing finite rate mass transfer between the two phases, are solved using the numerical method of Gnanaskandan and Mahesh. The method is implemented on unstructured grid with parallel MPI capabilities. Flow over a wedge is simulated at Re = 200 , 000 and the performance of the homogeneous mixture model is analyzed in predicting different regimes of sheet to cloud cavitation; namely, incipient, transitory and periodic, as observed in the experimental investigation of Harish et al.. This work is supported by the Office of Naval Research.

  16. Simulations of Steady Cavitating Flow in a Small Francis Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Laouari

    2016-01-01

    Full Text Available The turbulent flow through a small horizontal Francis turbine is solved by means of Ansys-CFX at different operating points, with the determination of the hydrodynamic performance and the best efficiency point. The flow structures at different regimes reveal a large flow eddy in the runner and a swirl in the draft tube. The use of the mixture model for the cavity/liquid two-phase flow allowed studying the influence of cavitation on the hydrodynamic performance and revealed cavitation pockets near the trailing edge of the runner and a cavitation vortex rope in the draft tube. By maintaining a constant dimensionless head and a distributor vane opening while gradually increasing the cavitation number, the output power and efficiency reached a critical point and then had begun to stabilize. The cavitation number corresponding to the safety margin of cavitation is also predicted for this hydraulic turbine.

  17. Numerical investigation of cavitation flow in journal bearing geometry

    OpenAIRE

    Stücke P.; Schmidt M.; Riedel M.

    2013-01-01

    The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal...

  18. Optimisation on pretreatment of rubber seed (Hevea brasiliensis) oil via esterification reaction in a hydrodynamic cavitation reactor.

    Science.gov (United States)

    Bokhari, Awais; Chuah, Lai Fatt; Yusup, Suzana; Klemeš, Jiří Jaromír; Kamil, Ruzaimah Nik M

    2016-01-01

    Pretreatment of the high free fatty acid rubber seed oil (RSO) via esterification reaction has been investigated by using a pilot scale hydrodynamic cavitation (HC) reactor. Four newly designed orifice plate geometries are studied. Cavities are induced by assisted double diaphragm pump in the range of 1-3.5 bar inlet pressure. An optimised plate with 21 holes of 1mm diameter and inlet pressure of 3 bar resulted in RSO acid value reduction from 72.36 to 2.64 mg KOH/g within 30 min of reaction time. Reaction parameters have been optimised by using response surface methodology and found as methanol to oil ratio of 6:1, catalyst concentration of 8 wt%, reaction time of 30 min and reaction temperature of 55°C. The reaction time and esterified efficiency of HC was three fold shorter and four fold higher than mechanical stirring. This makes the HC process more environmental friendly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Application of hydrodynamic cavitation in ballast water treatment.

    Science.gov (United States)

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  20. Development of turbopump cavitation performance test facility and the test of inducer performance

    International Nuclear Information System (INIS)

    Sohn, Dong Kee; Kim, Chun Tak; Yoon, Min Soo; Cha, Bong Jun; Kim, Jin Han; Yang, Soo Seok

    2001-01-01

    A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar, rotational speed - 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification

  1. Vulnerability to drought-induced cavitation in poplars: synthesis and future opportunities.

    Science.gov (United States)

    Fichot, Régis; Brignolas, Franck; Cochard, Hervé; Ceulemans, Reinhart

    2015-07-01

    Vulnerability to drought-induced cavitation is a key trait of plant water relations. Here, we summarize the available literature on vulnerability to drought-induced cavitation in poplars (Populus spp.), a genus of agronomic, ecological and scientific importance. Vulnerability curves and vulnerability parameters (including the water potential inducing 50% loss in hydraulic conductivity, P50) were collected from 37 studies published between 1991 and 2014, covering a range of 10 species and 12 interspecific hybrid crosses. Results of our meta-analysis confirm that poplars are among the most vulnerable woody species to drought-induced cavitation (mean P50  = -1.44 and -1.55 MPa across pure species and hybrids, respectively). Yet, significant variation occurs among species (P50 range: 1.43 MPa) and among hybrid crosses (P50 range: 1.12 MPa), within species and hybrid crosses (max. P50 range reported: 0.8 MPa) as well as in response to environmental factors including nitrogen fertilization, irradiance, temperature and drought (max. P50 range reported: 0.75 MPa). Potential implications and gaps in knowledge are discussed in the context of poplar cultivation, species adaptation and climate modifications. We suggest that poplars represent a valuable model for studies on drought-induced cavitation, especially to elucidate the genetic and molecular basis of cavitation resistance in Angiosperms. © 2014 John Wiley & Sons Ltd.

  2. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    International Nuclear Information System (INIS)

    Shen, Z H; Pan, Z Y

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%

  3. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    Science.gov (United States)

    Shen, Z. H.; Pan, Z. Y.

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.

  4. Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

    OpenAIRE

    Muhammad Supardan; Satriana Satriana; Mahlinda Mahlinda

    2013-01-01

    The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO) using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA) content of WCO and followed by base-catalyzed transesterification process for converting WCO ...

  5. An Experimental Investigation of Acoustic Cavitation in Gaseous Liquids

    Science.gov (United States)

    1990-11-08

    successfully to represent cavities formed by rotating propellers and, more 3 generally, by hydrodynamic cavitation . No further improvements to Rayleigh’s theory...motivated by the increasing concern over the rapid deterioration of ship propellers. This deterioration was caused by what is now known as hydrodynamic ... cavitation . Rayleigh’s equation can be obtained by equating the 0 power at infinity and the time rate of change of the kinetic energy in an incompressible

  6. Cavitating behaviour analysis of Darrieus-type cross flow water turbines

    International Nuclear Information System (INIS)

    Aumelas, V; Pellone, C; MaItre, T

    2010-01-01

    The aim of this paper is to study the cavitating behaviour of bare Darrieus-type turbines. For that, the RANS code CAVKA, has been used. Under non-cavitating conditions, the power coefficient and the thrusts calculated with CAVKA are compared to experimental values obtained in the LEGI hydrodynamic tunnel. Under cavitating conditions, for several cavitation numbers, the numerical power coefficients and vapour structures are compared to experimental ones. Different blade profiles and camber lines are also studied for non-cavitating and cavitating conditions.

  7. Visualization of cavitation bubbles induced by a laser pulse

    International Nuclear Information System (INIS)

    Testud-Giovanneschi, P.; Dufresne, D.; Inglesakis, G.

    1987-01-01

    The I.M.F.M. researchers working on Laser-Matter Interaction are studying the effects induced on matter by a pulsed radiation energy deposit. In this research, the emphasis is on the laser liquids interaction field and more particularly the cavitation induced by a laser pulse or ''optical-cavitation'' as termed by W. Lauterborn (1). For bubbles investigations, the visualizations form a basic diagnostic. This paper presents the experimental apparatus of formation of bubbles, the visualization apparatus and different typical examples of photographic recordings

  8. Study on Effects of The Shape of Cavitator on Supercavitation Flow Field Characteristics

    Science.gov (United States)

    Wang, Rui; Dang, Jianjun; Yao, Zhong

    2018-03-01

    The cavitator is the key part of the nose of the vehicle to induce the formation of supercavity, which has an important influence in the cavity formation rate, cavity shape and cavity stability. To study the influence of the shape on the supercavitation flew field characteristics, the cavity characteristics and the resistance characteristics of different shapes of cavitator under different working conditions are obtained by combining technical methods of numerical simulation and experimental research in water tunnel. The simulation results are contrast and analyzed with the test results. The analysis results show that : in terms of the cavity size, the inverted-conic cavitator can form the biggest cavity size, followed by the disk cavitator, and the truncated-conic cavitator is the least; in terms of the cavity formation speed, the inverted-conic cavitator has the fastest cavity formation speed, then is the truncated-conic cavitator, and the disk cavitator is the least; in terms of the drag characteristic, the truncated-conic cavitator has the maximum coefficient, disk cavitator is the next, the inverted-conic cavitator is the minimal. The research conclusion can provide reference and basis for the head shape design of supercavitating underwater ordnance and the design of hydrodynamic layout.

  9. Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field.

    Science.gov (United States)

    Wang, S; Kang, J; Zhang, X; Guo, Z

    2018-02-01

    The fragmentation of the dendrites of succinonitrile (SCN)-2-wt.% acetone organic transparent alloy caused by ultrasound-induced cavitation bubbles was studied by using ultra-high-speed digital camera with a rate of 40,000fps. Real-time imaging reveals that the vibrating cavitation bubbles can fragment not only secondary arms but also the primary ones under high ultrasound power. The secondary arms always broke at their roots as a result of stress concentration induced by oscillated cavitation bubble and then ripped off from their primary arms. Generally the fragment process takes tens of milliseconds from bending to breaking, while the break always occurs immediately in less than 25μs. Copyright © 2017. Published by Elsevier B.V.

  10. Hydrodynamic cavitation in microsystems. II. Simulations and optical observations

    Science.gov (United States)

    Medrano, M.; Pellone, C.; Zermatten, P. J.; Ayela, F.

    2012-04-01

    Numerical calculations in the single liquid phase and optical observations in the two-phase cavitating flow regime have been performed on microdiaphragms and microventuris fed with deionized water. Simulations have confirmed the influence of the shape of the shrinkage upon the contraction of the jet, and so on the localisation of possible cavitating area downstream. Observations of cavitating flow patterns through hybrid silicon-pyrex microdevices have been performed either via a laser excitation with a pulse duration of 6 ns, or with the help of a high-speed camera. Recorded snapshots and movies are presented. Concerning microdiaphragms, it is confirmed that very high shear rates downstream the diaphragms are the cause of bubbly flows. Concerning microventuris, a gaseous cavity forms on a boundary downstream the throat. As a consequence of a microsystem instability, the cavity displays a high frequency pulsation. Low values Strouhal numbers are associated to such a sheet cavitation. Moreover, when the intensity of the cavitating flow is reduced, there is a mismatch between the frequency of the pulsation of the cavity and the frequency of shedded clouds downstream the channel. That may be the consequence of viscous effects limiting the impingement of a re-entrant liquid jet on the attached cavity.

  11. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant.

    Science.gov (United States)

    Garuti, Mirco; Langone, Michela; Fabbri, Claudio; Piccinini, Sergio

    2018-01-01

    The implementation of hydrodynamic cavitation (HC) pretreatment for enhancing the methane potential from agricultural biomasses was evaluated in a full scale agricultural biogas plant, with molasses and corn meal as a supplementary energy source. HC batch tests were run to investigate the influence on methane production, particle size and viscosity of specific energy input. 470kJ/kgTS was chosen for the full-scale implementation. Nearly 6-months of operational data showed that the HC pretreatment maximized the specific methane production of about 10%, allowing the biogas plant to get out of the fluctuating markets of supplementary energy sources and to reduce the methane emissions. HC influenced viscosity and particle size of digestate, contributing to reduce the energy demand for mixing, heating and pumping. In the light of the obtained results the HC process appears to be an attractive and energetically promising alternative to other pretreatments for the degradation of biomasses in biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Numerical simulation of the cavitation's hydrodynamic excitement

    International Nuclear Information System (INIS)

    Hassis, H.; Dueymes, E.; Lauro, J.F.

    1993-01-01

    First, we study the motion, the velocity, the phases plane and the acoustic sources associated to a spherical bubble in a compressible or incompressible medium. The bubble can be excited by periodic or random excitements. We study the parameters which influence their behaviour: periodicity or not of motion, implosion and explosion or oscillation of bubble. We take into account this behaviour in a model of cavitation: it is a numerical simulation using population of bubbles which are with positions (in the cavitation volume) and sizes are random. These bubbles are excited by a random excitement: a model of turbulent flow or implosion and explosion of bubble. (author)

  13. PIV in the two phases of hydrodynamic cavitation in a venturi type section

    Science.gov (United States)

    Fuzier, Sylvie; Coudert, Sébastien; Coutier Delgosha, Olivier

    2012-11-01

    The presence of cavitation can affect the performance of turbomachinery. Attached sheet cavities on the blades induce modifications of flow dynamics and turbulence properties. This phenomenon is studied here in a configuration of 2D flow in a venturi type section. Images of the bubbles as well as of the light emitted by fluorescent particles placed in the liquid are recorded simultaneously. Velocities of the bubbles and of the liquid phase are obtained by PIV. The slip velocity is analyzed function of the number of cavitation and other physical parameters. Different levels of turbulence are correlated with different bubble structures in the dipahasic cavity.

  14. Experimental Study of Cavitation in Laminar Flow

    OpenAIRE

    Croci , Kilian; Ravelet , Florent; ROBINET , Jean-Christophe; Danlos , Amélie

    2017-01-01

    An experimental setup has been especially developed in order to observe cavitation in laminar flows. Experiments have been carried out with a silicon oil of viscosity υ = 100cSt passing through a Venturi-type geometry with 18°/8° convergent/divergent angles respectively. The range of Reynolds numbers at the inlet section is between 350 and 1000. Two dynamic regimes are identified. They are characterized by two critical Reynolds numbers, induced by major hydrodynamic changes in the flow, in ad...

  15. Impact of cavitation on lesion formation induced by high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Fan Pengfei; Jie Yu; Yang Xin; Tu Juan; Guo Xiasheng; Zhang Dong; Huang Pintong

    2017-01-01

    High intensity focused ultrasound (HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile, a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFU-induced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity. (paper)

  16. Influence of cavitation on the passive behaviour of duplex stainless steels in aqueous LiBr solutions

    International Nuclear Information System (INIS)

    Garcia-Garcia, D.M.; Garcia-Anton, J.; Igual-Munoz, A.

    2008-01-01

    The objective of this work is to study the influence of cavitation on the passive behaviour of EN 1.4462, its filler metal (EN 1.4462F), and the welded metal (EN 1.4462W) obtained by Gas Tungsten Arc Welding using electrochemical techniques. The hydrodynamic conditions of the medium were modified using an ultrasonic-induced cavitation facility. Potentiostatic experiments were used to study the effects of cavitation on the passive behaviour of the alloys. The experiments were carried out in 850 g/L LiBr solutions with and without an inhibitor (Lithium Chromate). The solution with Li 2 CrO 4 (commercial solution) contains LiOH as the pH regulator. The potentiodynamic cyclic curves of the stainless steels under the static condition were used to set the values of the imposed potentials. In this work, the electrochemical behaviour of the alloys described by the potentiodynamic curves has been related to their passive behaviour under potentiostatic conditions when the pulses of cavitation were applied. The results demonstrate that cavitation affects the passive behaviour of the alloys; the influence depends on the potential applied and on the presence or absence of chromates in the medium. Only under certain circumstances the hydrodynamic conditions can suppose a breakdown of passive film formed under static conditions

  17. International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    International Nuclear Information System (INIS)

    Wu, Yulin

    2015-01-01

    multiphase flow detection Fluid-structure interaction induced by cavitation and multiphase flow Multi-scale modelling of cavitating flows and Multiphase Flow Cavitation nuclei: theory and experiments Supercavitation and its applications Synergetic effects of cavitation and silt-laden erosion Shock waves and microjets generated by cavitation Nonlinear oscillations of gas and vapour bubbles Fundamentals of physics of acoustic cavitation Sonochemistry and sonoluminescence Biomedical applications of cavitation effects Ultrasonic cavitation for molten metal treatment Cavitation for enhanced heat transfer The ISCM 2014 brought together 95 scientists, researchers and graduate students from 11 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for cavitation and Multiphase Flow, which would enhance the sustainable development of cavitation and Multiphase Flow in interdisciplinary sciences and technology. The technical committee selected 54 technical papers on the following topics: (i) Hydrodynamic Cavitation, (ii) Super Cavitation, (iii) Pump Cavitation, (iv) Acoustic Cavitation, (v) Interdisciplinary Research of Cavitation and Multi-Phase Flows, and 13 invited plenary and invited forum lectures, which were presented at the symposium, to be included in the proceedings. All the papers of ISCM 2014, which are published in this Volume of IOP Conference Series: Materials Science and Engineering, had been peer reviewed through processes administered by the editors of the ISCM 2014, those are Yulin WU, Shouqi YUAN, Zhengwei WANG, Shuhong LIU, Xingqi LUO, Fujun WANG and Guoyu WANG. The papers published in this Volume include 54 technical papers and 3 full length texts of the invited lectures. We sincerely hope that the International Symposium on Cavitation and Multiphase Flow is a significant step forward in the world wide efforts to address the present challenges in the modern science and technology. Professor

  18. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    International Nuclear Information System (INIS)

    Gu, L X; Yan, G J; Huang, B

    2015-01-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases. (paper)

  19. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    Science.gov (United States)

    Gu, L. X.; Yan, G. J.; Huang, B.

    2015-12-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.

  20. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed.

    Science.gov (United States)

    Kim, Ilgook; Lee, Ilgyu; Jeon, Seok Hwan; Hwang, Taewoon; Han, Jong-In

    2015-09-01

    In this study, hydrodynamic cavitation (HC) was employed as a physical means to improve alkaline pretreatment of reed. The HC-assisted alkaline pretreatment was undertaken to evaluate the influence of NaOH concentration (1-5%), solid-to-liquid ratio (5-15%), and reaction time (20-60 min) on glucose yield. The optimal condition was found to be 3.0% NaOH at solid-to-liquid (S/L) ratio of 11.8% for 41.1 min, which resulted in the maximum glucose yield of 326.5 g/kg biomass. Furthermore, simultaneous saccharification and fermentation (SSF) was conducted to assess the ethanol production. An ethanol concentration of 25.9 g/L and ethanol yield of 90% were achieved using batch SSF. These results clearly demonstrated HC system can be indeed a promising pretreatment tool for lignocellulosic bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of hydrodynamic cavitation on zooplankton: A tool for disinfection

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Anil, A.C.; Venkat, K.; Gaonkar, C.; Kolwalkar, J.; Khandeparker, L.; Desai, D.V.; Mahulkar, A.V.; Ranade, V.V.; Pandit, A.B.

    by individual oscillating cavity, cell wall strength and geometrical and operating parameters of cavitation device. Theoretical model for quantifying the cavitationally generated turbulent shear and extent of microbial disinfection has been developed...

  2. Cavitations synthesis of carbon nanostructures

    International Nuclear Information System (INIS)

    Voropaev, S

    2011-01-01

    Originally an idea of diamonds production by hydrodynamical cavitation was presented by academician E.M. Galimov. He supposed the possibility of nature diamonds formation at fast magma flowing in kimberlitic pipes during bubbles collapse. This hypothesis assumes a number of processes, which were not under consideration until now. It concerns cavitation under high pressure, growth and stability of the gas- and vapors bubbles, their evolution, and corresponding physical- and chemical processes inside. Experimental setup to reproduce the high pressure and temperature reaction centers by means of the cavitation following the above idea was created. A few crystalline nanocarbon forms were successfully recovered after treatment of benzene (C 6 H 6 ).

  3. Correlation between microbubble-induced acoustic cavitation and hemolysis in vitro

    International Nuclear Information System (INIS)

    Zhang Chun-Bing; Liu Zheng; Guo Xia-Sheng; Zhang Dong

    2011-01-01

    Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei. The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles. To achieve this goal, human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound. The hemolysis level was measured by a flow cytometry, and the cavitation dose was detected by a passive cavitation detecting system. The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure, which might give rise to the enhancement of hemolysis. Besides the experimental observations, the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated. The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation. (classical areas of phenomenology)

  4. Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield.

    Science.gov (United States)

    Lee, Ilgyu; Han, Jong-In

    2015-06-01

    Simultaneous treatment (combining with cell disruption and lipid extraction) using hydrodynamic cavitation (HC) was applied to Nannochloropsis salina to demonstrate a simple and integrated way to produce oil from wet microalgae. A high lipid yield from the HC (25.9-99.0%) was observed compared with autoclave (16.2-66.5%) and ultrasonication (5.4-26.9%) in terms of the specific energy input (500-10,000 kJ/kg). The optimal conditions for the simultaneous treatment were established using a statistical approach. The efficiency of the simultaneous method was also demonstrated by comparing each separate treatment. The maximum lipid yield (predicted: 45.9% and experimental: 45.5%) was obtained using 0.89% sulfuric acid with a cavitation number of 1.17 for a reaction time of 25.05 min via response surface methodology. Considering its comparable extractability, energy-efficiency, and potential for scale-up, HC may be a promising method to achieve industrial-scale microalgae operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue.

    Science.gov (United States)

    Bani, Daniele; Quattrini Li, Alessandro; Freschi, Giancarlo; Russo, Giulia Lo

    2013-09-01

    In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P ultrasound treatment caused a significant reduction of abdominal fat. This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.

  6. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    OpenAIRE

    Jiří Kozák; Pavel Rudolf; Rostislav Huzlík; Martin Hudec; Radomír Chovanec; Ondřej Urban; Blahoslav Maršálek; Eliška Maršálková; František Pochylý; David Štefan

    2017-01-01

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics ...

  7. Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries.

    Science.gov (United States)

    Terán Hilares, Ruly; Dos Santos, Júlio César; Ahmed, Muhammad Ajaz; Jeon, Seok Hwan; da Silva, Silvio Silvério; Han, Jong-In

    2016-08-01

    Hydrodynamic cavitation (HC) was employed in order to improve the efficiency of alkaline pretreatment of sugarcane bagasse (SCB). Response surface methodology (RSM) was used to optimize pretreatment parameters: NaOH concentration (0.1-0.5M), solid/liquid ratio (S/L, 3-10%) and HC time (15-45min), in terms of glucan content, lignin removal and enzymatic digestibility. Under an optimal HC condition (0.48M of NaOH, 4.27% of S/L ratio and 44.48min), 52.1% of glucan content, 60.4% of lignin removal and 97.2% of enzymatic digestibility were achieved. Moreover, enzymatic hydrolysis of the pretreated SCB resulted in a yield 82% and 30% higher than the untreated and alkaline-treated controls, respectively. HC was found to be a potent and promising approach to pretreat lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Can Cavitation Be Anticipated?

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Dress, W.B.; Hylton, J.O.; Kercel, S.W.

    1999-04-25

    The major problem with cavitation in pumps and hydraulic systems is that there is no effective (conventional) method for detecting or predicting its inception. The traditional method of recognizing cavitation in a pump is to declare the event occurring when the total head drops by some arbitrary value (typically 3%) in response to a pressure reduction at the pump inlet. However, the device is already seriously cavitating when this happens. What is actually needed is a practical method to detect impending rather than incipient cavitation. Whereas the detection of incipient cavitation requires the detection of features just after cavitation starts, the anticipation of cavitation requires the detection and identification of precursor features just before it begins. Two recent advances that make this detection possible. The first is acoustic sensors with a bandwidth of 1 MHz and a dynamic range of 80 dB that preserve the fine details of the features when subjected to coarse vibrations. The second is the application of Bayesian parameter estimation which makes it possible to separate weak signals, such as those present in cavitation precursors, from strong signals, such as pump vibration. Bayesian parameter estimation derives a model based on cavitation hydrodynamics and produces a figure of merit of how well it fits the acquired data. Applying this model to an anticipatory engine should lead to a reliable method of anticipating cavitation before it occurs. This paper reports the findings of precursor features using high-performance sensors and Bayesian analysis of weak acoustic emissions in the 100-1000kHz band from an experimental flow loop.

  9. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    Science.gov (United States)

    Wu, Yulin

    2015-01-01

    multiphase flow detection Fluid-structure interaction induced by cavitation and multiphase flow Multi-scale modelling of cavitating flows and Multiphase Flow Cavitation nuclei: theory and experiments Supercavitation and its applications Synergetic effects of cavitation and silt-laden erosion Shock waves and microjets generated by cavitation Nonlinear oscillations of gas and vapour bubbles Fundamentals of physics of acoustic cavitation Sonochemistry and sonoluminescence Biomedical applications of cavitation effects Ultrasonic cavitation for molten metal treatment Cavitation for enhanced heat transfer The ISCM 2014 brought together 95 scientists, researchers and graduate students from 11 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for cavitation and Multiphase Flow, which would enhance the sustainable development of cavitation and Multiphase Flow in interdisciplinary sciences and technology. The technical committee selected 54 technical papers on the following topics: (i) Hydrodynamic Cavitation, (ii) Super Cavitation, (iii) Pump Cavitation, (iv) Acoustic Cavitation, (v) Interdisciplinary Research of Cavitation and Multi-Phase Flows, and 13 invited plenary and invited forum lectures, which were presented at the symposium, to be included in the proceedings. All the papers of ISCM 2014, which are published in this Volume of IOP Conference Series: Materials Science and Engineering, had been peer reviewed through processes administered by the editors of the ISCM 2014, those are Yulin WU, Shouqi YUAN, Zhengwei WANG, Shuhong LIU, Xingqi LUO, Fujun WANG and Guoyu WANG. The papers published in this Volume include 54 technical papers and 3 full length texts of the invited lectures. We sincerely hope that the International Symposium on Cavitation and Multiphase Flow is a significant step forward in the world wide efforts to address the present challenges in the modern science and technology. Professor

  10. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation.

    Science.gov (United States)

    Crudo, Daniele; Bosco, Valentina; Cavaglià, Giuliano; Grillo, Giorgio; Mantegna, Stefano; Cravotto, Giancarlo

    2016-11-01

    Triglyceride transesterification for biodiesel production is a model reaction which is used to compare the conversion efficiency, yield, reaction time, energy consumption, scalability and cost estimation of different reactor technology and energy source. This work describes an efficient, fast and cost-effective procedure for biodiesel preparation using a rotating generator of hydrodynamic cavitation (HC). The base-catalyzed transesterification (methanol/sodium hydroxide) has been carried out using refined and bleached palm oil and waste vegetable cooking oil. The novel HC unit is a continuous rotor-stator type reactor in which reagents are directly fed into the controlled cavitation chamber. The high-speed rotation of the reactor creates micron-sized droplets of the immiscible reacting mixture leading to outstanding mass and heat transfer and enhancing the kinetics of the transesterification reaction which completes much more quickly than traditional methods. All the biodiesel samples obtained respect the ASTM standard and present fatty acid methyl ester contents of >99% m/m in both feedstocks. The electrical energy consumption of the HC reactor is 0.030kWh per L of produced crude biodiesel, making this innovative technology really quite competitive. The reactor can be easily scaled-up, from producing a few hundred to thousands of liters of biodiesel per hour while avoiding the risk of orifices clogging with oil impurities, which may occur in conventional HC reactors. Furthermore it requires minimal installation space due to its compact design, which enhances overall security. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions.

    Science.gov (United States)

    Gągol, Michał; Przyjazny, Andrzej; Boczkaj, Grzegorz

    2018-07-01

    Cavitation has become on the most often applied methods in a number of industrial technologies. In the case of oxidation of organic pollutants occurring in the aqueous medium, cavitation forms the basis of numerous advanced oxidation processes (AOPs). This paper presents the results of investigations on the efficiency of oxidation of the following groups of organic compounds: organosulfur, nitro derivatives of benzene, BTEX, and phenol and its derivatives in a basic model effluent using hydrodynamic and acoustic cavitation combined with external oxidants, i.e., hydrogen peroxide, ozone and peroxone. The studies revealed that the combination of cavitation with additional oxidants allows 100% oxidation of the investigated model compounds. However, individual treatments differed with respect to the rate of degradation. Hydrodynamic cavitation aided by peroxone was found to be the most effective treatment (100% oxidation of all the investigated compounds in 60 min). When using hydrodynamic and acoustic cavitation alone, the effectiveness of oxidation was diversified. Under these conditions, nitro derivatives of benzene and phenol and its derivatives were found to be resistant to oxidation. In addition, hydrodynamic cavitation was found to be more effective in degradation of model compounds than acoustic cavitation. The results of investigations presented in this paper compare favorably with the investigations on degradation of organic contaminants using AOPs under conditions of basic pH published thus far. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes.

    Science.gov (United States)

    Thanekar, Pooja; Panda, Mihir; Gogate, Parag R

    2018-01-01

    Degradation of carbamazepine (CBZ), a widely detected recalcitrant pharmaceutical in sewage treatment plant (STP) effluent, has been studied in the present work using combination of hydrodynamic cavitation (HC) and advanced oxidation processes (AOPs). Due to its recalcitrant nature, it cannot be removed effectively by the conventional wastewater treatment plants (WWTPs) which make CBZ a pharmaceutical of very high environmental relevance and impact as well as stressing the need for developing new treatment schemes. In the present study, the effect of inlet pressure (3-5bar) and operating pH (3-11) on the extent of degradation have been initially studied with an objective of maximizing the degradation using HC alone. The established optimum conditions as pressure of 4bar and pH of 4 resulted in maximum degradation of CBZ as 38.7%. The combined approaches of HC with ultraviolet irradiation (HC+UV), hydrogen peroxide (HC+H 2 O 2 ), ozone (HC+O 3 ) as well as combination of HC, H 2 O 2 and O 3 (HC+H 2 O 2 +O 3 ) have been investigated under optimized pressure and operating pH. It was observed that a significant increase in the extent of degradation is obtained for the combined operations of HC+H 2 O 2 +O 3 , HC+O 3 , HC+H 2 O 2 , and HC+UV with the actual extent of degradation being 100%, 91.4%, 58.3% and 52.9% respectively. Kinetic analysis revealed that degradation of CBZ fitted into first order kinetics model for all the approaches. The processes were also compared on the basis of cavitational yield and also in terms of total treatment cost. Overall, it has been demonstrated that combined process of HC, H 2 O 2 and O 3 can be effectively used for treatment of wastewater containing CBZ. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High speed observation of HIFU-induced cavitation cloud near curved rigid boundaries

    International Nuclear Information System (INIS)

    Zuo, Z G; Wang, F B; Liu, S H; Wu, S J

    2015-01-01

    This paper focuses on the experimental study of the influence of surface curvature to the behaviour of HIFU-induced cavitation cloud. A Q-switched ruby pulse laser is used to induce cavitation nuclei in deionized water. A piezoelectric ultrasonic transducer (1.7 MHz) provides a focused ultrasound field to inspire the nucleus to cavitation cloud. A PZT probe type hydrophone is applied for measuring the HIFU sound field. It was observed that the motion of cavitation cloud located near the boundary is significantly influenced by the distance between cloud and boundary, as well as the curvature of the boundary. The curvature was defined by parameters λ and ξ. Convex boundary, concave boundary, and flat boundary correspond to ξ <1, ξ >1 and ξ = 1, respectively. Different behaviours of the cloud, including the migration of the cloud, the characteristics of oscillation, etc., were observed under different boundary curvatures by high-speed photography. Sonoluminescence of the acoustic cavitation bubble clouds were also studied to illustrate the characteristics of acoustic streaming

  14. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives.

    Science.gov (United States)

    Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar

    2017-07-01

    Decolorization of reactive blue 13 (RB13), a sulphonated azo dye, was investigated using hydrodynamic cavitation (HC). The aim of research article is to check the influence of geometrical parameters (total flow area, the ratio of throat perimeter to its cross-sectional area, throat shape and size, etc.) and configuration of the cavitating devices on decolorization of RB13 in aqueous solution. For this purpose, eight cavitating devices i.e. Circular and slit venturi, and six orifice plates having different flow area and perimeter were used in the present work. Initially, the effects of various operating parameters such as solution pH, initial dye concentration, operating inlet pressure and cavitation number on the decolorization of RB13 have been investigated, and the optimum operating conditions were found. Kinetic analysis revealed that the decolorization and mineralization of RB13 using HC followed first order reaction kinetics. Almost 47% decolorization of RB13 was achieved using only HC with slit venturi as a cavitating device at an optimum inlet pressure of 0.4MPa and pH of the solution as 2.0. It has been found that in case of orifice plates, higher decolorization rate of 4×10 -3 min -1 was achieved using orifice plate 2 (OP2) which is having higher flow area and perimeter (α=2.28). The effect of process intensifying agents (hydrogen peroxide and ferrous sulphate) and different gaseous additives (oxygen and ozone) on the extent of decolorization of RB13 were also examined. Almost 66% decolorization of RB13 was achieved using HC combined with 2Lmin -1 of oxygen and in combination with ferrous sulphate (1:3). Nearly 91% decolorization was achieved using HC combined with H 2 O 2 at an optimum molar ratio (dye:H 2 O 2 ) of 1:20 while almost complete decolorization was observed in 15min using a combination of HC and ozone at 3gh -1 ozone feed rate. Maximum 72% TOC was removed using HC coupled with 3gh -1 ozone feed rate. Copyright © 2017 Elsevier B.V. All

  15. Experimental evidence of temperature gradients in cavitating microflows seeded with thermosensitive nanoprobes

    Science.gov (United States)

    Ayela, Frédéric; Medrano-Muñoz, Manuel; Amans, David; Dujardin, Christophe; Brichart, Thomas; Martini, Matteo; Tillement, Olivier; Ledoux, Gilles

    2013-10-01

    Thermosensitive fluorescent nanoparticles seeded in deionized water combined with confocal microscopy enables thermal mapping over three dimensions of the liquid phase flowing through a microchannel interrupted by a microdiaphragm. This experiment reveals the presence of a strong thermal gradient up to ˜105 K/m only when hydrodynamic cavitation is present. Here hydrodynamic cavitation is the consequence of high shear rates downstream in the diaphragm. This temperature gradient is located in vortical structures associated with eddies in the shear layers. We attribute such overheating to the dissipation involved by the cavitating flow regime. Accordingly, we demonstrate that the microsizes of the device enhance the intensity of the thermal gap.

  16. Cavitation erosion - scale effect and model investigations

    Science.gov (United States)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  17. Influence of Thermodynamic Effect on Blade Load in a Cavitating Inducer

    Directory of Open Access Journals (Sweden)

    Kengo Kikuta

    2010-01-01

    Full Text Available Distribution of the blade load is one of the design parameters for a cavitating inducer. For experimental investigation of the thermodynamic effect on the blade load, we conducted experiments in both cold water and liquid nitrogen. The thermodynamic effect on cavitation notably appears in this cryogenic fluid although it can be disregarded in cold water. In these experiments, the pressure rise along the blade tip was measured. In water, the pressure increased almost linearly from the leading edge to the trailing edge at higher cavitation number. After that, with a decrease of cavitation number, pressure rise occurred only near the trailing edge. On the other hand, in liquid nitrogen, the pressure distribution was similar to that in water at a higher cavitation number, even if the cavitation number as a cavitation parameter decreased. Because the cavitation growth is suppressed by the thermodynamic effect, the distribution of the blade load does not change even at lower cavitation number. By contrast, the pressure distribution in liquid nitrogen has the same tendency as that in water if the cavity length at the blade tip is taken as a cavitation indication. From these results, it was found that the shift of the blade load to the trailing edge depended on the increase of cavity length, and that the distribution of blade load was indicated only by the cavity length independent of the thermodynamic effect.

  18. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique

    International Nuclear Information System (INIS)

    Izadifar, Zahra; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean; Belev, George

    2014-01-01

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method. (paper)

  19. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique.

    Science.gov (United States)

    Izadifar, Zahra; Belev, George; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean

    2014-12-07

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method.

  20. Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

    International Nuclear Information System (INIS)

    Kaldre, Imants; Bojarevičs, Andris; Grants, Ilmārs; Beinerts, Toms; Kalvāns, Matīss; Milgrāvis, Mikus; Gerbeth, Gunter

    2016-01-01

    Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispersive X-ray spectroscopy (EDX). It is observed that SiC nanoparticles are dispersed in an aluminum magnesium alloy, whereas in tin the same particles remain agglomerated in micron-sized clusters despite a more intense cavitation.

  1. Analysis of hydrodynamical pressure of cavitation flow on the boundary surface

    International Nuclear Information System (INIS)

    Volin, V.E.; Donchenko, E.G.; Chepajkin, G.A.; Lunatsi, E.D.; Chernishov, P.S.; Shvartser, A.L.

    1976-01-01

    This paper substantiates the necessity of receiving test data for creation of the methods of cavitation impact impulses on the hydraulic machines and hydraulic structures. The paper describes the methodics of experimental research of intensity of impact cavitation impulses on the elements of flowing canals at different regimes of operation; the method of determining the expected erosion in flowing canals; the method of measuring the parameters of cavitation impacts on the wall of flowing canals with the use of easily damaged varnished coverings, piezo-electric pressure transducers and amplitude and spectrum analysators. The form of a separate cavitation impact is established, the sequence of impact frequency is determined and the amplitude spectra of impacts are obtained. The analysis of test results is given

  2. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs.

    Science.gov (United States)

    Barik, Arati J; Gogate, Parag R

    2018-01-01

    Utilization of hybrid treatment schemes involving advanced oxidation processes and hydrodynamic cavitation in the wastewater treatment forms the prime focus of the present work. The initial phase of the work includes analysis of recent literature relating to the performance of combined approach based on hydrodynamic cavitation (HC) for degradation of different pollutants followed by a detailed investigation into degradation of 2,4,6-trichlorophenol (2,4,6-TCP). The degradation of the priority pollutant, 2,4,6-TCP, using combination of HC based on slit-venturi used as the cavitating device, ozone and H 2 O 2 has been investigated. The effect of operating pressure (2-5bar) and initial pH (3-11) have been investigated for the degradation using only HC. The degradation using only ozone (100-400mg/h) and only H 2 O 2 has also been studied. The efficacy of the combined operation of HC+O 3 at different ozone flow rates (100-400mg/h) and the combined operation of HC+H 2 O 2 at different loadings of H 2 O 2 (2,4,6-TCP:H 2 O 2 as 1:1-1:7) have been subsequently investigated. The degradation efficacy has also been established for the combined treatment strategies of O 3 +H 2 O 2 and HC+O 3 +H 2 O 2 at the optimum conditions of temperature as 30°C, inlet pressure of 4bar and initial pH of 7. Extent of 2,4,6-TCP degradation, TOC and COD removal obtained for HC+O 3 process were 97.1%, 94.4% and 78.5% respectively whereas for O 3 +H 2 O 2 process, the values were 95.5%, 94.8% and 76.2% and for HC+O 3 +H 2 O 2 process the extent of reduction were 100%, 95.6% and 80.9% in the same order. The combined treatment approach as HC+O 3 +H 2 O 2 was established as the most efficient approach for complete removal of 2,4,6-TCP with near complete TOC removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: application of scrap iron sheets.

    Science.gov (United States)

    Basiri Parsa, Jalal; Ebrahimzadeh Zonouzian, Seyyed Alireza

    2013-11-01

    A low pressure pilot scale hydrodynamic cavitation (HC) reactor with 30 L volume, using fixed scrap iron sheets, as the heterogeneous catalyst, with no external source of H2O2 was devised to investigate the effects of operating parameters of the HC reactor performance. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The reactor optimization was done based upon the extent of decolorization (ED) of aqueous solution of Rhodamine B (RhB). To have a perfect study on the pertinent parameters of the heterogeneous catalyzed HC reactor, the following cases as, the effects of scrap iron sheets, inlet pressure (2.4-5.8 bar), the distance between orifice plates and catalyst sheets (submerged and inline located orifice plates), back-pressure (2-6 bar), orifice plates type (4 various orifice plates), pH (2-10) and initial RhB concentration (2-14 mg L(-1)) have been investigated. The results showed that the highest cavitational yield can be obtained at pH 3 and initial dye concentration of 10 mg L(-1). Also, an increase in the inlet pressure would lead to an increase in the ED. In addition, it was found that using the deeper holes (thicker orifice plates) would lead to lower ED, and holes with larger diameter would lead to the higher ED in the same cross-sectional area, but in the same holes' diameters, higher cross-sectional area leads to the lower ED. The submerged operation mode showed a greater cavitational effects rather than the inline mode. Also, for the inline mode, the optimum value of 3 bar was obtained for the back-pressure condition in the system. Moreover, according to the analysis of changes in the UV-Vis spectra of RhB, both degradation of RhB chromophore structure and N-deethylation were occurred during the catalyzed HC process. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cavitation for improved sludge conversion into biogas

    Science.gov (United States)

    Stoop, A. H.; Bakker, T. W.; Kramer, H. J. M.

    2015-12-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and long chain organic molecules. In this study the influence of hydrodynamic cavitation on sludge that was already digested for 30 days was investigated. The total biogas yield could indeed be increased. The effect of the backpressure behind the venturi tube on the yield could not yet be established.

  5. The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production.

    Science.gov (United States)

    Lee, Ilgyu; Han, Jong-In

    2013-11-01

    Disintegration of waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion (AD) process to reduce sludge volume and increase methane yield. Hydrodynamic cavitation (HC), which shares a similar underlying principle with ultrasonication but is energy-efficient, was employed as a physical means to break up WAS. Compared with ultrasonic (180-3600 kJ/kg TS) and thermal methods (72,000 kJ/kg TS), HC (60-1200 kJ/kg TS) found to consume significantly low power. A synergetic effect was observed when HC was combined with alkaline treatment in which NaOH, KOH, and Ca(OH)2 were used as alkaline catalysts at pH ranging from 8 to 13. As expected, the production yield of CH4 gas increased proportionally as WAS disintegration proceeded. HC, when combined with alkaline pretreatment, was found to be a cost-effective substitute to conventional methods for WAS pretreatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Cavitation and thermal dilepton production in QGP

    International Nuclear Information System (INIS)

    Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.

    2012-01-01

    We study the effects of bulk and shear viscosities on both hydrodynamical evolution and thermal dilepton emission rate from the QGP phase at RHIC energies. We use lattice QCD inspired parametrization for the bulk viscosity and trace anomaly (equation of state) to describe behavior of the system near the critical temperature T c . Ratio of the shear viscosity to entropy density is taken to be η/s∼1/4π. We calculate the corrections on the dilepton production rates due to modification in the distribution function, arising due to the presence of the bulk and shear viscosities. It is shown that when the system temperature evolves close to T c the effect of the bulk viscosity on the dilepton emission rates cannot be ignored. It is demonstrated that the bulk viscosity can suppress the thermal dilepton spectra where as the effect of the shear viscosity is to enhance it. Further we show that the bulk viscosity driven fragmentation or cavitation can set in very early during the hydrodynamical evolution and this in turn would make the hydrodynamical treatment invalid beyond the cavitation time. We find that even though the finite bulk viscosity corrections and the onset of the cavitation reduce the production rates, the effect of the minimal η/s=1/4π can enhance the dilepton production rates significantly in the regime p T ⩾2 GeV.

  7. Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation.

    Science.gov (United States)

    Šarc, Andrej; Kosel, Janez; Stopar, David; Oder, Martina; Dular, Matevž

    2018-04-01

    In sufficient concentrations, the pathogenic bacteria L. pneumophila can cause a respiratory illness that is known as the "Legionnaires" disease. Moreover, toxic Shiga strains of bacteria E. coli can cause life-threatening hemolytic-uremic syndrome. Because of the recent restrictions imposed on the usage of chlorine, outbreaks of these two bacterial species have become more common. In this study we have developed a novel rotation generator and its effectiveness against bacteria Legionella pneumophila and Escherichia coli was tested for various types of hydrodynamic cavitation (attached steady cavitation, developed unsteady cavitation and supercavitation). The results show that the supercavitation was the only effective form of cavitation. It enabled more than 3 logs reductions for both bacterial species and was also effective against a more persistent Gram positive bacteria, B. subtilis. The deactivation mechanism is at present unknown. It is proposed that when bacterial cells enter a supercavitation cavity, an immediate pressure drop occurs and this results in bursting of the cellular membrane. The new rotation generator that induced supercavitation proved to be economically and microbiologically far more effective than the classical Venturi section (super)cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Non-catalytic Deep Desulphurization Process using Hydrodynamic Cavitation

    Science.gov (United States)

    Suryawanshi, Nalinee B.; Bhandari, Vinay M.; Sorokhaibam, Laxmi Gayatri; Ranade, Vivek V.

    2016-09-01

    A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular.

  9. A critical pressure based panel method for prediction of unsteady loading of marine propellers under cavitation

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2002-01-01

    A simple numerical procedure is established and implemented into a time domain panel method to predict hydrodynamic performance of marine propellers with sheet cavitation. This paper describes the numerical formulations and procedures to construct this integration. Predicted hydrodynamic loads were compared with both a previous numerical model and experimental measurements for a propeller in steady flow. The current method gives a substantial improvement in thrust and torque coefficient prediction over a previous numerical method at low cavitation numbers of less than 2.0, where severe cavitation occurs. Predicted pressure coefficient distributions are also presented. (author)

  10. Hydrodynamic Forces on Composite Structures

    Science.gov (United States)

    2014-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited HYDRODYNAMIC ...Thesis 4. TITLE AND SUBTITLE HYDRODYNAMIC FORCES ON COMPOSITE STRUCTURES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott C. Millhouse 7. PERFORMING...angles yields different free surface effects including vortices and the onset of cavitation . 14. SUBJECT TERMS Fluid structure interaction, FSI, finite

  11. Cavitation studies in microgravity

    Science.gov (United States)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion

  12. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  13. Intensification of esterification of non edible oil as sustainable feedstock using cavitational reactors.

    Science.gov (United States)

    Mohod, Ashish V; Subudhi, Abhijeet S; Gogate, Parag R

    2017-05-01

    Using sustainable feed stock such as non-edible oil for the biodiesel production can be one of the cost effective approaches considering the ever growing interest towards renewable energy and problems in existing approaches for production. However, due to the high free fatty acid content, non-edible oils require considerable preprocessing before the actual transesterification reaction for biodiesel production. The present work focuses on intensification of the esterification reaction used as preprocessing step based on acoustic and hydrodynamic cavitation also presenting the comparison with the conventional approach. Karanja oil with initial acid value as 14.15mg of KOH/g of oil has been used as a sustainable feedstock. Effect of operating parameters such as molar ratio, catalyst loading, temperature and type of catalyst (sulfuric acid and Amberlyst-15) on the acid value reduction has been investigated. The maximum reduction in the acid value (final acid value as 2.7mg of KOH/g of oil) was obtained using acoustic cavitation at optimum molar ratio of oil to methanol as 1:5 and 2% sulfuric acid loading at ambient temperature. In the case of hydrodynamic cavitation, acid value reduced upto 4.2mg of KOH under optimized conditions of first stage processing. In the second stage esterification using hydrodynamic cavitation and conventional approach, the final acid value was 3.6 and 3.8mg of KOH/g of oil respectively. Energy requirement analysis for ultrasound and conventional approaches clearly established the superiority of the ultrasound based approach. The present study clearly demonstrated that significant intensification benefits can be obtained in terms of the reduction in the molar ratio and operating temperature for the case of acoustic cavitation as compared to the conventional approach with somewhat lower effects for the hydrodynamic cavitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Numerical investigation of cavitation flow in journal bearing geometry

    Science.gov (United States)

    Riedel, M.; Schmidt, M.; Stücke, P.

    2013-04-01

    The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD) are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.

  15. Numerical investigation of cavitation flow in journal bearing geometry

    Directory of Open Access Journals (Sweden)

    Stücke P.

    2013-04-01

    Full Text Available The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.

  16. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.

    Science.gov (United States)

    Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar

    2017-01-01

    In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H 2 O 2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H 2 O 2 at a dye to H 2 O 2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5-10min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies.

    Science.gov (United States)

    Badve, Mandar P; Alpar, Tibor; Pandit, Aniruddha B; Gogate, Parag R; Csoka, Levente

    2015-01-01

    A mathematical model describing the shear rate and pressure variation in a complex flow field created in a hydrodynamic cavitation reactor (stator and rotor assembly) has been depicted in the present study. The design of the reactor is such that the rotor is provided with surface indentations and cavitational events are expected to occur on the surface of the rotor as well as within the indentations. The flow characteristics of the fluid have been investigated on the basis of high accuracy compact difference schemes and Navier-Stokes method. The evolution of streamlining structures during rotation, pressure field and shear rate of a Newtonian fluid flow have been numerically established. The simulation results suggest that the characteristics of shear rate and pressure area are quite different based on the magnitude of the rotation velocity of the rotor. It was observed that area of the high shear zone at the indentation leading edge shrinks with an increase in the rotational speed of the rotor, although the magnitude of the shear rate increases linearly. It is therefore concluded that higher rotational speeds of the rotor, tends to stabilize the flow, which in turn results into less cavitational activity compared to that observed around 2200-2500RPM. Experiments were carried out with initial concentration of KI as 2000ppm. Maximum of 50ppm of iodine liberation was observed at 2200RPM. Experimental as well as simulation results indicate that the maximum cavitational activity can be seen when rotation speed is around 2200-2500RPM. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Cavitation-induced reactions in high-pressure carbon dioxide

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; van Eck, D.; Kemmere, M.F.; Keurentjes, J.T.F.

    2002-01-01

    The feasibility of ultrasound-induced in situ radical formation in liquid carbon dioxide was demonstrated. The required threshold pressure for cavitation could be exceeded at a relatively low acoustic intensity, as the high vapor pressure of CO2 counteracts the hydrostatic pressure. With the use of

  19. Relationship between thrombolysis efficiency induced by pulsed focused ultrasound and cavitation bubble size

    International Nuclear Information System (INIS)

    Xu, S; Liu, X; Wang, S; Wan, M

    2015-01-01

    In this study, the relationship between the efficiency of pulsed focused ultrasound (FUS)-induced thrombolysis and the size distribution of cavitation bubbles has been studied. Firstly, the thrombolysis efficiency, evaluated by degree of mechanical fragmentation was investigated with varying duty cycle. Secondly, the size distribution of cavitation bubbles after the 1st, 10 3 th and 10 5 th pulse during experiments for various duty cycles was studied. It was revealed that the thrombolysis efficiency was highest when the cavitation bubble size distribution was centred around linear resonance radius of the emission frequency of the FUS transducer. Therefore, in cavitation enhanced therapeutic applications, the essential of using a pulsed FUS may be controlling the size distribution of cavitation nuclei within an active size range so as to increase the treatment efficiency. (paper)

  20. Cavitation instabilities in hydraulic machines

    International Nuclear Information System (INIS)

    Tsujimoto, Y

    2013-01-01

    Cavitation instabilities in hydraulic machines, hydro turbines and turbopump inducers, are reviewed focusing on the cause of instabilities. One-dimensional model of hydro turbine system shows that the overload surge is caused by the diffuser effect of the draft tube. Experiments show that this effect also causes the surge mode oscillations at part load. One dimensional model of a cavitating turbopump inducer shows that the mass flow gain factor, representing the cavity volume increase caused by the incidence angle increase is the cause of cavitation surge and rotating cavitation. Two dimensional model of a cavitating turbopump inducer shows that various modes of cavitation instabilities start to occur when the cavity length becomes about 65% of the blade spacing. This is caused by the interaction of the local flow near the cavity trailing edge with the leading edge of the next blade. It was shown by a 3D CFD that this is true also for real cases with tip cavitation. In all cases, it was shown that cavitation instabilities are caused by the fundamental characteristics of cavities that the cavity volume increases with the decrease of ambient pressure or the increase of the incidence angle

  1. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    Science.gov (United States)

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME) produced through hydrodynamic cavitation process

    OpenAIRE

    Ashok Kumar Yadav; M. Emran Khan; Amit Pal; Uttam Ghosh

    2018-01-01

    In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester) blended with die...

  4. Evaluation of a shock wave induced cavitation activity both in vitro and in vivo

    International Nuclear Information System (INIS)

    Tu Juan; Matula, Thomas J; Bailey, Michael R; Crum, Lawrence A

    2007-01-01

    This study evaluated the cavitation activity induced by shock wave (SW) pulses, both in vitro and in vivo, based on the area measurements of echogenic regions observed in B-mode ultrasound images. Residual cavitation bubble clouds induced by SW pulses were detected as echogenic regions in B-mode images. The temporal evolution of residual bubble clouds, generated by SWs with varying lithotripter charging voltage and pulse repetition frequency (PRF), was analyzed by measuring the time-varying behaviors of the echogenic region areas recorded in B-mode images. The results showed that (1) the area of SW-induced echogenic regions enlarged with increased SW pulse number; (2) echogenic regions in the B-mode images dissipated gradually after ceasing the SWs, which indicated the dissolution of the cavitation bubbles; and (3) larger echogenic regions were generated with higher charging voltage or PRF

  5. Laser-induced cavitation based micropump

    NARCIS (Netherlands)

    Dijkink, R.J.; Ohl, C.D.

    2008-01-01

    Lab-on-a-chip devices are in strong demand as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able to pump a volume of 4000 m3 within 75 s against an estimated pressure head of 3 bar. The single cavitation event is created by focusing a laser pulse in

  6. Extending cavitation models to subcooled and superheated nozzle flow

    International Nuclear Information System (INIS)

    Schmidt, D.P.; Corradini, M.L.

    1997-01-01

    Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)

  7. Transition of cavitating flow to supercavitation within Venturi nozzle - hysteresis investigation

    Science.gov (United States)

    Jiří, Kozák; Pavel, Rudolf; Rostislav, Huzlík; Martin, Hudec; Radomír, Chovanec; Ondřej, Urban; Blahoslav, Maršálek; Eliška, Maršálková; František, Pochylý; David, Štefan

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD) of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS) records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  8. Large eddy simulation of cavitating flows

    Science.gov (United States)

    Gnanaskandan, Aswin; Mahesh, Krishnan

    2014-11-01

    Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.

  9. Theoretical Analysis of Thermodynamic Effect of Cavitation in Cryogenic Inducer Using Singularity Method

    Directory of Open Access Journals (Sweden)

    S. Watanabe

    2008-01-01

    Full Text Available Vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity. This is called thermodynamic/thermal effect of cavitation and leads to the good suction performance of cryogenic turbopumps. We have already established the simple analysis of partially cavitating flow with the thermodynamic effect, where the latent heat extraction and the heat transfer between the cavity and the ambient fluid are taken into account. In the present study, we carry out the analysis for cavitating inducer and compare it with the experimental data available from literatures using Freon R-114 and liquid nitrogen. It is found that the present analysis can simulate fairly well the thermodynamic effect of cavitation and some modification of the analysis considering the real fluid properties, that is, saturation characteristic, is favorable for more qualitative agreement.

  10. Detection of cavitation in hydraulic turbines

    Science.gov (United States)

    Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel

    2006-05-01

    An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.

  11. Theoretical model for cavitation erosion prediction in centrifugal pump impeller

    International Nuclear Information System (INIS)

    Rayan, M.A.; Mahgob, M.M.; Mostafa, N.H.

    1990-01-01

    Cavitation is known to have great effects on pump hydraulic and mechanical characteristics. These effects are mainly described by deviation in pump performance, increasing vibration and noise level as well as erosion of blade and casing materials. In the present work, only the hydrodynamic aspect of cavitation was considered. The efforts were directed toward the study of cavitation inception, cavity mechanics and material erosion in order to clarify the macrohydrodynamic aspects of cavitation erosive wear in real machines. As a result of this study, it was found that cavitation damage can be predicted from model data. The obtained theoretical results show good agreement with the experimental results obtained in this investigation and with results of some other investigations. The application of the findings of this work will help the design engineer in predicting the erosion rate, according to the different operating conditions. (author)

  12. Cavitation Erosion in Hydraulic Turbine Components and Mitigation by Coatings: Current Status and Future Needs

    Science.gov (United States)

    Singh, Raghuvir; Tiwari, S. K.; Mishra, Suman K.

    2012-07-01

    Cavitation erosion is a frequently observed phenomenon in underwater engineering materials and is the primary reason for component failure. The damage due to cavitation erosion is not yet fully understood, as it is influenced by several parameters, such as hydrodynamics, component design, environment, and material chemistry. This article gives an overview of the current state of understanding of cavitation erosion of materials used in hydroturbines, coatings and coating methodologies for combating cavitation erosion, and methods to characterize cavitation erosion. No single material property fully characterizes the resistance to cavitation erosion. The combination of ultimate resilience, hardness, and toughness rather may be useful to estimate the cavitation erosion resistance of material. Improved hydrodynamic design and appropriate surface engineering practices reduce damage due to cavitation erosion. The coatings suggested for combating the cavitation erosion encompasses carbides (WC Cr2C3, Cr3C2, 20CrC-80WC), cermets of different compositions (e.g., 56W2C/Ni/Cr, 41WC/Ni/Cr/Co), intermetallic composites, intermetallic matrix composites with TiC reinforcement, composite nitrides such as TiAlN and elastomers. A few of them have also been used commercially. Thermal spraying, arc plasma spraying, and high velocity oxy-fuel (HVOF) processes have been used commercially to apply the coatings. Boronizing, laser surface hardening and cladding, chemical vapor deposition, physical vapor deposition, and plasma nitriding have been tried for surface treatments at laboratory levels and have shown promise to be used on actual components.

  13. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    Directory of Open Access Journals (Sweden)

    Jiří Kozák

    2017-01-01

    Full Text Available Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  14. Turbulence enhancement by ultrasonically induced gaseous cavitation in the CO2 saturated water

    International Nuclear Information System (INIS)

    Lee, Seung Youp; Choi, Young Don

    2002-01-01

    Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipment is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO 2 saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer

  15. Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Yifei; Jia, Aiyin; Wu, Yue; Wu, Chunde; Chen, Lijun

    2015-01-01

    The effect of hydrodynamic cavitation (HC) on potable water disinfection of chemicals was investigated. The bore well water was introduced into HC set-up to examine the effect of HC alone and combination of HC and chemicals such as chlorine dioxide and sodium hypochlorite. The effect of inlet pressure and geometrical parameters on disinfection was studied using HC alone and the results showed that increasing inlet pressure and using more and bigger holes of orifice plates can result in a higher disinfection rates. When HC was combined with chemicals, HC can reduce the doses of the chemicals and shorten the time of disinfection. It was also found that the decrease in bacteria concentration followed a first-order kinetic model. As for the experiment of combination of HC and sodium hypochlorite for disinfection, HC not only improves the disinfection rate but also degrades natural organic matter and chloroform. Compared with only sodium hypochlorite disinfection, combined processes get higher disinfection rate and lower production of chloroform, particularly the pretreatment with HC enhances the disinfection rate by 32% and there is a simultaneous reduction in production of chloroform by 39%.

  16. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation...... of an intermittently cavitating propeller in a wake and the pressures and forces it exerts on the shaft and on the ship hull is examined. A final chapter discusses the optimization of efficiency of compound propulsors. The authors have taken care to clearly describe physical concepts and mathematical steps. Appendices...

  17. Numerical simulation of wall roughness effects in cavitating flow

    International Nuclear Information System (INIS)

    Echouchene, F.; Belmabrouk, H.; Le Penven, L.; Buffat, M.

    2011-01-01

    Hydrodynamic cavitation has an important effect on the performance of Diesel injectors. It influences the nature of the fuel spray and the efficiency of the combustion process. In the present study, we investigate numerically the effect of wall roughness in the cavitating and turbulent flow developing inside a Diesel injector. The mixture model based on a single fluid is adopted and the commercial Fluent software is used to solve the transport equations. The discharge coefficient C d is computed for different cavitation numbers and wall roughness heights. Profiles of density mixture, vapor volume fraction, mean velocity and turbulent kinetic energy are reported. The effects of wall roughness and injection pressure are analyzed.

  18. Numerical simulation of wall roughness effects in cavitating flow

    Energy Technology Data Exchange (ETDEWEB)

    Echouchene, F. [Laboratoire d' electronique et de microelectronique, Departement de Physique, Faculte des Sciences de Monastir, 5000 (Tunisia); Belmabrouk, H., E-mail: frchouchene@yahoo.fr [Laboratoire d' electronique et de microelectronique, Departement de Physique, Faculte des Sciences de Monastir, 5000 (Tunisia); Le Penven, L.; Buffat, M. [LMFA UMR CNRS 5509, Universite de Claude Bernard Lyon 1, Ecole Centrale de Lyon, INSA de Lyon (France)

    2011-10-15

    Hydrodynamic cavitation has an important effect on the performance of Diesel injectors. It influences the nature of the fuel spray and the efficiency of the combustion process. In the present study, we investigate numerically the effect of wall roughness in the cavitating and turbulent flow developing inside a Diesel injector. The mixture model based on a single fluid is adopted and the commercial Fluent software is used to solve the transport equations. The discharge coefficient C{sub d} is computed for different cavitation numbers and wall roughness heights. Profiles of density mixture, vapor volume fraction, mean velocity and turbulent kinetic energy are reported. The effects of wall roughness and injection pressure are analyzed.

  19. Investigation of cavitating flows by X-ray and optical imaging

    Science.gov (United States)

    Coutier-Delgosha, Olivier; Fuzier, Sylvie; Khlifa, Ilyass; Fezzaa, Kamel

    2015-11-01

    Hydrodynamic cavitation is the partial vaporization of high speed liquid flows. The turbulent, compressible and unsteady character of these flows makes their study unusually complex and challenging. Instabilities generated by the occurrence of cavitation have been investigated in the last years in the LML laboratory by various non-intrusive measurements including X-ray imaging (to obtain the fields of void fraction and velocity in both phases), and PIV with fluorescent particles (to obtain the velocity fields in both phases). It has been shown that cavitation is characterized by significant slip velocities between liquid and vapor, especially in the re-entrant jet area and the cavity wake. This results suggests some possible improvements in the numerical models currently used for CFD of cavitating flows. Professor at Arts et Metiers ParisTech, Director of the LML laboratory.

  20. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    Science.gov (United States)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  1. Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro.

    Science.gov (United States)

    Bader, Kenneth B; Haworth, Kevin J; Maxwell, Adam D; Holland, Christy K

    2018-01-01

    Histotripsy utilizes focused ultrasound to generate bubble clouds for transcutaneous tissue liquefaction. Bubble activity maps are under development to provide image guidance and monitor treatment progress. The aim of this paper was to investigate the feasibility of using plane wave B-mode and passive cavitation images to be used as binary classifiers of histotripsy-induced liquefaction. Prostate tissue phantoms were exposed to histotripsy pulses over a range of pulse durations (5- ) and peak negative pressures (12-23 MPa). Acoustic emissions were recorded during the insonation and beamformed to form passive cavitation images. Plane wave B-mode images were acquired following the insonation to detect the hyperechoic bubble cloud. Phantom samples were sectioned and stained to delineate the liquefaction zone. Correlation between passive cavitation and plane wave B-mode images and the liquefaction zone was assessed using receiver operating characteristic (ROC) curve analysis. Liquefaction of the phantom was observed for all the insonation conditions. The area under the ROC (0.94 versus 0.82), accuracy (0.90 versus 0.83), and sensitivity (0.81 versus 0.49) was greater for passive cavitation images relative to B-mode images ( ) along the azimuth of the liquefaction zone. The specificity was greater than 0.9 for both imaging modalities. These results demonstrate a stronger correlation between histotripsy-induced liquefaction and passive cavitation imaging compared with the plane wave B-mode imaging, albeit with limited passive cavitation image range resolution.

  2. Regulating Ultrasound Cavitation in order to Induce Reproducible Sonoporation

    Science.gov (United States)

    Mestas, J.-L.; Alberti, L.; El Maalouf, J.; Béra, J.-C.; Gilles, B.

    2010-03-01

    Sonoporation would be linked to cavitation, which generally appears to be a non reproducible and unstationary phenomenon. In order to obtain an acceptable trade-off between cell mortality and transfection, a regulated cavitation generator based on an acoustical cavitation measurement was developed and tested. The medium to be sonicated is placed in a sample tray. This tray is immersed in in degassed water and positioned above the face of a flat ultrasonic transducer (frequency: 445 kHz; intensity range: 0.08-1.09 W/cm2). This technical configuration was admitted to be conducive to standing-wave generation through reflection at the air/medium interface in the well thus enhancing the cavitation phenomenon. Laterally to the transducer, a homemade hydrophone was oriented to receive the acoustical signal from the bubbles. From this spectral signal recorded at intervals of 5 ms, a cavitation index was calculated as the mean of the cavitation spectrum integration in a logarithmic scale, and the excitation power is automatically corrected. The device generates stable and reproducible cavitation level for a wide range of cavitation setpoint from stable cavitation condition up to full-developed inertial cavitation. For the ultrasound intensity range used, the time delay of the response is lower than 200 ms. The cavitation regulation device was evaluated in terms of chemical bubble collapse effect. Hydroxyl radical production was measured on terephthalic acid solutions. In open loop, the results present a great variability whatever the excitation power. On the contrary the closed loop allows a great reproducibility. This device was implemented for study of sonodynamic effect. The regulation provides more reproducible results independent of cell medium and experimental conditions (temperature, pressure). Other applications of this regulated cavitation device concern internalization of different particles (Quantum Dot) molecules (SiRNA) or plasmids (GFP, DsRed) into different

  3. Correlating Inertial Acoustic Cavitation Emissions with Material Erosion Resistance

    Science.gov (United States)

    Ibanez, I.; Hodnett, M.; Zeqiri, B.; Frota, M. N.

    The standard ASTM G32-10 concerns the hydrodynamic cavitation erosion resistance of materials by subjecting them to acoustic cavitation generated by a sonotrode. The work reported extends this technique by detecting and monitoring the ultrasonic cavitation, considered responsible for the erosion process, specifically for coupons of aluminium-bronze alloy. The study uses a 65 mm diameter variant of NPL's cavitation sensor, which detects broadband acoustic emissions, and logs acoustic signals generated in the MHz frequency range, using NPL's Cavimeter. Cavitation readings were made throughout the exposure duration, which was carried out at discrete intervals (900 to 3600 s), allowing periodic mass measurements to be made to assess erosion loss under a strict protocol. Cavitation measurements and erosion were compared for different separations of the sonotrode tip from the material under test. The maximum variation associated with measurement of cavitation level was between 2.2% and 3.3% when the separation (λ) between the transducer horn and the specimen increased from 0.5 to 1.0 mm, for a transducer (sonotrode) displacement amplitude of 43.5 μm. Experiments conducted at the same transducer displacement amplitude show that the mass loss of the specimen -a measure of erosion- was 67.0 mg (λ = 0.5 mm) and 66.0 mg (λ = 1.0 mm).

  4. Intensified depolymerization of aqueous polyacrylamide solution using combined processes based on hydrodynamic cavitation, ozone, ultraviolet light and hydrogen peroxide.

    Science.gov (United States)

    Prajapat, Amrutlal L; Gogate, Parag R

    2016-07-01

    The present work deals with intensification of depolymerization of polyacrylamide (PAM) solution using hydrodynamic cavitation (HC) reactors based on a combination with hydrogen peroxide (H2O2), ozone (O3) and ultraviolet (UV) irradiation. Effect of inlet pressure in hydrodynamic cavitation reactor and power dissipation in the case of UV irradiation on the extent of viscosity reduction has been investigated. The combined approaches such as HC+UV, HC+O3, HC+H2O2, UV+H2O2 and UV+O3 have been subsequently investigated and found to be more efficient as compared to individual approaches. For the approach based on HC+UV+H2O2, the extent of viscosity reduction under the optimized conditions of HC (3 bar inlet pressure)+UV (8 W power)+H2O2 (0.2% loading) was 97.27% in 180 min whereas individual operations of HC (3 bar inlet pressure) and UV (8 W power) resulted in about 35.38% and 40.83% intrinsic viscosity reduction in 180 min respectively. In the case of HC (3 bar inlet pressure)+UV (8 W power)+ozone (400 mg/h flow rate) approach, the extent of viscosity reduction was 89.06% whereas individual processes of only ozone (400 mg/h flow rate), ozone (400 mg/h flow rate)+HC (3 bar inlet pressure) and ozone (400 mg/h flow rate)+UV (8 W power) resulted in lower extent of viscosity reduction as 50.34%, 60.65% and 75.31% respectively. The chemical structure of the treated PAM by all approaches was also characterized using FTIR (Fourier transform infrared) spectra and it was established that no significant chemical structure changes were obtained during the treatment. Overall, it can be said that the combination of HC+UV+H2O2 is an efficient approach for the depolymerization of PAM solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cavitation in flow through a micro-orifice inside a silicon microchannel

    Science.gov (United States)

    Mishra, Chandan; Peles, Yoav

    2005-01-01

    Hydrodynamic cavitation in flows through a micro-orifice entrenched in a microchannel has been detected and experimentally investigated. Microfabrication techniques have been employed to design and develop a microfluidic device containing an 11.5μm wide micro-orifice inside a 100.2μm wide and 101.3μm deep microchannel. The flow of de-ionized water through the micro-orifice reveals the presence of multifarious cavitating flow regimes. This investigation divulges both similarities and differences between cavitation in micro-orifices and cavitation in their macroscale counterparts. The low incipient cavitation number obtained from the current experiments suggests a dominant size scale effect. Choking cavitation is observed to be independent of any pressure or velocity scale effects. However, choking is significantly influenced by the small stream nuclei residence time at such scales. Flow rate choking leads to the establishment of a stationary cavity. Large flow and cavitation hysteresis have been detected at the microscale leading to very high desinent cavitation numbers. The rapid transition from incipient bubbles to choking cavitation and subsequent supercavitation suggests the presence of radically different flow patterns at the microscale. Supercavitation results in a thick cavity, which extends throughout the microchannel, and is encompassed by the liquid. Cavitation at the microscale is expected to considerably influence the design of innovative high-speed microfluidic systems.

  6. Rayleigh-Plesset equation of the bubble stable cavitation in water: A nonequilibrium all-atom molecular dynamics simulation study

    Science.gov (United States)

    Man, Viet Hoang; Li, Mai Suan; Derreumaux, Philippe; Nguyen, Phuong H.

    2018-03-01

    The Rayleigh-Plesset (RP) equation was derived from the first principles to describe the bubble cavitation in liquids in terms of macroscopic hydrodynamics. A number of nonequilibrium molecular dynamics studies have been carried out to validate this equation in describing the bubble inertial cavitation, but their results are contradictory and the applicability of the RP equation still remains to be examined, especially for the stable cavitation. In this work, we carry out nonequilibrium all-atom simulation to validate the applicability of the RP equation in the description of the stable cavitation of nano-sized bubbles in water. We show that although microscopic effects are not explicitly included, this equation still describes the dynamics of subnano-bubbles quite well as long as the contributions of various terms including inertial, surface tension, and viscosity are correctly taken into account. These terms are directly and inversely proportional to the amplitude and period of the cavitation, respectively. Thus, their contributions to the RP equation depend on these two parameters. This may explain the discrepancy between the current results obtained using different parameters. Finally, the accuracy of the RP equation in the current mathematical modeling studies of the ultrasound-induced blood-brain-barrier experiments is discussed in some detail.

  7. Hydrodynamical tests with an original PWR heat removal pump

    International Nuclear Information System (INIS)

    Wietstock, P.

    1984-01-01

    GKSS-Forschungszentrum performes hydrodynamical tests with an original PWR heat removal pump to analyse the influences of fluid parameters on the capacity and cavitation behavior of the pump in order to get further improvements of the quantification of the reached safety-level. It can be concluded, that in case of the tested heat removal pump the additional loads during transition from cavitation free operation into fully cavitation for the investigated operation point with 980 m 3 /h will be smaller than the alteration of loads during passing through the total characteristic. The results from cavitation tests for other operation points indicate, that this very important consequence especially for accident operation will be valid for the total specified pump flow area. (orig.)

  8. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    International Nuclear Information System (INIS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-01-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  9. New insights into the mechanisms of water-stress-induced cavitation in conifers.

    Science.gov (United States)

    Cochard, Hervé; Hölttä, Teemu; Herbette, Stéphane; Delzon, Sylvain; Mencuccini, Maurizio

    2009-10-01

    Cavitation resistance is a key parameter to understand tree drought tolerance but little is known about the mechanisms of air entry into xylem conduits. For conifers three mechanisms have been proposed: (1) a rupture of pit margo microfibrils, (2) a displacement of the pit torus from its normal sealing position over the pit aperture, and (3) a rupture of an air-water menisci in a pore of the pit margo. In this article, we report experimental results on three coniferous species suggesting additional mechanisms. First, when xylem segments were injected with a fluid at a pressure sufficient to aspirate pit tori and well above the pressure for cavitation induction we failed to detect the increase in sample conductance that should have been caused by torus displacement from blocking the pit aperture or by membrane rupture. Second, by injecting xylem samples with different surfactant solutions, we found a linear relation between sample vulnerability to cavitation and fluid surface tension. This suggests that cavitation in conifers could also be provoked by the capillary failure of an air-water meniscus in coherence with the prediction of Young-Laplace's equation. Within the bordered pit membrane, the exact position of this capillary seeding is unknown. The possible Achilles' heel could be the seal between tori and pit walls or holes in the torus. The mechanism of water-stress-induced cavitation in conifers could then be relatively similar to the one currently proposed for angiosperms.

  10. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    Science.gov (United States)

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  11. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    Science.gov (United States)

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  12. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  13. Cavitation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Cavitation in fluid machines or flow passages can cause loss of performance or material damage due to erosion. This conference reports the results of world-wide research into all aspects of the study of cavitation. Contents include: Cavitation effects in machinery such as pumps, water turbines, propellers and positive displacement machinery; Cavitation in structures, flow passages, valves, flow meters and bearings; Cavitation erosion, noise and instability effects; Cavitation inception; Developed flows; Supercavitating flows and machines; Fundamentals; Bubble dynamics and thermodynamics of cavitation in various fluids; Test facilities and methods of cavitation research and testing; Special instrumentation for cavitation studies, and standards and recommendations for cavitation or erosion

  14. Degradation of ibuprofen by hydrodynamic cavitation: Reaction pathways and effect of operational parameters.

    Science.gov (United States)

    Musmarra, Dino; Prisciandaro, Marina; Capocelli, Mauro; Karatza, Despina; Iovino, Pasquale; Canzano, Silvana; Lancia, Amedeo

    2016-03-01

    Ibuprofen (IBP) is an anti-inflammatory drug whose residues can be found worldwide in natural water bodies resulting in harmful effects to aquatic species even at low concentrations. This paper deals with the degradation of IBP in water by hydrodynamic cavitation in a convergent-divergent nozzle. Over 60% of ibuprofen was degraded in 60 min with an electrical energy per order (EEO) of 10.77 kWh m(-3) at an initial concentration of 200 μg L(-1) and a relative inlet pressure pin=0.35 MPa. Five intermediates generated from different hydroxylation reactions were identified; the potential mechanisms of degradation were sketched and discussed. The reaction pathways recognized are in line with the relevant literature, both experimental and theoretical. By varying the pressure upstream the constriction, different degradation rates were observed. This effect was discussed according to a numerical simulation of the hydroxyl radical production identifying a clear correspondence between the maximum kinetic constant kOH and the maximum calculated OH production. Furthermore, in the investigated experimental conditions, the pH parameter was found not to affect the extent of degradation; this peculiar feature agrees with a recently published kinetic insight and has been explained in the light of the intermediates of the different reaction pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center

  16. Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles.

    Science.gov (United States)

    Kwan, J J; Graham, S; Myers, R; Carlisle, R; Stride, E; Coussios, C C

    2015-08-01

    The understanding of cavitation from nanoparticles has been hindered by the inability to control nanobubble size. We present a method to manufacture nanoparticles with a tunable single hemispherical depression (nanocups) of mean diameter 90, 260, or 650 nm entrapping a nanobubble. A modified Rayleigh-Plesset crevice model predicts the inertial cavitation threshold as a function of cavity size and frequency, and is verified experimentally. The ability to tune cavitation nanonuclei and predict their behavior will be useful for applications ranging from cancer therapy to ultrasonic cleaning.

  17. Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process.

    Science.gov (United States)

    Cai, Meiqiang; Su, Jie; Zhu, Yizu; Wei, Xiaoqing; Jin, Micong; Zhang, Haojie; Dong, Chunying; Wei, Zongsu

    2016-01-01

    The present work demonstrates the application of the combination of hydrodynamic cavitation (HC) and the heterogeneous Fenton process (HF, Fe(0)/H2O2) for the decolorization of azo dye Orange G (OG). The effects of main affecting operation conditions such as the inlet fluid pressure, initial concentration of OG, H2O2 and zero valent iron (ZVI), the fixed position of ZVI, and medium pH on decolorization efficiency were discussed with guidelines for selection of optimum parameters. The results revealed that the acidic conditions are preferred for OG decolorizaiton. The decolorization rate increased with increasing H2O2 and ZVI concentration and decreased with increasing OG initial concentration. Besides, the decolorization rate was strongly dependent on the fixed position of ZVI. The analysis results of degradation products using liquid chromatography-ESI-TOF mass spectrometry revealed that the degradation mechanism of OG proceeds mainly via reductive cleavage of the azo linkage due to the attack of hydroxyl radical. The present work has conclusively established that the combination of HC and HF can be more energy efficient and gives higher decolorization rate of OG as compared with HC and HF alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Influence of cavitation bubble growth by rectified diffusion on cavitation-enhanced HIFU

    Science.gov (United States)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2017-11-01

    Cavitation is becoming increasingly important in therapeutic ultrasound applications such as diagnostic, tumor ablation and lithotripsy. Mass transfer through gas-liquid interface due to rectified diffusion is important role in an initial stage of cavitation bubble growth. In the present study, influences of the rectified diffusion on cavitation-enhanced high-intensity focused ultrasound (HIFU) was investigated numerically. Firstly, the mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the result, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Next, the cavitation-enhanced HIFU, which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves, was reproduced by the present simulation. The heating region obtained by the simulation is agree to the treatment region of an in vitro experiment. Additionally, the simulation result shows that the localized heating is enhanced by the increase of the equilibrium bubble size due to the rectified diffusion. This work was supported by JSPS KAKENHI Grant Numbers JP26420125,JP17K06170.

  19. An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel

    OpenAIRE

    Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.

    2016-01-01

    Most modern high-pressure common rail diesel fuel injection systems employ an internal pressure equalization system in order to provide the force necessary to support needle lift, enabling precise control of the injected fuel mass. This results in the return of a substantial proportion of the high-pressure diesel back to the fuel tank. The diesel fuel flow occurring in the injector spill passages is expected to be a cavitating flow, which is known to promote fuel ageing. The cavitation of die...

  20. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, M. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ebrahimi, R. [Faculty of Aerospace Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shams, M., E-mail: shams@kntu.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Molla-Sadra Ave, Vanak. Sq., P.O. Box: 19395-1999, Tehran (Iran, Islamic Republic of)

    2011-06-13

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  1. Research on Cavitation Regions of Upstream Pumping Mechanical Seal Based on Dynamic Mesh Technique

    Directory of Open Access Journals (Sweden)

    Huilong Chen

    2014-08-01

    Full Text Available In order to study the cavitation area of the Upstream Pumping Mechanical Seal, three-dimensional microgap inner flow field of the Upstream Pumping Mechanical Seal was simulated with multiphase flow cavitation model and dynamic mesh technique based on hydrodynamic lubrication theory. Furthermore, the simulated result was compared with the experimental data. The results show that the simulated result with the Zwart-Gerber-Belamri cavitation model was much closer to the experimental data. The area of cavitation inception mainly occurred at the concave side of the spiral groove and surrounding region without spiral grooves, which was nearly covered by the inner diameter to roots of grooves; in addition, the region near the surface of the stationary ring was primary cavitation location. The area of cavitation has little relationship with the medium pressure; however, it became larger following increasing rotating speed in the range of researched operating conditions. Moreover the boundary of cavitated area was transformed from smooth to rough, which occurred in similar film thickness. When cavitation number was decreasing, which was conducive to improving the lubrication performance of sealed auxiliary, it made the sealing stability decline.

  2. Observations on Rotating Cavitation and Cavitation Surge From The Development of the Fastrac Engine Turbopump

    Science.gov (United States)

    Zoladz, Thomas F.; Turner, James E. (Technical Monitor)

    2000-01-01

    The effects of rotating cavitation and cavitation surges on the Fastrac Engine Turbopump are described in a viewgraph presentation format. The bent inducer blade dilemma and observations of unsteady data and oscillation components are discussed. The pump-feed system stability modeling assessment is outlined. Recommendations are made urging further investigation.

  3. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities

    Science.gov (United States)

    Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.

    2018-04-01

    Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.

  4. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-12-07

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r(2)  =  0.77); (2) the permeability of the opened BBB (r(2)  =  0.82); (3) the likelihood of safe opening (P  cavitation dose was correlated with the resulting BBB permeability (r(2)  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the BBB opening duration, enabling thus control of opening according to the drug

  5. Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump

    International Nuclear Information System (INIS)

    Guo, XiaoMei; Shi, GaoPing; Zhu, ZuChao; Cui, BaoLing

    2016-01-01

    Installing an inducer upstream of the main impeller is an effective approach for improving the anti-cavitation performance of a high speed centrifugal pump. For a high-speed centrifugal pump with an inducer, the number of inducer blades can affect its internal flow and external performance. We studied the manner in which the number of inducer blades can affect the anti-cavitation characteristics and external performance of a centrifugal pump. We first use the Rayleigh-Plesset equation and the mixture model to simulate the vapor liquid flow in a centrifugal pump with an inducer, and then predict its external performance. Finally, we tested the external performance of a centrifugal pump with 2-, 3- and 4-bladed inducers, respectively. The results show that the simulations of external performance in a centrifugal pump are in accordance with our experiments. Based on this, we obtained vapor volume fraction distributions for the inducer, the impeller, and in the corresponding whole flow parts. We discovered that the vapor volume fraction of a centrifugal pump with a 3- bladed inducer is less than that of a centrifugal pump with 2- or 4-bladed inducers, which means that a centrifugal pump with a 3-bladed inducer has a better external and anti-cavitation performance.

  6. Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    C. Bhagat

    2014-12-01

    Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.

  7. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  8. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    Science.gov (United States)

    Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.

    2012-11-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  9. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    International Nuclear Information System (INIS)

    Balint, D; Câmpian, V; Nedelcu, D; Megheles, O

    2012-01-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  10. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    Science.gov (United States)

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  11. Cavitation nucleation in gelatin: Experiment and mechanism.

    Science.gov (United States)

    Kang, Wonmo; Adnan, Ashfaq; O'Shaughnessy, Thomas; Bagchi, Amit

    2018-02-01

    Dynamic cavitation in soft materials is becoming increasingly relevant due to emerging medical implications such as the potential of cavitation-induced brain injury or cavitation created by therapeutic medical devices. However, the current understanding of dynamic cavitation in soft materials is still very limited, mainly due to lack of robust experimental techniques. To experimentally characterize cavitation nucleation under dynamic loading, we utilize a recently developed experimental instrument, the integrated drop tower system. This technique allows quantitative measurements of the critical acceleration (a cr ) that corresponds to cavitation nucleation while concurrently visualizing time evolution of cavitation. Our experimental results reveal that a cr increases with increasing concentration of gelatin in pure water. Interestingly, we have observed the distinctive transition from a sharp increase (pure water to 1% gelatin) to a much slower rate of increase (∼10× slower) between 1% and 7.5% gelatin. Theoretical cavitation criterion predicts the general trend of increasing a cr , but fails to explain the transition rates. As a likely mechanism, we consider concentration-dependent material properties and non-spherical cavitation nucleation sites, represented by pre-existing bubbles in gels, due to possible interplay between gelatin molecules and nucleation sites. This analysis shows that cavitation nucleation is very sensitive to the initial configuration of a bubble, i.e., a non-spherical bubble can significantly increase a cr . This conclusion matches well with the experimentally observed liquid-to-gel transition in the critical acceleration for cavitation nucleation. From a medical standpoint, understanding dynamic cavitation within soft materials, i.e., tissues, is important as there are both potential injury implications (blast-induced cavitation within the brain) as well as treatments utilizing the phenomena (lithotripsy). In this regard, the main

  12. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2014-01-01

    Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Optimization of hydrodynamic cavitations reactor efficiency for biodiesel production by response surface methods (Case study: Sunflower oil

    Directory of Open Access Journals (Sweden)

    H Javadikia

    2017-05-01

    Full Text Available Introduction Biofuels are considered as one of the largest sources of renewable fuels or replacement of fossil fuels. Combustion of plant-based fuels is the indirect use of solar energy. Biofuels significantly have less pollution than other fossil fuels and can easily generate from residual plant material. Waste and residues of foods and wastewater can also be a good source for biofuel production. Transesterification method (one of biodiesel production methods is the most common forms to produce mono-alkyl esters from vegetable oil and animal fats. The procedure aims are reduction the oil viscosity during the reaction between triglycerides and alcohol in the presence of a catalyst or without it. In this study, the method of transesterification with alkaline catalysts is used that it is the most common and most commercial biodiesel production method. In this study, configurations of made hydrodynamic cavitation reactor were studied to measure biodiesel fuel quality and enhanced device performance with optimum condition. The Design Expert software and response surface methodology were used to get this purpose. Materials and Methods Transesterification method was used in this study. The procedure aims were reduction of the oil viscosity during the reaction between triglycerides and alcohol in the presence of a catalyst or without it. Materials needed in the production of biodiesel transesterification method include: vegetable oil, alcohol and catalysts. The used oil in the production of biodiesel was sunflower oil, which was used 0.6 liters per each test in the production process base on titration method. Methanol with purity of 99.8 percent and the molar ratio of 6:1 to oil was used based on titration equation and according to the results of other researchers. The used catalyst in continuous production process was high-purity sodium hydroxide (99% that it is one of alkaline catalysts. Weight of hydroxide was 1% of the used oil weight in the

  14. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    Science.gov (United States)

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation

    Science.gov (United States)

    2014-08-27

    studies using ultrasound shock waves also support cavitation induced damage, e.g. hemorrhage and cellular membrane poration 26-28. In addition...SECURITY CLASSIFICATION OF: Cavitation -induced shock wave, as might occur in the head during exposure to blast waves, was investigated as a possible...damage mechanism for soft brain tissues. A novel experimental scheme was developed to visualize and control single bubble cavitation and its

  16. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    International Nuclear Information System (INIS)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-01-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r 2   =  0.77); (2) the permeability of the opened BBB (r 2   =  0.82); (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r 2   =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response

  17. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C.; Konofagou, Elisa E.

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r2  =  0.77) (2) the permeability of the opened BBB (r2  =  0.82) (3) the likelihood of safe opening (P  cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r2  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the

  18. Hydrodynamic cavitation characteristics of an orifice system and its effects on CRUD-like SiC deposition

    International Nuclear Information System (INIS)

    Kim, Seong Man; Bang, In Cheol

    2016-01-01

    Highlights: • CRUD-like SiC deposition was prepared for examining the erosion test in the cavitation field. • We investigated the comparison between swirl flow and common flow on cavitation. • Magnitude of shock pressure was investigated at low cavitation number. - Abstract: In a nuclear power plant, chalk river unidentified deposit (CRUD) is known as a deposit that is composed of corrosion and oxidation materials. It has a porous structure, which combines with boron that is injected into the coolant for controlling power levels. The buildup of corrosion products on the fuel cladding surface has proven to be particularly significant for both BWRs and PWRs. The high temperature of the cladding surface attracts impurities and chemical additives in the reactor coolant that deposit on the fuel rod surface in a process. The deposits on a fuel rod, known as CRUD, can be tenacious, insulative compounds capable of increasing the local clad temperature and accelerating clad corrosion—sometimes to the point of fuel failure. The deposition of CRUD on fuel cladding surfaces causes uneven heating of the reactor core. The situation is exacerbated by boron, which is added to the coolant to control power levels. However, boron becomes concentrated and is deposited within thick CRUD deposits. Ultrasonic mechanisms were developed but they have limitations for decontamination. In this experiment, a decontamination test was conducted using a sample sheet that was composed of SiC/water nanofluids. In addition, it was exposed to swirl flow and common flow for checking enhanced cavitation. It is measured by a pressure film, as shock pressure is associated with cavitation number. As a pressure film is wetted easily in water, it was injected into a holder. In the experiment, the maximum shock pressure was obtained during swirl flow at a low cavitation number. This indicates that pressure was concentrated on the pressure film. Consequently, cavitation can get rid of CRUD layers

  19. A novel device for hazardous substances degradation based on double-cavitating-jets impingement: Parameters optimization and efficiency assessment.

    Science.gov (United States)

    Tao, Yuequn; Cai, Jun; Huai, Xiulan; Liu, Bin

    2017-08-05

    Hydrodynamic cavitation is an effective advanced oxidation process. But sometimes it cannot obtain satisfactory treatment efficiency by using hydrodynamic cavitation individually, so it is necessary to introduce intensive methods. Based on double-cavitating-jets impingement, this paper presents a novel device that has advantages of strong heat and mass transfer and efficient chemical reactions. Based on the device, a series of experimental investigations on degradation of a basic dye, i.e. Rhodamine B were carried out. Significant Rhodamine B removal from aqueous solution was observed during 2h treatment and the degradation reaction conformed to pseudo-first-order kinetics. The synergetic effects between double-cavitating-jets impingement and Fenton chemistry on simultaneous degradation of Rhodamine B were confirmed. Both single-variable experiments and orthogonal experiments were carried out to study the effects of initial hydrogen peroxide, ferrous sulfate and Rhodamine B concentrations and the optimum conditions were found out. Effects of jet inlet pressure in the range of 6-12MPa and solution pH value in the range of 2-8 were also investigated. The cavitation yield was evaluated to assess the energy efficiency. The present treatment scheme showed advantages in terms of reducing the demand of hydrogen peroxide concentration and enhancing the treatment efficiency in large scale operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  1. CAV-OX (trade name) Cavitation Oxidation Process Magnum Water Technology, Inc. applications analysis report. Report for November 1992-November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stacy, G.L.

    1994-05-01

    The CAV-OX process was developed by magnum Water Technology to destroy organic contaminants in water. The process uses hydrodynamic cavitation, ultraviolet (UV) radiation, and hydrogen peroxide to oxidize organic compounds present in water at or below milligrams per liter levels. This treatment technology produces no air emissions and generated no sludge or spent media that requires further processing, handling, or disposal. Ideally, the end products are water, carbon dioxide, halides, and in some cases, organic acids. The process uses mercury vapor lamps to generate UV radiation. The principal oxidants in the process, hydroxyl radicals, are produced by hydrodynamic cavitation and direct photolysis of hydrogen peroxide at UV wavelengths.

  2. The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge

    OpenAIRE

    Machnicka, A; Grűbel, K; Suschka, J

    2009-01-01

    Disintegration by hydrodynamic cavitation has a positive effect on the degree and rate of sludge anaerobic digestion. By applying hydrodynamic disintegration the lysis of cells occurs in minutes instead of days. The intracellular and extracellular components are set free and are immediately available for biological degradation which leads to an improvement of the subsequent anaerobic process. Hydrodynamic disintegration of the activated sludge results in organic matter and a polymer transfer ...

  3. The Enhancement of H2O2/UV AOPs for the Removal of Selected Organic Pollutants from Drinking Water with Hydrodynamic Cavitation.

    Science.gov (United States)

    Čehovin, Matej; Medic, Alojz; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2016-12-01

    Drinking water contains organic matter that occasionally needs to be treated to assure its sufficient quality and safety for the consumers. H2O2 and UV advanced oxidation processes (H2O2/UV AOPs) were combined with hydrodynamic cavitation (HC) to assess the effects on the removal of selected organic pollutants. Water samples containing humic acid, methylene blue dye and micropollutants (metaldehyde, diatrizoic acid, iohexol) were treated first by H2O2 (dosages from 1 to 12 mg L-1) and UV (dosages from 300 to 2800 mJ cm-2) AOPs alone and later in combination with HC, generated by nozzles and orifice plates (4, 8, 18 orifices). Using HC, the removal of humic acid was enhanced by 5-15%, methylene blue by 5-20% and metaldehyde by approx. 10%. Under favouring conditions, i.e. high UV absorbance of the matrix (more than 0.050 cm-1 at a wavelength of 254 nm) and a high pollutant to oxidants ratio, HC was found to improve the hydrodynamic conditions in the photolytic reactor, to improve the subjection of the H2O2 to the UV fluence rate distribution and to enhance the removal of the tested organic pollutants, thus showing promising potential of further research in this field.

  4. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    Science.gov (United States)

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors.

    Science.gov (United States)

    Terán Hilares, Ruly; Kamoei, Douglas Viana; Ahmed, Muhammad Ajaz; da Silva, Silvio Silvério; Han, Jong-In; Santos, Júlio César Dos

    2018-05-01

    Hydrodynamic cavitation (HC) was adopted to assist alkaline-hydrogen peroxide pretreatment of sugarcane bagasse (SCB). In the following condition: 0.29 M of NaOH, 0.78% (v/v) of H 2 O 2 , 9.95 min of process time and 3 bar of inlet pressure, 95.4% of digestibility of cellulosic fraction was achieved. To take the best use of the pretreated biomass, the overall process was intensified by way of employing a packed bed flow-through column reactor and thus enabling to handle a high solid loading of 20%, thereby leading to cellulose and hemicellulose conversions to 74.7% and 75%, respectively. In the fermentation step, a bubble column reactor was introduced to maximize ethanol production from the pretreated SCB by Scheffersomyces stipitis NRRL-Y7124, resulting in 31.50 g/L of ethanol, 0.49 g/g of ethanol yield and 0.68 g/L.h of productivity. All this showed that our HC-assisted NaOH-H 2 O 2 pretreatment strategy along with the process intensification approach might offer an option for SCB-based biorefineries. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Science.gov (United States)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-06-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.

  7. Radiation induced cavitation: A possible phenomenon in liquid targets?

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  8. Radiation induced cavitation: A possible phenomenon in liquid targets?

    International Nuclear Information System (INIS)

    West, C.D.

    1998-01-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place

  9. Formation of a cavitation cluster in the vicinity of a quasi-empty rupture

    Science.gov (United States)

    Bol'shakova, E. S.; Kedrinskiy, V. K.

    2017-09-01

    The presentation deals with one of the experimental and numerical models of a quasi-empty rupture in the magma melt. This rupture is formed in the liquid layer of a distilled cavitating fluid under shock loading within the framework of the problem formulation with a small electromagnetic hydrodynamic shock tube. It is demonstrated that the rupture is shaped as a spherical segment, which retains its topology during the entire process of its evolution and collapsing. The dynamic behavior of the quasi-empty rupture is analyzed, and the growth of cavitating nuclei in the form of the boundary layer near the entire rupture interface is found. It is shown that rupture implosion is accompanied by the transformation of the bubble boundary layer to a cavitating cluster, which takes the form of a ring-shaped vortex floating upward to the free surface of the liquid layer. A p-κ mathematical model is formulated, and calculations are performed to investigate the implosion of a quasi-empty spherical cavity in the cavitating liquid, generation of a shock wave by this cavity, and dynamics of the bubble density growth in the cavitating cluster by five orders of magnitude.

  10. Comparison of cavitation bubbles evolution in viscous media

    Directory of Open Access Journals (Sweden)

    Jasikova Darina

    2018-01-01

    Full Text Available There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  11. Cavitation phenomena in extracorporeal microexplosion lithotripsy

    Science.gov (United States)

    Tomita, Y.; Obara, T.; Takayama, K.; Kuwahara, M.

    1994-09-01

    An experimental investigation was made of cavitation phenomena induced by underwater shock wave focusing applied to the extracorporeal microexplosion lithotripsy (microexplosion ESWL). Firstly an underwater microexplosion generated by detonation of a 10 mg silver azide pellet was studied and secondly underwater shock focusing and its induced cavitation phenomena were investgated. Underwater shock wave was focused by using a semi-ellipsoidal reflector in which a shock wave generated at the first focal point of the reflector was reflected and focused at the second focal point. It is found that an explosion product gas bubble did not produce any distinct rebound shocks. Meantime cavitation appeared after shock focusing at the second focal point where expansion waves originated at the exit of the reflector were simultaneously collected. A shock/bubble interaction is found to contribute not only to urinary tract stone disintegration but also tissue damage. The cavitation effect associated with the microexplosion ESWL was weaker in comparison with a spark discharge ESWL. The microexplosion ESWL is an effective method which can minimize the number of shock exposures hence decreasing tissue damage by conducting precise positioning of urinary tract stones.

  12. Cavitation erosion of silver plated coating at different temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Shuji; Motoi, Yoshihiro [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fuku-shi, Fukui 910-8507 (Japan); Kikuta, Kengo; Tomaru, Hiroshi [IHI Corperation, TOYOSU IHI BUILDING, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 1358710 (Japan)

    2014-04-11

    Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter Σ proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ρc (ρ: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter Σ, suppression pressure p–p{sub v} and acoustic impedance ρc.

  13. Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

    Directory of Open Access Journals (Sweden)

    Muhammad Supardan

    2013-04-01

    Full Text Available The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA content of WCO and followed by base-catalyzed transesterification process for converting WCO to biodiesel as the second step. The result of esterification process with methanol to oil molar ratio of 5 and temperature of 60 oC showed that the initial acid value of WCO of 3.9 mg KOH/g can be decreased to 1.81 mg KOH/g in 120 minutes. The highest yield of biodiesel in transesterification process of 89.4% obtained at reaction time of 150 minutes with methanol to oil molar ratio of 6. The biodiesel produced in the experiment was analyzed by gas chromatography-mass spectrometry (GC-MS, which showed that it mainly contained five fatty acid methyl esters. In addition, the properties of biodiesel showed that all of the fuel properties met the Indonesian National Standard (INS No. 04-7182-2006 for biodiesel. 

  14. Ultrasound-induced cavitation damage to external epithelia of fish skin.

    Science.gov (United States)

    Frenkel, V; Kimmel, E; Iger, Y

    1999-10-01

    Transmission electron microscopy was used to show the effects of therapeutic ultrasound (fish skin. Exposures of up to 90 s produced damage to 5 to 6 of the outermost layers. Negligible temperature elevations and lack of damage observed when using degassed water indicated that the effects were due to cavitation. The minimal intensity was determined for inducing cellular damage, where the extent and depth of damage to the tissues was correlated to the exposure duration. The results may be interpreted as a damage front, advancing slowly from the outer cells inward, presumably in association with the slow replacement of the perforated cell contents with the surrounding water. This study illustrates that a controlled level of microdamage may be induced to the outer layers of the tissues.

  15. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.

    2010-07-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation. Copyright © EPLA, 2010.

  16. A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation

    Science.gov (United States)

    Testa, C.; Ianniello, S.; Salvatore, F.

    2018-01-01

    A novel hydroacoustic formulation for the prediction of tonal noise emitted by marine propellers in presence of unsteady sheet cavitation, is presented. The approach is based on the standard Ffowcs Williams and Hawkings equation and the use of transpiration (velocity and acceleration) terms, accounting for the time evolution of the vapour cavity attached on the blade surface. Drawbacks and potentialities of the method are tested on a marine propeller operating in a nonhomogeneous onset flow, by exploiting the hydrodynamic data from a potential-based panel method equipped with a sheet cavitation model and comparing the noise predictions with those carried out by an alternative numerical approach, documented in literature. It is shown that the proposed formulation yields a one-to-one correlation between emitted noise and sheet cavitation dynamics, carrying out accurate predictions in terms of noise magnitude and directivity.

  17. Attached cavitation at a small diameter ultrasonic horn tip

    Science.gov (United States)

    Žnidarčič, Anton; Mettin, Robert; Cairós, Carlos; Dular, Matevž

    2014-02-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids, for instance, for cell disruption or sonochemical reactions. They are operated typically in the frequency range up to about 50 kHz and have tip diameters from some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e., below the acoustic driving frequency. Here, we present a systematic study of the cavitation dynamics in water at a 20 kHz horn tip of 3 mm diameter. The system was investigated by high-speed imaging with simultaneous recording of the acoustic emissions. Measurements were performed under variation of acoustic power, air saturation, viscosity, surface tension, and temperature of the liquid. Our findings show that the liquid properties play no significant role in the dynamics of the attached cavitation at the small ultrasonic horn. Also the variation of the experimental geometry, within a certain range, did not change the dynamics. We believe that the main two reasons for the peculiar dynamics of cavitation on a small ultrasonic horn are the higher energy density on a small tip and the inability of the big tip to "wash" away the gaseous bubbles. Calculation of the somewhat adapted Strouhal number revealed that, similar to the hydrodynamic cavitation, values which are relatively low characterize slow cavitation structure dynamics. In cases where the cavitation follows the driving frequency this value lies much higher - probably at Str > 20. In the spirit to distinguish the observed phenomenon with other cavitation dynamics at ultrasonic transducer surfaces, we suggest to term the observed phenomenon of attached cavities partly covering the full horn

  18. Superhigh Temperatures and Acoustic Cavitation

    CERN Document Server

    Belyaev, V B; Miller, M B; Sermyagin, A V; Topolnikov, A S

    2003-01-01

    The experimental results on thermonuclear synthesis under acoustic cavitation have been analyzed with the account of the latest data and their discussion. The analysis testifies that this avenue of research is a very promising one. The numerical calculations of the D(d, n)^{3}He reaction rate in the deuterated acetone (C_{3}D_{6}O) under the influence of ultrasound depending on T environment temperature within the range T=249-295 K have been carried out within the framework of hydrodynamic model. The results show that it is possible to improve substantially the effect/background relationship in experiments by decreasing the fluid temperature twenty-thirty degrees below zero.

  19. Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material.

    Science.gov (United States)

    Terán Hilares, Ruly; Ienny, João Vitor; Marcelino, Paulo Franco; Ahmed, Muhammad Ajaz; Antunes, Felipe A F; da Silva, Silvio Silvério; Santos, Júlio César Dos

    2017-11-01

    In this study, sugarcane bagasse (SCB) pretreated with alkali assisted hydrodynamic cavitation (HC) was investigated for simultaneous saccharification and fermentation (SSF) process for bioethanol production in interconnected column reactors using immobilized Scheffersomyces stipitis NRRL-Y7124. Initially, HC was employed for the evaluation of the reagent used in alkaline pretreatment. Alkalis (NaOH, KOH, Na 2 CO 3 , Ca(OH) 2 ) and NaOH recycled black liquor (successive batches) were used and their pretreatment effectiveness was assessed considering the solid composition and its enzymatic digestibility. In SSF process using NaOH-HC pretreatment SCB, 62.33% of total carbohydrate fractions were hydrolyzed and 17.26g/L of ethanol production (0.48g of ethanol/g of glucose and xylose consumed) was achieved. This proposed scheme of HC-assisted NaOH pretreatment together with our interconnected column reactors showed to be an interesting new approach for biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  1. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.

    Science.gov (United States)

    Haworth, Kevin J; Raymond, Jason L; Radhakrishnan, Kirthi; Moody, Melanie R; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E; Kim, Hyunggun; McPherson, David D; Holland, Christy K

    2016-02-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis. Copyright © 2016 World Federation for

  2. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    Science.gov (United States)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-15

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  3. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    Science.gov (United States)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  5. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    Science.gov (United States)

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  6. Current knowledge and potential applications of cavitation technologies for the petroleum industry.

    Science.gov (United States)

    Avvaru, Balasubrahmanyam; Venkateswaran, Natarajan; Uppara, Parasuveera; Iyengar, Suresh B; Katti, Sanjeev S

    2018-04-01

    Technologies based on cavitation, produced by either ultrasound or hydrodynamic means, are part of growing literature for individual refinery unit processes. In this review, we have explained the mechanism through which these cavitation technologies intensify individual unit processes such as enhanced oil recovery, demulsification of water in oil emulsions during desalting stage, crude oil viscosity reduction, oxidative desulphurisation/demetallization, and crude oil upgrading. Apart from these refinery processes, applications of this technology are also mentioned for other potential crude oil sources such as oil shale and oil sand extraction. The relative advantages and current situation of each application/process at commercial scale is explained. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

    2004-04-01

    The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

  8. Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Han, Jiesheng; Lu, Jinjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-01-15

    Highlights: • Cavitation erosion behavior of Hastelloy C-276 was studied by ultrasonic apparatus. • The cavitation-induced precipitates formed in the eroded surface for Hastelloy C-276. • The selective cavitation erosion was found in Hastelloy C-276 alloy. - Abstract: The cavitation erosion behavior of Hastelloy C-276 alloy was investigated using an ultrasonic vibratory apparatus and compared with that of 316L stainless steel. The mean depth of erosion (MDE) and erosion rate (ER) curves vs. test time were attained for Hastelloy C-276 alloy. Morphology and microstructure evolution of the eroded surface were observed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and the predominant erosion mechanism was also discussed. The results show that the MDE is about 1/6 times lower than that of the stainless steel after 9 h of testing. The incubation period of Hastelloy C-276 alloy is about 3 times longer than that of 316L stainless steel. The cavitation-induced nanometer-scaled precipitates were found in the local zones of the eroded surface for Hastelloy C-276. The selective cavitation erosion was found in Hastelloy C-276 alloy. The formation of nanometer-scaled precipitates in the eroded surface may play a significant role in the cavitation erosion resistance of Hastelloy C-276.

  9. Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy

    International Nuclear Information System (INIS)

    Li, Zhen; Han, Jiesheng; Lu, Jinjun; Chen, Jianmin

    2015-01-01

    Highlights: • Cavitation erosion behavior of Hastelloy C-276 was studied by ultrasonic apparatus. • The cavitation-induced precipitates formed in the eroded surface for Hastelloy C-276. • The selective cavitation erosion was found in Hastelloy C-276 alloy. - Abstract: The cavitation erosion behavior of Hastelloy C-276 alloy was investigated using an ultrasonic vibratory apparatus and compared with that of 316L stainless steel. The mean depth of erosion (MDE) and erosion rate (ER) curves vs. test time were attained for Hastelloy C-276 alloy. Morphology and microstructure evolution of the eroded surface were observed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and the predominant erosion mechanism was also discussed. The results show that the MDE is about 1/6 times lower than that of the stainless steel after 9 h of testing. The incubation period of Hastelloy C-276 alloy is about 3 times longer than that of 316L stainless steel. The cavitation-induced nanometer-scaled precipitates were found in the local zones of the eroded surface for Hastelloy C-276. The selective cavitation erosion was found in Hastelloy C-276 alloy. The formation of nanometer-scaled precipitates in the eroded surface may play a significant role in the cavitation erosion resistance of Hastelloy C-276

  10. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice

    International Nuclear Information System (INIS)

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E

    2010-01-01

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity (registered) microbubbles (mean diameter range: 1.1-3.3 μm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 μm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity (registered) microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without

  11. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E, E-mail: ek2191@columbia.ed [Department of Biomedical Engineering, Columbia University, New York, NY (United States)

    2010-10-21

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity (registered) microbubbles (mean diameter range: 1.1-3.3 {mu}m, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 {mu}m in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity (registered) microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected

  12. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.

    Science.gov (United States)

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E

    2010-10-21

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity® microbubbles (mean diameter range: 1.1-3.3 µm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 µm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity® microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without craniotomy in mice

  13. Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model.

    Science.gov (United States)

    Bazan-Peregrino, Miriam; Arvanitis, Costas D; Rifai, Bassel; Seymour, Leonard W; Coussios, Constantin-C

    2012-01-30

    We investigated whether ultrasound-induced cavitation at 0.5 MHz could improve the extravasation and distribution of a potent breast cancer-selective oncolytic adenovirus, AdEHE2F-Luc, to tumour regions that are remote from blood vessels. We developed a novel tumour-mimicking model consisting of a gel matrix containing human breast cancer cells traversed by a fluid channel simulating a tumour blood vessel, through which the virus and microbubbles could be made to flow. Ultrasonic pressures were chosen to maximize either broadband emissions, associated with inertial cavitation, or ultraharmonic emissions, associated with stable cavitation, while varying duty cycle to keep the total acoustic energy delivered constant for comparison across exposures. None of the exposure conditions tested affected cell viability in the absence of the adenovirus. When AdEHE2F-Luc was delivered via the vessel, inertial cavitation increased transgene expression in tumour cells by up to 200 times. This increase was not observed in the absence of Coxsackie and Adenovirus Receptor cell expression, discounting sonoporation as the mechanism of action. In the presence of inertial cavitation, AdEHE2F-Luc distribution was greatly improved in the matrix surrounding the vessel, particularly in the direction of the ultrasound beam; this enabled AdEHE2F-Luc to kill up to 80% of cancer cells within the ultrasound focal volume in the gel 24 hours after delivery, compared to 0% in the absence of cavitation. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Tanscranial Threshold of Inertial Cavitation Induced by Diagnosticc Ultrasound and Microbubbles

    NARCIS (Netherlands)

    Liu, J.; Gao, S.; Porter, T.R.; Everbach, C; Shi, W.; Vignon, F.; Powers, J.; Lof, J.; Turner, J.; Xie, F.

    2011-01-01

    Background: Inertial cavitation may cause hazardous bioeffects whileusing ultrasound and microbubble mediated thrombolysis. The purposeof this study was to investigate the influence of ultrasound pulselength and temporal bone on inertial cavitation thresholds within the brain utilizing transtemporal

  15. Cold fusion reaction ignition at cavitation effect on deuterium-containing media

    International Nuclear Information System (INIS)

    Lipson, A.G.; Deryagin, B.V.; Klyuev, V.A.

    1992-01-01

    A possibility to induce 'cold' nuclear fusion reactions in the process of ultrasound cavitation in heavy water is studied. Nonstationary neutron emission is detected under cavitation in D 2 O on titanium vibrator which has the tracks of cavitation erosion (the vibrator ran in D 2 O to 20 hours). Maximum excess over background (12σ) was recorded under cavitation impact on the suspension of LaNi 5 D x dispersed particle in D 2 O

  16. Cavitation

    CERN Document Server

    Young, F Ronald

    1999-01-01

    First published by McGraw-Hill in 1989, this book provides a unified treatment of cavitation, a phenomenon which extends across the boundaries of many fields. The approach is wide-ranging and the aim is to give due consideration to the many aspects of cavitation in proportion to their importance. Particular attention is paid to the diverse situations in which cavitation occurs and to its practical applications.

  17. Femtosecond laser-induced cavitations in the lens of the human eye

    DEFF Research Database (Denmark)

    Kessel, Line; Nymand, Jose; Harbst, Michael

    2007-01-01

    attempted to define the cavitation threshold in the human lens in vitro using multiphoton effects base d on radiation from a femtosecond 800 nm Ti:Sapphire laser. Cavitations were observed from pulse energy densities exceeding 16 mJ/cm2, but only after several minutes of exposure and not as a result...... laser effects in the len s that have a potential for therapeutic application and treatment of eye dis ease though further studies are needed to shed light on the nature of the formation of delayed cavitations....

  18. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  19. Microbubble Cavitation Imaging

    Science.gov (United States)

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2014-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 µs. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented. PMID:23549527

  20. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    Science.gov (United States)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  1. Determining the hydrodynamic indices of contractions

    International Nuclear Information System (INIS)

    Blagov, Eh.E.

    2002-01-01

    The new dependences, making it possible only by measuring the flow rate and pressure drop on the contraction device (CD) with the known geometry, including the regulatory organ, in the non-crisis mode of the turbulent flow to calculate all the hydrodynamic indices of this device, including the pressure reduction in the jet contraction, are obtained. This simplifies and accelerates the CD hydraulic tests of all types. The new methodology for determining the cavitation factual start on the CD is proposed [ru

  2. Experience with control valve cavitation problems and their solutions

    International Nuclear Information System (INIS)

    Ozol, J.

    1988-01-01

    Pressure reduction in control valves can induce cavitation, which has three effects on the control valve. Firstly, it modifies or changes the hydraulic performance of the control valve. Since control valves are designed for noncavitating conditions, the result is usually reduced stability of the control valve or, in extreme cavitating conditions known as supercavitation, the valve may limit the flow rate and thus be undersized. Secondly, cavitation can cause material damage to valve parts, trim, or valve body, or erodes downstream piping; consequently, the valve or piping leaks. Thirdly, cavitation causes noise and vibration, which may cause major damage or destruction to equipment such as valve positioners, actuators, pipe supports and sometimes to other downstream valves. The purpose of this paper is twofold: (1) It describes the I.S.A. valve sizing equations and how they relate to cavitation. (2) It describes experiences with these three problems, and discusses corrective actions and practical approaches to their solution. This paper discusses thirteen cavitation experiences

  3. Microbubble Cavitation Imaging

    OpenAIRE

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2013-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information.

  4. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    OpenAIRE

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitatio...

  5. Susceptibility of CANDU steam generator preheater to cavitation erosion

    International Nuclear Information System (INIS)

    Laroche, S.L.; Sun, L.; Pietralik, J.M.

    2012-01-01

    In 2009, Darlington Steam Generator (SG) tube inspections revealed some tubes had degraded in the preheater. The tube degradation occurred at the clearance gap between the tube and the preheater baffle and reached up to 50% through-wall depth at the baffles in the middle portion of the preheater. The general pattern of the damage and the elemental composition analysis suggested that the degradation was the result of a hydrodynamic process, such as cavitation erosion. Cavitation erosion occurs when vapour bubbles exist or form in the flowing liquid and then these bubbles collapse violently in the vicinity of the wall. These bubbles collapse when steam bubbles contact water that is sufficiently subcooled, below the saturation temperature. In the gap between the tube and the preheater baffle, low flow will exist due to the pressure difference across the baffle plate. In addition, heat transfer occurs from the primary-side fluid to the secondary-side fluid within this clearance gap that is driven by the primary-to-secondary temperature difference. Factors, such as the tube position in the baffle hole and fouling, influence the local conditions and can cause subcooled boiling that result in cavitation. This paper presents a study of flow and heat transfer phenomena to determine the factors contributing to cavitation erosion in SG preheaters. The analysis used the THIRST1 code for a 3-dimensional thermalhydraulic simulation of the steam generators and the ANSYS FLUENT®2 code for detailed calculations of flow and heat transfer in the clearance gaps. This study identifies that tubes in the preheater region are susceptible to cavitation erosion and indicates that this area should be part of the station inspection program because, regardless of preheater design, some tubes may experience the thermalhydraulic conditions and undergo degradations similar to those observed for the tubes in Darlington SGs. (author)

  6. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound.

    Science.gov (United States)

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-03-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.

  7. Forces and moments on a slender, cavitating body

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.

  8. Experimental investigation on cavitating flow shedding over an axisymmetric blunt body

    Science.gov (United States)

    Hu, Changli; Wang, Guoyu; Huang, Biao

    2015-03-01

    Nowadays, most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects, such as 2D/3D hydrofoils, venturi-type section, axisymmetric bodies with different headforms, and so on. But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object. In the present study, two kinds of shedding patterns are investigated experimentally. A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry (PIV) technique in a water tunnel for different cavitation conditions. The U-type cavitating vortex shedding is observed in unsteady cavitating flows. When the cavitation number is 0.7, there is a large scale cavity rolling up and shedding, which cause the instability and dramatic fluctuation of the flows, while at cavitation number of 0.6, the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity, as a result, the final shedding is in the form of small scale cavity and keeps a relatively steady flow field. It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality. When the attached cavity scale is insufficient to overcome the re-entrant flow, it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7. Otherwise, the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of 0.6. This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.

  9. Review of parameters influencing the structural response of a submerged body under cavitation conditions

    International Nuclear Information System (INIS)

    Escaler, X; De La Torre, O; Farhat, M

    2015-01-01

    Submerged structures that operate under extreme flows are prone to suffer large scale cavitation attached to their surfaces. Under such conditions the added mass effects differ from the expected ones in pure liquids. Moreover, the existence of small gaps between the structure and surrounding bodies filled with fluid also influence the dynamic response. A series of experiments and numerical simulations have been carried out with a truncated NACA0009 hydrofoil mounted as a cantilever beam at the LMH-EPFL cavitation tunnel. The three first modes of vibration have been determined and analysed under various hydrodynamic conditions ranging from air and still water to partial cavitation and supercavitation. A remote nonintrusive excitation system with piezoelectric patches has been used for the experiments. The effects of the cavity properties and the lateral gap size on the natural frequencies and mode shapes have been determined. As a result, the significance of several parameters in the design of such structures is discussed. (paper)

  10. Review of parameters influencing the structural response of a submerged body under cavitation conditions

    Science.gov (United States)

    Escaler, X.; De La Torre, O.; Farhat, M.

    2015-12-01

    Submerged structures that operate under extreme flows are prone to suffer large scale cavitation attached to their surfaces. Under such conditions the added mass effects differ from the expected ones in pure liquids. Moreover, the existence of small gaps between the structure and surrounding bodies filled with fluid also influence the dynamic response. A series of experiments and numerical simulations have been carried out with a truncated NACA0009 hydrofoil mounted as a cantilever beam at the LMH-EPFL cavitation tunnel. The three first modes of vibration have been determined and analysed under various hydrodynamic conditions ranging from air and still water to partial cavitation and supercavitation. A remote nonintrusive excitation system with piezoelectric patches has been used for the experiments. The effects of the cavity properties and the lateral gap size on the natural frequencies and mode shapes have been determined. As a result, the significance of several parameters in the design of such structures is discussed.

  11. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    Science.gov (United States)

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.

    Science.gov (United States)

    Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas

    2017-11-01

    The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators

    Directory of Open Access Journals (Sweden)

    Byoung-Kwon Ahn

    2010-03-01

    Full Text Available Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT.

  14. The Specialist Committee on Cavitation Induced Pressures, Final Report and Recommendations to the 23rd ITTC

    DEFF Research Database (Denmark)

    Friesch, J.; Kim, K.-H.; Andersen, Poul

    2002-01-01

    General Technical Conclusions Propeller-excited hull pressure fluctuations are strongly influenced by intermittence of sheet cavitation, the dynamics of tip vortex cavitation, and the statistical properties of the cavitation. On modern propellers, tip vortex cavitation may be even more important ...

  15. Hydrodynamic cavitation as a novel approach for pretreatment of oily wastewater for anaerobic co-digestion with waste activated sludge.

    Science.gov (United States)

    Habashi, Nima; Mehrdadi, Nasser; Mennerich, Artur; Alighardashi, Abolghasem; Torabian, Ali

    2016-07-01

    Application of hydrodynamic cavitation (HC) was investigated with the objective of biogas production enhancement from co-digestion of oily wastewater (OWW) and waste activated sludge (WAS). Initially, the effect of HC on the OWW was evaluated in terms of energy consumption and turbidity increase. Then, several mixtures of OWW (with and without HC pretreatment) and WAS with the same concentration of total volatile solid were prepared as a substrate for co-digestion. Following, several batch co-digestion trials were conducted. To compare the biogas production, a number of digestion trials were also conducted with a mono substrate (OWW or WAS alone). The best operating condition of HC was achieved in the shortest retention time (7.5 min) with the application of 3mm diameter orifice and maximum pump rotational speed. Biogas production from all co-digestion reactors was higher than the WAS mono substrate reactors. Moreover, biogas production had a direct relationship with OWW ratio and no major inhibition was observed in any of the reactors. The biogas production was also enhanced by HC pretreatment and almost all of the reactors with HC pretreatment had higher reaction rates than the reactors without pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    Science.gov (United States)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  17. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.; Moulton, D. E.; Vandiver, R.

    2010-01-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence

  18. Experimental and numerical research on cavitating flows around axisymmetric bodies

    International Nuclear Information System (INIS)

    Haipeng, Wei; Song, Fu; Qin, Wu; Biao, Huang; Guoyu, Wang

    2014-01-01

    We investigated the cavitating flows around different axisymmetric bodies based on experiments and numerical simulation. In the numerical simulation, the multiphase Reynolds averaged Navier Stokes equations (RANS) were solved via the commercial computational fluid dynamics code CFX. The modified k-wSST turbulence model was used along with the transport equation-based cavitation model. In the experiments, a high-speed video technique was used to observe the unsteady cavitating flow patterns, and the dynamic force measurement system was used to measure the hydrodynamics of the axisymmetric bodies under different cavitation conditions. Results are shown for the hemisphere bodies, conical bodies and blunt bodies. Reasonable agreements were obtained between the computational and experimental results. The results show that for the hemispherical body, the cavity consists of quasi-steady transparent region and unsteady foggy water-vapor mixture region, which contains small-scale vortices and is dominated by bubble clusters, causing irregular disturbances at the cavity interfaces. The curvature at the front of the conical body is larger, resulting in that the flow separates at the shoulder of the axisymmetric body. The cavity stretches downstream and reaches to a fixed cavity length and shape. For blunt bodies, the incipient cavitation number is larger than that for the hemispherical body. A large cloud cavity is formed at the shoulder of the blunt body in the cores of vortices in high shear separation regions and the re-entrant jet does not significantly interact with the cavity interface when it moves upstream. As to the dynamic characteristics of unsteady cavitating flows around the axisymmetric bodies, the pulsation frequency for the hemispherical body is larger than that for the blunt body. For the hemispherical body, the pulsation is mainly caused by the high-frequency, small-scale shedding at the rear end of the cavity, while for the blunt body, the main factor for

  19. Mechanism of cavitation damage and structure of a cavitating eddy

    International Nuclear Information System (INIS)

    Efimov, A.V.; Vorob'ev, G.A.; Filenko, Yu.I.; Petrov, K.N.

    1976-01-01

    As a result of experimental studies of the structure of a cavitating eddy and the action of single cavitation bubbles on a solid surface the assumption of double nature of cavitation damage forces depending on its regimes was made. The first type of the damage forces is shock waves, appearing around collapsing spherical bubble, the second type is hydraulic impacts of microjets making a hole in a collapsing aspherical bubble. The outward appearance of single microdents differs from each other. The damage of the first type is accompanied by corrosion. The cavitation erosion intensity of the damage of the first type exceeds that of the damage of the second type by one order of magnitude. The values of the porosity of a cavitation eddy, the bubble concentration and the distance between them, the bubble distribution according to the size and the form for the initial cavitation stage are given from holographic investigations

  20. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.

    Science.gov (United States)

    Čehovin, Matej; Medic, Alojz; Scheideler, Jens; Mielcke, Jörg; Ried, Achim; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2017-07-01

    Natural organic matter in drinking water is causing concern especially due to the formation of disinfection by-products (DBPs) by chlorine, as these are proven to have adverse health effects on consumers. In this research, humic acid was used as a source of dissolved organic carbon (DOC) in drinking water (up to 3mgL -1 ). The efficiency of DOC removal was studied by applying O 3 , H 2 O 2 /O 3 , H 2 O 2 /UV and O 3 /UV advanced oxidation processes (AOPs) alone and combined with hybrid hydrodynamic cavitation (HC), generated by an orifice plate, as this technology recently shows promising potential for the treatment of water, containing recalcitrant organic substances. It was observed that the combined treatment by HC could significantly affect the performance of the applied AOPs, with as little as 3-9 passes through the cavitation generators. For O 3 and H 2 O 2 dosages up to 2 and 4mgL -1 , respectively, and UV dosage up to 300mJcm -2 , HC enhanced DOC removal by 5-15% in all combinations, except for O 3 /UV AOPs. Overall, the potential benefits of HC for DOC removal were emphasized for low ratio between applied oxidants to DOC and high UV absorbance of the sample. Investigated DBPs formation potentials require special attention for H 2 O 2 /UV AOPs and combinations with HC. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dynamical Simulations of a Flexible Rotor in Cylindrical Uncavitated and Cavitated Lubricated Journal Bearings

    Directory of Open Access Journals (Sweden)

    Alessandro Ruggiero

    2018-04-01

    Full Text Available Due to requirements of their operating conditions, such as high speed, high flexibility and high efficiency, rotating machines are designed to obtain larger operating ranges. These operating conditions can increase the risk of fluid-induced instability. In fact, the presence of non-linear fluid forces when the threshold speed is overcome by the rotational speed, can generate rotor lateral self-excited vibrations known as “oil whirl” or “oil whip”. These instabilities derive from the interaction between the rotor and the sliding bearing and they are typically sub-synchronous and they contribute to eventual rubbing between rotor and stator with consequent damage to the rotating machines. For these reasons, the aim of this paper is to numerically investigate the differences in the dynamic behaviour of a flexible rotor supported by cylindrical lubricated journal bearings. The study considers two different cases, uncavitated and cavitated lubricated films, in order to develop an original Matlab-Simulink algorithm for the numerical solution of the differential non-linear equations of motion of the unbalanced flexible rotor supported on hydrodynamic journal bearings. The bearings were modelled as uncavitated and cavitated (π-Film short bearings derived from classical Reynolds’ theory. Dynamic simulation allowed prediction of the shape and size of the orbit performed by the system and evaluation of the vibrating phenomena exerted by the rotor during the motion. The results show that cavitation completely modifies the behaviour of the system in every aspect. The analysis of the diagrams obtained showed that the proposed algorithm provides consistent results and represents a valuable instrument for dynamic analysis of rotating systems.

  2. The Thrombolytic Effect of Diagnostic Ultrasound-Induced Microbubble Cavitation in Acute Carotid Thromboembolism.

    Science.gov (United States)

    Porter, Thomas R; Xie, Feng; Lof, John; Powers, Jeffry; Vignon, Francois; Shi, William; White, Matthew

    2017-08-01

    Acute ischemic stroke is often due to thromboembolism forming over ruptured atherosclerotic plaque in the carotid artery (CA). The presence of intraluminal CA thrombus is associated with a high risk of thromboembolic cerebral ischemic events. The cavitation induced by diagnostic ultrasound high mechanical index (MI) impulses applied locally during a commercially available intravenous microbubble infusion has dissolved intravascular thrombi, especially when using longer pulse durations. The beneficial effects of this in acute carotid thromboembolism is not known. An oversized balloon injury was created in the distal extracranial common CA of 38 porcine carotid arteries. After this, a 70% to 80% stenosis was created in the mid common CA proximal to the injury site using partial balloon inflation. Acute thrombotic CA occlusions were created just distal to the balloon catheter by injecting fresh autologous arterial thrombi. After angiographic documentation of occlusion, the common carotid thrombosis was treated with either diagnostic low MI imaging alone (0.2 MI; Philips S5-1) applied through a tissue mimicking phantom (TMP) or intermittent diagnostic high MI stable cavitation (SC)-inducing impulses with a longer pulse duration (0.8 MI; 20 microseconds' pulse duration) or inertial cavitation (IC) impulses (1.2 MI; 20 microseconds' pulse duration). All treatment times were for 30 minutes. Intravenous ultrasound contrast (2% Definity; Lantheus Medical) was infused during the treatment period. Angiographic recanalization in 4 intracranial and extracranial vessels downstream from the CA occlusion (auricular, ascending pharyngeal, buccinator, and maxillary) was assessed with both magnetic resonance 3-dimensional time-of-flight and phase contrast angiography. All magnetic resonance images were interpreted by an independent neuroradiologist using the thrombolysis in cerebral infarction (TICI) scoring system. By phase contrast angiography, at least mild recanalization (TICI 2a

  3. Cavitation damage prediction for the JSNS mercury target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Takashi, E-mail: naoe.takashi@jaea.go.jp; Kogawa, Hiroyuki; Wakui, Takashi; Haga, Katsuhiro; Teshigawara, Makoto; Kinoshita, Hidetaka; Takada, Hiroshi; Futakawa, Masatoshi

    2016-01-15

    The liquid mercury target system for the Japan Spallation Neutron Source (JSNS) at the Materials and Life science experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC) is designed to produce pulsed neutrons. The mercury target vessel in this system, which is made of type 316L stainless steel, is damaged by pressure wave-induced cavitation due to proton beam bombardment. Currently, cavitation damage is considered to be the dominant factor influencing the service life of the target vessel rather than radiation damage. In this study, cavitation damage to the interior surface of the target vessel was predicted on the basis of accumulated damage data from off-beam and on-beam experiments. The predicted damage was compared with the damage observed in a used target vessel. Furthermore, the effect of injecting gas microbubbles on cavitation damage was predicted through the measurement of the acoustic vibration of the target vessel. It was shown that the predicted depth of cavitation damage is reasonably coincident with the observed results. Moreover, it was confirmed that the injection of gas microbubbles had an effect on cavitation damage.

  4. Cavitation guide for control valves

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.P. [Tullis Engineering Consultants, Logan, UT (United States)

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  5. Cavitation guide for control valves

    International Nuclear Information System (INIS)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation

  6. Control of acoustic cavitation with application to lithotripsy

    Science.gov (United States)

    Bailey, Michael Rollins

    Control of acoustic cavitation, which is sound-induced growth and collapse of bubbles, is the subject of this dissertation. Application is to extracorporeal shock wave lithotripsy (ESWL), used to treat kidney stones. Cavitation is thought to help comminute stones yet may damage tissue. Can cavitation be controlled? The acoustic source in a widely used clinical lithotripter is an electrical spark at the near focus of an underwater ellipsoidal reflector. To control cavitation, we used rigid reflectors, pressure release reflectors, and pairs of reflectors aligned to have a common focus and a controlled delay between sparks. Cavitation was measured with aluminum foil, which was placed along the axis at the far focus of the reflector(s). Collapsing bubbles pitted the foil. Pit depth measured with a profilometer provided a relative measure of cavitation intensity. Cavitation was also measured with a focused hydrophone, which detected the pressure pulse radiated in bubble collapse. Acoustic pressure signals produced by the reflectors were measured with a PVdF membrane hydrophone, digitally recorded, and input into a numerical version of the Gilmore equation (F. R. Gilmore, 'The growth or collapse of a spherical bubble in a viscous compressible liquid,' Rep#26-4, California Institute of Technology, Pasadena (1952), pp.1-40.). Maximum pressure produced in a spherical bubble was calculated and employed as a relative measure of collapse intensity. Experimental and numerical results demonstrate cavitation can be controlled by an appropriately delayed auxiliary pressure pulse. When two rigid-reflector pulses are used, a long interpulse delay (150-200 μs) of the second pulse 'kicks' the collapsing bubble and intensifies cavitation. Foil pit depth and computed pressure three times single pulse values were obtained. Conversely, a short delay (ESWL.

  7. Long-time cavitation threshold of silica water mixture under acoustic drive

    Science.gov (United States)

    Bussonniére, Adrien; Liu, Qingxia; Tsai, Peichun Amy

    2017-11-01

    The low cavitation threshold of water observed experimentally has been attributed to the presence of pre-existing tiny bubbles stabilized by impurities. However, the origin and stability of these cavitation nuclei remain unresolved. We therefore investigate the long-time cavitation evolution of water seeded with micron-sized silica particles under the influences of several parameters. Experimentally, cavitation is induced by a High Intensity Focused Ultrasound and subsequently detected by monitoring the backscattered sound. Degassed or aerated solutions of different concentrations are subjected to acoustic pulses (with the amplitude ranging from 0.1 to 1.7 MPa and a fixed repetition frequency between 0.1 and 6.5 Hz). The cavitation threshold was measured by fitting the cavitation probability curve, averaged over 1000 pulses. Surprisingly, our results shown that the cavitation threshold stabilizes at a reproducible value after a few thousand pulses. Moreover, this long-time threshold was found to decrease with increasing particle concentration, pulse period, and initial oxygen level. In contrast to the depletion of nuclei expected under long acoustic cavitation, the results suggest stabilized nuclei population depending on concentration, oxygen level, and driving period.

  8. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    Science.gov (United States)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  9. Decolorization of Acid Orange 7 by an electric field-assisted modified orifice plate hydrodynamic cavitation system: Optimization of operational parameters.

    Science.gov (United States)

    Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong

    2015-09-01

    In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  11. Ablation of synovial pannus using microbubble-mediated ultrasonic cavitation in antigen-induced arthritis in rabbits.

    Science.gov (United States)

    Qiu, Li; Jiang, Yong; Zhang, Lingyan; Wang, Lei; Luo, Yan

    2012-12-01

    To investigate the ablative effectiveness of microbubble-mediated ultrasonic cavitation for treating synovial pannus and to determine a potential mechanism using the antigen-induced arthritis model (AIA). Ultrasonic ablation was performed on the knee joints of AIA rabbits using optimal ultrasonic ablative parameters. Rabbits with antigen-induced arthritis were randomly assigned to 4 groups: (1) the ultrasound (US) + microbubble group; (2) the US only group; (3) the microbubble only group, and (4) the control group. At 1 h and 14 days after the first ablation, contrast-enhanced ultrasonography (CEUS) monitoring and pathology synovitis score were used to evaluate the therapeutic effects. Synovial necrosis and microvascular changes were also measured. After the ablation treatment, the thickness of synovium and parameters of time intensity curve including derived peak intensity and area under curve were measured using CEUS, and the pathology synovitis score in the ultrasound + microbubble group was significantly lower than that found in the remaining groups. No damage was observed in the surrounding normal tissues. The mechanism underlying the ultrasonic ablation was related to microthrombosis and microvascular rupture that resulted in synovial necrosis. The results suggest that microbubble-mediated ultrasonic cavitation should be applied as a non-invasive strategy for the treatment of synovial pannus in arthritis under optimal conditions.

  12. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?

    Science.gov (United States)

    Savi, Tadeja; Bertuzzi, Stefano; Branca, Salvatore; Tretiach, Mauro; Nardini, Andrea

    2015-02-01

    Urban trees help towns to cope with climate warming by cooling both air and surfaces. The challenges imposed by the urban environment, with special reference to low water availability due to the presence of extensive pavements, result in high rates of mortality of street trees, that can be increased by climatic extremes. We investigated the water relations and xylem hydraulic safety/efficiency of Quercus ilex trees growing at urban sites with different percentages of surrounding impervious pavements. Seasonal changes of plant water potential and gas exchange, vulnerability to cavitation and embolism level, and morpho-anatomical traits were measured. We found patterns of increasing water stress and vulnerability to drought at increasing percentages of impervious pavement cover, with a consequent reduction in gas exchange rates, decreased safety margins toward embolism development, and increased vulnerability to cavitation, suggesting the occurrence of stress-induced hydraulic deterioration. The amount of impermeable surface and chronic exposure to water stress influence the site-specific risk of drought-induced dieback of urban trees under extreme drought. Besides providing directions for management of green spaces in towns, our data suggest that xylem hydraulics is key to a full understanding of the responses of urban trees to global change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Ultrasound induced by CW laser cavitation bubbles

    International Nuclear Information System (INIS)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  14. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.

    Science.gov (United States)

    Stout, Deborah H; Sala, Anna

    2003-01-01

    In the Rocky Mountains, ponderosa pine (Pinus ponderosa (ssp.) ponderosa Dougl. ex P. Laws. & C. Laws) often co-occurs with Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco). Despite previous reports showing higher shoot vulnerability to water-stress-induced cavitation in ponderosa pine, this species extends into drier habitats than Douglas-fir. We examined: (1) whether roots and shoots of ponderosa pine in riparian and slope habitats are more vulnerable to water-stress-induced cavitation than those of Douglas-fir; (2) whether species-specific differences in vulnerability translate into differences in specific conductivity in the field; and (3) whether the ability of ponderosa pine to extend into drier sites is a result of (a) greater plasticity in hydraulic properties or (b) functional or structural adjustments. Roots and shoots of ponderosa pine were significantly more vulnerable to water-stress-induced cavitation (overall mean cavitation pressure, Psi(50%) +/- SE = -3.11 +/- 0.32 MPa for shoots and -0.99 +/- 0.16 MPa for roots) than those of Douglas-fir (Psi(50%) +/- SE = -4.83 +/- 0.40 MPa for shoots and -2.12 +/- 0.35 MPa for roots). However, shoot specific conductivity did not differ between species in the field. For both species, roots were more vulnerable to cavitation than shoots. Overall, changes in vulnerability from riparian to slope habitats were small for both species. Greater declines in stomatal conductance as the summer proceeded, combined with higher allocation to sapwood and greater sapwood water storage, appeared to contribute to the ability of ponderosa pine to thrive in dry habitats despite relatively high vulnerability to water-stress-induced cavitation.

  15. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  16. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  17. Improving biogas production from continuous co-digestion of oily wastewater and waste-activated sludge by hydrodynamic cavitation pre-treatment.

    Science.gov (United States)

    Habashi, Nima; Alighardashi, Abolghasem; Mennerich, Artur; Mehrdadi, Nasser; Torabian, Ali

    2018-04-01

    Hydrodynamic cavitation (HC) was evaluated as a pretreatment for synthetic oily wastewater (OWW) to be co-digested with waste-activated sludge (WAS). The main objective of the present research was the enhancement of biogas production by the application of HC pretreatment. HC was applied to the OWW, and the OWW and WAS were added to a 50 L continuous digestion reactor. As a control system, an identical digestion reactor was set up for co-digestion of the WAS and the OWW without pretreatment. The reactors were initially filled with inoculum and the hydraulic retention time (HRT) was set to 22 d. The HRT was gradually reduced to 19, 16, and finally 13 d, but the substrate quality was kept constant. The loading rate, accordingly, increased from 0.86 to 1.46 g TVS/(L d). The biogas volume was recorded online and its quality was analyzed regularly. The HC improved biogas production up to 43% at 22 d of HRT. Reducing the HRT decreased biogas production from the main reactor while that of the control reactor was more or less constant. HC also increased the biogas methane content; the methane concentration of the main reactor was about 3% higher than the methane concentration of the control reactor. The main reactor experienced no clogging or accumulation of fatty materials.

  18. Experimental study of hydrodynamically induced vibrational processes in VVER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Solonin, V.I.; Perevezentsev, V.V.; Rekshnya, N.F.; Krapivtsev, V.G.

    2000-01-01

    Investigations are described of hydrodynamically induced vibrations in a single fuel assembly of a VVER-440 reactor, performed on a full-scale model installed in a closed loop filled with distilled water; the model fuel elements contained simulators of fuel pellets. Data on hydrodynamic loads were obtained by measuring pressure oscillations along the height of the fuel assembly case. Results of the measurements are presented in graphs and are discussed in some detail. (A.K.)

  19. Effects of ultrasonic and hydrodynamic cavitation on the treatment of cork wastewater by flocculation and Fenton processes.

    Science.gov (United States)

    Wu, Zhilin; Yuste-Córdoba, Francisco J; Cintas, Pedro; Wu, Zhansheng; Boffa, Luisa; Mantegna, Stefano; Cravotto, Giancarlo

    2018-01-01

    This paper reports that ultrasonic (US) and hydrodynamic cavitation (HC) are efficient strategies for the environmental remediation of cork wastewater (CW). It is necessary to remove toxic, inhibitory or refractory organic matter from CW using physical and chemical techniques (pre-treatment) prior to performing conventional biological treatment. After this biological treatment, it is also critical to further decontaminate (post-treatment) in order to meet the discharge limitation. The pre-treatment of diluted CW using Fenton oxidation (FE) alone led to COD and polyphenol (PP) removal values of 30% and 61%, respectively, while HC and US resulted in 83-90% increases in COD reduction and 26-33% increases in PP reduction. Whereas 55% and 91% COD and PP removal were achieved using flocculation (Floc) alone, COD elimination was increased by a further 7-18% under HC and US. No noticeable improvement in PP elimination was observed. US did not enhance the Floc decontamination of the original concentrated CW, however, considerable quantities of white biofilm were surprisingly generated on the CW surface after the pre-treatment, thus indicating the improvement of biodegradability of the resulting liquid. In fact, the post-treatment stage, using FE alone after having filtered the biofilms, led to reductions of 53% in COD and 90% in PP. The HC and US protocols resulted in 26-34% increases in COD elimination. HC further enhanced PP elimination caused by FE, while US resulted in lower levels of PP elimination. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Schneiderian membrane detachment using transcrestal hydrodynamic ultrasonic cavitational sinus lift: a human cadaver head study and histologic analysis.

    Science.gov (United States)

    Troedhan, Angelo; Kurrek, Andreas; Wainwright, Marcel; Jank, Siegfried

    2014-08-01

    Recent studies have suggested the osteogenic layer of the periosteum at the base of the sinus membrane to play a key role in bone regeneration after sinus lift procedures. Thus, atraumatic detachment of the sinus membrane with an intact periosteum seems mandatory. The present histologic study of fresh human cadaver heads investigated the detachment behavior and histologic integrity of the detached periosteum after application of the transcrestal hydrodynamic ultrasonic cavitational sinus lift (tHUCSL-INTRALIFT). A total of 15 sinuses in 8 fresh human cadaver heads were treated using tHUCSL-INTRALIFT. After surgery, they were checked macroscopically for damage to the sinus membrane and then processed for histologic inspection under light microscopy. A total of 150 histologic specimens, randomly selected from the core surgical sites, were investigated using hematoxylin-eosin (HE), Azan, and trichrome staining. None of the 150 inspected specimens showed any perforation or dissection of the periosteum from the subepithelial connective tissue and respiratory epithelium and were fully detached from the bony antrum floor. The connecting Sharpey fibers revealed to be cleanly separated from the sinus floor in all specimens. The results of the present study suggest tHUCSL-INTRALIFT should be used to perform predictable and safe detachment of the periosteum from the bony sinus floor as a prerequisite for undisturbed and successful physiologic subantral bone regeneration. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Scale effect on bubble growth and cavitation inception in cavitation susceptibility meters

    International Nuclear Information System (INIS)

    Shen, Y.T.; Gowing, S.

    1985-01-01

    The Reynolds number alone is not adequate to predict cavitation inception scaling. Recent experiments on headforms once again show that the cavitation inception data are very sensitive to the nuclei tensile strength which, in turn depends on the velocity scale. This paper theoretically investigates the influence of Reynolds number and velocity scale on cavitation inception in a cavitation susceptibility meter. The numerical examples given are based on a single bubble spherical model

  2. Cavitation-based hydro-fracturing simulator

    Science.gov (United States)

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2016-11-22

    An apparatus 300 for simulating a pulsed pressure induced cavitation technique (PPCT) from a pressurized working fluid (F) provides laboratory research and development for enhanced geothermal systems (EGS), oil, and gas wells. A pump 304 is configured to deliver a pressurized working fluid (F) to a control valve 306, which produces a pulsed pressure wave in a test chamber 308. The pulsed pressure wave parameters are defined by the pump 304 pressure and control valve 306 cycle rate. When a working fluid (F) and a rock specimen 312 are included in the apparatus, the pulsed pressure wave causes cavitation to occur at the surface of the specimen 312, thus initiating an extensive network of fracturing surfaces and micro fissures, which are examined by researchers.

  3. Cavitation inception in nozzle-plate and wire mesh pressure droppers in water and sodium

    International Nuclear Information System (INIS)

    Collinson, A.E.

    1976-01-01

    Cavitation tests on multi-hole nozzle plates and wire meshes approximately 100mm diameter in water at 20 deg C and sodium at 300 deg C are described. These pressure dropping elements were mounted in recirculating loops where cavitation was induced by gradually lowering the back-ground pressure at constant flow. Cavitation was detected acoustically using wall mounted piezoelectric microphones, the signal being displayed on a ratemeter recording individual cavitation events. For nozzle plates, cavitation started intermittently as the pressure was lowered, the noise level suddenly increasing at a critical cavitation number sigma. For meshes the intermittent region was absent. Values of sigma for nozzles and meshes were similar in water and sodium for the conditions prevailing during the tests. It was apparent that cavitation took place on the axes of vortices both in the free stream and close to nozzle curved surfaces

  4. Cell detachment method using shock wave induced cavitation

    NARCIS (Netherlands)

    Junge, L.; Junge, L.; Ohl, C.D.; Wolfrum, B.; Arora, M.; Ikink, R.

    2003-01-01

    The detachment of adherent HeLa cells from a substrate after the interaction with a shock wave is analyzed. Cavitation bubbles are formed in the trailing, negative pressure cycle following the shock front. We find that the regions of cell detachment are strongly correlated with spatial presence of

  5. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.

    Science.gov (United States)

    Lin, Yutong; Lin, Lizhou; Cheng, Mouwen; Jin, Lifang; Du, Lianfang; Han, Tao; Xu, Lin; Yu, Alfred C H; Qin, Peng

    2017-03-01

    SonoVue microbubbles could serve as artificial nuclei for ultrasound-triggered stable and inertial cavitation, resulting in beneficial biological effects for future therapeutic applications. To optimize and control the use of the cavitation of SonoVue bubbles in therapy while ensuring safety, it is important to comprehensively understand the relationship between the acoustic parameters and the cavitation behavior of the SonoVue bubbles. An agarose-gel tissue phantom was fabricated to hold the SonoVue bubble suspension. 1-MHz transmitting transducer calibrated by a hydrophone was used to trigger the cavitation of SonoVue bubbles under different ultrasonic parameters (i.e., peak rarefactional pressure (PRP), pulse repetition frequency (PRF), and pulse duration (PD)). Another 7.5-MHz focused transducer was employed to passively receive acoustic signals from the exposed bubbles. The ultraharmonics and broadband intensities in the acoustic emission spectra were measured to quantify the extent of stable and inertial cavitation of SonoVue bubbles, respectively. We found that the onset of both stable and inertial cavitation exhibited a strong dependence on the PRP and PD and a relatively weak dependence on the PRF. Approximate 0.25MPa PRP with more than 20μs PD was considered to be necessary for ultraharmonics emission of SonoVue bubbles, and obvious broadband signals started to appear when the PRP exceeded 0.40MPa. Moreover, the doses of stable and inertial cavitation varied with the PRP. The stable cavitation dose initially increased with increasing PRP, and then decreased rapidly after 0.5MPa. By contrast, the inertial cavitation dose continuously increased with increasing PRP. Finally, the doses of both stable and inertial cavitation were positively correlated with PRF and PD. These results could provide instructive information for optimizing future therapeutic applications of SonoVue bubbles. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Magnetic Cavitation and the Reemergence of Nonlocal Transport in Laser Plasmas

    International Nuclear Information System (INIS)

    Ridgers, C. P.; Kingham, R. J.; Thomas, A. G. R.

    2008-01-01

    We present the first fully kinetic Vlasov-Fokker-Planck simulations of nanosecond laser-plasma interactions including self-consistent magnetic fields and hydrodynamic plasma expansion. For the largest magnetic fields externally applied to long-pulse laser-gas-jet experiments (12 T) a significant degree of cavitation of the B field (>40%) will be shown to occur from the laser-heated region in under half a nanosecond. This is due to the Nernst effect and leads to the reemergence of nonlocality even if the initial value of the magnetic field strength is sufficient to localize the transport

  7. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.

    Science.gov (United States)

    Brujan, Emil-Alexandru

    2008-09-01

    The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.

  8. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation.

    Science.gov (United States)

    Sostaric, Joe Z; Miyoshi, Norio; Cheng, Jason Y; Riesz, Peter

    2008-10-09

    Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.

  9. Effect of Cavitation on Surface Damage of 16.7Cr-10Ni-2Mo Stainless Steel in Marine Environment

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Sang-Ok; Han, Min-Su; Kim, Seong-Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    Stainless steel is generally known to have characteristics of excellent corrosion resistance and durability, but in a marine environment it can suffer from localized corrosion due to the breakdown of passivity film due to chloride ion in seawater. Furthermore, the damage behaviors are sped up under a cavitation environment because of complex damage from electrochemical corrosion and cavitation-erosion. In this study the characteristics of electrochemical corrosion and cavitation erosion behavior were evaluated on 16.7Cr-10Ni-2Mo stainless steel under a cavitation environment in natural seawater. The electrochemical experiments have been conducted at both static conditions and dynamic conditions inducing cavitation with different current density parameters. The surface morphology and damage behaviors were compared after the experiment. After the cavitation test with time variables morphological examinations on damaged specimens were analyzed by using a scanning electron microscope and a 3D microscope. the galvanostatic experiment gave a cleaner surface morphology presented with less damage depth at high current density regions. It is due to the effect of water cavitation peening under the cavitation condition. In the cavitation experiment, with amplitude of 30 μm and seawater temperature of 25 ℃, weight loss and cavitation-erosion damage depth were dramatically increased after 5 hours inducing cavitation.

  10. Cavitation noise from butterfly valves

    International Nuclear Information System (INIS)

    Rahmeyer, W.J.

    1982-01-01

    Cavitation in valves can produce levels of intense noise. It is possible to mathematically express a limit for a design level of cavitation noise in terms of the cavitation parameter sigma. Using the cavitation parameter or limit, it is then possible to calculate the flow conditions at which a design level of cavitation noise will occur. However, the intensity of cavitation increases with the upstream pressure and valve size at a constant sigma. Therefore, it is necessary to derive equations to correct or scale the cavitation limit for the effects of different upstream pressures and valve sizes. The following paper discusses and presents experimental data for the caviation noise limit as well as the cavitation limits of incipient, critical, incipient damage, and choking cavitation for butterfly valves. The main emphasis is on the design limit of caviation noise, and a noise level of 85 decibels was selected as the noise limit. Tables of data and scaling exponents are included for applying the design limits for the effects of upstream pressure and valve size. (orig.)

  11. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.

    Science.gov (United States)

    Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B

    2017-05-01

    Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O 1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.

    Science.gov (United States)

    Krasovitski, Boris; Frenkel, Victor; Shoham, Shy; Kimmel, Eitan

    2011-02-22

    The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational (cavitational (>100 mW · cm(-2)) spatial peak temporal average intensity levels. The cellular-level model (termed "bilayer sonophore") combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood-brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency (ε A,max ∝ P(A)(0.8f - 0.5) and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.

  13. On the mechanism of explosive eruption of mount erebus volcano: the dynamics of the rupture structure in a cavitating layer

    International Nuclear Information System (INIS)

    Bol'shakova, E S; Kedrinskiy, V K

    2016-01-01

    This paper presents the results of an experimental simulation of rupture development in heavily cavitating magma melt flow in volcanic conduits and its effect on the structure of explosive volcanic eruptions. The dynamics of the state of a layer of distilled water (similar in the density of cavitation nuclei to magma melt) under shock-wave loading was studied. The experiments were performed using electromagnetic hydrodynamic shock tubes (EM HST) with maximum capacitor bank energy of up to 100 J and 5 kJ. It was found that the topology of the rupture formed on the membrane surface did not change during its development. Empirical estimates were obtained for the proportion of the capacitor bank energy expended in the development of the rupture and the characteristic time of its existence. The study revealed a number of fundamentally new physical effects in the cavity dynamics in a cavitating medium: a cavitation “boundary layer” is formed on the surface of the quasi-empty rupture, which is transformed into a cluster of high energy density upon closure of the flow. (paper)

  14. Interaction of Impulsive Pressures of Cavitation Bubbles with Cell Membranes during Sonoporation

    Science.gov (United States)

    Kodama, Tetsuya; Koshiyama, Ken-ichiro; Tomita, Yukio; Suzuki, Maiko; Yano, Takeru; Fujikawa, Shigeo

    2006-05-01

    Ultrasound contrast agents (UCAs), are capable of enhancing non-invasive cytoplasmic molecular delivery in the presence of ultrasound. Collapse of UCAs may generate nano-scale cavitation bubbles, resulting in the transient permeabilization of the cell membrane. In the present study, we investigated the interaction of a cavitation bubble-induced shock wave with a cell membrane using acoustic theory and molecular dynamics (MD) simulation. From the theory, we obtained the shock wave propagation distance from the center of a cavitation bubble that would induce membrane damage. The MD simulation determined the relationship between the uptake of water molecules into the lipid bilayer and the shock wave. The interaction of the shock wave induced a structural change of the bilayer and subsequently increased the fluidity of each molecule. These changes in the bilayer due to shock waves may be an important factor in the use of UCAs to produce the transient membrane permeability during sonoporation.

  15. Techniques of Ultrasound Cavitation Control

    Directory of Open Access Journals (Sweden)

    S. P. Skvortsov

    2015-01-01

    Full Text Available The control methods of ultrasonic cavitation applied now within the range from 20 kHz to 80 kHz use either control of ultrasound source parameters (amplitude, acoustic power, etc. or control of one of the cavitation effects (erosion of materials, sonoluminescence, power of acoustic noise, etc.. These methods provide effective management of technological processes, however, make it impossible to relate the estimated effect with parameters of pulsations of cavitation bubbles. This is, mainly, due to influence of a number of uncontrollable parameters, in particular, such as temperature, composition of liquid, gas content, etc. as well as because of the difficulty to establish interrelation between the estimated effect and parameters of pulsations. As a result, in most cases it is difficult to compare controlled parameters of ultrasonic cavitation among themselves, and quantitative characteristics of processes become depending on the type of ultrasonic installation and conditions of their measurement.In this regard, methods to determine parameters of bubble pulsations through sounding a cavitation area by low-intensity laser radiation or to record cavitation noise sub-harmonics reflecting dynamics of changing radius of cavitation bubbles are of interest. The method of optical sounding, via the analysis of spectral components of a scattered signal recorded by a photo-detector, allows us to define a phase of the bubbles collapse with respect to the sound wave and a moving speed of the bubbles wall, as well as to estimate a cavitation index within the light beam section.The method to record sub-harmonicas of cavitation noise allows us to define parameters of pulsations, average for cavitation areas.The above methods allow us both to study mechanisms of cavitation action and to form quantitative criteria of its efficiency based on the physical processes, rather than their consequences and are convenient for arranging a feedback in the units using

  16. URANS simulations of the tip-leakage cavitating flow with verification and validation procedures

    Science.gov (United States)

    Cheng, Huai-yu; Long, Xin-ping; Liang, Yun-zhi; Long, Yun; Ji, Bin

    2018-04-01

    In the present paper, the Vortex Identified Zwart-Gerber-Belamri (VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation (V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex (TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex (TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.

  17. Combined experimental and computational investigation of the cavitating flow in an orifice plate with special emphasis on surrogate-based optimization method

    International Nuclear Information System (INIS)

    Li, XianLin; Huang, Biao; Chen, Tairan; Liu, Ying; Qiu, Si Cong; Zhao, Jing

    2017-01-01

    We investigated the influence of geometrical parameters of the orifice plate on the cavitation structures, and optimized these parameters by using a surrogate-based model with special emphasis on the concentration of hydroxyl radical released. The results show that for the orifice plate of the hydrodynamic cavitation system, the possible location of the inception of the cavity spreads to throat and divergent section of the venturi geometry. Based on the surrogate model and global sensitivity assessment, the diameter of throat Dt and diameter of inlet Din significantly influenced the size of the cavity, while the length of throat Lt had little effect on both cavitation intensity and flow rate. It should be noted that when Lt is decreased, the size of cavity would be slightly decreased but the flow rate increased clearly. The increase of the diverging section is in favor of the size of cavity. By comparing the experimental measurements on the concentration of Methylene blue, the optimum geometry of the orifice plate for best cavitational activity is proposed

  18. Combined experimental and computational investigation of the cavitating flow in an orifice plate with special emphasis on surrogate-based optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Li, XianLin; Huang, Biao; Chen, Tairan; Liu, Ying; Qiu, Si Cong [School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing (China); Zhao, Jing [China Academy of Launch Vehicle Technology, Beijing (China)

    2017-01-15

    We investigated the influence of geometrical parameters of the orifice plate on the cavitation structures, and optimized these parameters by using a surrogate-based model with special emphasis on the concentration of hydroxyl radical released. The results show that for the orifice plate of the hydrodynamic cavitation system, the possible location of the inception of the cavity spreads to throat and divergent section of the venturi geometry. Based on the surrogate model and global sensitivity assessment, the diameter of throat Dt and diameter of inlet Din significantly influenced the size of the cavity, while the length of throat Lt had little effect on both cavitation intensity and flow rate. It should be noted that when Lt is decreased, the size of cavity would be slightly decreased but the flow rate increased clearly. The increase of the diverging section is in favor of the size of cavity. By comparing the experimental measurements on the concentration of Methylene blue, the optimum geometry of the orifice plate for best cavitational activity is proposed.

  19. Modeling liquid hydrogen cavitating flow with the full cavitation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.B.; Qiu, L.M.; Qi, H.; Zhang, X.J.; Gan, Z.H. [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-12-15

    Cavitation is the formation of vapor bubbles within a liquid where flow dynamics cause the local static pressure to drop below the vapor pressure. This paper strives towards developing an effective computational strategy to simulate liquid hydrogen cavitation relevant to liquid rocket propulsion applications. The aims are realized by performing a steady state computational fluid dynamic (CFD) study of liquid hydrogen flow over a 2D hydrofoil and an axisymmetric ogive in Hord's reports with a so-called full cavitation model. The thermodynamic effect was demonstrated with the assumption of thermal equilibrium between the gas phase and liquid phase. Temperature-dependent fluid thermodynamic properties were specified along the saturation line from the ''Gaspak 3.2'' databank. Justifiable agreement between the computed surface pressure, temperature and experimental data of Hord was obtained. Specifically, a global sensitivity analysis is performed to examine the sensitivity of the turbulent computations to the wall grid resolution, wall treatments and changes in model parameters. A proper near-wall model and grid resolution were suggested. The full cavitation model with default model parameters provided solutions with comparable accuracy to sheet cavitation in liquid hydrogen for the two geometries. (author)

  20. Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening

    Science.gov (United States)

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Chen, Cherry C.; Konofagou, Elisa E.

    2012-11-01

    Microbubble (MB)-assisted focused ultrasound is a promising technique for delivering drugs to the brain by noninvasively and transiently opening the blood-brain barrier (BBB), and monitoring BBB opening using passive cavitation detection (PCD) is critical in detecting its occurrence, extent as well as assessing its mechanism. One of the main obstacles in achieving those objectives in large animals is the transcranial attenuation. To study the effects, the cavitation response through the in-vitro non-human primate (NHP) skull was investigated. In-house manufactured lipid-shelled MB (medium diameter: 4-5 um) were injected into a 4-mm channel of a phantom below a degassed monkey skull. A hydrophone confocally aligned with the FUS transducer served as PCD during sonication (frequency: 0.50 MHz, peak rarefactional pressures: 0.05-0.60 MPa, pulse length: 100 cycles, PRF: 10 Hz, duration: 2 s) for four cases: water without skull, water with skull, MB without skull and MB with skull. A 5.1-MHz linear-array transducer was also used to monitor the MB disruption. The frequency spectra, spectrograms, stable cavitation dose (SCD) and inertial cavitation dose (ICD) were quantified. Results showed that the onset of stable cavitation and inertial cavitation in the experiments occurred at 50 kPa, and was detectable throught the NHP skull since the both the detection thresholds for stable cavitation and inertial cavitation remained unchanged compared to the non-skull case, and the SCD and ICD acquired transcranially may not adequately represent the true extent of stable and inertial cavitation due to the skull attenuation.

  1. An Anticipatory Model of Cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Dress, W.B., Jr.; Hylton, J.O.; Kercel, S.W.

    1999-04-05

    The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.

  2. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.

    Science.gov (United States)

    Xu, Zhiyuan; Carlson, Carissa; Snell, John; Eames, Matt; Hananel, Arik; Lopes, M Beatriz; Raghavan, Prashant; Lee, Cheng-Chia; Yen, Chun-Po; Schlesinger, David; Kassell, Neal F; Aubry, Jean-Francois; Sheehan, Jason

    2015-01-01

    In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as

  3. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  4. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation.

    Science.gov (United States)

    Shelden, Megan C; Vandeleur, Rebecca; Kaiser, Brent N; Tyerman, Stephen D

    2017-01-01

    We report physiological, anatomical and molecular differences in two economically important grapevine ( Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψ L ) and stem water potential (ψ S ), stomatal conductance ( g s ), transpiration ( E ), petiole hydraulics ( K Pet ), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψ L in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ 50Petiole = -1.14 and ψ 50Stem = -2.24 MPa) but not in Grenache (ψ 50Petiole = -0.73 and ψ 50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher K Pet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves ( VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1 , and VvTIP2;1 ) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψ L and ψ S in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin

  5. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  6. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit.

    Science.gov (United States)

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-10-19

    The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.

  7. A study on tip leakage vortex dynamics and cavitation in axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei; Zhang, Desheng; Jin, Yongxin; Shi, Weidong [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Esch, B P M van, E-mail: zds@ujs.edu.cn [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands)

    2017-06-15

    The tip leakage flows and related cavitation in the tip region of an axial-flow pump were investigated in detail using the numerical and experimental methods. The numerical results of the pump model performance were in good agreement with experimental data. The flow structures in the tip clearance were clarified clearly with detailed data involving the axial velocity and turbulent kinetic energy. When depicting the feature of vortex core, the advanced vortex identification method λ {sub 2}-criterion was used. Simultaneously, the minimum tension criterion was also applied to predict the cavitation inception for different flow rates and it is consistent with the distributions of vorticity and pressure in the vortex core. The roll-up process of TLV is highly three-dimensional and the entrainment would follow different paths. Then, both the numerical and experimental approaches show the cavitation patterns for different cavitation conditions, and it also finds that slight cavitation would promote the development of tip leakage vortex (TLV) while the TLV seems to be eliminated for a low cavitation number, especially before a specific location of blade tip due to the blade loading change induced by cavitation possibly. (paper)

  8. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality.

    Science.gov (United States)

    Gogate, P R; Mededovic-Thagard, S; McGuire, D; Chapas, G; Blackmon, J; Cathey, R

    2014-03-01

    The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5-20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study.

    Science.gov (United States)

    Blanken, Jan; De Moor, Roeland Jozef Gentil; Meire, Maarten; Verdaasdonk, Rudolf

    2009-09-01

    Limited information exists regarding the induction of explosive vapor and cavitation bubbles in an endodontic rinsing solution. It is also not clear whether a fiber has to be moved in the irrigation solution or can be kept stationary. No information is available on safe power settings for the use of cavitation in the root canal. This study investigates the fluid movements and the mechanism of action caused by an Er,Cr:YSGG laser in a transparent root model. Glass models with an artificial root canal (15 mm long, with a 0.06 taper and apical diameter of 400 microm) were used for visualization and registration with a high-speed imaging technique (resolution in the microsecond range) of the creation of explosive vapor bubbles with an Er,Cr:YSGG laser at pulse energies of 75, 125, and 250 mJ at 20 Hz using a 200 microm fiber (Z2 Endolase). Fluid movement was investigated by means of dyes and visualization of the explosive vapor bubbles, and as a function of pulse energy and distance of the fiber tip to the apex. The recordings in the glass model show the creation of expanding and imploding vapor bubbles with secondary cavitation effects. Dye is flushed out of the canal and replaced by surrounding fluid. It seems not necessary to move the fiber close to the apex. Imaging suggests that the working mechanism of an Er,Cr:YSGG laser in root canal treatment in an irrigation solution can be attributed to cavitation effects inducing high-speed fluid motion into and out the canal.

  10. Cavitation noise studies on marine propellers

    Science.gov (United States)

    Sharma, S. D.; Mani, K.; Arakeri, V. H.

    1990-04-01

    Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated

  11. Development of an Acoustic Localization Method for Cavitation Experiments in Reverberant Environments

    Science.gov (United States)

    Ranjeva, Minna; Thompson, Lee; Perlitz, Daniel; Bonness, William; Capone, Dean; Elbing, Brian

    2011-11-01

    Cavitation is a major concern for the US Navy since it can cause ship damage and produce unwanted noise. The ability to precisely locate cavitation onset in laboratory scale experiments is essential for proper design that will minimize this undesired phenomenon. Measuring the cavitation onset is more accurately determined acoustically than visually. However, if other parts of the model begin to cavitate prior to the component of interest the acoustic data is contaminated with spurious noise. Consequently, cavitation onset is widely determined by optically locating the event of interest. The current research effort aims at developing an acoustic localization scheme for reverberant environments such as water tunnels. Currently cavitation bubbles are being induced in a static water tank with a laser, allowing the localization techniques to be refined with the bubble at a known location. The source is located with the use of acoustic data collected with hydrophones and analyzed using signal processing techniques. To verify the accuracy of the acoustic scheme, the events are simultaneously monitored visually with the use of a high speed camera. Once refined testing will be conducted in a water tunnel. This research was sponsored by the Naval Engineering Education Center (NEEC).

  12. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...

  13. Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems--In situ gentle cavitation threshold determination and free radical related oxidation.

    Science.gov (United States)

    Johansson, Linda; Singh, Tanoj; Leong, Thomas; Mawson, Raymond; McArthur, Sally; Manasseh, Richard; Juliano, Pablo

    2016-01-01

    We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fundamentals of Cavitation

    CERN Document Server

    Franc, Jean-Pierre

    2005-01-01

    The present book is aimed at providing a comprehensive presentation of cavitation phenomena in liquid flows. It is further backed up by the experience, both experimental and theoretical, of the authors whose expertise has been internationally recognized. A special effort is made to place the various methods of investigation in strong relation with the fundamental physics of cavitation, enabling the reader to treat specific problems independently. Furthermore, it is hoped that a better knowledge of the cavitation phenomenon will allow engineers to create systems using it positively. Examples in the literature show the feasibility of this approach.

  16. A novel ultrasonic cavitation enhancer

    NARCIS (Netherlands)

    Rivas, Fernandez D.; Verhaagen, B.; Galdamez Perez, Andres; Castro-Hernandez, Elena; Zwieten, Van Ralph; Schroen, Karin

    2015-01-01

    We introduce a Cavitation Intensifying Bag as a versatile tool for acoustic cavitation control. The cavitation activity is spatially controlled by the modification of the inner surface of the bag with patterned pits of microscopic dimensions. We report on different measurements such as the

  17. A novel ultrasonic cavitation enhancer

    NARCIS (Netherlands)

    Fernandez Rivas, David; Verhaagen, B.; Galdamez Perez, Andres; Castro-Hernandez, Elena; van Zwieten, Ralph; Schroen, Karin

    2015-01-01

    We introduce a Cavitation Intensifying Bag as a versatile tool for acoustic cavitation control. The cavitation activity is spatially controlled by the modification of the inner surface of the bag with patterned pits of microscopic dimensions. We report on different measurements such as the

  18. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.

    Science.gov (United States)

    Maxwell, Adam D; Cain, Charles A; Hall, Timothy L; Fowlkes, J Brian; Xu, Zhen

    2013-03-01

    In this study, the negative pressure values at which inertial cavitation consistently occurs in response to a single, two-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (P(cav)) for a single pulse as a function of peak negative pressure (p(-)) followed a sigmoid curve, with the probability approaching one when the pressure amplitude was sufficient. The statistical threshold (defined as P(cav) = 0.5) was between p(-) = 26 and 30 MPa in all samples with high water content but varied between p(-) = 13.7 and >36 MPa in other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p(-) = 28.2 megapascals was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at various pressure levels and dimensions of cavitation-induced lesions in tissue. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Cavitation and gas-liquid flow in fluid machinery and devices. FED-Volume 190

    International Nuclear Information System (INIS)

    O'Hern, T.J.; Kim, J.H.; Morgan, W.B.; Furuya, O.

    1994-01-01

    Cavitation and gas-liquid two-phase flow have remained important areas in many industrial applications and constantly provided challenges for academic researchers and industrial practitioners alike. Cavitation and two-phase flow commonly occur in fluid machinery such as pumps, propellers, and fluid devices such as orifices, valves, and diffusers. Cavitation not only degrades the performance of these machines and devices but deteriorates the materials. Gas-liquid two-phase flow has also been known to degrade the performance of pumps and propellers and can often induce an instability. The industrial applications of cavitation and two-phase flow can be found in power plants, ship propellers, hydrofoils, and aerospace equipment, to name but a few. The papers presented in this volume reflect the variety and richness of cavitation and gas-liquid two-phase flow in various flow transporting components and the increasing role they play in modern and conventional technologies. Separate abstracts were prepared for 35 papers in this book

  20. Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy

    Directory of Open Access Journals (Sweden)

    Annalisa Pola

    2017-03-01

    Full Text Available Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast samples. Cavitation erosion tests were performed according to ASTM G32 standard on as-cast and heat treated castings. The response of the alloy in each condition was investigated by measuring the mass loss as a function of cavitation time and by analyzing the damaged surfaces by means of optical and scanning electron microscope. It was pointed out that the ultrasound treatment increases the cavitation erosion resistance of the alloy, as a consequence of the higher chemical and microstructural homogeneity, the finer grains and primary particles and the refined structure of the eutectic induced by the treatment itself.

  1. Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy.

    Science.gov (United States)

    Pola, Annalisa; Montesano, Lorenzo; Tocci, Marialaura; La Vecchia, Giovina Marina

    2017-03-03

    Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast samples. Cavitation erosion tests were performed according to ASTM G32 standard on as-cast and heat treated castings. The response of the alloy in each condition was investigated by measuring the mass loss as a function of cavitation time and by analyzing the damaged surfaces by means of optical and scanning electron microscope. It was pointed out that the ultrasound treatment increases the cavitation erosion resistance of the alloy, as a consequence of the higher chemical and microstructural homogeneity, the finer grains and primary particles and the refined structure of the eutectic induced by the treatment itself.

  2. Sonoporation of adherent cells under regulated ultrasound cavitation conditions.

    Science.gov (United States)

    Muleki Seya, Pauline; Fouqueray, Manuela; Ngo, Jacqueline; Poizat, Adrien; Inserra, Claude; Béra, Jean-Christophe

    2015-04-01

    A sonoporation device dedicated to the adherent cell monolayer has been implemented with a regulation process allowing the real-time monitoring and control of inertial cavitation activity. Use of the cavitation-regulated device revealed first that adherent cell sonoporation efficiency is related to inertial cavitation activity, without inducing additional cell mortality. Reproducibility is enhanced for the highest sonoporation rates (up to 17%); sonoporation efficiency can reach 26% when advantage is taken of the standing wave acoustic configuration by applying a frequency sweep with ultrasound frequency tuned to the modal acoustic modes of the cavity. This device allows sonoporation of adherent and suspended cells, and the use of regulation allows some environmental parameters such as the temperature of the medium to be overcome, resulting in the possibility of cell sonoporation even at ambient temperature. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. The role of heating, cavitation and acoustic streaming in mediating ultrasound-induced changes of TGF-β gene expression in bone cells

    International Nuclear Information System (INIS)

    Harle, J; Mayia, F

    2004-01-01

    This paper relates ultrasound-induced changes in bone cell function to quantitative data assessing the level of several interaction mechanisms within the exposure environment. Characterisation of ultrasound fields in terms of resultant levels of heating, cavitation and acoustic streaming may provide a novel means of accurately assessing the likelihood of biological effects in vitro

  4. [Kinetics of catalase inactivation induced by ultrasonic cavitation].

    Science.gov (United States)

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2003-01-01

    Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.

  5. Cavitation problems in sodium valves

    International Nuclear Information System (INIS)

    Elie, X.

    1976-01-01

    Cavitation poses few problems for sodium valves, in spite of the fact that the loops are not pressurized. This is no doubt due to the low flow velocities in the pipes. For auxiliary loop valves we are attempting to standardize performances with respect to cavitation. For economic reasons cavitation thresholds are approached with large diameter valves. (author)

  6. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    Science.gov (United States)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  7. Numerical and experimental investigations on cavitation erosion

    Science.gov (United States)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  8. Appearance of high submerged cavitating jet: The cavitation phenomenon and sono luminescence

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available In order to study jet structure and behaviour of cloud cavitation within time and space, visualization of highly submerged cavitating water jet has been done using Stanford Optics 4 Quick 05 equipment, through endoscopes and other lenses with Drello3244 and Strobex Flash Chadwick as flashlight stroboscope. This included obligatory synchronization with several types of techniques and lenses. Images of the flow regime have been taken, allowing calculation of the non-dimensional cavitation cloud length under working conditions. Consequently a certain correlation has been proposed. The influencing parameters, such as; injection pressure, downstream pressure and cavitation number were experimentally proved to be very significant. The recordings of sono-luminescence phenomenon proved the collapsing of bubbles everywhere along the jet trajectory. In addition, the effect of temperature on sono-luminescence recordings was also a point of investigation. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  9. Effect of tensile stress on cavitation damage formation in mercury

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Takashi, E-mail: naoe.takashi@jaea.go.j [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kogawa, Hiroyuki [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Yamaguchi, Yoshihito [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Futakawa, Masatoshi [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2010-03-15

    Cavitation erosion or so called pitting damage was investigated under tensile stress conditions in mercury. In MW-class liquid metal spallation targets, pitting damage is a critical issue to satisfy required power and/or lifetime of the target vessel. Cavitation occurs by negative pressure which is induced through pressure wave propagation due to proton beam injection. Pitting damage is formed by microjet and/or shock wave during cavitation bubble collapse. A mercury target vessel suffers tensile stress due to thermal stress or welding. In order to investigate the effect of tensile stress on pitting damage formation, cavitation erosion tests were performed using stress imposed specimens in mercury. An ultrasonic vibratory horn and electro-Magnetic IMpact Testing Machine (MIMTM) were used to vary the cavitation intensity. In the incubation period of pitting damage, damaged area was slightly increased with increasing imposed tensile stress. In the steady state period, a mean depth of erosion was increased by the tensile stress. Additionally, in order to quantitatively evaluate the effect of tensile stress, an indentation test with Vickers indenter was carried out to quasi-statically simulate the impact load. From the measurement of the diagonal length of the indent aspect ratio and hardness, it is recognized that the threshold of the deformation, i.e. pitting damage formation, was decreased by the tensile stress.

  10. Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects

    Science.gov (United States)

    Zhang, Shaofeng; Li, Xiaojun; Zhu, Zuchao

    2018-06-01

    Thermodynamic effects on cryogenic cavitating flow is important to the accuracy of numerical simulations mainly because cryogenic fluids are thermo-sensitive, and the vapour saturation pressure is strongly dependent on the local temperature. The present study analyses the thermal cavitating flows in liquid nitrogen around a 2D hydrofoil. Thermal effects were considered using the RNG k-ε turbulence model with a modified turbulent eddy viscosity and the mass transfer homogenous cavitation model coupled with energy equation. In the cavitation model process, the saturated vapour pressure is modified based on the Clausius-Clapron equation. The convection heat transfer approach is also considered to extend the Zwart-Gerber-Belamri model. The predicted pressure and temperature inside the cavity under cryogenic conditions show that the modified Zwart-Gerber-Belamri model is in agreement with the experimental data of Hord et al. in NASA, especially in the thermal field. The thermal effect significantly affects the cavitation dynamics during phase-change process, which could delay or suppress the occurrence and development of cavitation behaviour. Based on the modified Zwart-Gerber-Belamri model proposed in this paper, better prediction of the cryogenic cavitation is attainable.

  11. Experimental research of a microjet cavitation

    Directory of Open Access Journals (Sweden)

    Olšiak Róbert

    2012-04-01

    Full Text Available The paper presents some results of a cavitation research behind a micro-orifice. Investigated were the conditions of the origin of cavitation represented by parameters such as upstream pressure, downstream pressure, liquid temperature and cavitation number. Presented are also images of a cavitating microjet made by the high speed high definition camera RedLake Y3. Dimensions of a microjet are: diameter 0,3 mm; length 0,5 mm.

  12. Analysis of cavitation effect for water purifier using electrolysis

    Science.gov (United States)

    Shin, Dong Ho; Ko, Han Seo; Lee, Seung Ho

    2015-11-01

    Water is a limited and vital resource, so it should not be wasted by pollution. A development of new water purification technology is urgent nowadays since the original and biological treatments are not sufficient. The microbubble-aided method was investigated for removal of algal in this study since it overcomes demerits of the existing purification technologies. Thus, the cavitation effect in a venturi-type tube using the electrolysis was analyzed. Ruthenium-coated titanium plates were used as electrodes. Optimum electrode interval and applied power were determined for the electrolysis. Then, the optimized electrodes were installed in the venturi-type tube for generating cavitation. The cavitation effect could be enhanced without any byproduct by the bubbly flow induced by the electrolysis. The optimum mass flow rate and current were determined for the cavitation with the electrolysis. Finally, the visualization techniques were used to count the cell number of algal and microbubbles for the confirmation of the performance. As a result, the energy saving and high efficient water purifier was fabricated in this study. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  13. An Investigation into the Effect of Hydrodynamic Cavitation on Diesel using Optical Extinction

    Science.gov (United States)

    Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.

    2015-12-01

    A conventional diesel and paraffinic-rich model diesel fuel were subjected to sustained cavitation in a custom-built high-pressure recirculation flow rig. Changes to the spectral extinction coefficient at 405 nm were measured using a simple optical arrangement. The spectral extinction coefficient at 405 nm for the conventional diesel sample was observed to increase to a maximum value and then asymptotically decrease to a steady-state value, while that for the paraffinic-rich model diesel was observed to progressively decrease. It is suggested that this is caused by the sonochemical pyrolysis of mono-aromatics to form primary soot-like carbonaceous particles, which then coagulate to form larger particles, which are then trapped by the filter, leading to a steady-state spectral absorbance.

  14. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Michael Plaksin

    2014-01-01

    Full Text Available Low-intensity ultrasonic waves can remotely and nondestructively excite central nervous system (CNS neurons. While diverse applications for this effect are already emerging, the biophysical transduction mechanism underlying this excitation remains unclear. Recently, we suggested that ultrasound-induced intramembrane cavitation within the bilayer membrane could underlie the biomechanics of a range of observed acoustic bioeffects. In this paper, we show that, in CNS neurons, ultrasound-induced cavitation of these nanometric bilayer sonophores can induce a complex mechanoelectrical interplay leading to excitation, primarily through the effect of currents induced by membrane capacitance changes. Our model explains the basic features of CNS acoustostimulation and predicts how the experimentally observed efficacy of mouse motor cortical ultrasonic stimulation depends on stimulation parameters. These results support the hypothesis that neuronal intramembrane piezoelectricity underlies ultrasound-induced neurostimulation, and suggest that other interactions between the nervous system and pressure waves or perturbations could be explained by this new mode of biological piezoelectric transduction.

  15. Influence of superoleophobic layer on the lubrication performance of partially textured bearing including cavitation

    Science.gov (United States)

    Tauviqirrahman, M.; Bayuseno, A. P.; Muchammad, Jamari, J.

    2016-04-01

    Surfaces with high superoleophobicity have attracted important attention because of their potential applications in scientific and industrial field. Especially classical metal bearing are faced with lubrication problem, because metal surface shows typically oleophilicity. The development of superolephobic metal surfaces which repel oil liquid droplet have significant applications in preventing the stiction. In addition, for classical bearing with texturing, the cavitation occurence is often considered as the main cause of the deterioration of the lubrication performance and thus shorten the lifetime of the bearing. In the present study, the exploration of the influence of adding the superoleophobic layer on the improvement of the performance of partially textured bearing in preventing the cavitation was performed. Navier slip model was used to model the behavior of the superoleophobic layer. A formulation of the modified Reynolds equation with mass-conserving boundary conditions was derived and the pressure distribution was of particular interest. The equations of lubrication were discretized using a finite volume method and solved using a tri-diagonal-matrix-algortihm. In this calculation, it was shown that after introducing the superoleophobic layer at the leading edge of the contact, the cavitation occurence can be prevented and thus the increased hydrodynamic pressure is found. However, the results showed that for deeper texture, the deterioration of the load support is noted. This findings may have useful implications to extend the life time of textured bearing.

  16. Suppression of cavitation in melted tungsten by doping with lanthanum oxide

    International Nuclear Information System (INIS)

    Yuan, Y.; Lu, G.H.; Xu, B.; Fu, B.Q.; Xu, H.Y.; Li, C.; Jia, Y.Z.; Qu, S.L.; Liu, W.; Greuner, H.; Böswirth, B.; Luo, G.-N.

    2014-01-01

    Melting and boiling behaviour of pure tungsten and 1 wt% lanthanum-oxide-doped tungsten (WL10) are investigated, focusing on the material selection with respect to material loss induced by cavitation. Melting experiments under high heat loads are carried out in the high heat flux facility GLADIS. Pulsed hydrogen neutral beams with heat flux of 10 and 23 MW m −2 are applied onto the adiabatically loaded samples for intense surface melting. Melt layer of the two tungsten grades exhibit different microstructure characteristics. Substantive voids owing to cavitation in the liquid phase are observed in pure W and lead to porous resolidified material. However, little cavitation bubbles can be found in the dense resolidified layer of WL10. In order to find out the gaseous sources, vapour collection is performed and the components are subsequently detected. Based on the observations and analyses, the microstructure evolutions corresponding to melting and vapourization behaviour of the two tungsten grades are tentatively described, and furthermore, the underlying mechanisms of cavitation in pure W and its suppression in WL10 are discussed. (paper)

  17. Incidence of cavitation in the fragmentation process of extracorporeal shock wave lithotriptors

    Science.gov (United States)

    Rink, K.; Delacrétaz, G.; Pittomvils, G.; Boving, R.; Lafaut, J. P.

    1994-05-01

    The fragmentation mechanism occurring in extracorporeal shock wave lithotripsy (ESWL) is investigated using a fiber optic stress sensing technique. With our technique, we demonstrate that cavitation is a major cause of fragmentation in ESWL procedures. When a target is placed in the operating area of the lithotriptor, two shock waves are detected. The first detected shock wave corresponds to the incoming shock wave generated by the lithotriptor. The second shock wave, detected some hundreds of microseconds later, is generated in situ. It results from the collapse of a cavitation bubble, formed by the reflection of the incoming shock wave at the target boundary. This cavitation induced shock wave generates the largest stress in the target area according to our stress sensing measurements.

  18. Improvement of residual stress in stainless steel by cavitating jet; Cavitation funryu ni yoru stainless ko no zanryu oryoku kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Soyama, H.; Saka, M. [Tohoku Univ., Sendai (Japan)] Park, J. [Kyung Nam Junior College, Pusan (Korea, Republic of). Dept. Vehicle Eng.] Abe, H. [Tohoku Univ., Sendai (Japan)

    1998-08-15

    In order to strengthen materials, the improvement of residual stress in stainless steel by using a cavitating jet was investigated. In case of cavitating jet, the cavitation intensity can be controlled by hydraulic parameters such as upstream pressure and downstream pressure. In general, cavitation produces damage on hydraulic machinery. However, at the initial stage of cavitation erosion process, plastic deformation takes place on the material surface, then it is possible to do peening without damage considering the cavitation intensity and the exposure time. In order to evidence the suitable condition on the improvement of residual stress by the cavitating jet, the residual stress in SUS304 and SUS316 was examined. The three normal stresses in different directions were measured by X-ray diffraction method, then the principal stresses were calculated. Both principal stresses were changed from tension to compression within 10 seconds by the cavitating jet. The compressive stress resulted by the cavitating jet was saturated after a certain time. It was concluded that the cavitating jet improved the residual stress in stainless steel SUS316 as well as SUS304. 24 refs., 9 figs.

  19. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit

    OpenAIRE

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-01-01

    Background The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the am...

  20. Disintegration of materials by cavitating microjets

    Directory of Open Access Journals (Sweden)

    Mlkvik M.

    2013-04-01

    Full Text Available In the paper is presented an investigation of material disintegration by cavitating microjets. Cavitating microjet develops behind the micro-orifice at high flow speeds, when local pressure drop initiates a cavitation phenomenon. Described is a method and presented are selected results of experiments. Experiments were carried out with 2 micro-orifices at different flow conditions (cavitation number, distance between sample and micro-orifice. Experiments are based on flow visualisation as well as on a character of material displacement.

  1. Numerical prediction of cavitating flow around a hydrofoil using pans and improved shear stress transport k-omega model

    Directory of Open Access Journals (Sweden)

    Zhang De-Sheng

    2015-01-01

    Full Text Available The prediction accuracies of partially-averaged Navier-Stokes model and improved shear stress transport k-ω turbulence model for simulating the unsteady cavitating flow around the hydrofoil were discussed in this paper. Numerical results show that the two turbulence models can effectively reproduce the cavitation evolution process. The numerical prediction for the cycle time of cavitation inception, development, detachment, and collapse agrees well with the experimental data. It is found that the vortex pair induced by the interaction between the re-entrant jet and mainstream is responsible for the instability of the cavitation shedding flow.

  2. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    Science.gov (United States)

    Leonard, Daniel J.

    can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new

  3. Fracture of elastomers by cavitation

    KAUST Repository

    Hamdi, Adel

    2014-01-01

    Cavitation phenomenon is studied in rubber-like materials by combining experimental, theoretical and numerical approaches. Specific tests are carried out on a Styrene Butadiene Rubber to point out main characteristics of cavitation phenomenon. Hydrostatic depression is numerically modelled using finite element method. Numerical results are compared to Ball\\'s and Hou & Abeyaratne\\'s models with regard to cavity nucleation in the material. Both models well fit experimental observations suggesting that the cavitation nucleation in elastomers depends on the confinement degree of the specimen. Finally, critical hydrostatic pressure and critical global deformation are proved to govern cavitation nucleation in the studied material. Critical loadings are identified by comparing experimental and numerical load-displacement curves. © 2013 Elsevier Ltd.

  4. Experimental and numerical investigations on spray structure under the effect of cavitation phenomenon in a microchannel

    International Nuclear Information System (INIS)

    Ghorbani, Morteza; Sadaghiani, Abdolali Khalili; Yidiz, Mehmet; Kosar, Ali

    2017-01-01

    In this study, the effect of upstream pressure on cavitation flows inside a microchannel with an inner diameter of 152 μm and resulting spray structure were experimentally and numerically investigated. The effects of bubble number density on two-phase flow hydrodynamics were studied using the numerical approach, where transient model was utilized to obtain the changes in vapor quality inside the microchannel and velocity field near the inlet and outlet of the nozzle. Spray visualization was carried out at a distance of 4.5 mm from the tip of the microchannel using the high speed visualization system. The experimental results showed that the spray cone angle increased with upstream pressure, and beyond the upstream pressure of 50 bar, the liquid jet flow changed to the cloudy spray flow. The bubble collapse was recorded at upstream pressures of 100 and 120 bar, where the cavitation bubbles extended to the outlet of the microchannel, and their collapse took place around the spray

  5. Numerical 3D flow simulation of attached cavitation structures at ultrasonic horn tips and statistical evaluation of flow aggressiveness via load collectives

    Science.gov (United States)

    Mottyll, S.; Skoda, R.

    2015-12-01

    A compressible inviscid flow solver with barotropic cavitation model is applied to two different ultrasonic horn set-ups and compared to hydrophone, shadowgraphy as well as erosion test data. The statistical analysis of single collapse events in wall-adjacent flow regions allows the determination of the flow aggressiveness via load collectives (cumulative event rate vs collapse pressure), which show an exponential decrease in agreement to studies on hydrodynamic cavitation [1]. A post-processing projection of event rate and collapse pressure on a reference grid reduces the grid dependency significantly. In order to evaluate the erosion-sensitive areas a statistical analysis of transient wall loads is utilised. Predicted erosion sensitive areas as well as temporal pressure and vapour volume evolution are in good agreement to the experimental data.

  6. Acoustic methods for cavitation mapping in biomedical applications

    Science.gov (United States)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  7. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério

    2018-01-01

    to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process...... was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction...... of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also...

  8. Stochastic-field cavitation model

    International Nuclear Information System (INIS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-01-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations

  9. Stochastic-field cavitation model

    Science.gov (United States)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  10. Microgravity Experiment: The Fate of Confined Shock Waves

    Science.gov (United States)

    Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2007-11-01

    Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.

  11. Periodic cavitation shedding in a cylindrical orifice

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, C.; Barber, T.; Milton, B.; Rosengarten, G. [University of New South Wales, School of Mechanical and Manufacturing Engineering, Sydney (Australia)

    2011-11-15

    Cavitation structures in a large-scale (D = 8.25 mm), plain orifice style nozzle within a unique experimental rig are investigated using high-speed visualisation and digital image processing techniques. Refractive index matching with an acrylic nozzle is achieved using aqueous sodium iodide for the test fluid. Cavitation collapse length, unsteady shedding frequency and spray angles are measured for cavitation conditions from incipient to supercavitation for a range of Reynolds numbers, for a fixed L/D ratio of 4.85. Periodic cavitation shedding was shown to occur with frequencies between 500 and 2,000 Hz for conditions in which cavitation occupied less than 30% of the nozzle length. A discontinuity in collapse length was shown to occur once the cavitation exceeded this length, coinciding with a loss of periodic shedding. A mechanism for this behaviour is discussed. Peak spray angles of approximately {theta} {approx} 14 were recorded for supercavitation conditions indicating the positive influence of cavitation bubble collapse on the jet atomisation process. (orig.)

  12. Stable cavitation induces increased cytoplasmic calcium in L929 fibroblasts exposed to 1-MHz pulsed ultrasound.

    Science.gov (United States)

    Tsukamoto, Akira; Higashiyama, Satoru; Yoshida, Kenji; Watanabe, Yoshiaki; Furukawa, Katsuko S; Ushida, Takashi

    2011-12-01

    An increase in cytoplasmic calcium (Ca(2+) increase) is a second messenger that is often observed under ultrasound irradiation. We hypothesize that cavitation is a physical mechanism that underlies the increase in Ca(2+) in these experiments. To control the presence of cavitation, the wave type was controlled in a sonication chamber. One wave type largely contained a traveling wave (wave type A) while the other wave type largely contained a standing wave (wave type B). Fast Fourier transform (FFT) analysis of a sound field produced by the wave types ascertained that stable cavitation was present only under wave type A ultrasound irradiation. Under the two controlled wave types, the increase in Ca(2+) in L929 fibroblasts was observed with fluorescence imaging. Under wave type A ultrasound irradiation, an increase in Ca(2+) was observed; however, no increase in Ca(2+) was observed under wave type B ultrasound irradiation. We conclude that stable cavitation is involved in the increase of Ca(2+) in cells subjected to pulsed ultrasound. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Cavitation nuclei measurements - A review

    International Nuclear Information System (INIS)

    Billet, M.L.

    1985-01-01

    The measurement of cavitation nuclei has been the goal of many cavitation research laboratories and has resulted in the development of many methods. Two significantly different approaches have been developed. One is to measure the particulate-microbubble distribution by utilizing acoustical, electrical or optical methods. The other approach measures a liquid tension and a rate of cavitation events for a liquid in order to establish a cavitation susceptibility. Comparisons between various methods indicate that most methods are capable of giving an indication of the nuclei distribution. Measurements obtained in the ocean environment indicate an average of three bubbles per cubic centimeter are present; whereas, water tunnel bubble distributions vary from much less than one to over a hundred per cubic centimeter

  14. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery.

    Science.gov (United States)

    Gourevich, Dana; Volovick, Alexander; Dogadkin, Osnat; Wang, Lijun; Mulvana, Helen; Medan, Yoav; Melzer, Andreas; Cochran, Sandy

    2015-07-01

    Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Desheng; Shi, Lei; Zhao, Ruijie; Shi, Weidong; Pan, Qiang [Jiangsu University, Zhenjiang (China); Esch, B. P. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2017-02-15

    The aim of the present investigation is to simulate and analyze the tip leakage flow structure and instantaneous evolution of tip vortex cavitation in a scaled axial-flow pump model. The improved filter-based turbulence model based on the density correction and a homogeneous cavitation model were used for implementing this work. The results show that when entering into the tip clearance, the backward flow separates from the blade tip near the pressure side, resulting in the generation of a corner vortex with high magnitude of turbulence kinetic energy. Then, at the exit of the tip clearance, the leakage jets would re-attach on the blade tip wall. Moreover, the maximum swirling strength method was employed in identifying the TLV core and a counter-rotating induced vortex near the end-wall successfully. The three dimensional cavitation patterns and in-plain cavitation structures obtained by the improved numerical method agree well with the experimental results. At the sheet cavitation trailing edge in the tip region, the perpendicular cavitation cloud induced by TLV sheds and migrates toward the pressure side of the neighboring blade. During its migration, it breaks down abruptly and generates a large number of smallscale cavities, leading to severe degradation of the pump performance, which is similar with the phenomenon observed by Tan et al.

  16. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    Science.gov (United States)

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Passive control of cavitating flow around an axisymmetric projectile by using a trip bar

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2017-07-01

    Full Text Available Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicles. This paper analyzed effects on cavitation stability of a trip bar arranged on high-speed underwater projectile. Small scale water tank experiment and large eddy simulation using the open source software OpenFOAM were used, and the results agree well with each other. Results also indicate that trip bar can obstruct downstream re-entrant jet and pressure wave propagation caused by collapse, resulting in a relatively stable sheet cavity between trip bar and shoulder of projectiles. Keywords: Unsteady cavitating flow, Trip bar, Re-entrant jet, Passive flow control

  18. Diagnostic Value of Conventional and Digital Radiography for Detection of Cavitated and Non-Cavitated Proximal Caries

    Directory of Open Access Journals (Sweden)

    Mahdieh Dehghani

    2017-02-01

    Full Text Available Objectives: This study aimed to assess the diagnostic value of conventional and digital radiography for detection of cavitated and non-cavitated proximal caries.Materials and Methods: Fifty extracted human premolars and molars were mounted in a silicone block. Charge-coupled device (CCD and photostimulable phosphor plate (PSP receptors and intra-oral films were exposed with 60 and 70 kVp with parallel technique. Two observers interpreted the radiographs twice with a two-week interval using a 5-point scale. Teeth were then serially sectioned in mesiodistal direction and evaluated under a stereomicroscope (gold standard. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated.Results: Sensitivity of all three receptors for detection of enamel lesions was low (5.5-44.4% but it was higher for dentin lesions (42.8-62.8%; PSP with 70 kVp and 0.03s exposure time had the highest sensitivity for enamel lesions, but the difference among receptors was not statistically significant (P>0.05. Sensitivity of all three receptors for detection of non-cavitated lesions was lower than that for cavitated lesions; PSP with 60 kVp and 0.07s exposure time had higher sensitivity and lower patient radiation dose for detection of cavitated and non-cavitated lesions, but the difference was not significant (P>0.05.Conclusions: Digital radiography using PSP receptor with 70 kVp is recommended to detect initial enamel caries. For detection of non-cavitated and cavitated dentin caries, PSP with 60 kVp is more appropriate. Change in kVp did not affect the diagnostic accuracy for detection of caries, and type of receptor was a more important factor.Keywords: Dental Caries; Diagnostic Imaging; Radiography, Dental, Digital

  19. Cavitation and multiphase flow forum - 1985

    International Nuclear Information System (INIS)

    Hoyt, J.W.; Furuya, O.

    1985-01-01

    This book presents the papers given at a conference on fluid flow. Topics considered at the conference included cavitation inception, bubble growth, cavitation noise, holography, axial flow pumps, vortices, cavitation erosion, two-phase flow in nozzles, coal slurry valves, hopper flows of granular materials, helium bubble transport in a closed vertical duct, and a numerical model for flow in a venturi scrubber

  20. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    Science.gov (United States)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  1. Theoretical investigations on the determination of cavitation-free primary flow after compacting the reactor FRG-1

    International Nuclear Information System (INIS)

    Pihowicz, W.

    1997-01-01

    Basing on an extensive analysis of the influence of compacting the FRG-1 reactor core upon the change in flow, heat exchange, as well as cavitation behavior of the primary circuit the underlying principles of the determination procedure for a cavitations-free primary flow have been developed theoretically. It was found that the problem has to be treated in a complex manner, i.e. considering the coupled flow, temperature, as well as cavitation fields, and that for a successful solution of the problem it is absolutely necessary to simultaneously induce an optimized fixation of the main primary coolant pump. (orig.) [de

  2. Application of flat plate cavitation data to the analysis of limited cavitation from an isolated triangular surface protrusion

    International Nuclear Information System (INIS)

    Holl, J.W.

    1985-01-01

    Isolated surface roughness can cause significant localized pressure reductions which can lead to premature cavitation and degradation of the cavitation performance of a marine vehicle. The characteristic velocity theory was developed to analyze the limited cavitation characteristics of isolated surface protrusions. This theory is dependent upon knowing the boundary layer velocity profile in the vicinity of the roughness and the limited cavitation number for the roughness in a uniform stream. In the investigation described in this paper, the equation for triangular surface protrusions was determined experimentally by testing sharpedged flat plates in a water tunnel. These data were then employed in the characteristic velocity theory to calculate the cavitation characteristics of a triangular protrusion in a turbulent boundary layer for comparison with experimental data

  3. Inhibition of nonlinear acoustic cavitation dynamics in liquid CO2

    NARCIS (Netherlands)

    Iersel, van M.M.; Cornel, J.; Benes, N.E.; Keurentjes, J.T.F.

    2007-01-01

    The authors present a model to study ultrasound-induced cavitation dynamics in liquid carbon dioxide (CO2), which includes descriptions for momentum, mass, and energy transport. To assist in the interpretation of these results, numerical simulations are presented for an argon cavity in water. For

  4. Reflections on cavitation nuclei in water

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2007-01-01

    to explaining why the tensile strength of water varies so dramatically between the experiments reported. A model for calculation of the critical pressure of skin-covered free gas bubbles as well as that of interfacial gaseous nuclei covered by a skin is presented. This model is able to bridge the apparently......The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... pressure, the possibility of stabilization of free gas bubbles by a skin has been documented, but only within a range of bubble sizes that makes them responsible for tensile strengths up to about 1.5 bar, and values reaching almost 300 bar have been measured. However, cavitation nuclei can also be harbored...

  5. Nucleation and cavitation in parahydrogen

    International Nuclear Information System (INIS)

    Pi, Martí; Barranco, Manuel; Navarro, Jesús; Ancilotto, Francesco

    2012-01-01

    Highlights: ► We have constructed a density functional (DF) for parahydrogen between 14 and 32 K. ► The experimental equation of state and the surface tension are well reproduced. ► We have investigated nucleation and cavitations processes in the metastable phase. ► We have obtained the electron bubble explosion within the capillary model. - Abstract: We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model.

  6. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile.

    Science.gov (United States)

    Lecysyn, Nicolas; Bony-Dandrieux, Aurélia; Aprin, Laurent; Heymes, Frédéric; Slangen, Pierre; Dusserre, Gilles; Munier, Laurent; Le Gallic, Christian

    2010-06-15

    This work is part of a project for evaluating catastrophic tank failures caused by impacts with a high-speed solid body. Previous studies on shock overpressure and drag events have provided analytical predictions, but they are not sufficient to explain ejection of liquid from the tank. This study focuses on the hydrodynamic behavior of the liquid after collision to explain subsequent ejection of liquid. The study is characterized by use of high-velocity projectiles and analysis of projectile dynamics in terms of energy loss to tank contents. New tests were performed at two projectile velocities (963 and 1255 m s(-1)) and over a range of viscosities (from 1 to 23.66 mPa s) of the target liquid. Based on data obtained from a high-speed video recorder, a phenomenological description is proposed for the evolution of intense pressure waves and cavitation in the target liquids. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    Science.gov (United States)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  8. Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2015-11-01

    In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.

  9. Cavitation occurrence around ultrasonic dental scalers.

    Science.gov (United States)

    Felver, Bernhard; King, David C; Lea, Simon C; Price, Gareth J; Damien Walmsley, A

    2009-06-01

    Ultrasonic scalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the scaler. The vibratory motion of three designs of scaler tip in a water bath has been characterised by laser vibrometry, and compared with the spatial distribution of cavitation around the scaler tips observed using sonochemiluminescence from a luminol solution. The type of cavitation was confirmed by acoustic emission analysed by a 'Cavimeter' supplied by NPL. A node/antinode vibration pattern was observed, with the maximum displacement of each type of tip occurring at the free end. High levels of cavitation activity occurred in areas surrounding the vibration antinodes, although minimal levels were observed at the free end of the tip. There was also good correlation between vibration amplitude and sonochemiluminescence at other points along the scaler tip. 'Cavimeter' analysis correlated well with luminol observations, suggesting the presence of primarily transient cavitation.

  10. The acoustic detection of cavitation in pumps

    International Nuclear Information System (INIS)

    Macleod, I.D.; Gray, B.S.; Taylor, C.G.

    1978-01-01

    A programme was initiated to develop a reliable technique for detecting the onset of acoustic noise from cavitation in a pump and to relate this to cavitation inception data, since significant noise from collapse of vapour bubbles arising from such cavitation would reduce the sensitivity of a noise detection system for boiling of sodium in fast breeder reactors. Factors affecting the detection of cavitation are discussed. The instrumentation and techniques of frequency analysis and pulse detection are described. Two examples are then given of the application of acoustic detection techniques under controlled conditions. It is concluded that acoustic detection can be a reliable method for detecting inception of cavitation in a pump and the required conditions are stated. (U.K.)

  11. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    Science.gov (United States)

    Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo

    2013-12-01

    Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  12. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy

    Science.gov (United States)

    Loske, Achim M.; Prieto, Fernando E.; Fernández, Francisco; van Cauwelaert, Javier

    2002-11-01

    Extracorporeal shock wave lithotripsy (ESWL) has been successful for more than twenty years in treating patients with kidney stones. Hundreds of underwater shock waves are generated outside the patient's body and focused on the kidney stone. Stones fracture mainly due to spalling, cavitation and layer separation. Cavitation bubbles are produced in the vicinity of the stone by the tensile phase of each shock wave. Bubbles expand, stabilize and finally collapse violently, creating stone-damaging secondary shock waves and microjets. Bubble collapse can be intensified by sending a second shock wave a few hundred microseconds after the first. A novel method of generating two piezoelectrically generated shock waves with an adjustable time delay between 50 and 950 µs is described and tested. The objective is to enhance cavitation-induced damage to kidney stones during ESWL in order to reduce treatment time. In vitro kidney stone model fragmentation efficiency and pressure measurements were compared with those for a standard ESWL system. Results indicate that fragmentation efficiency was significantly enhanced at a shock wave delay of about 400 and 250 µs using rectangular and spherical stone phantoms, respectively. The system presented here could be installed in clinical devices at relatively low cost, without the need for a second shock wave generator.

  13. Kaplan turbine tip vortex cavitation - analysis and prevention

    Science.gov (United States)

    Motycak, L.; Skotak, A.; Kupcik, R.

    2012-11-01

    The work is focused on one type of Kaplan turbine runner cavitation - a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  14. Effects of Rare Earth Metal addition on the cavitation erosion-corrosion resistance of super duplex stainless steels

    Science.gov (United States)

    Shim, Sung-Ik; Park, Yong-Soo; Kim, Soon-Tae; Song, Chi-Bok

    2002-05-01

    Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0.4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

  15. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  16. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  17. Numerical analysis of the texture effect on the hydrodynamic performance of a mechanical seal

    Science.gov (United States)

    Adjemout, M.; Brunetiere, N.; Bouyer, J.

    2016-03-01

    The purpose of this paper is to analyze the effect of the main geometrical characteristics of texture on the hydrodynamic lubrication of a mechanical seal. A parametric study was carried out in order to improve the performance of a mechanical seal. The numerical model used in this study solves the Reynolds equation coupled with a mass conservative model which takes into account the cavitation phenomenon. It is shown that among the six dimple shapes tested herein, namely cylinder, square, triangle, truncated cone, truncated pyramid, and spherical cap, the triangular dimples placed symmetrically with respect to their bases are more effective for enhancing the hydrodynamic performance of the mechanical seal. The effect of the area and depth ratios is studied and optimized as well. The optimized solution is able to minimize friction and leakage under a range of operating conditions.

  18. Cavitation occurrence around ultrasonic dental scalers

    OpenAIRE

    Felver, Bernhard; King, David C; Lea, Simon C; Price, Gareth J; Damien Walmsley, A

    2009-01-01

    Ultrasonic scalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the scaler. The vibratory motion of three designs of scaler tip in a water bath has been characterised by laser vibrometry, and compared with the spatial distribution of cavitation around the scaler tips observed using sonochemiluminescence from a luminol solution. The type of cavitation was confirmed by a...

  19. The inertial properties of pulsing interflow area of counterflow hydrodynamic radiator

    Directory of Open Access Journals (Sweden)

    Тetyana V. Makarova

    2015-12-01

    Full Text Available The jet hydrodynamic radiators (HDR are the devices where part of kinetic energy of flooded jet is transformed to pulsations of internal interflow area and flow shell fluctuations. The sound generation process in HDR is involved with its constructional features. Aim: The aim of this work is to study the inertial properties of the HDR pulsating interflow area taking into account its geometric singularities. Materials and Methods: It was proposed to study the pulsating area using the simplified sphere model of pulsating cavitating area of the counterflow type jet hydrodynamic radiator. This radiator can be implemented in two modifications: taking into account the volume that occupies by jet from the nozzle with and without accounting of it. Results: The characteristic dimensions and spatial restrictions are determined for the mentioned modifications based on the research results. The own mass, apparent mass and total mass of pulsating area (pulsator were determined. The dependencies of the corresponding mass relations versus pulsator radius were obtained. Conclusions: It was shown that specifically apparent mass has dominance in total one and it is almost 6 times greater than pulsator own mass. The consideration of the central axial passage occupied by jet out of muzzle increases the contribution of apparent mass to total mass. The influence of apparent mass intensifies under increase of the gas content of dual-phase environment, i.e. under cavitation propagation. The total masses of pulsating area are nearest one to another in various models modifications due to cancellation effect of two factors - increase of pulsator apparent mass and decrease of its own mass under comparatively low sphere volume.

  20. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  1. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra

    Science.gov (United States)

    López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.

    2017-07-01

    There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.

  2. The role of cavitation in liposome formation.

    Science.gov (United States)

    Richardson, Eric S; Pitt, William G; Woodbury, Dixon J

    2007-12-15

    Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decrease in liposome size. Aqueous lipid suspensions surrounding a hydrophone were exposed to various intensities of ultrasound and hydrostatic pressures before measuring their size distribution with dynamic light scattering. As expected, increasing ultrasound intensity at atmospheric pressure decreased the average liposome diameter. The presence of collapse cavitation was manifested in the acoustic spectrum at high ultrasonic intensities. Increasing hydrostatic pressure was shown to inhibit the presence of collapse cavitation. Collapse cavitation, however, did not correlate with decreases in liposome size, as changes in size still occurred when collapse cavitation was inhibited either by lowering ultrasound intensity or by increasing static pressure. We propose a mechanism whereby stable cavitation, another type of cavitation present in sound fields, causes fluid shearing of liposomes and reduction of liposome size. A mathematical model was developed based on the Rayleigh-Plesset equation of bubble dynamics and principles of acoustic microstreaming to estimate the shear field magnitude around an oscillating bubble. This model predicts the ultrasound intensities and pressures needed to create shear fields sufficient to cause liposome size change, and correlates well with our experimental data.

  3. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    Directory of Open Access Journals (Sweden)

    Kwang-Jun Paik

    2013-12-01

    Full Text Available Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT. The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  4. Actual status of sodium cavitation studies in Japan

    International Nuclear Information System (INIS)

    Yamamoto, K.; Kamiyama, S.; Hashimoto, H.; Mochizuki, K.; Nakai, Y.; Ishibashi, E.; Tamaoki, T.

    1976-01-01

    A cavitation test has been conducted on some components of the fast experimental reactor JOYO. Design is in progress for the fast proto-type reactor MONJU. Deliberate consideration has been taken against cavitation as this reactor will be operated under severer service conditions than that of JOYO. A cavitation test of entrance nozzles of MONJU fuel subassemblies was performed in water. In order to obtain design data a program of cavitation tests is planned

  5. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

    International Nuclear Information System (INIS)

    Mao Mao; Ghosal, Sandip; Hu Guohui

    2013-01-01

    Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. The results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current–voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations. (paper)

  6. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    International Nuclear Information System (INIS)

    Kopechek, Jonathan A; Porter, Tyrone M; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I; McDannold, Nathan J

    2014-01-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could

  7. A Calculation of hydrodynamic noise of control valve on instrumentation and control system using smart plant

    International Nuclear Information System (INIS)

    Demon Handoyo; Djoko H Nugroho

    2012-01-01

    It has been calculated characteristics of the control valve Instrumentation and Control Systems using Smart Plant software. This calculation is done in order to control the valve that will be installed as part of the instrumentation and control systems to provide the performance according to the design. The characteristics that have been calculated are Reynolds number factors which are related to the flow regime in the valve. Critical pressure factor, Valve Hydrodynamic cavitation and noise index. In this paper the discussion will be limited to matters relating to Hydrodynamic noise generation process using model of the instrumentation and control system in the plant design in yellow cake PIPKPP activities in 2012. The results of the calculation of the noise on the valves design are in the range between 9.58~70.1 dBA. (author)

  8. Some observations of tip-vortex cavitation

    Science.gov (United States)

    Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.

    1991-08-01

    Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

  9. JPRS Report, Science & Technology, USSR: Chemistry.

    Science.gov (United States)

    1988-07-06

    During Hydrodynamic Cavitation [A. V. Yefimov, G.A. Vorobyev; ZHURNAL FIZICHESKOY KHIMII No 1, Jan 88] 7 COMBUSTION AND EXPLOSIVES Suppression of...RSR", 1988 12770 Microhits and Luminescent Flashes During Hydrodynamic Cavitation 18410249b Moscow ZHURNAL FIZICHESKOY KHIMII in Russian Vol 62, No...monitor the occurrence of hydrodynamic cavitation and make an online estimate of its erosion activity by using devices based on photomultiplier tubes

  10. Characterization of Underwater Sounds Produced by Trailing Suction Hopper Dredges During Sand Mining and Pump-out Operations

    Science.gov (United States)

    2014-03-01

    machinery itself, such as winches, generators, thrusters and particularly propeller-induced cavitation ; and 5) sounds associated with the off-loading of...dredges were working concurrently. This is not surprising, given that cavitation (propeller noise) contributed the most to the overall sound field. If...in Cook Inlet, Alaska (an area known for high hydrodynamic flow conditions). Their RLs ranged from 95- 120 dB at eight locations. Highest RLs were

  11. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle, whereas frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. © 2017 John Wiley & Sons Ltd.

  12. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  13. Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Daniele Bani, MD

    2013-09-01

    Conclusions: This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.

  14. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    Science.gov (United States)

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the

  15. Measuring Cavitation with Synchrotron X-Rays

    Science.gov (United States)

    Duke, Daniel; Kastengren, Alan; Powell, Chris; X-Ray Fuel Spray Group, Energy Systems Division Team

    2012-11-01

    Cavitation plays an important role in the formation of sprays from small nozzles such as those found in fuel injection systems. A sharp-edged inlet from the sac into the nozzle of a diesel fuel injector is shown to inititate a strong sheet-like cavitation along the boundary layer of the nozzle throat, which is difficult to measure and can lead to acoustic damage. To investigate this phenomenon, a diagnostic technique capable of mapping the density field of the nozzle through regions of intense cavitation is required. Available visible-light techniques are limited to qualitative observations of the outer extent of cavitation zones. However, brilliant X-rays from a synchrotron source have negligible refraction and are capable of penetrating the full extent of cavitation zones. We present the early results of a novel application of line-of-sight, time-resolved X-ray radiography on a cavitating model nozzle. Experiments were conducted at Sector 7-BM of the Advanced Photon Source. Density and vapor distribution are measured from the quantitative absorption of monochromatic X-rays. The density field can then be tomographically reconstructed from the projections. The density is then validated against a range of compressible and incompressible numerical simulations. This research was performed at the 7-BM beamline of the Advanced Photon Source. We acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and the DOE Vehicle Technologies Program (DOE-EERE).

  16. Drag Reducing and Cavitation Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economic and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).

  17. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells.

    Science.gov (United States)

    Urbina, Adriana; Godoy-Silva, Ruben; Hoyos, Mauricio; Camacho, Marcela

    2016-05-01

    Though blood bank processing traditionally employs centrifugation, new separation techniques may be appealing for large scale processes. Split-flow fractionation (SPLITT) is a family of techniques that separates in absence of labelling and uses very low flow rates and force fields, and is therefore expected to minimize cell damage. However, the hydrodynamic stress and possible consequent damaging effects of SPLITT fractionation have not been yet examined. The aim of this study was to investigate the hydrodynamic damage of SPLITT fractionation to human red blood cells, and to compare these effects with those induced by centrifugation. Peripheral whole blood samples were collected from healthy volunteers. Samples were diluted in a buffered saline solution, and were exposed to SPLITT fractionation (flow rates 1-10 ml/min) or centrifugation (100-1500 g) for 10 min. Cell viability, shape, diameter, mean corpuscular hemoglobin, and membrane potential were measured. Under the operating conditions employed, both SPLITT and centrifugation maintained cell viability above 98%, but resulted in significant sublethal damage, including echinocyte formation, decreased cell diameter, decreased mean corpuscular hemoglobin, and membrane hyperpolarization which was inhibited by EGTA. Wall shear stress and maximum energy dissipation rate showed significant correlation with lethal and sublethal damage. Our data do not support the assumption that SPLITT fractionation induces very low shear stress and is innocuous to cell function. Some changes in SPLITT channel design are suggested to minimize cell damage. Measurement of membrane potential and cell diameter could provide a new, reliable and convenient basis for evaluation of hydrodynamic effects on different cell models, allowing identification of optimal operating conditions on different scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rapid development of pulmonary cavitation as manifestation of a candida species

    International Nuclear Information System (INIS)

    Rix, E.; Bickel, R.H.; Baldauf, G.

    1987-01-01

    The roentgenologic pattern of the pulmonary manifestation of candida species, resulting in a rapid development of pulmonary cavitations with mycetoma-like structures, was described in three patients. All patients, undergoing antineoplastic chemotherapy because of acute leukemia, presented with fever and expectoration, which were resistant to various antibiotic regimes. Cultures of blood and urine were sterile; but Torulopsis glabrata, a candida species, was found in multiple cultures of the sputum of all patients and also in a bronchoscopic lavage obtained from one patient after reconstitution of the granulopoesis. The roetgenologic appearance of the infiltrates was accompanied by a rise of the Ig-M immunoglobulins against candida. Following intravenous treatment with amphotericin B a reduction of the cavitation and of the infiltrates to small residues was observed. Simultaneously the body temperature and the sputum became normal and a fall in the immunoglobulin titers was found. The diagnostic problems of pulmonary cavitation and especially of pulmonary mycosis in immuosuppressed and therapy-induced granulocytopenic and thrombocytopenic patients with acute leukemia were discussed. (orig./MG) [de

  19. Dynamic analysis on cavitation and embolization in vascular plants under tension

    Science.gov (United States)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin; Lee, Sang Joon

    2014-11-01

    Plants can transport sap water from the soil to the tip of their leaves using the tensile forces created by leaf transpiration without any mechanical pumps. However, the high tension adversely induces a thermodynamically metastable state in sap water with negative pressure and gas bubbles are prone to be formed in xylem vessels. Cavitation easily breaks down continuous water columns and grows into embolization, which limits water transport through xylem vessels. Meanwhile, the repair process of embolization is closely related to water management and regulation of sap flow in plants. In this study, the cavitation and embolization phenomena of liquid water in vascular plants and a physical model system are experimentally and theoretically investigated in detail under in vivo and in vitro conditions. This study will not only shed light on the understanding of these multiphase flows under tension but also provide a clue to solve cavitation problems in micro-scale conduits and microfluidic network systems. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  20. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    Science.gov (United States)

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  1. Comparison of Different Mathematical Models of Cavitation

    Directory of Open Access Journals (Sweden)

    Dorota HOMA

    2014-12-01

    Full Text Available Cavitation occurs during the flow when local pressure drops to the saturation pressure according to the temperature of the flow. It includes both evaporation and condensation of the vapor bubbles, which occur alternately with high frequency. Cavitation can be very dangerous, especially for pumps, because it leads to break of flow continuity, noise, vibration, erosion of blades and change in pump’s characteristics. Therefore it is very important for pump designers and users to avoid working in cavitation conditions. Simulation of flow can be very useful in that and can indicate if there is risk of cavitating flow occurrence. As this is a multiphase flow and quite complicated phenomena, there are a few mathematical models describing it. The aim of this paper is to make a short review of them and describe their approach to model cavitation. It is desirable to know differences between them to model this phenomenon properly.

  2. Kaplan turbine tip vortex cavitation – analysis and prevention

    International Nuclear Information System (INIS)

    Motycak, L; Skotak, A; Kupcik, R

    2012-01-01

    The work is focused on one type of Kaplan turbine runner cavitation – a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  3. Effects of cavitation on performance of automotive torque converter

    Directory of Open Access Journals (Sweden)

    Jaewon Ju

    2016-06-01

    Full Text Available Cavitation is a phenomenon whereby vapor bubbles of a flowing liquid are formed in a local region where the pressure of the liquid is below its vapor pressure. It is well known that cavitation in torque converters occurs frequently when a car with an automatic transmission makes an abrupt start. Cavitation is closely related to a performance drop and noise generation at a specific operating condition in a car and a torque converter itself. This study addressed the relation between cavitation and performance in an automotive torque converter in a quantitative and qualitative manner using numerical simulations. The cavitation was calculated at various operating conditions using a commercial flow solver with the homogeneous cavitation model, and the torque converter performance was compared with the experimental data. Numerical results well match to the data and indicate that the cavitation causes significant performance drop, as the pump speed increases or both speed ratio and reference pressure decrease.

  4. Contributions to some cavitation problems in turbomachinery

    OpenAIRE

    Arakeri, VH

    1999-01-01

    In the present article, three problems associated with cavitation in turbomachinery are discussed. The first one deals with the potential application of recent understanding in cavitation inception to similar problems in turbomachinery. The second considers the thermodynamic effects in developed cavitation. This has relevance to turbopump operation using fluids other than water. Old correlations to predict the above effect are summarized and a new correlation is proposed. Lastly, the possible...

  5. CFD analysis of unsteady cavitation phenomena in multistage pump with inducer

    Czech Academy of Sciences Publication Activity Database

    Sedlář, M.; Zima, Patrik; Bajorek, M.; Krátký, T.

    2012-01-01

    Roč. 15, č. 6 (2012), s. 1-8 ISSN 1755-1315. [IAHR Symposium on Hydraulic Machinery and Systems /26./. Beijing, 19.08.2012-23.08.2012] R&D Projects: GA ČR GAP101/10/1428 Institutional research plan: CEZ:AV0Z20760514 Keywords : cavitating flow * CFD analysis * erosion risk Subject RIV: BK - Fluid Dynamics http://iopscience.iop.org/1755-1315/15/6/062024

  6. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization

    International Nuclear Information System (INIS)

    Crake, Calum; Victor, Marie de Saint; Owen, Joshua; Coviello, Christian; Collin, Jamie; Coussios, Constantin-C; Stride, Eleanor

    2015-01-01

    Magnetic targeting of microbubbles functionalized with superparamagnetic nanoparticles has been demonstrated previously for diagnostic (B-mode) ultrasound imaging and shown to enhance gene delivery in vitro and in vivo. In the present work, passive acoustic mapping (PAM) was used to investigate the potential of magnetic microbubbles for localizing and enhancing cavitation activity under focused ultrasound. Suspensions of magnetic microbubbles consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), air and 10 nm diameter iron oxide nanoparticles were injected into a tissue mimicking phantom at different flow velocities (from 0 to 50 mm s −1 ) with or without an applied magnetic field. Microbubbles were excited using a 500 kHz single element focused transducer at peak negative focal pressures of 0.1–1.0 MPa, while a 64 channel imaging array passively recorded their acoustic emissions. Magnetic localization of microbubble-induced cavitation activity was successfully achieved and could be resolved using PAM as a shift in the spatial distribution and increases in the intensity and sustainability of cavitation activity under the influence of a magnetic field. Under flow conditions at shear rates of up to 100 s −1 targeting efficacy was maintained. Application of a magnetic field was shown to consistently increase the energy of cavitation emissions by a factor of 2–5 times over the duration of exposures compared to the case without targeting, which was approximately equivalent to doubling the injected microbubble dose. These results suggest that magnetic targeting could be used to localize and increase the concentration of microbubbles and hence cavitation activity for a given systemic dose of microbubbles or ultrasound intensity. (paper)

  7. International symposium on cavitation and multiphase flow noise - 1986

    International Nuclear Information System (INIS)

    Arndt, R.E.A.; Billet, M.L.; Blake, W.K.

    1986-01-01

    This book presents the papers given at a symposium on multiphase flow and cavitation. Topics considered at the conference included the development of a cavitation-free sodium pump for a breeder reactor, the stochastic behavior (randomness) of acoustic pressure pulses in the near-subcavitating range, cavitation monitoring of two axial-flow hydroturbines, and noise generated by cavitation in orifice plates with some gaseous effects

  8. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    International Nuclear Information System (INIS)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun

    2015-01-01

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  9. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun, E-mail: yanhj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China)

    2015-04-15

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  10. Controlling cavitation-based image contrast in focused ultrasound histotripsy surgery.

    Science.gov (United States)

    Allen, Steven P; Hall, Timothy L; Cain, Charles A; Hernandez-Garcia, Luis

    2015-01-01

    To develop MRI feedback for cavitation-based, focused ultrasound, tissue erosion surgery (histotripsy), we investigate image contrast generated by transient cavitation events. Changes in GRE image intensity are observed while balanced pairs of field gradients are varied in the presence of an acoustically driven cavitation event. The amplitude of the acoustic pulse and the timing between a cavitation event and the start of these gradient waveforms are also varied. The magnitudes and phases of the cavitation site are compared with those of control images. An echo-planar sequence is used to evaluate histotripsy lesions in ex vivo tissue. Cavitation events in water cause localized attenuation when acoustic pulses exceed a pressure threshold. Attenuation increases with increasing gradient amplitude and gradient lobe separation times and is isotropic with gradient direction. This attenuation also depends upon the relative timing between the cavitation event and the start of the balanced gradients. These factors can be used to control the appearance of attenuation while imaging ex vivo tissue. By controlling the timing between cavitation events and the imaging gradients, MR images can be made alternately sensitive or insensitive to cavitation. During therapy, these images can be used to isolate contrast generated by cavitation. © 2014 Wiley Periodicals, Inc.

  11. Cavitation propagation in water under tension

    Science.gov (United States)

    Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team

    2012-11-01

    Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.

  12. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.

    Science.gov (United States)

    Viallon, Magalie; Terraz, Sylvain; Roland, Joerg; Dumont, Erik; Becker, Christoph D; Salomir, Rares

    2010-04-01

    MR thermometry based on the proton resonance frequency shift (PRFS) is the most commonly used method for the monitoring of thermal therapies. As the chemical shift of water protons is temperature dependent, the local temperature variation (relative to an initial baseline) may be calculated from time-dependent phase changes in gradient-echo (GRE) MR images. Dynamic phase shift in GRE images is also produced by time-dependent changes in the magnetic bulk susceptibility of tissue. Gas bubbles (known as "white cavitation") are frequently visualized near the RF electrode in ultrasonography-guided radio frequency ablation (RFA). This study aimed to investigate RFA-induced cavitation's effects by using simultaneous ultrasonography and MRI, to both visualize the cavitation and quantify the subsequent magnetic susceptibility-mediated errors in concurrent PRFS MR-thermometry (MRT) as well as to propose a first-order correction for the latter errors. RF heating in saline gels and in ex vivo tissues was performed with MR-compatible bipolar and monopolar electrodes inside a 1.5 T MR clinical scanner. Ultrasonography simultaneous to PRFS MRT was achieved using a MR-compatible phased-array ultrasonic transducer. PRFS MRT was performed interleaved in three orthogonal planes and compared to measurements from fluoroptic sensors, under low and, respectively, high RFA power levels. Control experiments were performed to isolate the main source of errors in standard PRFS thermometry. Ultrasonography, MRI and digital camera pictures clearly demonstrated generation of bubbles every time when operating the radio frequency equipment at therapeutic powers (> or = 30 W). Simultaneous bimodal (ultrasonography and MRI) monitoring of high power RF heating demonstrated a correlation between the onset of the PRFS-thermometry errors and the appearance of bubbles around the applicator. In an ex vivo study using a bipolar RF electrode under low power level (5 W), the MR measured temperature curves

  13. VULNERABILITY TO CAVITATION IN GRAPEVINES HAS BEEN OVERESTIMATED BY THE CENTRIFUGE TECHNIQUE

    Science.gov (United States)

    Grapevines are considered among the most vulnerable woody plant species to water stress-induced cavitation with embolism forming at slight tensions. However, we found that native embolism in stems of field grown Vitis vinifera cv. Chardonnay never exceeded 30% despite xylem water potentials ('x) rea...

  14. Assessment of non-cavitated and cavitated carious lesions among 12- to 15-year-old government and private school children in Pune, Maharashtra, India.

    Science.gov (United States)

    Machale, Priyanka S; Hegde-Shetiya, Sahana; Shirahatti, Ravi; Agarwal, Deept

    2014-01-01

    The present cross-sectional study was conducted to assess and compare the mean number of non-cavitated (initial lesions, IL) and cavitated carious lesions (WHO criteria) per child in the permanent dentition and to correlate it with the plaque index among 12- to 15-year-old government and private school children. 481 schoolchildren aged 12-15 years were selected randomly by multistage random sampling from two government and two private schools. Demographic details were collected at the time of examination. Baseline plaque scores were recorded using the Silness and Löe plaque index. Immediately after brushing and drying the teeth, cavitated lesions were recorded based on WHO recommendations and non-cavitated lesions were recorded using the IL criteria of Nyvad et al and Fyffe et al. The mean number of surfaces with cavitated and non-cavitated lesions for government school children was 2.13 ± 2.98 and 3.21 ± 2.97, respectively, and 1.24 ± 1.86 and 3.08 ± 2.33 for private school children, respectively. WHO + IL surfaces among private school children were 4.33 ± 3.48 and in government school children 5.35 ± 4.45. There was a positive correlation of plaque score with IL (r = 0.63) and WHO+IL (r = 0.73). Non-cavitated lesions are about twice as common as cavitated carious lesions in school children. Government school children had a higher number of cavitated and non-cavitated carious lesions when compared with private school children.

  15. Introductory Remarks for ISROMAC-9 Panel on Inducer Design Criteria

    Science.gov (United States)

    Zoladz, Tom; Turner, Jim (Technical Monitor)

    2002-01-01

    The Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP) inducer cavitation study was initiated in the mid 1990s to support high synchronous vibrations. A Fastrac 60K Engine Oxygen Turbopump inducer cavitation study was started around the same time to support a blade deformation investigation. Super-synchronous rotating, attached synchronous, and pronounced subsynchronous flow oscillations were evident. Current thrusts in experimental work include characterization of loads induced by the various forms of cavitation inducted stabilities and measurements of cavitating turbopump dynamic transfer functions.

  16. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    Energy Technology Data Exchange (ETDEWEB)

    Örley, F., E-mail: felix.oerley@aer.mw.tum.de; Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Hickel, S. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Chair of Computational Aerodynamics, Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2015-08-15

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  17. RANS computations of tip vortex cavitation

    Science.gov (United States)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  18. Promotion of Cultural Heritage in Batangas and Cavite

    Directory of Open Access Journals (Sweden)

    Dr. Dexter R. Buted

    2014-06-01

    Full Text Available – The study aimed to identify the commonly visited cultural heritage sites in Batangas and Cavite; to assess the cultural heritage sites in Batangas and Cavite in terms of physical, social and economic aspects; and to determine existing promotional patterns of Batangas and Cavite. Descriptive type of research was utilized in the study. Results showed that the most visited cultural heritage attraction in Taal, Batangas was Basilica of St. Martin de Tours while in Maragondon, Cavite the most visited was Andres Bonifacio Trial House . Blogs, Websites and Facebook are mostly used by the municipality of Taal in promoting their cultural heritage sites. While Cavite sticks to always using leaflets/flyers, brochures as their promotional materials. Cultural heritage sites in both Taal and Maragondon were perceived to have positive results in the assessments based on different aspects such as physical, social and economic aspects. The promotional materials of Taal and Maragondon are often used. A proposed plan of action was made to promote cultural attraction in Maragondon, Cavite and Taal, Batangas.

  19. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations

    Science.gov (United States)

    2015-05-01

    vapor bubbles may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting factor for ship propeller design. Phase...van der Waals theory with hydrodynamics [39]. The fluid equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equations... cavitating flows, the liquid- vapor phase transition induced by pressure variations. A potential challenge for such a simulation is a proper design of open

  20. Building a Virtual Model of a Baleen Whale: Phase 2

    Science.gov (United States)

    2012-09-30

    skiff. This allows us to tow the whale tail-first without hydrodynamic “porpoising” or spinning, etc., and, very importantly, without involving...peduncle. This part of the process helps to preclude any unmanageable hydrodynamic effects from allowing the pectoral fins to trail freely in the...and shear stresses, dissipated energy and heating effects, excessive strains or displacements due to resonance, potential to induce cavitation , and