WorldWideScience

Sample records for hydrocephalic brain dysfunction

  1. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    DEFF Research Database (Denmark)

    Skjolding, Anders Daehli; Holst, Anders Vedel; Broholm, Helle

    2013-01-01

    in human hydrocephalic cortex relative to controls was quantified by western blotting (n=28). A second biopsy (n=13) was processed for immunohistochemistry (GFAP, CD68, CD34 and aquaporin-4) and double immunofluorescence (aquaporin-4+GFAP and aquaporin-4+CD34). Brain tissue from human controls and kaolin...

  2. Sepsis-induced brain dysfunction.

    Science.gov (United States)

    Adam, Nicolas; Kandelman, Stanislas; Mantz, Jean; Chrétien, Fabrice; Sharshar, Tarek

    2013-02-01

    Systemic infection is often revealed by or associated with brain dysfunction, which is characterized by alteration of consciousness, ranging from delirium to coma, seizure or focal neurological signs. Its pathophysiology involves an ischemic process, secondary to impairment of cerebral perfusion and its determinants and a neuroinflammatory process that includes endothelial activation, alteration of the blood-brain barrier and passage of neurotoxic mediators. Microcirculatory dysfunction is common to these two processes. This brain dysfunction is associated with increased mortality, morbidity and long-term cognitive disability. Its diagnosis relies essentially on neurological examination that can lead to specific investigations, including electrophysiological testing or neuroimaging. In practice, cerebrospinal fluid analysis is indisputably required when meningitis is suspected. Hepatic, uremic or respiratory encephalopathy, metabolic disturbances, drug overdose, sedative or opioid withdrawal, alcohol withdrawal delirium or Wernicke's encephalopathy are the main differential diagnoses. Currently, treatment consists mainly of controlling sepsis. The effects of insulin therapy and steroids need to be assessed. Various drugs acting on sepsis-induced blood-brain barrier dysfunction, brain oxidative stress and inflammation have been tested in septic animals but not yet in patients.

  3. Positional moulding in premature hydrocephalics.

    Directory of Open Access Journals (Sweden)

    Kumar R

    2002-04-01

    Full Text Available Seven premature hydrocephalics presenting with lambdoid positional moulding (LPM were reviewed. All were treated for hydrocephalus secondary to aqueductal stenosis, Dandy Walker Syndrome and infection. Parenchymal hemorrhage, intraventricular bleed, cortical atrophy, septal agenesis, cortical anomalies and subdural hygroma were the other common associations. These children did not show expected improvement in their higher mental functions at 6 months to 5.4 years of follow-up, following the management of hydrocephalus. It was not the LPM but associated intracranial anomalies, which were most probably responsible for their poor outcome. The differentiation from posterior plagiocephaly is also highlighted.

  4. Alterations in Cortical Thickness and White Matter Integrity in Mild-to-Moderate Communicating Hydrocephalic School-Aged Children Measured by Whole-Brain Cortical Thickness Mapping and DTI

    Science.gov (United States)

    Ye, Xinjian; Bai, Guanghui; Fu, Yuchuan; Mao, Chuanwan; Wu, Aiqin

    2017-01-01

    Follow-up observation is required for mild-to-moderate hydrocephalic patients because of the potential damage to brain. However, effects of mild-to-moderate hydrocephalus on gray and white matter remain unclear in vivo. Using structural MRI and diffusion tensor imaging (DTI), current study compared the cortical thickness and white matter integrity between children with mild-to-moderate communicating hydrocephalus and healthy controls. The relationships between cortical changes and intelligence quota were also examined in patients. We found that cortical thickness in the left middle temporal and left rostral middle frontal gyrus was significantly lower in the hydrocephalus group compared with that of controls. Fractional anisotropy in the right corpus callosum body was significantly lower in the hydrocephalus group compared with that of controls. In addition, there was no association of cortical thinning or white matter fractional anisotropy with intelligence quota in either group. Thus, our findings provide clues to that mild-to-moderate hydrocephalus could lead to structural brain deficits especially in the middle temporal and middle frontal gyrus prior to the behavior changes.

  5. Animal models of brain dysfunction in phenylketonuria

    NARCIS (Netherlands)

    Martynyuk, A. E.; van Spronsen, F. J.; Van der Zee, E. A.

    2010-01-01

    Phenylketonuria (PKU) is a metabolic disorder that results in significant brain dysfunction if untreated. Although phenylalanine restricted diets instituted at birth have clearly improved PKU outcomes, neuropsychological deficits and neurological changes still represent substantial problems. The spe

  6. New Diagnostic Terminology for Minimal Brain Dysfunction.

    Science.gov (United States)

    Shaywitz, Bennett A.; And Others

    1979-01-01

    Minimal brain dysfunction has been redefined by the American Psychological Association as attention deficit disorder (ADD) and subdivided into categories with and without hyperactivity. The revised 'Diagnostic and Statistical Manual' (DSM III) is now undergoing field trials. Journal Availability: C. V. Mosby Company, 11830 Westline Industrial…

  7. The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats

    Directory of Open Access Journals (Sweden)

    Olopade Funmilayo

    2012-09-01

    Full Text Available Abstract Background The motor and cognitive deficits observed in hydrocephalus are thought to be due to axonal damage within the periventricular white matter. This study was carried out to investigate the relationship between ventricular size, cellular changes in brain, and neurobehavioural deficits in rats with experimental hydrocephalus. Methods Hydrocephalus was induced in three-week old rats by intracisternal injection of kaolin. Behavioural and motor function were tested four weeks after hydrocephalus induction and correlated to ventricular enlargement which was classified into mild, moderate or severe. Gross brain morphology, routine histology and immunohistochemistry for oligodendrocytes (CNPase, microglia (Iba-1 and astrocytes (GFAP were performed to assess the cellular changes. Results Decreases in open field activity and forelimb grip strength in hydrocephalus correlated with the degree of ventriculomegaly. Learning in Morris water maze was significantly impaired in hydrocephalic rats. Gradual stretching of the ependymal layer, thinning of the corpus callosum, extracellular oedema and reduced cortical thickness were observed as the degree of ventriculomegaly increased. A gradual loss of oligodendrocytes in the corpus callosum and cerebral cortex was most marked in the severely-hydrocephalic brains, whereas the widespread astrogliosis especially in the subependymal layer was most marked in the brains with mild hydrocephalus. Retraction of microglial processes and increase in Iba-1 immunoreactivity in the white matter was associated ventriculomegaly. Conclusions In hydrocephalic rats, oligodendrocyte loss, microglia activation, astrogliosis in cortical areas and thinning of the corpus callosum were associated with ventriculomegaly. The degree of ventriculomegaly correlated with motor and cognitive deficits.

  8. Dysfunction of brain pericytes in chronic neuroinflammation.

    Science.gov (United States)

    Persidsky, Yuri; Hill, Jeremy; Zhang, Ming; Dykstra, Holly; Winfield, Malika; Reichenbach, Nancy L; Potula, Raghava; Mukherjee, Abir; Ramirez, Servio H; Rom, Slava

    2016-04-01

    Brain pericytes are uniquely positioned within the neurovascular unit to provide support to blood brain barrier (BBB) maintenance. Neurologic conditions, such as HIV-1-associated neurocognitive disorder, are associated with BBB compromise due to chronic inflammation. Little is known about pericyte dysfunction during HIV-1 infection. We found decreased expression of pericyte markers in human brains from HIV-1-infected patients (even those on antiretroviral therapy). Using primary human brain pericytes, we assessed expression of pericyte markers (α1-integrin, α-smooth muscle actin, platelet-derived growth factor-B receptor β, CX-43) and found their downregulation after treatment with tumor necrosis factor-α (TNFα) or interleukin-1 β (IL-1β). Pericyte exposure to virus or cytokines resulted in decreased secretion of factors promoting BBB formation (angiopoietin-1, transforming growth factor-β1) and mRNA for basement membrane components. TNFα and IL-1β enhanced expression of adhesion molecules in pericytes paralleling increased monocyte adhesion to pericytes. Monocyte migration across BBB models composed of human brain endothelial cells and pericytes demonstrated a diminished rate in baseline migration compared to constructs composed only of brain endothelial cells. However, exposure to the relevant chemokine, CCL2, enhanced the magnitude of monocyte migration when compared to BBB models composed of brain endothelial cells only. These data suggest an important role of pericytes in BBB regulation in neuroinflammation.

  9. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    Science.gov (United States)

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.

  10. Hypothalamic dysfunction following whole-brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-10-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage.

  11. Study of corpus callosum in experimental hydrocephalic wistar rats

    Directory of Open Access Journals (Sweden)

    Lopes Luiza da Silva

    2003-01-01

    Full Text Available PURPOSE: Hydrocephalus causes countless cerebral damages, especially on the structures around the ventricles. Hydrocephalic children present deficiencies in the nonverbal skills more than in the verbal skills, and not always revertible with an early treatment. As the corpus callosum has an important role in the nonverbal acquisition it is possible that the injuries in this structure are responsible for the cognitive dysfunctions of these children. This present study tries to establish the alterations caused by hydrocephalus on the corpus callosum of developing Wistar rats, induced by intracisternal injection of kaolin. METHODS : Seven, fourteen and twenty one days after the injection, the animals were killed, and the corpus callosum was dissected and prepared for the study of the axonal fibers. RESULTS AND CONCLUSION: The seven-day old rats in hydrocephalus development presented a delay in myelination in relation to the control rats. With the fourteen-day old rats in hydrocephalus development the corpus callosum showed a recovery of myelin, but with the twenty one-day old rats in hydrocephalus development the axonal fibers were damaged and reduced in number.

  12. Post-Operative Complications of Ventriculoperitoneal Shunt in Hydrocephalic Pediatric Patients-Nursing Care

    Directory of Open Access Journals (Sweden)

    Efstratios Athanasakis

    2011-01-01

    Full Text Available Introduction: Hydrocephalus is the most common congenital abnormality of the central nervous system ininfants. Many cases of hydrocephalic children are described since ancient times. It is characterized by excessiveaccumulation of cerebrospinal fluid in the ventricles of the brain. Its symptomatology during infanthood or earlychildhood is characterized by swelling of the head, protrusion of the forehead and brain atrophy. All thesesymptoms appear due to increased cerebrospinal fluid volume, increased intracranial pressure and dilatation ofthe ventricular walls.Aim: The aim of this paper is to describe the ventriculoperitoneal shunt complications in pediatrics patients andto point out the role of nursing stuff in the prevention of them.Methods: This include literature search on the database Medline and relevant with that issue internationalhydrocephalus organizations to identify studies regarding the complications of ventriculoperitoneal shunt and thenursing care for each complication.Results: Ventriculoperitoneal shunt is the treatment of hydrocephalic infants, rather than endoscopic thirdventriculostomy. Although the success of the ventriculoperitoneal shunt’s placement, the patients usually sufferfrom its afterwards complications. The complications involves postoperative shunt infection, shunt placementfailure, shunt obstruction – malfunction, abdominal complications – peritonitis, valve complications, slitventriclesyndrome and seizures. The role of the nursing stuff is vital, particularly in the postoperative weeks.Conclusion: A proper nursing assessment includes valid identification of complications and their prompttreatment. Also, nurses had to implement accurate nursing care, in order to prevent any complication. Finally,parental teaching from the nurses is crucial in the process of health outcomes for pediatric patient.

  13. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis.

    Science.gov (United States)

    Mazeraud, Aurelien; Pascal, Quentin; Verdonk, Franck; Heming, Nicholas; Chrétien, Fabrice; Sharshar, Tarek

    2016-06-01

    Sepsis-associated encephalopathy (SAE), a complication of sepsis, is often complicated by acute and long-term brain dysfunction. SAE is associated with electroencephalogram pattern changes and abnormal neuroimaging findings. The major processes involved are neuroinflammation, circulatory dysfunction, and excitotoxicity. Neuroinflammation and microcirculatory alterations are diffuse, whereas excitotoxicity might occur in more specific structures involved in the response to stress and the control of vital functions. A dysfunction of the brainstem, amygdala, and hippocampus might account for the increased mortality, psychological disorders, and cognitive impairment. This review summarizes clinical and paraclinical features of SAE and describes its mechanisms at cellular and structural levels.

  14. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    Science.gov (United States)

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  15. Brain dysfunction in mild to moderate hypoxia.

    Science.gov (United States)

    Gibson, G E; Pulsinelli, W; Blass, J P; Duffy, T E

    1981-06-01

    Hypoxia is commonly invoked to explain alterations in mental function, particularly in patients with cardiac pulmonary failure. The effects of acute graded hypoxia or higher integrative functions are well documented experimentally in man. Hypoxia in experimental animal models demonstrates that the pathophysiology is complex. In mild to moderate hypoxia, in contrast to severe hypoxia and to ischemia, the supply of energy for the brain is not impaired; cerebral levels of adenosine triphosphate (ATP) and adenylate energy charge are normal. In contrast, the turnover of several neurotransmitters is altered by mild hypoxia. For example, acetylcholine synthesis is reduced proportionally to the reduction in carbohydrate oxidation. This relationship holds in vitro and with several in vivo models of hypoxia. Pharmacologic and physiologic studies in man and experimental animals are consistent with acetylcholine having an important role in mediating the cerebral effects of mild hypoxia. These observations raise the possibility that treatments directed to cholinergic or other central neurotransmitter systems may benefit patients with cerebral syndromes secondary to chronic hypoxia.

  16. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    Science.gov (United States)

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  17. Inflammatory bowel diseases: a dysfunction of brain-gut interactions?

    Science.gov (United States)

    Bonaz, B

    2013-09-01

    The gut has the capacity to function as an autonomous organ. However, in normal conditions, the gut and the central nervous system talk to each other through the autonomic nervous system (ANS), represented by the sympathetic (i.e. the splanchnic nerves) and the parasympathetic nervous system (i.e. the vagus nerve and the sacral parasympathetic pelvic nerves). The brain is able to integrate inputs coming from the digestive tract inside a central autonomic network organized around the hypothalamus, limbic system and cerebral cortex and in return to modify the ANS and the hypothalamic pituitary adrenal axis (HPA axis). An abnormal functioning of these brain-gut interactions has been described in irritable bowel syndrome (IBS) classically considered as a biopsychosocial model where stress plays a promoting role. Inflammatory bowel diseases (IBD) result from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host. In this article we review the current knowledge on the possible involvement of a dysfunction of brain-gut interactions in the pathogeny of IBD as represented by a dysfunction of the ANS, an abnormal HPA axis and cholinergic anti-inflammatory pathway, a deleterious effect of stress and depression as well as an abnormal coupling of the prefrontal cortex-amygdala complex and an abnormal relation between the microbiota and the brain as pro-inflammatory factors. Therapeutic approaches with the aim to restore an equilibrium of these brain-gut interactions are of interest.

  18. Monitorization of Acute Brain Dysfunction in Critical Illness

    Directory of Open Access Journals (Sweden)

    Günseli Orhun

    2016-08-01

    Full Text Available Acute brain dysfunction is a clinical condition which is commonly observed in intensive care units and exhibits neurological changes ranging from delirium to coma. Typically observed during sepsis in critical patients, this syndrome is also named as “sepsis-associated encephalopathy” and this situation is of significance since it is related to mortality, increase of morbidity and long-term cognitive impairment. Monitorization of brain functions in critically ill patients should be commenced with detailed neurological examination and effects of sedative drugs, which can alter neurological responses during evaluation, should be taken into consideration. On the other hand, brain imaging methods and electrophysiological examinations are diagnostic procedures which complement neurological examination. While computed tomography enables diagnosis of structural intracerebral lesions, magnetic resonance imaging provides important information on primary pathological mechanisms of sepsis-associated encephalopathy and structural alterations developing in the brain. Evidence of diagnosis and prognosis of acute brain dysfunction can be acquired through use of electroencephalography for. Although it was believed that neurological biomarkers can be useful in determination of diagnosis and prognosis, further studies are needed in this subject.

  19. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis.

    Science.gov (United States)

    Kim, Soo Young; Buckwalter, Marion; Soreq, Hermona; Vezzani, Annamaria; Kaufer, Daniela

    2012-11-01

    The protection of the brain from blood-borne toxins, proteins, and cells is critical to the brain's normal function. Accordingly, a compromise in the blood-brain barrier (BBB) function accompanies many neurologic disorders, and is tightly associated with brain inflammatory processes initiated by both infiltrating leukocytes from the blood, and activation of glial cells. Those inflammatory processes contribute to determining the severity and prognosis of numerous neurologic disorders, and can both cause, and result from BBB dysfunction. In this review we examine the role of BBB and inflammatory responses, in particular activation of transforming grown factor β (TGFβ) signaling, in epilepsy, stroke, and Parkinson's disease.

  20. Blood-Brain Barrier Dysfunction, TGFβ Signaling, and Astrocyte Dysfunction in Epilepsy

    Science.gov (United States)

    HEINEMANN, UWE; KAUFER, DANIELA; FRIEDMAN, ALON

    2013-01-01

    Brain insults, including traumatic and ischemic injuries, are frequently followed by acute seizures and delayed development of epilepsy. Dysfunction of the blood-brain barrier (BBB) is a hallmark of brain insults and is usually surrounding the core lesion. Recent studies from several laboratories confirmed that vascular pathology is involved in the development of epilepsy and demonstrate a key role for astroglia in this process. In this review, we focus on glia-related mechanisms linking vascular pathology, and specifically BBB dysfunction, to seizures and epilepsy. We summarize molecular and physiological experimental data demonstrating that the function of astrocytes is altered due to direct exposure to serum albumin, mediated by transforming growth factor beta signaling. We discuss the reported changes and their potential role in the observed hyperexcitability as well as potential implications of these findings for the future development of new diagnostic modalities and treatments to allow a full implementation of the gained knowledge for the benefit of patients with epilepsy. PMID:22378298

  1. BLOOD-BRAIN BARRIER DYSFUNCTION IN DISORDERS OF THE DEVELOPING BRAIN

    Directory of Open Access Journals (Sweden)

    Raffaella eMoretti

    2015-02-01

    Full Text Available ABSTRACTDisorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult.The blood brain barrier (BBB protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response.The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g. perinatal stroke, traumatic brain injury or chronic (e.g. perinatal infectious diseases actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data.

  2. Blood-brain barrier dysfunction in disorders of the developing brain

    Science.gov (United States)

    Moretti, Raffaella; Pansiot, Julien; Bettati, Donatella; Strazielle, Nathalie; Ghersi-Egea, Jean-François; Damante, Giuseppe; Fleiss, Bobbi; Titomanlio, Luigi; Gressens, Pierre

    2015-01-01

    Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data. PMID:25741233

  3. Nerve growth factor metabolic dysfunction in Down's syndrome brains.

    Science.gov (United States)

    Iulita, M Florencia; Do Carmo, Sonia; Ower, Alison K; Fortress, Ashley M; Flores Aguilar, Lisi; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge; Cuello, A Claudio

    2014-03-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in pro

  4. Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury

    Science.gov (United States)

    Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia

    2017-01-01

    Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295

  5. Cognitive dysfunction in children with brain tumors at diagnosis

    Science.gov (United States)

    Studer, Martina; Ritter, Barbara Catherine; Steinlin, Maja; Leibundgut, Kurt; Heinks, Theda

    2015-01-01

    Background Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo‐ and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1–16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient's age. Furthermore, the child and his/her parent(s) completed self‐report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy, or irradiation. Groups were comparable with regard to age, gender, and socioeconomic status. Results Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory, and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed, and verbal comprehension were preserved at the time of measurement. Conclusion Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school. Pediatr Blood Cancer 2015;62:1805–1812. © 2015 The Authors. Pediatric Blood & Cancer, published by Wiley Periodicals, Inc. PMID:26053691

  6. Molecular Mechanisms of Cognitive Dysfunction following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kendall Rae Walker

    2013-07-01

    Full Text Available Traumatic brain injury (TBI results in significant disability due to cognitive deficits particularly in attention, learning and memory and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer’s disease (AD, Parkinson’s disease (PD, Amyotrophic Lateral Sclerosis (ALS and most recently chronic traumatic encephalopathy (CTE is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  7. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong-Seok [Department of Microbiology, College of Medicine, Hallym University, 1 Okcheon-dong, Chuncheon, Gangwon-do 200-702 (Korea, Republic of); Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min [Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Park, Jeong-Ho [Department of Microbiology, College of Medicine, Hallym University, 1 Okcheon-dong, Chuncheon, Gangwon-do 200-702 (Korea, Republic of); Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Kim, Jae-Il [Department of Food Science and Nutrition, Pukyong National University, 599-1 Daeyeon-3-dong, Nam-gu, Busan 608-737 (Korea, Republic of); Carp, Richard I. [New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 (United States); Choi, Eun-Kyoung, E-mail: ekchoi@hallym.ac.kr [Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Kim, Yong-Sun, E-mail: yskim@hallym.ac.kr [Department of Microbiology, College of Medicine, Hallym University, 1 Okcheon-dong, Chuncheon, Gangwon-do 200-702 (Korea, Republic of); Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of)

    2014-05-30

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  8. Differential Effect of Amphetamine Optical Isomers on Bender Gestalt Performance of the Minimally Brain Dysfunctioned

    Science.gov (United States)

    Arnold, L. Eugene; And Others

    1978-01-01

    The differential effect of amphetamine optical isomers on Bender Gestalt performance was examined in 31 hyperkinetic minimally brain dysfunctioned children between the ages of 4 and 12 years, using a double-blind Latin-square crossover comparison. (Author)

  9. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhage are the leading causes of trauma-related mortality. Both TBI and hemorrhage are associated with coagulation disturbances, including platelet dysfunction. We hypothesized that platelet dysfunction could be detected early after injury, and that this dysfu...

  10. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice.

    Science.gov (United States)

    Choi, Hong-Seok; Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min; Park, Jeong-Ho; Kim, Jae-Il; Carp, Richard I; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-05-30

    Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the neuropathological changes associated with prion disease.

  11. Vision Therapy for Binocular Dysfunction Post Brain Injury.

    Science.gov (United States)

    Conrad, Joseph Samuel; Mitchell, G Lynn; Kulp, Marjean Taylor

    2017-01-01

    To prospectively evaluate the effectiveness of home-based computer vergence therapy for the treatment of binocular vision disorders in adults at least 3 months after an acquired brain injury. Eligibility criteria included presence of binocular dysfunction characterized by receded near point of convergence (≥6 cm break), insufficient positive fusional vergence at near (failing Sheard's criterion or computer vergence therapy. Phoria (cover test), negative fusional vergence, positive fusional vergence, near point of convergence, vergence facility, and symptoms (convergence insufficiency symptom survey [CISS]) were assessed at baseline and after 4, 8, and 12 weeks of prescribed therapy. ANOVA was used to evaluate change in each measure. Percentage successful was also determined. Nineteen participants were enrolled (mean age 45.4 ± 12.9 years); six participants were lost to follow-up. Baseline findings were orthophoria at distance, 7.2△ exophoria at near, near point of convergence break = 17.5 cm, near point of convergence recovery = 21.8 cm, negative fusional vergence = 12.3△, positive fusional vergence blur = 8.4△, vergence facility = 3.9 cycles per minute, and CISS = 32.1. ANOVA showed a statistically significant improvement for near point of convergence break (p = 0.002) and recovery (p 15△ and passing Sheard's criterion or increase of ≥10△), 77% for negative fusional vergence (≥12△ or increase of ≥6△), 62% for positive fusional vergence and near point of convergence composite, and 92% for vergence facility (15 cycles per minute or increase of 3 cycles per minute). The majority of participants who completed the study experienced meaningful improvements in signs and symptoms.

  12. Understanding international differences in terminology for delirium and other types of acute brain dysfunction in critically ill patients

    NARCIS (Netherlands)

    Morandi, A; Pandharipande, P; Trabucchi, M; Rozzini, R; Mistraletti, G; Trompeo, A C; Gregoretti, C; Gattinoni, L; Ranieri, M V; Brochard, L; Annane, D; Putensen, C; Guenther, U; Fuentes, P; Tobar, E; Anzueto, A R; Esteban, A; Skrobik, Y; Salluh, J I F; Soares, M; Granja, C; Stubhaug, A; de Rooij, S E; Ely, E Wesley

    2008-01-01

    BACKGROUND: Delirium (acute brain dysfunction) is a potentially life threatening disturbance in brain function that frequently occurs in critically ill patients. While this area of brain dysfunction in critical care is rapidly advancing, striking limitations in use of terminology related to delirium

  13. Understanding international differences in terminology for delirium and other types of acute brain dysfunction in critically ill patients

    NARCIS (Netherlands)

    Morandi, A; Pandharipande, P; Trabucchi, M; Rozzini, R; Mistraletti, G; Trompeo, A C; Gregoretti, C; Gattinoni, L; Ranieri, M V; Brochard, L; Annane, D; Putensen, C; Guenther, U; Fuentes, P; Tobar, E; Anzueto, A R; Esteban, A; Skrobik, Y; Salluh, J I F; Soares, M; Granja, C; Stubhaug, A; de Rooij, S E; Ely, E Wesley

    2008-01-01

    BACKGROUND: Delirium (acute brain dysfunction) is a potentially life threatening disturbance in brain function that frequently occurs in critically ill patients. While this area of brain dysfunction in critical care is rapidly advancing, striking limitations in use of terminology related to delirium

  14. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  15. Bladder dysfunction changes from underactive to overactive after experimental traumatic brain injury

    OpenAIRE

    Jiang, Hai-Hong; Kokiko-Cochran, Olga N; Li, Kevin; Balog, Brian; Lin, Ching-Yi; Damaser, Margot S.; Lin, Vernon; Cheng, Julian Yaoan; Lee, Yu-Shang

    2012-01-01

    Although bladder dysfunction is common after traumatic brain injury (TBI), few studies have investigated resultant bladder changes and the detailed relationship between TBI and bladder dysfunction. The goal of this study was to characterize the effects of TBI on bladder function in an animal model. Fluid-percussion injury was used to create an animal model with moderate TBI. Female Sprague-Dawley rats underwent TBI, sham TBI or were not manipulated (naïve). All rats underwent filling cystomet...

  16. Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo

    NARCIS (Netherlands)

    Kortekaas, R; Leenders, KL; van Oostrom, JCH; Vaalburg, W; Bart, J; Willemsen, ATM; Hendrikse, NH

    2005-01-01

    Parkinson's disease (PD) is associated with a loss of neurons from the midbrain. The cause of PD is unknown, but it is established that certain neurotoxins can cause similar syndromes. The brain is normally protected from these noxious blood-borne chemicals by the blood-brain barrier which includes

  17. The impact of acute brain dysfunction in the outcomes of mechanically ventilated cancer patients.

    Directory of Open Access Journals (Sweden)

    Isabel C T Almeida

    Full Text Available INTRODUCTION: Delirium and coma are a frequent source of morbidity for ICU patients. Several factors are associated with the prognosis of mechanically ventilated (MV cancer patients, but no studies evaluated delirium and coma (acute brain dysfunction. The present study evaluated the frequency and impact of acute brain dysfunction on mortality. METHODS: The study was performed at National Cancer Institute, Rio de Janeiro, Brazil. We prospectively enrolled patients ventilated >48 h with a diagnosis of cancer. Acute brain dysfunction was assessed during the first 14 days of ICU using RASS/CAM-ICU. Patients were followed until hospital discharge. Univariate and multivariable analysis were performed to evaluate factors associated with hospital mortality. RESULTS: 170 patients were included. 73% had solid tumors, age 65 [53-72 (median, IQR 25%-75%] years. SAPS II score was 54[46-63] points and SOFA score was (7 [6-9] points. Median duration of MV was 13 (6-21 days and ICU stay was 14 (7.5-22 days. ICU mortality was 54% and hospital mortality was 66%. Acute brain dysfunction was diagnosed in 161 patients (95%. Survivors had more delirium/coma-free days [4(1,5-6 vs 1(0-2, p<0.001]. In multivariable analysis the number of days of delirium/coma-free days were associated with better outcomes as they were independent predictors of lower hospital mortality [0.771 (0.681 to 0.873, p<0.001]. CONCLUSIONS: Acute brain dysfunction in MV cancer patients is frequent and independently associated with increased hospital mortality. Future studies should investigate means of preventing or mitigating acute brain dysfunction as they may have a significant impact on clinical outcomes.

  18. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    3Chemical Pathology and Immunology, University of Ilorin, Ilorin ... Abstract. Traumatic Brain Injury (TBI) is a common health problem which is one of the main causes of chronic disability ... Twenty-five patients with TBI (16 men, 9 women; age.

  19. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.

    Science.gov (United States)

    Cunha-Oliveira, Teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J; Oliveira, Catarina R; Santos, Maria S

    2013-06-07

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue.

  20. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  1. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  2. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Gøtze, J P; Fuglsang, S;

    2003-01-01

    BACKGROUND AND AIMS: Cardiac dysfunction may be present in patients with cirrhosis. This study was undertaken to relate plasma concentrations of cardiac peptides reflecting early ventricular dysfunction (pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP)) to markers...

  3. Visual dysfunction is underestimated in patients with acquired brain injury.

    Science.gov (United States)

    Berthold-Lindstedt, Märta; Ygge, Jan; Borg, Kristian

    2017-04-06

    More than 50% of human cerebral activity is related to vision. Visual impairments are therefore common after acquired brain injury, although they are often overlooked. In order to evaluate the prevalence of visual deficits in our Out-patient Brain Injury Program, a structured screening questionnaire, the Visual Interview, was administered. A total of 170 patients with acquired brain injury, mean age 47 years, who were enrolled in the programme during 2010-12, underwent the Visual Interview. The interview consists of 18 questions concerning visual impairment and was performed on admission. The different types of visual impairment were compared with regard to sex and diagnosis. Fifty-four percent of the patients reported visual changes, mainly reading difficulties, photosensitivity, blurred vision and disorders of the visual field. Sixteen patients who did not experience visual changes also reported visual symptoms in 4-9 questions. Only slight differences were noted in the occurrence of visual symptoms when correlated with sex or diagnosis. Visual impairments are common after acquired brain injury, but some patients do not define their problems as vision-related. A structured questionnaire, covering the most common visual symptoms, is helpful for the rehabilitation team to facilitate assessment of visual changes.

  4. Global brain atrophy and metabolic dysfunction in LGI1 encephalitis

    DEFF Research Database (Denmark)

    Szots, Monika; Blaabjerg, Morten; Orsi, Gergely

    2017-01-01

    BACKGROUND: Chronic cognitive deficits are frequent in leucin-rich glioma-inactivated 1 protein (LGI1) encephalitis. We examined structural and metabolic brain abnormalities following LGI1 encephalitis and correlated findings with acute and follow-up clinical outcomes. METHODS: Nine patients unde...

  5. [Neuroendocrine dysfunctions and their consequences following traumatic brain injury].

    Science.gov (United States)

    Czirják, Sándor; Rácz, Károly; Góth, Miklós

    2012-06-17

    Posttraumatic hypopituitarism is of major public health importance because it is more prevalent than previously thought. The prevalence of hypopituitarism in children with traumatic brain injury is unknown. Most cases of posttraumatic hypopituitarism remain undiagnosed and untreated in the clinical practice, and it may contribute to the severe morbidity seen in patients with traumatic brain injury. In the acute phase of brain injury, the diagnosis of adrenal insufficiency should not be missed. Determination of morning serum cortisol concentration is mandatory, because adrenal insufficiency can be life threatening. Morning serum cortisol lower than 200 nmol/L strongly suggests adrenal insufficiency. A complete hormonal investigation should be performed after one year of the trauma. Isolated growth hormone deficiency is the most common deficiency after traumatic brain injury. Sports-related chronic repetitive head trauma (because of boxing, kickboxing, football and ice hockey) may also result in hypopituitarism. Close co-operation between neurosurgeons, endocrinologists, rehabilitation physicians and representatives of other disciplines is important to provide better care for these patients.

  6. Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases.

    Science.gov (United States)

    Stolp, H B; Dziegielewska, K M

    2009-04-01

    The causes of most neurological disorders are not fully understood. Inflammation and blood-brain barrier dysfunction appear to play major roles in the pathology of these diseases. Inflammatory insults that occur during brain development may have widespread effects later in life for a spectrum of neurological disorders. In this review, a new hypothesis suggesting a mechanistic link between inflammation and blood-brain barrier function (integrity), which is universally important in both neurodevelopmental and neurodegenerative diseases, is proposed. The role of inflammation and the blood-brain barrier will be discussed in cerebral palsy, schizophrenia, Parkinson's disease, Alzheimer's disease and multiple sclerosis, conditions where both inflammation and blood-brain barrier dysfunction occur either during initiation and/or progression of the disease. We suggest that breakdown of normal blood-brain barrier function resulting in a short-lasting influx of blood-born molecules, in particular plasma proteins, may cause local damage, such as reduction of brain white matter observed in some newborn babies, but may also be the mechanism behind some neurodegenerative diseases related to underlying brain damage and long-term changes in barrier properties.

  7. Blood Brain Barrier Dysfunction and Delayed Neurological Deficits in Mild Traumatic Brain Injury Induced by Blast Shock Waves

    Directory of Open Access Journals (Sweden)

    Ashok K Shetty

    2014-08-01

    Full Text Available Mild traumatic brain injury (mTBI resulting from exposure to blast shock waves (BSWs is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB. Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145-323 kPa causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred.

  8. Piecing Together Phenotypes of Brain Injury and DysfunctionIn Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Sigrid eVeasey

    2012-10-01

    Full Text Available Obstructive sleep apnea (OSA is a highly prevalent condition that is associated with significant neurobehavioral impairments. Cognitive abnormalities identified in individuals with OSA include impaired verbal memory, planning, reasoning, vigilance and mood. Therapy for OSA improves some but not all neurobehavioral outcomes, supporting a direct role for OSA in brain dysfunction and raising the question of irreversible injury form OSA. Recent clinical studies have refined the neurobehavioral, brain imaging and electrophysiological characteristics of obstructive sleep apnea, highlighting findings shared with aging and some unique to OSA. This review summarizes the cognitive, brain metabolic and structural, and peripheral nerve conduction changes observed in OSA that collectively provide a distinct phenotype of OSA brain injury and dysfunction. Findings in animal models of OSA provide insight into molecular mechanisms underlying OSA neuronal injury that can be related back to human neural injury and dysfunction. A comprehensive phenotype of brain function and injury in OSA is essential for advancing diagnosis, prevention and treatment of this common disorder.

  9. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma

    Directory of Open Access Journals (Sweden)

    Jörn Lötsch

    2016-01-01

    Full Text Available The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81, or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50, or phantosmia, i.e., olfactory hallucinations (n = 22. A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time.

  10. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems

    Directory of Open Access Journals (Sweden)

    Jun Kohyama

    2016-01-01

    Full Text Available There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  11. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Melatonin Improves Outcomes of Heatstroke in Mice by Reducing Brain Inflammation and Oxidative Damage and Multiple Organ Dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Feng Tian

    2013-01-01

    Full Text Available We report here that when untreated mice underwent heat stress, they displayed thermoregulatory deficit (e.g., animals display hypothermia during room temperature exposure, brain (or hypothalamic inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment (e.g., decreased plasma levels of both adrenocorticotrophic hormone and corticosterone during heat stress, multiple organ dysfunction or failure, and lethality. Melatonin therapy significantly reduced the thermoregulatory deficit, brain inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment, multiple organ dysfunction, and lethality caused by heat stroke. Our data indicate that melatonin may improve outcomes of heat stroke by reducing brain inflammation, oxidative damage, and multiple organ dysfunction.

  13. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  14. [Epidemiologic study of symptoms of minimal brain dysfunction: problems in quantitative evaluation].

    Science.gov (United States)

    Albrecht, V; Beránková, A; Vopĕnka, P

    1990-02-01

    The paper deals with problems arising during processing of data from an epidemiological screening focused on the Minimum Brain Dysfunction complex in children of the first and second form of elementary school. A new rating scale for the screening has been proposed. Its formal properties were analyzed in detail. Nontraditional coding of partial items forming the scale is discussed. Finally, statistical methods used for analysis of associations between the MBD scale and various combinations of aetiopathological variables are reviewed.

  15. Evidence linking oxidative stress, mitochondrial dysfunction and inflammation in the brain of individuals with autism

    Directory of Open Access Journals (Sweden)

    Daniel eRossignol

    2014-04-01

    Full Text Available Autism spectrum disorders (ASDs are a heterogeneous group of neurodevelopmental disorders that are defined solely on the basis of behavioral observations. Therefore, ASD has traditionally been framed as a behavioral disorder. However, evidence is accumulating that ASD is characterized by certain physiological abnormalities, including oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation. While these abnormalities have been reported in studies that have examined peripheral biomarkers such as blood and urine, more recent studies have also reported these abnormalities in brain tissue derived from individuals diagnosed with ASD as compared to brain tissue derived from control individuals. A majority of these brain tissue studies have been published since 2010. The brain regions found to contain these physiological abnormalities in individuals with ASD are involved in speech and auditory processing, social behavior, memory, and sensory and motor coordination. This manuscript examines the evidence linking oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation in the brain of ASD individuals, suggesting that ASD has a clear biological basis with features of known medical disorders. This understanding may lead to new testing and treatment strategies in individuals with ASD.

  16. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1.

    Science.gov (United States)

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1 matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tractbased spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1.

  17. Pathological anxiety and function/dysfunction in the brain's fear/defense circuitry.

    Science.gov (United States)

    Lang, Peter J; McTeague, Lisa M; Bradley, Margaret M

    2014-01-01

    Research from the University of Florida Center for the Study of Emotion and Attention aims to develop neurobiological measures that objectively discriminate among symptom patterns in patients with anxiety disorders. From this perspective, anxiety and mood pathologies are considered to be brain disorders, resulting from dysfunction and maladaptive plasticity in the neural circuits that determine fearful/defensive and appetitive/reward behavior (Insel et al., 2010). We review recent studies indicating that an enhanced probe startle reflex during the processing of fear memory cues (mediated by cortico-limbic circuitry and thus indicative of plastic brain changes), varies systematically in strength over a spectrum-wide dimension of anxiety pathology-across and within diagnoses-extending from strong focal fear reactions to a consistently blunted reaction in patients with more generalized anxiety and comorbid mood disorders. Preliminary studies with functional magnetic resonance imaging (fMRI) encourage the hypothesis that fear/defense circuit dysfunction covaries with this same dimension of psychopathology. Plans are described for an extended study of the brain's motivation circuitry in anxiety spectrum patients, with the aim of defining the specifics of circuit dysfunction in severe disorders. A sub-project explores the use of real-time fMRI feedback in circuit analysis and as a modality to up-regulate circuit function in the context of blunted affect.

  18. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: Current perspectives

    Directory of Open Access Journals (Sweden)

    Zeeshan Javed

    2015-01-01

    Full Text Available There is an increasing deliberation regarding hypopituitarism following traumatic brain injury (TBI and recent data have suggested that pituitary dysfunction is very common among survivors of patients having moderate-severe TBI which may evolve or resolve over time. Due to high prevalence of pituitary dysfunction after moderate-severe TBI and its association with increased morbidity and poor recovery and the fact that it can be easily treated with hormone replacement, it has been suggested that early detection and treatment is necessary to prevent long-term neurological consequences. The cause of pituitary dysfunction after TBI is still not well understood, but evidence suggests few possible primary and secondary causes. Results of recent studies focusing on the incidence of hypopituitarism in the acute and chronic phases after TBI are varied in terms of severity and time of occurrence. Although the literature available does not show consistent values and there is difference in study parameters and diagnostic tests used, it is clear that pituitary dysfunction is very common after moderate to severe TBI and patients should be carefully monitored. The exact timing of development cannot be predicted but has suggested regular assessment of pituitary function up to 1 year after TBI. In this narrative review, we aim to explore the current evidence available regarding the incidence of pituitary dysfunction in acute and chronic phase post-TBI and recommendations for screening and follow-up in these patients. We will also focus light over areas in this field worthy of further investigation.

  19. Memory deficits in long-term survivors of childhood brain tumors may primarily reflect general cognitive dysfunctions

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Mortensen, Erik Lykke; Schmiegelow, Kjeld

    2007-01-01

    To analyze the impact of potential predictors on memory performance in survivors of childhood brain tumors and to examine whether deficits in memory after radiotherapy (RT) should be considered part of a more global mental dysfunction.......To analyze the impact of potential predictors on memory performance in survivors of childhood brain tumors and to examine whether deficits in memory after radiotherapy (RT) should be considered part of a more global mental dysfunction....

  20. Differences in quantitative characteristics of intracranial pressure in hydrocephalic children treated surgically or conservatively.

    Science.gov (United States)

    Eide, Per Kristian; Due-Tønnessen, Bernt; Helseth, Eirik; Lundar, Tryggve

    2002-06-01

    This study reports the results of quantitative analysis of continuous intracranial pressure (ICP) recordings in 33 hydrocephalic children. The aim of the study was to compare the exact numbers of increases in ICP during sleep or the awake state in hydrocephalic children who were treated either surgically or conservatively. At the time of ICP monitoring, the ICP curves were assessed by the calculation of mean ICP and visual inspection for the detection of plateau waves. Quantitative analysis was performed with the software Sensometrics Pressure Analyser, which presented the ICP curve as a matrix of numbers of ICP elevations of different levels (20-40 mm Hg) and durations (0.5-20 min). In each case, the numbers of ICP elevations were standardized to 10 h of recording time, providing the opportunity for comparisons of ICP curves between individuals. Compared to the surgery group, there was a rather high number of ICP elevations of 20 mm Hg of various durations in the nonsurgery group, e.g. ICP elevations of 20 mm Hg lasting 10 min occurred in 13 of 19 children (68%) in the nonsurgery group. There was no apparent relationship between ICP and age or between the size of the cerebral ventricles and ICP. In children with hydrocephalus, the presentation of the ICP data as a matrix of ICP elevations of different levels and durations may enhance the informative value of continuous ICP monitoring, as compared to the calculation of mean ICP and visual detection of plateau waves. Copyright 2002 S. Karger AG, Basel

  1. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis.

    Science.gov (United States)

    Bansal, Vishal; Costantini, Todd; Kroll, Lauren; Peterson, Carrie; Loomis, William; Eliceiri, Brian; Baird, Andrew; Wolf, Paul; Coimbra, Raul

    2009-08-01

    Traumatic brain injury (TBI) can lead to several physiologic complications including gastrointestinal dysfunction. Specifically, TBI can induce an increase in intestinal permeability, which may lead to bacterial translocation, sepsis, and eventually multi-system organ failure. However, the exact mechanism of increased intestinal permeability following TBI is unknown. We hypothesized that expression of tight junction protein ZO-1 and occludin, responsible for intestinal architectural and functional integrity, will decrease following TBI and increase intestinal permeability. BALB/c mice underwent a weight drop TBI model following anesthesia. Brain injury was confirmed by a neurologic assessment and gross brain pathology. Six hours following injury, FITC-dextran (25 mg 4.4 kDa FITC-dextran) was injected into the intact lumen of the isolated ileum. Intestinal permeability was measured in plasma 30 min following injection, by using spectrophotometry to determine plasma FITC-dextran concentrations. Whole ileum extracts were used to measure expression of tight junction proteins ZO-1 and occludin by Western blot. TBI caused a significant increase in intestinal permeability (110.0 microg/mL +/-22.2) compared to sham animals (29.4 microg/mL +/- 9.7) 6 h after injury (p = 0.016). Expression of ZO-1 was decreased by 49% relative to sham animals (p intestinal permeability corresponds with decreased expression of tight junction proteins ZO-1 and occludin following TBI. Expression of intestinal tight junction proteins may be an important factor in gastrointestinal dysfunction following brain injury.

  2. Novel insights in the dysfunction of human blood-brain barrier after glycation.

    Science.gov (United States)

    Hussain, Maryam; Bork, Kaya; Gnanapragassam, Vinayaga S; Bennmann, Dorit; Jacobs, Kathleen; Navarette-Santos, Alexander; Hofmann, Britt; Simm, Andreas; Danker, Kerstin; Horstkorte, Rüdiger

    2016-04-01

    The blood-brain barrier (BBB) provides a dynamic and complex interface consisting of endothelial cells, pericytes and astrocytes, which are embedded in a collagen and fibronectin-rich basement membrane. This complex structure restricts the diffusion of small hydrophilic solutes and macromolecules as well as the transmigration of leukocytes into the brain. It has been shown that carbonyl stress followed by the formation of advanced glycation endproducts (AGE=glycation) interfere with the BBB integrity and function. Here, we present data that carbonyl stress induced by methylglyoxal leads to glycation of endothelial cells and the basement membrane, which interferes with the barrier-function and with the expression of RAGE, occludin and ZO-1. Furthermore, methylglyoxal induced carbonyl stress promotes the expression of the pro-inflammatory interleukins IL-6 and IL-8. In summary, this study provides new insights into the relationship between AGE formation by carbonyl stress and brain microvascular endothelial barrier dysfunction.

  3. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    Science.gov (United States)

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  4. Blood-Brain Barrier Dysfunction in Epileptogenesis of the Temporal Lobe

    Directory of Open Access Journals (Sweden)

    Itai Weissberg

    2011-01-01

    Full Text Available Epilepsy of the temporal lobe (TLE is the most common form of focal epilepsy, and in adults, it most frequently develops after injury. However, the mechanisms by which a normal functioning brain turns into an epileptic one still remain obscure. Recent studies point to vascular involvement and particularly blood-brain barrier (BBB dysfunction in the development of epilepsy. The BBB is a specialized structure which functions to control the neuronal extracellular milieu. BBB dysfunction is found in many diseases of the central nervous system, including stroke, traumatic injuries, tumors and infections. Interestingly, all these insults may initiate an epileptogenic process which eventually leads to spontaneous, recurrent seizures. This epileptogenic time frame usually lasts weeks, months, or even years in man, and days to weeks in rodents and may serve as a “window of opportunity” for the prevention of epilepsy. However, no prevention strategy exists, stressing the importance of research into the mechanisms of epileptogenesis. Here, we will underscore recent experiments suggesting that BBB dysfunction directly induces epileptogenesis. We will provide new evidence to support the hypothesis that BBB breakdown and specifically exposure of temporal lobe structures to the most common serum protein, albumin, is sufficient to induce epileptogenesis.

  5. Visual Dysfunctions at Different Stages after Blast and Non-blast Mild Traumatic Brain Injury.

    Science.gov (United States)

    Capó-Aponte, José E; Jorgensen-Wagers, Kendra L; Sosa, Josue A; Walsh, David V; Goodrich, Gregory L; Temme, Leonard A; Riggs, Daniel W

    2017-01-01

    To assess the prevalence of visual dysfunctions and associated symptoms in war fighters at different stages after non-blast- or blast-induced mild traumatic brain injury (mTBI). A comprehensive retrospective review of the electronic health records of 500 U.S. military personnel with a diagnosis of deployment-related mTBI who received eye care at the Landstuhl Regional Medical Center. For analysis, the data were grouped by mechanism of injury, and each group was further divided in three subgroups based on the number of days between injury and initial eye examination. The data showed a high frequency of visual symptoms and visual dysfunctions. However, the prevalence of visual symptoms and visual dysfunctions did not differ significantly between mechanism of injury and postinjury stage, except for eye pain and diplopia. Among visual symptoms, binocular dysfunctions were more common, including higher near vertical phoria, reduced negative fusional vergence break at near, receded near point of convergence, decreased stereoacuity, and reduced positive relative accommodation. The lack of difference in terms of visual sequelae between subgroups (blast vs. nonblast) suggests that research addressing the assessment and management of mTBI visual sequelae resulting from civilian nonblast events is relevant to military personnel where combat injury results primarily from a blast event.

  6. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuhiko; Tanaka, Ryuichi; Sato, Mitsuya; Takeda, Norio [Niigata Univ. (Japan). Brain Research Inst.

    2001-12-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis. (author)

  7. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  8. The protective effect of HET0016 on brain edema and blood-brain barrier dysfunction after cerebral ischemia/reperfusion.

    Science.gov (United States)

    Liu, Yu; Wang, Di; Wang, Huan; Qu, Youyang; Xiao, Xingjun; Zhu, Yulan

    2014-01-28

    N-hydroxy-N-(4-butyl-2-methylphenyl) formamidine (HET0016) is a specific 20-hydroxyeicosatetraenoic acid (20-HETE) inhibitor which was first synthesized in 2001. It has been demonstrated that HET0016 reduces cerebral infarction volume in rat middle cerebral artery occlusion (MCAO) models. However, little is known about the role of HET0016 in the blood-brain barrier (BBB) dysfunction after cerebral ischemia/reperfusion (I/R) injury. The present study was designed to examine the effect of HET0016 in a MCAO and reperfusion rat model to determine whether it protects against brain edema and BBB disruption. Rats were subjected to 90 min MCAO, followed by 4, 24, 48, and 72 h reperfusion. Brain edema was measured according to the wet and dry weight method. BBB permeability based on the extravasation of Evans blue and sodium fluorescein was detected. BBB ultrastructure alterations were presented through transmission electron microscope. Superoxide production in ischemic tissue was also measured by dihydroethidium fluorescent probe. Western blot was used to analyze the expression of Claudin-5, ZO-1, MMP-9, and JNK pathway. At 24h after reperfusion, HET0016 reduced brain edema and BBB leakage. Ultrastructural damage of BBB and the increase of superoxide production were attenuated by HET0016 treatment. Western blot showed that HET0016 suppressed the activation of MMP-9 and JNK pathway but restored the expression of Claudin-5 and ZO-1. In conclusion, these results suggest that HET0016 protects BBB dysfunction after I/R by regulating the expression of MMP-9 and tight junction proteins. Furthermore, inhibition of oxidative stress and JNK pathway may be involved in this protecting effect.

  9. Influenza Virus Pathophysiology and Brain Invasion in Mice with Functional and Dysfunctional Mx1 Genes

    OpenAIRE

    2011-01-01

    Mice with a dysfunctional myxovirus resistance-1 (dMx1) gene transport intranasally-instilled PR8 influenza virus to the olfactory bulb (OB) within 4 h post-infection. To determine if the presence of a functional Mx1 (fMx1) gene would influence this brain viral localization and/or disease, we infected mature C57BL/6 dMx1 and fMx1 mice under the same conditions and observed sickness behaviors, viral nucleoprotein (NP) RNA expression and innate immune mediator (IIM) mRNA expression in selected ...

  10. Clinical and Echocardiographic Characteristics of Acute Cardiac Dysfunction Associated With Acute Brain Hemorrhage - Difference From Takotsubo Cardiomyopathy.

    Science.gov (United States)

    Lee, Mirae; Oh, Ju Hyeon; Lee, Kyung Been; Kang, Gu Hyun; Park, Yong Hwan; Jang, Woo Jin; Chun, Woo Jung; Lee, Sang Hyuk; Lee, In Chang

    2016-08-25

    Cardiac dysfunction (CD) associated with brain hemorrhage is similar to that with takotsubo cardiomyopathy but still not well understood. We aimed to investigate the clinical and echocardiographic findings of acute CD (ACD) related to brain hemorrhage. Between 2013 and 2014, consecutive patients diagnosed with spontaneous and traumatic brain hemorrhage were prospectively enrolled. Electrocardiography, cardiac enzymes, and echocardiography were performed. Left ventricular (LV) systolic dysfunction on echocardiography was defined as ACD related to brain hemorrhage when all the following conditions were satisfied: abnormal ECG and cardiac troponin level, LV wall motion abnormality or decreased LV systolic function on echocardiography, and no previous history of cardiac disease. Otherwise, LV dysfunction was considered to be other CD unrelated to brain hemorrhage. In a total of 208 patients, 15 (7.2%) showed ACD. Of them, 8 patients were men and 8 showed apex-sparing LV hypokinesia and 9 died in hospital. Other cardiac abnormalities observed in the study patients were NT-proBNP elevation (n=123), QT interval prolongation (n=95), LV hypertrophy (n=89), and troponin I elevation (n=47). There were 36 in-hospital deaths (17.3%). Glasgow coma score and ACD were independently associated with in-hospital death. ACD was observed in patients with various brain hemorrhages. Unlike takotsubo cardiomyopathy, high proportions of male sex, apex-sparing LV dysfunction, and in-hospital death were observed for ACD associated with brain hemorrhage. (Circ J 2016; 80: 2026-2032).

  11. BRAIN DYSFUNCTION OF PATIENTS WITH QIGONG INDUCED MENTAL DISORDER REVEALED BY EVOKED POTENTIALS RECORDING

    Institute of Scientific and Technical Information of China (English)

    LU Yingzhi; ZONG Wenbin; CHEN Xingshi

    2003-01-01

    Objective: In order to investigate the brain function of patients with Qigong induced mental disorder (QIMD), this study was carried out. Methods: Four kinds of evoked potentials, including contingent negative variation (CNV), auditory evoked potentials (AEP), visual evoked potentials (VEP), and somatosensory evoked potentials (SEP), were recorded from 12 patients with Qigong induced mental disorder.Comparison of their evoked potentials with the data from some normal controls was made. Results: The results revealed that there were 3 kinds of abnormal changes in evoked potentials of patients with QIMD that is latency prolongation, amplitude increase and amplitude decrease, as compared with normal controls. Conclusion: Brain dysfunction of patients with QIMD was confirmed. Its biological mechanism needs further studying.

  12. Maternal separation as a model of brain-gut axis dysfunction.

    LENUS (Irish Health Repository)

    O'Mahony, Siobhain M

    2011-03-01

    Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS.

  13. Repeated Administration of Mercury Intensifies Brain Damage in Multiple Sclerosis through Mitochondrial Dysfunction

    Science.gov (United States)

    Kahrizi, Farzad; Salimi, Ahmad; Noorbakhsh, Farshid; Faizi, Mehrdad; Mehri, Freshteh; Naserzadeh, Parvaneh; Naderi, Nima; Pourahmad, Jalal

    2016-01-01

    In this study we investigated the additive effect of mercury on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model. Experimental animals (female C57BL/6 mice) are divided into four groups (n = 8); control, Hg, EAE, EAE with Hg. EAE model of MS induced by injecting myelin oligodendrocyte glycoprotein (MOG). Neurobehavioral alterations are recorded and then mice were sacrificed at day 28 and brain mitochondria were isolated and mitochondrial toxicity parameters including mitochondrial swelling, reactive oxygen species (ROS) formation, collapse of mitochondrial membrane potential (MMP) and cytochrome c release were measured. Our results showed that repeated treatment of mercury following induction of EAE in mice significantly increased the neurobehavioral scores, as well as mitochondrial toxicity through ROS formation, mitochondrial swelling, collapse of MMP and cytochrome c release. Our findings proved that repeated exposure with mercury accelerates progression of MS through mitochondrial damage related to oxidative stress and finally apoptosis.

  14. Neurological soft signs, cognitive dysfunction and ventricular brain ration in schizophrenics.

    Science.gov (United States)

    Lal, N; Tiwari, S C; Srivastava, S; Khalid, A; Siddhartha; Kohli, N

    1998-04-01

    An association between cognitive dysfunction, neurological soft signs, enlarged brain ventricles and widened cortical sulci has been reported in schizophrenia. The present work aimed to study the relevance of positive and negative dichotomy with relation to neuropsychological performance of the schizophrenic patients, and the presence of neurological soft signs. In 23 schizophrenics patients diagnosed according to DSM-III-R of which 14 were of positive subtype and 9 were of negative subtype. At least one neurological soft sign was present in all the patients. The positive group had higher WMS and IQ scores and lower BGT scores than the negative group. Negative, correlation was seen for WMS and BGT scores with Ventricular Brain Ratio (VBR), and the soft signs showed positive correlation in the positive subtype only.

  15. Hypothalamic dysfunction

    Science.gov (United States)

    ... common causes of hypothalamic dysfunction are surgery, traumatic brain injury, tumors, and radiation. Other causes include: Anorexia nervosa or bulimia Bleeding Genetic disorders that cause iron ...

  16. Brain Networks during Free Viewing of Complex Erotic Movie: New Insights on Psychogenic Erectile Dysfunction

    Science.gov (United States)

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other’s actions. Moreover, the between group differences in the SN nodes suggested a

  17. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    Directory of Open Access Journals (Sweden)

    Nicoletta Cera

    Full Text Available Psychogenic erectile dysfunction (ED is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp. Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC, using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN, default-mode network (DMN, fronto-parietal network (FPN and salience network (SN were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes

  18. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    Science.gov (United States)

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes suggested a

  19. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1

    Science.gov (United States)

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Summary Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tract-based spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1 mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1. PMID:26214024

  20. [Higher Brain Dysfunction in Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS)].

    Science.gov (United States)

    Ichikawa, Hiroo

    2016-02-01

    Stroke-like episodes are one of the cardinal features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and occur in 84-99% of the patients. The affected areas detected on neuroimaging do not have classical vascular distribution, and involve predominantly the temporal, parietal and occipital lobes. Thus, the neurological symptoms including higher brain dysfunction correlate with this topographical distribution. In association with the occipital lobe involvement, the most frequent symptom is cortical blindness. Other symptoms have been occasionally reported in case reports: visual agnosia, prosopagnosia, cortical deafness, auditory agnosia, topographical disorientation, various types of aphasia, hemispatial neglect, and so on. On the other hand, cognitive decline associated with more diffuse brain impairment rather than with focal stroke-like lesions has been postulated. This condition is also known as mitochondrial dementia. Domains of cognitive dysfunction include abstract reasoning, verbal memory, visual memory, language (naming and fluency), executive or constructive functions, attention, and visuospatial function. Cognitive functions and intellectual abilities may decline from initially minimal cognitive impairment to dementia. To date, the neuropsychological and neurologic impairment has been reported to be associated with cerebral lactic acidosis as estimated by ventricular spectroscopic lactate levels.

  1. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Gøtze, J P; Fuglsang, Stefan;

    2003-01-01

    subjects (1.8 v 2.3; NS). Circulating proBNP and BNP were related to severity of liver disease (Child score, serum albumin, coagulation factors 2, 7, and 10, and hepatic venous pressure gradient) and to markers of cardiac dysfunction (QT interval, heart rate, plasma volume) but not to indicators......BACKGROUND AND AIMS: Cardiac dysfunction may be present in patients with cirrhosis. This study was undertaken to relate plasma concentrations of cardiac peptides reflecting early ventricular dysfunction (pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP)) to markers...... of severity of liver disease, cardiac dysfunction, and hyperdynamic circulation in patients with cirrhosis. PATIENTS AND METHODS: Circulating levels of proBNP and BNP were determined in 51 cirrhotic patients during a haemodynamic investigation. RESULTS: Plasma proBNP and BNP were significantly increased...

  2. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    Science.gov (United States)

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  3. Mechanism of blood-brain barrier impairment after mild traumatic brain injury caused by blast shock waves and its relationship with delayed nerve dysfunction

    Directory of Open Access Journals (Sweden)

    Zhao-xi XU

    2016-06-01

    Full Text Available Mild traumatic brain injury (mTBI caused by blast shock waves (BSWs is one of the most common injuries among soldiers in the war. Such mTBI can also happen in civilians if exposed to shock waves of accidental explosion disasters, bomb attacks by terrorists and so on. This injury often results in cognitive problems, memory dysfunction and emotional disorder, and these neurological deficits are closely related to the dysfunction or disruption of the blood-brain barrier (BBB. The present paper discusses mainly the relationship between dysfunction or disruption of BBB and inflammatory reaction in mild brain injury associated with explosive shock wave and effects of early intervention of oxidative stress injury, repairing the BBB and blocking inflammation on relieving delayed neurological deficits. DOI: 10.11855/j.issn.0577-7402.2016.05.15

  4. Pilot Study of Propofol-induced Slow Waves as a Pharmacologic Test for Brain Dysfunction after Brain Injury.

    Science.gov (United States)

    Kortelainen, Jukka; Väyrynen, Eero; Huuskonen, Usko; Laurila, Jouko; Koskenkari, Juha; Backman, Janne T; Alahuhta, Seppo; Seppänen, Tapio; Ala-Kokko, Tero

    2017-01-01

    Slow waves (less than 1 Hz) are the most important electroencephalogram signatures of nonrapid eye movement sleep. While considered to have a substantial importance in, for example, providing conditions for single-cell rest and preventing long-term neural damage, a disturbance in this neurophysiologic phenomenon is a potential indicator of brain dysfunction. Since, in healthy individuals, slow waves can be induced with anesthetics, the authors tested the possible association between hypoxic brain injury and slow-wave activity in comatose postcardiac arrest patients (n = 10) using controlled propofol exposure. The slow-wave activity was determined by calculating the low-frequency (less than 1 Hz) power of the electroencephalograms recorded approximately 48 h after cardiac arrest. To define the association between the slow waves and the potential brain injury, the patients' neurologic recovery was then followed up for 6 months. In the patients with good neurologic outcome (n = 6), the low-frequency power of electroencephalogram representing the slow-wave activity was found to substantially increase (mean ± SD, 190 ± 83%) due to the administration of propofol. By contrast, the patients with poor neurologic outcome (n = 4) were unable to generate propofol-induced slow waves. In this experimental pilot study, the comatose postcardiac arrest patients with poor neurologic outcome were unable to generate normal propofol-induced electroencephalographic slow-wave activity 48 h after cardiac arrest. The finding might offer potential for developing a pharmacologic test for prognostication of brain injury by measuring the electroencephalographic response to propofol.

  5. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase.

    Science.gov (United States)

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H; Jaenisch, Rudolf; Endres, Matthias

    2008-07-09

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.

  6. Predictors of Memory and Processing Speed Dysfunctions after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    William Winardi

    2014-01-01

    Full Text Available Background. The aims of this study were to evaluate the predictive value of admission Glasgow Coma Scale (GCS scores, duration of unconsciousness, neurosurgical intervention, and countercoup lesion on the impairment of memory and processing speed functions six months after a traumatic brain injury (TBI based on a structural equation modeling. Methods. Thirty TBI patients recruited from Neurosurgical Department at the Kaohsiung Medical University Hospital were administered the Wechsler Memory Scale-III (WMS-III and the Wechsler Adult Intelligence Scale-III processing speed index to evaluate the memory and processing speed functions. Results. The study showed that GCS scores accounted for 40% of the variance in memory/processing speed. No significant predictive effects were found for the other three variables. GCS classification at the time of TBI seems to correspond moderately to the severity of memory/processing speed dysfunctions. Conclusions. The present study demonstrated that admission GCS score is a robust predictor of memory/processing speed dysfunctions after TBI. The results should be replicated with a large sample of patients with TBI, or be extended by examining other potential clinical predictors.

  7. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats.

    Science.gov (United States)

    Anbarasi, Kothandapani; Vani, Ganapathy; Devi, Chennam Srinivasulu Shyamala

    2005-01-01

    Chronic exposure to cigarette smoke affects the structure and function of mitochondria, which may account for the pathogenesis of smoking-related diseases. Bacopa monniera Linn., used in traditional Indian medicine for various neurological disorders, was shown to possess mitrochondrial membrane-stabilizing properties in the rat brain during exposure to morphine. We investigated the protective effect of bacoside A, the active principle of Bacopa monniera, against mitochondrial dysfunction in rat brain induced by cigarette smoke. Male Wistar albino rats were exposed to cigarette smoke and administered bacoside A for a period of 12 weeks. The mitochondrial damage in the brain was assessed by examining the levels of lipid peroxides, cholesterol, phospholipid, cholesterol/phospholipid (C/P) ratio, and the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, and cytochrome C oxidase. The oxidative phosphorylation (rate of succinate oxidation, respiratory control ratio and ADP/O ratio, and the levels of ATP) was evaluated for the assessment of mitochondrial functional capacity. We found significantly elevated levels of lipid peroxides, cholesterol, and C/P ratio, and decreased levels of phospholipids and mitochondrial enzymes in the rats exposed to cigarette smoke. Measurement of oxidative phosphorylation revealed a marked depletion in all the variables studied. Administration of bacoside A prevented the structural and functional impairment of mitochondria upon exposure to cigarette smoke. From the results, we suggest that chronic cigarette smoke exposure induces damage to the mitochondria and that bacoside A protects the brain from this damage by maintaining the structural and functional integrity of the mitochondrial membrane.

  8. Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure.

    Science.gov (United States)

    Kamboj, Sukhdev Singh; Kumar, Vikas; Kamboj, Amit; Sandhir, Rajat

    2008-11-01

    Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.

  9. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia.

    Science.gov (United States)

    Karakuła-Juchnowicz, Hanna; Dzikowski, Michał; Pelczarska, Agnieszka; Dzikowska, Izabela; Juchnowicz, Dariusz

    2016-01-01

    Despite over 100-year history of research on schizophrenia, its etiology is still not fully understood, which might be due to the significant heterogeneity in terms of both its course, as well as the etiopathogenesis. One of the best-proven mediating mechanisms in the development of schizophrenia is the immuno-inflammatory response, the sources of which are believed to be the dysfunctions of brain-gut axis and pathological processes occurring in the intestines. This paper is a review of the literature on this subject which presents factors both involved in the functioning of brain-gut axis and important for the development of schizophrenia, i.e. 1. intestinal microbiome (intestinal microbiota), 2. permeable intestine (leaky gut syndrome), 3. hypersensitivity to food antigens, including gluten and casein of cow's milk. Research results seem to be very promising and indicate the possibility of improved clinical outcomes in some patients with schizophrenia by modifying diet, use of probiotics, and the implementation of antibiotic therapy of specific treatment groups. However, further research is needed on links between the intestinal microbiome and intestinal function as factors mediating the activation of the immune system and the development and further course of schizophrenia.

  10. Brain ultrasonographic findings of late-onset circulatory dysfunction due to adrenal insufficiency in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su Mi; Chai, Jee Won [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    The aim of this study was to characterize the brain ultrasonographic findings of late-onset circulatory dysfunction (LCD) due to adrenal insufficiency (AI) in preterm infants. Among the 257 preterm infants born at <33 weeks of gestation between December 2009 and February 2014 at our institution, 35 preterm infants were diagnosed with AI. Brain ultrasonographic findings were retrospectively analyzed before and after LCD in 14 preterm infants, after exclusion of the other 21 infants with AI due to the following causes: death (n=2), early AI (n=5), sepsis (n=1), and patent ductus arteriosus (n=13). Fourteen of 257 infants (5.4%) were diagnosed with LCD due to AI. The age at LCD was a median of 18.5 days (range, 9 to 32 days). The last ultrasonographic findings before LCD occurred showed grade 1 periventricular echogenicity (PVE) in all 14 patients and germinal matrix hemorrhage (GMH) with focal cystic change in one patient. Ultrasonographic findings after LCD demonstrated no significant change in grade 1 PVE and no new lesions in eight (57%), grade 1 PVE with newly appearing GMH in three (21%), and increased PVE in three (21%) infants. Five infants (36%) showed new development (n=4) or increased size (n=1) of GMH. Two of three infants (14%) with increased PVE developed cystic periventricular leukomalacia (PVL) and rapid progression to macrocystic encephalomalacia. LCD due to AI may be associated with the late development of GMH, increased PVE after LCD, and cystic PVL with rapid progression to macrocystic encephalomalacia.

  11. Cortical neuron loss in post-traumatic higher brain dysfunction using (123)I-iomazenil SPECT.

    Science.gov (United States)

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2013-01-01

    In patients with higher brain dysfunction (HBD) after mild traumatic brain injury (MTBI), diagnostic imaging of cortical neuron loss in the frontal lobes was studied using SPECT with (123)I-iomazenil (IMZ), as a radioligand for central benzodiazepine receptor (BZR). Statistical imaging analysis using three-dimensional stereotactic surface projections (3D-SSP) for (123)I-IMZ SPECT was performed in 17 patients. In all patients with HBD defined by neuropsychological tests, cortical neuron loss was indicated in the bilateral medial frontal lobes in 14 patients (83 %). A comparison between the group of 17 patients and the normal database demonstrated common areas of cortical neuron loss in the bilateral medial frontal lobes involving the medial frontal gyrus (MFG) and the anterior cingulate gyrus (ACG). In an assessment of cortical neuron loss in the frontal medial cortex using the stereotactic extraction estimation (SEE) method (level 3), significant cortical neuron loss was observed within bilateral MFG in 9 patients and unilateral MFG in 4, and bilateral ACG in 12 and unilateral ACG in 3. Fourteen patients showed significant cortical neuron loss in bilateral MFG or ACG. In patients with MTBI, HBD seemed to correlate with selective cortical neuron loss within the bilateral MFG or ACG where the responsible lesion could be. 3D-SSP and SEE level 3 analysis for (123)I-IMZ SPECT could be valuable for diagnostic imaging of HBD after MTBI.

  12. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    Science.gov (United States)

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  13. Frontal brain dysfunction in alcoholism with and without antisocial personality disorder

    Directory of Open Access Journals (Sweden)

    Marlene Oscar-Berman

    2009-05-01

    Full Text Available Marlene Oscar-Berman1,2, Mary M Valmas1,2, Kayle s Sawyer1,2, Shalene M Kirkley1, David A Gansler3, Diane Merritt1,2, Ashley Couture11Department of Veterans Affairs Healthcare System, Boston Campus, Boston, MA, USA; 2Boston University School of Medicine, Boston, MA, USA; 3Suffolk University, Boston, MA, USAAbstract: Alcoholism and antisocial personality disorder (ASPD often are comorbid conditions. Alcoholics, as well as nonalcoholic individuals with ASPD, exhibit behaviors associated with prefrontal brain dysfunction such as increased impulsivity and emotional dysregulation. These behaviors can influence drinking motives and patterns of consumption. Because few studies have investigated the combined association between ASPD and alcoholism on neuropsychological functioning, this study examined the influence of ASPD symptoms and alcoholism on tests sensitive to frontal brain deficits. The participants were 345 men and women. Of them, 144 were abstinent alcoholics (66 with ASPD symptoms, and 201 were nonalcoholic control participants (24 with ASPD symptoms. Performances among the groups were examined with Trails A and B tests, the Wisconsin Card Sorting Test, the Controlled Oral Word Association Test, the Ruff Figural Fluency Test, and Performance subtests of the Wechsler Adult Intelligence Scale. Measures of affect also were obtained. Multiple regression analyses showed that alcoholism, specific drinking variables (amount and duration of heavy drinking, and ASPD were significant predictors of frontal system and affective abnormalities. These effects were different for men and women. The findings suggested that the combination of alcoholism and ASPD leads to greater deficits than the sum of each.  Keywords: alcoholism, antisocial personality disorder (ASPD, frontal brain system, neuropsychological deficits, reward system

  14. Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: two case reports

    Science.gov (United States)

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2010-02-01

    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

  15. Brain ultrasonographic findings of late-onset circulatory dysfunction due to adrenal insufficiency in preterm infants

    Directory of Open Access Journals (Sweden)

    Su-Mi Shin

    2016-07-01

    Full Text Available Purpose: The aim of this study was to characterize the brain ultrasonographic findings of late-onset circulatory dysfunction (LCD due to adrenal insufficiency (AI in preterm infants. Methods: Among the 257 preterm infants born at <33 weeks of gestation between December 2009 and February 2014 at our institution, 35 preterm infants were diagnosed with AI. Brain ultrasonographic findings were retrospectively analyzed before and after LCD in 14 preterm infants, after exclusion of the other 21 infants with AI due to the following causes: death (n=2, early AI (n=5, sepsis (n=1, and patent ductus arteriosus (n=13. Results: Fourteen of 257 infants (5.4% were diagnosed with LCD due to AI. The age at LCD was a median of 18.5 days (range, 9 to 32 days. The last ultrasonographic findings before LCD occurred showed grade 1 periventricular echogenicity (PVE in all 14 patients and germinal matrix hemorrhage (GMH with focal cystic change in one patient. Ultrasonographic findings after LCD demonstrated no significant change in grade 1 PVE and no new lesions in eight (57%, grade 1 PVE with newly appearing GMH in three (21%, and increased PVE in three (21% infants. Five infants (36% showed new development (n=4 or increased size (n=1 of GMH. Two of three infants (14% with increased PVE developed cystic periventricular leukomalacia (PVL and rapid progression to macrocystic encephalomalacia. Conclusion: LCD due to AI may be associated with the late development of GMH, increased PVE after LCD, and cystic PVL with rapid progression to macrocystic encephalomalacia.

  16. Computed tomographic findings in the pituitary gland and brain of horses with pituitary pars intermedia dysfunction.

    Science.gov (United States)

    Pease, A P; Schott, H C; Howey, E B; Patterson, J S

    2011-01-01

    Pituitary pars intermedia dysfunction (PPID) is the most common endocrinologic disorder of aged horses. Pituitary glands of PPID-affected horses are larger than those of aged horses without signs of PPID, and the size difference can be detected using computed tomography (CT) imaging. Eight horses with clinical signs of PPID and supportive endocrinologic test results and 3 aged control (PPID-negative) horses. Computed tomography examination of the brain and pituitary gland was performed twice in 10 of the 11 horses, approximately 6 months apart. Six PPID-affected horses were treated with pergolide for 6 months between CT scans. The second CT scan was followed by euthanasia and pathologic examination of 6 PPID-affected horses (4 treated horses). On initial examination, pituitary glands of PPID-affected horses were larger in height (P pituitary gland length increased (P pituitary gland measurements made at the terminal CT scans and necropsy. Furthermore, pituitary gland volume calculated from the measurements was highly correlated to pituitary gland weight. Additional CT findings were bilaterally symmetrical mineralization in the thalamus and cholesterol granulomas adjacent to the lateral and fourth ventricles. CT is a useful imaging modality to determine pituitary gland size of PPID-affected horses,and CT measurements are similar to gross pathologic measurements. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  17. Minimal brain dysfunction/specific learning disability: a clinical approach for the primary physician.

    Science.gov (United States)

    Levy, H B

    1976-05-01

    Minimal brain dysfunction is a neurodevelopmental disorder which can be found in nearly 20% of school children. It is characterized by evidences of immaturity involving control of activity, emotions, and behavior, and by specific learning disabilities involving the communicating skills needed in reading, writing, and mathematics. The prime deficits in the classroom are an inability to maintain attention and concentration and an inability to skillfully blend the auditory and visual functions essential in language performance. Medical evaluation will reveal many of the "soft signs" of neurologic involvement, and educational appraisal will indicate a wide scatter in testing scores with a marked discrepancy between evaluated potential and actual classroom achievement. Remedial efforts directed at early detection, relief from pressure and unjust punishment or ridicule from parents and teachers, and adjustment of the educational environment with consideration of the child's individual talents, combined with the judicious use of medications to prolong attention span and improve neurodevelopmental maturity, hold promise of improving the lot of most involved children. There are valid indications that expansion of such programs can do much to prevent these youngsters from developing severe personality maladjustment and delinquent behavior, as well as emotional illness in later life.

  18. Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans.

    Science.gov (United States)

    Donahue, Deborah L; Beck, Julia; Fritz, Braxton; Davis, Patrick; Sandoval-Cooper, Mayra J; Thomas, Scott G; Yount, Robert A; Walsh, Mark; Ploplis, Victoria A; Castellino, Francis J

    2014-02-15

    Acute coagulopathy is a serious complication of traumatic brain injury (TBI) and is of uncertain etiology because of the complex nature of TBI. However, recent work has shown a correlation between mortality and abnormal hemostasis resulting from early platelet dysfunction. The aim of the current study was to develop and characterize a rodent model of TBI that mimics the human coagulopathic condition so that mechanisms of the early acute coagulopathy in TBI can be more readily assessed. Studies utilizing a highly reproducible constrained blunt-force brain injury in rats demonstrate a strong correlation with important postinjury pathological changes that are observed in human TBI patients, namely, diminished platelet responses to agonists, especially adenosine diphosphate (ADP), and subarachnoid bleeding. Additionally, administration of a direct thrombin inhibitor, preinjury, recovers platelet functionality to ADP stimulation, indicating a direct role for excess thrombin production in TBI-induced early platelet dysfunction.

  19. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  20. Protective effects of Ginkgo biloba leaf extract on model rats of brain dysfunction induced by aluminum salt

    Institute of Scientific and Technical Information of China (English)

    Qi-haiGONG; QinWU; Dan-liYANG; Xie-nanHUANG; An-shengSUN; Jing-shanSHI

    2004-01-01

    AIM: To examine the protective effects of Ginkgo biloba leaf extract (GbE) on the learning and memory in brain dysfunction model induced by aluminum salt in rats, and to investigate potential mechanisms. METHODS: Wistar rats were given daily aluminum chloride 500 mg·kg·d-1 ig, for one month, followed by continuous exposure via the drinking water containing 1600 ppm

  1. Increased brain and atrial natriuretic peptides in patients with chronic right ventricular pressure overload : correlation between plasma neurohormones and right ventricular dysfunction

    NARCIS (Netherlands)

    Tulevski, I.I.; Groenink, M; van der Wall, EE; van Veldhuisen, DJ; Boomsma, F; Hirsch, A; Lemkes, JS; Mulder, BJM; Stoker, J

    Objective-To evaluate the role of plasma neurohormones in the diagnosis of asymptomatic or minimally symptomatic right ventricular dysfunction. Setting-Tertiary cardiovascular referral centre. Methods-Plasma brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP) concentrations were

  2. Validation of the Vertical Heterophoria Symptom Questionnaire (VHS-Q) In Patients with Balance Problems and Binocular Visual Dysfunction after Acquired Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine; Teasdale, Thomas William; Arendt Rasmussen, Morten

    2016-01-01

    Trine Schow, Thomas William Teasdale and Morten Arendt Rasmussen Validation of the Vertical Heterophoria Symptom Questionnaire (VHS-Q) In Patients with Balance Problems and Binocular Visual Dysfunction after Acquired Brain Injury. SOJ Psychology (in Press)......Trine Schow, Thomas William Teasdale and Morten Arendt Rasmussen Validation of the Vertical Heterophoria Symptom Questionnaire (VHS-Q) In Patients with Balance Problems and Binocular Visual Dysfunction after Acquired Brain Injury. SOJ Psychology (in Press)...

  3. Validation of the Vertical Heterophoria Symptom Questionnaire (VHS-Q) In Patients with Balance Problems and Binocular Visual Dysfunction after Acquired Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine; Teasdale, Thomas William; Arendt Rasmussen, Morten

    2016-01-01

    Trine Schow, Thomas William Teasdale and Morten Arendt Rasmussen Validation of the Vertical Heterophoria Symptom Questionnaire (VHS-Q) In Patients with Balance Problems and Binocular Visual Dysfunction after Acquired Brain Injury. SOJ Psychology (in Press)......Trine Schow, Thomas William Teasdale and Morten Arendt Rasmussen Validation of the Vertical Heterophoria Symptom Questionnaire (VHS-Q) In Patients with Balance Problems and Binocular Visual Dysfunction after Acquired Brain Injury. SOJ Psychology (in Press)...

  4. Pituitary dysfunction in traumatic brain injury: Is evaluation in the acute phase worthwhile?

    Science.gov (United States)

    Dalwadi, Pradip P.; Bhagwat, Nikhil M.; Tayde, Parimal S.; Joshi, Ameya S.; Varthakavi, Premlata K.

    2017-01-01

    Introduction: Traumatic brain injury (TBI) is an under-recognized cause of hypopituitarism. According to recent data, it could be more frequent than previously known. However, there is a scarcity of data in Indian population. Aims: The main aim of the study was to determine the prevalence of pituitary hormone deficiencies in the acute phase of TBI. The secondary objectives were to correlate the severity of trauma with basal hormone levels and to determine whether initial hormone deficiencies predict mortality. Subjects and Methods: Forty-nine TBI patients (41 men and 8 women) were included in this study. Pituitary functions were evaluated within 24 h of admission. Results: Gonadotropin deficiency was found in 65.3% patient while 46.9% had low insulin-like growth factor-1, 12.24% had cortisol level <7 mcg/dl. Cortisol and prolactin level were positively correlated with the severity of TBI suggestive of stress response. Free triiodothyronine (fT3) and free thyroxine were significantly lower in patients with increasing severity of tuberculosis. Logistic regression analysis revealed that mortality after TBI was unrelated to the basal pituitary hormone levels except low T3 level, which was found to be positively related to mortality. Conclusions: Pituitary dysfunction is common after TBI and the most commonly affected axes are growth hormone and gonadotropin axis. Low fT3 correlates best with mortality. During the acute phase of TBI, at least an assessment of cortisol is vital as undetected cortisol deficiency can be life-threatening PMID:28217503

  5. Pituitary dysfunction in traumatic brain injury: Is evaluation in the acute phase worthwhile?

    Directory of Open Access Journals (Sweden)

    Pradip P Dalwadi

    2017-01-01

    Full Text Available Introduction: Traumatic brain injury (TBI is an under-recognized cause of hypopituitarism. According to recent data, it could be more frequent than previously known. However, there is a scarcity of data in Indian population. Aims: The main aim of the study was to determine the prevalence of pituitary hormone deficiencies in the acute phase of TBI. The secondary objectives were to correlate the severity of trauma with basal hormone levels and to determine whether initial hormone deficiencies predict mortality. Subjects and Methods: Forty-nine TBI patients (41 men and 8 women were included in this study. Pituitary functions were evaluated within 24 h of admission. Results: Gonadotropin deficiency was found in 65.3% patient while 46.9% had low insulin-like growth factor-1, 12.24% had cortisol level <7 mcg/dl. Cortisol and prolactin level were positively correlated with the severity of TBI suggestive of stress response. Free triiodothyronine (fT3 and free thyroxine were significantly lower in patients with increasing severity of tuberculosis. Logistic regression analysis revealed that mortality after TBI was unrelated to the basal pituitary hormone levels except low T3 level, which was found to be positively related to mortality. Conclusions: Pituitary dysfunction is common after TBI and the most commonly affected axes are growth hormone and gonadotropin axis. Low fT3 correlates best with mortality. During the acute phase of TBI, at least an assessment of cortisol is vital as undetected cortisol deficiency can be life-threatening

  6. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction

    Directory of Open Access Journals (Sweden)

    Muriel Anne Lobier

    2014-07-01

    Full Text Available The visual attention (VA span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT in dyslexia have yet to be explored. Using fMRI, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric, similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined ROI, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity could predict vOT activity in each group. In the left hemisphere, SPL activity modulated vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity modulated vOT activity only for dyslexic readers. These results bring critical support to the visual attention interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.

  7. Influenza virus pathophysiology and brain invasion in mice with functional and dysfunctional Mx1 genes.

    Science.gov (United States)

    Hodgson, Nicole R; Bohnet, Stewart G; Majde, Jeannine A; Krueger, James M

    2012-01-01

    Mice with a dysfunctional myxovirus resistance-1 (dMx1) gene transport intranasally-instilled PR8 influenza virus to the olfactory bulb (OB) within 4 h post-infection. To determine if the presence of a functional Mx1 (fMx1) gene would influence this brain viral localization and/or disease, we infected mature C57BL/6 dMx1 and fMx1 mice under the same conditions and observed sickness behaviors, viral nucleoprotein (NP) RNA expression and innate immune mediator (IIM) mRNA expression in selected tissues at 15 and 96 h post-infection. Virus invaded the OB and lungs comparably in both sub-strains at 15 and 96 h as determined by nested PCR. In contrast, virus was present in blood and somatosensory cortex of dMx1, but not fMx1 mice at 96 h. At 15 h, sickness behaviors were comparable in both sub-strains. By 96 h dMx1, but not fMx1, were moribund. In both 15 and 96 h lungs, viral NP was significantly elevated in the dMx1 mice compared to the fMx1 mice, as determined by quantitative PCR. OB expression of most IIM mRNAs was similar at both time periods in both sub-strains. In contrast, lung IIM mRNAs were elevated in fMx1 at 15 h, but by 96 h were consistently reduced compared to dMx1 mice. In conclusion, functional Mx1 did not alter OB invasion by virus but attenuated illness compared to dMx1 mice. Inflammation was similar in OBs and lungs of both strains at 15 h but by 96 h it was suppressed in lungs, but not in OBs, of fMx1 mice.

  8. Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases.

    Science.gov (United States)

    Mattis, Paul J; Niethammer, Martin; Sako, Wataru; Tang, Chris C; Nazem, Amir; Gordon, Marc L; Brandt, Vicky; Dhawan, Vijay; Eidelberg, David

    2016-11-01

    To determine whether cognitive impairment in Parkinson disease (PD) and Alzheimer disease (AD) derives from the same network pathology. We analyzed (18)F-fluorodeoxyglucose PET scans from 40 patients with AD and 40 age-matched healthy controls from the Alzheimer's Disease Neuroimaging Initiative and scanned an additional 10 patients with AD and 10 healthy controls at The Feinstein Institute for Medical Research to derive an AD-related metabolic pattern (ADRP) analogous to our previously established PD cognition-related pattern (PDCP) and PD motor-related pattern (PDRP). We computed individual subject expression values for ADRP and PDCP in 89 patients with PD and correlated summary scores for cognitive functioning with network expression. We also evaluated changes in ADRP and PDCP expression in a separate group of 15 patients with PD scanned serially over a 4-year period. Analysis revealed a significant AD-related metabolic topography characterized by covarying metabolic reductions in the hippocampus, parahippocampal gyrus, and parietal and temporal association regions. Expression of ADRP, but not PDCP, was elevated in both AD groups and correlated with worse cognitive summary scores. Patients with PD showed slight ADRP expression, due to topographic overlap with the network underlying PD motor-related pattern degeneration, but only their PDCP expression values increased as cognitive function and executive performance declined. Longitudinal data in PD disclosed an analogous dissociation of network expression. Cognitive dysfunction in PD is associated with a specific brain network that is largely spatially and functionally distinct from that seen in relation to AD. © 2016 American Academy of Neurology.

  9. Symptoms of gonadal dysfunction are more predictive of hypopituitarism than nonspecific symptoms in screening for pituitary dysfunction following moderate or severe traumatic brain injury.

    Science.gov (United States)

    Cuesta, Martín; Hannon, Mark J; Crowley, Rachel K; Behan, Lucy Ann; Tormey, William; Rawluk, Daniel; Delargy, Mark; Agha, Amar; Thompson, Christopher J

    2016-01-01

    The economic and logistic burden of screening for hypopituitarism following moderate/severe traumatic brain injury (TBI) is considerable. A key recommendation in published guidelines is to prioritize for screening those patients with symptoms suggestive of pituitary dysfunction. The purpose of this study was to evaluate the utility of targeted screening for hypopituitarism in long-term survivors after moderate/severe TBI using referrals on the basis of symptoms. In group 1 (G1), consecutive, unselected patients were screened from the Irish National Neurosurgery Centre, whereas in group 2 (G2) patients were targeted based on the presence of symptoms suggestive of pituitary dysfunction. A total of 137 patients (113 male) were systematically screened (G1) and compared to 112 patients (77 male) referred for pituitary evaluation on the basis of suggestive symptoms (G2). The rate of GH, ACTH, gonadotrophin (GT), TSH and ADH deficiency was compared among groups. Patients referred with menstrual dysfunction had more GH (50% vs 11%, P = 0·001), ACTH (60% vs 14%, P < 0·0001), GT (90% vs 16%, P < 0·0001) deficiency and any pituitary hormone deficit (80% vs 33%, P = 0·003) than G1. Men with symptoms of hypogonadism had more GH (33% vs 11%, P = 0·003), GT (58% vs 16%, P < 0·0001) and TSH (16% vs 1%, P = 0·03) deficiency than G1. Patients with nonspecific symptoms were no more likely to have hypopituitarism than those consecutively screened. Symptoms of hypogonadism are sufficiently predictive of hypopituitarism to justify screening for hypopituitarism after moderate/severe TBI. Nonspecific symptoms of hypopituitarism are no more predictive than unselected screening. © 2015 John Wiley & Sons Ltd.

  10. Effect of hypercarbia and isoflurane on brain cell death and neurocognitive dysfunction in 7-day-old rats.

    Science.gov (United States)

    Stratmann, Greg; May, Laura D V; Sall, Jeffrey W; Alvi, Rehan S; Bell, Joseph S; Ormerod, Brandi K; Rau, Vinuta; Hilton, Joan F; Dai, Ran; Lee, Michael T; Visrodia, Kavel H; Ku, Ban; Zusmer, Emanuel J; Guggenheim, Jeremy; Firouzian, Atoosa

    2009-04-01

    Millions of neonates undergo anesthesia each year. Certain anesthetic agents cause brain cell death and long-term neurocognitive dysfunction in postnatal day (P)7 rats. Despite its intuitive appeal, a causal link between cell death and neurocognitive decline after anesthesia has not been established. If one existed, the degree of cell death would be expected to correlate with the degree of neurocognitive dysfunction caused by anesthesia. The authors therefore tested if cell death caused by various durations of isoflurane at 1 minimum alveolar concentration causes duration-dependent long-term neurocognitive dysfunction. Isoflurane was administered to P7 rats at 1 minimum alveolar concentration for 0, 1, 2, or 4 h. To control for the respiratory depressant effects of anesthesia, a group of rats was treated with 4 h of carbon dioxide. Cell death was assessed by FluoroJade staining 12 h after the end of each intervention, and neurocognitive outcome was assessed 8 weeks later by using fear conditioning, spatial reference memory, and spatial working memory tasks. Widespread brain cell death was caused by 2 h and 4 h of isoflurane and by 4 h of carbon dioxide. The degree and distribution of thalamic cell death was similar in 4 h isoflurane-treated and 4-h carbon dioxide-treated rats. Only 4 h of isoflurane caused a long-term neurocognitive deficit affecting both spatial reference memory and spatial working memory. Working memory was improved in carbon dioxide-treated rats. Isoflurane-induced brain cell death may be partly caused by hypercarbia. The inconsistencies between cell death and neurocognitive outcome suggest that additional or alternative mechanisms may mediate anesthesia-induced long-term neurocognitive dysfunction.

  11. YiQiFuMai powder injection ameliorates blood-brain barrier dysfunction and brain edema after focal cerebral ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People's Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood-brain barrier (BBB) dysfunction induced by cerebral ischemia-reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins.

  12. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage - in "Endocrine Management in the Intensive Care Unit".

    LENUS (Irish Health Repository)

    Hannon, M J

    2012-02-01

    Traumatic brain injury and subarachnoid haemorrhage are important causes of morbidity and mortality in the developed world. There is a large body of evidence that demonstrates that both conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in both traumatic brain injury and subarachnoid haemorrhage. In this article, we will review the history and pathophysiology of pituitary function in the acute phase following traumatic brain injury and subarachnoid haemorrhage, and we will discuss in detail three key aspects of pituitary dysfunction which occur in the early course of TBI; acute cortisol deficiency, diabetes insipidus and SIAD.

  13. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage - in "Endocrine Management in the Intensive Care Unit".

    Science.gov (United States)

    Hannon, M J; Sherlock, M; Thompson, C J

    2011-10-01

    Traumatic brain injury and subarachnoid haemorrhage are important causes of morbidity and mortality in the developed world. There is a large body of evidence that demonstrates that both conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in both traumatic brain injury and subarachnoid haemorrhage. In this article, we will review the history and pathophysiology of pituitary function in the acute phase following traumatic brain injury and subarachnoid haemorrhage, and we will discuss in detail three key aspects of pituitary dysfunction which occur in the early course of TBI; acute cortisol deficiency, diabetes insipidus and SIAD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

    Science.gov (United States)

    De Filippis, Bianca; Valenti, Daniela; Chiodi, Valentina; Ferrante, Antonella; de Bari, Lidia; Fiorentini, Carla; Domenici, Maria Rosaria; Ricceri, Laura; Vacca, Rosa Anna; Fabbri, Alessia; Laviola, Giovanni

    2015-06-01

    Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.

  15. Systemic platelet dysfunction is the result of local dysregulated coagulation and platelet activation in the brain in a rat model of isolated traumatic brain injury.

    Science.gov (United States)

    Ploplis, Victoria A; Donahue, Deborah L; Sandoval-Cooper, Mayra J; MorenoCaffaro, Maria; Sheets, Patrick; Thomas, Scott G; Walsh, Mark; Castellino, Francis J

    2014-10-01

    Coagulopathy after severe traumatic brain injury (TBI) has been extensively reported. Clinical studies have identified a strong relationship between diminished platelet-rich thrombus formation, responsiveness to adenosine diphosphate agonism, and severity of TBI. The mechanisms that lead to platelet dysfunction in the acute response to TBI are poorly understood. The development of a rodent model of TBI that mimics the coagulopathy observed clinically has recently been reported. Using immunohistochemical techniques and thromboelastography platelet mapping, the current study demonstrated that the expression of coagulation (tissue factor and fibrin) and platelet activation (P-selectin) markers in the injured brain paralleled the alteration in systemic platelet responsiveness to the agonists, adenosine diphosphate and arachodonic acid. Results of this study demonstrate that local procoagulant changes in the injured brain have profound effects on systemic platelet function.

  16. YiQiFuMai powder injection ameliorates blood–brain barrier dysfunction and brain edema after focal cerebral ischemia–reperfusion injury in mice

    Directory of Open Access Journals (Sweden)

    Cao GS

    2016-01-01

    Full Text Available Guosheng Cao, Xinyi Ye, Yingqiong Xu, Mingzhu Yin, Honglin Chen, Junping Kou, Boyang Yu Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: YiQiFuMai powder injection (YQFM is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB dysfunction induced by cerebral ischemia–reperfusion (I/R injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg was then given intraperitoneally (IP. The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1 and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins. Keywords: YiQiFuMai powder injection, YQFM, ischemic stroke, blood–brain barrier, microvascular permeability, tight junctions

  17. Brain dysfunction in psychiatric patients during music perception measured by EEG mapping: relation to motor dysfunction and influence of neuroleptic drugs.

    Science.gov (United States)

    Günther, W; Steinberg, R; Streck, P; Banquet, J P; Bscheid, I; Raith, L; Riedel, R; Klages, U; Stiltz, I

    1991-05-01

    We report here our findings on music perception obtained as a companion study to the investigation with 16-channel EEG mapping in psychiatric patients during motor activation, published recently elsewhere. We decided to add on a study of this functional circuit, since there is evidence that it is disturbed in various psychiatric patient groups (another "functio laesa"). Involved in the study were 23 male and 25 female schizophrenics, 11 male and 18 female non-endogenously depressed patients (not presently under medication, i.e. drug-naive or wash-out period from 1 week to 17 years), 26 male and 37 female endogenously depressed patients (medicated with tri- or tetracyclic antidepressants and/or benzodiazepines; no lithium), and 22 male and 17 female control subjects (i.e. n = 179). We compared resting conditions after a special relaxation procedure with three music perception tasks: (1) a standardised rumba rhythm generated by a keyboard and delivered binaurally by earphones, (2) the same as an arpeggio in D major, and (3) the same as an arpeggio with a tonic-subdominant-dominant cadence. Major results were obtained in the delta and alpha frequency bands, yielding signs of "diffuse hyperactivation", most prominent in schizophrenic males, and not observed to a similar extent in any other patient group or in normal controls. Interestingly, there were major sex differences, yielding a more diffuse EEG activation pattern in normal females than in males and thus possibly obscuring signs of brain function diffusion in female patients. Viewing our broader evidence of similar brain dysfunction when examining motor functional circuits, especially in schizophrenics, these findings provide further evidence of a brain disorganization with lack of laterality/diffusion which may be found in subgroups of these patients and not in other psychiatric disorders. In schizophrenic patients, these EEG signs of "diffuse hyperactivation" on simple motor and/or music stimulation were

  18. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant?

    Directory of Open Access Journals (Sweden)

    Gesa eWeise

    2012-12-01

    Full Text Available Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain (BBB or blood nerve barrier (BNB preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd-DTPA-enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO and perfluorocarbons (PFC enable assessment of leukocyte (mainly macrophage infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis (MS, cerebral ischemia and traumatic nerve injury and review corresponding findings in patients.

  19. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant?

    Science.gov (United States)

    Weise, Gesa; Stoll, Guido

    2012-01-01

    Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain barrier (BBB) or blood nerve barrier (BNB) preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI) as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf) allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd)-DTPA enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO) and perfluorocarbons enable assessment of leukocyte (mainly macrophage) infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis, cerebral ischemia, and traumatic nerve injury and review corresponding findings in patients.

  20. Brain Dysplasia Associated with Ciliary Dysfunction in Infants with Congenital Heart Disease.

    Science.gov (United States)

    Panigrahy, Ashok; Lee, Vincent; Ceschin, Rafael; Zuccoli, Giulio; Beluk, Nancy; Khalifa, Omar; Votava-Smith, Jodie K; DeBrunner, Mark; Munoz, Ricardo; Domnina, Yuliya; Morell, Victor; Wearden, Peter; Sanchez De Toledo, Joan; Devine, William; Zahid, Maliha; Lo, Cecilia W

    2016-11-01

    To test for associations between abnormal respiratory ciliary motion (CM) and brain abnormalities in infants with congenital heart disease (CHD) STUDY DESIGN: We recruited 35 infants with CHD preoperatively and performed nasal tissue biopsy to assess respiratory CM by videomicroscopy. Cranial ultrasound scan and brain magnetic resonance imaging were obtained pre- and/or postoperatively and systematically reviewed for brain abnormalities. Segmentation was used to quantitate cerebrospinal fluid and regional brain volumes. Perinatal and perioperative clinical variables were collected. A total of 10 (28.5%) patients with CHD had abnormal CM. Abnormal CM was not associated with brain injury but was correlated with increased extraaxial cerebrospinal fluid volume (P dysplasia including the hippocampus (P dysplasia score (P dysplasia. These findings suggest that ciliary defects may play a role in brain dysplasia in patients with CHD and have the potential to prognosticate neurodevelopmental risks. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evaluation of an Acute RNAi-Mediated Therapeutic for Visual Dysfunction Associated with Traumatic Brain Injury

    Science.gov (United States)

    2013-10-01

    brain injury (TBI) is the leading cause of death in children and young adults globally. Malignant cerebral edema plays a major role in the...pathophysiology which evolves after severe TBI. Added to this is the significant morbidity and mortality from cerebral edema associated with acute stroke...hypoxic ischemic coma, neurological cancers and brain infection. Therapeutic strategies to prevent cerebral edema are limited and if brain swelling

  2. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    Science.gov (United States)

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  3. Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent.

    Science.gov (United States)

    Choi, S I; Ju, W K; Choi, E K; Kim, J; Lea, H Z; Carp, R I; Wisniewski, H M; Kim, Y S

    1998-09-01

    Scrapie, one of the prion diseases, is a transmissible neurodegenerative disease of sheep and other animals. Clinical symptoms of prion diseases are characterized by a long latent period, followed by progressive ataxia, tremor, and death. To study the induction of neurodegeneration during scrapie infection, we have analyzed the activities of various antioxidant enzymes and mitochondrial enzymes in cerebral cortex, brain stem, and cerebellum of scrapie-infected hamsters. The activity of mitochondrial Mn-superoxide dismutase (SOD) was decreased, while the activities of cytosolic Cu/Zn-SOD and catalase were not altered in infected brains. The activities of glutathione peroxidase and glutathione reductase were increased in scrapie-infected hamsters. The decreased activity of Mn-SOD might result in increasing oxidative stress in the mitochondria of infected brain; this concept is supported by our findings of a high level of lipid peroxidation, and low levels of ATPase and cytochrome c oxidase activity in the infected cerebral mitochondria. In addition, structural abnormalities of mitochondria have been observed in the neurons of hippocampus and cerebral cortex of infected brain. These results suggest that mitochondrial dysfunction caused by oxidative stress gives rise to neurodegeneration in prion disease.

  4. Restoration of dietary-fat induced blood–brain barrier dysfunction by anti-inflammatory lipid-modulating agents

    Directory of Open Access Journals (Sweden)

    Pallebage-Gamarallage Menuka

    2012-09-01

    Full Text Available Abstract Background Several studies have identified use of non-steroidal-anti-inflammatory drugs and statins for prevention of dementia, but their efficacy in slowing progression is not well understood. Cerebrovascular disturbances are common pathological feature of Alzheimer’s disease. We previously reported chronic ingestion of saturated fatty acids (SFA compromises blood–brain barrier (BBB integrity resulting in cerebral extravasation of plasma proteins and inflammation. However, the SFA-induced parenchymal accumulation of plasma proteins could be prevented by co-administration of some cholesterol lowering agents. Restoration of BBB dysfunction is clinically relevant, so the purpose of this study was to explore lipid-lowering agents could reverse BBB disturbances induced by chronic ingestion of SFA’s. Methods Wild-type mice were fed an SFA diet for 12 weeks to induce BBB dysfunction, and then randomised to receive atorvastatin, pravastatin or ibuprofen in combination with the SFA-rich diet for 2 or 8 weeks. Abundance of plasma-derived immunoglobulin-G (IgG and amyloid-β enriched apolipoprotein (apo-B lipoproteins within brain parenchyme were quantified utilising immunofluorescence microscopy. Results Atorvastatin treatment for 2 and 8 weeks restored BBB integrity, indicated by a substantial reduction of IgG and apo B, particularly within the hippocampus. Pravastatin, a water-soluble statin was less effective than atorvastatin (lipid-soluble. Statin effects were independent of changes in plasma lipid homeostasis. Ibuprofen, a lipid-soluble cyclooxygenase inhibitor attenuated cerebral accumulation of IgG and apo B as effectively as atorvastatin. Our findings are consistent with the drug effects being independent of plasma lipid homeostasis. Conclusion Our findings suggest that BBB dysfunction induced by chronic ingestion of SFA is reversible with timely introduction and sustained treatment with agents that suppress inflammation.

  5. Rehabilitation of Visual and Perceptual Dysfunction after Severe Traumatic Brain Injury

    Science.gov (United States)

    2014-05-01

    camera, operator monitor, chinrest/headrest assembly, and adjustable height table and chair (Fig 3). The patient’s head is held at 45 cm from the screen...ability to walk or self ambulate wheelchair , no severe vertigo or vestibular 11 dysfunction, no history of seizures in prior 3 months, and willingness

  6. Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats

    NARCIS (Netherlands)

    Hovens, Iris B.; van Leeuwen, Barbara L.; Nyakas, Csaba; Heineman, Erik; van der Zee, Eddy A.; Schoemaker, Regien G.

    2015-01-01

    Research indicates that neuroinflammation plays a major role in postoperative cognitive dysfunction (POCD) in older patients. However, studies have mainly focused on hippocampal neuroinflammation and hippocampal-dependent learning and memory, which does not cover the whole spectrum of POCD. We hypot

  7. Executive dysfunctions and event-related brain potentials in patients with amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Caroline eSeer

    2015-12-01

    Full Text Available A growing body of evidence implies psychological disturbances in amyotrophic lateral sclerosis (ALS. Specifically, executive dysfunctions occur in up to 50% of ALS patients. The recently shown presence of cytoplasmic aggregates (TDP-43 in ALS patients and in patients with behavioral variants of frontotemporal dementia suggests that these two disease entities form the extremes of a spectrum. The present study aimed at investigating behavioral and electrophysiological indices of conflict processing in patients with ALS. A non-verbal variant of the flanker task demanded two-choice responses to target stimuli that were surrounded by flanker stimuli which either primed the correct response or the alternative response (the latter case representing the conflict situation. Behavioral performance, event-related potentials (ERP, and lateralized readiness potentials (LRP were analyzed in 21 ALS patients and 20 controls. In addition, relations between these measures and executive dysfunctions were examined. ALS patients performed the flanker task normally, indicating preserved conflict processing. In similar vein, ERP and LRP indices of conflict processing did not differ between groups. However, ALS patients showed enhanced posterior negative ERP waveform deflections, possibly indicating increased modulation of visual processing by frontoparietal networks in ALS. We also found that the presence of executive dysfunctions was associated with more error-prone behavior and enhanced LRP amplitudes in ALS patients, pointing to a prefrontal pathogenesis of executive dysfunctions and to a potential link between prefrontal and motor cortical functional dysregulation in ALS, respectively.

  8. Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders.

    Science.gov (United States)

    Bañuelos-Cabrera, Ivette; Valle-Dorado, María Guadalupe; Aldana, Blanca Irene; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2014-11-01

    Blood-brain barrier (BBB) disruption has been associated with several acute and chronic brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. This represents a critical situation because damaged integrity of the BBB is related to the influx of immune mediators, plasma proteins and other outside elements from blood to the central nervous system (CNS) that may trigger a cascade of events that leads to neuroinflammation. In this review, evidence that mast cells and the release of factors such as histamine play an important role in the neuroinflammatory process associated with brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy is presented.

  9. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  10. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    Science.gov (United States)

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  11. Visual scanning and matching dysfunction in brain-damaged patients with drawing impairment.

    Science.gov (United States)

    Belleza, T; Rappaport, M; Hopkins, H K; Hall, K

    1979-03-01

    Visual matching and visual exploration were examined in 7 normal subjects and 20 brain-damaged patients with drawing impairment measured by the Bender Gestalt Visual-Motor Test. Right brain-damaged patients made significantly more errors of rotation and integration than left brain-damaged patients. Selecteded Bender figures were also used as stimuli for both visual matching and visual exploration tests. The ability to match Bender figures was found to be impaired in right but not left brain-damaged patients. All patients showed eye movement and fixation patterns different from those normals. Patients essentially had more fixations and shorter fixation durations. Significant intercorrelations were found between the total Bender Gestalt score and visual matching and visual exploration scores. These findings indicate that visual matching and visual exploration measures can be used to evaluate perceptual impairment in individuals who do not have adequate motor responses or where impaired motor responses may confound interpretations about visual cognitive impairment.

  12. Myocardial Dysfunction in Acute Traumatic Brain Injury Relieved by Surgical Decompression

    OpenAIRE

    Vijay Krishnamoorthy; Deepak Sharma; Sumidtra Prathep; Vavilala, Monica S.

    2013-01-01

    Traumatic brain injury (TBI) is a major public health issue and is a leading cause of death in North America. After a primary TBI, secondary brain insults can predispose patients to a worse outcome. One of the earliest secondary insults encountered during the perioperative period is hypotension, which has been directly linked to both mortality and poor disposition after TBI. Despite this, it has been shown that hypotension commonly occurs during surgery for TBI. We present a case of intraoper...

  13. Altered Brain Structure-Function Relationships Underlie Executive Dysfunction in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Jonas, Rachel K; Jalbrzikowski, Maria; Montojo, Caroline A; Patel, Arati; Kushan, Leila; Chow, Carolyn C; Vesagas, Therese; Bearden, Carrie E

    2015-12-01

    22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder associated with elevated rates of developmental neuropsychiatric disorders and impaired executive function (EF). Disrupted brain structure-function relationships may underlie EF deficits in 22q11DS. We administered the Behavior Rating Inventory of Executive Function (BRIEF) to assess real-world EF in patients with 22q11DS and matched controls (n = 86; age 6-17 years), along with cognitive measures that tap behavioral regulation and metacognition aspects of EF. Using FreeSurfer's whole-brain vertex cortical thickness pipeline, we investigated brain structure-EF relationships in patients with 22q11DS and controls. Behaviorally, patients with 22q11DS were impaired on multiple EF measures. Right orbitofrontal cortical thickness showed a differential relationship between real-world EF in patients with 22q11DS and controls. We also observed a group difference in the relationship between behavioral regulation and metacognition measures with thickness of ventral and dorsolateral prefrontal regions, respectively. Our findings suggest that executive dysfunction characteristic of 22q11DS is underscored by altered prefrontal cortical structure.

  14. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Brandi D Freeman

    2016-03-01

    Full Text Available Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.

  15. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Brandi D Freeman

    2016-03-01

    Full Text Available Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.

  16. Endomorphins and morphine limit anoxia-reoxygenation-induced brain mitochondrial dysfunction in the mouse.

    Science.gov (United States)

    Feng, Yun; Lu, Yingwei; Lin, Xin; Gao, Yanfeng; Zhao, Qianyu; Li, Wei; Wang, Rui

    2008-03-26

    The protection of brain mitochondria from oxidative stress is an important therapeutic strategy against ischemia-reperfusion injury and neurodegenerative disorders. Isolated brain mitochondria subjected to a 5 min period of anoxia followed by 5 min reoxygenation mirrored the effect of oxidative stress in the brain. The present study attempts to evaluate the protective effects of endomorphin 1 (EM1), endomorphin 2 (EM2), and morphine (Mor) in an in vitro mouse brain mitochondria anoxia-reoxygenation model. Endomorphins (EM1/2) and Mor were added to mitochondria prior to anoxia or reoxygenation. EM1/2 and Mor markedly improved mitochondrial respiratory activity with a decrease in state 4 and increases in state 3, respiratory control ratio (RCR) and the oxidative phosphorylation efficiency (ADP/O ratio), suggesting that they may play a protective role in mitochondria. These drugs inhibited alterations in mitochondrial membrane fluidity, lipoperoxidation, and cardiolipin (CL) release, which indicates protection of the mitochondrial membranes from oxidative damage. The protective effects of these drugs were concentration-dependent. Furthermore, these drugs blocked the enhanced release of cytochrome c (Cyt c), and consequently inhibited the cell apoptosis induced by the release of Cyt c. Our results suggest that EM1/2 and Mor effectively protect brain mitochondria against oxidative stresses induced by in vitro anoxia-reoxygenation and may play an important role in the prevention of deleterious effects during brain ischemia-reperfusion and neurodegenerative diseases.

  17. Metabolic Syndrome, Insulin Resistance and Cognitive Dysfunction: Does your metabolic profile affect your brain?

    DEFF Research Database (Denmark)

    Neergaard, Jesper S; Møller, Katrine Dragsbæk; Christiansen, Claus

    2017-01-01

    Dementia and type 2 diabetes are both characterized by long prodromal phases challenging the study of potential risk factors and their temporal relation. The progressive relation between metabolic syndrome, insulin resistance, and dementia has recently been questioned, wherefore the aim...... of this study was to assess the potential association between these precursors of type 2 diabetes and cognitive dysfunction. Using data from the Prospective Epidemiological Risk Factor study (n=2,103), a prospective study of elderly women in Denmark, we found that impaired fasting plasma glucose was associated...

  18. Glibenclamide pretreatment protects against chronic memory dysfunction and glial activation in rat cranial blast traumatic brain injury.

    Science.gov (United States)

    Stokum, Jesse A; Keledjian, Kaspar; Hayman, Erik; Karimy, Jason K; Pampori, Adam; Imran, Ziyan; Woo, Seung Kyoon; Gerzanich, Volodymyr; Simard, J Marc

    2017-08-30

    Blast traumatic brain injury (bTBI) affects both military and civilian populations, and often results in chronic deficits in cognition and memory. Chronic glial activation after bTBI has been linked with cognitive decline. Pharmacological inhibition of sulfonylurea receptor 1 (SUR1) with glibenclamide was shown previously to reduce glial activation and improve cognition in contusive models of CNS trauma, but has not been examined in bTBI. We postulated that glibenclamide would reduce chronic glial activation and improve long-term memory function after bTBI. Using a rat direct cranial model of bTBI (dc-bTBI), we evaluated the efficacy of two glibenclamide treatment paradigms: glibenclamide prophylaxis (pre-treatment), and treatment with glibenclamide starting after dc-bTBI (post-treatment). Our results show that dc-bTBI caused hippocampal astrocyte and microglial/macrophage activation that was associated with hippocampal memory dysfunction (rapid place learning paradigm) at 28days, and that glibenclamide pre-treatment, but not post-treatment, effectively protected against glial activation and memory dysfunction. We also report that a brief transient time-window of blood-brain barrier (BBB) disruption occurs after dc-bTBI, and we speculate that glibenclamide, which is mostly protein bound and does not normally traverse the intact BBB, can undergo CNS delivery only during this brief transient opening of the BBB. Together, our findings indicate that prophylactic glibenclamide treatment may help to protect against chronic cognitive sequelae of bTBI in warfighters and other at-risk populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Relationship of Intelligence and Cerebral Mantle in Treated Infantile Hydrocephalus (IQ Potential in Hydrocephalic Children)

    Science.gov (United States)

    Young, Harold F.; And Others

    1973-01-01

    Analyzed were 147 patients (between 3 and 20 years) with hydrocephalus (an accumulation of fluid in the brain) who had been treated by valve regulated ventriculovenous shunt to determine the relationship between early surgical intervention and later IQ. (DB)

  20. B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity

    Science.gov (United States)

    Klotz, Luisa; Kuzmanov, Ivan; Hucke, Stephanie; Gross, Catharina C.; Posevitz, Vilmos; Dreykluft, Angela; Schulte-Mecklenbeck, Andreas; Janoschka, Claudia; Lindner, Maren; Herold, Martin; Schwab, Nicholas; Ludwig-Portugall, Isis; Kurts, Christian; Meuth, Sven G.; Kuhlmann, Tanja; Wiendl, Heinz

    2016-01-01

    Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood–brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity. PMID:27671636

  1. Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Barry W. Festoff

    2017-01-01

    Full Text Available Current projections are that by 2050 the numbers of people aged 65 and older with Alzheimer’s disease (AD in the US may increase threefold while dementia is projected to double every 20 years reaching ~115 million by 2050. AD is clinically characterized by progressive dementia and neuropathologically by neuronal and synapse loss, accumulation of amyloid plaques, and neurofibrillary tangles (NFTs in specific brain regions. The preclinical or presymptomatic stage of AD-related brain changes may begin over 20 years before symptoms occur, making development of noninvasive biomarkers essential. Distinct from neuroimaging and cerebrospinal fluid biomarkers, plasma or serum biomarkers can be analyzed to assess (i the presence/absence of AD, (ii the risk of developing AD, (iii the progression of AD, or (iv AD response to treatment. No unifying theory fully explains the neurodegenerative brain lesions but neuroinflammation (a lethal stressor for healthy neurons is universally present. Current consensus is that the earlier the diagnosis, the better the chance to develop treatments that influence disease progression. In this article we provide a detailed review and analysis of the role of the blood-brain barrier (BBB and damage-associated molecular patterns (DAMPs as well as coagulation molecules in the onset and progression of these neurodegenerative disorders.

  2. Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns.

    NARCIS (Netherlands)

    Caeyenberghs, K.; Wenderoth, N.; Smits-Engelsman, B.C.M.; Sunaert, S.; Swinnen, S.P.

    2009-01-01

    Traumatic brain injury (TBI) is a common form of disability in children. Persistent deficits in motor control have been documented following TBI but there has been less emphasis on changes in functional cerebral activity. In the present study, children with moderate to severe TBI (n = 9) and control

  3. Mitochondrial oxidative stress and dysfunction induced by isoniazid : study on isolated rat liver and brain mitochondria

    NARCIS (Netherlands)

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Hajmohammadebrahimtehrani, K.|info:eu-repo/dai/nl/412608111; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the

  4. Mitochondrial oxidative stress and dysfunction induced by isoniazid : study on isolated rat liver and brain mitochondria

    NARCIS (Netherlands)

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Hajmohammadebrahimtehrani, K.; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2015-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the

  5. Glutaminase C overexpression in the brain induces learning deficits, synaptic dysfunctions, and neuroinflammation in mice.

    Science.gov (United States)

    Wang, Yi; Li, Yuju; Zhao, Runze; Wu, Beiqing; Lanoha, Blaise; Tong, Zenghan; Peer, Justin; Liu, Jianhui; Xiong, Huangui; Huang, Yunlong; Zheng, Jialin

    2017-06-15

    Glutaminolysis, a metabolic process that converts glutamine to glutamate, is particularly important for the central nervous system since glutamate is the major transmitter of excitatory synapses. Glutaminase is the mitochondrial enzyme that catalyzes the first step of glutaminolysis. Two genes encode at least four isoforms of glutaminase in humans. Gls1 gene encodes isoforms kidney-type glutaminase (KGA) and glutaminase C (GAC) through alternative splicing, whereas Gls2 gene encodes liver-type glutaminase isoforms. KGA and GAC have been associated with several neurological diseases. However, it remains unclear whether changes in their expressions can directly cause brain abnormalities. Using a transgenic approach, we generated mice that overexpressed GAC in the brain. The resulting transgenic mice had severe impairments in spatial and fear learning compared with littermate controls. The learning deficits were consistent with diminished hippocampal long-term potentiation in the hippocampal slices of the GAC transgenic mice. Furthermore, we found increases in astrocyte and microglia markers, inflammatory factors, and a decrease in synapse marker synaptophysin, suggesting neuroinflammation and synaptic changes in the GAC transgenic mouse brains. In conclusion, these findings provide the first evidence that GAC overexpression in the brain has deleterious effects on learning and synaptic integrity in vivo. Copyright © 2017. Published by Elsevier Inc.

  6. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    Directory of Open Access Journals (Sweden)

    Valérie Wolff

    2015-01-01

    Full Text Available Cannabis has potential therapeutic use but tetrahydrocannabinol (THC, its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities, Vsucc (complexes II, III, and IV activities, Vtmpd (complex IV activity, together with mitochondrial coupling (Vmax/V0, were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2 production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P<0.0001, Vsucc (−65%; P<0.0001, and Vtmpd (−3.5%; P<0.001. Mitochondrial coupling (Vmax/V0 was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P<0.001. Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P<0.05 and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P<0.001. Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient’s vulnerability to stroke.

  7. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD.

  8. Morinda citrifolia L.(noni) and memantine attenuate periventricular tissue injury of the fourth ventricle in hydrocephalic rabbits

    Institute of Scientific and Technical Information of China (English)

    Sibel K(o)ktürk; Süreyya Ceylan; Volkan Etus; Nezih Yasa; Sava(s) Ceylan

    2013-01-01

    This study was designed to evaluate the neuroprotective effects of Morinda citrifolia L. (Rubiaceae), commonly known as noni, and memantine (a N-methy-D-aspartate receptor inhibitor) on hydrocephalus-induced neurodegenerative disorders. Kaolin was injected into the cistern magna of male adult New Zealand rabbits to establish a hydrocephalus animal model. Memantine (20 mg/kg, intraperitoneally; memantine-treated group) or noni (5 mL/kg, intragastrically; noni-treated group) was administered daily for 2 weeks. Microtubule-associated protein-2 and caspase-3 immunohistochemistry were performed to detect neuronal degeneration and apoptosis in the periventricular tissue of the fourth ventricle of rabbits. Microtubule-associated protein-2 staining density was significantly decreased in the hydrocephalic group, while the staining density was significantly increased in the memantine- and noni-treated groups, especially in the noni-treated group. Noni treatment decreased the number of caspase-3-positive cells in rabbits with hydrocephalus, while memantine had no effect. These findings suggest that noni exhibits more obvious inhibitory effects on hydrocephalus-induced neurodegenerative disorders than memantine in periventricular tissue of the fourth ventricle.

  9. Morinda citrifolia L. (noni) and memantine attenuate periventricular tissue injury of the fourth ventricle in hydrocephalic rabbits.

    Science.gov (United States)

    Köktürk, Sibel; Ceylan, Süreyya; Etus, Volkan; Yasa, Nezih; Ceylan, Savaş

    2013-03-25

    This study was designed to evaluate the neuroprotective effects of Morinda citrifolia L. (Rubiaceae), commonly known as noni, and memantine (a N-methy-D-aspartate receptor inhibitor) on hydrocephalus-induced neurodegenerative disorders. Kaolin was injected into the cistern magna of male adult New Zealand rabbits to establish a hydrocephalus animal model. Memantine (20 mg/kg, intraperitoneally; memantine-treated group) or noni (5 mL/kg, intragastrically; noni-treated group) was administered daily for 2 weeks. Microtubule-associated protein-2 and caspase-3 immunohistochemistry were performed to detect neuronal degeneration and apoptosis in the periventricular tissue of the fourth ventricle of rabbits. Microtubule-associated protein-2 staining density was significantly decreased in the hydrocephalic group, while the staining density was significantly increased in the memantine- and noni-treated groups, especially in the noni-treated group. Noni treatment decreased the number of caspase-3-positive cells in rabbits with hydrocephalus, while memantine had no effect. These findings suggest that noni exhibits more obvious inhibitory effects on hydrocephalus-induced neurodegenerative disorders than memantine in periventricular tissue of the fourth ventricle.

  10. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.

    Science.gov (United States)

    Okazawa, H; Ikawa, M; Tsujikawa, T; Kiyono, Y; Yoneda, M

    2014-12-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases.

  11. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed.

    Science.gov (United States)

    Burk, Raymond F; Hill, Kristina E; Olson, Gary E; Weeber, Edwin J; Motley, Amy K; Winfrey, Virginia P; Austin, Lori M

    2007-06-01

    Selenoprotein P (Sepp1) is a plasma and extracellular protein that is rich in selenium. Deletion of Sepp1 results in sharp decreases of selenium levels in the brain and testis with dysfunction of those organs. Deletion of Sepp1 also causes increased urinary selenium excretion, leading to moderate depletion of whole-body selenium. The lipoprotein receptor apolipoprotein E receptor-2 (apoER2) binds Sepp1 and facilitates its uptake by Sertoli cells, thus providing selenium for spermatogenesis. Experiments were performed to assess the effect of apoER2 on the concentration and function of selenium in the brain and on whole-body selenium. ApoER2-/- and apoER2+/+ male mice were fed a semipurified diet with selenite added as the source of selenium. ApoER2-/- mice had depressed brain and testis selenium, but normal levels in liver, kidney, muscle, and the whole body. Feeding a selenium-deficient diet to apoER2-/- mice led to neurological dysfunction and death, with some of the characteristics exhibited by Sepp1-/- mice fed the same diet. Thus, although it does not affect whole-body selenium, apoER2 is necessary for maintenance of brain selenium and for prevention of neurological dysfunction and death under conditions of selenium deficiency, suggesting an interaction of apoER2 with Sepp1 in the brain.

  12. Dysfunctional activation and brain network profiles in youth with Obsessive-Compulsive Disorder: A focus on the dorsal anterior cingulate during working memory

    Directory of Open Access Journals (Sweden)

    Vaibhav A. Diwadkar

    2015-03-01

    Full Text Available Brain network dysfunction is emerging as a central biomarker of interest in psychiatry, in large part because psychiatric conditions are increasingly seen as disconnection syndromes. Understanding dysfunctional brain network profiles in task-active states provides important information on network engagement in an experimental context. This in turn may be predictive of many of the cognitive and behavioral deficits associated with complex behavioral phenotypes. Here we investigated brain network profiles in youth with obsessive-compulsive disorder (OCD, contrasting them with a group of age-comparable controls. Network interactions were assessed during simple working memory: in particular, we focused on the modulation by the dorsal anterior cingulate cortex (dACC of cortical, striatal and thalamic regions. The focus on the dACC was motivated by its hypothesized role in the pathophysiology of OCD. However, its task-active network signatures have not been investigated before. Network interactions were modeled using psychophysiological interaction, a simple directional model of seed to target brain interactions. Our results indicate that OCD is characterized by significantly increased dACC modulation of cortical, striatal and thalamic targets during working memory, and that this aberrant increase in OCD patients is maintained regardless of working memory demand. The results constitute compelling evidence of dysfunctional brain network interactions in OCD and suggest that these interactions may be related to a combination of network inefficiencies and dACC hyper-activity that has been associated with the phenotype.

  13. Cholesterol homeostasis failure in the brain: implications for synaptic dysfunction and cognitive decline.

    Science.gov (United States)

    Segatto, Marco; Leboffe, Loris; Trapani, Laura; Pallottini, Valentina

    2014-01-01

    Cholesterol is one of the most important molecules in cell physiology because of its involvement in several biological processes: for instance, it determines both physical and biochemical properties of cell membranes and proteins. Disruption to cholesterol homeostasis leads to coronary heart disease, atherosclerosis and metabolic syndrome. Strong evidence suggests that cholesterol also has a crucial role in the brain as various neurological and neurodegenerative disorders, including Alzheimer's, Huntington's and Parkinson diseases are associated with disruptions to cholesterol homeostasis. Here, we summarize the current knowledge about the role cholesterol plays at synaptic junctions and the pathological consequences caused by disruptions in the homeostatic maintenance of this compound.

  14. Brain Dysfunction as One Cause of CFS Symptoms Including Difficulty with Attention and Concentration

    Directory of Open Access Journals (Sweden)

    Benjamin H Natelson

    2013-05-01

    Full Text Available We have been able to reduce substantially patient pool heterogeneity by identifying phenotypic markers that allow the researcher to stratify chronic fatigue syndrome (CFS patients into subgroups. To date, we have shown that stratifying based on the presence or absence of co-morbid psychiatric diagnosis leads to a group with evidence of neurological dysfunction across a number of spheres. We have also found that stratifying based on the presence or absence of comorbid fibromyalgia leads to information that would not have been found on analyzing the entire, unstratified patient group. Objective evidence of orthostatic intolerance may be another important variable for stratification and may define a group with episodic cerebral hypoxia leading to symptoms. We hope that this review will encourage other researchers to collect data on discrete phenotypes in CFS to allow this work to continue more broadly. Finding subgroups of CFS suggests different underlying pathophysiological processes responsible for the symptoms seen. Understanding those processes is the first step toward developing discrete treatments for each.

  15. Dysfunctional brain-bone marrow communication: a paradigm shift in the pathophysiology of hypertension.

    Science.gov (United States)

    Santisteban, Monica M; Zubcevic, Jasenka; Baekey, David M; Raizada, Mohan K

    2013-08-01

    It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system dysfunction, as well as a multitude of immune responses. However, the close interplay of these systems in the development and establishment of high blood pressure and its associated pathophysiology remains elusive and is the subject of extensive investigation. It has been proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the "proinflammatory sympathetic" arm in conjunction with dampening of the "anti-inflammatory parasympathetic" arm of the autonomic nervous system. In addition to the neuronal modulation of the immune system, it is proposed that key inflammatory responses are relayed back to the central nervous system and alter the neuronal communication to the periphery. The overall objective of this review is to critically discuss recent advances in the understanding of autonomic immune modulation, and propose a unifying hypothesis underlying the mechanisms leading to the development and maintenance of hypertension, with particular emphasis on the bone marrow, as it is a crucial meeting point for neural, immune, and vascular networks.

  16. Brain dysfunction behind functional symptoms: neuroimaging and somatoform, conversive, and dissociative disorders.

    Science.gov (United States)

    García-Campayo, Javier; Fayed, Nicolas; Serrano-Blanco, Antoni; Roca, Miquel

    2009-03-01

    Neuroimaging research in psychiatry has been increasing exponentially in recent years, yet many psychiatrists are relatively unfamiliar with this field. This article summarizes the findings of the most relevant research articles on the neuroimaging of somatoform, conversive, and dissociative disorders published from January 2007 through June 2008. Neuroimaging findings summarized here include alterations of stress regulation and coping in somatoform pain disorders, the importance of catastrophizing in somatization disorder, and the relevance of a history of physical/sexual abuse in irritable bowel syndrome. Regarding fibromyalgia, three of the most significant advances have been the impossibility of differentiating primary and concomitant fibromyalgia in the presence of quiescent underlying disease, the role of hippocampal dysfunction, and the possibility that fibromyalgia may be characterized as an aging process. In dissociative disorders, the high levels of elaborative memory encoding and the reduced size of the parietal lobe are highlighted. The most promising clinical consequence of these studies, in addition to improving knowledge about the etiology of these illnesses, is the possibility of using neuroimaging findings to identify subgroups of patients, which could allow treatments to be tailored.

  17. Chagas cardiomyopathy: the potential of diastolic dysfunction and brain natriuretic peptide in the early identification of cardiac damage.

    Directory of Open Access Journals (Sweden)

    Ana Garcia-Alvarez

    Full Text Available INTRODUCTION: Chagas disease remains a major cause of mortality in several countries of Latin America and has become a potential public health problem in non-endemic countries as a result of migration flows. Cardiac involvement represents the main cause of mortality, but its diagnosis is still based on nonspecific criteria with poor sensitivity. Early identification of patients with cardiac involvement is desirable, since early treatment may improve prognosis. This study aimed to assess the role of diastolic dysfunction, abnormal myocardial strain and elevated brain natriuretic peptide (BNP in the early identification of cardiac involvement in Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: Fifty-four patients divided into 3 groups--group 1 (undetermined form: positive serology without ECG or 2D-echocardiographic abnormalities; N = 32, group 2 (typical ECG abnormalities of Chagas disease but normal 2D-echocardiography; N = 14, and group 3 (regional wall motion abnormalities, left ventricular [LV] end-diastolic diameter >55 mm or LV ejection fraction 37 pg/ml were noted in 0%, 13%, 29% and 63% in controls and groups 1 to 3, respectively. Half of patients in the undetermined form had impaired relaxation patterns, whereas half of patients with ECG abnormalities suggestive of Chagas cardiomyopathy had normal diastolic function. In group 1, BNP levels were statistically higher in patients with diastolic dysfunction as compared to those with normal diastolic function (27 ± 26 vs. 11 ± 8 pg/ml, p = 0.03. CONCLUSION/SIGNIFICANCE: In conclusion, the combination of diastolic function and BNP measurement adds important information that could help to better stratify patients with Chagas disease.

  18. Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders.

    Science.gov (United States)

    Caria, Andrea; Venuti, Paola; de Falco, Simona

    2011-12-01

    Despite intersubject variability, dramatic impairments of socio-communicative skills are core features of autistic spectrum disorder (ASD). A deficit in the ability to express and understand emotions has often been hypothesized to be an important correlate of such impairments. Little is known about individuals with ASD's ability to sense emotions conveyed by nonsocial stimuli such as music. Music has been found to be capable of evoking and conveying strong and consistent positive and negative emotions in healthy subjects. The ability to process perceptual and emotional aspects of music seems to be maintained in ASD. Individuals with ASD and neurotypical (NT) controls underwent a single functional magnetic resonance imaging (fMRI) session while processing happy and sad music excerpts. Overall, fMRI results indicated that while listening to both happy and sad music, individuals with ASD activated cortical and subcortical brain regions known to be involved in emotion processing and reward. A comparison of ASD participants with NT individuals demonstrated decreased brain activity in the premotor area and in the left anterior insula, especially in response to happy music excerpts. Our findings shed new light on the neurobiological correlates of preserved and altered emotional processing in ASD.

  19. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    Science.gov (United States)

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  20. Early Iron Deficiency Has Brain and Behavior Effects Consistent with Dopaminergic Dysfunction123

    Science.gov (United States)

    Lozoff, Betsy

    2011-01-01

    To honor the late John Beard’s many contributions regarding iron and dopamine biology, this review focuses on recent human studies that test specific hypotheses about effects of early iron deficiency on dopamine system functioning. Short- and long-term alterations associated with iron deficiency in infancy can be related to major dopamine pathways (mesocortical, mesolimbic, nigrostriatal, tuberohypophyseal). Children and young adults who had iron deficiency anemia in infancy show poorer inhibitory control and executive functioning as assessed by neurocognitive tasks where pharmacologic and neuroimaging studies implicate frontal-striatal circuits and the mesocortical dopamine pathway. Alterations in the mesolimbic pathway, where dopamine plays a major role in behavioral activation and inhibition, positive affect, and inherent reward, may help explain altered social-emotional behavior in iron-deficient infants, specifically wariness and hesitance, lack of positive affect, diminished social engagement, etc. Poorer motor sequencing and bimanual coordination and lower spontaneous eye blink rate in iron-deficient anemic infants are consistent with impaired function in the nigrostriatal pathway. Short- and long-term changes in serum prolactin point to dopamine dysfunction in the tuberohypophyseal pathway. These hypothesis-driven findings support the adverse effects of early iron deficiency on dopamine biology. Iron deficiency also has other effects, specifically on other neurotransmitters, myelination, dendritogenesis, neurometabolism in hippocampus and striatum, gene and protein profiles, and associated behaviors. The persistence of poorer cognitive, motor, affective, and sensory system functioning highlights the need to prevent iron deficiency in infancy and to find interventions that lessen the long-term effects of this widespread nutrient disorder. PMID:21346104

  1. Relationship between cerebrospinal fluid flow through the ventriculo-peritoneal shunt and computed tomographic images of hydrocephalic patients

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kiyonobu; Itoh, Haruhide; Someya, Shigeru; Yamamoto, Shinjiro

    1988-04-01

    Quantitative measurements of cerebrospinal fluid flow through the ventriculo-peritoneal shunt using radioisotope were carried out on 34 hydrocepalic patients (18 children and 16 adults) and the relationship between the flow rates and the computed tomographic (CT) images was studied. 1) The flow rates in the prone position was 0.04 - 0.20(mean +- SD, 0.10 +- 0.05) ml/min in 13 patients whose shunt systems were functioning adequately. There was a good correlation between the flow rates and closing pressures of the shunt valves. 2) The 21 patients with malfunctioning shunt systems were devided into two groups as follows; the obstruction or lower flow group in which the shunt flow was in 0 approx. 0.05 ml/min and the over-flow groups with rates over 0.20 ml/min. In the former group, there were 3 cases in which the shunt flow in a sitting position was very low and the cause of the malfunction was thought to be placement of an inadequate system with a higher pressure valve. 3) In 4 cases of 5 children in which the ventricles were of normal size during shunt malfunction, their ventricular sizes on CT images changed to small or slit-like ventricles after shunt revision. 4) A few cases of hydrocephalic adults, in which the shunt-catheters were thought to be obstructed with no shunt flow in the prone and sitting positions showing no progressive dilatation of the ventricles on CT images, were diagnosed with the added findings of RI cisternography as shunt-dependent arrested hydrocephalus. In the diagnosis of shunt malfunction and selection of the most adequate system in shunt revision, it is necessary to analyze together the data on CT images, quantitative measurement of shunt flow rates and RI cisternography as well as the clinical manifestations.

  2. Parenting style is related to executive dysfunction after brain injury in children.

    Science.gov (United States)

    Potter, Jennifer L; Wade, Shari L; Walz, Nicolay C; Cassedy, Amy; Stevens, M Hank; Yeates, Keith O; Taylor, H Gerry

    2011-11-01

    The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3-7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI.

  3. Brain dysfunction in anorexia nervosa: cause or consequence of under-nutrition?

    Science.gov (United States)

    Hay, Phillipa J; Sachdev, Perminder

    2011-05-01

    Imaging studies that demonstrate loss of brain substance help explain why people with anorexia nervosa have cognitive deficits and may help to elucidate the cognitive style found in many patients. It is not known whether a neurobiological vulnerability predisposes to anorexia nervosa or if this is associated with maintenance of symptoms once the illness develops. Evidence emerging from functional neuro-imaging studies raise the possibility of a biological abnormality that may predispose to anorexia nervosa. Studies have found abnormal functioning in the frontal, limbic, occipital, striatal and cerebellar regions that may persist after recovery. However, most recent cross-sectional and prospective studies indicate improved cerebral activity and mixed findings in regards to neurocognitve function with recovery from anorexia nervosa. The elucidation of the neurobiology of anorexia nervosa has benefited from recent advances in neuro-imaging and cognitive neuroscience. Further research is needed to examine the degree to which abnormalities are a consequence of starvation or are caused by a putative anorexia nervosa endophenotype.

  4. Fronto-Limbic Brain Dysfunction during the Regulation of Emotion in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Shaun M Eack

    Full Text Available Schizophrenia is characterized by significant and widespread impairments in the regulation of emotion. Evidence is only recently emerging regarding the neural basis of these emotion regulation impairments, and few studies have focused on the regulation of emotion during effortful cognitive processing. To examine the neural correlates of deficits in effortful emotion regulation, schizophrenia outpatients (N = 20 and age- and gender-matched healthy volunteers (N = 20 completed an emotional faces n-back task to assess the voluntary attentional control subprocess of emotion regulation during functional magnetic resonance imaging. Behavioral measures of emotional intelligence and emotion perception were administered to examine brain-behavior relationships with emotion processing outcomes. Results indicated that patients with schizophrenia demonstrated significantly greater activation in the bilateral striatum, ventromedial prefrontal, and right orbitofrontal cortices during the effortful regulation of positive emotional stimuli, and reduced activity in these same regions when regulating negative emotional information. The opposite pattern of results was observed in healthy individuals. Greater fronto-striatal response to positive emotional distractors was significantly associated with deficits in facial emotion recognition. These findings indicate that abnormalities in striatal and prefrontal cortical systems may be related to deficits in the effortful emotion regulatory process of attentional control in schizophrenia, and may significantly contribute to emotion processing deficits in the disorder.

  5. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Letitia D Jones

    Full Text Available The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND is increasing. In these individuals, the integrity of the blood-brain barrier (BBB is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1. As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  6. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    Science.gov (United States)

    Jones, Letitia D; Jackson, Joseph W; Maggirwar, Sanjay B

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  7. Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury. A study by the positron emission tomography in twenty subjects with normal MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka [Nagoya City Rehabilitation and Sports Center (Japan)

    2002-06-01

    Many individuals are affected on their higher brain functions, such as intelligence, memory, and attention, even after minor traumatic brain injury (MTBI). Although higher brain dysfunction is based on impairment of the cerebral circulation and metabolism, the precise relationship between them remains unknown. This study was undertaken to investigate the relationship between the cerebral circulation or cerebral metabolism and higher brain dysfunction. Twenty subjects with higher brain dysfunction caused by chronic MTBI were studied. They had no abnormal MRI findings. The full-scale intelligence quotient (FIQ) were quantitatively evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the subjects were classified into the normal group and the impaired group. Concurrent with the evaluation of FIQ, positron emission tomography (PET) was performed by the steady state method with {sup 15}O gases inhalation. Regional cerebral blood flow (rCBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) were calculated in the bilateral frontal, parietal, temporal, and occipital lobe. First, of all twenty subjects, we investigated rCBF, OEF and CMRO{sub 2} in all regions. Then we compared rCBF, OEF, and CMRO{sub 2} between the normal group and the impaired group based on FIQ score. We also studied the change of FIQ score of 13 subjects 9.3 months after the first evaluation. In addition, we investigated the change of rCBF, OEF and CMRO{sub 2} along with the improvement of FIQ score. Although rCBF and OEF of all subjects were within the normal range in all regions, CMRO{sub 2} of more than half of subjects was under the lower normal limit in all regions except in the right occipital lobe, showing the presence of ''relative luxury perfusion''. Comparison of rCBF, OEF and CMRO{sub 2} between normal group and impaired group revealed that CMRO{sub 2} of the impaired group was significantly lower than that of the

  8. Preoperative Echocardiographic Indices of Diastolic Dysfunction and Brain Natriuretic Peptide in Predicting Postoperative Atrial Fibrillation After Noncardiac Surgery.

    Science.gov (United States)

    Brecher, Oren; Gulati, Harleena; Roistacher, Nancy; Zhang, Hao; Shi, Weiji; Thaler, Howard T; Amar, David

    2017-04-01

    We have shown previously that either echocardiographic indices of diastolic dysfunction or increased preoperative brain natriuretic peptide (BNP) predict postoperative atrial fibrillation (POAF). Because these 2 predictors of POAF have not been evaluated together, our goal was to further elucidate their concurrent role in patients undergoing noncardiac thoracic surgery. We retrospectively identified 191 patients who had a preoperative transthoracic echocardiogram and serum BNP level collected as part of routine care before major lung or esophageal resection. Clinical and echocardiographic data were compared between patients who did or did not develop POAF (>5 minutes), and prognostic factors for POAF were identified. Univariate associations with POAF (41 of 191; 22% patients) included older age (P = .04), male sex (P = .01), hypertension (P = .03), increased body mass index (P = .01), and prolonged transmitral flow deceleration time (P < .0001), whereas BNP was not statistically significant (P = .07). Stepwise logistic regression analysis showed that both increasing transmitral flow deceleration time (continuous data log base 2 transformed; odds ratio, 16.05; 95% confidence interval, 3.74-68.96; P = .0002) and left atrial diastolic volume index (continuous data log base 2 transformed; odds ratio, 3.29; 95% confidence interval, 1.22-8.91; P = .02) were independent risk factors of POAF (area under the receiver operating characteristic curve = 0.73). There was no significant interaction between BNP and the 2 independent variables (P = .60, and P = .90), respectively. In a cohort of patients who had echocardiography and BNP measurements before undergoing major thoracic surgery, this study showed that when evaluated together greater preoperative left atrial diastolic volume index and transmitral flow deceleration time but not BNP levels were independent predictors for POAF.

  9. High-Definition and Non-Invasive Brain Modulation of Pain and Motor Dysfunction in Chronic TMD

    Science.gov (United States)

    Donnell, Adam; Nascimento, Thiago; Lawrence, Mara; Gupta, Vikas; Zieba, Tina; Truong, Dennis Q.; Bikson, Marom; Datta, Abhi; Bellile, Emily; DaSilva, Alexandre F.

    2015-01-01

    Background Temporomandibular disorders (TMD) have a relatively high prevalence and in many patients pain and masticatory dysfunction persist despite a range of treatments. Non-invasive brain neuromodulatory methods, namely transcranial direct current stimulation (tDCS), can provide relatively long-lasting pain relief in chronic pain patients. Objective To define the neuromodulatory effect of five daily 2×2 motor cortex high-definition tDCS (HD-tDCS) sessions on clinical pain and motor measures in chronic TMD patients. It is predicted that M1 HD-tDCS will selectively modulate clinical measures, by showing greater analgesic after-effects compared to placebo, and active treatment will increase pain free jaw movement more than placebo. Methods Twenty-four females with chronic myofascial TMD pain underwent five daily, 20-minute sessions of active or sham 2 milliamps (mA) HD-tDCS. Measurable outcomes included pain-free mouth opening, visual analog scale (VAS), sectional sensory-discriminative pain measures tracked by a mobile application, short form of the McGill Pain Questionnaire, and the Positive and Negative Affect Schedule. Follow-up occurred at one-week and four-weeks post treatment. Results There were significant improvements for clinical pain and motor measurements in the active HD-tDCS group compared to the placebo group for: responders with pain relief above 50% in the VAS at four-week follow-up (p=0.04); pain-free mouth opening at one-week follow-up (pTMD pain patients. PMID:26226938

  10. Managing executive dysfunction following acquired brain injury and stroke using an ecologically valid rehabilitation approach: a study protocol for a randomized, controlled trial.

    Science.gov (United States)

    Dawson, Deirdre R; Anderson, Nicole D; Binns, Malcolm A; Bottari, Carolina; Damianakis, Thecla; Hunt, Anne; Polatajko, Helene J; Zwarenstein, Merrick

    2013-09-22

    We have been investigating an ecologically valid strategy-training approach to enable adults with executive dysfunction to attain everyday life goals. Here, we report the protocol of a randomized controlled trial of the effects of this training compared to conventional therapy in a sample of community-dwelling adults with acquired brain injury and/or stroke. We will recruit 100 community-dwelling survivors at least six months post-acquired brain injury or stroke who report executive dysfunction during a telephone interview, confirmed in pre-training testing. Following pre-training testing, participants will be randomized to the ecologically valid strategy training or conventional therapy and receive two one-hour sessions for eight weeks (maximum of 15 hours of therapy). Post-testing will occur immediately following the training and three months later. The primary outcome is self-reported change in performance on everyday life activities measured using the Canadian Occupational Performance Measure, a standardized, semi-structured interview. Secondary outcomes are objective measurement of performance change from videotapes of treatment session, Performance Quality Rating Scale; executive dysfunction symptoms, Behavioural Rating Inventory of Executive Function - Adult; participation in everyday life, Mayo-Portland Adaptability Inventory Participation Index; and ability to solve novel problems, Instrumental Activities of Daily Living Profile. This study is of a novel approach to promoting improvements in attainment of everyday life goals through managing executive dysfunction using an ecologically valid strategy training approach, the Cognitive Orientation to daily Occupational Performance. This study compares the efficacy of this approach with that of conventional therapy. The approach has the potential to be a valuable treatment for people with chronic acquired brain injury and/or stroke. clinicaltrials.gov, Trial Identification Number: NCT01414348.

  11. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    Science.gov (United States)

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs.

  12. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    Science.gov (United States)

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway.

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    Full Text Available Tert-butylhydroquinone (tBHQ, an Nrf2 activator, has demonstrated neuroprotection against brain trauma and ischemic stroke in vivo. However, little work has been done with respect to its effect on early brain injury (EBI after subarachnoid hemorrhage (SAH. At the same time, as an oral medication, it may have extensive clinical applications for the treatment of SAH-induced cognitive dysfunction. This study was undertaken to evaluate the influence of tBHQ on EBI, secondary deficits of learning and memory, and the Keap1/Nrf2/ARE pathway in a rat SAH model. SD rats were divided into four groups: (1 Control group (n=40; (2 SAH group (n=40; (3 SAH+vehicle group (n=40; and (4 SAH+tBHQ group (n=40. All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once in 20 s. In SAH+tBHQ group, tBHQ was administered via oral gavage at a dose of 12.5 mg/kg at 2 h, 12 h, 24 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated 48 h after SAH. In the second set of experiments, changes in cognition and memory were investigated in a Morris water maze. Results shows that administration of tBHQ after SAH significantly ameliorated EBI-related problems, such as brain edema, blood-brain barrier (BBB impairment, clinical behavior deficits, cortical apoptosis, and neurodegeneration. Learning deficits induced by SAH was markedly alleviated after tBHQ therapy. Treatment with tBHQ markedly up-regulated the expression of Keap1, Nrf2, HO-1, NQO1, and GSTα1 after SAH. In conclusion, the administration of tBHQ abated the development of EBI and cognitive dysfunction in this SAH model. Its action was probably mediated by activation of the Keap1/Nrf2/ARE pathway.

  14. Apolipoprotein E3/E3 genotype decreases the risk of pituitary dysfunction after traumatic brain injury due to various causes: preliminary data.

    Science.gov (United States)

    Tanriverdi, Fatih; Taheri, Serpil; Ulutabanca, Halil; Caglayan, Ahmet Okay; Ozkul, Yusuf; Dundar, Munis; Selcuklu, Ahmet; Unluhizarci, Kursad; Casanueva, Felipe F; Kelestimur, Fahrettin

    2008-09-01

    Traumatic brain injury (TBI) is a devastating public health problem which may result in hypopituitarism. However, the mechanisms and the risk factors responsible for hypothalamo-pituitary dysfunction due to TBI are still unclear. Although APO E is one of the most abundant protein in hypothalamo-pituitary region, there is no study investigating the relation between APO E polymorphism and TBI-induced hypopituitarism. This study was undertaken to determine whether APO E genotypes modulate the pituitary dysfunction risk after TBI due to various causes, including traffic accident, boxing, and kickboxing. Ninety-three patients with TBI (mean age, 30.61 +/- 1.25 years) and 27 healthy controls (mean age, 29.03 +/- 1.70 years) were included in the study. Pituitary functions were evaluated, and APO E genotypes (E2/E2; E3/E3; E4/E4; E2/E3; E2/E4; E3/E4) were screened. Twenty-four of 93 subjects (25.8%) had pituitary dysfunction after TBI. The ratio of pituitary dysfunction was significantly lower in subjects with APO E3/E3 (17.7%) than the subjects without APO E3/E3 genotype (41.9%; p = 0.01), and the corresponding odds ratio was 0.29 (95% confidence interval [CI], 0.11-0.78). In conclusion, this study provides strong evidence for the first time that APO E polymorphism is associated with the development of TBI-induced pituitary dysfunction. Present data demonstrated that APO E3/E3 genotype decreases the risk of hypopituitarism after TBI. The demonstration of the association between the APO E polymorphism and TBI may provide a new point of view in this field and promote further studies.

  15. Oxygen-glucose deprivation and reoxygenation as an in vitro ischemia-reperfusion injury model for studying blood-brain barrier dysfunction.

    Science.gov (United States)

    Alluri, Himakarnika; Anasooya Shaji, Chinchusha; Davis, Matthew L; Tharakan, Binu

    2015-05-07

    Ischemia-Reperfusion (IR) injury is known to contribute significantly to the morbidity and mortality associated with ischemic strokes. Ischemic cerebrovascular accidents account for 80% of all strokes. A common cause of IR injury is the rapid inflow of fluids following an acute/chronic occlusion of blood, nutrients, oxygen to the tissue triggering the formation of free radicals. Ischemic stroke is followed by blood-brain barrier (BBB) dysfunction and vasogenic brain edema. Structurally, tight junctions (TJs) between the endothelial cells play an important role in maintaining the integrity of the blood-brain barrier (BBB). IR injury is an early secondary injury leading to a non-specific, inflammatory response. Oxidative and metabolic stress following inflammation triggers secondary brain damage including BBB permeability and disruption of tight junction (TJ) integrity. Our protocol presents an in vitro example of oxygen-glucose deprivation and reoxygenation (OGD-R) on rat brain endothelial cell TJ integrity and stress fiber formation. Currently, several experimental in vivo models are used to study the effects of IR injury; however they have several limitations, such as the technical challenges in performing surgeries, gene dependent molecular influences and difficulty in studying mechanistic relationships. However, in vitro models may aid in overcoming many of those limitations. The presented protocol can be used to study the various molecular mechanisms and mechanistic relationships to provide potential therapeutic strategies. However, the results of in vitro studies may differ from standard in vivo studies and should be interpreted with caution.

  16. Online electrochemical system as an in vivo method to study dynamic changes of ascorbate in rat brain during 3-methylindole-induced olfactory dysfunction.

    Science.gov (United States)

    Li, Lijuan; Zhang, Yinghong; Hao, Jie; Liu, Junxiu; Yu, Ping; Ma, Furong; Mao, Lanqun

    2016-04-07

    This study demonstrates the application of an online electrochemical system (OECS) as an in vivo method to investigate the dynamic change of microdialysate ascorbate in the olfactory bulb (OB) of rats during the acute period of olfactory dysfunction induced by intraperitoneal (i.p.) injection of 3-methylindole (3-MI). The OECS is developed by directly coupling an electrochemical detector to in vivo microdialysis for the direct monitoring of ascorbate. The system benefits from the good electrochemical activity of single-walled carbon nanotubes towards the oxidation of ascorbate and exhibits high selectivity, good stability, reproducibility and linearity for the measurement of ascorbate in the OB under physiological conditions. With this method, the basal level of microdialysate ascorbate in the OB is determined to be 48.64 ± 5.44 μM. The administration of 3-MI clearly increases the microdialysate ascorbate in the OB after 3-MI treatments and this increase is obviously alleviated by intravenous administration of ascorbate and glutathione (GSH) within 10 min after i.p. injection of 3-MI. These observations with the OECS suggest that ascorbate may be involved in chemical processes during the early stages of 3-MI-induced olfactory dysfunction. This study essentially validates the OECS as an in vivo method for effective measurement of ascorbate in the OB in rat brain and such a method will find interesting applications in investigating chemical process associated with ascorbate underlying olfactory dysfunction.

  17. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain.

    Science.gov (United States)

    Karri, Venkatanaidu; Schuhmacher, Marta; Kumar, Vikas

    2016-12-01

    Human exposure to toxic heavy metals is a global challenge. Concurrent exposure of heavy metals, such as lead (Pb), cadmium (Cd), arsenic (As) and methylmercury (MeHg) are particularly important due to their long lasting effects on the brain. The exact toxicological mechanisms invoked by exposure to mixtures of the metals Pb, Cd, As and MeHg are still unclear, however they share many common pathways for causing cognitive dysfunction. The combination of metals may produce additive/synergetic effects due to their common binding affinity with NMDA receptor (Pb, As, MeHg), Na(+) - K(+) ATP-ase pump (Cd, MeHg), biological Ca(+2) (Pb, Cd, MeHg), Glu neurotransmitter (Pb, MeHg), which can lead to imbalance between the pro-oxidant elements (ROS) and the antioxidants (reducing elements). In this process, ROS dominates the antioxidants factors such as GPx, GS, GSH, MT-III, Catalase, SOD, BDNF, and CERB, and finally leads to cognitive dysfunction. The present review illustrates an account of the current knowledge about the individual metal induced cognitive dysfunction mechanisms and analyse common Mode of Actions (MOAs) of quaternary metal mixture (Pb, Cd, As, MeHg). This review aims to help advancement in mixture toxicology and development of next generation predictive model (such as PBPK/PD) combining both kinetic and dynamic interactions of metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Protective effects of compound FLZ, a novel synthetic analogue of squamosamide, on β-amyloid-induced rat brain mitochondrial dysfunction in vitro

    Institute of Scientific and Technical Information of China (English)

    Fang FANG; Geng-tao LIU

    2009-01-01

    Aim: The aim of the present study was to assess the effects of N-[2-(4-hydroxyphenyl)ethyl]-2-(2,5-dimethoxyphenyl)-3-(3-methoxy-4-hydroxyphenyl) acrylamide (compound FLZ), a novel synthetic analogue of squamosamide, on the dysfunction of rat brain mitochondria induced by Aβ25-35 in vitro.Methods: Isolated rat brain mitochondria were incubated with aged Aβ25-35 for 30 min in the presence and absence of FLZ (1-100 μmol/L). The activities of key mitochondrial enzymes, the production of hydrogen peroxide (H2O2) and superoxide anion (O.-2), and the levels of glutathione (GSH) in mitochondria were examined. Mitochondrial swelling and the release of cytochrome c from mitochondria were assessed by biochemical and Western blot methods, respectively.Results: Incubation of mitochondria with aged Aβ25-35 inhibited the activities of α-ketoglutarate dehydrogenase (α-KGDH),pyruvate dehydrogenase (PDH) and respiratory chain complex IV. It also resulted in increased H2O2 and O.-2 production,and decreased the GSH level in mitochondria. Furthermore, it induced mitochondrial swelling and cytochrome c release from the mitochondria. The addition of FLZ (100 μmol/L) prior to treatment with Aβ25-35 significantly prevented these toxic effects of Aβ25-35 on the mitochondria.Conclusion: FLZ has a protective effect against Aβ25-35-induced mitochondrial dysfunction in vitro.

  19. Cerebral amyloid angiopathy-related inflammation presenting with steroid-responsive higher brain dysfunction: case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Maeda Yasushi

    2011-09-01

    Full Text Available Abstract A 56-year-old man noticed discomfort in his left lower limb, followed by convulsion and numbness in the same area. Magnetic resonance imaging (MRI showed white matter lesions in the right parietal lobe accompanied by leptomeningeal or leptomeningeal and cortical post-contrast enhancement along the parietal sulci. The patient also exhibited higher brain dysfunction corresponding with the lesions on MRI. Histological pathology disclosed β-amyloid in the blood vessels and perivascular inflammation, which highlights the diagnosis of cerebral amyloid angiopathy (CAA-related inflammation. Pulse steroid therapy was so effective that clinical and radiological findings immediately improved. CAA-related inflammation is a rare disease, defined by the deposition of amyloid proteins within the leptomeningeal and cortical arteries associated with vasculitis or perivasculitis. Here we report a patient with CAA-related inflammation who showed higher brain dysfunction that improved with steroid therapy. In cases with atypical radiological lesions like our case, cerebral biopsy with histological confirmation remains necessary for an accurate diagnosis.

  20. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

    Science.gov (United States)

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S; Huguenard, John R; Friedman, Alon; Kaufer, Daniela

    2015-06-01

    Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Caregiver ratings of long-term executive dysfunction and attention problems after early childhood traumatic brain injury: family functioning is important.

    Science.gov (United States)

    Kurowski, Brad G; Taylor, H Gerry; Yeates, Keith Owen; Walz, Nicolay C; Stancin, Terry; Wade, Shari L

    2011-09-01

    To evaluate the relationship of family and parenting factors to long-term executive dysfunction and attention problems after early childhood traumatic brain injury (TBI). We hypothesized that the magnitude of executive dysfunction and attention problems would be moderated by family and parenting factors. A multicenter, prospective cohort study that included an orthopedic injury (OI) reference group. Three tertiary academic children's hospital medical centers and one general medical center. Children, ages 3-7 years, hospitalized for OI, moderate TBI, or severe TBI. METHODS AND OUTCOME MEASUREMENTS: Parental ratings of family functioning and parenting styles were obtained 18 months after the injury occurred. The main outcome measurements, which were parental ratings of children's executive function and attention, were performed at least 24 months after the injury occurred (mean, 39 months; range, 25-63 months). Group comparisons were conducted with use of t-tests, χ(2) analysis, analysis of variance, and Pearson and Spearman correlations. Regression analysis was used to examine associations of the outcomes with family functioning and parenting styles and to test moderating effects of these factors on group differences. Participants with severe TBI demonstrated increased executive dysfunction and attention problems compared with those who sustained moderate TBI or OI. Lower levels of family dysfunction were associated with better executive function and attention across groups but did not moderate group differences. However, attention deficits after severe TBI were exacerbated under conditions of more permissive parenting relative to attention deficits after OIs. Executive function and attention problems persisted on a long-term basis (>24 months) after early childhood TBI, and positive global family functioning and nonpermissive parenting were associated with better outcomes. Better characterization of the optimal family environment for recovery from early childhood

  2. Cerebral Visual Impairment: Which Perceptive Visual Dysfunctions Can Be Expected in Children with Brain Damage? A Systematic Review

    Science.gov (United States)

    Boot, F. H.; Pel, J. J. M.; van der Steen, J.; Evenhuis, H. M.

    2010-01-01

    The current definition of Cerebral Visual Impairment (CVI) includes all visual dysfunctions caused by damage to, or malfunctioning of, the retrochiasmatic visual pathways in the absence of damage to the anterior visual pathways or any major ocular disease. CVI is diagnosed by exclusion and the existence of many different causes and symptoms make…

  3. Cerebral Visual Impairment: Which Perceptive Visual Dysfunctions Can Be Expected in Children with Brain Damage? A Systematic Review

    Science.gov (United States)

    Boot, F. H.; Pel, J. J. M.; van der Steen, J.; Evenhuis, H. M.

    2010-01-01

    The current definition of Cerebral Visual Impairment (CVI) includes all visual dysfunctions caused by damage to, or malfunctioning of, the retrochiasmatic visual pathways in the absence of damage to the anterior visual pathways or any major ocular disease. CVI is diagnosed by exclusion and the existence of many different causes and symptoms make…

  4. Biochemical indications of cerebral ischaemia and mitochondrial dysfunction in severe brain trauma analysed with regard to type of lesion

    DEFF Research Database (Denmark)

    Nordström, Carl-Henrik; Nielsen, Troels Halfeld; Schalén, Wilhelm

    2016-01-01

    ), cerebral haemorrhagic contusion (CHC) and no mass lesion (NML). Altogether about 150,000 biochemical analyses were performed during the initial 96 h after trauma. Compromised aerobic metabolism occurred during 38 % of the study period. The biochemical pattern indicating mitochondrial dysfunction was more...

  5. Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction?

    Directory of Open Access Journals (Sweden)

    Paul Manger

    2008-11-01

    Full Text Available Studies in the basic neurosciences are heavily reliant upon rat and mouse models. The brain is one of the most distinguishing features of the human species, but is enough being done to fully understand the evolution of the human brain and brain diversity in generalµ Without a clear understanding of the evolution of the nervous system we may be investing a great deal of effort into some limited specific animal models that may prove to be erroneous in terms of the overall usefulness in clinically applied research. Here we present an analysis that demonstrates that 75% of our research efforts are directed to the rat, mouse and human brain, or 0.0001% of the nervous systems on the planet. This extreme bias in research trends may provide a limited scope in the discovery of novel aspects of brain structure and function that would be of importance in understanding both the evolution of the human brain and in selecting appropriate animal models for use in clinically related research. We offer examples both from the historical and recent literature indicating the usefulness of comparative neurobiological investigation in elucidating both normal and abnormal structure and function of the brain.

  6. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

    Directory of Open Access Journals (Sweden)

    McNamara Laurie K

    2007-09-01

    Full Text Available Abstract Background An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD. This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. Methods A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. Results A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM was developed. Oral administration of the compound at a low dose (2.5 mg/kg resulted in attenuation of

  7. Inter-relationship between CSF dynamics and CSF to-and-fro movement in the cervical region as assessed by MR velocity imaging with phase encoding in hydrocephalic and normal patients

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Sumio (Hitachi General Hospital, Ibaraki (Japan)); Wachi, Akihiko; Sato, Kiyoshi; Sumie, Hirotoshi

    1992-04-01

    The to-and-fro velocity of cerebrospinal fluid (CSF) at C-1 and C-2 spinal-cord levels was measured by means of MR velocity-imaging technique, and the correlation of changes in velocity and various biophysical factors influencing the intracranial pressure environment were analyzed. Eight hydrocephalic patients, male and female, of different ages (both infants and adults), and 11 normal volunteers with a similar age range were investigated. The to-and-fro CSF movement was measured by means of phase-shift techniques with a bipolar gradient pulse. The cerebrospinal opening pressure was also recorded in 6 of the 8 hydrocephalic patients, either through a ventricular catheter reservoir or a spinal catheter inserted in the lumbosacral subarachnoid space; the CSF pulse amplitude, the pressure volume index (PVI), and the CSF outflow resistance (Ro) were also evaluated during the procedure. CSF flowed towards caudally in the early systolic phase of a cardiac stroke, but the flow direction was reversed in the early diastolic phase when the maximum flow rate was reached. Although such a flow pattern was commonly observed in all normal and hydrocephalic subjects, whatever the age, there was a marked difference in flow rate between the infants and the pediatric-adults groups, -i.e., it was 5-10 mm/sec for the former and 10-20 mm/sec for the latter. An abnormally high flow rate (33.0 mm/sec) was observed in the hydrocephalic patients when there was a malfunction of the ventriculoperitoneal shunt. A close correlation was found to exist among the changes in the CSF flow velocity, the CSF pressure amplitude, and the CSF outflow resistance (Ro), but not in the PVI. The measurement of the CSF flow velocity by MR velocity imaging appears to have an important role not only in the investigation of CSF dynamics, but also in the diagnosis and treatment of such pathologies as hydrocephalus and ventriculoperitoneal shunt malfunction. (author).

  8. From event-related potential to oscillations: genetic diathesis in brain (dys)function and alcohol dependence.

    Science.gov (United States)

    Rangaswamy, Madhavi; Porjesz, Bernice

    2008-01-01

    Recording the brain's electrical activity using electrodes placed on the individual's scalp provides noninvasive sensitive measures of brain function in humans. Regardless of whether an individual receives sensory information or performs higher cognitive processes, the brain regions involved exhibit measurable electrical activity, and by recording this activity with numerous electrodes placed on different areas of the scalp, researchers can determine when and where in the brain information processing occurs. Two general approaches can be used to record these neuroelectric phenomena: The continuous electroencephalogram (EEG) records brain activity when the subject is at rest and not involved in a task. It reflects the sum of the random activity of thousands of neurons that have similar spatial orientation in the brain. This activity typically fluctuates in wave-like patterns, and depending on the frequency of these patterns, one distinguishes different brain waves called δ (frequency of 1 to 3 Hz), θ (frequency of 4 to 7 Hz), α (frequency of 8 to 12 Hz), β (frequency of 12 to 28 Hz), and γ (frequency of 28+ Hz) rhythms. Variations in the patterns of these brain waves can indicate the level of consciousness, psychological state, or presence of neurological disorders. Event-related potentials (ERPs) are recorded while the subject is performing a sensory or cognitive task. They reflect the summated activity of network ensembles active during the task and are characterized by a specific pattern called the waveform, which is composed of negative and positive deflections (i.e., waves). For example, a target stimulus detected amidst a series of other nontarget stimuli produces a positive wave around 300 milliseconds after the stimulus. This is known as the P300 or P3 response.

  9. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors.

    Directory of Open Access Journals (Sweden)

    Elizabeth Harford-Wright

    Full Text Available The neuropeptide substance P (SP has been implicated in the disruption of the blood-brain barrier (BBB and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg, dexamethasone (8 mg/kg or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan's Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05. Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants

  10. Preliminary study of anxiety symptoms, family dysfunction, and the brain-derived neurotrophic factor (BDNF) Val66Met genotype in offspring of parents with bipolar disorder.

    Science.gov (United States)

    Park, Min-Hyeon; Chang, Kiki D; Hallmayer, Joachim; Howe, Meghan E; Kim, Eunjoo; Hong, Seung Chul; Singh, Manpreet K

    2015-02-01

    Several genetic and environmental factors place youth offspring of parents with bipolar disorder (BD) at high risk for developing mood and anxiety disorders. Recent studies suggest that anxiety symptoms, even at subclinical levels, have been associated with an increased risk for developing BD. The brain-derived neurotrophic factor (BDNF) gene has been implicated in the pathophysiology of both BD and anxiety disorders. We aimed to explore whether anxiety in BD offspring was associated with the BDNF Val66Met polymorphism. 64 BD offspring (mean age: 13.73 (S.D. 3.45) M = 30, F = 34) and 51 HC (mean age: 13.68 (S.D. 2.68) M = 23, F = 28) were compared on presence of the met allele and on scores from the Multidimensional Anxiety Scale for Children (MASC). To assess family function, we used the Family Adaptability and Cohesion Evaluation Scales (FACES-IV). The Baron & Kenny method was the statistical approach used to examine the moderating effects between variables. BD offspring showed higher levels of overall anxiety than did the HC group. BD offspring with the val/val genotype showed higher levels of anxiety than BD offspring with other genotypes. No significant levels of anxiety or its association with BDNF genotype were found in the HC group. BD offspring group showed significantly more family dysfunction when compared with the HC group and the family dysfunction moderated the association between the BDNF genotype and anxiety symptoms. This study demonstrated the potential interplay of three factors: BD offspring, anxiety symptoms and family dysfunction.

  11. Alleviation of Kainic Acid-Induced Brain Barrier Dysfunction by 4-O-Methylhonokiol in In Vitro and In Vivo Models

    Directory of Open Access Journals (Sweden)

    Jin-Yi Han

    2015-01-01

    Full Text Available This experiment was designed to investigate whether 4-O-methylhonokiol (MH, a principal ingredient of Magnolia (M. officinalis bark, alleviated acute intraperitoneal (i.p. kainic acid- (KA- induced brain blood barrier dysfunction (BBBD via pathological examination and cytological analyses of the brain tissues of mice. KA (10–30 mg/kg time- and dose-dependently increased the water content of brain tissues and induced edema and encephalopathy. However, pretreatment with MH (5 and 20 mg/kg, i.p. significantly reduced the water content of the brain compared to that observed in the KA control group. Furthermore, MH significantly and dose-dependently reversed the remarkable variations in evan’s blue dye (EBD staining and malondialdehyde (MDA levels that were induced by KA (10 mg/kg, i.p.. MH also decreased the elevated seizure scores that were induced by KA (10 mg/kg, i.p. in mice in a manner similar to scavengers such as DMTU and trolox. Additionally, MH significantly scavenged intracellular ROS and Ca2+ within hippocampal cells. The tight junction seals mediated by claudin (Cld-5 were also found to be modulated by MH. MH efficiently reduced 1,1-diphenyl-2-picrylhydrazyl (DPPH (IC50, 52.4 mM and •OH with an electron spin resonance (ESR signal rate constant of 4×109 M-1·S-1, which is close to the reactivity of the vitamin E analog trolox. Taken together, these results suggest that MH may enhance radical scavenging in lipid and hydrophobic environments, which may be important for the physiological activity of the barrier.

  12. The assessment of General Movements is a valuable technique for the detection of brain dysfunction in young infants. A review

    NARCIS (Netherlands)

    HaddersAlgra, M

    1996-01-01

    Recently, a new assessment technique by which to evaluate brain function in the fetus and newborn infant has been developed. The method is based on the assessment of the quality of General Movements (GMs). GMs are complex movements involving all parts of the body. They are present throughout fetal l

  13. Relationship between the severity of mitral regurgitation, left ventricular dysfunction and plasma brain natriuretic peptide level: An observational strain imaging study

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Elbey

    2012-12-01

    Full Text Available Objectives: The aim of the this study was to investigatethe relationship between the degree of mitral regurgitation(MR, left ventricular (LV dysfunction determined bystrain (S/strain rate (SR imaging and plasma brain natriureticpeptide (BNP levels.Materials and methods: This is an observational crosssectionalstudy which included 31 consecutive patients(15[48.4%] male who had applied to our outpatient clinicsand diagnosed as mitral regurgitation and 25 (12[48.0%] male healthy persons as control subjects. Themitral regurgitation patients were divided into two groups:those with moderate MR (n=14[45.2%] and those withsevere MR (n=17[54.8%], and maximum strain / strainrate measurements of left ventricular wall segments andplasma brain natriuretic peptide levels were determined inthese two groups and controls.Results: S/SR values of all wall segments of left ventriclewere found to be decreased in patient with severe MRwhen compared with the control subjects and patientswith moderate MR (p<0.001.Conclusions: Although left ventricle functions with conventionalechocardiography in patients with mitral valveregurgitation were normal, subclinic deteriorations ofleft ventricle were detected in patients with severe mitralvalve regurgitation. J Clin Exp Invest 2012; 3 (4: 451-456Key words: strain/strain rate, echocardiography, mitralregurgitation, left ventricular functions

  14. Measuring Executive Dysfunction Longitudinally and in Relation to Genetic Burden, Brain Volumetrics, and Depression in Prodromal Huntington Disease

    Science.gov (United States)

    Papp, Kathryn V.; Snyder, Peter J.; Mills, James A.; Duff, Kevin; Westervelt, Holly J.; Long, Jeffrey D.; Lourens, Spencer; Paulsen, Jane S.

    2013-01-01

    Executive dysfunction (ED) is a characteristic of Huntington disease (HD), but its severity and progression is less understood in the prodromal phase, e.g., before gross motor abnormalities. We examined planning and problem-solving abilities using the Towers Task in HD mutation-positive individuals without motor symptoms (n = 781) and controls (n = 212). Participants with greater disease progression (determined using mutation size and current age) performed more slowly and with less accuracy on the Towers Task. Performance accuracy was negatively related to striatal volume while both accuracy and working memory were negatively related to frontal white matter volume. Disease progression at baseline was not associated with longitudinal performance over 4 years. Whereas the baseline findings indicate that ED becomes more prevalent with greater disease progression in prodromal HD and can be quantified using the Towers task, the absence of notable longitudinal findings indicates that the Towers Task exhibits limited sensitivity to cognitive decline in this population. PMID:23246934

  15. Brain structural deficits and working memory fMRI dysfunction in young adults who were diagnosed with ADHD in adolescence.

    Science.gov (United States)

    Roman-Urrestarazu, Andres; Lindholm, Päivi; Moilanen, Irma; Kiviniemi, Vesa; Miettunen, Jouko; Jääskeläinen, Erika; Mäki, Pirjo; Hurtig, Tuula; Ebeling, Hanna; Barnett, Jennifer H; Nikkinen, Juha; Suckling, John; Jones, Peter B; Veijola, Juha; Murray, Graham K

    2016-05-01

    When adolescents with ADHD enter adulthood, some no longer meet disorder diagnostic criteria but it is unknown if biological and cognitive abnorma lities persist. We tested the hypothesis that people diagnosed with ADHD during adolescence present residual brain abnormalities both in brain structure and in working memory brain function. 83 young adults (aged 20-24 years) from the Northern Finland 1986 Birth Cohort were classified as diagnosed with ADHD in adolescence (adolescence ADHD, n = 49) or a control group (n = 34). Only one patient had received medication for ADHD. T1-weighted brain scans were acquired and processed in a voxel-based analysis using permutation-based statistics. A sub-sample of both groups (ADHD, n = 21; controls n = 23) also performed a Sternberg working memory task whilst acquiring fMRI data. Areas of structural difference were used as a region of interest to evaluate the implications that structural abnormalities found in the ADHD group might have on working memory function. There was lower grey matter volume bilaterally in adolescence ADHD participants in the caudate (p adolescence ADHD participants, with associated failure to show normal load-dependent caudate activation. Young adults diagnosed with ADHD in adolescence have structural and functional deficits in the caudate associated with abnormal working memory function. These findings are not secondary to stimulant treatment, and emphasise the importance of taking a wider perspective on ADHD outcomes than simply whether or not a particular patient meets diagnostic criteria at any given point in time.

  16. 脑肿瘤患者认知功能障碍研究%Cognitive dysfunction in patients with brain tumors

    Institute of Scientific and Technical Information of China (English)

    徐萍

    2016-01-01

    Objective To investigate cases of cognitive dysfunction in patients with brain tumors. Methods selected from our hospital in May 2014- May 2016 brain tumor patients treated during the 117 cases (study group), and selected from our hospital in May 2014- May 2016 during healthy persons 73 cases (control group). Adoption of the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE) to assess cognitive function. Were compared Mmse and MMSE score changes, and brain tumor patients before and after surgery MoCA, MMSE score changes. Results The observation group targeting capabilities, naming, attention, language ability, visuospatial and implementation capacity, memory capacity, and total capacity of abstraction were higher control group (P<0.05);observation group orientation, memory, attention, calculation, recall, language ability and total scores were higher control group (P<0.05);postoperative MoCA, MMSE score was significantly lower than the preoperative (P<0.05). Conclusions Patients with brain tumors with varying degrees of cognitive dysfunction, and surgical removal of the tumor can aggravate cognitive dysfunction.%目的 探讨脑肿瘤患者认知功能障碍情况.方法 选脑肿瘤患者117例(观察组),同时选择健康体检者(对照组)73例.采用蒙特利尔认知评估量表(MoCA)和简易精神状态量表(MMSE)评估认知功能.比较两组MoCA和MMSE评分变化,及脑肿瘤患者术前和术后MoCA、MMSE总分变化.结果 观察组定向能力、命名能力、注意能力、语言能力、视空间与执行能力、记忆能力、抽象概括能力及总分均高于对照组,差异有统计学意义(P<0.05);观察组定向力、记忆力、注意力和计算力、回忆能力、语言能力及总分均高于对照组,差异有统计学意义(P<0.05);术后MoCA、MMSE总分显著低于术前,差异有统计学意义(P<0.05).结论 脑肿瘤患者存在不同程度认知功能障碍,且手术切除肿瘤会加重患者认知功能障碍.

  17. Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies

    Directory of Open Access Journals (Sweden)

    Eraldo ePaulesu

    2014-11-01

    Full Text Available Developmental dyslexia has been the focus of much functional anatomical research. The main trust of this work is that typical developmental dyslexics have a dysfunction of the phonological and orthography to phonology conversion systems, in which the left occipito-temporal cortex has a crucial role. It remains to be seen whether there is a systematic co-occurrence of dysfunctional patterns of different functional systems perhaps converging on the same brain regions associated with the reading deficit. Such evidence would be relevant for theories like, for example, the magnocellular/attentional or the motor/cerebellar ones, which postulate a more basic and anatomically distributed disorder in dyslexia. We addressed this issue with a meta-analysis of all the imaging literature published until September 2013 using a combination of hierarchical clustering and activation likelihood estimates. The clustering analysis on 2360 peaks identified 193 clusters, 92 of which proved significant for spatial extent. Following binomial tests on the clusters, we found left hemispheric network specific for normal controls (i.d. of reduced involvement in dyslexics involving the left inferior frontal, premotor, supramarginal cortices and the left infero-temporal and fusiform region: these were specific for reading and the visual-to-phonology processes. There was also a more dorsal left fronto-parietal network: these clusters included peaks from tasks involving phonological manipulation, but also motoric or visuo-spatial perception/attention. No cluster was identified in area V5 for no task, nor in cerebellar clusters either.We conclude that the available literature demonstrates a specific lack of activation of the left occipitotemporal cortex in dyslexics that is specific for reading and reading-like behaviours and for visuo-phonological tasks. Additional deficits may be associated with altered functionality of dorsal fronto-parietal cortex.

  18. Motor-related circuit dysfunction in MSA-P: Usefulness of combined whole-brain imaging analysis.

    Science.gov (United States)

    Tir, Mélissa; Delmaire, Christine; le Thuc, Vianney; Duhamel, Alain; Destée, Alain; Pruvo, Jean-Pierre; Defebvre, Luc

    2009-04-30

    The aim of this study was to evaluate in vivo changes in the brain's macro- and microstructure (notably in the motor system) in the parkinsonian variant of multiple system atrophy (MSA-P) and in Parkinson's disease (PD) and to characterize the cerebral anatomical differences between the two conditions. We used a combination of voxel-based morphometry (VBM) and whole-brain, voxel-based diffusion tensor imaging analysis (VB-DTI). Forty-seven right-handed subjects (14 MSA-P patients, 19 PD patients, and 14 controls) were evaluated using VBM and VB-DTI in an analysis of covariance (ANCOVA) with a significance threshold set to P MSA-P patients, VBM analysis revealed a lower density of grey matter (GM) in a motor-related circuit (especially in the left primary motor cortex, PMC), relative to PD patients, and in the left supplementary motor area (SMA), relative to controls). Diffusion tensor imaging analysis revealed lower fractional anisotropy (FA) values in the left PMC and the right cerebellum in MSA-P patients, compared with controls. Using a volumetric diffusion technique, our study revealed selective tissue degeneration in motor circuits, regardless of the volume loss detected in VBM and in agreement with pathology reports and clinical motor characteristics. Our findings suggest that MSA-P is characterized by both macro- and microstructural changes in the sensorimotor circuit.

  19. Peripheral Blood Mitochondrial DNA as a Biomarker of Cerebral Mitochondrial Dysfunction following Traumatic Brain Injury in a Porcine Model.

    Directory of Open Access Journals (Sweden)

    Todd J Kilbaugh

    Full Text Available Traumatic brain injury (TBI has been shown to activate the peripheral innate immune system and systemic inflammatory response, possibly through the central release of damage associated molecular patterns (DAMPs. Our main purpose was to gain an initial understanding of the peripheral mitochondrial response following TBI, and how this response could be utilized to determine cerebral mitochondrial bioenergetics. We hypothesized that TBI would increase peripheral whole blood relative mtDNA copy number, and that these alterations would be associated with cerebral mitochondrial bioenergetics triggered by TBI.Blood samples were obtained before, 6 h after, and 25 h after focal (controlled cortical impact injury: CCI and diffuse (rapid non-impact rotational injury: RNR TBI. PCR primers, unique to mtDNA, were identified by aligning segments of nuclear DNA (nDNA to mtDNA, normalizing values to nuclear 16S rRNA, for a relative mtDNA copy number. Three unique mtDNA regions were selected, and PCR primers were designed within those regions, limited to 25-30 base pairs to further ensure sequence specificity, and measured utilizing qRT-PCR.Mean relative mtDNA copy numbers increased significantly at 6 and 25 hrs after following both focal and diffuse traumatic brain injury. Specifically, the mean relative mtDNA copy number from three mitochondrial-specific regions pre-injury was 0.84 ± 0.05. At 6 and 25 h after diffuse non-impact TBI, mean mtDNA copy number was significantly higher: 2.07 ± 0.19 (P < 0.0001 and 2.37 ± 0.42 (P < 0.001, respectively. Following focal impact TBI, relative mtDNA copy number was also significantly higher, 1.35 ± 0.12 (P < 0.0001 at 25 hours. Alterations in mitochondrial respiration in the hippocampus and cortex post-TBI correlated with changes in the relative mtDNA copy number measured in peripheral blood.Alterations in peripheral blood relative mtDNA copy numbers may be a novel biosignature of cerebral mitochondrial bioenergetics

  20. Cognitive training approaches to remediate attention and executive dysfunction after traumatic brain injury: A single-case series.

    Science.gov (United States)

    Dymowski, Alicia Rhian; Ponsford, Jennie Louise; Willmott, Catherine

    2016-10-01

    Attentional deficits are common following traumatic brain injury (TBI) and interfere with daily functioning. This study employed a single-case design to examine the effects of individualised strategy training on attention beyond the effects of computerised training using Attention Process Training 3 (APT-3), and to examine the participants' subjective experience of these approaches. An ABCA (baseline, APT-3, strategy training, follow-up) design was repeated across three participants with severe TBI. Outcomes were measured on alternate versions of the oral Symbol Digit Modalities Test (SDMT) and cancellation tasks; generalisation with the Test of Everyday Attention (TEA) and self and significant other (SO) ratings on the Rating Scale of Attentional Behaviour (RSAB); and participant experiences with semi-structured interviews. Planned Tau-U analyses revealed improvements in speed of processing on the SDMT and the automatic condition of the cancellation task after APT-3 and at follow-up, but with most improvement after strategy training. Limited generalisation was evident on TEA subtests and self-RSAB ratings. SO-RSAB ratings were mixed after APT-3, but demonstrated improvement after strategy training. Variability in attentional deficits and everyday attentional requirements between patients required individualised goals and approaches to rehabilitation. This study highlights the need for individualised rehabilitation of attention to improve everyday functioning after TBI.

  1. Symptoms of epilepsy and organic brain dysfunctions in patients with acute, brief depression combined with other fluctuating psychiatric symptoms: a controlled study from an acute psychiatric department

    Directory of Open Access Journals (Sweden)

    Linaker Olav M

    2009-09-01

    Full Text Available Abstract Background In psychiatric acute departments some patients present with brief depressive periods accompanied with fluctuating arrays of other psychiatric symptoms like psychosis, panic or mania. For the purpose of the present study we call this condition Acute Unstable Depressive Syndrome (AUDS. The aims of the present study were to compare clinical signs of organic brain dysfunctions and epilepsy in patients with AUDS and Major Depressive Episode (MDE. Methods Out of 1038 consecutive patients admitted to a psychiatric acute ward, 16 patients with AUDS and 16 age- and gender-matched MDE patients were included in the study. Using standardized instruments and methods we recorded clinical data, EEG and MRI. Results A history of epileptic seizures and pathologic EEG activity was more common in the AUDS group than in the MDE group (seizures, n = 6 vs. 0, p = 0.018; pathologic EEG activity, n = 8 vs. 1, p = 0.015. Five patients in the AUDS group were diagnosed as having epilepsy, whereas none of those with MDE had epilepsy (p = 0.043. There were no differences between the groups regarding pathological findings in neurological bedside examination and cerebral MRI investigation. Conclusion Compared to patients admitted with mood symptoms fulfilling DSM 4 criteria of a major depressive disorder, short-lasting atypical depressive symptoms seem to be associated with a high frequency of epileptic and pathologic EEG activity in patients admitted to psychiatric acute departments. Trial registration NCT00201474

  2. N-terminal pro-brain natriuretic peptide is related with coronary flow velocity reserve and diastolic dysfunction in patients with asymmetric hypertrophic cardiomyopathy.

    Science.gov (United States)

    Tesic, Milorad; Seferovic, Jelena; Trifunovic, Danijela; Djordjevic-Dikic, Ana; Giga, Vojislav; Jovanovic, Ivana; Petrovic, Olga; Marinkovic, Jelena; Stankovic, Sanja; Stepanovic, Jelena; Ristic, Arsen; Petrovic, Milan; Mujovic, Nebojsa; Vujisic-Tesic, Bosiljka; Beleslin, Branko; Vukcevic, Vladan; Stankovic, Goran; Seferovic, Petar

    2017-10-01

    The relations of elevated N-terminal pro-brain natriuretic peptide (NT-pro-BNP) and cardiac ischemia in hypertrophic cardiomyopathy (HCM) patients is uncertain. Therefore we designed the study with the following aims: (1) to analyze plasma concentrations of NT-pro-BNP in various subsets of HCM patients; (2) to reveal the correlations of NT-pro-BNP, myocardial ischemia, and diastolic dysfunction; (3) to assess predictors of the elevated plasma levels of NT-pro-BNP. In 61 patients (mean age 48.9±16.3 years; 26 male) with asymmetric HCM plasma levels of NT-pro-BNP were obtained. Standard transthoracic examination, tissue Doppler echocardiography with measurement of transthoracic coronary flow velocity reserve (CFVR) in left anterior descending artery (LAD) was done. Mean natural logarithm value of NT-pro-BNP was 7.11±0.95pg/ml [median value 1133 (interquartile range 561-2442)pg/ml]. NT-pro-BNP was significantly higher in patients with higher NYHA class, in obstructive HCM, more severe mitral regurgitation, increased left atrial volume index (LAVI), presence of calcified mitral annulus, elevated left ventricular (LV) filling pressure and in decreased CFVR. Levels of NT-pro-BNP significantly correlated with the ratio of E/e' (r=0.534, ppro-BNP. Plasma levels of NT-pro-BNP were significantly higher in HCM patients with more advanced disease. Elevated NT-pro-BNP not only reflects the diastolic impairment of the LV, but it might also be the result of cardiac ischemia in patients with HCM. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  3. N-terminal-pro-brain natriuretic peptide elevations in the course of septic and non-septic shock reflect systolic left ventricular dysfunction assessed by transpulmonary thermodilution

    Directory of Open Access Journals (Sweden)

    A.B. Johan Groeneveld

    2016-03-01

    Conclusions: In septic and non-septic shock, NT-proBNP elevations reflect systolic left ventricular dysfunction and are associated with a poor outcome. They may help recognition of cardiac dysfunction in shock and its management when invasive hemodynamic monitoring is not yet instituted.

  4. A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention.

    Science.gov (United States)

    Cubillo, Ana; Halari, Rozmin; Smith, Anna; Taylor, Eric; Rubia, Katya

    2012-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) has long been associated with abnormalities in frontal brain regions. In this paper we review the current structural and functional imaging evidence for abnormalities in children and adults with ADHD in fronto-striatal, fronto-parieto-temporal, fronto-cerebellar and fronto-limbic regions and networks. While the imaging studies in children with ADHD are more numerous and consistent, an increasing number of studies suggests that these structural and functional abnormalities in fronto-cortical and fronto-subcortical networks persist into adulthood, despite a relative symptomatic improvement in the adult form of the disorder. We furthermore present new data that support the notion of a persistence of neurofunctional deficits in adults with ADHD during attention and motivation functions. We show that a group of medication-naïve young adults with ADHD behaviours who were followed up 20 years from a childhood ADHD diagnosis show dysfunctions in lateral fronto-striato-parietal regions relative to controls during sustained attention, as well as in ventromedial orbitofrontal regions during reward, suggesting dysfunctions in cognitive-attentional as well as motivational neural networks. The lateral fronto-striatal deficit findings, furthermore, were strikingly similar to those we have previously observed in children with ADHD during the same task, reinforcing the notion of persistence of fronto-striatal dysfunctions in adult ADHD. The ventromedial orbitofrontal deficits, however, were associated with comorbid conduct disorder (CD), highlighting the potential confound of comorbid antisocial conditions on paralimbic brain deficits in ADHD. Our review supported by the new data therefore suggest that both adult and childhood ADHD are associated with brain abnormalities in fronto-cortical and fronto-subcortical systems that mediate the control of cognition and motivation. The brain deficits in ADHD therefore appear to be multi

  5. Pro-Brain Natriuretic Peptide and Troponin T-Hypersensitivity Levels Correlate With the Severity of Liver Dysfunction in Liver Cirrhosis.

    Science.gov (United States)

    Zhao, Jiancheng; Li, Sai; Ren, Linan; Guo, Xiaozhong; Qi, Xingshun

    2017-08-01

    Increased pro-brain natriuretic peptide (pro-BNP) or troponin T-hypersensitivity (TnT-HSST) levels are common in liver cirrhosis. We conducted a retrospective observational study aimed to evaluate the correlation of pro-BNP and TnT-HSST levels with the clinical characteristics, laboratory data and in-hospital outcomes of patients with liver cirrhosis. We selected cirrhotic patients admitted to our hospital between January 2011 and June 2014. All eligible patients had pro-BNP or TnT-HSST data, or both. The pro-BNP and TnT-HSST data were further divided according to the presence of cardiac diseases. The prevalence of pro-BNP level >900pg/mL was 41.72% (63 of 151 patients). The prevalence of TnT-HSST level >0.05ng/mL was 11.22% (45 of 401 patients). In the overall analysis, pro-BNP level significantly correlated with red blood cell (RBC), platelet, ascites, blood urea nitrogen (BUN), creatinine (Cr), Child-Pugh score, model for end-stage liver disease (MELD) score and in-hospital death; TnT-HSST level significantly correlated with white blood cell, ascites, albumin (ALB), BUN, Cr, Child-Pugh score, MELD score and in-hospital death. In patients with cardiac diseases, pro-BNP level significantly correlated with RBC, ascites, BUN, Cr, Child-Pugh score and MELD score; TnT-HSST level significantly correlated with sex, ascites, white blood cell, ALB, BUN, Cr, Child-Pugh score, MELD score and in-hospital death. In patients without cardiac diseases, pro-BNP level significantly correlated with ascites, RBC, platelet, BUN, Cr, MELD score and in-hospital death; TnT-HSST level significantly correlated with age, ascites, RBC, ALB, BUN, Cr, Child-Pugh score, MELD score and in-hospital death. Pro-BNP and TnT-HSST levels significantly correlated with the severity of liver dysfunction and in-hospital mortality in cirrhosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  6. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using (18)F-FDG-PET.

    Science.gov (United States)

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using (18)F-labed fluorodeoxyglucose ((18)F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  7. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET

    Science.gov (United States)

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-01-01

    Alzheimer’s disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer’s cognition after cognitive decline, at least in animals. PMID:27763550

  8. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET

    Directory of Open Access Journals (Sweden)

    Xue-Yuan Li

    2016-10-01

    Full Text Available Alzheimer’s disease (AD is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1 transgenic (Tg mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr. Morris water maze (MWM was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD. By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD. Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer’s cognition after cognitive decline, at least in animals.

  9. Erectile dysfunction.

    Science.gov (United States)

    Wylie, Kevan

    2008-01-01

    Erectile dysfunction is a common problem affecting sexual function in men. Approximately one in 10 men over the age of 40 is affected by this condition and the incidence is age related. Erectile dysfunction is a sentinel marker for several reversible conditions including peripheral and coronary vascular disease, hypertension and diabetes mellitus. Endothelial dysfunction is a common factor between the disease states. Concurrent conditions such as depression, late-onset hypogonadism, Peyronie's disease and lower urinary tract symptoms may significantly worsen erectile function, other sexual and relationship issues and penis dysmorphophobia. A focused physical examination and baseline laboratory investigations are mandatory. Management consists of initiating modifiable lifestyle changes, psychological and psychosexual/couples interventions and pharmacological and other interventions. In combination and with treatment of concurrent comorbid states, these interventions will often bring about successful resolution of symptoms and avoid the need for surgical interventions.

  10. Erectile dysfunction

    African Journals Online (AJOL)

    that increase blood flow to the penis. The blood ... The pressure of the blood in the chambers makes the ... What are the risk factors for erectile dysfunction? The most .... losing excessive weight and increasing physical activity, may improve the ...

  11. Association of Dorsolateral Prefrontal Cortex Dysfunction With Disrupted Coordinated Brain Activity in Schizophrenia: Relationship With Impaired Cognition, Behavioral Disorganization, and Global Function

    National Research Council Canada - National Science Library

    Ursu, Stefan; Minzenberg, Michael J; Walters, Ryan; Wendelken, Carter; Ragland, J. Daniel; Carter, Cameron S; Yoon, Jong H

    2008-01-01

    ... of the dorsolateral prefrontal cortex in schizophrenia patients is associated with disrupted coordinated activity between this prefrontal region and a distributed brain network that supports cognitive control. Method...

  12. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes in...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  13. Mitochondrial dysfunction in autism.

    Science.gov (United States)

    Legido, Agustín; Jethva, Reena; Goldenthal, Michael J

    2013-09-01

    Using data of the current prevalence of autism as 200:10,000 and a 1:2000 incidence of definite mitochondrial (mt) disease, if there was no linkage of autism spectrum disorder (ASD) and mt disease, it would be expected that 1 in 110 subjects with mt disease would have ASD and 1 in 2000 individuals with ASD would have mt disease. The co-occurrence of autism and mt disease is much higher than these figures, suggesting a possible pathogenetic relationship. Such hypothesis was initially suggested by the presence of biochemical markers of abnormal mt metabolic function in patients with ASD, including elevation of lactate, pyruvate, or alanine levels in blood, cerebrospinal fluid, or brain; carnitine level in plasma; and level of organic acids in urine, and by demonstrating impaired mt fatty acid β-oxidation. More recently, mtDNA genetic mutations or deletions or mutations of nuclear genes regulating mt function have been associated with ASD in patients or in neuropathologic studies on the brains of patients with autism. In addition, the presence of dysfunction of the complexes of the mt respiratory chain or electron transport chain, indicating abnormal oxidative phosphorylation, has been reported in patients with ASD and in the autopsy samples of brains. Possible pathogenetic mechanisms linking mt dysfunction and ASD include mt activation of the immune system, abnormal mt Ca(2+) handling, and mt-induced oxidative stress. Genetic and epigenetic regulation of brain development may also be disrupted by mt dysfunction, including mt-induced oxidative stress. The role of the purinergic system linking mt dysfunction and ASD is currently under investigation. In summary, there is genetic and biochemical evidence for a mitochondria (mt) role in the pathogenesis of ASD in a subset of children. To determine the prevalence and type of genetic and biochemical mt defects in ASD, there is a need for further research using the latest genetic technology such as next

  14. Oral Dysfunction

    OpenAIRE

    鈴木, 規子; スズキ, ノリコ; Noriko, SUZUKI

    2004-01-01

    The major oral functions can be categorized as mastication, swallowing, speech and respiratory functions. Dysfunction of these results in dysphagia, speech disorders and abnormal respiration (such as Sleep Apnea). These functions relate to dentistry in the occurrence of : (1) oral preparatory and oral phases, (2) articulation disorders and velopharyngeal incompetence (VPI), and (3) mouth breathing, respiratory and blowing disorders. These disorders are related to oral and maxillofacial diseas...

  15. Cardiovascular dysfunction in infants with neonatal encephalopathy.

    LENUS (Irish Health Repository)

    Armstrong, Katey

    2012-04-01

    Severe perinatal asphyxia with hypoxic ischaemic encephalopathy occurs in approximately 1-2\\/1000 live births and is an important cause of cerebral palsy and associated neurological disabilities in children. Multiorgan dysfunction commonly occurs as part of the asphyxial episode, with cardiovascular dysfunction occurring in up to a third of infants. This narrative paper attempts to review the literature on the importance of early recognition of cardiac dysfunction using echocardiography and biomarkers such as troponin and brain type natriuretic peptide. These tools may allow accurate assessment of cardiac dysfunction and guide therapy to improve outcome.

  16. Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes.

    Science.gov (United States)

    Rangaswamy, Madhavi; Porjesz, Bernice

    2008-10-15

    Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders.

  17. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity

    Directory of Open Access Journals (Sweden)

    Svetlana ePundik

    2015-07-01

    Full Text Available Objectives: Neuroplastic changes that drive recovery of shoulder/elbow function after stoke have been poorly understood. The purpose of this study was to determine the relationship between neuroplastic brain changes related to shoulder/elbow movement control in response to treatment and recovery of arm motor function in chronic stroke survivors. Methods: Twenty-three chronic stroke survivors were treated with 12 weeks of arm rehabilitation. Outcome measures included functional Magnetic Resonance Imaging (fMRI for the shoulder/elbow components of reach and a skilled motor function test (Arm Motor Abilities Test (AMAT, collected before and after treatment.Results: We observed two patterns of neuroplastic changes that were associated with gains in motor function: decreased or increased task-related brain activation. Those with significantly better motor function at baseline exhibited a decrease in brain activation in response to treatment, evident in the ipsilesional primary motor and contralesional supplementary motor regions; in contrast, those with greater baseline motor impairment, exhibited increased brain activation in response to treatment. There was an linear relationship between greater functional gain (AMAT and increased activation in bilateral primary motor, contralesional primary and secondary sensory regions, and contralesional lateral premotor area, after adjusting for baseline AMAT, age, and time since stroke. Conclusions: Recovery of functional reach involves recruitment of several contralesional and bilateral primary motor regions. In response to intensive therapy, the direction of functional brain change (i.e. increase or decrease in task-related brain recruitment for shoulder/elbow reach components depends on baseline level of motor function and may represent either different phases or different strategies of neuroplasticity that drive functional recovery.

  18. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity

    Science.gov (United States)

    Pundik, Svetlana; McCabe, Jessica P.; Hrovat, Ken; Fredrickson, Alice Erica; Tatsuoka, Curtis; Feng, I Jung; Daly, Janis J.

    2015-01-01

    Objectives: Neuroplastic changes that drive recovery of shoulder/elbow function after stroke have been poorly understood. The purpose of this study was to determine the relationship between neuroplastic brain changes related to shoulder/elbow movement control in response to treatment and recovery of arm motor function in chronic stroke survivors.Methods: Twenty-three chronic stroke survivors were treated with 12 weeks of arm rehabilitation. Outcome measures included functional Magnetic Resonance Imaging (fMRI) for the shoulder/elbow components of reach and a skilled motor function test (Arm Motor Abilities Test, AMAT), collected before and after treatment.Results: We observed two patterns of neuroplastic changes that were associated with gains in motor function: decreased or increased task-related brain activation. Those with significantly better motor function at baseline exhibited a decrease in brain activation in response to treatment, evident in the ipsilesional primary motor and contralesional supplementary motor regions; in contrast, those with greater baseline motor impairment, exhibited increased brain activation in response to treatment. There was a linear relationship between greater functional gain (AMAT) and increased activation in bilateral primary motor, contralesional primary and secondary sensory regions, and contralesional lateral premotor area, after adjusting for baseline AMAT, age, and time since stroke.Conclusions: Recovery of functional reach involves recruitment of several contralesional and bilateral primary motor regions. In response to intensive therapy, the direction of functional brain change (i.e., increase or decrease in task-related brain recruitment) for shoulder/elbow reach components depends on baseline level of motor function and may represent either different phases of recovery or different patterns of neuroplasticity that drive functional recovery. PMID:26257623

  19. Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Deng Xiaolu

    2011-04-01

    Full Text Available Abstract Background Tumor necrosis factor-α (TNF-α, a proinflammatory cytokine, is capable of activating the small GTPase RhoA, which in turn contributes to endothelial barrier dysfunction. However, the underlying signaling mechanisms remained undefined. Therefore, we aimed to determine the role of protein kinase C (PKC isozymes in the mechanism of RhoA activation and in signaling TNF-α-induced mouse brain microvascular endothelial cell (BMEC barrier dysfunction. Methods Bend.3 cells, an immortalized mouse brain endothelial cell line, were exposed to TNF-α (10 ng/mL. RhoA activity was assessed by pull down assay. PKC-α activity was measured using enzyme assasy. BMEC barrier function was measured by transendothelial electrical resistance (TER. p115RhoGEF phosphorylation was detected by autoradiography followed by western blotting. F-actin organization was observed by rhodamine-phalloidin staining. Both pharmacological inhibitors and knockdown approaches were employed to investigate the role of PKC and p115RhoGEF in TNF-α-induced RhoA activation and BMEC permeability. Results We observed that TNF-α induces a rapid phosphorylation of p115RhoGEF, activation of PKC and RhoA in BMECs. Inhibition of conventional PKC by Gö6976 mitigated the TNF-α-induced p115RhoGEF phosphorylation and RhoA activation. Subsequently, we found that these events are regulated by PKC-α rather than PKC-β by using shRNA. In addition, P115-shRNA and n19RhoA (dominant negative mutant of RhoA transfections had no effect on mediating TNF-α-induced PKC-α activation. These data suggest that PKC-α but not PKC-β acts as an upstream regulator of p115RhoGEF phosphorylation and RhoA activation in response to TNF-α. Moreover, depletion of PKC-α, of p115RhoGEF, and inhibition of RhoA activation also prevented TNF-α-induced stress fiber formation and a decrease in TER. Conclusions Taken together, our results show that PKC-α phosphorylation of p115RhoGEF mediates TNF

  20. Dysfunction and dysconnection in cortical-striatal networks during sustained attention: Genetic risk for schizophrenia or bipolar disorder and its impact on brain network function

    Directory of Open Access Journals (Sweden)

    Vaibhav A. Diwadkar

    2014-05-01

    Full Text Available Abnormalities in the brain’s attention network may represent early identifiable neurobiological impairments in individuals at increased risk for schizophrenia or bipolar disorder. Here we provide evidence of dysfunctional regional and network function in adolescents at higher genetic risk for schizophrenia or bipolar disorder (henceforth HGR. During fMRI, participants engaged in a sustained attention task with variable demands. The task alternated between attention (120 s, visual control (passive viewing; 120 s and rest (20 s epochs. Low and high demand attention conditions were created using the rapid presentation of 2- or 3-digit numbers. Subjects were required to detect repeated presentation of numbers. We demonstrate that the recruitment of cortical and striatal regions are disordered in HGR: Relative to typical controls (TC, HGR showed lower recruitment of the dorsal prefrontal cortex, but higher recruitment of the superior parietal cortex. This imbalance was more dramatic in the basal ganglia. There, a group by task demand interaction was observed, such that increased attention demand led to increased engagement in TC, but disengagement in HGR. These activation studies were complemented by network analyses using Dynamic Causal Modeling. Competing model architectures were assessed across a network of cortical-striatal regions, distinguished at a second level using random effects Bayesian model selection. In the winning architecture, HGR were characterized by significant reductions in coupling across both frontal-striatal and frontal-parietal pathways. The effective connectivity analyses indicate emergent network dysconnection, consistent with findings in patients with schizophrenia. Emergent patterns of regional dysfunction and disconnection in cortical-striatal pathways may provide functional biological signatures in the adolescent risk state for psychiatric illness.

  1. Neurorestorative effects of eugenol, a spice bioactive: Evidence in cell model and its efficacy as an intervention molecule to abrogate brain oxidative dysfunctions in the streptozotocin diabetic rat.

    Science.gov (United States)

    Prasad, Sathya N; Bharath, M M Srinivas; Muralidhara

    2016-05-01

    Eugenol (EU), an active principle of cloves, is also widely distributed in various other plants (eg. basil, cinnamon, etc). While its antioxidant and anti-inflammatory properties are well established, biochemical insights related to its neuromodulatory potential in diabetic conditions are not clear. In the present study, initially we investigated its potential to modulate specific biochemical responses in SHSY5Y cells under experimentally -induced hyperglycemic condition. Co-exposure of cells with EU (5-10 μM) not only enhanced the cell viability, but significantly offset glucose -associated oxidative stress (as evidenced by diminished levels of reactive oxygen species and hydroperoxides). Further EU enhanced the reduced glutathione (GSH) levels and also ameliorated the levels of 3 - nitrotyrosine and expression of HSP70. We subsequently examined its efficacy to attenuate biochemical aberrations in brain regions of a streptozotocin (STZ) diabetic rat employing an intervention approach. Brain regions of EU treated (10 mg/kg bw/d, post 6 weeks of STZ) diabetic rats showed diminished levels of oxidative markers and protein carbonyls in both cytosolic and mitochondrial fractions. EU treatment caused enhanced activities of enzymic antioxidants and diminished both GSH and total thiols. Further, activities of complex I - III, succinate dehydrogenase and citrate synthase in brain regions were also significantly restored. Interestingly, EU treatment differentially attenuated the elevated activity of acetylcholinesterase and levels of calcium in brain regions. Collectively, based on the data obtained in in vitro and in vivo models, we hypothesize that EU may be employed as an adjuvant therapeutic molecule to alleviate complications under diabetic conditions.

  2. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia.

    Science.gov (United States)

    Natesan, Vijayakumar; Mani, Renuka; Arumugam, Ramakrishnan

    2016-07-01

    In living organisms, nitrogen arise primarily as ammonia (NH3) and ammonium (NH4(+)), which is a main component of the nucleic acid pool and proteins. Although nitrogen is essential for growth and maintenance in animals, but when the nitrogenous compounds exceeds the normal range which can quickly lead to toxicity and death. Urea cycle is the common pathway for the disposal of excess nitrogen through urea biosynthesis. Hyperammonemia is a consistent finding in many neurological disorders including congenital urea cycle disorders, reye's syndrome and acute liver failure leads to deleterious effects. Hyperammonemia and liver failure results in glutamatergic neurotransmission which contributes to the alteration in the function of the glutamate-nitric oxide-cGMP pathway, modulates the important cerebral process. Even though ammonia is essential for normal functioning of the central nervous system (CNS), in particular high concentrations of ammonia exposure to the brain leads to the alterations of glutamate transport by the transporters. Several glutamate transporters have been recognized in the central nervous system and each has a unique physiological property and distribution. The loss of glutamate transporter activity in brain during acute liver failure and hyperammonemia is allied with increased extracellular brain glutamate concentrations which may be conscientious for the cerebral edema and ultimately cell death.

  3. Comportamento violento e disfunção cerebral: estudo de homicidas no Rio de Janeiro Violent behavior and brain dysfunction: study of murderers in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Flavio Jozef

    2000-09-01

    Full Text Available Objetivos: Estudar a correlação entre disfunção cerebral e psicopatia em homicidas. Métodos: Foram separados em dois grupos (psicopatas e não-psicopatas 29 homicidas "normais" (não-psicóticos, detidos em uma delegacia policial e escolhidos aleatoriamente, com base no HARE PCL-R (escala de avaliação de psicopatia. Ambos os grupos foram submetidos a testagem neuropsicológica, sendo empregados testes voltados para atividade em lobo frontal (Trail Making Test A e B, e subtestes do WAIS [Mosaico, Semelhanças e Símbolos Numéricos]. Resultados: Dos homicidas, 15 foram considerados psicopatas e 14, não-psicopatas. O subteste Mosaico, do WAIS, constituiu-se em discriminador entre os dois grupos pela presença significativa de resultados negativos em não-psicopatas (chi²=5,37; G.L.=1; PObjectives: The aim of the study was to investigate the association between psychopathy and cerebral dysfunction in a population of murderers. Methods: A random sample of 29 "normal" (non-psychotic murderers detained in a police station were evaluated and classified into psychopaths (n=15 and non-psychopaths (n=14 according to the HARE PCL-R. All individuals in the sample were submitted to neuropsychological tests (Trail Making Test A and B, and WAIS subtests [Block Design, Similarities and Digit Symbol]. Results: The WAIS subtest Block Design was a discriminator between the sample subgroups, with psychopaths scoring significantly better than non-psychopaths (c²=5.37; G.L.=1; p<0.05. As psychopaths were most commonly diagnosed with alcohol/illicit drugs addiction/abuse than non-psychopaths, this factor does not seem to account for the better neuropsychological performance of non-psychopaths. Conclusions: There is evidence that frontal lobe dysfunction is implied in homicidal behavior among non-psychopaths. A better psychiatric evaluation of murderers and the routine use of HARE PCL-R as a clinical and research tool are recommended.

  4. Systemic inflammation on postnatal days 21 and 28 and indicators of brain dysfunction 2years later among children born before the 28th week of gestation.

    Science.gov (United States)

    Leviton, Alan; Allred, Elizabeth N; Fichorova, Raina N; Kuban, Karl C K; Michael O'Shea, T; Dammann, Olaf

    2016-02-01

    Systemic inflammation during the first two postnatal weeks in extremely preterm newborns (weeks gestation) has been associated with an increased risk of neurodevelopmental dysfunctions. Little is known, however, about the relationship between systemic inflammation during the third and fourth postnatal weeks and subsequent development. We measured the concentrations of 16 inflammation-related proteins in blood spots collected on postnatal days 21 (N=749) and 28 (N=697) from infants born before the 28th week of gestation and assessed at age 2years. We then sought the developmental correlates of top quartile concentrations for gestational age and day the specimen was collected. Odds ratios and 95% confidence intervals were calculated from regular or multinomial logistic regression models (as appropriate). Top quartile concentrations of CRP, IL-1β, IL-6, IL-6R, TNF-R2, IL-8, ICAM-1, and TSH on both days 21 and 28 were associated with ventriculomegaly (when in the NICU) and microcephaly at age 2years. Top quartile concentrations of CRP, SAA, IL-6, TNF-R2, IL-8, and ICAM-1 were associated with mental development index (MDI) of the Bayley-IIdevelopment index (PDI)weeks were at increased risk of ventriculomegaly during the months after birth, and of microcephaly, and low Bayley Scale scores at 2years old. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Levels of vasoactive intestinal peptide,cholecystokinin and calcitonin gene-related peptide in plasma and jejunum of rats following traumatic brain injury and underlying significance in gastrointestinal dysfunction

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Hang; Ji-Xin Shi; Jie-Shou Li; Wei Wu; Wei-Qin Li; Hong-Xia Yin

    2004-01-01

    AIM: To study the alterations of brain-gut peptides following traumatic brain injury (TBI) and to explore the underlying significance of these peptides in the complicated gastrointestinal dysfunction.METHODS: Rat models of focal traumatic brain injury were established by impact insult method, and divided into 6 groups (6 rats each group) including control group with sham operation and TBI groups at postinjury 3, 12, 24, 72 h, and d 7. Blood and proximal jejunum samples were taken at time point of each group and gross observations of gastrointestinal pathology were recorded simultaneously. The levels of vasoactive intestinal peptide (VIP) in plasma, calcitonin gene-related peptide (CGRP) and cholecystokinin (CCK) in both plasma and jejunum were measured by enzyme immunoassay (EIA). Radioimmunoassay (RIA) was used to determine the levels of VTP in jejunum. RESULTS: Gastric distension, delayed gastric emptying and intestinal dilatation with a large amount of yellowish effusion and thin edematous wall were found in TBI rats through 12 h and 72 h, which peaked at postinjury 72 h. As compared with that of control group (247.8±29.5 ng/L), plasma VIP levels were significantly decreased at postinjury 3, 12 and 24 h (106.7±34.1 ng/L, 148.7±22.8 ng/L, 132.8±21.6 ng/L,respectively), but significantly increased at 72 h (405.0±29.8 ng/L) and markedly declined on d 7 (130.7±19.3 ng/L).However, Plasma levels CCK and CGRP were significantly increased through 3 h and 7 d following TBT (126-691% increases), with the peak at 72 h. Compared with control (VIP, 13.6±1.4 ng/g; CGRP, 70.6±17.7 ng/g); VIP and CGRP levels in jejunum were significantly increased at 3 h after TBI (VIP, 35.4±5.0 ng/g; CGRP, 103.8±22.1 ng/g), anddeclined gradually at 12 h and 24 h (VIP, 16.5±1.8 ng/g, 5.5±1.4 ng/g; CGRP, 34.9±9.7 ng/g, 18.5±7.7 ng/g), but were significantly increased again at 72 h (VIP, 48.7±9.5 ng/g; CGRP, 142.1±24.3 ng/g), then declined in various degrees on d 7 (VIP, 3.8±1

  6. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron.

    Science.gov (United States)

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José V; Patnaik, Ranjana; Tian, Z Ryan; Buzoianu, Anca D; Sharma, Hari S

    2015-10-01

    Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB

  7. Hyperbaric oxygen therapy for patients with cognitive dysfunction after traumatic brain injury%高压氧治疗对脑外伤后患者认知功能障碍的影响

    Institute of Scientific and Technical Information of China (English)

    邹坤良

    2015-01-01

    目的:分析高压氧治疗对于脑外伤后患者的认知功能障碍的影响。方法:选取2011年2月至2013年1月以手术方法治疗的颅脑外伤后有认知功能障碍的患者90例,以每组45例患者随机分为观察组与对照组。在实验第7天起对于观察组患者进行高压氧治疗。结果:观察组总有效率(97.8%)高于对照组(80.0%);两组FIM评分均较治疗前有所提升。结论:对于脑外伤后患者,在常规的治疗基础上进一步辅以高压氧治疗,对于恢复患者的认知功能具有很高的临床应用价值。%ObjectiveTo analysis of hyperbaric oxygen therapy for patients with cognitive dysfunction after traumatic brain injury.Methods Selected in February 2011 to January 2011 was treated with surgical method of cognitive dysfunction after craniocerebral trauma patients 90 cases, with 45 cases in each group were randomly divided into observation group and control group. In the seventh day of hyperbaric oxygen therapy for observation group of patients. ResultsThe observation group total effective rate 97.8% higher than the control group 97.8%; Two groups of FIM score was improved the.Conclusion For patients after traumatic brain injury, the further supplemented by hyperbaric oxygen therapy on the basis of routine treatment, to restore the patient's cognitive function are of great value in clinical application.

  8. Subjective cognitive dysfunction in rehabilitation outpatients with musculoskeletal disorders or chronic pain

    NARCIS (Netherlands)

    Schrier, Ernst; Geertzen, Jan H; Dijkstra, Pieter U

    BACKGROUND: Rehabilitation patients, without brain damage, sometimes complain about poor concentration and problems with their memory. The magnitude and associations, of this cognitive dysfunction, with different factors is unclear. AIM: To determine the magnitude of cognitive dysfunction in

  9. Depressed glucose consumption at reperfusion following brain ischemia does not correlate with mitochondrial dysfunction and development of infarction: an in vivo positron emission tomography study.

    Science.gov (United States)

    Martín, Abraham; Rojas, Santiago; Pareto, Deborah; Santalucia, Tomàs; Millán, Olga; Abasolo, Ibane; Gómez, Vanessa; Llop, Jordi; Gispert, Joan D; Falcon, Carles; Bargalló, Núria; Planas, Anna M

    2009-05-01

    Glucose consumption is severely depressed in the ischemic core, whereas it is maintained or even increased in penumbral regions during ischemia. Conversely, glucose utilization is severely reduced early after reperfusion in spite that glucose and oxygen are available. Experimental studies suggest that glucose hypometabolism might be an early predictor of brain infarction. However, the relationship between early glucose hypometabolism with later development of infarction remains to be further studied in the same subjects. Here, glucose consumption was assessed in vivo by positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) in a rat model of ischemia/reperfusion. Perfusion was evaluated by PET with (13)NH(3) during and after 2-hour (h) middle cerebral artery occlusion, and (18)F-FDG was given after 2h of reperfusion. Brain infarction was evaluated at 24h. Mitochondrial oxygen consumption was examined ex vivo using a biochemical method. Cortical (18)F-FDG uptake was reduced by 45% and 25% in the ischemic core and periphery, respectively. However, substantial alteration of mitochondrial respiration was not apparent until 24h, suggesting that mitochondria retained the ability to consume oxygen early after reperfusion. These results show reduced glucose use at early reperfusion in regions that will later develop infarction and, to a lesser extent, in adjacent regions. Depressed glucose metabolism in the ischemic core might be attributable to reduced metabolic requirement due to irreversible cellular injury. However, reduced glucose metabolism in peripheral regions suggests either an impairment of glycolysis or reduced glucose demand. Thus, our study supports that glycolytic depression early after reperfusion is not always related to subsequent development of infarction.

  10. Brain peroxisomes.

    Science.gov (United States)

    Trompier, D; Vejux, A; Zarrouk, A; Gondcaille, C; Geillon, F; Nury, T; Savary, S; Lizard, G

    2014-03-01

    Peroxisomes are essential organelles in higher eukaryotes as they play a major role in numerous metabolic pathways and redox homeostasis. Some peroxisomal abnormalities, which are often not compatible with life or normal development, were identified in severe demyelinating and neurodegenerative brain diseases. The metabolic roles of peroxisomes, especially in the brain, are described and human brain peroxisomal disorders resulting from a peroxisome biogenesis or a single peroxisomal enzyme defect are listed. The brain abnormalities encountered in these disorders (demyelination, oxidative stress, inflammation, cell death, neuronal migration, differentiation) are described and their pathogenesis are discussed. Finally, the contribution of peroxisomal dysfunctions to the alterations of brain functions during aging and to the development of Alzheimer's disease is considered.

  11. Evaluation of endothelin-1 and MMPs-2, -9, -14 in cerebrospinal fluid as indirect indicators of blood-brain barrier dysfunction in chronic canine hypothyroidism.

    Science.gov (United States)

    Pancotto, Theresa E; Rossmeisl, John H; Huckle, William R; Inzana, Karen D; Zimmerman, Kurt L

    2016-04-01

    Chronic canine hypothyroidism is associated with blood-brain barrier (BBB) disruption. We hypothesized that this change is mediated by endothelin-1(ET-1) and matrix metalloproteinases (MMP) -2, -9, and -14, as evidenced by increased concentrations of these proteins in cerebrospinal fluid (CSF) compared to controls. CSF from 18 dogs, 9 controls and 9 with experimentally induced hypothyroidism was collected before and 6, 12, and 18 months after induction of hypothyroidism. Concentrations of ET-1 using an ELISA kit, and for MMP-2, -9, and -14 using gelatinase zymography were measured in CSF. ET-1 was undetectable in CSF of control and hypothyroid dogs at all time-points. Constitutively expressed MMP-2 was detectable in CSF samples in all dogs at all time-points. No other MMPs were detectable in CSF. No differences in CSF concentrations of ET-1 and MMP-2, 9, and 14 were found between hypothyroid and euthyroid dogs. Therefore, ET-1 and MMP-2, 9, and 14 are unlikely to be primary mediators of BBB damage in chronically hypothyroid dogs.

  12. N-CAM dysfunction and unexpected accumulation of PSA-NCAM in brain of adult-onset autosomal-dominant leukodystrophy.

    Science.gov (United States)

    Piccinini, Marco; Buccinnà, Barbara; De Marco, Giovanni; Lupino, Elisa; Ramondetti, Cristina; Grifoni, Silvia; Votta, Barbara; Giordana, Maria Teresa; Rinaudo, Maria Teresa

    2010-03-01

    Previously, myelin from cerebral white matter (CWM) of two subjects of a family with orthochromatic adult-onset autosomal-dominant leukodystrophy (ADLD) was disclosed to exhibit defective large isoform of myelin-associated glycoprotein (L-MAG) and patchy distribution only in the elder subject. L-MAG and neural cell adhesion molecule (N-CAM) (N-CAM 180, 140, and 120) are structurally related and concur to myelin/axon interaction. In early developmental stages, in neurons and glia N-CAM is converted into polysialylated (PSA)-NCAM by two sialyltransferases sialyltransferase-X (STX) and polysialyltransferase-1 (PST). Notably, PSA-NCAM disrupts N-CAM adhesive properties and is nearly absent in the adult brain. Here, CWM extracts and myelin of the two subjects were searched for the expression pattern of the N-CAM isoforms and PSA-NCAM, and their CWM was evaluated for N-CAM, STX and PST gene copy number and gene expression as mRNA. Biochemically, we disclosed that in CWM extracts and myelin from both subjects, PSA-NCAM accumulates, N-CAM 180 considerably increases, N-CAM 140 is modestly modified and N-CAM 120 remarkably decreases; duplication of genes encoding N-CAM, STX and PST was not revealed, whereas PST mRNA was clearly increased. Immunohistochemically, in CWM of both subjects, we found an unusually diffuse accumulation of PSA-NCAM without inflammation markers. PSA-NCAM persistence, up-regulated PST mRNA and previously uncovered defective L-MAG may be early pathogenetic events in this ADLD form.

  13. A Virtual Reality avatar interaction (VRai) platform to assess residual executive dysfunction in active military personnel with previous mild traumatic brain injury: proof of concept.

    Science.gov (United States)

    Robitaille, Nicolas; Jackson, Philip L; Hébert, Luc J; Mercier, Catherine; Bouyer, Laurent J; Fecteau, Shirley; Richards, Carol L; McFadyen, Bradford J

    2017-10-01

    This proof of concept study tested the ability of a dual task walking protocol using a recently developed avatar-based virtual reality (VR) platform to detect differences between military personnel post mild traumatic brain injury (mTBI) and healthy controls. The VR platform coordinated motion capture, an interaction and rendering system, and a projection system to present first (participant-controlled) and third person avatars within the context of a specific military patrol scene. A divided attention task was also added. A healthy control group was compared to a group with previous mTBI (both groups comprised of six military personnel) and a repeated measures ANOVA tested for differences between conditions and groups based on recognition errors, walking speed and fluidity and obstacle clearance. The VR platform was well tolerated by both groups. Walking fluidity was degraded for the control group within the more complex navigational dual tasking involving avatars, and appeared greatest in the dual tasking with the interacting avatar. This navigational behaviour was not seen in the mTBI group. The present findings show proof of concept for using avatars, particularly more interactive avatars, to expose differences in executive functioning when applying context-specific protocols (here for the military). Implications for rehabilitation Virtual reality provides a means to control context-specific factors for assessment and intervention. Adding human interaction and agency through avatars increases the ecologic nature of the virtual environment. Avatars in the present application of the Virtual Reality avatar interaction platform appear to provide a better ability to reveal differences between trained, military personal with and without mTBI.

  14. Functional MRI of brain dysfunction during Stroop task in obsessive compulsive disorder patients%强迫症患者fMRI Stroop试验脑功能异常

    Institute of Scientific and Technical Information of China (English)

    侯景明; 黎海涛; 武文婧; 瞿伟; 冉江峰; 陈谊

    2011-01-01

    目的 应用fMRI观察强迫症(OCD)患者的脑功能异常区域.方法 OCD患者13例(OCD组),正常对照者15名(正常对照组),按年龄、性别、受教育程度相匹配.对全部受试者行fMRI,刺激采用Stroop任务,运用SPM8软件对两组平均后的脑功能图像的激活区域进行比较分析.结果 OCD患者需要激活更多脑区(左侧海马旁回、中央旁小叶、丘脑、距状回等)以完成相对简单的色字无干扰任务,激活减低的脑区主要有左侧前扣带回和左侧尾状核.在相对复杂的色字干扰任务时,OCD组并未出现激活高于正常对照组的脑区,激活减低的脑区主要有双侧眶额叶、左侧前扣带回以及左侧尾状核.结论 OCD患者可能存在眶额叶、前扣带回、尾状核等区域的功能异常,这些脑区功能异常可能在OCD发病机制方面发挥作用.%Objective To investigate brain regions of dysfunction in obsessive compulsive disorder (OCD) patients with fMRI. Methods Thirteen OCD patients and 15 healthy controls matched at age. Gender and education level underwent fM-RI when performing a Chinese Stroop test. The imaging data were analyzed and compared with SPM8 software to acquire the activation regions. Results OCD patients needed to activate more brain areas than normal subjects, such as left para-hippocampal gyrus, paracentral lobule, thalamus, calcarine cortex, etc. To complete the simple word reading Stroop tests. Decreased activation was demonstrated in left anterior cingulate cortex and caudate nucleus in OCD patients. During the color naming Stroop tests, there were scarcely any regions that OCD patients showed stronger activation than healthy controls, while they showed decreased activation in the orbital frontal cortex, left anterior cingulate cortex and caudate. Conclusion OCD patients may have brain dysfunction in orbital frontal cortex, anterior cingulate cortex and caudate, and this might play a critical role in the pathogenesis of OCD.

  15. COGNITIVE DYSFUNCTIONS IN DIABETIC POLYNEUROPATHY

    Directory of Open Access Journals (Sweden)

    Mirena Valkova

    2011-12-01

    Full Text Available Introduction: The objective of our study was to examine cognitive status, short – term memory, delayed recall and the retention of visual information in diabetics with polyneuropathy and to establish the impacts of some risk factors on cognitive performance.Contingent and methods: We assessed 47 diabetic patients with polyneuropathy, using the Mini Mental State Examination, 10 words test, the Benton visual retention test and the Hamilton scale.Results: Global cognitive dysfunction, decline in verbal memory and visual retention and tendency for depressive mood were observed. We found statistically significant interaction of ageing, sex, severity of pain, duration and late onset of diabetes mellitus (DM on cognitive functioning. Therapy association on cognition was not found.Conclusions: Our study confirms the hypothesis of global cognitive dysfunction, associated with diabetic polyneuropathy. The interactions of sex and pain severity require further study. We arise a hypothesis of asymmetrical brain injury in diabetics.

  16. Dysfunctional Reward Processing in Depression

    Science.gov (United States)

    Admon, Roee; Pizzagalli, Diego A.

    2015-01-01

    Anhedonia - diminished pleasure and/or decreased reactivity to pleasurable stimuli - is a core feature of depression that frequently persists after treatment. As a result, extensive effort has been directed towards characterizing the psychological and biological processes that mediate dysfunctional reward processing in depression. Reward processing can be parsed into sub-components that include motivation, reinforcement learning, and hedonic capacity, which, according to preclinical and neuroimaging evidence, involve partially dissociable brain systems. In line with this, recent findings indicate that behavioral impairments and neural abnormalities in depression vary across distinct reward-related constructs. Ultimately, improved understanding of precise reward-related dysfunctions in depression promises to improve diagnostic and therapeutic efforts in depression. PMID:26258159

  17. Postoperative cognitive dysfunction : Involvement of neuroinflammation and neuronal functioning

    NARCIS (Netherlands)

    Hovens, Iris B.; Schoemaker, Regien G.; van der Zee, Eddy A.; Absalom, Anthony R.; Heineman, Erik; van Leeuwen, Barbara L.

    2014-01-01

    Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced inflammatory processes, which may influence neuronal functioning either directly or through modulation of intraneuronal pathways, such as the brain derived neurotrophic factor (BDNF) mediated pathway.

  18. Posterior Tibial Tendon Dysfunction

    Science.gov (United States)

    .org Posterior Tibial Tendon Dysfunction Page ( 1 ) Posterior tibial tendon dysfunction is one of the most common problems of the foot and ankle. It occurs when the posterior tibial tendon becomes inflamed or torn. As a result, the ...

  19. Female Sexual Dysfunction

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource Menopause Map™ View Female Sexual Dysfunction February 2012 Download PDFs English Espanol Editors ... Resources Mayo Clinic Cleveland Clinic What is female sexual dysfunction (FSD)? Many women have a low sex ...

  20. Minor neurological dysfunction in children with dyslexia

    NARCIS (Netherlands)

    Punt, Marja; De Jong, Marianne; De Groot, Erik; Hadders-Algra, Mijna

    2010-01-01

    AIM To improve understanding of brain function in children with severe dyslexia in terms of minor neurological dysfunctions (MNDs). METHOD One hundred and four children (81 males, 23 females; age range 7-12y; mean age 9y 7mo, SD 1y 2mo;) with severe dyslexia (the presence of a Full-scale IQ score of

  1. Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction.

    Science.gov (United States)

    Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean; Lee, Ji Youl

    2014-09-01

    Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with

  2. Mecanismos de disfunção da barreira hematoencefálica no paciente criticamente enfermo: ênfase no papel das metaloproteinases de matriz Mechanisms of dysfunction of the blood-brain barrier in critically ill patients: emphasis on the role of matrix metalloproteinases

    Directory of Open Access Journals (Sweden)

    Hugo Rojas

    2011-06-01

    Full Text Available Será descrito a base fisiológica dos componentes da barreira hematoencefálica e suas propriedades. Além disto, pretende-se abordar o efeito particular das metaloproteinases e seu controle sobre as propriedades da matriz extracelular e a relação disto com disfunção da barreira hemotoencefálica. Finalmente se demonstrará o papel da metaloproteinases nas alterações do sistema nervoso central em doenças associadas ao paciente criticamente enfermo.This paper aims to describe the physiological basis of the blood-brain barrier components and its properties. Additionally, the particular effects of metalloproteinases and their control over the extracellular matrix and its relationship with blood-brain barrier dysfunction are discussed. Finally, the role of metalloproteinases on changes in the central nervous system in critically ill patients is discussed.

  3. Olfactory dysfunction in Down's Syndrome.

    Science.gov (United States)

    Murphy, C; Jinich, S

    1996-01-01

    Down's Syndrome subjects over 40 years old show neuropathology similar to that of Alzheimer's disease. The olfactory system is particularly vulnerable in Alzheimer's disease, both anatomically and functionally. Several measures of sensory and cognitive functioning were studied in the older Down's Syndrome patient, with the hypothesis of significant olfactory dysfunction. Participants were 23 Down's subjects, and 23 controls. The Dementia Rating Scale showed mean scores of 103 for Down's subjects and 141 for controls. Down's subjects showed significant deficits in odor detection threshold, odor identification, and odor recognition memory. Normal performance in a taste threshold task, similar to the olfactory threshold task in subject demands, suggested that the Down's syndrome subjects' poor performance was not due to task demands. Deficits in olfaction may provide a sensitive and early indicator of the deterioration and progression of the brain in older subjects with Down's Syndrome.

  4. Nutraceuticals, aging, and cognitive dysfunction.

    Science.gov (United States)

    Head, Elizabeth; Zicker, Steven C

    2004-01-01

    Decline in cognitive function that accompanies aging in dogs might have a biological basis, and many of the disorders associated with aging in canines might be preventable through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of laboratory and clinical studies, antioxidants might be one class of nutraceutical that benefits aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which can lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes might lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs; however, determining which compounds, combinations, dosage ranges, when to initiate intervention, and long-term effects constitute critical gaps in knowledge about this subject.

  5. Associativity of subclinical thyroid dysfunction with serum NT-pro-brain natriuretic peptide%亚临床甲状腺功能异常与血清NT-pro-BNP水平相关性的研究

    Institute of Scientific and Technical Information of China (English)

    金丹玲; 许艳玲; 刘兆军

    2012-01-01

    目的:研究亚临床甲状腺功能异常患者血浆中NT-pro-BNP浓度的差异.方法:选取2002年至2010年亚临床甲状腺功能异常住院患者122例,年龄23~ 82岁.其中男性54例,女性68例.根据血清TSH水平分为:A组,亚临床甲减1组(TSH4.5~9.9 mU·L-1,n=26);B组,亚临床甲减2组(TSH≥10 mU·L-1,n =30);C组,亚临床甲亢1组(TSH 0.1 ~0.44 mU·L-1,n=24);D组,亚临床甲亢2组(TSH<0.1 mU·L-1,n =21);E组,甲状腺功能正常组(TSH 0.45 ~4.5 mU·L-1,n=21).测定每组患者血清NT-pro-BNP浓度.结果:D组血清NT-pro-BNP浓度较E组增高(95% CI:57.8477~ 168.5159,P<0.05),较C组显著增高(95% CI:11.5080~ 138.5656,P<0.05).A组和B组血清NT-pro-BNP浓度较E组无明显差异(P>0.05).受试者体质量指数、空腹血糖水平、左室质量指数与血浆NT-pro-BNP浓度没有相关性.结论:亚临床甲亢患者TSH <0.1 mU·L-1时,心力衰竭的发生风险明显增加.%Objective: To evaluate the serum NT- pro- brain natriuretic peptide ( NT- pro- BNP) in different subgroup of the subclinical thyroid dysfunction. Methods: 122 patients to be in hospital in the department of endocrinology and cardiology from the year 2002 to 2010, who, on the basis of plasma levels of TSH, were divided into subclinical hypothyroidism 1 group (TSH 4. 5-9. 9 mU·L-1 ,n =26) , subclinical hypothyroidism 2 group (TSH ≥ 10 mU · L-1, n = 30 ) , subclinical hyperthyroidism 1 group ( TSH 2s 0. 1 , < 0. 45 mU · L -1 , n = 24 ) , subclinical hyperthyroidism 2 group ( TSH < 0. 1 mU·L-1,n =21) , control subjects with normal thyroid profile TSH (0.45-4.5 mU·L-1 ,n =21) , to evaluate the serum NT-pro-BNP. Results: Compared to control subjects, subclinical hyperthyroidism were characterized by higher serum NT- pro- BNP, this increase was particularly pronounced in subclinical hyperthyroidism 2 ( TSH < 0. 1 mU · L -1 ) compared to subelinical hyperthyroidism 1 ( TSH ≥ 0. 1 , <0. 45 mU·L-1), serum NT-pro-BNP did not

  6. Brain Magnetic Resonance Imaging (MRI) in the Evaluation of Cognitive Dysfunction in Patients with OSAHS%颅脑MRI在评价OSAHS患者认知功能异常中的临床价值研究

    Institute of Scientific and Technical Information of China (English)

    廖明朗; 李传资; 边静; 李祥泽

    2016-01-01

    目的:探讨颅脑MRI在评价阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者认知功能异常中的临床价值。方法抽取放射科OSAHS患者75例进行回顾性分析,根据AHI指数分为轻度OSAHS组患者25例、中度OSAHS组患者25例、重度OSAHS组患者25例,并取体检中心25例正常患者样本作为对照组。分别计算各组患者的海马萎缩评分、PVH评分、MMSE评分、MoCA评分,进行对比研究和相关性分析。结果不同严重程度OSAHS患者海马萎缩评分、PVH评分比较,重度OSAHS组海马萎缩评分、PVH评分高于中度OSAHS组、轻度OSAHS组和对照组;不同严重程度OSAHS患者MMSE评分、MoCA评分比较,重度OSAHS组MMSE评分、MoCA评分低于中度OSAHS组、轻度OSAHS组和对照组。海马萎缩评分、PVH与MMSE评分的相关性分析显示,海马体积萎缩、PVH与MMSE评分呈负相关。海马萎缩评分与MoCA评分及其量子项目的相关性分析显示,海马体积萎缩与MoCA评分、注意力、语言呈负相关。PVH与MoCA评分及其量子项目的相关性分析显示,PVH与MoCA评分、延迟记忆呈负相关。结论颅脑MRI的侧脑室周围高信号灶区域和海马萎缩检测结果对于OSAHS患者的认知功能具有一定的诊断价值,值得进一步研究。%Objective To explore the brain magnetic resonance imaging (MRI) in the evaluation of cognitive dysfunction in patients with OSAHS.Methods Seventy-five patients with OSAHS in radiology were retrospectively analyzed. According to AHI they were divided into the mild OSAHS group, the moderate OSAHS group and the severe OSAHS group, with each group twenty-five patients. Twenty-five patients from one health medical center were taken as the control group. Hippocampal atrophy scores, PVH score, MMSE score, MoCA score in defferent groups was compared and the correlation was analyzed.Results The hippocampal atrophy scores, PVH score in the severe OSAHS group was higher

  7. Chronic pelvic floor dysfunction.

    Science.gov (United States)

    Hartmann, Dee; Sarton, Julie

    2014-10-01

    The successful treatment of women with vestibulodynia and its associated chronic pelvic floor dysfunctions requires interventions that address a broad field of possible pain contributors. Pelvic floor muscle hypertonicity was implicated in the mid-1990s as a trigger of major chronic vulvar pain. Painful bladder syndrome, irritable bowel syndrome, fibromyalgia, and temporomandibular jaw disorder are known common comorbidities that can cause a host of associated muscular, visceral, bony, and fascial dysfunctions. It appears that normalizing all of those disorders plays a pivotal role in reducing complaints of chronic vulvar pain and sexual dysfunction. Though the studies have yet to prove a specific protocol, physical therapists trained in pelvic dysfunction are reporting success with restoring tissue normalcy and reducing vulvar and sexual pain. A review of pelvic anatomy and common findings are presented along with suggested physical therapy management.

  8. Female Sexual Dysfunction

    Science.gov (United States)

    ... to be comfortable with your sexuality, improve your self-esteem and accept your body. Try practicing these healthy ... mayoclinic.org/diseases-conditions/female-sexual-dysfunction/basics/definition/CON-20027721 . Mayo Clinic Footer Legal Conditions and ...

  9. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  10. Basal ganglia dysfunction

    Science.gov (United States)

    ... ganglia dysfunction. They include: Dystonia (muscle tone problems) Huntington disease (disorder in which nerve cells in certain parts ... ed. Philadelphia, PA: Elsevier Mosby; 2013:chap 20. Review Date 5/30/2016 Updated by: Amit M. ...

  11. Sexual Dysfunction in Women

    OpenAIRE

    Brown, Pamela

    1989-01-01

    Sexual dysfunction takes place in the context of women's lives and affects their sexuality and self-esteem. Awareness of these influences are vital to the management of the dysfunction and the promotion of positive sexuality. The family physician's contribution to both the prevention and management of sexual concerns includes an awareness of societal influences and facilitation of a woman's sense of her own power and control over her life.

  12. Mitochondrial dysfunctions in Parkinson's disease.

    Science.gov (United States)

    Gautier, C A; Corti, O; Brice, A

    2014-05-01

    Neurodegenerative disorders (ND) include a wide spectrum of diseases characterized by progressive neuronal dysfunctions or degeneration. With an estimated cost of 135 billion € in 2010 in the European Union (Olesen et al., 2012), they put an enormous economic as well as social burden on modern societies. Hence, they have been the subject of a huge amount of research for the last fifty years. For many of these diseases, our understanding of their profound causes is incomplete and this hinders the discovery of efficient therapies. ND form a highly heterogeneous group of diseases affecting various neuronal subpopulations reflecting different origins and different pathological mechanisms. However, some common themes in the physiopathology of these disorders are emerging. There is growing evidence that mitochondrial dysfunctions play a pivotal role at some point in the course of neurodegeneration. In some cases (e.g. Alzheimer's disease, amyotrophic lateral sclerosis), impairment of mitochondrial functions probably occurs late in the course of the disease. In a subset of ND, current evidence suggests that mitochondrial dysfunctions play a more seminal role in neuronal demise. Parkinson's disease (PD) presents one of the strongest cases based in part on post-mortem studies that have shown mitochondrial impairment (e.g. reduced complex I activity) and oxidative damage in idiopathic PD brains. The occurrence of PD is largely sporadic, but clinical syndromes resembling sporadic PD have been linked to specific environmental insults or to mutations in at least 5 distinct genes (α-synuclein, parkin, DJ-1, PINK1 and LRRK2). It is postulated that the elucidation of the pathogenic mechanisms underlying the selective dopaminergic degeneration in familial and environmental Parkinsonism should provide important clues to the pathogenic mechanisms responsible for idiopathic PD. Hence, numerous cellular and animal models of the disease have been generated that mimic these

  13. [Brain mechanisms of male sexual function].

    Science.gov (United States)

    Wang, Ying; Dou, Xin; Li, Jun-Fa; Luo, Yan-Lin

    2011-08-01

    In this paper, we reviewed the brain imaging studies of male sexual function in recent years from three aspects: the brain mechanism of normal sexual function, the brain mechanism of sexual dysfunction, and the mechanism of drug therapy for sexual dysfunction. Studies show that the development stages of male sexual activities, such as the excitement phase, plateau phase and orgasm phase, are controlled by different neural networks. The mesodiencephalic transition zone may play an important role in the start up of male ejaculation. There are significant differences between sexual dysfunction males and normal males in activation patterns of the brain in sexual arousal. The medial orbitofrontal cortex and inferior frontal gyrus in the abnormal activation pattern are correlated with sexual dysfunction males in sexual arousal. Serum testosterone and morphine are commonly used drugs for male sexual dysfunction, whose mechanisms are to alter the activating levels of the medial orbitofrontal cortex, insula, claustrum and inferior temporal gyrus.

  14. Voiding dysfunction - A review

    Directory of Open Access Journals (Sweden)

    Sripathi V

    2005-01-01

    Full Text Available In a child who is toilet trained the sudden onset of daytime wetting with frequency or urgency is alarming to the parents. Initially this subject was subdivided into a number of descriptive clinical conditions which led to a lot of confusion in recognition and management. Subsequently, the term elimination dysfunction was coined by Stephen Koff to emphasise the association between recurrent urinary infection, wetting, constipation and bladder overactivity. From a urodynamic point of view, in voiding dysfunction, there is either detrusor overactivity during bladder filling or dyssynergic action between the detrusor and the external sphincter during voiding. Identifying a given condition as a ′filling phase dysfunction′ or ′voiding phase dysfunction′ helps to provide appropriate therapy. Objective clinical criteria should be used to define voiding dysfunction. These include bladder wall thickening, large capacity bladder and infrequent voiding, bladder trabeculation and spinning top deformity of the urethra and a clinically demonstrated Vincent′s curtsy. The recognition and treatment of constipation is central to the adequate treatment of voiding dysfunction. Transcutaneous electric nerve stimuation for the treatment of detrusor overactivity, biofeedback with uroflow EMG to correct dyssynergic voiding, and behavioral therapy all serve to correct voiding dysfunction in its early stages. In established neurogenic bladder disease the use of Botulinum Toxin A injections into the detrusor or the external sphincter may help in restoring continence especially in those refractory to drug therapy. However in those children in whom the upper tracts are threatened, augmentation of the bladder may still be needed.

  15. Neurogenic voiding dysfunction.

    Science.gov (United States)

    Georgopoulos, Petros; Apostolidis, Apostolos

    2017-05-01

    This review aims to analyze and discuss all recently published articles associated with neurogenic voiding discussion providing readers with the most updated knowledge and trigger for further research. They include the proposal of a novel classification system for the pathophysiology of neurogenic lower urinary tract dysfunction (NLUTD) which combines neurological defect in a distinct anatomic location, and data on bowel dysfunction, autonomic dysreflexia and urine biomarkers; review of patient-reported outcome measures in NLUTD; review of the criteria for the diagnosis of clinically significant urinary infections; novel research findings on the pathophysiology of NLUTD; and review of data on minimally and more invasive treatments. Despite the extended evidence base on NLUTD, there is a paucity of high-quality new research concerning voiding dysfunction as opposed to storage problems. The update aims to inform clinicians about new developments in clinical practice, as well as ignite discussion for further clinical and basic research in the aforementioned areas of NLUTD.

  16. Biology of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj

    2009-05-01

    Full Text Available Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic difficulties more often than not coexist, suggesting an integration of phases. Sexual dysfunction can result from a wide variety of psychological and physiological causes including derangements in the levels of sex hormones and neurotrensmitters. This review deals with the biology of different phases of sexual function as well as implications of hormones and neurotransmitters in sexual dysfunction

  17. Application of Valpar Component Work Sample in Treatment of Cognitive Dysfunction of Patients with Brain Injury%应用Valpar职业评估训练系统治疗脑损伤后认知功能障碍的临床研究

    Institute of Scientific and Technical Information of China (English)

    于洋; 张琳瑛; 张玥

    2009-01-01

    [Objective]To study the therapeutic effect and clinical efficacy Of Valpar Component Work Sample(VCWS) on cognitive dysfunction of patients with brain injury.[Methods]A total of 232 patients with cognitive dysfunction induced by brain trauma were randomly allocated into VCWS group (120cases) and control group (112 cases). Control group received regular rehabilitation therapy; besides that, VCWS 3 Numerical Sorting, VCWS6 Independent Problem Solving, VCWS7 Multi-level Sorting were applied to VCWS group for cognitive function training. MMSE was used to evaluate cognitive functions of the patients in 2 groups before and after treatment.[Results]MMSE scores of both 2 groups were significantly improved after treatment. The difference of cognitive function improvement between 2 groups was significant after treatment (P<0.05).[Conclusion]Rehabilitation can effectively relieve the cognitive dysfunction of patients with brain injury, plus with VCWS can improve the therapeutic effect.%目的 研究Valpar职业评估训练系统(VCWS)对脑损伤后认知功能障碍的治疗作用和临床疗效.方法 选择232例脑损伤后存认知功能障碍的患者,随机分为治疗组(120例)和对照组(112例),对照组应用常规康复疗法进行治疗,治疗组增加应用VCWS 3-数字化分类训练盒、VCWS 6-独立解难技巧训练盒、VCWS 7-多层面分类训练盒进行认知功能训练,应用细微精神状态检查(MMSE)量表分别评定2组患者康复治疗前后认知功能情况,进行比较及统计学分析.结果 2组患者治疗后较治疗前MMSE评分均有显著性改善(P<0.01);2组患者康复治疗后的认知功能改善情况比较,差异亦有统计学意义(P<0.05).结论 应用康复治疗可有效地改善脑损伤患者认知功能障碍,增加应用Valpar职业评估训练系统的治疗效果更好.

  18. Diastolic dysfunction in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Wiese, Signe Skovgaard; Halgreen, Hanne

    2016-01-01

    Development of esophageal varices, ascites, and hepatic nephropathy is among the major complications of cirrhosis. The presence of cirrhotic cardiomyopathy, which includes a left ventricular diastolic dysfunction (DD), seems to deteriorate the course of the disease and the prognosis. Increased st...

  19. Female sexual dysfunction

    DEFF Research Database (Denmark)

    Giraldi, Annamaria; Wåhlin-Jacobsen, Sarah

    2016-01-01

    Female sexual dysfunction (FSD) is a controversial condition, which has prompted much debate regarding its aetiology, components, and even its existence. Our inability to work together as clinicians, psychologists, patients, and advocates hinders our understanding of FSD, and we will only improve...

  20. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    Michelle L Boland

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  1. Shared Parenting Dysfunction.

    Science.gov (United States)

    Turkat, Ira Daniel

    2002-01-01

    Joint custody of children is the most prevalent court ordered arrangement for families of divorce. A growing body of literature indicates that many parents engage in behaviors that are incompatible with shared parenting. This article provides specific criteria for a definition of the Shared Parenting Dysfunction. Clinical aspects of the phenomenon…

  2. Dysfunction of Rapid Neural Adaptation in Dyslexia.

    Science.gov (United States)

    Perrachione, Tyler K; Del Tufo, Stephanie N; Winter, Rebecca; Murtagh, Jack; Cyr, Abigail; Chang, Patricia; Halverson, Kelly; Ghosh, Satrajit S; Christodoulou, Joanna A; Gabrieli, John D E

    2016-12-21

    Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cognitive dysfunction after cardiovascular surgery

    DEFF Research Database (Denmark)

    Funder, K S; Steinmetz, J; Rasmussen, L S

    2009-01-01

    This review describes the incidence, risk factors, and long-term consequences of cognitive dysfunction after cardiovascular surgery. Postoperative cognitive dysfunction (POCD) is increasingly being recognized as an important complication, especially in the elderly. A highly sensitive neuropsychol...

  4. Further Commentary on Mitochondrial Dysfunction in Autism Spectrum Disorder: Assessment and Treatment Considerations

    Science.gov (United States)

    Dager, Stephen R.; Corrigan, Neva M.; Estes, Annette; Shaw, Dennis W. W.

    2012-01-01

    The authors respond to a recent letter (Rossignol and Frye 2011) critical of their paper, "Proton magnetic resonance spectroscopy and MRI reveal no evidence for brain mitochondrial dysfunction in children with autism spectrum disorder" (Corrigan et al. 2011). Further considerations regarding the assessment of mitochondrial dysfunction in autism…

  5. Smoking to self-medicate attentional and emotional dysfunctions.

    Science.gov (United States)

    Gehricke, Jean-G; Loughlin, Sandra E; Whalen, Carol K; Potkin, Steven G; Fallon, James H; Jamner, Larry D; Belluzzi, James D; Leslie, Frances M

    2007-11-01

    Individuals with attentional and emotional dysfunctions are most at risk for smoking initiation and subsequent nicotine addiction. This article presents converging findings from human behavioral research, brain imaging, and basic neuroscience on smoking as self-medication for attentional and emotional dysfunctions. Nicotine and other tobacco constituents have significant effects on neural circuitry underlying the regulation of attention and affect. Age, sex, early environment, and exposure to other drugs have been identified as important factors that moderate both the effects of nicotine on brain circuitry and behavior and the risk for smoking initiation. Findings also suggest that the effects of smoking differ depending on whether smoking is used to regulate attention or affect. Individual differences in the reinforcement processes underlying tobacco use have implications for the development of tailored smoking cessation programs and prevention strategies that include early treatment of attentional and emotional dysfunctions.

  6. Minor neurological dysfunction in children with autism spectrum disorder

    NARCIS (Netherlands)

    De Jong, Marianne; Punt, Marja; De Groot, Erik; Minderaa, Ruud B.; Hadders-Algra, Mijna

    2011-01-01

    Aim The aim of this study was to improve the understanding of brain function in children with autism spectrum disorder (ASD) in relation to minor neurological dysfunctions (MNDs). Method We studied MNDs in 122 children (93 males, 29 females; mean age 8y 1mo, SD 2y 6mo) who, among a total cohort of 7

  7. Minor Neurological Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    de Jong, Marianne; Punt, Marja; de Groot, Erik; Minderaa, Ruud B; Hadders-Algra, Mijna

    2011-01-01

    Aim: The aim of this study was to improve the understanding of brain function in children with autism spectrum disorder (ASD) in relation to minor neurological dysfunctions (MNDs). Method: We studied MNDs in 122 children (93 males, 29 females; mean age 8y 1mo, SD 2y 6mo) who, among a total cohort of 705 children (513 males, 192 females; mean age…

  8. Piracetam improves mitochondrial dysfunction following oxidative stress.

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2006-01-01

    1.--Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. 2.--Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. 3.--Piracetam treatment at concentrations between 100 and 1000 microM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 microM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. 4.--Piracetam treatment (100-500 mg kg(-1) daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. 5.--In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients.

  9. What Is a Dysfunctional School?

    Science.gov (United States)

    Bergman, M. M.

    2013-01-01

    Whether or not a school is dysfunctional depends largely on how dysfunctionality in schools is defined and measured. Dysfunctionality, as any construct, is subject to definition and interpretation, and it is thus always marked by perspectivism. But regardless of the definition games occasionally played by academics, some form of reality takes…

  10. Lesson Nine Sinus node dysfunction

    Institute of Scientific and Technical Information of China (English)

    鲁端; 吴文烈

    2004-01-01

    @@ Sinus node dysfunction most often is found in the elderly as an isolated phenomenon. Although interruption of the blood supply to the sinus node may produce dysfunction, the correlation between obstruction of the sinus node artery and clinical evidence of sinus node dysfunction is poor.

  11. Peripartum heart failure caused by left ventricular diastolic dysfunction: a case report.

    Science.gov (United States)

    Kakogawa, Jun; Nako, Takafumi; Igarashi, Suguru; Nakamura, Shin; Tanaka, Mamoru

    2014-08-01

    Peripartum cardiomyopathy is a rare but potentially life-threatening condition. The current definition of peripartum cardiomyopathy only includes patients with systolic dysfunction. We describe a 25-year-old nulligravid patient with heart failure, i.e. left ventricular diastolic dysfunction with preserved systolic dysfunction during the third trimester of pregnancy. She complained of dyspnea and was referred to our hospital at 31 weeks of gestation. The patient met the clinical criteria for peripartum cardiomyopathy with the exception of systolic dysfunction. Brain-type natriuretic peptide levels peaked at 1447 pg/dL. The patient responded to therapy for heart failure and showed resolution of her diastolic dysfunction by 1 month postpartum. The case demonstrated the important role of diastolic dysfunction in peripartum heart failure and the possibility of clarifying the pathophysiology of peripartum cardiomyopathy by evaluating diastolic function. Further investigations are needed to provide evidence regarding the clinical role of diastolic dysfunction in peripartum heart failure.

  12. Roles of olfactory system dysfunction in depression.

    Science.gov (United States)

    Yuan, Ti-Fei; Slotnick, Burton M

    2014-10-01

    The olfactory system is involved in sensory functions, emotional regulation and memory formation. Olfactory bulbectomy in rat has been employed as an animal model of depression for antidepressant discovery studies for many years. Olfaction is impaired in animals suffering from chronic stress, and patients with clinical depression were reported to have decreased olfactory function. It is believed that the neurobiological bases of depression might include dysfunction in the olfactory system. Further, brain stimulation, including nasal based drug delivery could provide novel therapies for management of depression.

  13. The beneficial effects of tree nuts on the aging brain

    Science.gov (United States)

    Dietary patterns may play an important role in protecting the brain from the cellular and cognitive dysfunction associated with the aging process and neurodegenerative diseases. Tree nuts are showing promise as possible dietary interventions for age-related brain dysfunction. Tree nuts are an impo...

  14. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  15. The cone dysfunction syndromes

    Science.gov (United States)

    Aboshiha, Jonathan; Dubis, Adam M; Hardcastle, Alison J; Michaelides, Michel

    2016-01-01

    The cone dysfunction syndromes are a heterogeneous group of inherited, predominantly stationary retinal disorders characterised by reduced central vision and varying degrees of colour vision abnormalities, nystagmus and photophobia. This review details the following conditions: complete and incomplete achromatopsia, blue-cone monochromatism, oligocone trichromacy, bradyopsia and Bornholm eye disease. We describe the clinical, psychophysical, electrophysiological and imaging findings that are characteristic to each condition in order to aid their accurate diagnosis, as well as highlight some classically held notions about these diseases that have come to be challenged over the recent years. The latest data regarding the genetic aetiology and pathological changes observed in the cone dysfunction syndromes are discussed, and, where relevant, translational avenues of research, including completed and anticipated interventional clinical trials, for some of the diseases described herein will be presented. Finally, we briefly review the current management of these disorders. PMID:25770143

  16. Dysfunctional Uterine Bleeding

    OpenAIRE

    1987-01-01

    Dysfunctional uterine bleeding (DUB) is defined as abnormal uterine bleeding that results from an ovarian endocrinopathy. It may be associated with ovulatory and anovulatory cycles. The diagnosis of DUB depends on a thorough history and physical examination to exclude organic disorders. In older women, endometrial biopsy should be done before starting therapy. The treatment depends on an understanding of the menstrual cycle. In less urgent cases, anovulatory cycles are managed using progester...

  17. Biology of Sexual Dysfunction

    OpenAIRE

    MN, Anil Kumar; Pai, NB; Rao, S; Rao, TSS; Goyal, N.

    2009-01-01

    Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic di...

  18. Male Gender Role Dysfunction

    OpenAIRE

    Daig, Isolde

    2010-01-01

    Background: Men have a higher alcohol and cigarette consumption than women, they use more drugs, they have twice as high a suicide rate and only a minority of men attend on preventive medical checkups. Hypotheses: The central questions of the present study pertained to the identification of dysfunctional aspects of a male self concept and the possible correlations with risk behaviour of men in different age stages. One possible explanation for this high risk behaviour may be higher mascul...

  19. Thyroid dysfunction and subfertility.

    Science.gov (United States)

    Cho, Moon Kyoung

    2015-12-01

    The thyroid hormones act on nearly every cell in the body. Moreover, the thyroid gland continuously interacts with the ovaries, and the thyroid hormones are involved in almost all phases of reproduction. Thyroid dysfunctions are relatively common among women of reproductive age, and can affect fertility in various ways, resulting in anovulatory cycles, high prolactin levels, and sex hormone imbalances. Undiagnosed and untreated thyroid disease can be a cause of subfertility. Subclinical hypothyroidism (SCH), also known as mild thyroid failure, is diagnosed when peripheral thyroid hormone levels are within the normal reference laboratory range, but serum thyroid-stimulating hormone levels are mildly elevated. Thyroid autoimmunity (TAI) is characterized by the presence of anti-thyroid antibodies, which include anti-thyroperoxidase and anti-thyroglobulin antibodies. SCH and TAI may remain latent, asymptomatic, or even undiagnosed for an extended period. It has also been demonstrated that controlled ovarian hyperstimulation has a significant impact on thyroid function, particularly in women with TAI. In the current review, we describe the interactions between thyroid dysfunctions and subfertility, as well as the proper work-up and management of thyroid dysfunctions in subfertile women.

  20. Attention and driving in traumatic brain injury : A question of coping with time-pressure

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK; Tant, MLM; van Zomeren, AH

    2002-01-01

    Background: Diffuse and focal traumatic brain injury (TBI) can result in perceptual, cognitive, and motor dysfunction possibly leading to activity limitations in driving. Characteristic dysfunctions for severe diffuse TBI are confronted with function requirements derived from the hierarchical task a

  1. Attention and driving in traumatic brain injury : A question of coping with time-pressure

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK; Tant, MLM; van Zomeren, AH

    Background: Diffuse and focal traumatic brain injury (TBI) can result in perceptual, cognitive, and motor dysfunction possibly leading to activity limitations in driving. Characteristic dysfunctions for severe diffuse TBI are confronted with function requirements derived from the hierarchical task

  2. Sexual dysfunction with antihypertensive drugs.

    Science.gov (United States)

    Prisant, L M; Carr, A A; Bottini, P B; Solursh, D S; Solursh, L P

    1994-04-11

    The relationship of antihypertensive drugs have a long history of association with sexual dysfunction; however, this relationship is poorly documented. There appears to be a higher rate of sexual dysfunction in untreated hypertensive men compared with normotensive men. Sexual dysfunction increases with age and is associated with physical and emotional symptoms. There are few studies assessing sexual dysfunction with female and African-American hypertensive patients. Sexual dysfunction is associated with impairment of quality of life and noncompliance. Since group data may hide individual drug effects, baseline data should be collected on all patients before initiating therapy with any antihypertensive agent. Although questionnaires may not provide objective information on sexual dysfunction, the response rate to direct questioning may be less than the response rate on a questionnaire and may be affected by the gender or race of the interviewer. Research protocols using a double-blind, placebo-controlled design should assess sexual dysfunction in men and women in a standardized fashion.

  3. Diabetic bladder dysfunction

    Institute of Scientific and Technical Information of China (English)

    Guiming Liu; Firouz Daneshgari

    2014-01-01

    Objective To review studies on diabetic bladder dysfunction (DBD),a common and bothersome complication of diabetes mellitus.Data sources We performed a search of the English literature through PubMed.The key words used were "diabetes" and "bladder dysfunction" or "cystopathy".Our own data and perspective are included in the discussion.Study selection Studies containing data relevant to DBD were selected.Because of the limited length of this article,we also referenced reviews that contain comprehensive amalgamations of relevant literature.Results The classic symptoms of DBD are decreased bladder sensation,increased bladder capacity,and impaired bladder emptying with resultant elevated post-void residual urine.However,recent clinical and experimental evidence indicate a strong presence of storage problems such as urge incontinence in diabetes.Recent studies of DBD in animal models of type 1 diabetes have revealed temporal effects of diabetes,causing an early phase of compensatory bladder function and a later phase of decompensated bladder function.The pathophysiology of DBD is multifactorial,including disturbances of the detrusor,urothelium,autonomic nerves,and urethra.Polyuria and hyperglycemia play important but distinctive roles in induction of bladder dysfunction in type 1 diabetes.Polyuria causes significant bladder hypertrophy in the early stage of diabetes,whereas oxidative stress in the bladder caused by chronic hyperglycemia may play an important role in the late stage failure of bladder function.Conclusions DBD includes time-dependent and mixed manifestations.The pathological alterations include muscle,nerve,and urothelium.Polyuria and hyperglycemia independently contribute to the pathogenesis of DBD.Treatments for DBD are limited.Future clinical studies on DBD in type 1 and type 2 diabetes should be investigated separately.Animal studies of DBD in type 2 diabetes are needed,from the natural history to mechanisms.Further understanding of the molecular

  4. Depression and erectile dysfunction.

    Science.gov (United States)

    Makhlouf, Antoine; Kparker, Ashay; Niederberger, Craig S

    2007-11-01

    Depression and erectile dysfunction (ED) clearly are associated. Although urologists and psychiatrists have long recognized that antidepressant medications affect erectile function negatively, the interplay between the two conditions remains underappreciated. Psychiatrists may be reluctant to question a patient in detail about ED, and urologists seldom perform a formal assessment of the presence of depression in patients who have ED. This article gives a quick overview of the relationship between these two conditions and provides the clinician with the knowledge required to effectively manage ED with comorbid depression.

  5. Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy.

    Science.gov (United States)

    Bozza, Fernando A; D'Avila, Joana C; Ritter, Cristiane; Sonneville, Romain; Sharshar, Tarek; Dal-Pizzol, Felipe

    2013-05-01

    Sepsis is a major cause of mortality and morbidity in intensive care units. Acute and long-term brain dysfunctions have been demonstrated both in experimental models and septic patients. Sepsis-associated encephalopathy is an early and frequent manifestation but is underdiagnosed, because of the absence of specific biomarkers and of confounding factors such as sedatives used in the intensive care unit. Sepsis-associated encephalopathy may have acute and long-term consequences including development of autonomic dysfunction, delirium, and cognitive impairment. The mechanisms of sepsis-associated encephalopathy involve mitochondrial and vascular dysfunctions, oxidative stress, neurotransmission disturbances, inflammation, and cell death. Here we review specific evidence that links bioenergetics, mitochondrial dysfunction, and oxidative stress in the setting of brain dysfunctions associated to sepsis.

  6. A Case of Primary Central Nervous System Lymphoma Located at Brain Stem in a Child

    Science.gov (United States)

    Kim, Jinho

    2016-01-01

    Primary central nervous system lymphoma (PCNSL) is an extranodal Non-Hodgkin's lymphoma that is confined to the brain, eyes, and/or leptomeninges without evidence of a systemic primary tumor. Although the tumor can affect all age groups, it is rare in childhood; thus, its incidence and prognosis in children have not been well defined and the best treatment strategy remains unclear. A nine-year old presented at our department with complaints of diplopia, dizziness, dysarthria, and right side hemiparesis. Magnetic resonance image suggested a diffuse brain stem glioma with infiltration into the right cerebellar peduncle. The patient was surgically treated by craniotomy and frameless stereotactic-guided biopsy, and unexpectedly, the histopathology of the mass was consistent with diffuse large B cell lymphoma, and immunohistochemical staining revealed positivity for CD20 and CD79a. Accordingly, we performed a staging work-up for systemic lymphoma, but no evidence of lymphoma elsewhere in the body was obtained. In addition, she had a negative serologic finding for human immunodeficient virus, which confirmed the histopathological diagnosis of PCNSL. She was treated by radiosurgery at 12 Gy and subsequent adjuvant combination chemotherapy based on high dose methotrexate. Unfortunately, 10 months after the tissue-based diagnosis, she succumbed due to an acute hydrocephalic crisis. PMID:27867930

  7. Vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review.

  8. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  9. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... Events About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics ... brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD) . Glutamate —the ...

  12. Diagnostic and prognostic value of brain natriuretic peptide (BNP) concentrations in very elderly heart disease patients: specific geriatric cut-off and impacts of age, gender, renal dysfunction, and nutritional status.

    Science.gov (United States)

    Blondé-Cynober, F; Morineau, G; Estrugo, B; Fillie, E; Aussel, C; Vincent, J-P

    2011-01-01

    Confirming the presence of heart failure (HF) in geriatric patients is made difficult by the overlapping symptoms with other diseases and by limited access to investigative techniques such as echography, and the clinical signs are either non-constant or difficult to interpret. In this context, BNP measurement could prove highly useful. We determined a cut-off value of BNP for diagnosing HF in geriatric patients and gauged its predictive power in terms of cardiovascular events, dependence and death within a 6-month timeframe. This clinical and biological study was performed in patients, 44 women and 20 men, age>65 years with suspected HF hospitalized in the geriatric unit at Emile-Roux hospital. Echography was performed at baseline examination. BNP concentrations were determined at baseline examination and at 2 and 6 months later. Renal function was assessed via the Cockroft-Gault formula. Nutritional status was assessed using the geriatric nutritional risk index (GNRI). Final reference diagnosis was established by both cardiologist and geriatrician. The diagnostic value of BNP was assessed by area under the ROC curve. The average age of the 64 patients was 84.3±7.4 years. The final diagnosis was HF in 26 patients (41%). A BNPvalue of 90% (accuracy 80%) for excluding the diagnosis of HF. BNP values were predictive of cardiovascular events over a 2-month timeframe in patients with HF and over a 6-month timeframe in the global population. BNP values were not predictive of mortality in patients with or without HF. BNP testing should help to differentiate pulmonary from cardiac etiologies of dyspnea, but a specific cut-off point has to be used in geriatric settings, mainly for patients presenting nutritional and renal dysfunctions.

  13. Effect of c-fos expression in the hipporampus on cognitive dysfunction following traumatic brain injury in rats%海马区c-fos基因表达在大鼠脑创伤后认知功能障碍中的作用

    Institute of Scientific and Technical Information of China (English)

    洪军; 崔建忠; 高俊玲; 周云涛

    2009-01-01

    目的 探讨大鼠脑创伤后海马区c-fos基因表达及对学习记忆功能的影响.方法 建立Marmarou大鼠脑创伤模型,采用分子原位杂交技术和Morris水迷宫分别观察大鼠伤后海马区c-fos基因表达变化及空间学习记忆能力的改变. 结果 伤后30 min海马区神经元即出现c-fos mRNA的表达,1~3 h达高峰,伤后24 h表达基本消失;Morris水迷宫实验,大鼠伤后存在空间学习记忆功能障碍.结论 脑创伤可引起c-fos基因在海马区的表达上调,通过介导延迟性神经元细胞死亡,影响细胞间的信息传递,参与认知功能的损害.%Objective To explore the effect of c-fos mRNA expression in the hippocampus on the impairment of learning and memory of rats following traumatic brain injury. Methods The model of traumatic brain injury was established in rats by using Marmarou's method. Then, c-fos mRNA expres-sion was detected by means of in situ hybridization and cognitive dysfunction evaluated by Morris water maze. Results After traumatic brain injury, c-fos mRNA expression was detected in the hippocampus at 30 minutes, reached peak at 1-3 hours and almost disappeared at 24 hours. Morris water maze test showed significant impairment of spatial learning and memory in rats. Conclusions Traumatic brain injury can induce up-regulated expression of c-fos mRNA in the hippocampus of the rats and lead to cogni-tive impairment by mediating delayed neural cell death and influencing intercellular signal transmission.

  14. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  15. Cycling and erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Ina Šibli

    2015-01-01

    Full Text Available Abstract: For many years medical studies have implicated bicycle riding is causing erectile dysfunction (ED in association with higher perineal pressure. This review focuses upon epidemiological studies assesing the impact of cycling on ED, pathogenesis of ED in cyclists  as well as on research considering changes of perineal pressure, hemodynamics, and nerve conduction when cycling. Investigestors were also interested in different saddle sizes, materials and geometry and also in the impact of saddle and riders position on changes to the perineum. Research on female cyclists is very limited but indicates similar genitourinary disorders as in male cyclists. We also review  research on preventative and therapeutic options regarding bicycle riding and ED.

  16. Dysfunctional anger and sexual violence.

    Science.gov (United States)

    Ahmed, A G

    2014-06-01

    Sexual offenses with or without aggression attract attention from the popular media and the scientific community. Empirical research suggests a relationship between anger and sexual violence. This article describes the key themes of dysfunctional anger and sexual violence, and how dysfunctional anger relates to sexual fantasies, sexual offending, and sexual recidivism. The implications of the findings for clinical practice and future research are discussed.

  17. Defining sphincter of oddi dysfunction

    DEFF Research Database (Denmark)

    Funch-Jensen, P

    1996-01-01

    Sphincter of Oddi (SO) dysmotility may give rise to pain. The golden standard for the demonstration of SO dysfunction is endoscopic manometry. A number of abnormalities are observed in patients with postcholecystectomy pain and in patients with idiopathic recurrent pancreatitis. Criteria for defi...... for defining SO dysfunction and the possible mechanisms for the precipitation of pain are discussed....

  18. Bladder Dysfunction and Vesicoureteral Reflux

    Directory of Open Access Journals (Sweden)

    Ulla Sillén

    2008-01-01

    Full Text Available In this overview the influence of functional bladder disturbances and of its treatment on the resolution of vesicoureteral reflux (VUR in children is discussed. Historically both bladder dysfunction entities, the overactive bladder (OAB and the dysfunctional voiding (DV, have been described in conjunction with VUR. Treatment of the dysfunction was also considered to influence spontaneous resolution in a positive way. During the last decades, however, papers have been published which could not support these results. Regarding the OAB, a prospective study with treatment of the bladder overactivity with anticholinergics, did not influence spontaneous resolution rate in children with a dysfunction including also the voiding phase, DV and DES (dysfunctional elimination syndrome, most studies indicate a negative influence on the resolution rate of VUR in children, both before and after the age for bladder control, both with and without treatment. However, a couple of uncontrolled studies indicate that there is a high short-term resolution rate after treatment with flow biofeedback. It should be emphasized that the voiding phase dysfunctions (DV and DES are more severe than the genuine filling phase dysfunction (OAB, with an increased frequency of UTI and renal damage in the former groups. To be able to answer the question if treatment of bladder dysfunction influence the resolution rate of VUR in children, randomized controlled studies must be performed.

  19. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    implications of muscle dysfunction in cancer patients. The efficacy of exercise training to prevent and/or mitigate cancer-related muscle dysfunction is also discussed. DESIGN: We identified 194 studies examining muscular outcomes in cancer patients by searching PubMed and EMBASE databases. RESULTS: Muscle...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...... dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented...

  20. Sexual Dysfunction in Patients with Diabetes Mellitus: The Role of a "Central" Neuropathy.

    Science.gov (United States)

    Nofzinger

    1997-01-01

    Sexual behavior involves the complex integration of higher intellectual function, such as associative memory and the experience of drives and motivations, with basic instinctual or reflexive physiological responses coordinated at the spinal level. Previous research in diabetic sexual dysfunction has largely focused on diabetic male erectile dysfunction, emphasizing a peripheral vasculopathy or neuropathy as etiologic factors, although ignoring the more complex neuropsychiatric components of sexual behavior. Following a review of the basic physiology of sexual behavior and evidence in support of a peripheral vasculopathy and/or a peripheral autonomic neuropathy in the cause of diabetic sexual dysfunction, emphasis will then shift to the role of a "central" neuropathy as a contributing component of diabetic sexual dysfunction. Evidence in support of such a view will come from a variety of studies, ranging from basic neuroscience research on forebrain mechanisms of sexual function to the functional brain imaging of human rapid eye movement (REM) sleep, a brain state known to be associated with the periodic occurrence of penile tumescence. An integrative perspective of this research will identify major candidate structures within the brain that may be dysfunctional in diabetic patients and may contribute to the profound sexual dysfunction that characterizes this condition. Major findings as well as deficits in our understanding of the effects of diabetes on female sexual dysfunction will also be highlighted, followed by suggestions for future research in this largely understudied area.

  1. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  2. Mechanism of brain dysfunction on children with nocturnal enuresis by the technique of fractional amplitude of low frequency fluctuation of functional magnetic resonance imaging%功能磁共振比率低频振幅技术在夜间遗尿症儿童脑功能失调的机制研究

    Institute of Scientific and Technical Information of China (English)

    江凯华; 董选; 丁丽; 沈惠娟; 赵方乔; 易阳; 郑爱斌; 李红新; 丁立

    2016-01-01

    目的 采用静息态功能磁共振(rs-fMRI)比率低频振幅技术研究夜间遗尿症(nocturnal enuresis,NE)遗尿表现、注意和记忆障碍脑功能失调的病理机制.方法 NE与正常儿童各18名分别进行rs-fMRI扫描,采用比率低频振幅(fALFF)技术分析,组间通过双样本t检验比较fALFF值的差异.结果 两组fALFF值比较有明显差异的脑区分别位于小脑(MNI坐标值:-12,-57,-33)、左侧前额叶(-21,42,-9)、右侧颞叶(45,-12,-12)、枕叶(-18,-90,39),均为NE组低于正常组(P<0.05).NE儿童小脑fALFF值降低使控制排尿的定时功能失调,左侧前额叶活动减弱使其注意执行控制受到抑制,而右侧颞叶和枕叶的fALFF值较正常组低可能与记忆力相关.结论 NE患儿遗尿症状与小脑受损有关,小脑和左侧前额叶功能异常使其注意力下降,而NE记忆力障碍可能与右侧颞叶、枕叶损伤有一定联系.%Objective To research the pathological mechanism of the performance of enuresis and the brain dysfunction of attention and memory deficit of nocturnal enuresis (NE) by fractional amplitude of low frequency fluctuation (fALFF) of resting-state functional magnetic resonance imaging (rs-fMRI).Methods The approach of fALFF was used to analyze on 18 NE children and normal children,both of whom had been examined by rs-fMRI scans.Then the differences of fALFF were compared by two sample t-test.Results The brain regions which had obvious differences of fALFF between two groups were cerebellum(MNI:-12,-57,-33),left frontal lobe(-21,42,-9),right temporal lobe(45,-12,-12) and occipital lobe(-18,-90,39).And the group of NE was lower than normal children on all the four regions.The decrease of the value of fALFF on cerebellum made the dysfunction of timing of controlling urinary.And the weaken of the activity of left frontal lobe made the inhibition of attentional perform.The decrease of the value of fALFF on right temporal lobe and occipital lobe was probably

  3. Post-stroke cognitive dysfunctions: A clinical and neuroimaging study

    Directory of Open Access Journals (Sweden)

    Andrei Yuryevich Emelin

    2013-01-01

    Full Text Available Clinical, neuropsychological, and neuroimaging examinations were made in 65 patients (52 men and 13 women aged 65.6±10.1 years who had experienced ischemic stroke. Cognitive impairments (CI were heterogeneous; regulatory functions, attention, and counting were most significantly affected in moderate CI. In mild dementia, mainly poor attention and regulatory dysfunctions were added by clearly-cut impairments of memory, orientation, and visual-spatial function. Brain atrophy, white matter changes, and small focal gray matter damages along with focal post-stroke changes were revealed by neuroimaging in most patients. It was found that besides the volume and location of a damage focus, the signs of impaired integrated mental activity of the brain, regulatory dysfunctions in particular, should be a necessary condition for the verification of post-stroke CI.

  4. Amyloid Beta-Protein and Neural Network Dysfunction

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2013-01-01

    Full Text Available Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ represents one of the major challenges for Alzheimer’s disease (AD research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.

  5. Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory.

    Science.gov (United States)

    Nekovarova, Tereza; Fajnerova, Iveta; Horacek, Jiri; Spaniel, Filip

    2014-01-01

    Schizophrenia is a complex neuropsychiatric disorder with variable symptomatology, traditionally divided into positive and negative symptoms, and cognitive deficits. However, the etiology of this disorder has yet to be fully understood. Recent findings suggest that alteration of the basic sense of self-awareness may be an essential distortion of schizophrenia spectrum disorders. In addition, extensive research of social and mentalizing abilities has stressed the role of distortion of social skills in schizophrenia.This article aims to propose and support a concept of a triple brain network model of the dysfunctional switching between default mode and central executive network (CEN) related to the aberrant activity of the salience network. This model could represent a unitary mechanism of a wide array of symptom domains present in schizophrenia including the deficit of self (self-awareness and self-representation) and theory of mind (ToM) dysfunctions along with the traditional positive, negative and cognitive domains. We review previous studies which document the dysfunctions of self and ToM in schizophrenia together with neuroimaging data that support the triple brain network model as a common neuronal substrate of this dysfunction.

  6. Bridging disparate symptoms of schizophrenia: a Triple network dysfunction theory

    Directory of Open Access Journals (Sweden)

    Tereza eNekovarova

    2014-05-01

    Full Text Available Schizophrenia is a complex neuropsychiatric disorder with variable symptomatology, traditionally divided into positive and negative symptoms, and cognitive deficits. Yet, the etiology of this disorder has yet to be fully understood.Recent findings suggest that alteration of the basic sense of self-awareness may be an essential distortion of schizophrenia spectrum disorders. In addition, extensive research of social and mentalizing abilities has stressed the role of distortion of social skills in schizophrenia.This article aims to propose and support a concept of triple brain network model of the dysfunctional switching between default mode and central executive network related to the aberrant activity of salience network. This model could represent a unitary mechanism of a wide array of symptom domains present in schizophrenia including the deficit of SELF (self-awareness and self-representation and theory of mind (ToM dysfunctions along with the traditional positive, negative and cognitive domains. We review previous studies which document the dysfunctions of SELF and ToM in schizophrenia together with neuroimaging data elucidating the triple brain network model as a common neuronal substrate of this dysfunction.

  7. Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory

    Science.gov (United States)

    Nekovarova, Tereza; Fajnerova, Iveta; Horacek, Jiri; Spaniel, Filip

    2014-01-01

    Schizophrenia is a complex neuropsychiatric disorder with variable symptomatology, traditionally divided into positive and negative symptoms, and cognitive deficits. However, the etiology of this disorder has yet to be fully understood. Recent findings suggest that alteration of the basic sense of self-awareness may be an essential distortion of schizophrenia spectrum disorders. In addition, extensive research of social and mentalizing abilities has stressed the role of distortion of social skills in schizophrenia.This article aims to propose and support a concept of a triple brain network model of the dysfunctional switching between default mode and central executive network (CEN) related to the aberrant activity of the salience network. This model could represent a unitary mechanism of a wide array of symptom domains present in schizophrenia including the deficit of self (self-awareness and self-representation) and theory of mind (ToM) dysfunctions along with the traditional positive, negative and cognitive domains. We review previous studies which document the dysfunctions of self and ToM in schizophrenia together with neuroimaging data that support the triple brain network model as a common neuronal substrate of this dysfunction. PMID:24910597

  8. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  9. [Female sexual dysfunction].

    Science.gov (United States)

    Luria, Mijal

    2009-09-01

    Female sexual problems are common, frequently overlooked and have a significant impact on the lives of women. Research in the last decade has brought to the understanding and recognition of a number of standpoints, mainly the broad range of normative function. In 2003, the American Urological Association Foundation convened an international committee of experts in the field of women's sexuality, to reconsider the existing definitions of women's sexual dysfunction. Based on the circular response cycle developed by Basson, the group emphasized motivations that might move a woman from being sexually "neutral" to making a decision to be sexual with her partner, as a normative alternative to the need for spontaneous sexual desire as the trigger for sexual behavior. Etiology may stem from medical as well as psychological factors, thus assessment must include a complete evaluation. Treatment includes psycho-education, improvement of interpersonal communication, cognitive behavioral treatment and elucidation and treatment of medical problems, if necessary. Several pharmacological treatments are under investigation, with modest results and uncertainties about their long term safety. This review presents the female sexual response as it is understood today and the current diagnostic and therapeutic understandings and directions.

  10. [Hypothalamic dysfunction in obesity].

    Science.gov (United States)

    van de Sande-Lee, Simone; Velloso, Licio A

    2012-08-01

    Obesity, defined as abnormal or excessive fat accumulation that may impair life quality, is one of the major public health problems worldwide. It results from an imbalance between food intake and energy expenditure. The control of energy balance in animals and humans is performed by the central nervous system (CNS) by means of neuroendocrine connections, in which circulating peripheral hormones, such as leptin and insulin, provide signals to specialized neurons of the hypothalamus reflecting body fat stores, and induce appropriate responses to maintain the stability of these stores. The majority of obesity cases are associated with central resistance to both leptin and insulin actions. In experimental animals, high-fat diets can induce an inflammatory process in the hypothalamus, which impairs leptin and insulin intracellular signaling pathways, and results in hyperphagia, decreased energy expenditure and, ultimately, obesity. Recent evidence obtained from neuroimaging studies and assessment of inflammatory markers in the cerebrospinal fluid of obese subjects suggests that similar alterations may be also present in humans. In this review, we briefly present the mechanisms involved with the loss of homeostatic control of energy balance in animal models of obesity, and the current evidence of hypothalamic dysfunction in obese humans.

  11. [Thyroid dysfunction during pregnancy].

    Science.gov (United States)

    Díez, Juan J; Iglesias, Pedro; Donnay, Sergio

    2015-10-21

    Recent clinical practice guidelines on thyroid dysfunction and pregnancy have changed health care provided to pregnant women, although their recommendations are under constant revision. Trimester- and area-specific reference ranges for serum thyroid-stimulating hormone are required for proper diagnosis of hypothyroidism and hyperthyroidism. There is no doubt on the need of therapy for overt hypothyroidism, while therapy for subclinical hypothyroidism is controversial. Further research is needed to settle adverse effects of isolated hypothyroxinemia and thyroid autoimmunity. Differentiation between hyperthyroidism due to Graves' disease and the usually self-limited gestational transient thyrotoxicosis is critical. It is also important to recognize risk factors for postpartum thyroiditis. Supplementation with iodine is recommended to maintain adequate iodine nutrition during pregnancy and avoid serious consequences in offspring. Controversy remains about universal screening for thyroid disease during pregnancy or case-finding in high-risk women. Opinions of some scientific societies and recent cost-benefit studies favour universal screening. Randomized controlled studies currently under development should reduce the uncertainties that still remain in this area. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  12. Multiple organ dysfunction syndrome.

    Science.gov (United States)

    Ramírez, Michelle

    2013-01-01

    Initially known as multiple system organ failure, the term multiple organ dysfunction syndrome (MODS) was first described in the 1960s in adults with bleeding, respiratory failure, and sepsis. It is defined as "the development of potentially reversible physiologic derangement involving two or more organ systems not involved in the disorder that resulted in ICU admission, and arising in the wake of a potentially life threatening physiologic insult."(3) There are many risk factors predisposing to MODS; however, the most common risk factors are shock due to any cause, sepsis, and tissue hypoperfusion. A dysregulated immune response, or immuneparalysis, in which the homeostasis between pro-inflammatory and anti-inflammatory reaction is lost is thought to be key in the development of MODS. The clinical course and evolution of MODS is dependent on a combination of acquired and genetic factors. There are several nonspecific therapies for the prevention and resolution of MODS, mostly care is supportive. Mortality from MODS in septic pediatric patients varies between 11% and 54%. © 2013 Published by Mosby, Inc.

  13. Markers of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Kelvin P Davies

    2008-01-01

    Full Text Available With the development and marketing of oral pharmacotherapy that is both noninvasive and successful in treating erectile dysfunction (ED, the quest to identify markers of organic ED lost ground. Indeed, the multi-factorial nature of ED may have led many researchers to conclude that searching for a universal marker of ED was futile. However, the realization that ED is strongly correlated with the overall health of men, and may act as a predictor for the development of cardiovascular disease (CVD and diabetes, has stimulated interest in identifying genes that can distinguish organic ED. In addition, the potential ability to suggest to the patient that ED is reversible (i.e., psychogenic with a simple test would be of significance to both the physician and patient, as well as for reimbursement issues for therapy by insurance companies. Such a marker may also act as a non-subjective measure of the degree of ED and the efficacy of treatment. This review discusses the importance of identifying such markers and recent work identifying potential markers in human patients.

  14. DIASTOLIC DYSFUNCTION: A REVIEW

    Directory of Open Access Journals (Sweden)

    Rajat

    2016-01-01

    Full Text Available INTRODUCTION Diastolic heart failure is an underestimated pathology. Epidemiological and clinical studies suggest that HF with a preserved ejection fraction will become the more common form of HF which clinicians will encounter. Symptomatic treatment focuses on the reduction in pulmonary congestion and the improvement in LV filling. Specific treatment is actually lacking, but encouraging data are emerging concerning the use of renin–angiotensin–aldosterone axis blockers, nitric oxide donors, or, very recently, new agents specifically targeting actin–myosin cross-bridges. It is generally considered to have a somewhat better prognosis than systolic HF, but frequency of hospitalizations is comparable in systolic and diastolic HF. 1 Despite the recognition of its importance, definition and diagnostic criteria of diastolic dysfunction and diastolic HF remain controversial. AIMS AND OBJECTIVES This review focus of definition, diagnosis and management of diastolic heart failure with it prognosis. MATERIAL AND METHODS We have studied various guidelines, articles, reviews using given keywords, along with our experience in management of diastolic heart failure in 2015. The articles and the references were reviewed keeping in mind about the simplified management offered to the patient.

  15. Psychoanalysis: a dysfunctional family?

    Science.gov (United States)

    Grosskurth, P

    1998-01-01

    The discussion opens with an account of the author's mother's bizarre family in which a strong, charismatic grandmother maintained absolute control over her large family by encouraging a neurotic dependence in them through daily reports of their complaints. Getting interested in psychoanalysis in an effort to understand the dynamics of this dysfunctional family, the author, a biographer, turned to the study of Melanie Klein, becoming entranced by her ideas. Her research also revealed how Klein had discouraged her followers from developing ideas that diverged in any way from her own. Her portrait of the pioneer analyst provoked intense indignation. A similar pattern of absolute loyalty to his person and theories was to be found in Freud's Secret Committee, formed primarily as a means of getting rid of Jung who had been showing disturbing signs of independence. When Ferenczi and Rank began to pursue independent lines of enquiry in their work, they too were though to be undermining the foundations of classical psychoanalysis. Finally, the author concludes that though there have been sorry incidents in psychoanalysis, we should be mature enough to accept both the contributions of the early pioneers and the realizations that new ideas must be permitted to evolve.

  16. Endothelial dysfunction: EDCF revisited

    Institute of Scientific and Technical Information of China (English)

    PAUL M Vanhoutte

    2008-01-01

    Endothelial cells can initiate contraction (constriction) of the vascular smooth muscle cells that surround them. Such endothelium-dependent, acute increases in contractile tone can be due to the withdrawal of the production of nitric oxide, to the production of vasoconstrictor peptides (angiotensin Ⅱ, endothelin-1), to the formation of oxygen-derived free radicals(superoxide anions) and/or the release of vasoconstrictor metabolites of arachidonic acid. The latter have been termed endothelium-derived contracting factor (EDCF) as they can contribute to moment-to-moment changes in contractile activity of the underlying vascular smooth muscle cells. To judge from animal experiments, EDCF-mediated responses are exacerbated when the production of nitric oxide is impaired as well as by aging, spontaneous hypertension and diabetes. To judge from human studies, they contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients. Since EDCF causes vasoconstriction by activation of the TP-receptors on the vascular smooth muscle cells, selective antagonists at these receptors prevent endothelium-dependent contractions, and curtail the endothelial dysfunction in hypertension and diabetes.

  17. [Characteristics of postpartum thyroid dysfunction].

    Science.gov (United States)

    Argatska, A; Nonchev, B; Obretsova, M; Pehlivanov, B

    2015-01-01

    The risk factors and mechanisms for the development of postpartum thyroid dysfunction have been widely discussed. However data on patients suffered spontaneous or induced abortion during early pregnancy are scarce. To reveal the characteristics of thyroid dysfunction in women after an abortion in the first trimester of pregnancy. A total of 28 women (18 euthyroid, 10 with thyroid dysfunction), mean age 30.46 ± 1.01 years following abortion in the first trimester have been included in the study. Thyroid-stimulating hormone (TSH), free triiodthyronine (FT3), free thyroxine (FT4), thyreoglobulin antibodies (TgAb), thyroid peroxidase antibodies (TPOAb) were measured and ultrasound assessment of the thyroid was performed 3 and 9 months after the interruption of pregnancy. Hypothyroidism was found in 6 of the women with thyroid dysfunction and thyrotoxicosis--in 4. Clinical features of thyroid dysfunction were observed in 3 patients while in the remaining 7 cases, diagnosis was made on the basis of hormonal levels. Positive titers of thyroid autoantibodies were detected in the majority of the cases with functional disordes. In 6 patients thyroid dysfunction was transient and in 4 hormonal abnormalities persisted on by the 9th month after the abortion. The comparative analysis showed that the volume of the thyroid gland and the degree of hypoehogenicity were significantly higher in patients with thyroid dysfunction compared to euthyroid women. Thyroid dysfunction after abortion in the first trimester is mainly of autoimmune pathogenesis and its characteristics do not differ from those of postpartum thyroiditis. In the majority of patients these disorders are subclinical and may remain unrecognized. A close active follow up of patients at increased risk of functional thyroid disorders after an abortion is required in order to prevent morbidity and identify the cases developing permanent thyroid dysfunction.

  18. Sacroiliac joint dysfunction in athletes.

    Science.gov (United States)

    Brolinson, P Gunnar; Kozar, Albert J; Cibor, Greg

    2003-02-01

    The sacroiliac (SI) joint is a common source of low back pain in the general population. Because it is the link between the lower extremities and the spine, it sustains even higher loads during athletic activity, predisposing athletes to a greater probability of joint dysfunction and pain. The diagnosis and treatment of SI joint dysfunction remains controversial, due to complex anatomy and biomechanics, and a lack of universally accepted nomenclature and terminology, consistently reliable clinical tests and imaging studies, and consistently effective treatments. This article clarifies these issues by presenting a model of SI joint anatomy and function, a systematic approach to the diagnosis of dysfunction, and a comprehensive treatment plan.

  19. Strapping for temporomandibular joint dysfunction

    Directory of Open Access Journals (Sweden)

    Babu Abraham

    2008-01-01

    Full Text Available Temporomandibular joint dysfunction (TMJD is a common problem seen in many of the dental clinics. Management of this depends on an accurate diagnosis of the cause for the TMJD. Physical therapy and rehabilitation play a vital role in the management of these dysfunctions. Physical therapy is useful in treating post-traumatic stiffness of the TMJ while strapping of the TMJ for a dysfunction along with conventional physical therapy is of benefit in terms of reduction in click, decrease in pain, and an improvement in function.

  20. Strapping for temporomandibular joint dysfunction.

    Science.gov (United States)

    Babu, Abraham Samuel; John, Sandhya Mary; Unni, Amith

    2008-01-01

    Temporomandibular joint dysfunction (TMJD) is a common problem seen in many of the dental clinics. Management of this depends on an accurate diagnosis of the cause for the TMJD. Physical therapy and rehabilitation play a vital role in the management of these dysfunctions. Physical therapy is useful in treating post-traumatic stiffness of the TMJ while strapping of the TMJ for a dysfunction along with conventional physical therapy is of benefit in terms of reduction in click, decrease in pain, and an improvement in function.

  1. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Semaming, Yoswaris; Sripetchwandee, Jirapas; Sa-Nguanmoo, Piangkwan; Pintana, Hiranya; Pannangpetch, Patchareewan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Brain mitochondrial dysfunction has been demonstrated in diabetic animals with neurodegeneration. Protocatechuic acid (PCA), a major metabolite of anthocyanin, has been shown to exert glycemic control and oxidative stress reduction in the heart. However, its effects on oxidative stress and mitochondrial function in the brain under diabetic condition have never been investigated. We found that PCA exerted glycemic control, attenuates brain mitochondrial dysfunction, and contributes to the prevention of brain oxidative stress in diabetic rats.

  2. Effects of hyperbaric oxygen therapy performed at different times on cognitive dysfunction of rats with traumatic brain injury%不同时间窗高压氧治疗对脑外伤大鼠认知功能障碍改善的实验研究

    Institute of Scientific and Technical Information of China (English)

    何俊德; 谢泽宇; 陈葆; 瞿文军

    2010-01-01

    目的 研究不同时间窗高压氧治疗对脑外伤大鼠认知功能障碍的治疗效果. 方法 将96只大鼠按随机数字表法分为正常对照组(A组)、液压冲击脑外伤模型组(B组)、液压冲击脑外伤模型+常规治疗组(C组)、液压冲击脑外伤模型+常规治疗+高压氧治疗组(D组),每组24只;D组在模型建立后根据高压氧治疗的时间点(3、12、24、72 h)分为4亚组(D-3 h组、D-12 h组、D-24 h组和D-72h组,每亚组6只).B、C、D组采用大鼠侧位液压冲击构建脑外伤模型后分别进行不同处理.应用水迷宫试验对比评价各组大鼠模型脑外伤后认知功能障碍的改变. 结果 在相同时间点寻找水下平台的潜伏期方面,B组最长,其次为C组、D组、A组,且D组中D.72 h组最长,其次为D-24 h组、D-12h组、D-3h组;在穿过原平台区域的次数方面,A组最多,其次为D组、C组、B组,且D组中D-3 h组最多,其次为D-12 h组、D-24 h组、D-72 h组,与B组比较差异均有统计学意义(p<0.05). 结论 高压氧治疗可以改善颅脑损伤大鼠的学习能力,对神经功能具有保护作用,且这种高压氧治疗的时间最好在损伤后12 h内完成,并且宜尽早实施.%Objective To investigate the effects of hyperbaric oxygen (HBO) therapy performed at different times on the cognitive dysfunction of rats with traumatic brain injury. Methods The traumatic brain injured models were established by use of lateral fluid percussion in rats. Ninety-six rats were equally randomized into 4 groups: control group (group A), traumatic brain injured model group (group B), traumatic brain injured model plus conventional therapy group (group C), traumatic brain injured model plus both conventional therapy and HBO therapy group (group D). And group D also divided into 4 subgroups (n=6): D-3 h group, D-12 h group, D-24 h group and D-72 h groups that HBO therapy was performed at 3, 12, 24 and 72 h of the traumatic brain injury, respectively. The

  3. Reward system dysfunction in autism spectrum disorders

    Science.gov (United States)

    Schulte-Rüther, Martin; Nehrkorn, Barbara; Müller, Kristin; Fink, Gereon R.; Kamp-Becker, Inge; Herpertz-Dahlmann, Beate; Schultz, Robert T.; Konrad, Kerstin

    2013-01-01

    Although it has been suggested that social deficits of autism spectrum disorders (ASDs) are related to reward circuitry dysfunction, very little is known about the neural reward mechanisms in ASD. In the current functional magnetic resonance imaging study, we investigated brain activations in response to both social and monetary reward in a group of children with ASD, relative to matched controls. Participants with ASD showed the expected hypoactivation in the mesocorticolimbic circuitry in response to both reward types. In particular, diminished activation in the nucleus accumbens was observed when money, but not when social reward, was at stake, whereas the amygdala and anterior cingulate cortex were hypoactivated within the ASD group in response to both rewards. These data indicate that the reward circuitry is compromised in ASD in social as well as in non-social, i.e. monetary conditions, which likely contributes to atypical motivated behaviour. Taken together, with incentives used in this study sample, there is evidence for a general reward dysfunction in ASD. However, more ecologically valid social reward paradigms are needed to fully understand, whether there is any domain specificity to the reward deficit that appears evident in ASD, which would be most consistent with the ASD social phenotype. PMID:22419119

  4. 创伤性脑损伤后脑白质损伤与认知功能障碍的相关性研究%Correlation study of cerebral white matter lesion with cognitive dysfunction after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    朱永山; 张玉龙; 程海云; 李晓光; 熊坤林

    2016-01-01

    Objective To analyze the correlation between white matter injury and cognitive dysfunction using diffusion tensor imaging (DTI).Methods Seventeen subjects with TBI hospitalized from October 2012 to September 2013 had Glasgow coma scale (GCS) score of ≥ 13 (mild injury group, 10 cases) and ≤ 12 (moderate-severe injury group, 7 cases).Another 17 healthy subjects were used as controls.All were submitted to DTI examination.Fractional anisotropy (FA) and apparent diffusion coefficient(ADC) values in genu corpus callosum, splenium corpus callosum, posterior internal capsule, anterior internal capsule, and cerebral peduncle were calculated using the Neuro 3D software.Correlations between FA and ADC with the mini-mental state examination (MMSE) score were evaluated.Results Moderate-severe injury group demonstrated significantly reduced FA values in genu corpus callosum and splenium corpus callosum, and significantly increased ADC values of genu corpus callosum, splenium corpus callosum, posterior internal capsule and cerebral peduncle when compared to control group (P <0.05 or 0.01).FA and ADC values in the regions of interest did not differ significantly between mild injury group and control group (P > 0.05).In the genu corpus callosum and splenium corpus callosum, FA values were positively correlated with MMSE score (r =0.636, 0.601), while ADC values were negatively correlated with MMSE score (r =0.552, 0.660).Conclusions DTI reveals the cerebral white matter lesion that is undetectable using CT and conventional MRI.DTI is a helpful tool to evaluate the degree of cognitive function in patients with TBI, which provides the basic reference for the clinical treatment and prognosis.%目的 利用磁共振张量成像(DTI)分析创伤性颅脑损伤(TBI)后脑白质各个参数值的变化与认知功能障碍有无相关性. 方法 选取2012年10月-2013年9月收治的TBI患者17例,按照格拉斯哥昏迷评分(GCS)分为≥13分组(轻度组,10例)和≤12

  5. Study on correlation between brain natriuretic peptide and heart rate variability in patients with type 2 diabetes and left ventricular diastolic dysfunction%2型糖尿病伴左室舒张功能不全患者心率变异性与B型尿钠肽的相关性分析

    Institute of Scientific and Technical Information of China (English)

    杨燕华; 刘自爱; 黄庆宁; 黄虔

    2013-01-01

    Objective To evaluate the correlation between he art rate variability and brain natriuretic peptide (BNP) in patients with type 2 diabetes and left ventricular diastolic dysfunction.Methods 100 patients with type 2 diabetes were included,all the patients' BNP level were over 100 pg/ml.SDNN-Index,RMSSD,PNN50 and BNP were measured,data were presented as (M ± SD).The correlation between heart rate variability and BNP level was assessed by Pearson Correlation Analysis (SPSS software).Results The correlation coefficient between SDNN-Index [(46.41 ± 17.74) ms] and BNP level was-0.472 (P < 0.01);The correlation coefficient between RMSSD [(37.18 ± 19.07) ms] and BNP level was-0.434 (P < 0.01); the correlation coefficient between PNN50[(18.88 ± 15.21)%] and BNP level was-0.589 (P < 0.01).Conclusion The heart rate variability in patients with type 2 diabetes and left ventricular diastolic dysfunction is obviously lower than that of normal people,and significantly correlated with BNP level.%目的 分析2型糖尿病伴左室舒张功能不全患者心率变异性与B型尿钠肽的关系.方法 收集100例B型尿钠肽≥100 pg/ml的2型糖尿病患者,研究其心率变异性与B型尿钠肽的相关性.心率变异性指标包括:SDNN-Index、RMSSD、PNN50,数据以平均值±标准差(M±SD)表示,用SPSS软件进行Pearson相关分析.结果 100例2型糖尿病伴心脏舒张功能不全患者SDNN-Index为(46.41±17.74) ms,RMSSD为(37.18±19.07) ms,PNN50为(18.88±15.21)%,SDNN-Index、RMSSD、PNN50与B型尿钠肽相关系数分别为-0.472、-0.434、-0.589,P均<0.01.结论 2型糖尿病伴心脏舒张功能不全患者的心率变异性明显低于正常人,且与B型尿钠肽水平相关.

  6. Cognitive dysfunction in spinocerebellar ataxias

    Directory of Open Access Journals (Sweden)

    Helio Afonso Ghizoni Teive

    Full Text Available Abstract Spinocerebellar ataxias (SCAs comprise a heterogeneous group of complex neurodegenerative diseases, characterized by the presence of progressive cerebellar ataxia, associated or otherwise with ophthalmoplegia, pyramidal signs, extrapyramidal features, pigmentary retinopathy, peripheral neuropathy, cognitive dysfunction and dementia. Objective: To verify the presence of cognitive dysfunction among the main types of SCA described in the literature. Methods: the review was conducted using the search system of the PUBMED and OMIM databases. Results: Cognitive dysfunction occurs in a considerable proportion of SCA, particularly in SCA 3, which is the most frequent form of SCA worldwide. Dementia has been described in several other types of SCA such as SCA 2, SCA 17 and DRPLA. Mental retardation is a specific clinical feature of SCA 13. Conclusions: The role of the cerebellum in cognitive functions has been observed in different types of SCAs which can manifest varying degrees of cognitive dysfunction, dementia and mental retardation.

  7. Executive Dysfunction in Geriatric Depression

    National Research Council Canada - National Science Library

    Lockwood, Kathryn A; Alexopoulos, George S; van Gorp, Wilfred G

    2002-01-01

    OBJECTIVE: The purpose of this study was to characterize the neuropsychological presentation of geriatric depression and to determine whether depression-related executive dysfunction is more pronounced during advanced age. METHOD...

  8. 抑郁症患者认知功能障碍与血浆脑源性神经营养因子水平的关系%The correlation of cognitive dysfunction with serum brain-derived neurotrophic factor level in depression patients

    Institute of Scientific and Technical Information of China (English)

    冯玉; 戴媛媛; 杨志寅; 吉峰

    2013-01-01

    目的 探讨抑郁症患者认知功能障碍的特征及其与血清脑源性神经营养因子(BDNF)水平的关系.方法 采用北京版蒙特利尔认知评估量表(MoCA-BJ)分别对73例抑郁症患者和71例正常人进行认知功能评定,根据MoCA-BJ得分,将抑郁症患者划分为伴认知功能障碍组,共36例;不伴认知功能障碍组,共37例.采用酶联免疫吸附法(ELISA)测定所有受试者血清BDNF水平.结果 抑郁症患者MoCA总分、视空间功能、执行功能、注意力、延迟记忆功能、时间定向力、地点定向力功能均低于正常对照组(P<0.05);抑郁症患者认知功能障碍发生率为49.3%;伴认知障碍组[(12.08±7.08) ng/ml]与不伴认知障碍组[(12.22±7.93) ng/ml]的血清BDNF水平差异无统计学意义(P>0.05),但两组BDNF水平均低于对照组[(16.55 ±7.47) ng/ml,P<0.01],血清BDNF水平与抑郁症患者各认知域功能无显著相关(P>0.05).结论 抑郁症患者认知损害累及视空间、执行功能、延迟记忆、注意力、定向力等多个认知领域.血清BD-NF水平与抑郁症关系密切,但与抑郁症认知功能无明显关系.%Objective To investigate the characteristics of cognitive dysfunction in patients with depression,and identify the correlation between cognitive dysfunction and serum brain-derived neurotrophic factor (BDNF) level.Methods All participants including 73 depressed patients and 71 healthy controls were received clinical and cognitive assessments at admission,the depression group was divided into two groups by the score of Beijing version of the Montreal Cognitive Assessment (MoCA-BJ),one was depression with cognitive dysfunction group which had 36 cases,the other was depression without cognitive dysfunction group which had 37 cases.Concentration of BDNF was measured by the ELISA method.Results Cognitive impairments were found in numerous cognitive domains of depressed patients,including visuospatial and executive

  9. Thyroid dysfunction and pregnancy outcomes

    Science.gov (United States)

    Nazarpour, Sima; Ramezani Tehrani, Fahimeh; Simbar, Masoumeh; Azizi, Fereidoun

    2015-01-01

    Background: Pregnancy has a huge impact on the thyroid function in both healthy women and those that have thyroid dysfunction. The prevalence of thyroid dysfunction in pregnant women is relatively high. Objective: The objective of this review was to increase awareness and to provide a review on adverse effect of thyroid dysfunction including hyperthyroidism, hypothyroidism and thyroid autoimmune positivity on pregnancy outcomes. Materials and Methods: In this review, Medline, Embase and the Cochrane Library were searched with appropriate keywords for relevant English manuscript. We used a variety of studies, including randomized clinical trials, cohort (prospective and retrospective), case-control and case reports. Those studies on thyroid disorders among non-pregnant women and articles without adequate quality were excluded. Results: Overt hyperthyroidism and hypothyroidism has several adverse effects on pregnancy outcomes. Overt hyperthyroidism was associated with miscarriage, stillbirth, preterm delivery, intrauterine growth retardation, low birth weight, preeclampsia and fetal thyroid dysfunction. Overt hypothyroidism was associated with abortion, anemia, pregnancy-induced hypertension, preeclampsia, placental abruption, postpartum hemorrhage, premature birth, low birth weight, intrauterine fetal death, increased neonatal respiratory distress and infant neuro developmental dysfunction. However the adverse effect of subclinical hypothyroidism, and thyroid antibody positivity on pregnancy outcomes was not clear. While some studies demonstrated higher chance of placental abruption, preterm birth, miscarriage, gestational hypertension, fetal distress, severe preeclampsia and neonatal distress and diabetes in pregnant women with subclinical hypothyroidism or thyroid autoimmunity; the other ones have not reported these adverse effects. Conclusion: While the impacts of overt thyroid dysfunction on feto-maternal morbidities have been clearly identified and its long

  10. Thyroid dysfunction and pregnancy outcomes

    Directory of Open Access Journals (Sweden)

    Sima Nazarpour

    2015-07-01

    Full Text Available Background: Pregnancy has a huge impact on the thyroid function in both healthy women and those that have thyroid dysfunction. The prevalence of thyroid dysfunction in pregnant women is relatively high. Objective: The objective of this review was to increase awareness and to provide a review on adverse effect of thyroid dysfunction including hyperthyroidism, hypothyroidism and thyroid autoimmune positivity on pregnancy outcomes. Materials and Methods: In this review, Medline, Embase and the Cochrane Library were searched with appropriate keywords for relevant English manuscript. We used a variety of studies, including randomized clinical trials, cohort (prospective and retrospective, case-control and case reports. Those studies on thyroid disorders among non-pregnant women and articles without adequate quality were excluded. Results: Overt hyperthyroidism and hypothyroidism has several adverse effects on pregnancy outcomes. Overt hyperthyroidism was associated with miscarriage, stillbirth, preterm delivery, intrauterine growth retardation, low birth weight, preeclampsia and fetal thyroid dysfunction. Overt hypothyroidism was associated with abortion, anemia, pregnancy-induced hypertension, preeclampsia, placental abruption, postpartum hemorrhage, premature birth, low birth weight, intrauterine fetal death, increased neonatal respiratory distress and infant neuro developmental dysfunction. However the adverse effect of subclinical hypothyroidism, and thyroid antibody positivity on pregnancy outcomes was not clear. While some studies demonstrated higher chance of placental abruption, preterm birth, miscarriage, gestational hypertension, fetal distress, severe preeclampsia and neonatal distress and diabetes in pregnant women with subclinical hypothyroidism or thyroid autoimmunity; the other ones have not reported these adverse effects. Conclusion: While the impacts of overt thyroid dysfunction on feto-maternal morbidities have been clearly

  11. Hyperbaric oxygen preconditioning improves postoperative cognitive dysfunction by reducing oxidant stress and inflammation.

    Science.gov (United States)

    Gao, Zhi-Xin; Rao, Jin; Li, Yuan-Hai

    2017-02-01

    Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.

  12. Mitochondrial dysfunction in psychiatric morbidity: current evidence and therapeutic prospects

    Directory of Open Access Journals (Sweden)

    Toker L

    2015-09-01

    Full Text Available Lilach Toker,1 Galila Agam2,3 1Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; 2Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 3Mental Health Center, Beer-Sheva, Israel Abstract: Cumulating evidence for the involvement of mitochondrial dysfunction in psychiatric disorders leaves little to no doubt regarding the involvement of this pathology in mood disorders. However, mitochondrial abnormalities are also observed in a wide range of disorders spanning from cancer and diabetes to various neurodegenerative and neurodevelopmental disorders such as Parkinson’s, Alzheimer’s, Huntington’s, autism, and amyotrophic lateral sclerosis. The apparent lack of specificity questions the role of mitochondrial dysfunction in psychiatric disorders, in general, and in mood disorders, in particular. Is mitochondrial dysfunction a general phenomenon, simplistically rendering brain cells to be more vulnerable to a variety of disease-specific perturbations? Or is it an epiphenomenon induced by various disease-specific factors? Or possibly, the severity and the anatomical region of the dysfunction are the ones responsible for the distinct features of the disorders. Whichever of the aforementioned ones, if any, is correct, “mitochondrial dysfunction” became more of a cliché than a therapeutic target. In this review, we summarize current studies supporting the involvement of mitochondrial dysfunction in different psychiatric disorders. We address the question of specificity and causality of the different findings and provide an alternative explanation for some of the aforementioned questions. Keywords: bipolar disorder, psychiatric disorders, schizophrenia, Stanley Foundation Brain Collection

  13. Improvement of Brain Reward Abnormalities by Antipsychotic Monotherapy in Schizophrenia

    DEFF Research Database (Denmark)

    Nielsen, Mette Ødegaard; Rostrup, Egill; Wulff, Sanne;

    2012-01-01

    CONTEXT Schizophrenic symptoms are linked to a dysfunction of dopamine neurotransmission and the brain reward system. However, it remains unclear whether antipsychotic treatment, which blocks dopamine transmission, improves, alters, or even worsens the reward-related abnormalities. OBJECTIVE To i...

  14. Endothelial dysfunction in morbid obesity.

    Science.gov (United States)

    Mauricio, Maria Dolores; Aldasoro, Martin; Ortega, Joaquin; Vila, José María

    2013-01-01

    Morbid obesity is a chronic multifunctional disease characterized by an accumulation of fat. Epidemiological studies have shown that obesity is associated with cardiovascular and metabolic disorders. Endothelial dysfunction, as defined by an imbalance between relaxing and contractile endothelial factors, plays a central role in the pathogenesis of these cardiometabolic diseases. Diminished bioavailability of nitric oxide (NO) contributes to endothelial dysfunction and impairs endothelium- dependent vasodilatation. But this is not the only mechanism that drives to endothelial dysfunction. Obesity has been associated with a chronic inflammatory process, atherosclerosis, and oxidative stress. Moreover levels of asymmetrical dimethyl-L-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are elevated in obesity. On the other hand, increasing prostanoid-dependent vasoconstriction and decreasing vasodilator prostanoids also lead to endothelial dysfunction in obesity. Other mechanisms related to endothelin-1 (ET-1) or endothelium derived hyperpolarizing factor (EDHF) have been proposed. Bariatric surgery (BS) is a safe and effective means to achieve significant weight loss, but its use is limited only to patients with severe obesity including morbid obesity. BS also proved efficient in endothelial dysfunction reduction improving cardiovascular and metabolic comorbidities associated with morbid obesity such as diabetes, coronary artery disease, nonalcoholic fatty liver disease and cancer. This review will provide a brief overview of the mechanisms that link obesity with endothelial dysfunction, and how weight loss is a cornerstone treatment for cardiovascular comorbidities obesity-related. A better understanding of the mechanisms of obesity-induced endothelial dysfunction may help develop new therapeutic strategies to reduce cardiovascular morbidity and mortality.

  15. Epidemiology and care of female sexual dysfunction

    OpenAIRE

    McCool, Megan Elizabeth

    2017-01-01

    Sexual dysfunction can have a negative impact on the well-being of an individual. For women, sexual dysfunction encompasses sexual interest / arousal disorder, female orgasmic disorder and genitopelvic pain / penetration disorder. Although sexual dysfunction has been identified as a significant public health problem, research on sexual dysfunction has primarily focused on men rather than women. Comprehensive epidemiological data on female sexual dysfunction and information on current levels o...

  16. ANP, BNP and D-dimer predict right ventricular dysfunction in patients with acute pulmonary embolism

    DEFF Research Database (Denmark)

    Mortensen, Jann; Jensen, Claus V; Von Der Recke, Peter;

    2010-01-01

    The aim of this study was to predict right ventricular dysfunction (RVD) using plasma concentration of D-dimer, pro-atrial natriuretic peptide (pro-ANP), brain natriuretic peptide (BNP), endothelin-1 (ET-1) and cardiac troponin I (TNI) in patients with pulmonary embolism (PE).......The aim of this study was to predict right ventricular dysfunction (RVD) using plasma concentration of D-dimer, pro-atrial natriuretic peptide (pro-ANP), brain natriuretic peptide (BNP), endothelin-1 (ET-1) and cardiac troponin I (TNI) in patients with pulmonary embolism (PE)....

  17. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalography (EEG to determine whether specific information is stored in a subject's brain.

  18. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  19. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  20. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  1. The diagnosis of brain death

    Directory of Open Access Journals (Sweden)

    Goila Ajay

    2009-01-01

    Full Text Available Physicians, health care workers, members of the clergy, and laypeople throughout the world have accepted fully that a person is dead when his or her brain is dead. Although the widespread use of mechanical ventilators and other advanced critical care services have transformed the course of terminal neurologic disorders. Vital functions can now be maintained artificially for a long period of time after the brain has ceased to function. There is a need to diagnose brain death with utmost accuracy and urgency because of an increased awareness amongst the masses for an early diagnosis of brain death and the requirements of organ retrieval for transplantation. Physicians need not be, or consult with, a neurologist or neurosurgeon in order to determine brain death. The purpose of this review article is to provide health care providers in India with requirements for determining brain death, increase knowledge amongst health care practitioners about the clinical evaluation of brain death, and reduce the potential for variations in brain death determination policies and practices amongst facilities and practitioners. Process for brain death certification has been discussed under the following: 1. Identification of history or physical examination findings that provide a clear etiology of brain dysfunction. 2. Exclusion of any condition that might confound the subsequent examination of cortical or brain stem function. 3. Performance of a complete neurological examination including the standard apnea test and 10 minute apnea test. 4. Assessment of brainstem reflexes. 5. Clinical observations compatible with the diagnosis of brain death. 6. Responsibilities of physicians. 7. Notify next of kin. 8. Interval observation period. 9. Repeat clinical assessment of brain stem reflexes. 10. Confirmatory testing as indicated. 11. Certification and brain death documentation.

  2. Dopamine dysfunction in borderline personality disorder: a hypothesis.

    Science.gov (United States)

    Friedel, Robert O

    2004-06-01

    Research on the biological basis of borderline personality disorder (BPD) has focused primarily on the serotonin model of impulsive aggression. However, there is evidence that dopamine (DA) dysfunction may also be associated with BPD. Pertinent research and review articles, identified by Medline searches of relevant topics, books, references from bibliographies, and conference proceedings from 1975 to 2003, were reviewed. Evidence of DA dysfunction in BPD derives from the efficacy of traditional and atypical antipsychotic agents in BPD, and from provocative challenges with amphetamine and methylphenidate of subjects with the disorder. In addition, human and animal studies indicate that DA activity plays an important role in emotion information processing, impulse control, and cognition. The results of this review suggest that DA dysfunction is associated with three dimensions of BPD, that is, emotional dysregulation, impulsivity, and cognitive-perceptual impairment. The main limitation of this hypothesis is that the evidence reviewed is circumstantial. There is no study that directly demonstrates DA dysfunction in BPD. In addition, the therapeutic effects of antipsychotic agents observed in BPD may be mediated by non-DA mechanisms of action. If the stated hypothesis is correct, DA dysfunction in BPD may result from genetic, developmental, or environmental factors directly affecting specific DA pathways. Alternatively, DA dysfunction in BPD may be a compensatory response to alterations in the primary neural systems that control emotion, impulse control, and cognition, and that are mediated by the brain's main neurotransmitters, glutamate, and GABA, or in one or more other neuromodulatory pathways such as serotonin, acetylcholine, and norepinephrine. Copyright 2004 Nature Publishing Group

  3. Brain imaging and schizophrenia. Imagerie cerebrale et schizophrenie

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, J.L. (Hopital de Bicetre, 94 - Le Kremlin-Bicetre (FR)); Dao-Castellana, M.H. (CEA, 91 - Orsay (FR). Service Hospitalier Frederic Joliot)

    1991-03-01

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics.

  4. Obesity and pelvic floor dysfunction.

    Science.gov (United States)

    Ramalingam, Kalaivani; Monga, Ash

    2015-05-01

    Obesity is associated with a high prevalence of pelvic floor disorders. Patients with obesity present with a range of urinary, bowel and sexual dysfunction problems as well as uterovaginal prolapse. Urinary incontinence, faecal incontinence and sexual dysfunction are more prevalent in patients with obesity. Uterovaginal prolapse is also more common than in the non-obese population. Weight loss by surgical and non-surgical methods plays a major role in the improvement of these symptoms in such patients. The treatment of symptoms leads to an improvement in their quality of life. However, surgical treatment of these symptoms may be accompanied by an increased risk of complications in obese patients. A better understanding of the mechanism of obesity-associated pelvic floor dysfunction is essential.

  5. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  6. Vocal cord dysfunction in children.

    Science.gov (United States)

    Noyes, Blakeslee E; Kemp, James S

    2007-06-01

    Vocal cord dysfunction is characterised by paradoxical vocal cord adduction that occurs during inspiration, resulting in symptoms of dyspnoea, wheeze, chest or throat tightness and cough. Although the condition is well described in children and adults, confusion with asthma often triggers the use of an aggressive treatment regimen directed against asthma. The laryngoscopic demonstration of vocal cord adduction during inspiration has been considered the gold standard for the diagnosis of vocal cord dysfunction, but historical factors and pulmonary function findings may provide adequate clues to the correct diagnosis. Speech therapy, and in some cases psychological counselling, is often beneficial in this disorder. The natural course and prognosis of vocal cord dysfunction are still not well described in adults or children.

  7. Sexual dysfunctions in psoriatic patients

    Directory of Open Access Journals (Sweden)

    Maria Isabela Sarbu

    2015-04-01

    Full Text Available Psoriasis is a chronic, immune-mediated disorder with a worldwide occurrence characterized by well-defined infiltrated erythematous papules and plaques, covered by silvery white or yellowish scales. It is a physically, socially and emotionally invalidating disorder that affects 1-2% of the population. Sexual health is an important part of general health and sexual dysfunctions can negatively affect self-esteem, confidence, interpersonal relationships and the quality of life. Dermatology Life Quality Index (DLQI, Psoriasis Disability Index (PDI and the Impact of Psoriasis on Quality of Life (IPSO questionnaire are all questionnaires used to assess the quality of life of patients with psoriasis and each has one question regarding sexual dysfunction. Several scales were also designed to particularly assess sexual satisfaction in men and women. The aim of this paper is to perform an overview of the existing studies on sexual dysfunction in psoriatic patients.

  8. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... can lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits ... tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ... grow there are differences in brain development in children who develop bipolar disorder than children who do ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons ... affects the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. ...

  13. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  14. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... How the brain develops How genes and the environment affect the brain The basic structure of the ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... can lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits ... tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the brain ... specialized for the function of conducting messages. A neuron has three basic parts: Cell body which includes ...

  18. Treatment approaches for interoceptive dysfunctions in drug addiction.

    Science.gov (United States)

    Paulus, Martin P; Stewart, Jennifer L; Haase, Lori

    2013-10-18

    There is emerging evidence that individuals with drug addiction have dysfunctions in brain systems that are important for interoceptive processing, which include, among others, the insular and the anterior cingulate cortices. These individuals may not be expending sufficient neural resources to process perturbations of the interoceptive state but may exert over-activation of these systems when processing drug-related stimuli. As a consequence, insufficient detection and processing of interoceptive state changes may result in inadequate anticipation and preparation to adapt to environmental challenges, e.g., adapt to abstinence in the presence of withdrawal symptoms. Here, we integrate interoceptive dysfunction in drug-addicted individuals, with the neural basis for meditation and exercise to develop a heuristic to target the interoceptive system as potential treatments for drug addiction. First, it is suggested that mindfulness-based approaches can modulate both interoceptive function and insular activation patterns. Second, there is an emerging literature showing that the regulation of physical exercise in the brain involves the insula and anterior cingulate cortex and that intense physical exercise is associated with a insula changes that may provide a window to attenuate the increased interoceptive response to drug-related stimuli. It is concluded that the conceptual framework of interoceptive dysfunctions in drug addiction and the experimental findings in meditation and exercise provide a useful approach to develop new interventions for drug addiction.

  19. A new glaucoma hypothesis: a role of glymphatic system dysfunction.

    Science.gov (United States)

    Wostyn, Peter; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul; De Groot, Veva

    2015-06-29

    In a recent review article titled "A new look at cerebrospinal fluid circulation", Brinker et al. comprehensively described novel insights from molecular and cellular biology as well as neuroimaging research, which indicate that cerebrospinal fluid (CSF) physiology is much more complex than previously believed. The glymphatic system is a recently defined brain-wide paravascular pathway for CSF and interstitial fluid exchange that facilitates efficient clearance of interstitial solutes, including amyloid-β, from the brain. Although further studies are needed to substantiate the functional significance of the glymphatic concept, one implication is that glymphatic pathway dysfunction may contribute to the deficient amyloid-β clearance in Alzheimer's disease. In this paper, we review several lines of evidence suggesting that the glymphatic system may also have potential clinical relevance for the understanding of glaucoma. As a clinically acceptable MRI-based approach to evaluate glymphatic pathway function in humans has recently been developed, a unique opportunity now exists to investigate whether suppression of the glymphatic system contributes to the development of glaucoma. The observation of a dysfunctional glymphatic system in patients with glaucoma would provide support for the hypothesis recently proposed by our group that CSF circulatory dysfunction may play a contributory role in the pathogenesis of glaucomatous damage. This would suggest a new hypothesis for glaucoma, which, just like Alzheimer's disease, might be considered then as an imbalance between production and clearance of neurotoxins, including amyloid-β.

  20. Treatment Approaches for Interoceptive Dysfunctions in Drug Addiction

    Directory of Open Access Journals (Sweden)

    Martin P Paulus

    2013-10-01

    Full Text Available There is emerging evidence that individuals with drug addiction have dysfunctions in brain systems that are important for interoceptive processing, which include, among others, the insular and the anterior cingulate cortices. These individuals may not be expending sufficient neural resources to process perturbations of the interoceptive state but may exert over-activation of these systems when processing drug-related stimuli. As a consequence, insufficient detection and processing of interoceptive state changes may result in inadequate anticipation and preparation to adapt to environmental challenges, e.g. adapt to abstinence in the presence of withdrawal symptoms. Here, we integrate interoceptive dysfunction in drug-addicted individuals, with the neural basis for meditation and exercise to develop a heuristic to target the interoceptive system as potential treatments for drug addiction. First, it is suggested that mindfulness-based approaches can modulate both interoceptive function and insular activation patterns. Second, there is an emerging literature that the regulation of physical exercise in the brain involves the insula and anterior cingulate cortex and that intense physical exercise is associated with a state-dependent activation difference in the insula that may provide a window to attenuate the increased interoceptive response drug related stimuli. It is concluded that the conceptual framework of interoceptive dysfunctions in drug addiction and the experimental findings in meditation and exercise provide a useful approach to develop new interventions for drug addiction.

  1. Effects of the citicoline acupuncture point injection on neural dysfunction after brain trauma in rats%穴位注射胞二磷胆碱对创伤性脑损伤大鼠神经功能障碍的影响

    Institute of Scientific and Technical Information of China (English)

    郭知学; 李鸥; 汪春

    2013-01-01

    目的:观察足三里穴位注射胞二磷胆碱疗法对创伤性脑损伤大鼠神经功能的影响.方法:成年健康雄性SD大鼠40只,采用改进的Feeney法建立大鼠脑损伤模型,设假手术组大鼠8只(A组),造模成功大鼠32只随机分为穴位注药组(B组)、穴位注水组(C组)、腹腔给药组(D组)和对照组(E组)各8只.造模后每日B、C、D、E组分别给予足三里穴位注射胞二磷胆碱及生理盐水、腹腔注射胞二磷胆碱及生理盐水处理,连续14d.采用神经功能缺损评分、斜板试验及平衡试验观察造模后第1、2、4、6、8、10、12、14天各处理方法对大鼠的神经行为的影响.结果:致伤后第1天B、C、D、E组大鼠神经行为学评分及平衡能力评分均较致伤前及A组明显增加(P<0.05).伤后评分逐渐下降,B组大鼠得分除第1天外均低于C、D、E组(P<0.05),C、D、E组各时间点比较评分差异无统计学意义.致伤后B、C、D、E组爬坡角度均较致伤前及A组明显下降(P<0.05),B组大鼠在致伤第2天开始爬坡角度明显大于C、D、E组(P<0.05).结论:穴位注射胞二磷胆碱能明显促进脑创伤大鼠神经功能的恢复.%Objective-.To investigate the effects of injection of citicoline into Zusanli point on neural dysfunction of rats following traumatic brain injury. Methods:Forty healthy adult male Sprague-Dawley (SD) rats were randomly divided into five groups: sham-operated group (A), acupuncture point drug injection group (B), acupuncture point saline injection group (C), intraperitoneal drug injection group (D) and control group (E). Opened brain trauma was induced by the improved Feeney method in the 32 rats of groups B,C,D and E. Eight sham-operated rats were subjected to the same surgical procedure,except brain injury. The rats in groups B and C were treated with acupuncture injection of citicoline or saline daily respectively. The rats in groups D and E were treated with intrapentonea injection

  2. Thyroid Dysfunction and its Management

    Directory of Open Access Journals (Sweden)

    Supriya Agnihotri

    2016-09-01

    Full Text Available The focus of the present review article is on thyroid dysfunctions which can be hypo or hyper thyroidism. Along with the ongoing allopathic treatment options, one can go for the alternative therapies or natural cures. Various nutritional supplements including iodine, botanicals like guggul and many more play an effective role in the management of thyroid dysfunction apart from the pharmaceuticals like synthetic T3 and T4 hormones and procaine thyroid. Along with these, homeopathy and yoga are equally important. The discussion suggests and emphasizes the importance of improving the lifestyle and nutritional diet; and further providing spiritual support along with natural thyroid medication.

  3. Does stress induce bowel dysfunction?

    Science.gov (United States)

    Chang, Yu-Ming; El-Zaatari, Mohamad; Kao, John Y

    2014-08-01

    Psychological stress is known to induce somatic symptoms. Classically, many gut physiological responses to stress are mediated by the hypothalamus-pituitary-adrenal axis. There is, however, a growing body of evidence of stress-induced corticotrophin-releasing factor (CRF) release causing bowel dysfunction through multiple pathways, either through the HPA axis, the autonomic nervous systems, or directly on the bowel itself. In addition, recent findings of CRF influencing the composition of gut microbiota lend support for the use of probiotics, antibiotics, and other microbiota-altering agents as potential therapeutic measures in stress-induced bowel dysfunction.

  4. [Mirror neuron system dysfunction in schizophrenia and its clinical implication].

    Science.gov (United States)

    Kato, Motoichiro; Kato, Yutaka

    2014-06-01

    Since the discovery of mirror neuron system, several neurophysiological and neuroimaging studies showed that the mirror neuron system might have a role in understanding other people's actions and intentions with automatic simulation of their actions. Moreover, some studies suggested that mirror neurons have a broader role in social cognition including understanding others' emotions and empathy. It has not been proved, however, whether the mirror neuron system is necessarily involved in empathy processes. In the domain of social cognition deficits, it is important to investigate the involvement of mirror neuron system dysfunction in psychosis such as schizophrenia. Using magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement). Compared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase locking factors and gamma-synchronization predominantly in right parietal cortex. This finding demonstrated that untreated patients with schizophrenia exhibited aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization.

  5. White matter atrophy and cognitive dysfunctions in neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Frederic Blanc

    Full Text Available Neuromyelitis optica (NMO is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain and VBM for focal brain volume (GM and WM, NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54% had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in

  6. Effect of continuous stellate ganglion blocking on brain oxygen metabolism and postoperative cognitive dysfunction in patients with hip joint replacement surgery%连续星状神经节阻滞对高龄患者髋关节置换术中脑氧代谢和术后认知功能障碍的影响

    Institute of Scientific and Technical Information of China (English)

    毕燕琳; 王彬; 张高峰; 王玲; 丛丽; 尹曾; 孙晓鹏; 时飞; 王明山

    2013-01-01

    Objective To evaluate the effect of continuous stellate ganglion blocking on brain oxygen metabolism and postoperative cognitive dysfunction in patients with hip joint replacement surgery. Methods Ninety ASAⅡpatients aged 75-85 yr weighing 50-70 kg undergoing elective operation on hip joint replacement surgery were randomly divided into 3 groups(n=30 each):control group(group C) received routine treatment only, single stellate ganglion blocking group (group D)received SGB with 0.2%ropivacaine 5 ml besides routine treatment and continuous stellate ganglion blocking group (group S)received continuous SGB with 0.2% ropivacaine besides routine treatment.SGB was performed on the right side before epidural anesthesia.An epidural catheter was placed.A bolus of 0.2%ropivacaine 5 ml was followed by continuous infusion of 0.2%ropivacaine at a rate of 2 ml/h.Continuous SGB was maintained for 48 h. Blood gas analysis, glucose and lactic acid determination were carried out by taking blood samples from right internal jugular vein bulb and radial artery at different phase points:right internal jugular vein retrograde catheter immediately(T1), 20 min after SGB(T2), surgery starting 60 min(T3), at the end of surgery(T4), recording MAP, HR, SpO2. Cerebral blood flow/cerebral metabolic rate of O2 (CBF/CMRO2), cerebral metabolic rate of O2 cerebral metabolic rate of glucose (CMRO2/CMRGlu) and advent volume of lactification (ADVL) were also calculated. MMSE score was used to evaluate the cognitive dysfunction at before and 3 d and 7 d after operation recording POCD. Results Compared with C, CBF/CMRO2 and CMRO2/CMRGlu was significantly increased,ADVL and POCD was significantly decreased in group D and S. Compared with D, CBF/CMRO2 and CMRO2/CMRGlu was significantly increased, ADVL and POCD was significantly decreased in group S. Compared with T1, CBF/CMRO2 and CMRO2/CMRGlu was significantly increased, ADVL and POCD was significantly decreased at T3-4 in group D and S. Conclusion

  7. [Sacral neuromodulation for neurogenic bladder dysfunction].

    Science.gov (United States)

    Kessler, T M; Wöllner, J; Kozomara, M; Mordasini, L; Mehnert, U

    2012-02-01

    Sacral neuromodulation (SNM) represents a promising option for managing treatment-refractory neurogenic bladder dysfunction. It remains to be seen, however, which types of neurogenic bladder dysfunction and which underlying neurological disorders best respond to SNM. Constant improvements in SNM have been achieved and it is now a minimally invasive approach performed under local anesthesia which should be considered before undertaking larger reconstructive procedures. An electrode is implanted in the S3 or S4 sacral foramen and during a test phase lasting for days to weeks the patient keeps a bladder diary to determine whether SNM has provided a relevant benefit. If the results of the test phase are positive, a neuromodulator is implanted in the gluteal area (or more rarely in the abdominal wall).The mechanism of action of SNM has not been completely clarified, but the afferent nerves most likely play a key role. It appears that SNM produces a modulation of medullary reflexes and brain centers by peripheral afferents. The implanted neuromodulation system does not lead to limitation of the patient's activities. However, it should be noted that high-frequency diathermy and unipolar electrocauterization are contraindicated in patients with neuromodulators, that during extracorporeal shock wave lithotripsy the focal point should not be in the direct vicinity of the neuromodulator or the electrode, that ultrasound and radiotherapy in the region of the implanted components should be avoided, that the neuromodulation should be discontinued in pregnancy, and that MRI examinations should only be conducted when urgently indicated and the neuromodulator is turned off.

  8. Synaptopathies: synaptic dysfunction in neurological disorders – A review from students to students

    OpenAIRE

    Lepeta, Katarzyna; Lourenco, Mychael V.; Schweitzer, Barbara C.; Martino Adami, Pamela V.; Banerjee, Priyanjalee; Catuara‐Solarz, Silvina; de la Fuente Revenga, Mario; Guillem, Alain Marc; Haidar, Mouna; Ijomone, Omamuyovwi M; Nadorp, Bettina; Qi, Lin; Perera, Nirma D.; Refsgaard, Louise K.; Reid, Kimberley M.

    2016-01-01

    Abstract Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neu...

  9. Sweating dysfunction in Parkinson's disease

    NARCIS (Netherlands)

    Swinn, L; Schrag, A; Viswanathan, R; Lees, A; Quinn, N; Bloem, Bastiaan R.

    2003-01-01

    We sought to determine the prevalence and nature of sweating disturbances in patients with Parkinson's disease (PD), and investigated their correlation with other clinical features and with Quality of Life (QoL) measures. A questionnaire on symptoms and consequences of sweating dysfunction was compl

  10. Photobiomodulation on alcohol induced dysfunction

    Science.gov (United States)

    Yang, Zheng-Ping; Liu, Timon C.; Zhang, Yan; Wang, Yan-Fang

    2007-05-01

    Alcohol, which is ubiquitous today, is a major health concern. Its use was already relatively high among the youngest respondents, peaked among young adults, and declined in older age groups. Alcohol is causally related to more than 60 different medical conditions. Overall, 4% of the global burden of disease is attributable to alcohol, which accounts for about as much death and disability globally as tobacco and hypertension. Alcohol also promotes the generation of reactive oxygen species (ROS) and/or interferes with the body's normal defense mechanisms against these compounds through numerous processes, particularly in the liver. Photobiomodulation (PBM) is a cell-specific effect of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems. The cellular effects of both alcohol and LIL are ligand-independent so that PBM might rehabilitate alcohol induced dysfunction. The PBM on alcohol induced human neutrophil dysfunction and rat chronic atrophic gastritis, the laser acupuncture on alcohol addiction, and intravascular PBM on alcoholic coma of patients and rats have been observed. The endonasal PBM (EPBM) mediated by Yangming channel, autonomic nervous systems and blood cells is suggested to treat alcohol induced dysfunction in terms of EPBM phenomena, the mechanism of alcohol induced dysfunction and our biological information model of PBM. In our opinion, the therapeutic effects of PBM might also be achieved on alcoholic myopathy.

  11. Ageing with neurogenic bowel dysfunction

    DEFF Research Database (Denmark)

    Nielsen, S D; Faaborg, Pia Møller; Finnerup, Nanna Brix

    2017-01-01

    The aim of this longitudinal study with postal survey was to describe changes in the patterns of neurogenic bowel dysfunction and bowel management in a population of people with spinal cord injury (SCI) followed for two decades. In 1996, a validated questionnaire on bowel function was sent to the...

  12. Swallowing dysfunction in cancer patients

    NARCIS (Netherlands)

    Raber-Durlacher, J.E.; Brennan, M.T.; Verdonck- de Leeuw, I.M.; Gibson, R.J.; Eilers, J.G.; Waltimo, T.; Bots, C.P.; Michelet, M.; Sollecito, T.P.; Rouleau, T.S.; Sewnaik, A.; Bensadoun, R.J.; Fliedner, M.C.; Silverman, S.; Spijkervet, F.K.L.

    2012-01-01

    Purpose Dysphagia (swallowing dysfunction) is a debilitating, depressing, and potentially life-threatening complication in cancer patients that is likely underreported. The present paper is aimed to review relevant dysphagia literature between 1990 and 2010 with a focus on assessment tools, prevalen

  13. Swallowing dysfunction in cancer patients

    NARCIS (Netherlands)

    Raber-Durlacher, Judith E.; Brennan, Mike T.; Leeuw, Irma M. Verdonck-de; Gibson, Rachel J.; Eilers, June G.; Waltimo, Tuomas; Bots, Casper P.; Michelet, Marisol; Sollecito, Thomas P.; Rouleau, Tanya S.; Sewnaik, Aniel; Bensadoun, Rene-Jean; Fliedner, Monica C.; Silverman, Sol; Spijkervet, Fred K. L.

    Purpose Dysphagia (swallowing dysfunction) is a debilitating, depressing, and potentially life-threatening complication in cancer patients that is likely underreported. The present paper is aimed to review relevant dysphagia literature between 1990 and 2010 with a focus on assessment tools,

  14. Mitochondrial dysfunction and Huntington disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Huntington disease (HD) is a chronic autosomal-dominant neurodegenerative disease. The gene coding Huntingtin has been identified, but the pathogenic mechanisms of the disease are still not fully understood. This paper reviews the involvement of mitochondrial dysfunction in pathogenesis of HD.

  15. Cognitive dysfunction in senior pets.

    Science.gov (United States)

    Crowell-Davis, Sharon L

    2008-02-01

    Aging pets can experience declines in memory, learning, perception, and awareness. These pets may be disoriented, forget previously learned behaviors, develop new fears and anxiety, or change their interactions with people. When these changes are due to cognitive dysfunction, behavioral and environmental adjustments along with medical therapy can slow the progression and keep pets active longer.

  16. Assessing mitochondrial dysfunction in cells.

    Science.gov (United States)

    Brand, Martin D; Nicholls, David G

    2011-04-15

    Assessing mitochondrial dysfunction requires definition of the dysfunction to be investigated. Usually, it is the ability of the mitochondria to make ATP appropriately in response to energy demands. Where other functions are of interest, tailored solutions are required. Dysfunction can be assessed in isolated mitochondria, in cells or in vivo, with different balances between precise experimental control and physiological relevance. There are many methods to measure mitochondrial function and dysfunction in these systems. Generally, measurements of fluxes give more information about the ability to make ATP than do measurements of intermediates and potentials. For isolated mitochondria, the best assay is mitochondrial respiratory control: the increase in respiration rate in response to ADP. For intact cells, the best assay is the equivalent measurement of cell respiratory control, which reports the rate of ATP production, the proton leak rate, the coupling efficiency, the maximum respiratory rate, the respiratory control ratio and the spare respiratory capacity. Measurements of membrane potential provide useful additional information. Measurement of both respiration and potential during appropriate titrations enables the identification of the primary sites of effectors and the distribution of control, allowing deeper quantitative analyses. Many other measurements in current use can be more problematic, as discussed in the present review.

  17. Should losartan be administered following brain injury?

    Science.gov (United States)

    Friedman, Alon; Bar-Klein, Guy; Serlin, Yonatan; Parmet, Yisrael; Heinemann, Uwe; Kaufer, Daniela

    2014-12-01

    Brain injury is a major health concern and associated with delayed neurological complications, including post-injury epilepsy, cognitive and emotional disabilities. Currently, there is no strategy to prevent post-injury delayed complications. We recently showed that dysfunction of the blood-brain barrier, often reported in brain injuries, can lead to epilepsy and neurodegeneration via activation of inflammatory TGF-β signaling in astrocytes. We further showed that the FDA approved angiotensin II type 1 receptor antagonist, losartan, blocks brain TGF-β signaling and prevents epilepsy in the albumin or blood-brain barrier breakdown models of epileptogenesis. Here we discuss the potential of losartan as an anti-epileptogenic and a neuroprotective drug, the rationale of its use following brain injury and the challenges of designing clinical trials. We highlight the urgent need to develop reliable biomarkers for epileptogenesis (and other complications) after brain injury as a pre-requisite to challenge neuroprotective therapies.

  18. Congenital and compensated vestibular dysfunction in childhood: an overlooked entity.

    Science.gov (United States)

    Weiss, Avery H; Phillips, James O

    2006-07-01

    We report five children with previously unrecognized vestibular dysfunction detected by clinical examination and confirmed by quantitative vestibular testing. Patient 1 presented with fluctuating visual acuity and intermittent nystagmus. Patient 2 had congenital hearing loss associated with imbalance, delayed motor development, and cyclic vomiting. Patient 3 had neurotrophic keratitis with an intermittent head tilt, imbalance, and motor delays. Patient 4 showed ataxia and eye movement abnormalities following traumatic brain injury and had reading difficulties. Patient 5 had episodic vertigo and eye movement abnormalities from infancy. Clinical vestibular testing emphasized spontaneous nystagmus, rapid head thrust, and assessment of post-rotatory nystagmus. Quantitative vestibular testing included the sinusoidal chair rotation and velocity step tests, measurement of dynamic visual acuity, post-head-shake nystagmus, and computerized platform posturography. Pediatric neurologists encounter children with congenital and compensated vestibular dysfunction, which can be recognized on the basis of relevant history and clinical abnormalities of the ocular-ocular reflex.

  19. Impaired integration in psychopathy: A unified theory of psychopathic dysfunction.

    Science.gov (United States)

    Hamilton, Rachel K B; Hiatt Racer, Kristina; Newman, Joseph P

    2015-10-01

    This article introduces a novel theoretical framework for psychopathy that bridges dominant affective and cognitive models. According to the proposed impaired integration (II) framework of psychopathic dysfunction, topographical irregularities and abnormalities in neural connectivity in psychopathy hinder the complex process of information integration. Central to the II theory is the notion that psychopathic individuals are "'wired up' differently" (Hare, Williamson, & Harpur, 1988, p. 87). Specific theoretical assumptions include decreased functioning of the Salience and Default Mode Networks, normal functioning in executive control networks, and less coordination and flexible switching between networks. Following a review of dominant models of psychopathy, we introduce our II theory as a parsimonious account of behavioral and brain irregularities in psychopathy. The II theory provides a unified theoretical framework for understanding psychopathic dysfunction and integrates principle tenets of affective and cognitive perspectives. Moreover, it accommodates evidence regarding connectivity abnormalities in psychopathy through its network theoretical perspective. (PsycINFO Database Record

  20. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease.

    Science.gov (United States)

    Khakh, Baljit S; Beaumont, Vahri; Cachope, Roger; Munoz-Sanjuan, Ignacio; Goldman, Steven A; Grantyn, Rosemarie

    2017-07-01

    Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter clearance, as well as on the use of transplanted astrocytes to produce therapeutic benefit in mouse models of HD. Overall, the data suggest that astrocyte dysfunction is an important contributor to the onset and progression of some HD symptoms in mice. Additional exploration of astrocytes in HD mouse models and humans is needed and may provide new therapeutic opportunities to explore in conjunction with neuronal rescue and repair strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Maternal thyroid dysfunction and risk of seizure in the child

    DEFF Research Database (Denmark)

    Andersen, Stine Linding; Laurberg, Peter; Wu, Chunsen

    2013-01-01

    Thyroid hormones are essential for brain development, and maternal thyroid disease may affect child neurocognitive development. Some types of seizures may also depend upon early exposure of the developing central nervous system, and we hypothesized that maternal thyroid dysfunction could increase...... the risk of seizure in the child. In a Danish population-based study we included 1,699,693 liveborn singletons, and from the Danish National Hospital Register we obtained information on maternal diagnosis of hyper- or hypothyroidism and neonatal seizure, febrile seizure, and epilepsy in the child. Maternal...... diagnosis of thyroid dysfunction before or after birth of the child was registered in two percent of the singleton births. In adjusted analyses, maternal hyperthyroidism and hypothyroidism first time diagnosed after birth of the child were associated with a significant increased risk of epilepsy...

  2. Neural correlates of obsessive-compulsive related dysfunctional beliefs.

    Science.gov (United States)

    Alonso, Pino; Orbegozo, Arantxa; Pujol, Jesús; López-Solà, Clara; Fullana, Miquel Àngel; Segalàs, Cinto; Real, Eva; Subirà, Marta; Martínez-Zalacaín, Ignacio; Menchón, José M; Harrison, Ben J; Cardoner, Narcís; Soriano-Mas, Carles

    2013-12-02

    There have been few attempts to integrate neurobiological and cognitive models of obsessive-compulsive disorder (OCD), although this might constitute a key approach to clarify the complex etiology of the disorder. Our study aimed to explore the neural correlates underlying dysfunctional beliefs hypothesized by cognitive models to be involved in the development and maintenance of OCD. We obtained a high-resolution magnetic resonance image from fifty OCD patients and 30 healthy controls, and correlated them, voxel-wise, with the severity of OC-related dysfunctional beliefs assessed by the Obsessive Beliefs Questionnaire-44. In healthy controls, significant negative correlations were observed between anterior temporal lobe (ATL) volume and scores on perfectionism/intolerance of uncertainty and overimportance/need to control thoughts. No significant correlations between OBQ-44 domains and regional gray matter volumes were observed in OCD patients. A post-hoc region-of-interest analysis detected that the ATLs was bilaterally smaller in OCD patients. On splitting subjects into high- and low-belief subgroups, we observed that such brain structural differences between OCD patients and healthy controls were explained by significantly larger ATL volumes among healthy subjects from the low-belief subgroup. Our results suggest a significant correlation between OC-related dysfunctional beliefs and morphometric variability in the anterior temporal lobe, a brain structure related to socio-emotional processing. Future studies should address the interaction of these correlations with environmental factors to fully characterize the bases of OC-related dysfunctional beliefs and to advance in the integration of biological and cognitive models of OCD.

  3. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  4. Anatomy of the Brain

    Science.gov (United States)

    ... Menu Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ... form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ...

  5. X Irradiation Induces Acute Cognitive Decline via Transient Synaptic Dysfunction.

    Science.gov (United States)

    Puspitasari, Anggraeini; Koganezawa, Noriko; Ishizuka, Yuta; Kojima, Nobuhiko; Tanaka, Natsume; Nakano, Takashi; Shirao, Tomoaki

    2016-04-01

    Cranial X irradiation can severely impair higher brain function, resulting in neurocognitive deficits. Radiation-induced brain injury is characterized by acute, early and late delayed changes, and morbidity is evident more than 6 months after irradiation. While the acute effects of radiation exposure on the brain are known, the underlying mechanisms remain unclear. In this study, we examined the acute effect of X radiation on synaptic function using behavioral analysis and immunohistochemistry. We found that 10 Gy whole-brain irradiation immediately after conditioning (within 30 min) impaired the formation of fear memory, whereas irradiation 24 h prior to conditioning did not. To investigate the mechanisms underlying these behavioral changes, we irradiated one hemisphere of the brain and analyzed synaptic function and adult neurogenesis immunohistochemically. We focused on drebrin, whose loss from dendritic spines is a surrogate marker of synaptopathy. The intensity of drebrin immunoreactivity started to decrease in the irradiated hemisphere 2 h after exposure. The immunostaining intensity recovered to preirradiation levels by 24 h, indicating that X radiation induced transient synaptic dysfunction. Interestingly, the number of newly generated neurons was not changed at 2 h postirradiation, whereas it was significantly decreased at 8 and 24 h postirradiation. Because irradiation 24 h prior to conditioning had no effect on fear memory, our findings suggest that radiation-induced death of newly-generated neurons does not substantially impact fear memory formation. The radiation-induced synaptic dysfunction likely caused a transient memory deficit during the critical period for fear memory formation (approximately 1-3 h after conditioning), which coincides with a change in drebrin immunostaining in the hippocampus, a structure critical for fear memory formation.

  6. Subclinical Thyroid Dysfunction and Fracture Risk

    DEFF Research Database (Denmark)

    Blum, Manuel R; Bauer, Douglas C; Collet, Tinh-Hai

    2015-01-01

    IMPORTANCE: Associations between subclinical thyroid dysfunction and fractures are unclear and clinical trials are lacking. OBJECTIVE: To assess the association of subclinical thyroid dysfunction with hip, nonspine, spine, or any fractures. DATA SOURCES AND STUDY SELECTION: The databases of MEDLI...

  7. Autonomic dysfunction in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Dümcke, Christine Winkler; Møller, Søren

    2008-01-01

    Liver cirrhosis and portal hypertension are frequently associated with signs of circulatory dysfunction and peripheral polyneuropathy, which includes defects of the autonomic nervous system. Autonomic dysfunction, which is seen in both alcoholic and non-alcoholic liver cirrhosis and increases...

  8. Challenges in the Management of Hydrocephalic Children in Northern Mozambique.

    Science.gov (United States)

    Salvador, Sérgio; Henriques, João Carlos; Munguambe, Missael; Vaz, Rui M C; Barros, Henrique P

    2015-09-01

    Hydrocephalus in sub-Saharan Africa, including Mozambique, is still a significant health care problem. Retrospective data from a previous study were used to determine patient provenance, referral patterns, and lost to follow-up rates. Many children with hydrocephalus in this region are not taken to health care facilities for treatment. Reasons include poverty, difficult access, lack of transportation, and erroneous cultural interpretations. Resource limitations in terms of poorly equipped health care facilities and a lack of trained health professionals also contribute. Efforts to improve prevention, early diagnosis, treatment, and follow-up are of utmost importance in Mozambique. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Low-pressure valves in hydrocephalic children : a retrospective analysis

    NARCIS (Netherlands)

    Breimer, G. E.; Sival, Deborah; Hoving, E. W.

    2012-01-01

    A series of 100 children under 2 years of age treated for hydrocephalus is described. All patients received a standard differential low-pressure (SD low) valve as the first cerebrospinal fluid (CSF) shunt treatment. The performance of this group during follow-up is analysed. A retrospective cohort s

  10. Low-pressure valves in hydrocephalic children : a retrospective analysis

    NARCIS (Netherlands)

    Breimer, G. E.; Sival, Deborah; Hoving, E. W.

    2012-01-01

    A series of 100 children under 2 years of age treated for hydrocephalus is described. All patients received a standard differential low-pressure (SD low) valve as the first cerebrospinal fluid (CSF) shunt treatment. The performance of this group during follow-up is analysed. A retrospective cohort s

  11. Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen-glucose deprivation in cultures

    Science.gov (United States)

    Astrocyte swelling is a major component of cytotoxic brain edema in ischemia. Oxidative stress and mitochondrial dysfunction have been hypothesized to contribute to such swelling in cultures. We investigated the protective effects of polyphenol-rich green tea extract (GTE) on key features of ischemi...

  12. Epilepsy and brain tumors

    Science.gov (United States)

    ENGLOT, DARIO J.; CHANG, EDWARD F.; VECHT, CHARLES J.

    2016-01-01

    Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70–80%), particularly in patients with frontotemporal or insular lesions. Seizures are also common in individuals with glioma, with the highest rates of epilepsy (60–75%) observed in patients with low-grade gliomas located in superficial cortical or insular regions. Approximately 20–50% of patients with meningioma and 20–35% of those with brain metastases also suffer from seizures. After tumor resection, approximately 60–90% are rendered seizure-free, with most favorable seizure outcomes seen in individuals with glioneuronal tumors. Gross total resection, earlier surgical therapy, and a lack of generalized seizures are common predictors of a favorable seizure outcome. With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life. PMID:26948360

  13. Chediak-Higashi syndrome: brain MRI and MR spectroscopy manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Lolli, Valentina; Soto Ares, Gustavo; Pruvo, Jean-Pierre [Roger Salengro Hospital, CHRU, Neuroradiology Department, Lille (France); Abou Chahla, Wadih [Jeanne de Flandre Hospital, Pediatric Hematology and Oncology Department, Lille (France); Jissendi-Tchofo, Patrice [University Hospital Saint-Pierre, Radiology Department - Pediatric Neuroradiology Section, Brussels (Belgium)

    2015-08-15

    Chediak-Higashi syndrome is a rare inherited metabolic disorder characterized by partial oculocutaneous albinism, immunodeficiency, and neurological dysfunction. We present the brain magnetic resonance imaging (MRI) and MR spectroscopy (MRS) findings obtained during the accelerated phase of the disorder in an 8-year-old. The brain MRI manifestations at recurrences 15 months and 24 months later are reported as well. (orig.)

  14. Brain Connectivity Studies in Schizophrenia: Unravelling the Effects of Antipsychotics

    DEFF Research Database (Denmark)

    Nejad, A.B.; Ebdrup, Bjørn Hylsebeck; Glenthøj, Birte Yding;

    2012-01-01

    Impaired brain connectivity is a hallmark of schizophrenia brain dysfunction. However, the effect of drug treatment and challenges on the dysconnectivity of functional networks in schizophrenia is an understudied area. In this review, we provide an overview of functional magnetic resonance imaging...

  15. [Sexual dysfunction following pelvic surgery].

    Science.gov (United States)

    Hojo, K

    1997-11-01

    In male, sexual dysfunction was a common complication that occurred after radical pelvic surgery: radical protectomy, radical cysto-, prostatectomy. Upon the recent pelvic neuroanatomical findings and preservation of these nerves, it is now possible to perform successful cancer operation on the rectum, prostate or bladder with preservation of sexual function in the group of early cancer patients. Depending on the location and severity of these nerve injury, this could result in temporary or permanent erectile and ejaculation dysfunction. In female, the total hysterectomy for cervical cancer sacrifices or injuries the faculty of pregnancy or sexual intercourse. The oophorectomies causes a deficiency of female hormones. But recently the numbers of patients with a small or early stages cancer of uterine or ovary are increasing and we have become to be able to save the functions of these organs in many patients well with minimum local excision or partial resection of them.

  16. Neck pain causes respiratory dysfunction.

    Science.gov (United States)

    Kapreli, Eleni; Vourazanis, Evangelos; Strimpakos, Nikolaos

    2008-01-01

    This paper describes a presumptive mechanism for the development of changes in respiratory function due to chronic neck pain. The patient with neck pain presents a number of factors that could constitute a predisposition of leading to a respiratory dysfunction: (a) the decreased strength of deep neck flexors and extensors, (b) the hyperactivity and increased fatigability of superficial neck flexors, (c) the limitation of range of motion, (d) the decrease in proprioception and disturbances in neuromuscular control, (e) the existence of pain and (f) the psychosocial influence of dysfunction. The possible connection of neck pain and respiratory function could have a great impact on various clinical aspects notably patient assessment, rehabilitation and pharmacological prescription.

  17. Drug-induced sexual dysfunction.

    Science.gov (United States)

    Aldridge, S A

    1982-01-01

    Commonly used drugs that may cause sexual dysfunction are reviewed. The anatomy and physiology of the normal sexual response are reviewed. The influence of drugs on neurogenic, hormonal, and vascular mechanisms may result in diminished libido, impotence, ejaculatory and orgasmic difficulties, inhibited vaginal lubrication, menstrual irregularities, and gynecomastia in men or painful breast enlargement in women. Parasympatholytic agents, which interfere with cholinergic transmission, may affect erectile potency, while adrenergic inhibiting agents may interfere with ejaculatory control. Central nervous system depressants or sedating drugs, drugs producing hyperprolactinemia, and antiandrogenic drugs also may affect the normal sexual response. Drugs such as antihypertensive and antipsychotic agents may induce sexual dysfunction that can result in patient noncompliance. Usually, drug-induced side effects are reversible with discontinuation of the offending agent.

  18. Early detection of tubular dysfunction.

    Science.gov (United States)

    Piscator, M

    1991-11-01

    The determination of low-molecular-weight proteins in urine as a tool for early detection of damage to the proximal tubules is briefly discussed. Beta 2-microglobulin, retinol-binding protein and alpha 1-microglobulin are at present the most widely used markers for tubular dysfunction. The determination of beta 2-microglobulin has earlier been the method of choice, but due to its instability at low pH there are certain disadvantages. Available data indicate that alpha 1-microglobulin may replace beta 2-microglobulin for screening purposes. The low-molecular-weight proteins are at present the best markers for early detection of tubular dysfunction; other constituents are not as well suited for this, even if the determination of urine enzymes has its supporters.

  19. Insulin dysfunction and Tau pathology

    Directory of Open Access Journals (Sweden)

    Noura eEl Khoury

    2014-02-01

    Full Text Available The neuropathological hallmarks of Alzheimer's disease (AD include senile plaques of β-amyloid (Aβ peptides (a cleavage product of the Amyloid Precursor Protein, or APP and neurofibrillary tangles (NFT of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF. NFT pathology is important since it correlates with the degree of cognitive impairment in AD.Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99% is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease.Insulin dysfunction, manifested by diabetes mellitus (DM might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM and type 2 diabetes (T2DM are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment.Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting on Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  20. Thyroid Dysfunction from Antineoplastic Agents

    Science.gov (United States)

    Larsen, P. Reed; Marqusee, Ellen

    2011-01-01

    Unlike cytotoxic agents that indiscriminately affect rapidly dividing cells, newer antineoplastic agents such as targeted therapies and immunotherapies are associated with thyroid dysfunction. These include tyrosine kinase inhibitors, bexarotene, radioiodine-based cancer therapies, denileukin diftitox, alemtuzumab, interferon-α, interleukin-2, ipilimumab, tremelimumab, thalidomide, and lenalidomide. Primary hypothyroidism is the most common side effect, although thyrotoxicosis and effects on thyroid-stimulating hormone secretion and thyroid hormone metabolism have also been described. Most agents cause thyroid dysfunction in 20%–50% of patients, although some have even higher rates. Despite this, physicians may overlook drug-induced thyroid dysfunction because of the complexity of the clinical picture in the cancer patient. Symptoms of hypothyroidism, such as fatigue, weakness, depression, memory loss, cold intolerance, and cardiovascular effects, may be incorrectly attributed to the primary disease or to the antineoplastic agent. Underdiagnosis of thyroid dysfunction can have important consequences for cancer patient management. At a minimum, the symptoms will adversely affect the patient’s quality of life. Alternatively, such symptoms can lead to dose reductions of potentially life-saving therapies. Hypothyroidism can also alter the kinetics and clearance of medications, which may lead to undesirable side effects. Thyrotoxicosis can be mistaken for sepsis or a nonendocrinologic drug side effect. In some patients, thyroid disease may indicate a higher likelihood of tumor response to the agent. Both hypothyroidism and thyrotoxicosis are easily diagnosed with inexpensive and specific tests. In many patients, particularly those with hypothyroidism, the treatment is straightforward. We therefore recommend routine testing for thyroid abnormalities in patients receiving these antineoplastic agents. PMID:22010182

  1. Thyroid dysfunction from antineoplastic agents.

    Science.gov (United States)

    Hamnvik, Ole-Petter Riksfjord; Larsen, P Reed; Marqusee, Ellen

    2011-11-02

    Unlike cytotoxic agents that indiscriminately affect rapidly dividing cells, newer antineoplastic agents such as targeted therapies and immunotherapies are associated with thyroid dysfunction. These include tyrosine kinase inhibitors, bexarotene, radioiodine-based cancer therapies, denileukin diftitox, alemtuzumab, interferon-α, interleukin-2, ipilimumab, tremelimumab, thalidomide, and lenalidomide. Primary hypothyroidism is the most common side effect, although thyrotoxicosis and effects on thyroid-stimulating hormone secretion and thyroid hormone metabolism have also been described. Most agents cause thyroid dysfunction in 20%-50% of patients, although some have even higher rates. Despite this, physicians may overlook drug-induced thyroid dysfunction because of the complexity of the clinical picture in the cancer patient. Symptoms of hypothyroidism, such as fatigue, weakness, depression, memory loss, cold intolerance, and cardiovascular effects, may be incorrectly attributed to the primary disease or to the antineoplastic agent. Underdiagnosis of thyroid dysfunction can have important consequences for cancer patient management. At a minimum, the symptoms will adversely affect the patient's quality of life. Alternatively, such symptoms can lead to dose reductions of potentially life-saving therapies. Hypothyroidism can also alter the kinetics and clearance of medications, which may lead to undesirable side effects. Thyrotoxicosis can be mistaken for sepsis or a nonendocrinologic drug side effect. In some patients, thyroid disease may indicate a higher likelihood of tumor response to the agent. Both hypothyroidism and thyrotoxicosis are easily diagnosed with inexpensive and specific tests. In many patients, particularly those with hypothyroidism, the treatment is straightforward. We therefore recommend routine testing for thyroid abnormalities in patients receiving these antineoplastic agents.

  2. Myofascial Pain Dysfunction Syndrome (MPDS)

    OpenAIRE

    2010-01-01

    Introduction: Myofascial Pain Dysfunction Syndrome (MPDS) is one of the most important causes of the orofacial pain. The main purpose of this study was to evaluate 40 related variables in this regard. Materials and Methods: Thirty nine patients with MPDS were evaluated in this study. Different factors including age, gender, occupation, marital status, sensitivity of masticatory muscles, maximum opening of the mouth, deviation, deflection, involvement of temporomandibular joint, habit, parafun...

  3. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  4. Hypnotic metaphor and sexual dysfunction.

    Science.gov (United States)

    Gilmore, L G

    1987-01-01

    Although hypnosis can be very effective in alleviating sexual problems, few sex therapists use hypnotic methods. This paper seeks to encourage a greater use of hypnosis among clinicians by presenting: a description of the new hypnosis exemplified in the work of Milton H. Erickson; an explanation of one of Erickson's most important and innovative methods, the use of multiple embedded metaphors; and case histories illustrating the application of hypnotic approaches to sexual dysfunction.

  5. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    Science.gov (United States)

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-01-01

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction. PMID:27120617

  6. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction.

    Science.gov (United States)

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-04-25

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction.

  7. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    Directory of Open Access Journals (Sweden)

    Fang Sun

    2016-04-01

    Full Text Available Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1. TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction.

  8. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  9. On the Complexity of Brain Disorders: A symptom-based approach

    Directory of Open Access Journals (Sweden)

    Ahmed A. Moustafa

    2016-02-01

    Full Text Available Mounting evidence shows that brain disorders involve multiple and different neural dysfunctions, including regional brain damage, change to cell structure, chemical imbalance, and/or connectivity loss among different brain regions. Understanding the complexity of brain disorders can help us map these neural dysfunctions to different symptom clusters as well as understand subcategories of different brain disorders. Here, we discuss data on the mapping of symptom clusters to different neural dysfunctions using examples from brain disorders such as major depressive disorder, Parkinson’s disease, schizophrenia, PTSD and Alzheimer’s disease. In addition, we discuss data on the similarities of symptoms in different disorders. Importantly, computational modeling work may be able to shed light on plausible links between various symptoms and neural damage in brain disorders.

  10. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  11. Symptoms of Nerve Dysfunction After Hip Arthroscopy

    DEFF Research Database (Denmark)

    Dippmann, Christian; Thorborg, Kristian; Kraemer, Otto

    2014-01-01

    PURPOSE: The primary purpose of this study was to analyze the rate, pattern, and severity of symptoms of nerve dysfunction after hip arthroscopy (HA) by reviewing prospectively collected data. The secondary purpose was to study whether symptoms of nerve dysfunction were related to traction time...... year after HA concerning symptoms of nerve dysfunction, possible localization, and erectile dysfunction. Fifty patients participated and returned fully completed questionnaires. Patients reporting symptoms of nerve dysfunction 1 year after HA were re-examined. RESULTS: Twenty-three of 50 patients (46......%) reported symptoms of nerve dysfunction during the first week after HA; this was reduced to 14 patients (28%) after 6 weeks, 11 patients (22%) after 26 weeks, and 9 patients (18%) after 1 year. One patient experienced temporary erectile dysfunction. No difference in traction time between patients...

  12. Autonomic Nervous System Dysfunction in Parkinson's Disease.

    Science.gov (United States)

    Zesiewicz, Theresa A.; Baker, Matthew J.; Wahba, Mervat; Hauser, Robert A.

    2003-03-01

    Autonomic nervous system (ANS) dysfunction is common in Parkinson's disease (PD), affects 70% to 80% of patients, and causes significant morbidity and discomfort. Autonomic nervous system dysfunction symptoms in PD include sexual dysfunction, swallowing and gastrointestinal disorders, bowel and bladder abnormalities, sleep disturbances, and derangements of cardiovascular regulation, particularly, orthostatic hypotension. Autonomic nervous system dysfunction in PD may be caused by an underlying degenerative process that affects the autonomic ganglia, brainstem nuclei, and hypothalamic nuclei. Anti-parkinsonian medications can cause or worsen symptoms of ANS dysfunction. The care of a PD patient with ANS dysfunction relies on its recognition and directed treatment, including coordinated care between the neurologist and appropriate subspecialist. Pharmacotherapy may be useful to treat orthostasis, gastrointestinal, urinary, and sexual dysfunction.

  13. Head Stabilization Measurements As a Potential Evaluation Tool for Comparison of Persons with TBI and Vestibular Dysfunction with Healthy Controls

    Science.gov (United States)

    2015-03-01

    Persons with TBI and Vestibular Dysfunction with Healty Controls 5a. Contract Number: 5b. Grant Number: R116 5c. Program Element Number: 5d...large percentage of persons with traumatic brain injury ( TBI ) incur some type of vestibular dysfunction requiring vestibular physical therapy. These...the group having a TBI did not show the same patterned motion as the control group but over time and with training, more closely resembled that of the

  14. Cortisol Excess and the Brain.

    Science.gov (United States)

    Resmini, Eugenia; Santos, Alicia; Webb, Susan M

    2016-01-01

    Until the last decade, little was known about the effects of chronic hypercortisolism on the brain. In the last few years, new data have arisen thanks to advances in imaging techniques; therefore, it is now possible to investigate brain activity in vivo. Memory impairments are present in patients with Cushing's syndrome (CS) and are related to hippocampal damage; functional dysfunctions would precede structural abnormalities as detected by brain imaging. Earlier diagnosis and rapid normalization of hypercortisolism could stop the progression of hippocampal damage and memory impairments. Impairments of executive functions (including decision-making) and other functions such as visuoconstructive skills, language, motor functions and information processing speed are also present in CS patients. There is controversy concerning the reversibility of brain impairment. It seems that longer disease duration and older age are associated with less recovery of brain functioning. Conversely, earlier diagnosis and rapid normalization of hypercortisolism appear to stop progression of brain damage and functional impairments. Moreover, brain tissue functioning and neuroplasticity can be influenced by many factors. Currently available studies appear to be complementary, evaluating the same phenomenon from different points of view, but are often not directly comparable. Finally, CS patients have a high prevalence of psychopathology, such as depression and anxiety which do not completely revert after cure. Thus, psychological or psychiatric evaluation could be recommended in CS patients, so that treatment may be prescribed if required.

  15. Law, Responsibility, and the Brain

    Science.gov (United States)

    Mobbs, Dean; Lau, Hakwan C.; Jones, Owen D.; Frith, Chris D.

    In perhaps the first attempt to link the brain to mental illness, Hippocrates elegantly wrote that it is the brain that makes us mad or delirious. Epitomizing one of the fundamental assumptions of contemporary neuroscience, Hippocrates' words resonate far beyond the classic philosophical puzzle of mind and body and posit that our behavior, no matter how monstrous, lies at the mercy of our brain's integrity. While clinicopathological observations have long pointed to several putative neurobiological systems as important in antisocial and violent criminal behavior, recent advances in brain-imaging have the potential to provide unparalleled insight. Consequently, brain-imaging studies have reinvigorated the neurophilosophical and legal debate of whether we are free agents in control of our own actions or mere prisoners of a biologically determined brain. In this chapter, we review studies pointing to brain dysfunction in criminally violent individuals and address a range of philosophical and practical issues concerning the use of brainimaging in court. We finally lay out several guidelines for its use in the legal system.

  16. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... development, and may also assist in learning and memory. hippocampus —A portion of the brain involved in creating and filing new memories. hypothalmic-pituitary-adrenal (HPA) axis —A brain-body ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... the brain How different parts of the brain communicate and work with each other How changes in ... communication signal sent between neurons by which neurons communicate with each other. magnetic resonance imaging (MRI) mdash; ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... their final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... works in healthy people, and how normal brain development and function can go awry, leading to mental ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... harder for Sarah to recover normally from her low mood. It's important to remember that everyone gets " ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... and her husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early- ... and techniques are giving scientists a more detailed understanding of the brain than ever before. Brain Imaging ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the ... enclosed by a cell membrane, which separates the inside contents of the cell from its surrounding environment ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons ... However, recent research points to a possible new class of antidepressants that can relieve symptoms of the ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... Functional magnetic resonance imaging (fMRI) is another important research tool in understanding how the brain functions. Another type of brain scan called magnetoencephalography, or MEG, can ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you ... of DNA. Sometimes this copying process is imperfect, leading to a gene mutation that causes the gene ...

  12. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... experienced long periods of deep sadness throughout her teenage years, but had never seen a doctor about ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... works in healthy people, and how normal brain development and function can go awry, leading to mental ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on neurons ... Using MEG, some scientists have found a specific pattern of brain activity that may help predict who ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... all. She was happily married and successful in business. Then, after a serious setback at work, she ... of the brain's structure, studies show that brain growth in children with autism appears to peak early. ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain ... system. These cells are highly specialized for the function of conducting messages. A neuron has three basic ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD) . Glutamate —the ... mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ... MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation — ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... How the brain develops How genes and the environment affect the brain The basic structure of the ... inside contents of the cell from its surrounding environment and controls what enters and leaves the cell, ...

  10. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne

    2014-01-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains...

  11. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    Science.gov (United States)

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-03-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a "diffuse sensory organ" that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this "pan-endocrine illness" is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death.

  12. Hemodynamic Profiles of Functional and Dysfunctional Forms of Repetitive Thinking.

    Science.gov (United States)

    Ottaviani, Cristina; Brosschot, Jos F; Lonigro, Antonia; Medea, Barbara; Van Diest, Ilse; Thayer, Julian F

    2017-04-01

    The ability of the human brain to escape the here and now (mind wandering) can take functional (problem solving) and dysfunctional (perseverative cognition) routes. Although it has been proposed that only the latter may act as a mediator of the relationship between stress and cardiovascular disease, both functional and dysfunctional forms of repetitive thinking have been associated with blood pressure (BP) reactivity of the same magnitude. However, a similar BP reactivity may be caused by different physiological determinants, which may differ in their risk for cardiovascular pathology. To examine the way (hemodynamic profile) and the extent (compensation deficit) to which total peripheral resistance and cardiac output compensate for each other in determining BP reactivity during functional and dysfunctional types of repetitive thinking. Fifty-six healthy participants randomly underwent a perseverative cognition, a mind wandering, and a problem solving induction, each followed by a 5-min recovery period while their cardiovascular parameters were continuously monitored. Perseverative cognition and problem solving (but not mind wandering) elicited BP increases of similar magnitude. However, perseverative cognition was characterized by a more vascular (versus myocardial) profile compared to mind wandering and problem solving. As a consequence, BP recovery was impaired after perseverative cognition compared to the other two conditions. Given that high vascular resistance and delayed recovery are the hallmarks of hypertension the results suggest a potential mechanism through which perseverative cognition may act as a mediator in the relationship between stress and risk for developing precursors to cardiovascular disease.

  13. The Brain.

    Science.gov (United States)

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  14. Brain Basics

    Medline Plus

    Full Text Available ... and plays an important role during early brain development. It may also assist in learning and memory. Problems in making or using glutamate ... increases neuronal activity, is involved in early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  15. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit ... final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah ... having trouble coping with the stresses in her life. She began to think of suicide because she ...

  18. Blood-brain barrier permeability imaging using perfusion computed tomography

    Directory of Open Access Journals (Sweden)

    Avsenik Jernej

    2015-06-01

    Full Text Available Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases.

  19. Blood-brain barrier permeability imaging using perfusion computed tomography

    OpenAIRE

    Avsenik Jernej; Bisdas Sotirios; Popovic Katarina Surlan

    2015-01-01

    Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with patholog...

  20. Proximal tubular dysfunction as an indicator of chronic graft dysfunction

    Directory of Open Access Journals (Sweden)

    N.O.S. Câmara

    2009-03-01

    Full Text Available New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.

  1. Geniposide attenuates mitochondrial dysfunction and memory deficits in APP/PS1 transgenic mice.

    Science.gov (United States)

    Lv, Cui; Liu, Xiaoli; Liu, Hongjuan; Chen, Tong; Zhang, Wensheng

    2014-01-01

    Oxidative stress and mitochondrial dysfunction appear early and contribute to the disease progression in Alzheimer's disease (AD), which can be detected extensively in AD patients brains as well as in transgenic AD mice brains. Thus, treatments that result in attenuation of oxidative stress and mitochondrial dysfunction may hold potential for AD treatment. Geniposide, a pharmacologically active component purified from gardenia fruit, exhibits anti-oxidative, antiinflammatory and other important therapeutic properties. However, whether geniposide has any protective effect on oxidative stress and mitochondrial dysfunction in AD transgenic mouse model has not yet been reported. Here, we demonstrate that intragastric administration of geniposide significantly reduces oxidative stress and mitochondrial dysfunction in addition to improving learning and memory in APP/PS1 mice. Geniposide exerts protective effects on mitochondrial dysfunction in APP/PS1 mice through suppressing the mitochondrial oxidative damage and increasing the mitochondrial membrane potential and activity of cytochrome c oxidase. These studies indicate that geniposide may attenuate memory deficits through the suppression of mitochondrial oxidative stress. Thus, geniposide may be a potential therapeutic reagent for halting and preventing AD progress.

  2. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  3. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    Science.gov (United States)

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip

    2015-01-01

    markers of small-vessel disease. These findings suggest that reduced structural brain network efficiency might mediate the relationship between advanced cerebral amyloid angiopathy and neurologic dysfunction and that such large-scale brain network measures may represent useful outcome markers for tracking disease progression. PMID:25367025

  4. Drug addiction and sexual dysfunction.

    Science.gov (United States)

    Zaazaa, Adham; Bella, Anthony J; Shamloul, Rany

    2013-09-01

    This article attempts to review the most current and the well-established facts concerning drug addiction and sexual dysfunction. Surprisingly, even though alcohol is prevalent in many societies with many myths surrounding its sexual-enhancing effects, current scientific research cannot provide a solid conclusion on its effect on sexual function. Unfortunately, the same concept applies to tobacco smoking; however, most of the current knowledge tends to support the notion that it, indeed, can negatively affect sexual function. Similar ambiguities also prevail with substances of abuse.

  5. Endothelial dysfunction in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hadi AR Hadi

    2008-01-01

    Full Text Available Hadi AR Hadi, Jassim Al SuwaidiDepartment of Cardiology and Cardiovascular Surgery, Hamad General Hospital – Hamad Medical Corporation, Doha, State of Qatar; Department of Cardioscience, Sheikh Khalifa Medical City, Abu Dhabi, UAEAbstract: Diabetes mellitus is associated with an increased risk of cardiovascular disease, even in the presence of intensive glycemic control. Substantial clinical and experimental evidence suggest that both diabetes and insulin resistance cause a combination of endothelial dysfunctions, which may diminish the anti-atherogenic role of the vascular endothelium. Both insulin resistance and endothelial dysfunction appear to precede the development of overt hyperglycemia in patients with type 2 diabetes. Therefore, in patients with diabetes or insulin resistance, endothelial dysfunction may be a critical early target for preventing atherosclerosis and cardiovascular disease. Microalbuminuria is now considered to be an atherosclerotic risk factor and predicts future cardiovascular disease risk in diabetic patients, in elderly patients, as well as in the general population. It has been implicated as an independent risk factor for cardiovascular disease and premature cardiovascular mortality for patients with type 1 and type 2 diabetes mellitus, as well as for patients with essential hypertension. A complete biochemical understanding of the mechanisms by which hyperglycemia causes vascular functional and structural changes associated with the diabetic milieu still eludes us. In recent years, the numerous biochemical and metabolic pathways postulated to have a causal role in the pathogenesis of diabetic vascular disease have been distilled into several unifying hypotheses. The role of chronic hyperglycemia in the development of diabetic microvascular complications and in neuropathy has been clearly established. However, the biochemical or cellular links between elevated blood glucose levels, and the vascular lesions remain

  6. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  7. Vaccination-related shoulder dysfunction.

    Science.gov (United States)

    Bodor, Marko; Montalvo, Enoch

    2007-01-08

    We present two cases of shoulder pain and weakness following influenza and pneumococcal vaccine injections provided high into the deltoid muscle. Based on ultrasound measurements, we hypothesize that vaccine injected into the subdeltoid bursa caused a periarticular inflammatory response, subacromial bursitis, bicipital tendonitis and adhesive capsulitis. Resolution of symptoms followed corticosteroid injections to the subacromial space, bicipital tendon sheath and glenohumeral joint, followed by physical therapy. We conclude that the upper third of the deltoid muscle should not be used for vaccine injections, and the diagnosis of vaccination-related shoulder dysfunction should be considered in patients presenting with shoulder pain following a vaccination.

  8. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  9. Multiple sclerosis and sexual dysfunction

    Institute of Scientific and Technical Information of China (English)

    Zhen-Ni Guo; Si-Yuan He; Hong-Liang Zhang; Jiang Wu; Yi Yang

    2012-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system characterized by episodic and progressive neurologic dysfunction resulting from inflammatory and autoimmune reactions.The underlying pathogenesis of MS remains largely unclear.However,it is currently accepted as a T cell-mediated autoimmune disease.Among other clinical manifestations,sexual dysfunction (SD) is a painful but still underreported and underdiagnosed symptom of the disorder.SD in MS patients may result from a complex set of conditions and may be associated with multiple anatomic,physiologic,biologic,medical and psychological factors.SD arises primarily from lesions affecting the neural pathways involved in physiologic function.In addition,psychological factors,the side effects of medications and physical symptoms such as fatigue,muscular weakness,menstrual changes,pain and concerns about bladder and bowel incontinence may also be involved.Since MS primarily affects young people,SD secondary to MS may have a great impact on quality of life.Thus,maintaining a healthy sexual life with MS is an important priority.The treatment of SD requires multidisciplinary teamwork and cooperation among specialists,individual patients,partners and the society.

  10. Mitochondrial dysfunction in heart failure.

    Science.gov (United States)

    Rosca, Mariana G; Hoppel, Charles L

    2013-09-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.

  11. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  12. Mitochondrial dysfunction in cancer chemoresistance.

    Science.gov (United States)

    Guaragnella, Nicoletta; Giannattasio, Sergio; Moro, Loredana

    2014-11-01

    Mitochondrial dysfunction has been associated with cancer development and progression. Recent evidences suggest that pathogenic mutations or depletion of the mitochondrial genome can contribute to development of chemoresistance in malignant tumors. In this review we will describe the current knowledge on the role of mitochondrial dysfunction in the development of chemoresistance in cancer. We will also discuss the significance of this research topic in the context of development of more effective, targeted therapeutic modalities and diagnostic strategies for cancer patients, with a particular focus on the potential use of PARP inhibitors in cancer patients displaying mitochondrial DNA mutations. We will discuss recent studies highlighting the importance of the cross-talk between the tumor microenvironment and mitochondrial functionality in determining selective response to certain chemotherapeutic drugs. Finally, owing to the similarities between cancer and yeast cell metabolism, we will point out the use of yeast as a model system to study cancer-related genes and for anti-cancer drugs screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Successful treatment of severe burn patients with multiple organ dysfunction syndrome:A case rep ort

    Institute of Scientific and Technical Information of China (English)

    Lingfeng Wang ∗; Yongdong Li; Xiyuan Xu; Ji Chen; Weiqing Wang; Zaiqing Huang; Lihua Zhang

    2014-01-01

    Multiple organ dysfunction syndrome is the presence of altered organ function of two or more organ systems in acute ill patients with severe trauma, burn, shock and infection. In this case, the patient with burn area amounted to 95%and the third-degree burn was up to 90%. He underwent gastrointestinal tract, blood clotting, lung, brain, heart, liver dysfunction, and cardiac arrest for 30 minutes during the courses of treatment, and was discharged from the hospital after 108 days on the basis of comprehensive treatment and repeated skin grafting.

  14. Apraxia and Motor Dysfunction in Corticobasal Syndrome

    OpenAIRE

    Burrell, James R.; Michael Hornberger; Steve Vucic; Kiernan, Matthew C.; Hodges, John R.

    2014-01-01

    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impai...

  15. The treatment of autonomic dysfunction in tetanus

    Directory of Open Access Journals (Sweden)

    T van den Heever

    2017-07-01

    Full Text Available We report a case of generalised tetanus in a 50-year-old female patient after sustaining a wound to her right lower leg. She developed autonomic dysfunction, which included labile hypertension alternating with hypotension and sweating. The autonomic dysfunction was treated successfully with a combination of morphine sulphate infusion, magnesium sulphate, and clonidine. She also received adrenaline and phenylephrine infusions as needed for hypotension. We then discuss the pathophysiology, clinical features and treatment options of autonomic dysfunction.

  16. Multiple system atrophy and cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Sen-yang LANG

    2016-06-01

    Full Text Available As the survival of patients with multiple system atrophy (MSA is prolonged, patients may present cognitive dysfunction or even dementia in addition to autonomic dysfunction, damage of extrapyramidal system and cerebellar ataxia. This article made a brief summary on the research progress of MSA combined with cognitive dysfunction reported at home and abroad. DOI: 10.3969/j.issn.1672-6731.2016.06.003

  17. Temporal Processing Dysfunction in Schizophrenia

    Science.gov (United States)

    Carroll, Christine A.; Boggs, Jennifer; O'Donnell, Brian F.; Shekhar, Anantha; Hetrick, William P.

    2008-01-01

    Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the…

  18. Temporal Processing Dysfunction in Schizophrenia

    Science.gov (United States)

    Carroll, Christine A.; Boggs, Jennifer; O'Donnell, Brian F.; Shekhar, Anantha; Hetrick, William P.

    2008-01-01

    Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the…

  19. Developing interventions for cancer-related cognitive dysfunction in childhood cancer survivors.

    Science.gov (United States)

    Castellino, Sharon M; Ullrich, Nicole J; Whelen, Megan J; Lange, Beverly J

    2014-08-01

    Survivors of childhood cancer frequently experience cancer-related cognitive dysfunction, commonly months to years after treatment for pediatric brain tumors, acute lymphoblastic leukemia (ALL), or tumors involving the head and neck. Risk factors for cancer-related cognitive dysfunction include young age at diagnosis, treatment with cranial irradiation, use of parenteral or intrathecal methotrexate, female sex, and pre-existing comorbidities. Limiting use and reducing doses and volume of cranial irradiation while intensifying chemotherapy have improved survival and reduced the severity of cognitive dysfunction, especially in leukemia. Nonetheless, problems in core functional domains of attention, processing speed, working memory and visual-motor integration continue to compromise quality of life and performance. We review the epidemiology, pathophysiology and assessment of cancer-related cognitive dysfunction, the impact of treatment changes for prevention, and the broad strategies for educational and pharmacological interventions to remediate established cognitive dysfunction following childhood cancer. The increased years of life saved after childhood cancer warrants continued study toward the prevention and remediation of cancer-related cognitive dysfunction, using uniform assessments anchored in functional outcomes.

  20. Intestinal dysfunction associated with acute thoracolumbar fractures.

    Science.gov (United States)

    Peschiera, J L; Beerman, S P

    1990-03-01

    The frequency of intestinal dysfunction, particularly intestinal ileus, among patients with acute thoracolumbar fractures and no neurologic compromise was assessed. We reviewed the medical records of 70 patients who met specific criteria. Only four (6%) of these patients developed intestinal dysfunction, manifested by vomiting, abdominal distention, diminished bowel sounds, or an intestinal ileus documented by an abdominal roentgenogram. Conservative initial nutritional management of the patients did not reduce the incidence of intestinal dysfunction. This study suggests that patients with acute thoracolumbar fractures and no neurologic compromise are not at substantial risk of intestinal dysfunction and that nasogastric suction and restriction of oral intake are unnecessary in the initial management of these patients.

  1. The relationship between depression and erectile dysfunction.

    Science.gov (United States)

    Seidman, S N; Roose, S P

    2000-06-01

    Normal sexual function is a biopsychosocial process; sexual dysfunction almost always has organic and psychologic components, and it requires multidisciplinary, goal-directed evaluation and treatment. Factors such as aging, declining testosterone levels, medical illness, certain medications, and comorbid depressive illness can contribute to sexual dysfunction. Erectile dysfunction (ED) is the most common male sexual dysfunction encountered in the clinical setting. Comorbidity between ED and depressive illness is high, but the causal relationship is unclear, and likely bidirectional. In this article, we review the existing literature on the relationship between depression and ED.

  2. HIV, opiates, and enteric neuron dysfunction.

    Science.gov (United States)

    Galligan, J J

    2015-04-01

    Human immune deficient virus (HIV) is an immunosuppressive virus that targets CD4(+) T-lymphocytes. HIV infections cause increased susceptibility to opportunistic infections and cancer. HIV infection can also alter central nervous system (CNS) function causing cognitive impairment. HIV does not infect neurons but it does infect astrocytes and microglia in the CNS. HIV can also infect enteric glia initiating an intestinal inflammatory response which causes enteric neural injury and gut dysfunction. Part of the inflammatory response is HIV induced production of proteins including, Transactivator of transcription (Tat) which contribute to neuronal injury after release from HIV infected glial cells. A risk factor for HIV infection is intravenous drug use with contaminated needles and chronic opiate use can exacerbate neural injury in the nervous system. While most research focuses on the actions of Tat and other HIV related proteins and opiates on the brain, recent data indicate that Tat can cause intestinal inflammation and disruption of enteric neuron function, including alteration of Na(+) channel activity and action potential generation. A paper published in this issue of Neurogastroenterology and Motility extends these findings by identifying an interaction between Tat and morphine on enteric neuron Na(+) channels and on intestinal motility in vivo using a Tat expressing transgenic mouse model. These new data show that Tat protein can enhance the inhibitory actions of morphine on action potential generation and propulsive motility. These findings are important to our understanding of how HIV causes diarrhea in infected patients and for the use of opioid drugs to treat HIV-induced diarrhea.

  3. Inside the Spiral of Dysfunction: The Personal Consequences of Working for a Dysfunctional Leader

    Science.gov (United States)

    Shuck, Brad; Rose, Kevin; Bergman, Matt

    2015-01-01

    Dysfunctional leaders suffocate others with coercive power and ego, are unpredictable, and often lack self-awareness about their dysfunction. Dysfunctional leaders are incredibly difficult to work with and can cause a series of cascading personal consequences for employees who work with them. This Perspectives in Human Resource Development essay…

  4. Diabetes and sexual dysfunction: current perspectives

    Directory of Open Access Journals (Sweden)

    Maiorino MI

    2014-03-01

    Full Text Available Maria Ida Maiorino,1 Giuseppe Bellastella,1 Katherine Esposito2 1Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Second University of Naples, Naples, Italy; 2Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy Abstract: Diabetes mellitus is one of the most common chronic diseases in nearly all countries. It has been associated with sexual dysfunction, both in males and in females. Diabetes is an established risk factor for sexual dysfunction in men, as a threefold increased risk of erectile dysfunction was documented in diabetic men, as compared with nondiabetic men. Among women, evidence regarding the association between diabetes and sexual dysfunction are less conclusive, although most studies have reported a higher prevalence of female sexual dysfunction in diabetic women as compared with nondiabetic women. Female sexual function appears to be more related to social and psychological components than to the physiological consequence of diabetes. Hyperglycemia, which is a main determinant of vascular and microvascular diabetic complications, may participate in the pathogenetic mechanisms of sexual dysfunction in diabetes. Moreover, diabetic people may present several clinical conditions, including hypertension, overweight and obesity, metabolic syndrome, cigarette smoking, and atherogenic dyslipidemia, which are themselves risk factors for sexual dysfunction, both in men and in women. The adoption of healthy lifestyles may reduce insulin resistance, endothelial dysfunction, and oxidative stress – all of which are desirable achievements in diabetic patients. Improved well-being may further contribute to reduce and prevent sexual dysfunction in both sexes. Keywords: diabetes mellitus, diabetes complications, erectile dysfunction, female sexual dysfunction, lifestyle changes

  5. Environmental Enteric Dysfunction in Children.

    Science.gov (United States)

    Syed, Sana; Ali, Asad; Duggan, Christopher

    2016-07-01

    Diarrheal diseases are a major cause of childhood death in resource-poor countries, killing approximately 760,000 children younger than 5 years each year. Although deaths due to diarrhea have declined dramatically, high rates of stunting and malnutrition have persisted. Environmental enteric dysfunction (EED) is a subclinical condition caused by constant fecal-oral contamination with resultant intestinal inflammation and villous blunting. These histological changes were first described in the 1960s, but the clinical effect of EED is only just being recognized in the context of failure of nutritional interventions and oral vaccines in resource-poor countries. We review the existing literature regarding the underlying causes of and potential interventions for EED in children, highlighting the epidemiology, clinical and histologic classification of the entity, and discussing novel biomarkers and possible therapies. Future research priorities are also discussed.

  6. Muscle dysfunction in male hypogonadism.

    Science.gov (United States)

    Chauhan, A K; Katiyar, B C; Misra, S; Thacker, A K; Singh, N K

    1986-05-01

    Twenty-eight consecutive male patients with primary and secondary hypogonadism (14 each) were evaluated clinically and electrophysiologically for muscle dysfunction. Although generalised muscle weakness was initially reported by only 9 patients, on direct questioning, it was recorded in 19. Objective weakness was found in 13 patients and it involved both the proximal and distal limb muscles. Quantitative electromyography showed evidence of myopathy in the proximal muscle in 25 patients, i.e., reduced MUP duration and amplitude with increased polyphasia in the deltoid and the gluteus maximus. There were no denervation potentials. None of the patients showed clinical neuropathy or NCV abnormalities. Thus, the profile of muscle involvement in hypogonadism closely simulates limb-girdle muscular dystrophy and other endocrine myopathies. The incidence of muscle involvement was higher in secondary hypogonadism. Diminished androgens in primary hypogonadism and diminished growth hormone in the secondary hypogonadism are probably responsible for the myopathy.

  7. Animal models of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Snehlata V Gajbhiye

    2015-01-01

    Full Text Available Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were "ED and experimental models," "ED and nervous stimulation," "ED and cavernous nerve stimulation," "ED and central stimulation," "ED and diabetes mellitus," "ED and ageing," "ED and hypercholesteremia," "ED and Peyronie′s disease," "radiation induced ED," "telemetric recording," "ED and mating test" and "ED and non-contact erection test."

  8. Flibanserin for female sexual dysfunction.

    Science.gov (United States)

    Reviriego, C

    2014-08-01

    Hypoactive sexual desire disorder (HSDD) is the most commonly described form of female sexual dysfunction. There is currently no pharmacological therapy approved to treat HSDD, and therefore, there is an unmet medical need for the development of efficacious treatment alternatives. Flibanserin is a novel, non-hormonal drug for the treatment of HSDD in pre- and postmenopausal women, although the application submitted to the U.S. Food and Drug Administration by Sprout Pharmaceuticals is only for premenopausal women. Flibanserin works by correcting an imbalance of the levels of the neurotransmitters that affect sexual desire. More specifically, flibanserin increases dopamine and norepinephrine, both responsible for sexual excitement, and decreases serotonin, responsible for sexual inhibition. Clinically, flibanserin has exhibited some encouraging results in terms of its ability to increase the frequency of satisfying sexual events, and the intensity of sexual desire. However, adverse events such as dizziness, nausea, fatigue and somnolence, typical of a centrally acting drug, are also frequently related to flibanserin treatment.

  9. Coronary microvascular dysfunction: an update

    Science.gov (United States)

    Crea, Filippo; Camici, Paolo G.; Bairey Merz, Cathleen Noel

    2014-01-01

    Many patients undergoing coronary angiography because of chest pain syndromes, believed to be indicative of obstructive atherosclerosis of the epicardial coronary arteries, are found to have normal angiograms. In the past two decades, a number of studies have reported that abnormalities in the function and structure of the coronary microcirculation may occur in patients without obstructive atherosclerosis, but with risk factors or with myocardial diseases as well as in patients with obstructive atherosclerosis; furthermore, coronary microvascular dysfunction (CMD) can be iatrogenic. In some instances, CMD represents an epiphenomenon, whereas in others it is an important marker of risk or may even contribute to the pathogenesis of cardiovascular and myocardial diseases, thus becoming a therapeutic target. This review article provides an update on the clinical relevance of CMD in different clinical settings and also the implications for therapy. PMID:24366916

  10. Ambulatory anaesthesia and cognitive dysfunction

    DEFF Research Database (Denmark)

    Rasmussen, Lars S; Steinmetz, Jacob

    2015-01-01

    serious adverse outcomes, hence difficult to obtain sound scientific evidence for avoiding complications. RECENT FINDINGS: Few studies have assessed recovery of cognitive function after ambulatory surgery, but it seems that both propofol and modern volatile anaesthetics are rational choices for general...... anaesthesia in the outpatient setting. Cognitive complications such as delirium and postoperative cognitive dysfunction are less frequent in ambulatory surgery than with hospitalization. SUMMARY: The elderly are especially susceptible to adverse effects of the hospital environment such as immobilisation......, sleep deprivation, unfamiliar surroundings, and medication errors. Enhanced recovery programmes (fast-track regimens) may allow earlier discharge which is probably beneficial for the elderly. Frailty is becoming an increasingly important concept that needs to be clinically considered in elderly patients...

  11. Thyroid dysfunction in infertile women

    Directory of Open Access Journals (Sweden)

    S G Perminova

    2011-12-01

    Full Text Available Objective. To study the rate and structure of thyroid diseases in infertile women and to asses their reproductive system depending upon the thyroid pathology. Subjects and methods. The study was based on the results of screening of T status of 496 women with infertility (main group and 80 fertile women (control group. Traditional methods of diagnosis of infertility were used along with special methods of investigation including assessment of function and structure of T (TTH, fT4, fT3, AT-TPO, AT-rTTH, ultrasound examination of T, thin-niddle aspirational biopsy, scintigraphy of T. A complex evaluation of the reproductive system status in infertile women was done depending on the type of T pathology. Results. Infertile women were found to suffer from thyroid dysfunction 3.8 times as more often as fertile ones (48% and 12.5%, p <0.05. Its structure included mainly AT-TPO carrier phenomenon in combination with ultrasound markers of thyroid autoimmunity (24%, hypothyroidism following thyroid autoimmunity (9.4% demonstrating itself as clinical (0.8%, subclinical (8.6%, and euthyroid (7.8% goiters. The portion of women with infertility and hyperthyroidism was small (0.6%. An association of thyroid autoimmunity with idiopathic infertility, endometriosis, endocrine infertility was found. Conclusion. It is necessary to perform a screening assessment of the function and structure of T in infertile women within diagnostic search for the reasons of infertility and in-time correction of the revealed thyroid dysfunction.

  12. Test Performance Related Dysfunctional Beliefs

    Directory of Open Access Journals (Sweden)

    Recep TÜTÜNCÜ

    2012-11-01

    Full Text Available Objective: Examinations by using tests are very frequently used in educational settings and successful studying before the examinations is a complex matter to deal with. In order to understand the determinants of success in exams better, we need to take into account not only emotional and motivational, but also cognitive aspects of the participants such as dysfunctional beliefs. Our aim is to present the relationship between candidates’ characteristics and distorted beliefs/schemata just before an examination. Method: The subjects of the study were 30 female and 30 male physicians who were about to take the medical specialization exam (MSE in Turkey. Dysfunctional Attitude Scale (DAS and Young Schema Questionnaire Short Form (YSQ-SF were applied to the subjects. The statistical analysis was done using the F test, Mann-Whitney, Kruskal-Wallis, chi-square test and spearman’s correlation test. Results: It was shown that some of the DAS and YSQ-SF scores were significantly higher in female gender, in the group who could not pass the exam, who had repetitive examinations, who had their first try taking an examination and who were unemployed at the time of the examination. Conclusion: Our findings indicate that candidates seeking help before MSE examination could be referred for cognitive therapy or counseling even they do not have any psychiatric diagnosis due to clinically significant cognitive distortion. Measurement and treatment of cognitive distortions that have negative impact on MSE performance may improve the cost-effectiveness and mental well being of the young doctors.

  13. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  14. Cognitive rehabilitation in children with acquired brain injuries

    OpenAIRE

    Hagberg-van't Hooft, Ingrid

    2005-01-01

    Deficits in attention, memory and executive functions are the most common cognitive dysfunctions after acquired brain injuries (ABI) and may have a major negative influence on academic and social adjustment. Neuropsychological measures can assess these dysfunctions and shortcomings in academic and social life, but there is a great need for new efficacious cognitive treatment programmes. The main aims of this thesis were to evaluate the direct and maintained effects of a ...

  15. Serum L-arginine and dimethylarginine levels in migraine patients with brain white matter lesions

    DEFF Research Database (Denmark)

    Erdélyi-Bótor, Szilvia; Komáromy, Hedvig; Kamson, David Olayinka;

    2017-01-01

    BACKGROUND/AIM: Migraine is a risk factor for the formation of silent brain white matter lesions (WMLs) that are possibly ischemic in nature. Although dysfunction of the L-arginine/nitric oxide (NO) pathway has been associated with oxidative stress and endothelial dysfunction in migraine, its rol...

  16. Understanding taste dysfunction in patients with cancer.

    Science.gov (United States)

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  17. Olfactory dysfunction in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Zou YM

    2016-04-01

    Full Text Available Yong-ming Zou, Da Lu, Li-ping Liu, Hui-hong Zhang, Yu-ying Zhou Department of Neurology, Tianjin Huanhu Hospital, Tianjin, People’s Republic of China Abstract: Alzheimer’s disease (AD is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. Keywords: olfactory dysfunction, Alzheimer’s disease, olfactory testing, progress

  18. Endothelial Dysfunction in Renal Failure: Current Update.

    Science.gov (United States)

    Radenkovic, Miroslav; Stojanovic, Marko; Prostran, Milica

    2016-01-01

    Endothelial dysfunction is principally characterized by impaired endothelium- dependent transduction mechanisms related to vascular relaxation, as an outcome of decreased release of endothelium-derived relaxing factors, mainly nitric oxide, as well as augmented oxidative stress, increased inflammation and predominance of vascular action produced by endothelium-derived contracting factors. Current data strongly suggest that pathological development of different types of kidney impairment with further progression to renal failure includes notable vascular changes associated with endothelial dysfunction. In accordance, this scientific field represents an advancing area of investigation, involving different biomarkers of endothelial dysfunction linked to renal impairment, as well as clinical findings with new information that can provide a more comprehensive understanding of the role of endothelial dysfunction in kidney disease. With regards to quoted facts, the aim of this article was to review the latest data related to endothelial dysfunction and renal failure by selection of relevant articles released from 2010 to 2015.

  19. Diastolic dysfunction in the critically ill patient.

    Science.gov (United States)

    Suárez, J C; López, P; Mancebo, J; Zapata, L

    2016-11-01

    Left ventricular diastolic dysfunction is a common finding in critically ill patients. It is characterized by a progressive deterioration of the relaxation and the compliance of the left ventricle. Two-dimensional and Doppler echocardiography is a cornerstone in its diagnosis. Acute pulmonary edema associated with hypertensive crisis is the most frequent presentation of diastolic dysfunction critically ill patients. Myocardial ischemia, sepsis and weaning failure from mechanical ventilation also may be associated with diastolic dysfunction. The treatment is based on the reduction of pulmonary congestion and left ventricular filling pressures. Some studies have found a prognostic role of diastolic dysfunction in some diseases such as sepsis. The present review aims to analyze thoroughly the echocardiographic diagnosis and the most frequent scenarios in critically ill patients in whom diastolic dysfunction plays a key role. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  20. Attachment, borderline personality, and romantic relationship dysfunction.

    Science.gov (United States)

    Hill, Jonathan; Stepp, Stephanie D; Wan, Ming Wai; Hope, Holly; Morse, Jennifer Q; Steele, Miriam; Steele, Howard; Pilkonis, Paul A

    2011-12-01

    Previous studies have implicated attachment and disturbances in romantic relationships as important indicators for Borderline Personality Disorder (BPD). The current research extends our current knowledge by examining the specific associations among attachment, romantic relationship dysfunction, and BPD, above and beyond the contribution of emotional distress and nonromantic interpersonal functioning in two distinct samples. Study 1 comprised a community sample of women (N = 58) aged 25-36. Study 2 consisted of a psychiatric sample (N = 138) aged 21-60. Results from both Study 1 and Study 2 demonstrated that (1) attachment was specifically related to BPD symptoms and romantic dysfunction, (2) BPD symptoms were specifically associated with romantic dysfunction, and (3) the association between attachment and romantic dysfunction was statistically mediated by BPD symptoms. The findings support specific associations among attachment, BPD symptoms, and romantic dysfunction.