WorldWideScience

Sample records for hydrocarbons nature relative

  1. Natural hydrocarbon gases in Canada: the resource base

    International Nuclear Information System (INIS)

    Osadetz, K.G.

    1997-01-01

    The Geological Survey of Canada (GSC) has an ongoing national hydrocarbon resource assessment project which examines, characterizes and quantifies the hydrocarbon resource potential of Canada. In this paper the distribution, characteristics and sizes of conventional and unconventional natural gas resources in Canada are summarized. Four topics were addressed: (1) the origins of conventional and unconventional natural hydrocarbon gases in Canada, (2) the resource assessment techniques used at the GSC, with emphasis on predicting undiscovered reserves, (3) the setting, distribution and size of the conventional natural gas endowment of Canada in a geographic and geological context, and (4) the indications of unconventional natural gas resource endowment in Canada. Conventional in-place natural gas resources for Canada was estimated at 26.8 trillion cubic metres of which 54 per cent comes from the Western Canada Sedimentary Basin. The national inventory of unconventional in-place gas resource is 3,460 trillion cubic metres. At current rates of production, the expected life expectancy for the in-place conventional natural gas resource base was estimated to be about 150 years. 1 tab., 9 figs

  2. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  3. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil.

    Science.gov (United States)

    Medeiros, Patricia Matheus; Bícego, Márcia Caruso; Castelao, Renato Menezes; Del Rosso, Clarissa; Fillmann, Gilberto; Zamboni, Ademilson Josemar

    2005-01-01

    The Patos Lagoon Estuary, southern Brazil, is an area of environmental interest not only because of tourism, but also because of the presence of the second major port of Brazil, with the related industrial and shipping activities. Thus, potential hydrocarbon pollution was examined in this study. Sediment samples were collected at 10 sites in the estuary, extracted, and analyzed by GC-FID and GC-MS for composition and concentration of the following organic geochemical markers: normal and isoprenoid alkanes, petroleum biomarkers, linear alkylbenzenes (LABs), and polycyclic aromatic hydrocarbons (PAHs). The total concentrations varied from 1.1 to 129.6 microg g(-1) for aliphatic hydrocarbons, from 17.8 to 4510.6 ng g(-1) for petroleum biomarkers, from 3.2 to 1601.9 ng g(-1) for LABs, and from 37.7 to 11,779.9 ng g(-1) for PAHs. Natural hydrocarbons were mainly derived from planktonic inputs due to a usual development of blooms in the estuary. Terrestrial plant wax compounds prevailed at sites located far from Rio Grande City and subject to stronger currents. Anthropogenic hydrocarbons are related to combustion/pyrolysis processes of fossil fuel, release of unburned oil products and domestic/industrial waste outfalls. Anthropogenic hydrocarbon inputs were more apparent at sites associated with industrial discharges (petroleum distributor and refinery), shipping activities (dry docking), and sewage outfalls (sewage). The overall concentrations of anthropogenic hydrocarbons revealed moderate to high hydrocarbon pollution in the study area.

  4. Natural and anthropogenic hydrocarbons in the White sea ecosystem

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.; Bogunov, A.

    2006-01-01

    An investigation of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH) concentrations in the White Sea was presented. The study was conducted to determine natural and anthropogenic hydrocarbon (HC) concentrations in order to aid in future zoning plans. Hydrocarbons were extracted from samples of aerosols, ice, water, particulate matter, phyto- and zooplankton, and bottom sediments. Results of the study suggested that HC concentrations in aerosols above the White Sea were lower than in marine aerosols above the southeastern Atlantic and lower than Alkane concentrations in aerosols in the Mediterranean Sea. A study of PAH behaviour in Northern Dvina estuaries showed that the submicron fractions contained light polyarenes. Particulate matter collected in sedimentation traps was enriched in phenanthrene, fluoranthene, and pyrene. Aliphatic HC enrichment was due to the presence of phytoplankton and other microorganisms. Between 54 per cent and 85 per cent of initial organic matter was consumed during diagenesis in the bottom sediments, indicating a high rate of HC transformation. It was suggested that the majority of oil HC transported with river water is precipitated. Fluoranthene was the dominant PAH in the study, and was assumed to be caused by natural transformation of PAH composition during distant atmospheric transport. Pyrogenic contamination of the bottom sediments was attributed to an aluminium plant. It was concluded that the detection of significant amounts of HC is not direct evidence of their anthropogenic origins. 31 refs., 3 tabs., 7 figs

  5. Natural gas treatment: Simultaneous water and hydrocarbon-dew point-control

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T. (Solvay Catalysts GmbH, Hannover (Germany)); Rennemann, D. (Solvay Catalysts GmbH, Hannover (Germany)); Schulz, T. (Solvay Catalysts GmbH, Hannover (Germany))

    1993-10-01

    Natural gas is a multicomponent mixture of hydrocarbons. The condensation behavior of such mixtures is different from single component systems. The so-called retrograde behavior leads to the observations that saturated vapor (dew point curve) and saturated liquid curve (bubble point curve) are not identical. Between both is a region of saturated phases which even can exist above the critical point. Following this behaviour it is possible that condensation might occur at pressure decrease or at temperature increase, respectively. This phenomenon is undesired in natural gas pipeline networks. Selective removal of higher hydrocarbons by the means of adsorption can change the phase behavior in such a way that condensation does not occur at temperatures and pressures specified for gas distribution. (orig.)

  6. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil

    International Nuclear Information System (INIS)

    Serrano, Antonio; Gallego, Mercedes; Gonzalez, Jose Luis; Tejada, Manuel

    2008-01-01

    A diesel fuel spill at a concentration of 1 L m -2 soil was simulated on a 12 m 2 plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. - The effect of aliphatic hydrocarbons contamination on soil quality was monitored over a period of 400 days after a Diesel fuel spill

  7. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  8. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D; Hoffman, T [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1996-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  9. Natural elimination of volatile halogenated hydrocarbons from the environment

    Energy Technology Data Exchange (ETDEWEB)

    Harress, H.M.; Grathwohl, P.; Torunski, H.

    1987-01-01

    Recently carried out field investigations of groundwater contaminations with volatile halogenated hydrocarbons have shown evidence of natural elimination of these hazardous substances. This elimination effects is rare and observed in connection with special geological conditions. With regard to some contaminated sites, the following mechanisms for this behaviour are discussed: 1. Stripping by naturally ascending gases. 2. Sorption on soil organic matter. 3. Biodegradation. The so far compiled knowledge allowed to develop further research programmes, which are pursued in various projects.

  10. Differentiation of naturally-occurring vs. artificial hydrocarbons in a landfill groundwater investigation

    International Nuclear Information System (INIS)

    Beaver, J.L.; Hartness, J.A.; Breeding, L.B.; Buchanan, D.M.

    1994-01-01

    Interpretation of groundwater sampling data at a large municipal/industrial landfill indicates contamination by both artificial and naturally-occurring hydrocarbons. Site hydrogeology consists of three different water bearing zones. The uppermost (shallow) aquifer is an unconfined unit consisting of silt, clay, and sand deposits. An intermediate depth semiconfined aquifer underlies the unconfined unit, and consists of a chert rubble zone and the upper portion of a fractured and solution-enhanced limestone formation. A regionally-extensive organic-rich shale underlies the semiconfined aquifer and separates it from the deep confined aquifer, which also consists of limestone. Groundwater investigations at the landfill have detected chlorinated and non-chlorinated hydrocarbons in the different aquifer intervals. Chlorinated hydrocarbons detected include tetrachloroethene, dichloroethene, and vinyl chloride and occur almost exclusively in the shallow aquifer. Aromatic hydrocarbons detected include benzene, toluene, ethylbenzene, and xylene (BTEX) and-occur in the intermediate and deep aquifers. The landfill was originally interpreted as the source of the contaminants. The observation of free-phase liquid hydrocarbons in the intermediate aquifer at the site, and high dissolved BTEX levels in the deep and intermediate aquifers upgradient of the landfill suggest that the aromatics were derived from a source other than the landfill. A potential source of BTEX contamination may be abandoned (pre-1930) natural gas wells located near the landfill. An additional BTEX source may be the organic-rich shale formation (a documented petroleum source rock)

  11. The influence of dissolved petroleum hydrocarbon residues on natural phytoplankton biomass

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.

    on phytoplankton biomass varies depending on the nature rather than the quantity of petroleum hydrocarbons present. Culture studies with unialgal Nitzschia sp. in seawater collected from selected stations in the study area as well as in artificial seawater spiked...

  12. Cost-effective management of hydrocarbon plumes using monitored natural attenuation: case studies

    International Nuclear Information System (INIS)

    Borg, G.A.

    2000-01-01

    Engineered remediation of hydrocarbon plumes in groundwater at operating service station sites is expensive, disruptive, does not improve the management of risks to receptors, and does not provide certainty of outcome. When plumes are delineated, potential receptors identified and primary sources removed, monitored natural attenuation (MINA) is a cost-effective remediation option. If available, hydrocarbon concentration data from successive groundwater monitoring events showing that a plume is stable or reducing will provide enough primary evidence that natural attenuation is occurring. Where potential receptors will not be impacted in the short to medium term, MNA provides the same level of risk management as engineered remediation with much less cost, no disruption to the service station business, and with a certainty of meeting the objectives of the remediation

  13. Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah.

    Science.gov (United States)

    Lyman, Seth N; Watkins, Cody; Jones, Colleen P; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan

    2017-10-17

    We measured fluxes of methane, nonmethane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m -2 h -1 . Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6 × 10 -4 (1.6 × 10 -4 , 1.6 × 10 -3 )% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.

  14. Observations on sediment sources in the Lower Athabasca River basin: implications of natural hydrocarbons inputs from oil sands deposits

    International Nuclear Information System (INIS)

    Conly, F.M.

    1999-01-01

    Government, industry and public concern exists over the environmental consequences of the development of the oil sand deposits in the McMurray Formation in the lower Athabasca River basin, Alberta. The impact of this development is unclear and is undergoing investigation. Investigations to date have focussed on the nature of the effluent produced by the extraction industry and its effect on biotic systems, and on the spatial distribution of hydrocarbon contaminants associated with deposited fluvial sediments. Natural hydrocarbon outcrops may be responsible for observed biomarker responses in areas not exposed to industrial effluent. Given this source of hydrocarbons and doubt concerning its environmental impact, it is difficult to ascertain the impact of oil extraction activities within a fluvial system. A study was conducted to determine the nature and extent of natural hydrocarbon releases within the context of the sediment regime of the lower Athabasca River basin. A description is included of observations from the field and a context is set up for assessing sediment-bound hydrocarbon contaminants in the lower Athabasca River basin. Abstract only included

  15. Isotope reversals in hydrocarbon gases of natural shale systems and well head production data

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U.; Schloemer, S.; Stiller, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Marquardt, D. [Rijksuniversiteit Utrecht (Netherlands)

    2013-08-01

    Relationships between gas geochemical signatures and the thermal maturity of source rocks containing aquatic organic matter are based on on pyrolysis experiments and have been successfully used in conventional hydrocarbon exploration since long. We demonstrate how these models can be applied to the evaluation of unconventional shale resources. For this purpose hydrocarbon gases have been extracted from low and high mature source rocks (type II kerogens) using laboratory desorption techniques. We determined the molecular composition of the gases as well as the carbon isotope ratios of methane to propane. In the extracted gases we observe an increase of {sup 13}C content in methane with increasing dry gas ratio (C1/{Sigma}C1-6). The carbon isotope ratios of ethane and propane initially increase with increasing dryness but start to become isotopically lighter above a dry gas ratio of 0.8. We show that oil-to-gas cracking explains the observed gas geochemical data, and that mixing between gases from different processes is a key factor to describe natural hydrocarbon systems of shales. However, data from published case studies using well head gases which show 'isotope roll-over' effects indicate that the isotopic reversal observed in well head samples deviate from those observed in natural shale systems in a fundamental way. We show that isotope reversals related to well head gases are best explained by an additional isotope fractionation effect induced through hydraulic fracturing and gas migration from the shale to the well head. Although, this induced isotope fractionation is an artifact which obscures isotopic information of natural systems to a large extend, we suggest a simple classification scheme which allows distinguishing between hot and cool spot areas using well head or mud line gas data. (orig.)

  16. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  17. Natural attenuation of hydrocarbon polluted soils in Mexico

    International Nuclear Information System (INIS)

    Fernandez-Linares, L.; Rojas-Avelizapa, N.; Roldan-Carrillo, T.; Islas-Ramirez, M.

    2009-01-01

    Crude oil and hydrocarbon by-proudcts are the most common pollutants in Mexico. In the last years, the two terms, contamination and remediation have being re-defined; also, based on both the scientific advancement and the human risk, the sustentability of remediation technologies and the definition of cleaning levels has been taking place. In this context, the Natural Attenuation of soils is a viable and low cost remediation choice, defined as the degradation of organic compounds without artificial stimulation, through microbial activity including physical processes, such as volatilization, dilution, sorption, and hydraulic dispersion. (Author)

  18. Natural and anthropogenic hydrocarbons in the Antarctic pack ice

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2004-01-01

    A field experiment was conducted near the Russian Antarctic stations in May, 2001 in the Pridz Bay and coastal part of the Davies Sea to examine the content of dissolved and suspended forms of aliphatic hydrocarbons in melted snow samples, pack ice and ice cores. The site included clean control areas and polluted test areas. A spill was performed by covering the bare ice surface with marine diesel fuel. The different physical characteristics of clean and polluted ice were measured. This included radiation balance, reflected solar radiation, integral albedo radiation, surface temperature, seawater temperature, salinity at depth, and ice salinity. The study showed that accumulation of natural and anthropogenic hydrocarbon took place in the ice-water barrier zone, mostly in suspended form. It was concluded that for oil spills in pack Antarctic ice, the mechanism of filtration due to convection-diffusion plays an important role in the transformation of diesel fuel. 14 refs., 2 tabs., 2 figs

  19. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  20. Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site

    International Nuclear Information System (INIS)

    Bazylinski, D.A.; Wirsen, C.O.; Jannasch, H.W.

    1989-01-01

    The Guaymas Basin (Gulf of California; depth, 2,000 m) is a site of hydrothermal activity in which petroliferous materials is formed by thermal alteration of deposited planktonic and terrestrial organic matter. We investigated certain components of these naturally occurring hydrocarbons as potential carbon sources for a specific microflora at these deep-sea vent sites. Respiratory conversion of [1- 14 C]hexadecane and [1(4,5,8)- 14 C]naphthalene to 14 CO 2 was observed at 4 degree C and 25 degree C, and some was observed at 55 degree C, but none was observed at 80 degree C. Bacterial isolates were capable of growing on both substrates as the sole carbon source. All isolates were aerobic and mesophilic with respect to growth on hydrocarbons but also grew at low temperatures (4 to 5 degree C). These results correlate well with previous geochemical analyses, indicating microbial hydrocarbon degradation, and show that at least some of the thermally produced hydrocarbons at Guaymas Basin are significant carbon sources to vent microbiota

  1. Could the Health Decline of Prehistoric California Indians be Related to Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) from Natural Bitumen?

    Science.gov (United States)

    Sholts, Sabrina B.; Erlandson, Jon M.; Gjerdrum, Thor; Westerholm, Roger

    2011-01-01

    Background: The negative health effects of polycyclic aromatic hydrocarbons (PAHs) are well established for modern human populations but have so far not been studied in prehistoric contexts. PAHs are the main component of fossil bitumen, a naturally occurring material used by past societies such as the Chumash Indians in California as an adhesive, as a waterproofing agent, and for medicinal purposes. The rich archaeological and ethnohistoric record of the coastal Chumash suggests that they were exposed to multiple uptake pathways of bituminous PAHs, including direct contact, fume inhalation, and oral uptake from contaminated water and seafood. Objectives: We investigated the possibility that PAHs from natural bitumen compromised the health of the prehistoric Chumash Indians in California. Conclusions: Exposure of the ancient Chumash Indians to toxic PAHs appears to have gradually increased across a period of 7,500 years because of an increased use of bitumen in the Chumash technology, together with a dietary shift toward PAH-contaminated marine food. Skeletal analysis indicates a concurrent population health decline that may be related to PAH uptake. However, establishing such a connection is virtually impossible without knowing the actual exposure levels experienced by these populations. Future methodological research may provide techniques for determining PAH levels in ancient skeletal material, which would open new avenues for research on the health of prehistoric populations and on the long-term effects of human PAH exposure. PMID:21596651

  2. Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site.

    Science.gov (United States)

    Blain, Natalie P; Helgason, Bobbi L; Germida, James J

    2017-06-01

    The Bitumount Provincial Historic site is the location of 2 of the world's first oil-extracting and -refining operations. Despite hydrocarbon levels ranging from 330 to 24 700 mg·(kg soil) -1 , plants have been able to recolonize the site through means of natural revegetation. This study was designed to achieve a better understanding of the plant-root-associated bacterial partnerships occurring within naturally revegetated hydrocarbon-contaminated soils. Root endophytic bacterial communities were characterized from representative plant species throughout the site by both high-throughput sequencing and culturing techniques. Population abundance of rhizosphere and root endosphere bacteria was significantly influenced (p hydrocarbon-degrading genes (CYP153 and alkB) were significantly affected (p < 0.05) by the interaction of plant species and sampling location. Our findings suggest that some of the bacterial communities detected are known to exhibit plant growth promotion characteristics.

  3. Natural Attenuation of Hydrocarbon and Trichloroethylene Vapors in the Subsurface Environment at Plattsburgh Air Force Base

    National Research Council Canada - National Science Library

    Ostendorf, David

    1997-01-01

    .... UMASS tested the hypothesis that natural attenuation processes, stimulated by injected air, reduce emissions of hydrocarbons and trichloroethylene vapors to acceptable air quality standards at the site. Drs...

  4. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Nelson, Lee O [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  5. Comparison of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenylethers, and organochlorine pesticides in Pacific sanddab (Citharichthys sordidus) from offshore oil platforms and natural reefs along the California coast

    Science.gov (United States)

    Gale, Robert W.; Tanner, Michael J.; Love, Milton S.; Nishimoto, Mary M.; Schroeder, Donna M.

    2013-01-01

    Recently, the relative exposure of Pacific sanddab (Citharichthys sordidus) to polycyclic aromatic hydrocarbons (PAHs) at oil-production platforms was reported, indicating negligible exposure to PAHs and no discernible differences between exposures at platforms and nearby natural areas sites. In this report, the potential for chronic PAH exposure in fish is reported, by measurement of recalcitrant, higher molecular weight PAHs in tissues of fish previously investigated for PAH metabolites in bile. A total of 34 PAHs (20 PAHs, 11 alkylated PAHs, and 3 polycyclic aromatic thiophenes) were targeted. In addition, legacy contaminants—polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs),—and current contaminants, polybrominated diphenylethers (PBDEs) linked to endocrine disruption, were measured by gas chromatography with electron-capture or mass spectrometric detection, to form a more complete picture of the contaminant-related status of fishes at oil production platforms in the Southern California Bight. No hydrocarbon profiles or unresolved complex hydrocarbon background were found in fish from platforms and from natural areas, and concentrations of aliphatics were low less than 100 nanograms per gram (ng/g) per component]. Total-PAH concentrations in fish ranged from 15 to 37 ng/g at natural areas and from 8.7 to 22 ng/g at platforms. Profiles of PAHs were similar at all natural and platform sites, consisting mainly of naphthalene and methylnaphthalenes, phenanthrene, fluoranthene, and pyrene. Total-PCB concentrations (excluding non-ortho-chloro-substituted congeners) in fish were low, ranging from 7 to 22 ng/g at natural areas and from 10 to 35 ng/g at platforms. About 50 percent of the total-PCBs at all sites consisted of 11 congeners: 153 > 138/163/164 > 110 > 118 > 15 > 99 > 187 > 149 > 180. Most OCPs, except dichlorodiphenyltrichloroethane (DDT)-related compounds, were not detectable or were at concentrations of less than 1 ng/g in fish. p

  6. Natural radioactivity in mining and hydrocarbon extraction industry. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Testa, C; Desideri, D; Meli, M A; Roselli, C [General Chemistry Institute, Urbino University, 61029 Urbino, (Italy)

    1996-03-01

    Water and soil natural radioactivity is a well known phenomenon which can produced by variable concentrations of uranium and thorium series radionuclides. Generally, the relevant radiological hazard is not important; however, some radiation protection problems can occur in particular industrial processes involving the treatment of large quantities of materials. In this case a high concentration of radioactive substance (NORM: nationally occurring radioactive materials) can be found at special points of the plant, in the manufacture by-products and in the waters. Sometimes the national radioactivity concentration can be so high to raise radiation protection problems which can be assimilated in a sense to the ones faced in the presence, handling, and disposal of non-sealed radioactive sources. In this paper the following mining and hydrocarbon extraction plants were particularly taken into account: (a) industries using zircon sands to produce refractory and ceramic materials; (b) phosphorites manufacture to prepare phosphoric acids, plasters and fertilizers (c) hydrocarbon extraction and treatment processes where formations of low specific activity (L.S.A.) scales and sludges are produced. The relevant results and the possible radiation protection risks for the professional exposed staff will be reported. A special emphasis will be given to some african phosphorites (boucraa, togo, morocco), and L.S.A. scales (tunisia, congo, Egypt). 4 figs., 5 tabs.

  7. Natural radioactivity in mining and hydrocarbon extraction industry. Vol. 1

    International Nuclear Information System (INIS)

    Testa, C.; Desideri, D.; Meli, M.A.; Roselli, C.

    1996-01-01

    Water and soil natural radioactivity is a well known phenomenon which can produced by variable concentrations of uranium and thorium series radionuclides. Generally, the relevant radiological hazard is not important; however, some radiation protection problems can occur in particular industrial processes involving the treatment of large quantities of materials. In this case a high concentration of radioactive substance (NORM: nationally occurring radioactive materials) can be found at special points of the plant, in the manufacture by-products and in the waters. Sometimes the national radioactivity concentration can be so high to raise radiation protection problems which can be assimilated in a sense to the ones faced in the presence, handling, and disposal of non-sealed radioactive sources. In this paper the following mining and hydrocarbon extraction plants were particularly taken into account: a) industries using zircon sands to produce refractory and ceramic materials; b) phosphorites manufacture to prepare phosphoric acids, plasters and fertilizers c) hydrocarbon extraction and treatment processes where formations of low specific activity (L.S.A.) scales and sludges are produced. The relevant results and the possible radiation protection risks for the professional exposed staff will be reported. A special emphasis will be given to some african phosphorites (boucraa, togo, morocco), and L.S.A. scales (tunisia, congo, Egypt). 4 figs., 5 tabs

  8. Recovering low-boiling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1934-10-03

    A process is described for the recovery of low-boiling hydrocarbons of the nature of benzine through treatment of liquid carbonaceous materials with hydrogen under pressure at raised temperature, suitably in the presence of catalysts. Middle oils (practically saturated with hydrogen) or higher boiling oils at a temperature above 500/sup 0/ (with or without the addition of hydrogen) containing cyclic hydrocarbons not saturated with hydrogen are changed into low boiling hydrocarbons of the nature of benzine. The cracking takes place under strongly hydrogenating conditions (with the use of a strongly active hydrogenating catalyst or high pressure) at temperatures below 500/sup 0/. If necessary, the constituents boiling below 200/sup 0/ can be reconverted into cyclic hydrocarbons partially saturated with hydrogen. (BLM)

  9. Guidelines for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and Subsidence Hazards

    Science.gov (United States)

    2009-01-01

    These guidelines provide recommendations for the assessment of new and existing natural gas and liquid hydrocarbon pipelines subjected to potential ground displacements resulting from landslides and subsidence. The process of defining landslide and s...

  10. Russia and China hydrocarbon relations. A building block toward international hydrocarbon regulation?

    International Nuclear Information System (INIS)

    Locatelli, Catherine; Abbas, Mehdi; Rossiaud, Sylvain

    2015-12-01

    This article is a first step of a research agenda on international hydrocarbon regulations. With regards to both: i) the new wealth and power equilibrium in the international political economy and ii) the new political economy of carbon that is emerging from The Paris agreement on Climate changes, this research agenda aims at analysing the changing national structures of governance and the ways these changes lead to international, bilateral, pluri-lateral or multilateral hydrocarbon regulation

  11. Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea

    Science.gov (United States)

    Yang, J.; Lee, K.; Bae, G.

    2004-12-01

    In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

  12. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  13. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. May 2006

    International Nuclear Information System (INIS)

    2006-05-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands of research permits; list of demands under instruction), seismic survey activity, production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  14. Transience and persistence of natural hydrocarbon seepage in Mississippi Canyon, Gulf of Mexico

    Science.gov (United States)

    Garcia-Pineda, Oscar; MacDonald, Ian; Silva, Mauricio; Shedd, William; Daneshgar Asl, Samira; Schumaker, Bonny

    2016-07-01

    Analysis of the magnitude of oil discharged from natural hydrocarbon seeps can improve understanding of the carbon cycle and the Gulf of Mexico (GOM) ecosystem. With use of a large archive of remote sensing data, in combination with geophysical and multibeam data, we identified, mapped, and characterized natural hydrocarbon seeps in the Macondo prospect region near the wreck site of the drill-rig Deepwater Horizon (DWH). Satellite image processing and the cluster analysis revealed locations of previously undetected seep zones. Including duplicate detections, a total of 562 individual gas plumes were also observed in multibeam surveys. In total, SAR imagery confirmed 52 oil-producing seep zones in the study area. In almost all cases gas plumes were associated with oil-producing seep zones. The cluster of seeps in the vicinity of lease block MC302 appeared to host the most persistent and prolific oil vents. Oil slicks and gas plumes observed over the DWH site were consistent with discharges of residual oil from the wreckage. In contrast with highly persistent oil seeps observed in the Green Canyon and Garden Banks lease areas, the seeps in the vicinity of Macondo Prospect were intermittent. The difference in the number of seeps and the quantity of surface oil detected in Green Canyon was almost two orders of magnitude greater than in Mississippi Canyon.

  15. Natural hydrocarbon seeps observation with underwater gliders and UV fluorescence sensor

    Science.gov (United States)

    Rochet, V.

    2016-02-01

    Hydrocarbons may leak to the near-surface from subsurface accumulations, from mature source rock, or by buoyancy along major cross-strata routes. The presence of migrating near-surface hydrocarbons can provide strong evidence for the presence of a working petroleum system, as well as valuable information on source, maturity, and migration pathways. Detection and characterization of hydrocarbons in the water column may then help to de-risk hydrocarbon plays at a very preliminary stage of an exploration program. In order to detect hydrocarbons in the water column, an underwater glider survey was conducted in an offshore frontier area. Driven by buoyancy variation, underwater gliders enable collecting data autonomously along the water column for weeks to months. Underwater gliders are regularly piloted from shore by satellite telemetry and do not require a surface supervising vessel resulting in substantial operational costs savings. The data compiled, over 700m depth of the water column, included temperature, salinity, pressure, dissolved oxygen and hydrocarbon components (phenanthrene and naphthalene) measured by "MINIFLUO" sensors to particularly target representative crude oil compounds Two gliders were deployed at sea, one from coast in shallow water and the other one offshore on the survey area. Both accurately squared the survey area following pre-defined lines and cross lines. Data files were transmitted by satellite telemetry in near real time during the performance of the mission for real time observations and appropriate re-positioning of the gliders. Using rechargeable underwater gliders increased reliability reducing the risk of leakage and associated logistics during operation at sea. Despite strong evidences of seabed seepages such as pockmarks, faults, etc, over the area of interest, no hydrocarbon indices were detected in the water column, which was confirmed later by seabed sample analysis. The use of glider platforms for hydrocarbon detection has

  16. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).

    Science.gov (United States)

    Marić, Nenad; Matić, Ivan; Papić, Petar; Beškoski, Vladimir P; Ilić, Mila; Gojgić-Cvijović, Gordana; Miletić, Srđan; Nikić, Zoran; Vrvić, Miroslav M

    2018-01-20

    The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O 2 , NO 3 - , Mn, Fe, SO 4 2- , HCO 3 - ), δ 13 C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ 13 C values of DIC ranged from - 15.83 to - 2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes-the activity of biodegradation mechanisms in field conditions.

  17. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Cherrier, J.

    2005-01-01

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO 2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO 2 was used as the indicator of hydrocarbon degradation and (delta) 13 C analysis of the resultant CO 2 was used to evaluate the source of the respired CO 2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time

  18. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. February 2006

    International Nuclear Information System (INIS)

    2006-02-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands and allocations of research permits), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  19. Process of distilling heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1929-12-03

    This invention has for its object the distillation of heavy liquid hydrocarbons for the purpose of obtaining lighter hydrocarbons stable and immediately salable for fuels in combustion motors. The process is distinguished by the fact that the heavy hydrocarbon is distilled by means of heating to a temperature in keeping with the nature of the material to be treated up to 350/sup 0/C under pressure or without pressure the distillation being carried out on catalysts containing successively nickel, copper, and iron (3 parts of nickel, 1 part of copper, and 1 part of iron), the vapors produced by this distillation being exposed in turn to the action of catalysts of the same nature and in the same proportion.

  20. Environmental hazards from natural hydrocarbons seepage: Integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species

    International Nuclear Information System (INIS)

    Benedetti, Maura; Gorbi, Stefania; Fattorini, Daniele; D'Errico, Giuseppe; Piva, Francesco; Pacitti, Davide; Regoli, Francesco

    2014-01-01

    Potential effects of natural emissions of hydrocarbons in the marine environment have been poorly investigated. In this study, a multidisciplinary weight of evidence (WOE) study was carried out on a shallow seepage, integrating sediment chemistry with bioavailability and onset of subcellular responses (biomarkers) in caged eels and mussels. Results from different lines of evidence (LOEs) were elaborated within a quantitative WOE model which, based on logical flowcharts, provide synthetic indices of hazard for each LOE, before their integration in a quantitative risk assessment. Evaluations of different LOEs were not always in accordance and their overall elaboration summarized as Moderate the risk in the seepage area. This study provided first evidence of biological effects in organisms exposed to natural hydrocarbon emissions, confirming the limit of chemical characterization as stand-alone criteria for environmental quality assessment and the utility of multidisciplinary investigations to determine the good environmental status as required by Environmental Directives. -- Highlights: • Hazards from natural seepage were evaluated through a multidisciplinary WOE study. • Caged eels and mussels were chosen as bioindicator organisms. • Evaluations obtained from various LOEs were not always in accordance. • Biological effects of natural hydrocarbons release were demonstrated. • WOE approach could discriminate different levels of hazard in low impacted conditions. -- A multidisciplinary WOE study in a shallow coastal seepage summarized a Moderate level of risk based on integration of sediment chemistry with biological effects in caged organisms

  1. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  2. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. September 2006

    International Nuclear Information System (INIS)

    2006-09-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands of research permits; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  3. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. April 2006

    International Nuclear Information System (INIS)

    2006-04-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands of research permit, allocations of concession), geophysical survey activity, drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  4. 1992 Progress report on sediment-related aspects of northern hydrocarbon development

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Mackenzie Delta is ecologically important for its outflow of warm, sediment-laden water to the Arctic Ocean. Lack of knowledge and clear understanding of delta processes raise serious concerns over potential impacts from development of local hydrocarbon resources on Delta ecosystems. The Northern Oil and Gas Program is sponsoring research on Mackenzie Delta hydrology and hydraulics, sediment flux, contaminant levels, and other issues relevant to impacts of hydrocarbon development. A compendium of five reports on the sediment-related aspects of this research is presented. The topics of the reports are: suspended sediment sampling; sedimentation measurement; channel stability; hydraulic and morphologic surveys; and sediment station data. A separate abstract has been prepared for each of the five reports.

  5. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. June 2006

    International Nuclear Information System (INIS)

    2006-06-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  6. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Science.gov (United States)

    2010-02-26

    ... Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures AGENCY... Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was prepared by the National... 27, 2010. The listening session on the draft document for PAH mixtures will be held on April 7, 2010...

  7. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  8. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  9. Hydrocarbon Reserves: Abundance or Scarcity

    International Nuclear Information System (INIS)

    2005-01-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  10. Nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst GaSbNiPOx (1:3:1.5:1 atomic ratios of the elements) was studied by comparing the rate of this reaction at 550/sup 0/C and 5Vertical Bar3< by vol propane/6Vertical Bar3< ammonia/18.6Vertical Bar3< oxygen/70.4Vertical Bar3< helium reactant mixture with that of isobutane ammoxidation to methacrylonitrile under the same conditions, at low (Vertical Bar3; 20Vertical Bar3<) conversions that prevent secondary oxidation of the products. Both the over-all hydrocarbon conversion rate and that of nitrile formation were higher for propane, suggesting that the reactions proceed via the respective carbanions (probably primary carbanions), rather than carbocations or uncharged radicals.

  11. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas.

    Science.gov (United States)

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R

    2016-10-04

    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h -1 . Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h -1 . While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  12. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char.

    Science.gov (United States)

    Nguyen, Thanh H; Cho, Hyun-Hee; Poster, Dianne L; Ball, William P

    2007-02-15

    Sorption isotherms for five aromatic hydrocarbons were obtained with a natural wood char (NC1) and its residue after solvent extraction (ENC1). Substantial isotherm nonlinearity was observed in all cases. ENC1 showed higher BET surface area, higher nitrogen-accessible micropore volume, and lower mass of extractable organic chemicals, including quantifiable polycyclic aromatic hydrocarbons (PAHs),while the two chars showed identical surface oxygen/ carbon (O/C) ratio. For two chlorinated benzenes that normally condense as liquids at the temperatures used, sorption isotherms with NC1 and ENC1 were found to be statistically identical. For the solid-phase compounds (1,4-dichlorobenzene (1,4-DCB) and two PAHs), sorption was statistically higher with ENC1, thus demonstrating sorption effects due to both (1) authigenic organic content in the sorbentand (2)the sorbate's condensed state. Polanyi-based isotherm modeling, pore size measurements, and comparisons with activated carbon showthe relative importance of adsorptive pore filling and help explain results. With both chars, maximum sorption increased in the order of decreasing molecular diameter: phenanthrene < naphthalene < 1,2-dichlorobenzene/1,2,4-trichlorobenzene < 1,4-DCB. Comparison of 1,4- and 1,2-DCB shows that the critical molecular diameter was apparently more important than the condensed state, suggesting that 1,4-DCB sorbed in the liquid state for ENC1.

  13. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands and allocations of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins); underground storage facilities (allocation and extension of concessions). (J.S.)

  14. Atenuación natural y remediación inducida en suelos contaminados con hidrocarburos Natural attenuation and induced remediation in hydrocarbon polluted soils

    Directory of Open Access Journals (Sweden)

    Romina Romaniuk

    2007-12-01

    Full Text Available Los hidrocarburos derivados del petróleo constituyen la principal fuente de energía para la humanidad y son, a su vez, importantes contaminantes ambientales. En esta experiencia, se estimó y comparó la tasa de descomposición de dos tipos de hidrocarburos (gasoil y aceite de carter por medio de las técnicas de atenuación natural y de la incorporación de un producto comercial específico en un suelo franco extraído del horizonte A de un Argiudol típico. Simultáneamente se evaluó el efecto de dichas prácticas tecnológicas sobre algunas variables edáficas. Los tratamientos fueron: [suelo sin contaminante testigo], [suelo + gasoil] [suelo + aceite de carter], [suelo + gasoil + producto], [suelo + aceite de carter + producto] y [suelo + producto]. La toma de muestra se realizó en la siguiente serie de tiempo [0;15; 30; 60; y 180 días]. La tasa de degradación de los hidrocarburos presentes en el gasoil y aceite de carter por la técnica de atenuación natural fue más lenta y menos efectiva que la obtenida al incorporar el producto comercial, alcanzando en este caso los valores finales más bajos de hidrocarburos totales de petróleo. Entre las variables edáficas, el carbono oxidable y la respiración de la biomasa del suelo mostraron los mayores valores medios en los tratamientos de suelo contaminado. La incorporación del producto comercial produjo una disminución significativa en dichos valores, un aumento en la conductividad eléctrica, pero no influyó sobre el pH y el fósforo extractable del suelo.The petroleum derived hydrocarbons represent the main energy source for the humanity and they are in turn, an important environmental polluting source. In this experience it was estimated and compared the rate of decomposition of two hydrocarbons (diesel and crankcase oil, by natural attenuation, and with the incorporation of a specific commercial product in a Typic Argiudoll. The effect of these practices was also evaluated on some

  15. Benthic Bioprocessing of Hydrocarbons in the Natural Deep-Sea Environment

    Science.gov (United States)

    Sultan, N.; MacDonald, I. R.; Bohrmann, G.; Schubotz, F.; Johansen, C.

    2017-12-01

    Science is accustomed to quantifying ecosystem processes that consume carbon from primary production as it drifts downward through the photic zone. Comparably efficient processes operate in reverse, as living and non-living components sequester and re-mineralize a large fraction of hydrocarbons that migrate out of traps and reservoirs to the seafloor interface. Together, they comprise a sink that prevents these hydrocarbons from escaping upward into the water column. Although quantification of the local or regional magnitude of this sink poses steep challenges, we can make progress by classifying and mapping the biological communities and geological intrusions that are generated from hydrocarbons in the deep sea. Gulf of Mexico examples discussed in this presentation extend across a broad range of depths (550, 1200, and 3200 m) and include major differences in hydrocarbon composition (from gas to liquid oil to asphaltene-dominated solids). Formation of gas hydrate is a dynamic process in each depth zone. At upper depths, gas hydrate is unstable at a timescale of months to years and serves as a substrate for microbial consortia and mussel symbiosis. At extreme depths, gas hydrate supports large and dense tubeworm colonies that conserve the material from decomposition. Timescales for biogeochemical weathering of oil and asphalts are decadal or longer, as shown by sequential alterations and changing biological colonization. Understanding these processes is crucial as we prepare for wider and deeper energy exploitation in the Gulf of Mexico and beyond.

  16. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  17. Natural attenuation in contaminated soils with hydrocarbons; Atenuacion natural en suelos contaminados con hidrocarburos

    Energy Technology Data Exchange (ETDEWEB)

    Corona Ramirez, L; Iturbide Arguelles, R [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2005-06-01

    A contaminated soil experiment was performed using simples from a refinery, containing oil derivative hydrocarbons, specifically those with high concentrations of polyaromathic hydrocarbons (PAH). The testing consisted in 7 pans with 7 kg of soil, the preparation of 6 pans under specific conditions and one as a blank, the conditions were: water content (15 y 30%), addition a non-ionic surfactant. The process consisted in the daily aeration and water control of the samples. The PAH were analyzed: anthracene, benzo(a) pyrene, chrysene, phenanthrene and naphthalene. The results after 8 weeks showed a gradual degradation of PAH, indicating a better removal obtained when the water content was 30% with nutrients addition. [Spanish] Se realizo un experimento con suelo contaminado proveniente de una refineria, el cual contaba con hidrocarburos derivados de petroleo, especificamente con concentraciones elevadas de hidrocarburos poliaromaticos (HAP). El estudio consistio en preparar 7 cajones con 7 kg de suelo, cada uno con las siguientes condiciones: S1suelo contaminado con hidrocarburos y 15% de contenido de agua. S2 suelo contaminado con hidrocarburo y adicion de Nitrogeno y Fosforo (N y P) con 15% de contenido de agua. S3 suelo contaminado con hidrocarburo y adicion de N y P mas un surfactante no ionico, Emulgin W600, con 15% de contenido de agua. S4 igual a S1 pero con 30% de contenido de agua. S5 igual a S2, con 30% de contenido de agua. S6 igual S3 con 30% de contenido de agua. S7 suelo contaminado testigo, sin control de humedad y sin aireacion. La experimentacion consistio en airear el suelo diariamente y controlar el contenido de agua de manera que este fuera constante. Los resultados, indican que la mejor remocion se obtuvo para el contenido de agua de 30%, con adicion de nutrientes y surfactante. Los compuestos con mayor eficiencia de remocion para todas las opciones son naftaleno y antraceno. Por lo tanto, de acuerdo con los resultados, los compuestos

  18. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  19. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  20. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  1. Fractal nature of hydrocarbon deposits. 2. Spatial distribution

    International Nuclear Information System (INIS)

    Barton, C.C.; Schutter, T.A; Herring, P.R.; Thomas, W.J.; Scholz, C.H.

    1991-01-01

    Hydrocarbons are unevenly distributed within reservoirs and are found in patches whose size distribution is a fractal over a wide range of scales. The spatial distribution of the patches is also fractal and this can be used to constrain the design of drilling strategies also defined by a fractal dimension. Fractal distributions are scale independent and are characterized by a power-law scaling exponent termed the fractal dimension. The authors have performed fractal analyses on the spatial distribution of producing and showing wells combined and of dry wells in 1,600-mi 2 portions of the Denver and Powder River basins that were nearly completely drilled on quarter-mile square-grid spacings. They have limited their analyses to wells drilled to single stratigraphic intervals so that the map pattern revealed by drilling is representative of the spatial patchiness of hydrocarbons at depth. The fractal dimensions for the spatial patchiness of hydrocarbons in the two basins are 1.5 and 1.4, respectively. The fractal dimension for the pattern of all wells drilled is 1.8 for both basins, which suggests a drilling strategy with a fractal dimension significantly higher than the dimensions 1.5 and 1.4 sufficient to efficiently and economically explore these reservoirs. In fact, the fractal analysis reveals that the drilling strategy used in these basins approaches a fractal dimension of 2.0, which is equivalent to random drilling with no geologic input. Knowledge of the fractal dimension of a reservoir prior to drilling would provide a basis for selecting and a criterion for halting a drilling strategy for exploration whose fractal dimension closely matches that of the spatial fractal dimension of the reservoir, such a strategy should prove more efficient and economical than current practice

  2. Long-term Behavior of Hydrocarbon Production Curves

    Science.gov (United States)

    Lovell, A.; Karra, S.; O'Malley, D.; Viswanathan, H. S.; Srinivasan, G.

    2017-12-01

    Recovering hydrocarbons (such as natural gas) from naturally-occurring formations with low permeability has had a huge impact on the energy sector, however, recovery rates are low due to poor understanding of recovery and transport mechanisms [1]. The physical mechanisms that control the production of hydrocarbon are only partially understood. Calculations have shown that the short-term behavior in the peak of the production curve is understood to come from the free hydrocarbons in the fracture networks, but the long-term behavior of these curves is often underpredicted [2]. This behavior is thought to be due to small scale processes - such as matrix diffusion, desorption, and connectivity in the damage region around the large fracture network. In this work, we explore some of these small-scale processes using discrete fracture networks (DFN) and the toolkit dfnWorks [3], the matrix diffusion, size of the damage region, and distribution of free gas between the fracture networks and rock matrix. Individual and combined parameter spaces are explored, and comparisons of the resulting production curves are made to experimental site data from the Haynesville formation [4]. We find that matrix diffusion significantly controls the shape of the tail of the production curve, while the distribution of free gas impacts the relative magnitude of the peak to the tail. The height of the damage region has no effect on the shape of the tail. Understanding the constrains of the parameter space based on site data is the first step in rigorously quantifying the uncertainties coming from these types of systems, which can in turn optimize and improve hydrocarbon recovery. [1] C. McGlade, et. al., (2013) Methods of estimating shale gas resources - comparison, evaluation, and implications, Energy, 59, 116-125 [2] S. Karra, et. al., (2015) Effect of advective flow in fractures and matrix diffusion on natural gas production, Water Resources Research, 51(10), 8646-8657 [3] J.D. Hyman, et

  3. Method for depth referencing hydrocarbon gas shows on mud logs

    International Nuclear Information System (INIS)

    Dion, E.P.

    1986-01-01

    A method is described for identifying hydrocarbon formations surrounding a borehole, comprising the steps of: a. measuring hydrocarbon gas in the entrained formation cuttings obtained during drilling operations in which a drilling mud is continually circulated past a drill bit to carry the cuttings to the earth's surface, b. simultaneously measuring natural gamma radiation in the cuttings, c. identifying the depths at which the cuttings were obtained within the borehole, d. measuring natural gamma radiation within the borehole following completion of the drilling operations, e. correlating the natural gamma radiation measurements in steps (b) and (d), and f. identifying the depths within the borehole from which the entrained cuttings containing hydrocarbon gas were obtained during drilling operations when there is correlation between the natural gamma radiation measurements in steps (b) and (d)

  4. Conversion of associated natural gas to liquid hydrocarbons. Final report, June 1, 1995--January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) with it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.

  5. Aliphatic hydrocarbon and polycyclic aromatic hydrocarbon geochemistry of twelve major rivers in the Northwest Territories

    International Nuclear Information System (INIS)

    Backus, S.; Swyripa, M.; Peddle, J.; Jeffries, D.S.

    1995-01-01

    Suspended sediment and water samples collected from twelve major rivers in the Northwest Territories were analyzed for aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) to assess the sources and transport of hydrocarbons entering the Arctic Ocean. Three stations on the Mackenzie River and one station near the mouth of eleven other northern rivers were selected for sampling. Samples were collected on the Mackenzie River on four occasions to characterize spring, summer and fall flow conditions and once on the remaining eleven rivers during high flow conditions. The Mackenzie River is distinctively different then the other eleven rivers. Naturally occurring hydrocarbons predominate in the river. These hydrocarbons include biogenic alkanes, diagenic PAHs, petrogenic alkanes, and PAHs from oil seeps and/or bitumens. Anthropogenic inputs of PAHs are low as indicated by low concentrations of combustion PAHs. Alkyl PAH distributions indicate that a significant component of the lower molecular weight PAH fraction is petrogenic. The majority of the high molecular weight PAHs, together with the petrogenic PAHs have a principal source in the Mackenzie River

  6. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - January 2008 no.13

    International Nuclear Information System (INIS)

    2008-01-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  7. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - December 2007 no.12

    International Nuclear Information System (INIS)

    2007-01-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  8. Quantitative analysis of higher hydrocarbons in natural gas using coupled solid-phase extraction / supercritiacal fluid extraction with on-line GC analysis

    NARCIS (Netherlands)

    Janssen, J.G.M.; Cramers, C.A.M.G.; Meulen-Kuijk, van der L.; Smit, A.L.C.; Sandra, P.; Devos, G.

    1993-01-01

    Characterisation of natural gas with respect to the hydrocarbon content is a challenging analytical problem due to the extremely low concentrations and the complexity of the matrix. In this publication a method is described for fully on-line preconcentration and analysis of n-nonane and higher

  9. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  10. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  11. Production of hydrocarbons, especially ethylene

    Energy Technology Data Exchange (ETDEWEB)

    1952-01-17

    The invention has for its object a process for the production of gaseous nonsaturated hydrocarbons, particularly ethylene and aromatic hydrocarbons, by starting with hydrocarbon oils entirely of paraffinic nature or their fractions, which consists in putting the separated products in contact with solid inert material especially with porous nonmetallic inert material or of heavy metals or their alloys, maybe in a finely divided state or in the form, of pieces or chips, at a temperature above 500/sup 0/C, or better between 600 and 700/sup 0/C at a velocity per hour of 0.6 to 3.0, and preferably 0.75 to 1.5 parts per volume of products per each part of space volume of catalyst.

  12. Hydrocarbons (aliphatic and aromatic) in the snow-ice cover in the Arctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.; Kluvitkin, A.A.

    2002-01-01

    This paper presented the concentration and composition of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in snow and ice-infested waters in the France-Victoria trough in the northern Barents Sea and in the Mendeleev ridge in the Amerasian basin of the Arctic Ocean. Extreme conditions such as low temperatures, ice sheets and the polar nights render the arctic environment susceptible to oil spills. Hydrocarbons found in these northern seas experience significant transformations. In order to determine the sources, pathways and transformations of the pollutants, it is necessary to know their origin. Hydrocarbon distributions is determined mostly by natural hydrobiological and geochemical conditions. The regularity of migration is determined by natural factors such as formation and circulation of air and ice drift. There is evidence suggesting that the hydrocarbons come from pyrogenic sources. It was noted that hydrocarbons could be degraded even at low temperatures. 17 refs., 1 tab

  13. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  14. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  15. Demonstration of tools for evaluating the durability of natural attenuation of petroleum hydrocarbons in groundwater

    International Nuclear Information System (INIS)

    Gemoets, J.; Ceuster, T. de; Vandervelpen, B.; Gutschoven, K.

    2005-01-01

    The dominant process for natural attenuation of petroleum hydrocarbons such as BTEX or alkanes in groundwater is microbial oxidation. In many instances demonstration of natural attenuation is limited to historic trend analysis of pollutant concentrations and analyses of electron acceptors and their reduced forms as secondary evidence for NA. By doing so one can demonstrate that biodegradation processes are occurring naturally. However, this approach does not ensure that natural attenuation processes will continue to occur to the extent that is required to sustain control of the complete pollutant mass over a long time. A sufficient supply of naturally occurring oxidants (electron acceptors) is required to enable adequate microbial oxidation of hydrocarbons. Naturally occurring oxidants for microbial oxidation are oxygen, nitrate, ferric iron, manganese(IV), sulfate and carbon dioxide. At many sites iron(III) may be the most abundant electron acceptor, as it may be present in large quantities in the solid aquifer materials. However, only a fraction of it may be available for micro-organisms. Thus far this parameter is rarely analyzed during site investigation programs for MNA. Bio-available iron may also play an important role in the feasibility of complete microbial dehalogenation of chlorinated solvents. We will present results of a research project in which we have evaluated three methods for determining the quantity of bio-available ferric iron in solid aquifer material samples. These were mild acid extraction followed by spectrophotometry, redox titration with titanium(III)-EDTA and a commercially available enzymatic test kit (BAFeIII assay). The results will be compared, considering implications for practical implementation. The program is being carried out for two petrol station sites for which MNA has been applied as the groundwater remediation method. At each site three soil boring are performed across a depth trajectory below the groundwater table

  16. Demonstration of tools for evaluating the durability of natural attenuation of petroleum hydrocarbons in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gemoets, J.; Ceuster, T. de; Vandervelpen, B.; Gutschoven, K. [Haskoning Belgium (Belgium)

    2005-07-01

    The dominant process for natural attenuation of petroleum hydrocarbons such as BTEX or alkanes in groundwater is microbial oxidation. In many instances demonstration of natural attenuation is limited to historic trend analysis of pollutant concentrations and analyses of electron acceptors and their reduced forms as secondary evidence for NA. By doing so one can demonstrate that biodegradation processes are occurring naturally. However, this approach does not ensure that natural attenuation processes will continue to occur to the extent that is required to sustain control of the complete pollutant mass over a long time. A sufficient supply of naturally occurring oxidants (electron acceptors) is required to enable adequate microbial oxidation of hydrocarbons. Naturally occurring oxidants for microbial oxidation are oxygen, nitrate, ferric iron, manganese(IV), sulfate and carbon dioxide. At many sites iron(III) may be the most abundant electron acceptor, as it may be present in large quantities in the solid aquifer materials. However, only a fraction of it may be available for micro-organisms. Thus far this parameter is rarely analyzed during site investigation programs for MNA. Bio-available iron may also play an important role in the feasibility of complete microbial dehalogenation of chlorinated solvents. We will present results of a research project in which we have evaluated three methods for determining the quantity of bio-available ferric iron in solid aquifer material samples. These were mild acid extraction followed by spectrophotometry, redox titration with titanium(III)-EDTA and a commercially available enzymatic test kit (BAFeIII assay). The results will be compared, considering implications for practical implementation. The program is being carried out for two petrol station sites for which MNA has been applied as the groundwater remediation method. At each site three soil boring are performed across a depth trajectory below the groundwater table

  17. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  18. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - May 2007. No 5

    International Nuclear Information System (INIS)

    2007-01-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins), underground storage facilities (demands of concession extension). (J.S.)

  19. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  20. Bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?

    International Nuclear Information System (INIS)

    Visser, S.

    1999-01-01

    To determine if there is a relationship between biotreatability and ecotoxicity endpoints in a wide range of hydrocarbon-contaminated soils, including medium and heavy crude oil-contaminated flare pit wastes and lubrication oil contaminated soil, research was conducted. Each test material was analyzed for pH, water repellency, electrical conductivity, available N and P, total extractable hydrocarbons, oil and grease, and toxicity to seedling emergence, root elongation in barley, lettuce and canola, earthworm survival and luminescent bacteria (Microtox), prior to, and following three months of bioremediation in the laboratory. By monitoring soil respiration, progress of the bioremediation process and determination of a treatment endpoint were assessed. The time required to attain a treatment endpoint under laboratory conditions can range from 30 days to 100 days depending on the concentration of hydrocarbons and degree of weathering. Most flare pits are biotreatable, averaging a loss of 25-30% of hydrocarbons during bioremediation. Once a treatment endpoint is achieved, residual hydrocarbons contents almost always exceeds Alberta Tier I criteria for mineral oil and grease. As a result of bioremediation treatments, hydrophobicity is often reduced from severe to low. Many flare pit materials are still moderately to extremely toxic after reaching a treatment endpoint. (Abstract only)

  1. Identification of interstellar polysaccharides and related hydrocarbons

    International Nuclear Information System (INIS)

    Hoyle, F.; Olavesen, A.H.; Wickramasinghe, N.C.

    1978-01-01

    A discussion is presented on the infrared transmittance spectra of several polysaccharides that may be of interest as possible interstellar candidates. It is stated that a 2.5 to 15 μm spectrum computed from the author's measurements is remarkably close to that required to explain a wide range of astronomical data, except for two points. First the required relative opacity at the 3 μm absorption dip is a factor of about 1.5 lower than was found in laboratory measurements; this difference may arise from the presence of water in terrestrial polysaccharide samples. Secondly, in the 9.5 to 12 μm waveband an additional source of opacity appears to be necessary. Close agreement between the spectrum of this additional opacity and the absorption spectrum of propene, C 3 H 6 , points strongly to the presence of hydrocarbons of this type, which may be associated with polysaccharide grains in interstellar space. (U.K.)

  2. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  3. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

    DEFF Research Database (Denmark)

    Larsen, Sille Bendix; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAH) are regarded as environmental pollutants. A promising approach to reduce PAH pollution is based on the implementation of the natural potential of some microorganisms to utilize hydrocarbons. In this study Proteiniphilum acetatigenes was used for bioaugmentat...

  4. Constructed wetlands for treatment of dissolved phase hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B J; Ross, S D [Komex International, Calgary, AB (Canada); Gibson, D [Calgary Univ., AB (Canada); Hardisty, P E [Komex Clarke Bond, Bristol (United Kingdom)

    1999-01-01

    The use of constructed wetlands as an alternative to conventional treatment of condensate-contaminated groundwater was studied. In 1997 a pilot scale wetland was constructed and implemented at the Gulf Strachan Gas Processing Plant to determine its ability in treating extracted groundwater contaminated with natural gas condensates. This paper presented the results of hydrocarbon removal efficiency, hydrocarbon removal mechanisms, winter operation, and the effect of hydrocarbons on vegetation health. The inflow water to the wetland contains 15 to 20 mg/L of C[sub 5]-C[sub 10] hydrocarbons, including 50 per cent BTEX compounds. During the summer months, hydrocarbon removal efficiency was 100 per cent, but decreased to 60 and 30 per cent in the spring and late fall, respectively. The hydrocarbons not removed in the wetland were eventually removed along the outflow channel. Temperature was determined to be an important factor in the variable removal rates, particularly when there is no aeration. The main hydrocarbon removal mechanisms appear to be volatilization, biodegradation and dilution. At present, plant uptake is not a factor. 12 refs., 1 tab., 3 figs.

  5. Constructed wetlands for treatment of dissolved phase hydrocarbons

    International Nuclear Information System (INIS)

    Moore, B.J.; Ross, S.D.; Gibson, D.; Hardisty, P.E.

    1999-01-01

    The use of constructed wetlands as an alternative to conventional treatment of condensate-contaminated groundwater was studied. In 1997 a pilot scale wetland was constructed and implemented at the Gulf Strachan Gas Processing Plant to determine its ability in treating extracted groundwater contaminated with natural gas condensates. This paper presented the results of hydrocarbon removal efficiency, hydrocarbon removal mechanisms, winter operation, and the effect of hydrocarbons on vegetation health. The inflow water to the wetland contains 15 to 20 mg/L of C 5 -C 10 hydrocarbons, including 50 per cent BTEX compounds. During the summer months, hydrocarbon removal efficiency was 100 per cent, but decreased to 60 and 30 per cent in the spring and late fall, respectively. The hydrocarbons not removed in the wetland were eventually removed along the outflow channel. Temperature was determined to be an important factor in the variable removal rates, particularly when there is no aeration. The main hydrocarbon removal mechanisms appear to be volatilization, biodegradation and dilution. At present, plant uptake is not a factor. 12 refs., 1 tab., 3 figs

  6. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  7. Seawater-cultured Botryococcus braunii for efficient hydrocarbon extraction.

    Directory of Open Access Journals (Sweden)

    Kenichi Furuhashi

    Full Text Available As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.

  8. MANTLE SOURCES OF GENERATION OF HYDROCARBONS: GEOLOGY-PHYSICAL SIGNS AND FORECAST-SEARCHING CRITERIONS OF MAPPING; REGULARITY OF AN OIL-AND-GAS-BEARING CAPACITY AS UNLOADING REFLEX OF MANTLE HYDROCARBON-SYSTEMS IN THE CRUST OF THE EARTH

    OpenAIRE

    Тімурзіїв, А.І.

    2017-01-01

    In the conditions of the developed uncertainty concerning the nature of primary sources (donors) and the generation focal (reactionary chambers) of deep hydrocarbons, questions of the nature of donors and the sources of generation of deep hydrocarbons systems, the mechanism and ways of generation and in-source mobilization of hydrocarbons in the top mantle of the Earth and evacuation (vertical migration) of hydrocarbon-systems from the generation sources in the mantle of the Earth into the ac...

  9. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  10. The microbial nitrogen cycling potential in marine sediments is impacted by polyaromatic hydrocarbon pollution

    Directory of Open Access Journals (Sweden)

    Nicole M Scott

    2014-03-01

    Full Text Available During petroleum hydrocarbon exposure the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential, if the sediments are aerobic, within the surface layer of marine sediments resulting in anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  11. Reconnaissance survey for lightweight and carbon tetrachloride extractable hydrocarbons in the central and eastern basins of Lake Erie: September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Zapotosky, J.E.; White, W.S.

    1980-10-01

    A reconnaissance survey of the central and eastern basins of Lake Erie (22,240 km/sup 2/) was conducted from September 17 to 27, 1978. The survey provided baseline information on natural gas and oil losses from geologic formations, prior to any potential development of natural gas resources beneath the United States portion of the Lake. Lightweight hydrocarbons indicative of natural gas (methane, ethane, propane, isobutane, and n-butane) are introduced into the waters of Lake Erie by escape from geologic formations and by biological/photochemical processes. The geochemical exploration technique of hydrocarbon sniffing provided enough data to reveal significant distribution patterns, approximate concentrations, and potential sources. Twelve sites with elevated lightweight hydrocarbon concentrations had a composition similar to natural gas. In one area of natural gas input, data analysis suggested a potential negative effect of natural gas on phytoplanktonic metabolism (i.e., ethylene concentration). Samples taken for liquid hydrocarbon analysis (carbon tetrachloride extractable hydrocarbons) correlated best with biologically derived lightweight hydrocarbons.

  12. Canadian hydrocarbon transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This document provided an assessment of the Canadian hydrocarbon transportation system. In addition to regulating the construction and operation of Canada's 45,000 km of pipeline that cross international and provincial borders, Canada's National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. The ability of pipelines to delivery this energy is critical to the country's economic prosperity. The pipeline system includes large-diameter, cross-country, high-pressure natural gas pipelines, low-pressure crude oil and oil products pipelines and small-diameter pipelines. In order to assess the hydrocarbon transportation system, staff at the NEB collected data from pipeline companies and a range of publicly available sources. The Board also held discussions with members of the investment community regarding capital markets and emerging issues. The assessment focused largely on evaluating whether Canadians benefit from an efficient energy infrastructure and markets. The safety and environmental integrity of the pipeline system was also evaluated. The current adequacy of pipeline capacity was assessed based on price differentials compared with firm service tolls for major transportation paths; capacity utilization on pipelines; and, the degree of apportionment on major oil pipelines. The NEB concluded that the Canadian hydrocarbon transportation system is working effectively, with an adequate capacity in place on existing natural gas pipelines, but with a tight capacity on oil pipelines. It was noted that shippers continue to indicate that they are reasonably satisfied with the services provided by pipeline companies and that the NEB-regulated pipeline companies are financially stable. 14 refs, 11 tabs., 28 figs., 4 appendices

  13. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands

    International Nuclear Information System (INIS)

    Bizecki Robson, D.; Knight, J. D.; Farrell, R. E.; Germida, J. J.

    2004-01-01

    Phytoremediation, or the use of plants to degrade and contain soil contaminants is considered a cost-effective decontaminant for sites contaminated by spills in the oil and gas producing areas of Western Canada. The objective of this study was to determine if contamination by hydrocarbons changes soil properties, species composition, and species abundance when compared with uncontaminated plots, and to identify species and functional groups unique to contaminated sites that may be further screened for their hydrocarbon-degrading ability. In pursuit of these objectives the effect of contamination on coverage, litter and bare ground was examined, differences in species composition between contaminated and uncontaminated sites were assessed, and the ability to fix nitrogen, and form mycorrhiza, life form, pollination mode, seed dispersal and reproduction mode of each species was determined. Results showed less vegetation and litter cover in contaminated plots, and significantly higher soil carbon to nitrogen ratios. Species diversity was also lower on contaminated sites, although species richness was not significantly different. Self-pollinated species were significantly more common on contaminated sites. Five grasses and three forbs were identified as tolerant of hydrocarbon-contaminated soils, with two grasses -- Agropyron smithii, and Agropyron trachycaulum -- being the most promising for reclamation. The low vegetation cover on contaminated plots is attributed to high pH and carbon to nitrogen ratios, and low nitrogen and phosphorus that results from soil disturbance. High electrical conductivity is also considered to adversely affect vegetation and litter cover on contaminated sites. 54 refs., 3 tabs., 1 fig

  14. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Bizecki Robson, D.; Knight, J. D.; Farrell, R. E.; Germida, J. J. [University of Saskatchewan, Dept. of Soil Science, Saskatoon, SK (Canada)

    2004-01-01

    Phytoremediation, or the use of plants to degrade and contain soil contaminants is considered a cost-effective decontaminant for sites contaminated by spills in the oil and gas producing areas of Western Canada. The objective of this study was to determine if contamination by hydrocarbons changes soil properties, species composition, and species abundance when compared with uncontaminated plots, and to identify species and functional groups unique to contaminated sites that may be further screened for their hydrocarbon-degrading ability. In pursuit of these objectives the effect of contamination on coverage, litter and bare ground was examined, differences in species composition between contaminated and uncontaminated sites were assessed, and the ability to fix nitrogen, and form mycorrhiza, life form, pollination mode, seed dispersal and reproduction mode of each species was determined. Results showed less vegetation and litter cover in contaminated plots, and significantly higher soil carbon to nitrogen ratios. Species diversity was also lower on contaminated sites, although species richness was not significantly different. Self-pollinated species were significantly more common on contaminated sites. Five grasses and three forbs were identified as tolerant of hydrocarbon-contaminated soils, with two grasses -- Agropyron smithii, and Agropyron trachycaulum -- being the most promising for reclamation. The low vegetation cover on contaminated plots is attributed to high pH and carbon to nitrogen ratios, and low nitrogen and phosphorus that results from soil disturbance. High electrical conductivity is also considered to adversely affect vegetation and litter cover on contaminated sites. 54 refs., 3 tabs., 1 fig.

  15. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  17. Identifying future directions for subsurface hydrocarbon migration research

    Science.gov (United States)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  18. Volatile Hydrocarbon Analysis in Blood by Headspace Solid-Phase Microextraction: The Interpretation of VHC Patterns in Fire-Related Incidents.

    Science.gov (United States)

    Waters, Brian; Hara, Kenji; Ikematsu, Natsuki; Takayama, Mio; Kashiwagi, Masayuki; Matsusue, Aya; Kubo, Shin-Ichi

    2017-05-01

    A headspace solid-phase microextraction (HS-SPME) technique was used to quantitate the concentration of volatile hydrocarbons from the blood of cadavers by cryogenic gas chromatography-mass spectroscopy. A total of 24 compounds including aromatic and aliphatic volatile hydrocarbons were analyzed by this method. The analytes in the headspace of 0.1 g of blood mixed with 1.0 mL of distilled water plus 1 µL of an internal standard solution were adsorbed onto a 100-µm polydimethylsiloxane fiber at 0°C for 15 min, and measured using a GC-MS full scan method. The limit of quantitation for the analytes ranged from 6.8 to 10 ng per 1 g of blood. This method was applied to actual autopsy cases to quantitate the level of volatile hydrocarbons (VHCs) in the blood of cadavers who died in fire-related incidents. The patterns of the VHCs revealed the presence or absence of accelerants. Petroleum-based fuels such as gasoline and kerosene were differentiated. The detection of C8-C13 aliphatic hydrocarbons indicated the presence of kerosene; the detection of C3 alkylbenzenes in the absence of C8-C13 aliphatic hydrocarbons was indicative of gasoline; and elevated levels of styrene or benzene in the absence of C3/C4 alkylbenzenes and aliphatic hydrocarbons indicated a normal construction fire. This sensitive HS-SPME method could help aid the investigation of fire-related deaths by providing a simple pattern to use for the interpretation of VHCs in human blood. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Plasma-catalytic reforming of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya; Kolgan, V.V.; Iukhymenko, V.V.; Solomenko, O.V.; Fedirchyk, I.I.; Martysh, E.V.; Demchina, V.P.; Klochok, N.V.; Dragnev, S.V.

    2015-01-01

    The series of experiments studying the plasma-catalytic reforming of liquid hydrocarbons was carried out. The dynamic plasma-liquid system based on a low-power rotating gliding arc with solid electrodes was used for the investigation of liquid hydrocarbons reforming process. Conversion was done via partial oxidation. A part of oxidant flow was activated by the discharge. Synthesis-gas composition was analysed by means of mass-spectrometry and gas-chromatography. A standard boiler, which operates on natural gas and LPG, was used for the burning of synthesis-gas

  20. Triassic oils and related hydrocarbon kitchens in the Adriatic basin

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, L.; Demaison, G. (AGIP, Milan (Italy))

    1988-08-01

    Without exception, the oils from both the Abruzzi basin and Albanian foredeep are of lower Liassic to Upper Triassic origin. This is demonstrated by biological marker-based correlations between the oils and stratigraphically controlled, carbonate-rich source rocks. The biomarker studies also provided proof to conclude that many of the oils possess low API gravities and high sulfur contents because they are immature rather than biodegraded. Following the geochemical investigations, a computer-aided, basinwise maturation simulation of the hydrocarbon kitchens was carried out, with backstripping in geologic time. The simulations, performed with the Tissot-Espitalie kinetic model, used basin-specific kerogen activation energies obtained by the optimum method. These simulated values were calibrated with observed values in deep wells. Two characteristics diverge from normal petroleum basin situations (e.g., the North Sea basin): sulfur-rich kerogens in the source rocks, featuring relatively low activation energy distributions, and low geothermal gradients in the subsurface. The geographic outlines of simulated Triassic-lower Liassic hydrocarbon kitchens closely coincide with the zones of petroleum occurrence and production in the Adriatic basin. Furthermore, API gravities of the oils are broadly predicted by the mathematical simulations. This methodology has once again shown its ability to rationally high-grade the petroleum-rich sectors of sedimentary basin while identifying those areas where chances of success are extremely low regardless of the presence of structures.

  1. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  2. Compositional changes of aromatic steroid hydrocarbons in naturally weathered oil residues in the Egyptian western desert

    International Nuclear Information System (INIS)

    Barakat, A.O.; Qian, Y.; Kim, M.; Kennicutt, M.C. II

    2002-01-01

    Aromatic steranes are geochemical markers that can be used to study the maturation of organic matter of sediments and to correlate crude oils and source rocks. In this study, naturally weathered oil residues from an arid waste disposal site in Al-Alamein, Egypt, were analyzed for monoaromatic and triaromatic steranes to show the usefulness of biomarker compounds in assessing changes in chemical composition during the degradation of oil residues that have been released onto terrestrial environments. Gas chromatography and mass spectrometry were used to characterize the individual aromatic compounds. Results indicate that triaromatic sterane distributions are similar in oil residues with varying extents of weathering. The distribution correlated with a fresh crude oil sample from Western Desert-sourced oil. Molecular ratios of triaromatic sterane compounds were found to be suitable for source identification. The major changes in chemical compositions resulting from the weathering of the oil included the depletion of short chain mono- and tri-aromatic steranes in extremely weathered samples. The results of the triaromatic sterane distribution correspond with weathering classifications based on the analyses of saturated and aromatic hydrocarbons and the ratios of n-alkanes, polycyclic aromatic hydrocarbons, and saturate biomarker compounds. 15 refs., 3 tabs., 3 figs

  3. Historical polycyclic aromatic and petrogenic hydrocarbon loading in Northern Central Gulf of Mexico shelf sediments.

    Science.gov (United States)

    Overton, E B; Ashton, B M; Miles, M S

    2004-10-01

    The distribution of selected hydrocarbons within ten dated sediment cores taken from the Mississippi River Bight off coastal Louisiana suggests a chronic contaminant loading from several sources including the river itself, oil and gas exploration in the central Gulf of Mexico (GOM) shelf area, and natural geologic hydrocarbon seeps. Data were grouped as either total polycyclic aromatic hydrocarbons (PAH's), which were indicative of pyrogenic PAH's; or estimated total hopanes (indicative of petrogenic hydrocarbons). The total PAH concentrations and estimated total hopanes begin increasing above background levels (approximately 200 ng g(-1)) after the 1950s. The distribution of these hydrocarbons and hopanes within the dated sediment cores suggests that the Mississippi River is a regional source of pyrogenic PAH's, and that the hopanes are from natural geologic hydrocarbon seeps, oil and gas exploration in the GOM, or both.

  4. Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (Race B.

    Directory of Open Access Journals (Sweden)

    Reiko Suzuki

    Full Text Available The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.

  5. Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage

    NARCIS (Netherlands)

    Noomen, M.F.

    2007-01-01

    Anomalous concentrations of natural gas in the soil may be sourced from leaking underground gas pipelines or from natural microseepages. Due to the explosive nature of hydrocarbon gases, early detection of these gases is essential to avoid dangerous situations. It is known that natural gas in the

  6. Molecular characterization of autochthonous hydrocarbon utilizing ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Materials and Methods ... culturable hydrocarbon utilizing bacteria (HUB) were enumerated by vapour phase ... hydrocarbon utilizing bacterial isolates by boiling method according to ... obtained in this investigation are consistent with past field studies (Kostka et ... Microbial and other related changes in a Niger sediment.

  7. Formation of diamonds out of hydrocarbon gas in the earth's mantle

    International Nuclear Information System (INIS)

    Krason, J.; Szymanski, A.; Savkevitch, S.S.

    1991-01-01

    This paper discusses the concept of formation of polycrystalline diamonds being discussed dint he context of a very rapid, dynamic decomposition of the hydrocarbon gas, initially biogenic or thermogenic condensed in gas hydrates, naturally locked and highly compressed in the hosting rocks. Gas hydrates are of solid, ice-like composition, mostly of hydrocarbon. Gas hydrates, composed of polyhedral cages, may have two types of structural forms: the body-centered structure or Structure I (small molecules) and diamond lattice or Structure II (large molecules). The crystal structure of the gas hydrate depends on the geometry of gas molecules. The thermodynamic conditions required for stabilization and preservation of the gas hydrates can be changed. Thus, in this concept, the principal source for at least some diamond deposits can originally be highly condensed hydrocarbons. In this case, if all the above indicated thermodynamic conditions and processes are met, naturally precondensed hydrocarbons can be directly converted into polycrystalline, extremely coherent diamonds

  8. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2017-03-01

    Full Text Available The Sichuan Basin represents the earliest area where natural gas is explored, developed and comprehensively utilized in China. After over 50 years of oil and gas exploration, oil and gas reservoirs have been discovered in 24 gas-dominant layers in this basin. For the purpose of predicting natural gas exploration direction and target of each layer in the Sichuan Basin, the sedimentary characteristics of marine and continental strata in this basin were summarized and the forms of multi-cycled tectonic movement and their controlling effect on sedimentation, diagenesis and hydrocarbon accumulation were analyzed. Based on the analysis, the following characteristics were identified. First, the Sichuan Basin has experienced the transformation from marine sedimentation to continental sedimentation since the Sinian with the former being dominant. Second, multiple source–reservoir assemblages are formed based on multi-rhythmed deposition, and multi-layered reservoir hydrocarbon accumulation characteristics are vertically presented. And third, multi-cycled tectonic movement appears in many forms and has a significant controlling effect on sedimentation, diagenesis and hydrocarbon accumulation. Then, oil and gas reservoir characteristics and enrichment laws were investigated. It is indicated that the Sichuan Basin is characterized by coexistence of conventional and unconventional oil and gas reservoirs, multi-layered reservoir hydrocarbon supply, multiple reservoir types, multiple trap types, multi-staged hydrocarbon accumulation and multiple hydrocarbon accumulation models. Besides, its natural gas enrichment is affected by hydrocarbon source intensity, large paleo-uplift, favorable sedimentary facies belt, sedimentary–structural discontinuity plane and structural fracture development. Finally, the natural gas exploration and research targets of each layer in the Sichuan Basin were predicted according to the basic petroleum geologic conditions

  9. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.

    Science.gov (United States)

    Agnello, A C; Bagard, M; van Hullebusch, E D; Esposito, G; Huguenot, D

    2016-09-01

    Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Significance of Microbiology in Porous Hydrocarbon Related Systems

    KAUST Repository

    Augsburger, Nicolas

    2017-07-01

    This thesis explores bio-mediated processes in geotechnical and petroleum engineering. Worldwide energy consumption is rapidly increasing as the world population and per-capita consumption rises. The US Energy Information Agency (EIA) predicts that hydrocarbons will remain the primary energy source to satisfy the surging energy demands in the near future. The three topics described in detail in this document aim to link microbiology with geotechnical engineering and the petroleum industry. Microorganisms have the potential to exploit residual hydrocarbons in depleted reservoirs in a technique known as microbial enhanced oil recovery, MEOR. The potential of biosurfactants was analyzed in detail with a literature review. Biosurfactant production is the most accepted MEOR technique, and has been successfully implemented in over 700 field cases. Temperature is the main limiting factor for these techniques. The dissolution of carbonates by microorganisms was investigated experimentally. We designed a simple, economical, and robust procedure to monitor diffusion through porous media. This technique determined the diffusion coefficient of H+ in 1.5% agar, 1.122 x 10-5 cm2 sec-1, by using bromothymol blue as a pH indicator and image processing. This robust technique allows for manipulation of the composition of the agar to identify the effect of specific compounds on diffusion. The Red Sea consists of multiple seeps; the nearby sediments are telltales of deeper hydrocarbon systems. Microbial communities associated with the sediments function as in-situ sensors that provide information about the presence of carbon sources, metabolites, and the remediation potential. Sediments seeps in the Red Sea revealed different levels of bioactivity. The more active seeps, from the southern site in the Red Sea, indicated larger pore sizes, higher levels of carbon, and bioactivity with both bacteria and archaeal species present.

  11. Biodegradation and chemical characterization of petroleum diesel hydrocarbons in seawater at low temperatures

    OpenAIRE

    Bausch, Alexandre Renee

    2010-01-01

    Master's thesis in Environmental engineering Petroleum hydrocarbons are a major source of marine contamination. Biodegradation, which is fundamental for the natural attenuation of these hydrocarbons in nature, involves mineralization or transformation of organic compounds by autochthonous microorganism communities. Various limiting factors characteristic of the petroleum, the external environment, and the microbial community determine the fate of oil (e.g., diesel) in the marine environmen...

  12. HYFLUX: Satellite Exploration of Natural Hydrocarbon Seeps and Discovery of a Methane Hydrate Mound at GC600

    Science.gov (United States)

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.; Zimmer, B.

    2009-12-01

    Analysis of natural hydrocarbon seeps is important to improve our understanding of methane flux from deeper sediments to the water column. In order to quantify natural hydrocarbon seep formations in the Northern Gulf of Mexico, a set of 686 Synthetic Aperture Radar (SAR) images was analyzed using the Texture Classifying Neural Network Algorithm (TCNNA), which processes SAR data to delineate oil slicks. This analysis resulted in a characterization of 396 natural seep sites distributed in the northern GOM. Within these sites, a maximum of 1248 individual vents where identified. Oil reaching the sea-surface is deflected from its source during transit through the water column. This presentation describes a method for estimating locations of active oil vents based on repeated slick detection in SAR. One of the most active seep formations was detected in MMS lease block GC600. A total of 82 SAR scenes (collected by RADARSAT-1 from 1995 to 2007) was processed covering this region. Using TCNNA the area covered by each slick was computed and Oil Slicks Origins (OSO) were selected as single points within detected oil slicks. At this site, oil slick signatures had lengths up to 74 km and up to 27 km^2 of area. Using SAR and TCNNA, four active vents were identified in this seep formation. The geostatistical mean centroid among all detections indicated a location along a ridge-line at ~1200m. Sea truth observations with an ROV, confirmed that the estimated location of vents had a maximum offset of ~30 m from their actual locations on the seafloor. At the largest vent, a 3-m high, 12-m long mound of oil-saturated gas hydrate was observed. The outcrop contained thousands of ice worms and numerous semi-rigid chimneys from where oily bubbles were escaping in a continuous stream. Three additional vents were found along the ridge; these had lower apparent flow, but were also plugged with gas hydrate mounds. These results support use of SAR data for precise delineation of active seep

  13. Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, H; Komagata, K

    1964-01-01

    Hydrocarbon-utilizing bacteria were isolated from oil-brine, soils etc. sampled in oil fields in Japan during 1956, and the following species were identified: Corynebacterium hydrocarboclastus nov. sp., 11 strains; Pseudomonas nitroreducens nov. sp., 1 strain; Pseudomonas maltophila Hugh and Ryschenkow, 5 strains: Brevibacterium lipolyticum (Huss) Breed, 2 strains; Pseudomonas desmolytica Gray and Thornton, 5 strains; Flavobacterium ferrugineum Sickles and Shaw, 1 strain; and Alcaligenes faecalis Chastellani and Chalmers, 1 strain. One difference between Gram-negative bacteria and Gram-positive bacteria was described on the basis of the ability of assimilating hydrocarbons.

  14. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  15. California study compares natural/drilling discharge contaminants offshore

    International Nuclear Information System (INIS)

    Steinhauer, W.G.; Imamura, E.; Barminski, J.R.; Neff, J.M.

    1992-01-01

    An analysis of drilling fluid and this paper reports that cuttings discharges in the southern Santa Maria basin offshore California indicates that the amount of metal and hydrocarbon contaminants from drilling operations is small relative to that from natural sources. The metal and hydrocarbon discharges were calculated for only one of the three platforms discharging between 1986 and 1989 in the Point Arguello field. However, assuming concentrations are similar on each platform, the combined input of metals and hydrocarbons over the 3-year period was still low (except for barium and lead) compared to the average annual flux from natural sources. The MMS is monitoring the Santa Maria basin to understand possible long-term environmental effects of oil and gas development (California Monitoring Program, Phase II; and Effects of OCS Production Platforms on Rocky Reef Fishes and Fisheries). A site-specific study area was established to determine effects of drilling-related discharges at Chevron U.S.S. Inc.'s platform Hidalgo in the Point Arguello field. Part of the study included review of discharge records for platforms Hidalgo, Hermosa (Chevron), and Harvest (Texaco Exploration and Production Inc.)

  16. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    The aryl hydrocarbon (dioxin) receptor (AhR) is a transcription factor possessing high affinity to potent environmental pollutants, polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons (e.g. dioxins). Numerous research attribute toxicity of these compounds to the receptor...

  17. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    OpenAIRE

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species....

  18. New Insight into the Kinetics of Deep Liquid Hydrocarbon Cracking and Its Significance

    Directory of Open Access Journals (Sweden)

    Wenzhi Zhao

    2017-01-01

    Full Text Available The deep marine natural gas accumulations in China are mainly derived from the cracking of liquid hydrocarbons with different occurrence states. Besides accumulated oil in reservoir, the dispersed liquid hydrocarbon in and outside source also is important source for cracking gas generation or relayed gas generation in deep formations. In this study, nonisothermal gold tube pyrolysis and numerical calculations as well as geochemical analysis were conducted to ascertain the expulsion efficiency of source rocks and the kinetics for oil cracking. By determination of light liquid hydrocarbons and numerical calculations, it is concluded that the residual bitumen or hydrocarbons within source rocks can occupy about 50 wt.% of total oil generated at oil generation peak. This implies that considerable amounts of natural gas can be derived from residual hydrocarbon cracking and contribute significantly to the accumulation of shale gas. Based on pyrolysis experiments and kinetic calculations, we established a model for the cracking of oil and its different components. In addition, a quantitative gas generation model was also established to address the contribution of the cracking of residual oil and expulsed oil for natural gas accumulations in deep formations. These models may provide us with guidance for gas resource evaluation and future gas exploration in deep formations.

  19. Hydrocarbon pollution from marinas in estuarine sediments

    Science.gov (United States)

    Voudrias, Evangelos A.; Smith, Craig L.

    1986-03-01

    A measure of the impact of marinas on three Eastern Virginia estuarine creeks was obtained by a study of hydrocarbons in their sediments. Two of the creeks support considerable marine activity, including pleasure boat marinas, boat repair facilities, and commercial fishing operations. The third creek, which served as a control, is seldom used by boats, and is surrounded by marsh and woodland. Sediments from the creeks with marinas contained significantly higher levels of both aromatic and aliphatic hydrocarbons than did the control. Differences in the concentrations of certain oil-pollution indicators, such as the 17α,21β-hopane homologs and phytane, and low molecular weight aromatic hydrocarbons, are indicative of light petroleum fractions. Most of the aromatic hydrocarbons from all creeks, however, appear to have a pyrogenic origin. Although hydrocarbons from three probable origins (petroleum, pyrogenesis, and recent biosynthesis) were detected in all locations, the petroleum-derived and pyrogenic hydrocarbons were of only minor importance relative to the biogenic hydrocarbons in the control creek.

  20. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  1. Process for treating hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-15

    A process is described for treating simultaneously bituminous substances and hydrocarbon oils for the production of low-boiling hydrocarbons and volatilization of the bituminous substances, characterized by the fact that it consists of heating a current of charge constituted by a mixture of the bituminous substances and hydrocarbon oils, to a high temperature, passing the heated current into a zone of extended reaction where the vapors are separated from the liquid or solid residue to favor transformation of the liquid hydrocarbons and volatilization of the bituminous substances, owing to the utilization of a heating agent carried to a high temperature being brought in contact with the heated charge in order to communicate its heat to the charge, while this later presents itself as relatively fine pellet or in the condition of distinct particles, particularly separated from one another.

  2. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - March 2008; Bulletin d'information du BEPH. Mars 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  3. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.

    Science.gov (United States)

    Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela

    2017-10-01

    The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.

  4. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation

    Science.gov (United States)

    Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela

    2017-10-01

    The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.

  5. Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L.

    NARCIS (Netherlands)

    Noorman, N; Den Otter, CJ

    The production of cuticular hydrocarbons by both males and females of Musca domestica L. under very wet conditions (90% relative humidity) compared to the production at 50 and 20% relative humidity is delayed up to at least 3 days after emergence from the pupae. Eight days after emergence, however,

  6. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  7. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  8. Total organic carbon, an important tool in a holistic approach to hydrocarbon source fingerprinting

    International Nuclear Information System (INIS)

    Boehm, P.D.; Burns, W.A.; Page, D.S.; Bence, A.E.; Mankiewicz, P.J.; Brown, J.S.; Douglas, G.S.

    2002-01-01

    Total organic carbon (TOC) was used to verify the consistency of source allocation results for the natural petrogenic hydrocarbon background of the northern Gulf of Alaska and Prince William Sound where the Exxon Valdez oil spill occurred in 1998. The samples used in the study were either pre-spill sediments or from the seafloor outside the spill path. It is assumed that the natural petrogenic hydrocarbon background in the area comes from either seep oil residues and shale erosion including erosion from petroleum source rock shales, or from coals including those of the Bering River coalfields. The objective of this study was to use the TOC calculations to discriminate between the two very different sources. TOC can constrain the contributions of specific sources and rule out incorrect source allocations, particularly when inputs are dominated by fossil organic carbon. The benthic sediments used in this study showed excellent agreement between measured TOC and calculated TOC from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. TOC and fingerprint matches confirmed that TOC sources were properly identified. The matches quantify the hydrocarbon contributions of different sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. It was concluded that the natural petrogenic hydrocarbon background in the sediments in the area comes from eroding Tertiary shales and oil seeps along the northern Gulf of Alaska coast. Thermally mature area coals are excluded from being important contributors to the background at Prince William Sound because of their high TOC content. 26 refs., 4 figs

  9. Total organic carbon, an important tool in a holistic approach to hydrocarbon source fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, P.D. [Battelle, Waltham, MA (United States); Burns, W.A. [W.A. Burns Consulting Services, Houston, TX (United States); Page, D.S. [Bowdoin College, Brunswick, ME (United States); Bence, A.E.; Mankiewicz, P.J. [ExxonMobil Upstream Research Co., Houston, TX (United States); Brown, J.S.; Douglas, G.S. [Battelle, Duxbury, MA (United States)

    2002-07-01

    Total organic carbon (TOC) was used to verify the consistency of source allocation results for the natural petrogenic hydrocarbon background of the northern Gulf of Alaska and Prince William Sound where the Exxon Valdez oil spill occurred in 1998. The samples used in the study were either pre-spill sediments or from the seafloor outside the spill path. It is assumed that the natural petrogenic hydrocarbon background in the area comes from either seep oil residues and shale erosion including erosion from petroleum source rock shales, or from coals including those of the Bering River coalfields. The objective of this study was to use the TOC calculations to discriminate between the two very different sources. TOC can constrain the contributions of specific sources and rule out incorrect source allocations, particularly when inputs are dominated by fossil organic carbon. The benthic sediments used in this study showed excellent agreement between measured TOC and calculated TOC from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. TOC and fingerprint matches confirmed that TOC sources were properly identified. The matches quantify the hydrocarbon contributions of different sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. It was concluded that the natural petrogenic hydrocarbon background in the sediments in the area comes from eroding Tertiary shales and oil seeps along the northern Gulf of Alaska coast. Thermally mature area coals are excluded from being important contributors to the background at Prince William Sound because of their high TOC content. 26 refs., 4 figs.

  10. Condensation Mechanism of Hydrocarbon Field Formation.

    Science.gov (United States)

    Batalin, Oleg; Vafina, Nailya

    2017-08-31

    Petroleum geology explains how hydrocarbon fluids are generated, but there is a lack of understanding regarding how oil is expelled from source rocks and migrates to a reservoir. To clarify the process, the multi-layer Urengoy field in Western Siberia was investigated. Based on this example, we have identified an alternative mechanism of hydrocarbon field formation, in which oil and gas accumulations result from the phase separation of an upward hydrocarbon flow. There is evidence that the flow is generated by the gases released by secondary kerogen destruction. This study demonstrates that oil components are carried by the gas flow and that when the flow reaches a low-pressure zone, it condenses into a liquid with real oil properties. The transportation of oil components in the gas flow provides a natural explanation for the unresolved issues of petroleum geology concerning the migration process. The condensation mechanism can be considered as the main process of oil field formation.

  11. Bioassay directed identification of natural aryl hydrocarbon-receptor agonists in marmalade

    NARCIS (Netherlands)

    Ede, van K.I.; Li, A.; Antunes Fernandes, E.C.; Mulder, P.P.J.; Peijnenburg, A.A.C.M.; Hoogenboom, L.A.P.

    2008-01-01

    Citrus fruit and citrus fruit products, like grapefruit, lemon and marmalade were shown to contain aryl hydrocarbon receptor (AhR) agonists, as detected with the DR CALUX® bioassay. This is of interest regarding the role of the Ah-receptor pathway in the adverse effects of dioxins, PCBs and other

  12. Correlations between boiling points and relative retention data for hydrocarbons

    NARCIS (Netherlands)

    Sojak, L.; Krupcik, J.; Rijks, J.A.

    1974-01-01

    An equation correlating retention indices, boiling points and activity coefficients is proposed. The equation can be applied not only to homologous series, but also to different classes of hydrocarbons.

  13. [Biodegradability of the components of natural hydrocarbon mixtures previously submitted to landfarming].

    Science.gov (United States)

    Pucci, G N; Pucci, O H

    2003-01-01

    The complex composition of the crude oil and the hydrocarbons that integrate the waste of the different stages of the oil industry turn this product a mixture that presents different difficulties for its elimination by biological methods. The objective of this paper was to study the biodegradation potential of autochthonous bacterial communities on hydrocarbons obtained from four polluted places and subjected to landfarming biorremediation system during a decade. The results showed a marked difference in biodegradability of the three main fractions of crude oil, aliphatic, aromatic, and polar fractions, obtained by column chromatography. All fractions were used as carbon source and energy. There were variations in the production of biomass among the different fractions as well as in the kinetics of biodegradation, according to the composition of each fraction.

  14. Interpretative approaches to identifying sources of hydrocarbons in complex contaminated environments

    International Nuclear Information System (INIS)

    Sauer, T.C.; Brown, J.S.; Boehm, P.D.

    1993-01-01

    Recent advances in analytical instrumental hardware and software have permitted the use of more sophisticated approaches in identifying or fingerprinting sources of hydrocarbons in complex matrix environments. In natural resource damage assessments and contaminated site investigations of both terrestrial and aquatic environments, chemical fingerprinting has become an important interpretative tool. The alkyl homologues of the major polycyclic and heterocyclic aromatic hydrocarbons (e.g., phenanthrenes/anthracenes, dibenzothiophenes, chrysenes) have been found to the most valuable hydrocarbons in differentiating hydrocarbon sources, but there are other hydrocarbon analytes, such as the chemical biomarkers steranes and triterpanes, and alkyl homologues of benzene, and chemical methodologies, such as scanning UV fluorescence, that have been found to be useful in certain environments. This presentation will focus on recent data interpretative approaches for hydrocarbon source identification assessments. Selection of appropriate targets analytes and data quality requirements will be discussed and example cases including the Arabian Gulf War oil spill results will be presented

  15. Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Anders, Jennifer S.; Mirjafari, Arsalan; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg −1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons. -- Highlights: •Aerobic degradation of weathered crude oil in sandy sediments was determined. •The effect of input of choline on degradation rates was determined. •16S rRNA clone library analyses were used to examine the microbial phylogeny. •The bacterial community was consisted of clones related to hydrocarbon degraders. •Hydrocarbon degradation in sandy sediments was accelerated by addition of choline. -- Choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments by an extant microbial community

  16. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    Science.gov (United States)

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  17. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  18. Nestmate recognition in social insects and the role of hydrocarbons

    DEFF Research Database (Denmark)

    van Zweden, Jelle Stijn; D'Ettorre, Patrizia

    2010-01-01

    A unique and critical analysis of the wealth of research conducted on the biology, biochemistry and chemical ecology of the rapidly growing field of insect cuticular hydrocarbons. Authored by leading experts in their respective fields, the twenty chapters show the complexity that has been...... discovered in the nature and role of hydrocarbons in entomology. Covers, in great depth, aspects of chemistry (structures, qualitative and quantitative analysis), biochemistry (biosynthesis, molecular biology, genetics, evolution), physiology, taxonomy, and ecology. Clearly presents to the reader the array...... of data, ideas, insights and historical disagreements that have been accumulated during the past half century. An emphasis is placed on the role of insect hydrocarbons in chemical communication, especially among the social insects. Includes the first review on the chemical synthesis of insect hydrocarbons...

  19. Hydrocarbon Degradation Potentials of Bacteria Isolated from Spent ...

    African Journals Online (AJOL)

    ADOWIE PERE

    chemical nature of the compounds within the petroleum mixture and ... are toxic, mutagenic, and carcinogenic (Clemente et al., 2001). ... Hydrocarbon utilizing bacteria in the soil sample ... paper (Whatman No.1) saturated with sterile spent oil.

  20. Microbial hydrocarbon degradation - bioremediation of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R M [Louisville Univ., KY (United States). Dept. of Biology

    1991-01-01

    Bioremediation has become a major method employed in restoration of oil-polluted environments that makes use of natural microbial biodegradative activities. Bioremediation of petroleum pollutants overcomes the factors limiting rates of microbial hydrocarbon biodegradation. Often this involves using the enzymatic capabilities of the indigenous hydrocarbon-degrading microbial populations and modifying environmental factors, particularly concentrations of molecular oxygen, fixed forms of nitrogen and phosphate to achieve enhanced rates of hydrocarbon biodegradation. Biodegradation of oily sludges and bioremediation of oil-contaminated sites has been achieved by oxygen addition-e.g. by tilling soils in landfarming and by adding hydrogen peroxide or pumping oxygen into oiled aquifers along with addition of nitrogen- and phosphorous-containing fertilizers. The success of seeding oil spills with microbial preparations is ambiguous. Successful bioremediation of a major marine oil spill has been achieved based upon addition of nitrogen and phosphorus fertilizers. (author).

  1. Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions

    DEFF Research Database (Denmark)

    Mayer, Philipp; Fernqvist, M.M.; Christensen, P.S.

    2007-01-01

    Uptake of hydrophobic organic compounds into organisms is often limited by the diffusive transport through a thin boundary layer. Therefore, a microscale diffusion technique was applied to determine the diffusive mass transfer of 12 polycyclic aromatic hydrocarbons through water, air, surfactant...

  2. A study of light hydrocarbons (C{sub 4}-C{sub 1}3) in source rocks and petroleum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Odden, Wenche

    2000-07-01

    This thesis consists of an introduction and five included papers. Of these, four papers are published in international journals and the fifth was submitted for review in April 2000. Emphasis has been placed on both naturally and artificially generated light hydrocarbons in petroleum fluids and their proposed source rocks as well as direct application of light hydrocarbons to oil/source rock correlations. Collectively, these papers describe a strategy for interpreting the source of the light hydrocarbons in original oils and condensates as well as the source of the asphaltene fractions from the reservoir fluids. The influence of maturity on light hydrocarbon composition has also been evaluated. The papers include (1) compositional data on the light hydrocarbons from thermal extracts and kerogen pyrolysates of sediment samples, (2) light hydrocarbon data of oils and condensates as well as the pyrolysis products of the asphaltenes from these fluids, (3) assessment of compositional alteration effects, such as selective losses of light hydrocarbons due to evaporation, thermal maturity, phase fractionation and biodegradation, (4) comparison of naturally and artificially generated light hydrocarbons, and (5) compound-specific carbon isotope analysis of the whole range of hydrocarbons of all sample types. (author)

  3. Unconventional hydrocarbons. New prospects for the para-petroleum industry

    International Nuclear Information System (INIS)

    Bennaceur, Kamel

    2011-01-01

    Unconventional hydrocarbons represent a significant potential despite complications in extracting them. The International Energy Agency's annual report in 2008 estimated that 9 trillion barrels of liquid hydrocarbons could be produced - a figure to be compared with the current production of 1,1 trillion barrels and the 1,3-1,4 trillion barrels of proven reserves. This estimate includes the potential production from heavy oils, shale oil and tar belts as well as the liquid hydrocarbons obtained by converting coal and natural gas. The IAE's 2009 report estimates resources in gas at more than 850 trillion cubic meters (T m"3), as compared with the 80 T m"3 now being produced and the 187 T m"3 of proven reserves

  4. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    Science.gov (United States)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  5. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  6. The effect of supercritical isobutane regeneration on the nature of hydrocarbons deposited on a USY zeolite catalyst utilized for isobutane/butene alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; Lucia M. Petkovic

    2004-11-01

    The chemical nature of hydrocarbons remaining on an ultrastable Y-zeolite (USY) utilized for liquid phase isobutane/butene alkylation reaction at 333 K and 1.1x107 Pa before and after supercritical isobutane regeneration (SFR) at 453 K and 1.1x107 Pa are presented. Catalyst samples were deactivated to different levels by running the alkylation reaction for different times on stream (TOS) and regenerated under flowing supercritical isobutane for 60 min. Nitrogen physisorption, temperature-programmed oxidation (TPO), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and ultraviolet-visible (UV-Vis) spectroscopy measurements suggested that the SFR process was effective in recovering catalyst surface area and micropore volume and that most coke precursors were removed from samples regenerated after short TOS, when the level of activity for trimethylpentanes (TMP) production was high. Samples that were allowed to react for longer TOS contained unsaturated hydrocarbons that, instead of being extracted by the supercritical fluid, dehydrogenated during the SFR process to produce more condensed species.

  7. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  8. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  9. Measurement error potential and control when quantifying volatile hydrocarbon concentrations in soils

    International Nuclear Information System (INIS)

    Siegrist, R.L.

    1991-01-01

    Due to their widespread use throughout commerce and industry, volatile hydrocarbons such as toluene, trichloroethene, and 1, 1,1-trichloroethane routinely appears as principal pollutants in contamination of soil system hydrocarbons is necessary to confirm the presence of contamination and its nature and extent; to assess site risks and the need for cleanup; to evaluate remedial technologies; and to verify the performance of a selected alternative. Decisions regarding these issues have far-reaching impacts and, ideally, should be based on accurate measurements of soil hydrocarbon concentrations. Unfortunately, quantification of volatile hydrocarbons in soils is extremely difficult and there is normally little understanding of the accuracy and precision of these measurements. Rather, the assumptions often implicitly made that the hydrocarbon data are sufficiently accurate for the intended purpose. This appear presents a discussion of measurement error potential when quantifying volatile hydrocarbons in soils, and outlines some methods for understanding the managing these errors

  10. Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities.

    Science.gov (United States)

    Towell, Marcie G; Bellarby, Jessica; Paton, Graeme I; Coulon, Frédéric; Pollard, Simon J T; Semple, Kirk T

    2011-02-01

    This study investigated the microbial degradation of (14)C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise (14)C-target hydrocarbons was appreciable; ≥ 16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of (14)C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon (14)C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-01-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from

  12. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    Science.gov (United States)

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  13. Frequency–amplitude range of hydrocarbon microtremors and a discussion on their source

    International Nuclear Information System (INIS)

    Gerivani, H; Hafezi Moghaddas, N; Ghafoori, M; Lashkaripour, G R; Haghshenas, E

    2012-01-01

    Recently, some studies have suggested using ambient noise as a tool for hydrocarbon reservoir investigation. This new passive seismic technique, named HyMas, is based on the positive energy anomaly in data spectra between 1 to 6 Hz for microtremor measurements over reservoirs, which are called hydrocarbon microtremors. Despite the acceptable results obtained by the HyMas technique, there are many unknowns, especially concerning the source and generation mechanism of hydrocarbon microtremors and the relations between reservoir characteristics and the attributes of hydrocarbon microtremors. In this study we tried to find the relations between reservoir characteristics, including fluid content and depth, for 12 sites around the world with hydrocarbon microtremor attributes, including peak amplitude and frequency. Based on the power spectral density curves of these 12 reservoirs, a frequency–amplitude range is also proposed as a criterion for separating hydrocarbon microtremors from local noise not related to reservoirs. Finally, the source of the hydrocarbon microtremors is discussed and tidal displacement is suggested as a probable agent for the generation of these anomalies. (paper)

  14. Tropospheric chemistry of natural hydrocarbons, aldehydes, and peroxy radicals: Their connections to sulfuric acid production and climate effects

    International Nuclear Information System (INIS)

    Gaffney, J.S.; Marley, N.A.

    1993-05-01

    Recent work has shown that natural hydrocarbon emissions can significantly affect the levels of urban and regional tropospheric ozone. We report on the reactivities of these biogenic trace gases, particularly isoprene, focusing on their importance in the production of aldehydes and peroxy radicals, leading to increased levels of hydrogen over regional forests. Hydrogen peroxide can lead to the wet oxidation of sulfur dioxide to acidic sulfate in aerosols, fogs, and clouds. In turn, acidic sulfate can act to as a light scattering aerosol and a source of cloud condensation nuclei (CCN), potentially leading to global cooling. Aerosol sulfate and other dissolved organic and inorganic compounds can also play important roles as a greenhouse species in the lower troposphere

  15. Mechanics of vacuum-enhanced recovery of hydrocarbons

    International Nuclear Information System (INIS)

    Barnes, D.L.; McWhorter, D.B.

    1995-01-01

    A growing body of field data demonstrates the enhancement of product recovery that can be achieved by applying a partial vacuum to recovery wells. Typical explanations for the observed improvement in performance invoke an increased slope of the cone of depression created in the water-table surface. Explanations related to water-table slope do not consider the gradient induced in the hydrocarbon by virtue of the airflow. Also, the airflow may induce a gradient in the aqueous phase that is not reflected in a water-table drawdown. The equations for steady-state flow of three immiscible fluids elucidate the fundamental mechanics of vacuum-enhanced recovery or bioslurping. Airflow to the recovery well causes hydrocarbon to migrate toward the well, independent of any gravity effects that may be created. Also, the relative permeability to hydrocarbon is affected by both water and airflow in the vicinity of the recovery well. Two critical airflow rates delineate the conditions for which only air is recovered, air and hydrocarbon are recovered, and all three phases are recovered

  16. Method for upgrading diene-containing hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, L.E. Jr.; Holcomb, D.E.

    1984-05-22

    There is disclosed a method for upgrading of hydrocarbon mixtures, so as to reduce their content of gum precursors such as diolefins and pseudo-diolefins, and provide a resulting product mixture suitable for mild hydrogenation, for use as a motor fuel or as a feed stock to an extraction unit. The process comprises obtaining a hydrocarbon mixture containing about 60-90 wt. % of aromatic components, about 3-40 wt. % of dienes and pseudodienes, and monoolefins, and up to about 6 wt. % of relatively unreactive organic compounds, reacting this mixture with elemental sulfur in the approximate weight ratio of about 5-95 wt. % of the hydrocarbon mixture with about 95-5 wt. % of elemental sulfur, the reaction being carried out at a temperature in the range of 100/sup 0/-150/sup 0/ C. for about 10 minutes to 24 hours with good mixing, removing the unreacted materials by distillation and separating a sulfur-hydrocarbon reaction product to provide the upgraded hydrocarbon mixture.

  17. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    Science.gov (United States)

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  18. Evaluation of environmental samples containing heavy hydrocarbon components in environmental forensic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Raia, J.C.; Blakley, C.R.; Fuex, A.N.; Villalanti, D.C.; Fahrenthold, P.D. [Triton Anal Corp, Houston, TX (United States)

    2004-03-01

    This article presents a procedure to evaluate and characterize environmental samples containing mixtures of hydrocarbons over a wide boiling range of materials that include fuels and other products used in commerce. The range of the method extends to the higher boiling and heavier molecular weight hydrocarbon products in the range of motor oil, bunker fuel, and heavier residue materials. The procedure uses the analytical laboratory technique of high-temperature simulated distillation along with mathematical regression of the analytical data to estimate the relative contribution of individual products in mixtures of hydrocarbons present in environmental samples. An analytical technique to determine hydrocarbon-type distributions by gas chromatography-mass spectrometry with nitric oxide ionization spectrometry evaluation is also presented. This type of analysis allows complex hydrocarbon mixtures to be classified by their chemical composition, or types of hydrocarbons that include paraffins, cycloparaffins, monoaromatics, and polycyclic aromatic hydrocarbons. Characteristic hydrocarbon patterns for example, in the relative distribution of polycyclic aromatic hydrocarbons are valuable for determining the potential origin of materials present in environmental samples. These methods provide quantitative data for hydrocarbon components in mixtures as a function of boiling range and 'hydrocarbon fingerprints' of the types of materials present. This information is valuable in assessing environmental impacts of hydrocarbons at contaminated sites and establishing the liabilities and cost allocations for responsible parties.

  19. Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

    OpenAIRE

    A. Belhaj Mohamed; M. Saidi; N. Boucherb; N. Ourtani; A. Soltani; I. Bouazizi; M. Ben Jrad

    2015-01-01

    Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples col...

  20. Site characterization and petroleum hydrocarbon plume mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, K. [Harding Lawson Associates, Houston, TX (United States)

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  1. Hydrocarbon studies in Puget Sound and off the Washington coast. Progress report, March 1978--February 1979

    International Nuclear Information System (INIS)

    Carpenter, R.; Fairhall, A.W.

    1979-01-01

    This report summarizes the past year's progress in our studies of the amounts, types, and probable origins of aliphatic, aromatic, S-, and N-containing hydrocarbons in sediments, organisms, and waters of Puget Sound and the Washington coast. We are trying to identify the relative importance of the various possible sources of these substances, the major pathways by which they are transferred through some parts of the marine food web, their rates of transfer, and their ultimate fates. We have found that changes in aliphatic and aromatic hydrocarbon compositions are evident in 210 Pb-dated sediment cores from central Puget Sound. These changes are due both to natural diagenetic processes and to low-level inputs of fossil fuels from a variety of sources. We have found measurable amounts of both S- and N-containing compounds in these Puget Sound sediments. Our studies of the role of zooplankton fecal pellets in the cycling of trace chemicals in the sea have shown that fecal pellets are an important vertical transport agent for hydrocarbons in the sea. We now have defined the natural variations in 14 C and 13 C/ 12 C isotope ratios of the inorganic carbon in Puget Sound seawater. Carbon isotope abundances for organisms and sediments are also reported for selected sites

  2. Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, Lateef B; Ilori, Mathew O; Amund, Olukayode O; LiiMien, Yee; Nojiri, Hideaki

    2018-04-01

    The bacterial community structure in a hydrocarbon-contaminated Mechanical Engineering Workshop (MWO) soil was deciphered using 16S rRNA gene clone library analysis. Four hundred and thirty-seven clones cutting across 13 bacterial phyla were recovered from the soil. The representative bacterial phyla identified from MWO soil are Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Ignavibacteriae, Spirochaetes, Chlamydiae, Candidatus Saccharibacteria and Parcubacteria. Proteobacteria is preponderant in the contaminated soil (51.2%) with all classes except Epsilonproteobacteria duly represented. Rarefaction analysis indicates 42%, 52% and 77% of the clone library is covered at the species, genus and family/class delineations with Shannon diversity (H') and Chao1 richness indices of 5.59 and 1126, respectively. A sizeable number of bacterial phylotypes in the clone library shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Novel uncultured genera were identified that have not been previously reported from tropical African soil to be associated with natural attenuation of hydrocarbon pollutants. This study establishes the involvement of a wide array of physiologically diverse bacterial groups in natural attenuation of hydrocarbon pollutants in soil.

  3. Producing light hydrocarbons by destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Fohlen, J H

    1928-06-20

    A method of obtaining light hydrocarbons from fuels and natural or industrial carbonaceous materials by cracking under pressure from 5 to 200 atmospheres and within a temperature range of 200 to 1,000/sup 0/C, the cracking operation being assisted by the presence of catalysts such as metallic halides, simultaneously, with hydrogenation by means of nascent hydrogen in the reaction chamber.

  4. Novel techniques for characterization of hydrocarbon emission sources in the Barnett Shale

    Science.gov (United States)

    Nathan, Brian Joseph

    Changes in ambient atmospheric hydrocarbon concentrations can have both short-term and long-term effects on the atmosphere and on human health. Thus, accurate characterization of emissions sources is critically important. The recent boom in shale gas production has led to an increase in hydrocarbon emissions from associated processes, though the exact extent is uncertain. As an original quantification technique, a model airplane equipped with a specially-designed, open-path methane sensor was flown multiple times over a natural gas compressor station in the Barnett Shale in October 2013. A linear optimization was introduced to a standard Gaussian plume model in an effort to determine the most probable emission rate coming from the station. This is shown to be a suitable approach given an ideal source with a single, central plume. Separately, an analysis was performed to characterize the nonmethane hydrocarbons in the Barnett during the same period. Starting with ambient hourly concentration measurements of forty-six hydrocarbon species, Lagrangian air parcel trajectories were implemented in a meteorological model to extend the resolution of these measurements and achieve domain-fillings of the region for the period of interest. A self-organizing map (a type of unsupervised classification) was then utilized to reduce the dimensionality of the total multivariate set of grids into characteristic one-dimensional signatures. By also introducing a self-organizing map classification of the contemporary wind measurements, the spatial hydrocarbon characterizations are analyzed for periods with similar wind conditions. The accuracy of the classification is verified through assessment of observed spatial mixing ratio enhancements of key species, through site-comparisons with a related long-term study, and through a random forest analysis (an ensemble learning method of supervised classification) to determine the most important species for defining key classes. The hydrocarbon

  5. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  6. Final technical report for the Center for Catalytic Hydrocarbon Functionalization (an EFRC)

    Energy Technology Data Exchange (ETDEWEB)

    Gunnoe, Thomas Brent [Univ. of Virginia, Charlottesville, VA (United States)

    2016-11-11

    Greater than 95% of all materials produced by the chemical industry are derived from a small slate of simple hydrocarbons that are derived primarily from natural gas and petroleum, predominantly through oxygenation, C–C bond formation, halogenation or amination. Yet, current technologies for hydrocarbon conversion are typically high temperature, multi-step processes that are energy and capital intensive and result in excessive emissions (including carbon dioxide). The Center for Catalytic Hydrocarbon Functionalization (CCHF) brought together research teams with the broad coalition of skills and knowledge needed to make the fundamental advances in catalysis required for next-generation technologies to convert hydrocarbons (particularly light alkanes and methane) at high efficiency and low cost. Our new catalyst technologies offer many opportunities including enhanced utilization of natural gas in the transportation sector (via conversion to liquid fuels), more efficient generation of electricity from natural gas using direct methane fuel cells, reduced energy consumption and waste production for large petrochemical processes, and the preparation of high value molecules for use in biological/medical applications or the agricultural sector. The five year collaborative project accelerated fundamental understanding of catalyst design for the conversion of C–H bonds to functionalized products, essential to achieve the goals listed above, as evidenced by the publication of 134 manuscripts. Many of these fundamental advancements provide a foundation for potential commercialization, as evidenced by the submission of 11 patents from research support by the CCHF.

  7. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields

    International Nuclear Information System (INIS)

    Lazar, I.; Dobrota, S.; Voicu, A.; Stefanescu, M.; Sandulescu, L.; Petrisor, I.G.

    1999-01-01

    During oil production and processing activities, significant quantities of oily sludge are produced. The sludge represents not only an environmental pollution source but also occupies big spaces in storage tanks. Romania, an experienced European oil-producing and processing country, is faced with environmental problems generated by oily sludge accumulations. Many such accumulations are to be submitted to bioremediation processes based on the hydrocarbon degradation activity of naturally occurring, selectively isolated bacteria. In this paper the results concerning a laboratory screening of several natural bacterial consortia and laboratory tests to establish the performance in degradation of hydrocarbons contained in oily sludges from Otesti oil field area, are presented. As a result of the laboratory screening, we selected six natural bacterial consortia (BCSl-I 1 to BCSl-I 6 ) with high ability in degradation of hydrocarbons from paraffinic and non-paraffinic asphaltic oils (between 25.53%-64.30% for non-paraffinic asphaltic oil and between 50.25%-72.97% for paraffinic oil). The laboratory tests proved that microbial degradation of hydrocarbons contained in oily sludge from Otesti oil field area varied from 16.75% to 95.85% in moving conditions (Erlenmeyers of 750 ml on rotary shaker at 200 rpm) and from 16.85% to 51.85% in static conditions (Petri dishes Oe 10 cm or vessels of 500 ml)

  8. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Chiar, J. E.; Ricca, A. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Adamson, A. J., E-mail: jchiar@seti.org, E-mail: Alessandra.Ricca@1.nasa.gov, E-mail: tielens@strw.leidenuniv.nl, E-mail: aadamson@gemini.edu [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96729 (United States)

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  9. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    International Nuclear Information System (INIS)

    Chiar, J. E.; Ricca, A.; Tielens, A. G. G. M.; Adamson, A. J.

    2013-01-01

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 μm) and aliphatic (3.4 μm) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp 2 bonds can be measured in astronomical spectra using the 6.2 μm CC aromatic stretch feature, whereas the 3.4 μm aliphatic feature can be used to quantify the fraction of sp 3 bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp 3 content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  10. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Oh, S.H.; Mitchell, P.J.; Siewert, R.M.

    1992-01-01

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al 2 O 3 > Rh/Al 2 O 3 > Pt/Al 2 O 3 . Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O 2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  11. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    Science.gov (United States)

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Source allocation by least-squares hydrocarbon fingerprint matching

    Energy Technology Data Exchange (ETDEWEB)

    William A. Burns; Stephen M. Mudge; A. Edward Bence; Paul D. Boehm; John S. Brown; David S. Page; Keith R. Parker [W.A. Burns Consulting Services LLC, Houston, TX (United States)

    2006-11-01

    There has been much controversy regarding the origins of the natural polycyclic aromatic hydrocarbon (PAH) and chemical biomarker background in Prince William Sound (PWS), Alaska, site of the 1989 Exxon Valdez oil spill. Different authors have attributed the sources to various proportions of coal, natural seep oil, shales, and stream sediments. The different probable bioavailabilities of hydrocarbons from these various sources can affect environmental damage assessments from the spill. This study compares two different approaches to source apportionment with the same data (136 PAHs and biomarkers) and investigate whether increasing the number of coal source samples from one to six increases coal attributions. The constrained least-squares (CLS) source allocation method that fits concentrations meets geologic and chemical constraints better than partial least-squares (PLS) which predicts variance. The field data set was expanded to include coal samples reported by others, and CLS fits confirm earlier findings of low coal contributions to PWS. 15 refs., 5 figs.

  13. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. December 2006; Bureau exploration-production des hydrocarbures. Bulletin mensuel d'information. Decembre 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands and allocations of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins); underground storage facilities (allocation and extension of concessions). (J.S.)

  14. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas

    International Nuclear Information System (INIS)

    Roubal, G.; Atlas, R.M.

    1978-01-01

    Hydrocarbon-utilizing microogranisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14 C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14 C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene >> pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population

  15. Bioaccumulation of petroleum hydrocarbons in arctic amphipods in the oil development area of the Alaskan Beaufort Sea.

    Science.gov (United States)

    Neff, Jerry M; Durell, Gregory S

    2012-04-01

    An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development

  16. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  17. The role of hydrocarbons in energy transition

    International Nuclear Information System (INIS)

    2015-11-01

    This publication presents some reflections and statements as well as data regarding the role of hydrocarbons in energy production and consumption, in order to better highlight the role hydrocarbons may have in energy transition. It outlines the still very important share of oil in primary and final energy, and more particularly in transports, and that, despite the development of other energies, an energy transition is always very slow. It discusses the perspectives for hydrocarbon reserves and production of oil and natural gas. It outlines that oil remains the most important energy for mobility, the benefits of conventional fuels, and that distribution infrastructures must be preserved and developed. It discusses the evolution of the economic situation of the refining activity (more particularly its margin). It outlines the high contribution of oil industry to economic activity and employment in France, discusses the French energy taxing policy and environmental taxing policy, discusses the issue of security of energy supply (with its different components: exploration-production, refining, logistics and depots, distribution and station network). It discusses the possible role shale hydrocarbons may have in the future. For each issue, the position and opinion of the UFIP (the French Union of oil industries) is stated. The second part of the document proposes a Power Point presentation with several figures and data on these issues

  18. Development of oil hydrocarbon fingerprinting and identification techniques

    International Nuclear Information System (INIS)

    Wang Zhendi; Fingas, Merv F.

    2003-01-01

    Oil, refined product, and pyrogenic hydrocarbons are the most frequently discovered contaminants in the environment. To effectively determine the fate of spilled oil in the environment and to successfully identify source(s) of spilled oil and petroleum products is, therefore, extremely important in many oil-related environmental studies and liability cases. This article briefly reviews the recent development of chemical analysis methodologies which are most frequently used in oil spill characterization and identification studies and environmental forensic investigations. The fingerprinting and data interpretation techniques discussed include oil spill identification protocol, tiered analytical approach, generic features and chemical composition of oils, effects of weathering on hydrocarbon fingerprinting, recognition of distribution patterns of petroleum hydrocarbons, oil type screening and differentiation, analysis of 'source-specific marker' compounds, determination of diagnostic ratios of specific oil constituents, stable isotopic analysis, application of various statistical and numerical analysis tools, and application of other analytical techniques. The issue of how biogenic and pyrogenic hydrocarbons are distinguished from petrogenic hydrocarbons is also addressed

  19. Toxicity of oils and petroleum hydrocarbons to estuarine crustaceans

    Energy Technology Data Exchange (ETDEWEB)

    Tatem, H.E. (Army Engineer Waterways Experiment Station, Vicksburg, MS); Cox, B.A.; Anderson, J.W.

    1978-04-01

    Bioassay experiments with various life stages of three estuarine shrimp and soluble petroleum hydrocarbons (PH) revealed residual Bunker C oil and refined No. 2 fuel oil to be more toxic than two crude oils tested. Larvae of Palaemonetes pugio were slightly more sensitive to the PH than adults, while young penaeid shrimp were shown to be more resistant than older, larger individuals. Shrimp exposed to PH in conjunction with temperature and salinity changes were more susceptible to the PH. Some common aromatic and diaromatic PH, including three naphthalene compounds, were utilized in bioassays. Naphthalenes were highly toxic. The toxicity of petroleum products is closely related to aromatic hydrocarbon content, especially the naphthalenes and related hydrocarbons.

  20. Comparative survey of petroleum hydrocarbons i lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, S G

    1976-11-01

    Hydrocarbon distribution in sediments from three lakes in Washington State were studied and found to be related to the level of human activity in the respective drainage basins. Petroleum hydrocarbon contamination was found in surface sediments of a lake surrounded by a major city, compared to no detectable contamination in a lake located in a National Park.

  1. Low-maturity Kulthieth Formation coal: A possible source of polycyclic aromatic hydrocarbons in benthic sediment of the northern Gulf of Alaska

    Science.gov (United States)

    Van Kooten, G. K.; Short, J.W.; Kolak, J.J.

    2002-01-01

    The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low - i.e. the coals are over mature - to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH: TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  2. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  3. Emission reductions through precombustion chamber design in a natural gas, lean burn engine

    International Nuclear Information System (INIS)

    Crane, M.E.; King, S.R.

    1992-01-01

    A study was conducted to evaluate the effects of various precombustion chamber design, operating and control parameters on the exhaust emissions of a natural gas engine. Analysis of the results showed that engine-out total hydrocarbons and oxides of nitrogen (NO x ) can be reduced, relative to conventional methods, through prechamber design. More specifically, a novel staged prechamber yielded significant reductions in NO x and total hydrocarbon emissions by promoting stable prechamber and main chamber ignition under fuel-lean conditions. Precise fuel control was also critical when balancing low emissions and engine efficiency (i.e., fuel economy). The purpose of this paper is to identify and explain positive and deleterious effects of natural gas prechamber design on exhaust emissions

  4. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  5. BioTiger{sup TM} : a natural microbial product for enhanced hydrocarbon recovery from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Berry, C.J.; Milliken, C.E.; Jones, W. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    This presentation discussed the feasibility of using BioTiger{sup TM} technology to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery processes was initially developed and used by the United States Department of Energy for bioremediation of soils contaminated with oil, but it may also be used to optimize bitumen separation. BioTiger was described as being a unique microbial consortia that has resulted from nearly a decade of extensive microbiology screening and characterization of samples collected from an old waste lagoon. The technology offers rapid and complete degradation of aliphatic and aromatic hydrocarbons and produces new surfactants. It is tolerant of both chemical and metal toxicity and has good activity at high temperatures at extreme pH levels. A flotation test protocol with oil sands from Fort McMurray, Alberta was used for the BioTiger evaluation. A comparison of hot water extraction/flotation test of the oil sands performed with BioTiger showed a 50 per cent improvement in separation as measured by gravimetric analysis. BioTiger is well suited for enhanced hydrocarbon recovery from oil sands because it performs well at high temperatures. 8 figs.

  6. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized

    International Nuclear Information System (INIS)

    Gao Ting; Lin Wensheng; Gu Anzhong

    2011-01-01

    Research highlights: → We propose two new light hydrocarbon separation processes utilizing LNG cold energy. → Both processes produce liquefied ethane and LPG with high ethane recovery rate. → CH 4 -riched gas from the high pressure process is compressed to final pressure. → Re-liquefied CH 4 -riched gas from the low pressure one is pumped to final pressure. → Both processes have good performance; the low pressure one is economically better. -- Abstract: Liquefied natural gas (LNG) often consists of some kinds of light hydrocarbons other than methane, such as ethane, propane and butane, which are of high additional value. By efficiently utilization of LNG cryogenic energy, these light hydrocarbons (C 2 + ) can be separated from LNG with low power consumption and LNG is gasified meanwhile. Two novel light hydrocarbon separation processes are proposed in this paper. The first process uses a demethanizer working at higher pressure (about 4.5 MPa). The methane-riched natural gas from the demethanizer can be compressed to pipeline pressure with low power consumption. The other one uses a demethanizer working at lower pressure (about 2.4 MPa). By cascade utilization of LNG cryogenic energy, the methane-riched natural gas from the demethanizer is entirely re-liquefied. Then the liquid product is pressurized to pipeline pressure by pumps instead of compressors, reducing the power consumption greatly. By both of the two processes, liquefied ethane and LPG (liquefied petroleum gas, i.e. C 3 + ) at atmosphere pressure can be obtained directly, and high ethane recovery rate can be gained. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the light hydrocarbon separation plants are studied, and the economics are compared for these two processes. The results show that recovering light hydrocarbons from LNG can gain great profits by both of the two processes, and from the view of economics, the

  7. Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders.

    Science.gov (United States)

    Hu, Ping; Dubinsky, Eric A; Probst, Alexander J; Wang, Jian; Sieber, Christian M K; Tom, Lauren M; Gardinali, Piero R; Banfield, Jillian F; Atlas, Ronald M; Andersen, Gary L

    2017-07-11

    The Deepwater Horizon (DWH) accident released an estimated 4.1 million barrels of oil and 10 10 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capabilities of the different populations that controlled degradation rates of crude oil components are poorly understood. We experimentally reproduced dispersed plumes of fine oil droplets in Gulf of Mexico seawater and successfully replicated the enrichment and succession of the principal oil-degrading bacteria observed during the DWH event. We recovered near-complete genomes, whose phylogeny matched those of the principal biodegrading taxa observed in the field, including the DWH Oceanospirillales (now identified as a Bermanella species), multiple species of Colwellia , Cycloclasticus , and other members of Gammaproteobacteria, Flavobacteria, and Rhodobacteria. Metabolic pathway analysis, combined with hydrocarbon compositional analysis and species abundance data, revealed substrate specialization that explained the successional pattern of oil-degrading bacteria. The fastest-growing bacteria used short-chain alkanes. The analyses also uncovered potential cooperative and competitive relationships, even among close relatives. We conclude that patterns of microbial succession following deep ocean hydrocarbon blowouts are predictable and primarily driven by the availability of liquid petroleum hydrocarbons rather than natural gases.

  8. Hydrocarbon studies in Puget Sound and off the Washington coast. Progress report, March 1977--February 1978

    International Nuclear Information System (INIS)

    Carpenter, R.; Fairhall, A.W.

    1978-01-01

    This report summarizes progress in the first 2.5 yrs of our studies of the amounts, types, and probable origins of aliphatic, aromatic, S-, and N-containing hydrocarbons in sediments, organisms, and waters of Puget Sound and the Washington coast. We are trying to identify the relative importances of the various possible sources of these substances, the major pathways by which they are transferred through some parts of the marine food web, their rates of transfer, and their ultimate fates. We have found that changes in aliphatic and aromatic hydrocarbon compositions are evident in 210 Pb dated sediment cores from central Puget Sound. These changes are due both to natural diagenetic processes and to low level inputs of fossil fuels from a variety of sources. We have found measurable amounts of both S- and N-containing compounds in these Puget Sound sediments. We believe the first results of our studies of the role of zooplankton fecal pellets in the cycling of trace chemicals in the sea have shown that fecal pellets are an important vertical transport agent for hydrocarbons in the sea. We now have defined the natural variations in 14 C and 13 C/ 12 C isotope ratios of the inorganic carbon in Puget Sound seawater. Carbon isotope abundances for organisms and sediments are also reported for selected sites

  9. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    Science.gov (United States)

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  10. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  11. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site.

    Science.gov (United States)

    Siles, José A; Margesin, Rosa

    2018-05-01

    The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.

  12. Method and apparatus for preventing agglomeration within fluid hydrocarbons

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1979-01-01

    This invention relates to a process for treating a fluid hydrocarbon fuel for retarding the agglomeration between particles thereof and for retarding the growth of bacteria and fungi therein. The process includes that steps of transporting a plurality of unit volumes of said fluid hydrocarbon fuel through an irradiating location and irradiating each unit of the plurality of unit volumes at the irradiating location with either neutron or gamma radiation. An apparatus for treating the fluid hydrocarbon fuels with the nuclear radiation also is provided. The apparatus includes a generally conical central irradiating cavity which is surrounded by a spiral outer irradiating cavity. The fluid hydrocarbon fuel is transported through the cavities while being irradiated by the nuclear radiation

  13. Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil

    International Nuclear Information System (INIS)

    Costa, Eduardo S.; Grilo, Caroline F.; Wolff, George A.; Thompson, Anu; Figueira, Rubens Cesar Lopes; Neto, Renato Rodrigues

    2015-01-01

    Highlights: • Metals and hydrocarbons in estuary mouth showed indication of anthropogenic input. • Metals in estuary mouth were associated with petroleum-derivative hydrocarbons. • Metals were possibly associated with activities that use oil and its derivatives. • Copper was associated with domestic sewage. - Abstract: Although the Passagem Channel estuary, Espírito Santo State, Brazil, is located in an urbanized and industrialized region, it has a large mangrove system. Here we examined natural and anthropogenic inputs that may influence trace metal (Cd, Cr, Cu, Ni, Sc, Pb and Zn) and hydrocarbon (n-alkane and terpane) deposition in three sediment cores collected in the tidal flat zone of the estuary. The cores were also analyzed for carbonate, grain size and stable isotopic composition (δ 13 C org. and δ 15 N total ). Metal enrichment and its association to petroleum hydrocarbons in the surficial sediments of one of the cores, indicate crude oil and derivative inputs, possibly from small vessels and road run-off from local heavy automobile traffic. At the landward sites, the major contributions for metals and hydrocarbons are from natural sources, but in one case, Cu may have been enriched by domestic effluent inputs

  14. Source identification of hydrocarbons following environmental releases

    Energy Technology Data Exchange (ETDEWEB)

    Birkholz, D.A. [ALS Environmental, Edmonton, AB (Canada)

    2010-07-01

    Methods of identifying the sources of hydrocarbon contaminations were discussed in this PowerPoint presentation. Laboratories analyze for total petroleum hydrocarbons (TPH) by obtaining chromatograms of observed products. However, many petroleum products provide similar chromatograms. Several independent lines of evidence are needed for the purposes of accurate determination in legal applications. A case study of a lube oil plant spill was used to demonstrate the inconclusiveness of chromatograms and the need to determine petroleum biomarkers. Terpane, sterane, triaromatic sterane, isoprenoid, and alkylcyclohexane analyses were conducted to differentiate between the hydrocarbon samples. The analysis methods are being used with various soil, water, and crab species samples from the BP oil spill. Oil found at the different sites must be directly related to the spill. However, there are 3858 oil and gas platforms currently operating in the Gulf of Mexico. Ratios of biomarkers and polycyclic aromatic hydrocarbons (PAHs) are being developed to generate weight of evidence. A critical difference analysis was also presented. tabs., figs.

  15. Characteristics of atmospheric non-methane hydrocarbons during high PM 10 episodes and normal days in Foshan, China

    Science.gov (United States)

    Guo, Songjun; Tan, Jihua; Ma, Yongliang; Yang, Fumo; Yu, Yongchan; Wang, Jiewen

    2011-08-01

    Atmospheric non-methane hydrocarbons (NMHCs) were firstly studied during high PM 10 episodes and normal days in December 2008 in Foshan, China. Ethyne, ethene, i-pentane, toluene, ethane and propane are six abundant hydrocarbons, accounting for round 80% of total NMHCs. Both diurnal variations and concentration ratios of morning (evening)/afternoon implied vehicular emission for most hydrocarbons. Correlation coefficients (R 2) of ethene, propene, i-butene, benzene, toluene and i-/n-butanes with ethyne were 0.60-0.88 (they were 0.64-0.88 during high PM 10 episode and 0.60-0.85 in normal days) except for ethene and i-butene in normal days, indicating these hydrocarbons are mainly related to vehicular emission. It suggests liquefied petroleum gas (LPG) and natural gas (NG) leakages are responsible for propane and ethane, respectively. The measured mean benzene/toluene (B/T) ratio (wt/wt) was 0.45 ± 0.29 during total sampling periods together with R 2 analysis, again indicating vehicular emission is main contributor to ambient hydrocarbons. And the lower B/T ratio (0.29 ± 0.11) during high PM 10 episodes than that (0.75 ± 0.29) in normal days is likely caused by air transport containing low B/T value (0.23) from Guangzhou as well as solvent application containing toluene in Foshan.

  16. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.; Trent, G.L.; Brown, D.R.; Sublette, K.L.

    1995-01-01

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  17. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    Science.gov (United States)

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  18. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Larsen, S.B.; Karakashev, Dimitar Borisov

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) are naturally occurring organic compounds. As a result of anthropogenic activities, PAH concentration has increased in the environment considerably. PAH are regarded as environmental pollutants because they have toxic, mutagenic and carcinogenic effects on l...

  19. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingsheng; Yang, Tao [Department of Geophysics, China University of Geosciences, Wuhan 430074 (China); Liu, Qingsong [National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Chan, Lungsang [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xia, Xianghua; Cheng, Tongjin [Wuxi Institute of Petroleum Geology, SNOPEC, Jiangsu Wuxi 214151 (China)

    2006-08-15

    Magnetic parameters (volume-specific susceptibility k, and hysteresis parameters and ratios) of 47 samples, collected from an oil-producing well (M{sub 36}) and a dry well (M{sub 46}) from the oil-bearing II-You Formation of Paleogene Xingouzui Group in the Mawangmiao Oil Field in China, were measured to address the secondary alteration of iron-bearing minerals associated with hydrocarbon migration. Our results indicated that both k and magnetization (saturation magnetization J{sub s} and saturation isothermal remanent magnetization J{sub rs}) of oil-bearing formation have been dramatically enhanced. Further grain size estimation reveals that the background samples (samples both in M{sub 46} and outside the oil-bearing formation in M{sub 36}) contain coarser-grained magnetic particles (circa 30{mu}m) of detrital origin. In contrast, the alteration of hydrocarbon produces finer-grained (circa 25nm) magnetic particles. The new constraints on grain sizes and its origin of the hydrocarbon-related magnetic particles improve our understanding of the mechanism of formation of these secondary finer-grained particles, even though the precise nature of this process is still unknown. (author)

  20. Receptor modeling of C2─C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993─1994 and 2005─2006

    Directory of Open Access Journals (Sweden)

    S. Reimann

    2008-05-01

    Full Text Available Hourly measurements of 13 volatile hydrocarbons (C2–C7 were performed at an urban background site in Zurich (Switzerland in the years 1993–1994 and again in 2005–2006. For the separation of the volatile organic compounds by gas-chromatography (GC, an identical chromatographic column was used in both campaigns. Changes in hydrocarbon profiles and source strengths were recovered by positive matrix factorization (PMF. Eight and six factors could be related to hydrocarbon sources in 1993–1994 and in 2005–2006, respectively. The modeled source profiles were verified by hydrocarbon profiles reported in the literature. The source strengths were validated by independent measurements, such as inorganic trace gases (NOx, CO, SO2, methane (CH4, oxidized hydrocarbons (OVOCs and meteorological data (temperature, wind speed etc.. Our analysis suggests that the contribution of most hydrocarbon sources (i.e. road traffic, solvents use and wood burning decreased by a factor of about two to three between the early 1990s and 2005–2006. On the other hand, hydrocarbon losses from natural gas leakage remained at relatively constant levels (−20%. The estimated emission trends are in line with the results from different receptor-based approaches reported for other European cities. Their differences to national emission inventories are discussed.

  1. Mechanism of hydrocarbon reduction using multiple injection in a natural gas fuelled/micro-pilot diesel ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Micklow, G.J.; Gong, W. [University of North Carolina, Charlotte, NC (United States)

    2002-03-01

    Research has shown that a large amount of natural gas (NG) is unburned at light loads in an NG fuelled/micro-pilot diesel compression ignition engine. A mechanism of unburned hydrocarbon (HC) reduction using multiple injections of micro-pilot diesel has been proposed in this paper. Multidimensional computations were carried out for a dual-fuel engine based on a modified CAT3401 engine configuration. The computations show that a split injection with a small percentage (e.g. 30 per cent of diesel in the second injection pulse) can significantly reduce HC, CO and NO{sub x} emissions. Based on parax metric studies to optimize the timing of both of the injection pulses, HC emissions could be reduced by 90 per cent, with a reduction in CO emissions of 50 per cent and NO{sub x} emissions of 70 per cent in comparison to a singlex injection pulse-base case configuration. (author)

  2. Microbial Bioremediation of Fuel Oil Hydrocarbons in Marine Environment

    OpenAIRE

    Sapna Pavitran; C.B. Jagtap; S. Bala Subramanian; Susan Titus; Pradeep Kumar; P.C. Deb

    2006-01-01

    Pollution in marine environment due to heavier petroleum products such as high-speeddiesel is known to take from days to months for complete natural remediation owing to its lowvolatility. For the survival of marine flora and fauna, it is important to control pollution causedby such recalcitrant and xenobiotic substances. Several petroleum hydrocarbons found in natureare toxic and recalcitrant. Therefore, pollution due to high-speed diesel is a cause of concern.The natural dispersion of high-...

  3. Hydrocarbon Degradation and Sulfate Reduction in a Coastal Marsh of North Florida

    Science.gov (United States)

    Hsieh, Y.; Bugna, G. C.; Robinson, L.

    2001-05-01

    Hydrocarbon contamination of coastal waters has been an environmental concern for sometime. Coastal wetlands, which are rich in organic matter and microbial activities, have been considered natural systems that could degrade hydrocarbon in contaminated coastal waters. This study was initiated to investigate the potential of hydrocarbon degradation in a coastal salt marsh of North Florida with special reference to sulfate reduction. Freshly collected surface marsh sediments (0-20 cm) were incubated in a laboratory at ambient temperature (23.2° C) with the treatments of: 1) Control (i.e., no treatment), 2) +(crude) oil, 3) +NO3-1+oil, and 4) +MoO4-2+oil. Carbon dioxide evolution from the incubation was collected and analyzed for the total amount and the 13C signature. The NO3-1 and MoO4-2 treatments were intended to block the sulfate reduction activity. The results show that the indigenous organic matter and the crude oil have distinct δ 13C values of -19.8 and -27.6 \\permil, respectively, relative to PDB. Evolved CO2 concentrations and δ 13C values also indicate that microbial populations can adapt to the presence of anthropogenic hydrocarbons. Blocking of sulfate reducers by MoO4-2 addition started to reduce the carbon dioxide evolution rates after a 4-d incubation. After a 48-d incubation, the carbon dioxide evolution of the MoO4-2-treated samples was reduced to only 23 % of the non-MoO4-2-treated samples, indicating the increased significant role of sulfate reducers in digesting older soil organic matter and the hydrocarbons. T-tests also indicated that in NO3-1 treatment, δ 13C values significantly depleted (p=0.1) while CO2 concentration remained relatively constant. These indicate that while denitrifiers played a role in the degradation, the microbial population is predominantly composed of sulfate reducers. Salt marshes would be a much more significant source of CH4 if SO4-2 is suppressed. All MoO4-2-treated samples produced significant amount of methane

  4. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  5. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  6. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  7. Structural segregation of petroleum and prospective hydrocarbon regions in Azerbaijan

    International Nuclear Information System (INIS)

    Kerimov, K.M.; Huseynov, A.N.; Hajiyev, F.M.

    2002-01-01

    Full text : Structural segregation allows identify the earth crust blocks according to their geological setting and structural history conductive for hydrocarbon generation and their entrapment in the sedimentary fill reservoirs. Since then there has been a need to design a new tectonic map of petroleum and hydrocarbons potential systems in Azerbaijan embracing both on- and offshore areas. Map's legend designed upon above mentioned concepts and principles has made it possible to evaluate the role of individual stratigraphic units in hydrocarbon generation and its entrapment, as well as in recognition of regional structural criteria of the hydrocarbon bearing potential of different structural patterns. Tectonic map of petroleum and prospective hydrocarbon bearing on and offshore areas in Azerbaijan for the first time contained a wide range of information related to structural criteria of hydrocarbon bearing potential, sedimentary fill's structural architecture, its thickness, both timing of their formation stages and basement consolidation, its subsidence depth, as well as hydrocarbon deposit areal and vertical distribution across individual regions. This map was considered to be of important implication both for the petroleum geoscience and petroleum industry endeavors.

  8. The bio-remediation of the contamination with hydrocarbons

    International Nuclear Information System (INIS)

    Montoya, Sandra J; Concha, Alexander; Alcalde, Osmar R; Alvarez, Juan C; Garcia, Juan G; Guerra, Fabio W

    1999-01-01

    The activities of the oil industry comprise many processes that represent environmental risks, usually the pollution of the ecosystems with hydrocarbons. When bulky spills occur, the first measure used for damage repair is the physical gathering, but scattered quantities of oil even remain. The last is typical of chronic leakage's when is necessary to make use of other procedures for the environmental restoration. The bioremediation is an effective and economic technique useful in these cases that rest upon natural processes of the detritivorous tropic chain in all the ecosystems. There are over one-hundred species of bacteria and fungi able to profit the hydrocarbons as energy source for feeding, diminishing the pollutant to levels harmless to the physical, chemical and biological properties of the ecosystems. The current weariest stock belongs to the bacteria species pseudomonas aeruginosa. To apply properly this technique is necessary to know the nature of the pollutant, the properties of the substratum and the indigenous microbiological communities. Moreover it is required to control the environmental conditions, mainly aeration, moisture, temperature, pH, and nutrients status of the substratum

  9. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.

    Science.gov (United States)

    Xu, Qiwei; Mahpeykar, Seyed Milad; Burgess, Ian B; Wang, Xihua

    2018-06-13

    Most of the reported optofluidic devices analyze liquid by measuring its refractive index. Recently, the wettability of liquid on various substrates has also been used as a key sensing parameter in optofluidic sensors. However, the above-mentioned techniques face challenges in the analysis of the relative concentration of components in an alkane hydrocarbon mixture, as both refractive indices and wettabilities of alkane hydrocarbons are very close. Here, we propose to apply volatility of liquid as the key sensing parameter, correlate it to the optical property of liquid inside inverse opal photonic crystals, and construct powerful optofluidic sensors for alkane hydrocarbon identification and analysis. We have demonstrated that via evaporation of hydrocarbons inside the periodic structure of inverse opal photonic crystals and observation of their reflection spectra, an inverse opal film could be used as a fast-response optofluidic sensor to accurately differentiate pure hydrocarbon liquids and relative concentrations of their binary and ternary mixtures in tens of seconds. In these 3D photonic crystals, pure chemicals with different volatilities would have different evaporation rates and can be easily identified via the total drying time. For multicomponent mixtures, the same strategy is applied to determine the relative concentration of each component simply by measuring drying time under different temperatures. Using this optofluidic sensing platform, we have determined the relative concentrations of ternary hydrocarbon mixtures with the difference of only one carbon between alkane hydrocarbons, which is a big step toward detailed hydrocarbon analysis for practical use.

  10. Canada's hydrocarbon processing evolution

    International Nuclear Information System (INIS)

    Wise, T.H.; Horton, R.

    2000-01-01

    The development of petroleum refining, petrochemicals and natural gas industries in Canada are discussed together with future issues and prospects. Figures give data on (a) refined products trade 1998; (b) refining capacity; (c) product demand 1980-1999; (d) refinery crude runs and capacity; (e) refining and marketing, historical returns 1993-1999; (f) processing power index for Canada and USA; (g) ethylene capacity; (eye) Montreal petrochemical capacities; (j) Sarnia petrochemical capacities in 2000; (k) Alberta petrochemicals capacities 2001; (l) ethylene net equivalent trade; (m) ethylene costs 1999 for W. Canada and other countries. It was concluded that the hydrocarbon processing business continues to expand in Canada and natural gas processing is likely to increase. Petrochemicals may expand in W. Canada, possibly using feed stock from the Far North. Offshore developments may stimulate new processing on the E. Coast

  11. Hydrocarbon-Rich Groundwater above Shale-Gas Formations: A Karoo Basin Case Study.

    Science.gov (United States)

    Eymold, William K; Swana, Kelley; Moore, Myles T; Whyte, Colin J; Harkness, Jennifer S; Talma, Siep; Murray, Ricky; Moortgat, Joachim B; Miller, Jodie; Vengosh, Avner; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale-gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near-pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre-industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane-rich samples were associated with high-salinity, NaCl-type groundwater and elevated levels of ethane, 4 He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ 13 C-CH 4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane-rich samples record a history of fractionation during gas-phase migration from source rocks to shallow aquifers. Conversely, methane-poor samples have a paucity of ethane and 4 He, near saturation levels of atmospheric noble gases, and more negative δ 13 C-CH 4 ; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas). © 2018, National Ground Water Association.

  12. Problems Caused by Microbes and Treatment Strategies Anaerobic Hydrocarbon Biodegradation and Biocorrosion: A Case Study

    Science.gov (United States)

    Suflita, Joseph M.; Duncan, Kathleen E.

    The anaerobic biodegradation of petroleum hydrocarbons is important for the intrinsic remediation of spilt fuels (Gieg and Suflita, 2005), for the conversion of hydrocarbons to clean burning natural gas (Gieg et al., 2008; Jones et al., 2008) and for the fundamental cycling of carbon on the planet (Caldwell et al., 2008). However, the same process has also been implicated in a host of difficult problems including reservoir souring (Jack and Westlake, 1995), oil viscosity alteration (Head et al., 2003), compromised equipment performance and microbiologically influenced corrosion (Duncan et al., 2009). Herein, we will focus on the role of anaerobic microbial communities in catalysing biocorrosion activities in oilfield facilities. Biocorrosion is a costly problem that remains relatively poorly understood. Understanding of the underlying mechanisms requires reliable information on the carbon and energy sources supporting biofilm microorganisms capable of catalysing such activities.

  13. The new Algerian law project about hydrocarbons: Sonatrach reinforced in a competitive environment

    International Nuclear Information System (INIS)

    Mebtoul, A.

    2002-01-01

    At the time of the transposition of the first gas directive in French law and of the start up of a new phase of the liberalization of the natural gas market in the European Union, it is useful to have an idea of the opinion of the supplying countries in this domain. In the coming years, the gas dependence of the European Union with respect to the producing countries will increase. Thus, the relations with these countries will change progressively with the new context defined by the second directive. Among the gas producing countries, Algeria is a close and faithful partner of France and Europe. The expected evolutions of its hydrocarbons sector show its adaptation will to the competitive context and its wish of partnership reinforcement with European gas companies. This article presents an analysis of the Algerian project of hydrocarbons law made by an Algerian expert of this sector. (J.S.)

  14. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  15. Natural gas conversion new route using halogen derivatives; Nova rota de conversao de gas natural utilizando derivados halogenados

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, Leandro A.; Mota, Claudio J.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Centro de Tecnologia]. E-mail: noronha@iq.ufrj.br; Sousa Aguiar, E. Falabella [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    Natural gas will have important position in the next decades. Nowadays, there is high demand for petrochemicals products, such as ethene and propene. With the nafta price variation, the development of alternative routes from natural gas will be stimulate, as occur in Rio de Janeiro. Between the main technologies for the natural gas use, arise the gas to liquids (GTL) routes for the conversion to hydrocarbons. Therefore, will be studied the transformation of methyl chloride to light olefins (ethene and propene) and other hydrocarbons in zeolitic catalysts. All of these reactions will be simulate occurring in the zeolitic surface, using a cluster that represents very much the catalyst structure. (author)

  16. Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas.

    Science.gov (United States)

    McMahon, Peter B; Barlow, Jeannie R B; Engle, Mark A; Belitz, Kenneth; Ging, Patricia B; Hunt, Andrew G; Jurgens, Bryant C; Kharaka, Yousif K; Tollett, Roland W; Kresse, Timothy M

    2017-06-20

    Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO 2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.

  17. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  18. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.

    Science.gov (United States)

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-02-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.

  19. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    Rowell, M.J.; Ashworth, J.; Qureshi, A.A.

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  20. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  1. Bioremediation of petroleum hydrocarbons in soil environments

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J; Ashworth, J; Qureshi, A A

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs.

  2. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  3. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  4. Climate change and the hydrocarbon industry; A klimavaltozas es a szenhidrogenipar

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, M.; Racz, L.

    1999-07-01

    The theory of the greenhouse effect and the impact of greenhouse phenomena on climate change are summarized. Theoretical bases of climate changes are outlined and the relationship between greenhouse effects and hydrocarbon production is analyzed. Hungary's carbon dioxide emissions as well as the possibilities of reducing the emissions caused by hydrocarbons are discussed. Finally the tasks of the Hungarian hydrocarbon industry in relation to the environmental problems are concerned.

  5. Characterization, Distribution, Sources and Origins of Aliphatic Hydrocarbons from Surface Sediment of Prai Strait, Penang, Malaysia: A Widespread Anthropogenic Input

    Directory of Open Access Journals (Sweden)

    Mahyar Sakari

    2008-07-01

    Full Text Available Persistent organic pollutants such as petroleum hydrocarbons are one of the most serious and important class of pollutants that face to many countries including Malaysia. Aliphatic hydrocarbons contain straight chain alkane; derive from anthropogenic and natural sources to the marine environment. The multi-purpose strait of Prai is located in the Northwest of Peninsular Malaysia plays an important economic role in the Southeast Asia. Twenty surface sediment samples were collected using Eckman dredge to measure the concentration and determine the characterization, sources and origins of the aliphatic hydrocarbons in December 2006. Samples (top 4 cm were extracted with Soxhlet, treated with activated copper and subjected to 2 steps column chromatography for purification and fractionation. Alkane fraction injected into Gas Chromatography–Flame Ionization Detector (GC-FID for instrumental analysis. The results showed that total n-alkane concentrations are ranging from 512 to 10770 ng/mg d. w. Carbon Preferences Index (CPI revealed an extreme widespread anthropogenic input and naturally derived (CPI= 0 to 4.88 hydrocarbons in the study area. The ratio of C31/C19 indicated that natural hydrocarbons are generating from terrestrial vascular plants and transferring by rivers. The characteristics of Major Hydrocarbons provided evidences that oil and its derivatives either fresh or degraded are the major contributors of the pollution in the study area. Statistical approaches also confirmed that 85% of study area affected by oil sources of pollution. It is seen that aliphatic hydrocarbons mostly transfer by lateral input to the marine environment than atmospheric movements.

  6. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    Science.gov (United States)

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  7. Using Multi-Disciplinary Data to Compile a Hydrocarbon Budget for GC600, a Natural Seep in the Gulf of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Johansen, C.; Marty, E.; Natter, M.; Silva, M.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Diercks, A. R.; Woolsey, M.; Macelloni, L.; Shedd, W. W.; Joye, S. B.; Abrams, M.

    2016-12-01

    Fluid exchange between the deep subsurface and the overlying ocean and atmosphere occurs at hydrocarbon seeps along continental margins. Seeps are key features that alter the seafloor morphology and geochemically affect the sediments that support chemosynthetic communities. However, the dynamics and discharge rates of hydrocarbons at cold seeps remain largely unconstrained. Here we merge complementary geochemical (oil fingerprinting), geophysical (seismic, subbottom, backscatter, multibeam) and video/imaging (Video Time Lapse Camera, DSV ALVIN video) data sets to constrain pathways and magnitudes of hydrocarbon fluxes from the source rock to the seafloor at a well-studied, prolific seep site in the Northern Gulf of Mexico (GC600). Oil fingerprinting showed compositional similarities for samples from the following collections: the reservoir, an active vent, and the sea-surface. This was consistent with reservoir structures and pathways identified in seismic data. Video data, which showed the spatial distribution of seep indicators such as bacteria mats, or hydrate outcrops at the sediment interface, were combined with known hydrocarbon fluxes from the literature and used to quantify the total hydrocarbon fluxes in the seep domain. Using a systems approach, we combined data sets and published values at various scales and resolutions to compile a preliminary hydrocarbon budget for the GC600 seep site. Total estimated in-flow of hydrocarbons was 2.07 x 109 mol/yr. The combined total of out-flow and sequestration amounted to 7.56 x 106 mol/yr leaving a potential excess (in-flow - out-flow) of 2.06 x 109 mol/yr. Thus quantification of the potential out-flow from the seep domains based on observable processes does not equilibrate with the theoretical inputs from the reservoir. Processes that might balance this budget include accumulation of gas hydrate and sediment free-gas, as well as greater efficiency of biological sinks.

  8. Electrochemical removal of NOx and hydrocarbons

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah

    on the electrodes during polarisation, probably because of strong adsorption of the hydrocarbon relative to NO. On LSF/CGO electrode the impregnation of ionic conducting material increased the oxidation of NO to NO2 which is an important step before nitrogen formation. The propene inhibited this reaction because....... This could only be done if the electrode was impregnated with BaO. The nitrate formation did not seem to be inhibited by the presence of the hydrocarbon. However, the oxidation of propene was inhibited by the BaO because the active sites for oxidations were partially covered by the BaO nanoparticles...

  9. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-02-01

    Prokaryotes are the main actors in biogeochemical cycles that are fundamental in global nutrient cycling. The characterization of microbial communities and isolates can enhance the comprehension of such cycles. Potentially novel biochemical processes can be discovered in particular environments with unique characteristics. The Red Sea can be considered as a unique natural laboratory due to its peculiar hydrology and physical features including temperature, salinity and water circulation. Moreover the Red Sea is subjected to hydrocarbon pollution by both anthropogenic and natural sources that select hydrocarbon degrading prokaryotes. Due to its unique features the Red Sea has the potential to host uncharacterized novel microorganisms with hydrocarbondegrading pathways. The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  10. Does natural gas increase the indoor radon levels?

    International Nuclear Information System (INIS)

    Abdel-Ghany, H.A.; Shabaan, D.H.

    2015-01-01

    The natural gas is naturally occurring hydrocarbon consists mainly of methane and includes varying amounts of other hydrocarbons, carbon dioxide and other impurities such as: nitrogen, and hydrogen sulfide. It is used domestically and industrially as a preferable energy source compared to coal and oil. Because natural gas is found in deep underground natural formations or associated with other underground hydrocarbon reservoirs, there is a potential to contain radon as a contaminant. This work was designated to measure indoor radon concentrations in dwellings supplied with natural gas compared with those not supplied with it, where radon level was estimated using solid state nuclear track detectors (CR-39). The results showed that radon concentration was significantly higher in dwellings supplied with natural gas, where it was 252.30 versus 136.19 Bqm -3 in dwelling not supplied with natural gas (P < 0.001). The mean values of radon exhalation rate was 0.02 ± 6.34 · 10 -4 Bq · m -2 · h -1 in dwellings supplied with natural gas and 0.01 +- 0.008 Bq · m -2 · h -1 in dwellings lacking it. In addition, a significant difference was observed in the mean annual effective doses (4.33 and 2.34 mSv · y -1 , respectively) between both groups. Conclusively, the data indicate that natural gas may represent a potential source of indoor radon

  11. Evaluation on occluded hydrocarbon in deep–ultra deep ancient source rocks and its cracked gas resources

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available Oil-cracked gas, as the main type of high-over mature marine natural gas in China, is mainly derived from occluded hydrocarbon. So it is significant to carry out quantitative study on occluded hydrocarbon. In this paper, the occluded hydrocarbon volume of the main basins in China was calculated depending on their types, abundances and evolution stages by means of the forward method (experimental simulation and the inversion method (geologic profile dissection. And then, occluded hydrocarbon evolution models were established for five types of source rocks (sapropelic, sapropelic prone hybrid, humic prone hybrid, humic and coal. It is shown that the hydrocarbon expulsion efficiency of sapropelic and sapropelic prone hybrid excellent source rocks is lower than 30% at the low-maturity stage, 30%–60% at the principal oil generation stage, and 50%–80% at the high-maturity stage, which are all about 10% higher than that of humic prone hybrid and humic source rocks at the corresponding stages. The resource distribution and cracked gas expulsion of occluded hydrocarbon since the high-maturity stage of marine source rocks in the Sichuan Basin were preliminarily calculated on the basis of the evolution models. The cracked gas expulsion is 230.4 × 1012 m3 at the high evolution stage of occluded hydrocarbon of the Lower Cambrian Qiongzhusi Fm in this basin, and 12.3 × 1012 m3 from the source rocks of Sinian Doushantuo Fm, indicating good potential for natural gas resources. It is indicated that the favorable areas of occluded hydrocarbon cracked gas in the Qiongzhusi Fm source rocks in the Sichuan Basin include Gaoshiti–Moxi, Ziyang and Weiyuan, covering a favorable area of 4.3 × 104 km2.

  12. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    R Cameron Coates

    Full Text Available Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene and methyl group positions (3-, 4- and 5-methylheptadecane for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR and aldehyde deformylating oxygenase (ADO. The second involves a polyketide synthase (PKS pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS. Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.

  13. Impact Of Landfill Closure Designs On Long-Term Natural Attenuation Of Chlorinated Hydrocarbons

    Science.gov (United States)

    2002-03-01

    petroleum hydrocarbons and VC) and to stimulate the precipitation of arsenic (Turpie et al., 2000). Such an engineered remedy provides for continued...precipitation of arsenic . This treatment system provides many advantages over remedial measures currently proposed for this and other similar sites with...1999a. Summary of the Remediation Technologies Development Forum. Phytoremediation Action Team Alternative Cover Assessment Program (ACAP

  14. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    International Nuclear Information System (INIS)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-01

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction

  15. Monitoring of Hydrocarbons in Sediment and Biota Related to Oil and Gas Development in Near- and Off-Shore Areas of the Arctic Beaufort Sea, Alaska

    Science.gov (United States)

    Durell, G.; Hardin, J.; Libby, S.

    2016-02-01

    There is increasing interest in extracting oil and gas from offshore environments of Alaska. The Arctic Nearshore Impact Monitoring in Development Area (ANIMIDA) project, started in 1999, has been producing information to evaluate potential effects of oil and gas activities in the Alaskan Beaufort Sea. ANIMIDA was preceded by the Beaufort Sea Monitoring Program. Monitoring has mostly been in pre-drilling locations, but also during development and production periods. Surveys were conducted to assess bottom sediment, sediment cores, suspended sediment, and biota for polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons, biological and petroleum markers, and geophysical parameters. The concentrations measured in sediments and biota were at or near background throughout most of the Beaufort Sea. There were no significant differences between exploration, production, and background locations, and the concentrations were consistently below those of ecological concern. For instance, TPAH in sediment ranged from below 100 to about 1,000 µg/kg and were controlled primarily by sediment characteristics (e.g., grain size and organic carbon). Hydrocarbons in sediments were from petrogenic, pyrogenic, and biogenic sources. Small areas with indications of input of anthropogenic chemicals were identified by sensitive diagnostic analysis techniques and are possibly associated with historic exploratory drilling and vessels. Sediment cores indicate a uniform historical deposition of hydrocarbons, although some evidence of past drilling activities were observed. Fish, amphipods, and clams contained background levels of hydrocarbons and showed no evidence of effects from accumulation of contaminants; TPAH concentrations were below 100 µg/kg in most biota. Noteworthy interannual fluctuations were observed for PAH concentrations in sediment and biota, likely due to winnowing of sediment fines by large storms and annual variations in river discharges. Significant natural sources

  16. Source apportionment of hydrocarbons measured in the Eagle Ford shale

    Science.gov (United States)

    Roest, G. S.; Schade, G. W.

    2016-12-01

    The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.

  17. Microbial consortia involved in the anaerobic degradation of hydrocarbons.

    Science.gov (United States)

    Zwolinski; Harris, R F; Hickey, W J

    2000-01-01

    In this review, we examine the energetics of well-characterized biodegradation pathways and explore the possibilities for these to support growth of multiple organisms interacting in consortia. The relevant phenotypic and/or phylogenetic characteristics of isolates and consortia mediating hydrocarbon degradation coupled with different terminal electron-accepting processes (TEAP) are also reviewed. While the information on metabolic pathways has been gained from the analysis of individual isolates, the energetic framework presented here demonstrates that microbial consortia could be readily postulated for hydrocarbon degradation coupled to any TEAP. Several specialized reactions occur within these pathways, and the organisms mediating these are likely to play a key role in defining the hydrocarbon degradation characteristics of the community under a given TEAP. Comparing these processes within and between TEAPs reveals biological unity in that divergent phylotypes display similar degradation mechanisms and biological diversity in that hydrocarbon-degraders closely related as phylotypes differ in the type and variety of hydrocarbon degradation pathways they possess. Analysis of microcosms and of field samples suggests that we have only begun to reveal the diversity of organisms mediating anaerobic hydrocarbon degradation. Advancements in the understanding of how hydrocarbon-degrading communities function will be significantly affected by the extent to which organisms mediating specialized reactions can be identified, and tools developed to allow their study in situ.

  18. Natural attenuation: A feasible approach to remediation of landfill leachate plumes?

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2000-01-01

    Natural attenuation has been implemented for petroleum hydrocarbons plumes and recently also for chlorinated solvent plumes, primarily in the USA, but natural attenuation has not yet gained a foothold with respect to leachate plumes. Based on the experiences gained from ten years of research on two...... Danish landfills, it is suggested that natural attenuation is a feasible approach, but much more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent....

  19. Quantitative evaluation of volatile hydrocarbons in post-mortem blood in forensic autopsy cases of fire-related deaths.

    Science.gov (United States)

    Yonemitsu, Kosei; Sasao, Ako; Oshima, Toru; Mimasaka, Sohtaro; Ohtsu, Yuki; Nishitani, Yoko

    2012-04-10

    Volatile hydrocarbons in post-mortem blood from victims of fires were analyzed quantitatively by headspace gas chromatography mass spectrometry. The benzene and styrene concentrations in the blood were positively correlated with the carboxyhemoglobin (CO-Hb) concentration, which is evidence that the deceased inhaled the hydrocarbons and carbon monoxide simultaneously. By contrast, the concentrations of toluene and CO-Hb in the blood were not significantly correlated. This lack of correlation could be explained by two different sources of toluene, with low blood concentrations of toluene arising when the deceased inhaled smoke and high blood concentrations of toluene arising when the deceased inhaled petroleum vapor or other unknown vapors. The quantity of soot deposited in the respiratory tract was classified into four grades (-, 1+, 2+, 3+). The mean CO-Hb concentration in the 1+ soot group was significantly lower than those in the 2+ (ptypes of smoke produced by different materials. For example, petroleum combustion with a limited supply of oxygen, like in a compartment fire, may produce a large volume of dense black smoke that contains a large quantity of soot. Soot deposits in the airways and the blood CO-Hb concentration are basic and essential autopsy findings that are used to investigate fire-related deaths. The quantitative GC-MS analysis of blood volatile hydrocarbons can provide additional useful information on the cause of the fire and the circumstances surrounding the death. In combination, these three findings are useful for the reconstruction of cases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  1. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4 in their gas mixture

    Directory of Open Access Journals (Sweden)

    Oman Zuas

    2016-09-01

    Full Text Available An accurate gas chromatography coupled to a flame ionization detector (GC-FID method was validated for the simultaneous analysis of light hydrocarbons (C2-C4 in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD, limit of quantitation (LOQ, and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target component was well-separated with high selectivity property. The method was also found to be precise and accurate. The method linearity was found to be high with good correlation coefficient values (R2 ≥ 0.999 for all target components. It can be concluded that the GC-FID developed method is reliable and suitable for determination of light C2-C4 hydrocarbons (including ethylene, propane, propylene, isobutane, and n-butane in their gas mixture. The validated method has successfully been applied to the estimation of hydrocarbons light C2-C4 hydrocarbons in natural gas samples, showing high performance repeatability with relative standard deviation (RSD less than 1.0% and good selectivity with no interference from other possible components could be observed.

  2. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  3. Lowering of the critical concentration for micelle formation in aqueous soap solutions by action of truly dissolved hydrocarbon at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Z.N.; Kostova, N.Z.; Rebinder, P.A.

    1970-03-01

    The effect of dissolved hydrocarbons (octane, benzene, and ethylbenzene) on critical micelle concentration of aqueous solutions of sodium salts of fatty acids from caproate to sodium myristate at various temperatures was studied. Experimental results showed that formation of micelles is promoted by presence of hydrocarbons dissolved in the water phase. Such solutions have below normal critical micelle concentration. The change in critical micelle concentration decreases with increase in length of hydrocarbon chain in the soap molecule and with decrease of hydrocarbon solubility in pure water. The nature of the hydrocarbon also affects the forms and dimension of the micelle. Aromatic hydrocarbons increase micelle volume and greatly decrease C.M.C., while aliphatic hydrocarbons decrease C.M.C. slightly. (12 refs.)

  4. Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary

    International Nuclear Information System (INIS)

    Martins, César C.; Doumer, Marta E.; Gallice, Wellington C.; Dauner, Ana Lúcia L.; Cabral, Ana Caroline; Cardoso, Fernanda D.

    2015-01-01

    Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. - Highlights: • Historical inputs of hydrocarbons in a subtropical estuary were evaluated. • Spectroscopic and chromatographic methods were used in combination. • High hydrocarbon concentrations were related to anthropogenic activities. • Low hydrocarbon levels could be explained by the 1970s global oil crisis. - Spectroscopic and chromatographic techniques could be used together to evaluate hydrocarbon inputs to coastal environments

  5. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles

    International Nuclear Information System (INIS)

    Pham, Chau Thuy; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2013-01-01

    We determined eleven PAHs and four NPAHs in particulates and regulated pollutants (CO, CO 2 , HC, NO x , PM) exhausted from motorcycles to figure out the characteristics of motorcycle exhausts. Fluoranthene and pyrene accounted for more than 50% of the total detected PAHs. Among four detected NPAHs, 6-nitrochrysene and 7-nitrobenz[a]anthracene were the predominant NPAHs and were highly correlated relationship with their parent PAHs (R = 0.93 and 0.97, respectively). The PM and HC emissions tended to be close to the PAH emissions. NO x and NPAHs were negatively correlated. Despite their small engine size, motorcycles emitted much more PM and PAHs, showed stronger PAH-related carcinogenicity and indirect-acting mutagenicity, but weaker NPAH-related direct-acting mutagenic potency than automobiles. This is the first study to analyze both PAHs and NPAHs emitted by motorcycles, which could provide useful information to design the emission regulations and standards for motorcycles such as PM. -- Highlights: ► We characterized PAHs and NPAHs distribution in motorcycle exhausts. ► NPAHs concentrations were about three orders of magnitude lower than those of PAHs. ► We found larger amounts of PM and PAHs in exhaust of motorcycles than of automobiles. ► Motorcycles showed stronger PAH-related toxicity than automobiles. ► Motorcycles showed weaker NPAH-related direct-acting mutagenicity than automobiles. -- Control polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbon in particulates emitted by motorcycles due to their toxic potency

  6. Why cumulative impacts assessments of hydrocarbon activities in the Arctic fail to meet their purpose

    DEFF Research Database (Denmark)

    Kirkfeldt, Trine Skovgaard; Hansen, Anne Merrild; Olsen, Pernille

    2017-01-01

    The Arctic Region is characterised by vulnerable ecosystems and residing indigenous people, dependent on nature for fishing and hunting. The Arctic also contains a wealth of non-living natural resources such as minerals and hydrocarbons. Synergies between increased access and growing global deman...

  7. Occurrence and sources of aliphatic hydrocarbons in surface soils from Riyadh city, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed I. Rushdi

    2013-01-01

    Full Text Available Soil particles contain a variety of anthropogenic and natural organic components derived from many sources such as industrial and traffic fossil fuel emissions and terrestrial biota. The organic contents of soil and sand from the Arabian region have not fully characterized. Thus, samples of fine soil particles (sieved to <125 μM were collected from the Riyadh area in November 2006 (late summer and February 2007 (late winter. The samples were extracted with a mixture of dichloromethane/hexane and analyzed by gas chromatography–mass spectroscopy (GCMS in order to characterize the chemical composition and sources of aliphatic hydrocarbons. The results showed that both anthropogenic and natural biogenic inputs were the major sources of the aliphatic hydrocarbons in these extracts. Vehicular emission products and discarded plastics were the major anthropogenic sources in the fine particles of the soils and ranged from 64% to 96% in November 2006 and from 70% to 92% in February 2007. Their tracers were n-alkanes, hopanes, sterane, plasticizers and UCM. Vegetation was also a major natural source of hydrocarbon compounds in samples ranging from ∼0% to18% in November 2006 and from 1% to 13% in February 2007 and included n-alkanes and triterpenoids.

  8. Risk analysis associated with petroleum hydrocarbons: is everything running smoothly?

    International Nuclear Information System (INIS)

    Morin, D.

    1999-01-01

    Petroleum products represent one of the main sources of environmental contamination, and these products are complex, composed of several hundred individual hydrocarbons. The evaluation of the risks associated with petroleum products is often limited by certain specific parameters such as benzene. The petroleum hydrocarbons running from C(10) to C(50) are not often integrated in an analysis of the toxological risks since the toxological characterization of a complex mixture of hydrocarbons is difficult to carry out. There exist in the United States two approaches that were developed recently that allow the integration of various hydrocarbons comprising a mixture. In this presentation, two of these approaches are described and compared. An overview of these approaches related to Canadian regulatory bodies is included, and a case study completes the account. The two approaches that are most well known in this area are: 1) that of the Massachusetts Dept. of Environmental Protection, and 2) that of the Total Petroleum Hydrocarbon Criteria Working Group. The integration of petroleum hydrocarbons in a quantitative evaluation of their toxological risk is possible by present methods. This integration allows a reduction in the uncertainty associated with the use of an integrating parameter in the case of these petroleum hydrocarbons in the C(10) to the C(50) range

  9. The Anthropogenic Effects of Hydrocarbon Inputs to Coastal Seas: Are There Potential Biogeochemical Impacts?

    Science.gov (United States)

    Anderson, M. R.; Rivkin, R. B.

    2016-02-01

    Petroleum hydrocarbon discharges related to fossil fuel exploitation have the potential to alter microbial processes in the upper ocean. While the ecotoxicological effects of such inputs are commonly evaluated, the potential for eutrophication from the constituent organic and inorganic nutrients has been largely ignored. Hydrocarbons from natural seeps and anthropogenic sources represent a measurable source of organic carbon for surface waters. The most recent (1989-1997) estimate of average world-wide input of hydrocarbons to the sea is 1.250 x 1012 g/yr ≈ 1.0 x 1012g C/year. Produced water from offshore platforms is the largest waste stream from oil and gas exploitation and contributes significant quantities of inorganic nutrients such as N, P and Fe. In coastal areas where such inputs are a significant source of these nutrients, model studies show the potential to shift production toward smaller cells and net heterotrophy. The consequences of these nutrient sources for coastal systems and semi enclosed seas are complex and difficult to predict, because (1) there is a lack of comprehensive data on inputs and in situ concentrations and (2) the is no conceptual or quantitative framework to consider their effects on ocean biogeochemical processes. Here we use examples from the North Sea (produced water discharges 1% total riverine input and NH4 3% of the annual riverine nitrogen load), the South China Sea (total petroleum hydrocarbons = 10-1750 μg/l in offshore waters), and the Gulf of Mexico (seeps = 76-106 x 109 gC/yr, Macondo blowout 545 x 109 gC) to demonstrate how hydrocarbon and produced water inputs can influence basin scale biogeochemical and ecosystem processes and to propose a framework to consider these effects on larger scales.

  10. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  11. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    Science.gov (United States)

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  12. Sedimentary facies and lithologic characters as main factors controlling hydrocarbon accumulations and their critical conditions

    Directory of Open Access Journals (Sweden)

    Jun-Qing Chen

    2015-10-01

    Full Text Available Taking more than 1000 clastic hydrocarbon reservoirs of Bohai Bay Basin, Tarim Basin and Junggar Basin, China as examples, the paper has studied the main controlling factors of hydrocarbon reservoirs and their critical conditions to reveal the hydrocarbon distribution and to optimize the search for favorable targets. The results indicated that the various sedimentary facies and lithologic characters control the critical conditions of hydrocarbon accumulations, which shows that hydrocarbon is distributed mainly in sedimentary facies formed under conditions of a long-lived and relatively strong hydrodynamic environment; 95% of the hydrocarbon reservoirs and reserves in the three basins is distributed in siltstones, fine sandstones, lithified gravels and pebble-bearing sandstones; moreover, the probability of discovering conventional hydrocarbon reservoirs decreases with the grain size of the clastic rock. The main reason is that the low relative porosity and permeability of fine-grained reservoirs lead to small differences in capillary force compared with surrounding rocks small and insufficiency of dynamic force for hydrocarbon accumulation; the critical condition for hydrocarbon entering reservoir is that the interfacial potential in the surrounding rock (Φn must be more than twice of that in the reservoir (Φs; the probability of hydrocarbon reservoirs distribution decreases in cases where the hydrodynamic force is too high or too low and when the rocks have too coarse or too fine grains.

  13. Application of chemical tools to evaluate phytoremediation of weathered hydrocarbons

    International Nuclear Information System (INIS)

    Camp, H.; Kulakow, P.; Smart, D.R.; O'Reilly, K.

    2002-01-01

    The effectiveness of using phytoremediation methods to treat soils contaminated with hydrocarbons was tested in a three-year study at a site in northern California at a treatment pond for refinery process water. The treatment pond was drained several years ago and is targeted for cleanup. The petroleum hydrocarbons from the refinery waste were already highly degraded from natural weathering processes by the time the study began. The soil consists of about 23 per cent sand, 38 per cent silt, and 39 per cent clay. The study followed the Environmental Protection Agency's standardized field protocol and analytical approach. During the study, chemical data for several hydrocarbon parameters was gathered. Soil samples were Soxhlet-extracted in organic solvent and measured for oil and grease and total petroleum hydrocarbons using gravimetric techniques. One of the objectives was to develop an accurate quantitative way to identify sites and conditions where phytoremediation will be effective to supplement decision-tree-type approaches. The focus of the study is the application of chemical data in evaluating the effectiveness of the treatment process. Phytoremediation uses living plants for in situ remediation of polluted soils. The basic benefits of the techniques is that it is aesthetically pleasing, natural and passive. In addition, it is effective in cleaning up sites with low to moderate levels of pollution at shallow depths. A particular form of phytoremediation called rhizodegradation or enhanced rhizosphere biodegradation was the treatment used in this study. It is a treatment in which microorganisms digest organic substances and beak them down by biodegradation while being supported in the plant root structure. Test results indicate that the effects of phytoremediation treatments are subtle for highly weathered source material. It was noted that more statistical analysis will be performed with the data to determine compositional changes due to phytoremediation

  14. Comparison of concentrations and profiles of polycyclic aromatic hydrocarbon metabolites in bile of fishes from offshore oil platforms and natural reefs along the California coast

    Science.gov (United States)

    Gale, Robert W.; Tanner, Michael J.; Love, Milton S.; Nishimoto, Mary M.; Schroeder, Donna M.

    2012-01-01

    To determine the environmental consequences of decommissioning offshore oil platforms on local and regional fish populations, contaminant loads in reproducing adults were investigated at seven platform sites and adjacent, natural sites. Specimens of three species (Pacific sanddab, Citharichthys sordidus; kelp rockfish, Sebastes atrovirens; and kelp bass, Paralabrax clathratus) residing at platforms and representing the regional background within the Santa Barbara Channel and within the San Pedro Basin were collected. Some of the most important contaminant classes related to oil operations are polycyclic aromatic hydrocarbons (PAHs) because of their potential toxicity and carcinogenicity. However, acute exposure cannot be related directly to PAH tissue concentrations because of rapid metabolism of the parent chemicals in fish; therefore, PAH metabolites in bile were measured, targeting free hydroxylated PAHs (OH-PAHs) liberated by enzymatic hydrolysis of the bound PAH glucuronides and sulfates. An ion-pairing method was developed for confirmatory analysis that targeted PAH glucuronides and sulfates. Concentrations of hydroxylated PAHs in all samples (76 fish from platforms and 64 fish from natural sites) were low, ranging from less than the limits of detection (5 to 120 nanograms per milliliter bile; 0.03 to 42 nanograms per milligram protein) to a maximum of 320 nanograms per milliliter bile (32 nanograms per milligram protein). A previously proposed dosimeter of PAH exposure in fish, 1-hydroxypyrene, was not detected at any platform site. Low concentrations of 1-hydroxypyrene were detected in 3 of 12 kelp rockfish collected from a natural reef site off Santa Barbara. The most prevalent OH-PAH, 2-hydroxyfluorene, was detected at low concentrations in seven fish of various species; of these, four were from two of the seven platform sites. The greatest concentrations of 2-hydroxyfluorene were found in three fish of various species from Platform Holly and were only

  15. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  16. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation.

    Science.gov (United States)

    Kark, Salit; Brokovich, Eran; Mazor, Tessa; Levin, Noam

    2015-12-01

    Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation-related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide-ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi-billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra-deep hydrocarbon industry for deep-sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade-offs among multiple objectives, costs, and risks. © 2015 Society for Conservation Biology.

  17. The bacterial community structure of hydrocarbon-polluted marine environments as the basis for the definition of an ecological index of hydrocarbon exposure.

    Science.gov (United States)

    Lozada, Mariana; Marcos, Magalí S; Commendatore, Marta G; Gil, Mónica N; Dionisi, Hebe M

    2014-09-17

    The aim of this study was to design a molecular biological tool, using information provided by amplicon pyrosequencing of 16S rRNA genes, that could be suitable for environmental assessment and bioremediation in marine ecosystems. We selected 63 bacterial genera that were previously linked to hydrocarbon biodegradation, representing a minimum sample of the bacterial guild associated with this process. We defined an ecological indicator (ecological index of hydrocarbon exposure, EIHE) using the relative abundance values of these genera obtained by pyrotag analysis. This index reflects the proportion of the bacterial community that is potentially capable of biodegrading hydrocarbons. When the bacterial community structures of intertidal sediments from two sites with different pollution histories were analyzed, 16 of the selected genera (25%) were significantly overrepresented with respect to the pristine site, in at least one of the samples from the polluted site. Although the relative abundances of individual genera associated with hydrocarbon biodegradation were generally low in samples from the polluted site, EIHE values were 4 times higher than those in the pristine sample, with at least 5% of the bacterial community in the sediments being represented by the selected genera. EIHE values were also calculated in other oil-exposed marine sediments as well as in seawater using public datasets from experimental systems and field studies. In all cases, the EIHE was significantly higher in oiled than in unpolluted samples, suggesting that this tool could be used as an estimator of the hydrocarbon-degrading potential of microbial communities.

  18. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  19. Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid-liquid partition in totally organic biphasic systems.

    Science.gov (United States)

    Ariyasena, Thiloka C; Poole, Colin F

    2014-09-26

    Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  1. Moral Relations in Encounters with Nature

    Science.gov (United States)

    Andersson, Karin; Öhman, Johan

    2015-01-01

    The overall aim of this article is to develop in-depth knowledge about the connection between outdoor experiences and moral attitudes towards nature. The study focuses on processes in which moral relations are at stake in encounters between students and nature. The purpose is to identify such events, describe their specific circumstances and…

  2. Low-maturity Kulthieth Formation coal : a possible source of polycyclic aromatic hydrocarbons in benthic sediment of the Northern Gulf of Alaska

    International Nuclear Information System (INIS)

    Van Kooten, G.K.; Short, J.W.; Kolak, J.J.

    2002-01-01

    This study addressed the issue of sources of hydrocarbons for benthic sediments in the Gulf of Alaska (GOA) with particular reference to the application of forensic geology to identify end members and to explain the geologic setting and processes affecting the system. Native coals and natural seep oils have been questioned in the past decade as possible sources of background hydrocarbons because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Native coal has also been dismissed as a pollution source because ratios of labile hydrocarbons to total organic carbon for Bering River coal field (BRCF) sources are too low to be consistent with GOA sediments. The authors present evidence that perhaps native coal has been prematurely dismissed as a pollution source because BRCF coals do not represent adequately the geochemical signatures of coals elsewhere in the Kulthieth Formation which have much higher PAH:TOC ratios. The patterns of labile hydrocarbons in these low thermal maturity coals indicate a genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analysis of the coal suggests it is a significant source of PAH, and it was cautioned that source models that do not include this source will underestimate the contribution of native coals to the background hydrocarbon signature in the Gulf of Alaska. 32 refs., 2 tabs., 8 figs

  3. Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans.

    Science.gov (United States)

    Reunamo, Anna; Riemann, Lasse; Leskinen, Piia; Jørgensen, Kirsten S

    2013-07-15

    The natural petroleum hydrocarbon degrading capacity of the Archipelago Sea water in S-W Finland was studied in a microcosm experiment. Pristine and previously oil exposed sites were examined. Bacterial community fingerprinting was performed using terminal restriction fragment length polymorphism (T-RFLP) and samples from selected microcosms were sequenced. The abundance of PAH degradation genes was measured by quantitative PCR. Bacterial communities in diesel exposed microcosms diverged from control microcosms during the experiment. Gram positive PAH degradation genes dominated at both sites in situ, whereas gram negative PAH degrading genes became enriched in diesel microcosms. The dominant bacterial groups after a 14 days of diesel exposure were different depending on the sampling site, belonging to the class Actinobacteria (32%) at a pristine site and Betaproteobacteria (52%) at a previously oil exposed site. The hydrocarbon degrading bacteria in the Baltic Sea differ from those in the oceans, where most hydrocarbon degraders belong to Gammaproteobacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Detection of hydrocarbons in irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Maitani, Tamio; Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko; Kobayashi, Yasuo; Ito, Hitoshi

    2003-01-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  5. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  6. Hydrocarbon composition and distribution in a coastal region under influence of oil production in northeast Brazil.

    Science.gov (United States)

    Wagener, Angela de L R; Carreira, Renato S; Hamacher, Claudia; Scofield, Arthur de L; Farias, Cassia O; Cordeiro, Lívia G M S; Luz, Letícia G; Baêta, Aída P; Kalas, Francine A

    2011-08-01

    Waters and sediments from the Potiguar Basin (NE Brazilian coast) were investigated for the presence and nature of polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons. The region receives treated produced waters through a submarine outfall system serving the industrial district. The total dispersed/dissolved concentrations in the water column ranged from 10-50 ng L(-1) for ∑16PAH and 5-10 μg L(-1) for total aliphatic hydrocarbons. In the sediments, hydrocarbon concentrations were low (0.5-10 ng g(-1)for ∑16PAH and 0.01-5.0 μg g(-1) for total aliphatic hydrocarbons) and were consistent with the low organic carbon content of the local sandy sediments. These data indicate little and/or absence of anthropogenic influence on hydrocarbon distribution in water and sediment. Therefore, the measured values may be taken as background values for the region and can be used as future reference following new developments of the petroleum industry in the Potiguar Basin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The role of fluid migration system in hydrocarbon accumulation in Maichen Sag, Beibuwan Basin

    Science.gov (United States)

    Liu, Hongyu; Yang, Jinxiu; Wu, Feng; Chen, Wei; Liu, Qianqian

    2018-02-01

    Fluid migration system is of great significance for hydrocarbon accumulation, including the primary migration and secondary migration. In this paper, the fluid migration system is analysed in Maichen Sag using seismic, well logging and core data. Results show that many factors control the hydrocarbon migration process, including hydrocarbon generation and expulsion period from source rocks, microfractures developed in the source rocks, the connected permeable sand bodies, the vertical faults cutting into/through the source rocks and related fault activity period. The spatial and temporal combination of these factors formed an effective network for hydrocarbon expulsion and accumulation, leading to the hydrocarbon reservoir distribution at present. Generally, a better understanding of the hydrocarbon migration system can explain the present status of hydrocarbon distribution, and help select future target zones for oil and gas exploration.

  8. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  9. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  10. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    Science.gov (United States)

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  11. Uranium metallogenic model related to CO2 and hydrocarbon in granite type uranium deposits

    International Nuclear Information System (INIS)

    Ou Guangxi; Chen Anfu; Cui Jianyong; Xu Yinhuan; Wang Chunhua; Xu Yan

    2001-01-01

    The report is concerned with the inseparable connections between the uranium migration, enrichment rule and the geochemical characteristics of CO 2 and hydrocarbon gas, as well as the relations between the deposit locations and the gas abnormal distribution in rocky body, which are based on the analysis of some data and phenomena in 11 typical deposits in 2 granite type uranium ore fields, including the observations of 250 rocky fluid inclusion sections and the analyzed data of which 2470 are in gas composition, 200 in uranium content, 50 in thermometry. All the conclusions are drawn from different angles for the first time and this new exploration and advancement fills up the blank of gas geochemistry study in uranium deposits or other metal deposits

  12. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Fan, Hongyu; Yang, Deming; Sun, Li; Yang, Qi; Niu, Jinhai; Bi, Zhenhua; Liu, Dongping

    2013-01-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10 15 –1.0 × 10 17 ions/cm 2 or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10 17 ions/cm 2 ) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp 2 carbon clusters. The sp 2 carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature

  13. A method for removing sulfur bearing compounds from paraffinous hydrocarbons or a directly distilled benzine fraction

    Energy Technology Data Exchange (ETDEWEB)

    Konyukhova, T.P.; Bolotskaya, I.A.; Mikhaylova, L.A.; Sadykov, A.N.; Shitovkin, N.T.; Vlasov, V.V.

    1983-01-01

    In the known method for removing sulfurorganic compounds from paraffinous hydrocarbons or a directly distilled gasoline fraction through their adsorption using natural zeolite, in order to increase the degree of purification, clinoptilolite (Kp), which contains SiO2 and A12O3 in a molar ratio of 10.6 to 16.7 is used as the natural zeolite. The purification of the paraffinous hydrocarbons through clinoptilolite adsorption as compared with mordenite adsorption makes it possible to increase the degree of their purification of ethylmercaptane and dimethylsulfide. The effectiveness of clinoptilolite is also confirmed in removing mercaptanes and sulfides from directly distilled gasoline fractions.

  14. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  15. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  16. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Benjamin L., E-mail: bmcalexander@trihydro.com

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  17. Fiscal 1996 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for effective use of saturated hydrocarbon, technology for reducing excess of aromatic hydrocarbon, high-grade treatment technology of petroleum coke); 1996 nendo kokusai kenkyu kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (howa tanka suiso no yuko riyo gijutsu, hokozoku tanka suiso no yojo taisaku gijutsu, sekiyu cokes no kodo shori gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: (1) technology for effective use of saturated hydrocarbon, (2) technology for reducing excess of aromatic hydrocarbon, (3) high-grade treatment technology of petroleum coke. In (1), surveys were conducted of technologies of effective use of natural gas and effective use of C4 saturated hydrocarbon. Surveyed were a method for producing synthesis gas from natural gas, a technology to liquefy natural gas into fuel following the synthesis gas production process, a technology to liquefy natural gas into fuel without the synthesis gas production process, and the trend of effective use of C4 saturated hydrocarbon. In (2), surveys were made of process to reduce production of aromatic hydrocarbon as much as possible, process to effectively separate aromatic hydrocarbon, and process to convert excess aromatic hydrocarbon into polymer, etc. In (3), surveys were conducted on petroleum coke and pitch in terms of production methods, the supply/demand situation, property characteristics, usability to new fields, etc. 170 refs., 114 figs., 65 tabs.

  18. A search for direct hydrocarbon indicators in the Formby area

    International Nuclear Information System (INIS)

    Busby, J.P.; Peart, R.J.; Green, C.A.; Ogilvy, R.D.; Williamson, J.P.

    1991-01-01

    It has been proposed that the high- frequency, low-amplitude magnetic anomalies found over some hydrocarbon deposits are due to long-term microseepage of hydrocarbons into iron-rich sedimentary roof rocks, with subsequent precipitation of diagenetic magnetite or pyrrhotite at or near the water-table. Aerogeophysical data sets, comprising both magnetic and gamma-ray spectrometer measurements, over the Formby, oil-field, Lancashire, U.K., have been analyzed for hydrocarbon-related anomalies. Detailed ground magnetic traverses were also made to investigate some of the aeromagnetic anomalies. No hydrocarbon-induced magnetic anomalies were detected. The majority of the high-frequency events occurring in the aeromagnetic data correlated with cultural features, others were attributed to artifacts of the data processing. In particular there were no extensive areas of high-frequency, low-amplitude anomalies as might be expected from authigenic magnetic minerals. Borehole chippings from inside and outside the oil-field were examined. Anomalies were found to be related to hydrological conditions and to the distribution of surficial deposits. Attempts to suppress the influence of the drift geology had only limited success. In this paper, it is concluded that the effectiveness of high-resolution aeromagnetic onshore surveys for direct hydrocarbon detection has yet to be established. In particular, the anomaly found over the Formby oil-field was caused by the cumulative effect of borehole casing. Similar cultural contamination by oil- field equipment may explain some of the anomalies discovered over hydrocarbon deposits in North America. It is also unlikely that the spectromagnetic method can be applied diagnostically in any but the most simple and drift-free geological environments

  19. Biotransformation of monoaromatic hydrocarbons under anoxic conditions

    International Nuclear Information System (INIS)

    Ball, H.A.; Reinhard, M.; McCarty, P.L.

    1991-01-01

    Aromatic hydrocarbons contained in gasoline are environmental pollutants of particular concern since they are relatively soluble in water, many are toxic, and some are confirmed carcinogens, (e.g., benzene). Although most gasoline constituents are readily degraded in aerobic surface water systems, the groundwater environment associated with hydrocarbon spills is typically anaerobic, thus precluding aerobic degradation pathways. In the absence of oxygen, degradation of gasoline components can take place only with the utilization of alternate electron acceptors such as nitrate, sulfate, carbon dioxide, and possibly ferric iron or other metal oxides. Benzene, toluene, and xylene isomers were completely degraded by aquifer- or sewage sludge-derived microorganisms under dentrifying and methanogenic conditions. Recently, a pure culture was found to degrade toluene and m-xylene nitrate or nitrous oxide as an electron acceptor. This paper presents initial results of ongoing study to develop and characterize microbial consortia capable of transforming aromatic hydrocarbons under nitrate-reducing conditions, and understand the effect of environmental factors on the biotransformation processes

  20. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  1. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M. [and others

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from the gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.

  2. Are natural resources bad for health?

    Science.gov (United States)

    El Anshasy, Amany A; Katsaiti, Marina-Selini

    2015-03-01

    The purpose of this paper is to empirically examine whether economic dependence on various natural resources is associated with lower investment in health, after controlling for countries' geographical and historical fixed effects, corruption, autocratic regimes, income levels, and initial health status. Employing panel data for 118 countries for the period 1990-2008, we find no compelling evidence in support of a negative effect of resources on healthcare spending and outcomes. On the contrary, higher dependence on agricultural exports is associated with higher healthcare spending, higher life expectancy, and lower diabetes rates. Similarly, healthcare spending increases with higher mineral intensity. Finally, more hydrocarbon resource rents are associated with less diabetes and obesity rates. There is however evidence that public health provision relative to the size of the economy declines with greater hydrocarbon resource-intensity; the magnitude of this effect is less severe in non-democratic countries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  4. Effects of petroleum hydrocarbons on the growth of a microalga, Isochrysis sp. (Chrysophyta)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Saldanha, M.C.; Rajkumar, R.

    the growth of the alga in a concentration above 10%, while crude oil at a similar concentration had little effect on the growth. Hydrocarbon would cause environmental damage through selective effects on natural biota in the marine environment....

  5. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  6. The cuticular hydrocarbons profiles in the stingless bee Melipona marginata reflect task-related differences.

    Science.gov (United States)

    Ferreira-Caliman, M J; Nascimento, F S; Turatti, I C; Mateus, S; Lopes, N P; Zucchi, R

    2010-07-01

    Members of social insect colonies employ a large variety of chemical signals during their life. Of these, cuticular hydrocarbons are of primary importance for social insects since they allow for the recognition of conspecifics, nestmates and even members of different castes. The objectives of this study were (1) to characterize the variation of the chemical profiles among workers of the stingless bee Melipona marginata, and (2) to investigate the dependence of the chemical profiles on the age and on the behavior of the studied individuals. The results showed that cuticular hydrocarbon profiles of workers were composed of alkanes, alkenes and alkadienes that varied quantitatively and qualitatively according to function of workers in the colony. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  8. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Sun, Li [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics, Liaoning Normal University, Dalian 116023 (China); Yang, Qi; Niu, Jinhai; Bi, Zhenhua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10{sup 15}–1.0 × 10{sup 17} ions/cm{sup 2} or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10{sup 17} ions/cm{sup 2}) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp{sup 2} carbon clusters. The sp{sup 2} carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature.

  9. Hydrocarbon Migration from the Micro to Macro Scale in the Gulf of Mexico

    Science.gov (United States)

    Johansen, C.; Marty, E.; Silva, M.; Natter, M.; Shedd, W. W.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Krajewski, L.; Abrams, M.; MacDonald, I. R.

    2016-02-01

    as these features progress with persistent hydrocarbon influx. Bottom features along with seismic data, bubble release rates and bubble composition (oily vs gaseous), are implemented into our model to describe the relative vent age and dynamic mechanisms of hydrocarbon migration at three vertical spatial scales of oily and gaseous natural seeps in the GoM.

  10. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  11. A safe, efficient and cost effective process for removing petroleum hydrocarbons from a highly heterogeneous and relatively inaccessible shoreline.

    Science.gov (United States)

    Guerin, Turlough F

    2015-10-01

    A rocky, intractable and highly heterogeneous, intertidal zone, was contaminated from a diesel fuel spill that occurred during refuelling of a grader used in road construction, on an operational mine's shiploading facility. A practical, cost-effective, and safer (to personnel by avoiding drilling and earthworks), and non-invasive sampling and remediation strategy was designed and implemented since the location and nature of the impacted geology (rock fill) and sediment, precluded conventional ex-situ and any in-situ treatment where drilling would be required. Enhanced biostimulation with surfactant, available N & P (which were highly constrained), and increased aeration, increased the degradation rate from no discernable change for 2 years post-spill, to 170 mg/kg/day; the maximum degradation rate after intervention. While natural attenuation was ineffective in this application, the low-cost, biostimulation intervention proved successful, allowing the site owner to meet their regulatory obligations. Petroleum hydrocarbons (aliphatic fraction) decreased from ∼20,000 mg/kg to <200 mg/kg at the completion of 180 weeks of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Total organic carbon, an important tool in an holistic approach to hydrocarbon source fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, P.D.; Burns, W.A.; Page, D.S.; Bence, A.E.; Mankiewicz, P.J.; Brown, J.S.; Douglas, G.S. [Battelle Member Inst., Waltham, MA (United States)

    2002-07-01

    The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.

  13. Characterization and analysis of Devonian shales as related to release of gaseous hydrocarbons. Well V-7 Wetzel County, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Kalyoncu, R.S.; Boyer, J.P.; Snyder, M.J.

    1979-08-15

    This program was initiated in September 1976, with the objective and scope of determining the relationships between the shale characteristics, hydrocarbon gas contents, and well location, and thereby provide a sound basis for (1) assessing the productive capacity of the Eastern Devonian Gas Shale deposits, and (2) guiding research, development and demonstration projects to enhance the recovery of natural gas from the shale deposits. Included in the scope of the program are a number of elemental tasks as a part of the Resource Inventory and Shale Characterization subprojects of DOE's Eastern Gas Shales Project designed to provide large quantities of support data for current and possibly future needs of the Project.

  14. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  15. 'Mussel Watch' and chemical contamination of the coasts by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) enter the coastal marine environment from three general categories of sources; pyrogenic, petrogenic (or petroleum), and natural diagenesis. PAH from different sources appear to have differential biological availability related to how the PAH are sorbed, trapped, or chemically bound to particulate matter, including soot. Experience to date with bivalve sentinel organism, or 'Mussel Watch', monitoring programs indicates that these programs can provide a reasonable general assessment of the status and trends of biologically available PAH in coastal ecosystems. As fossil fuel use increases in developing countries, it is important that programs such as the International Mussel Watch Program provide assessments of the status and trends of PAH contamination of coastal ecosystems of these countries. (author)

  16. Susceptibility of eastern oyster early life stages to road surface polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...

  17. A holistic approach to hydrocarbon source allocation in the subtidal sediments of Prince William Sound, Alaska, embayments

    International Nuclear Information System (INIS)

    Page, D.S.; Bence, A.E.; Burns, W.A.; Boehm, P.D.; Brown, J.S.; Douglas, G.S.

    2002-01-01

    The complex organic geochemistry record in the subtidal sediments of Prince William Sound, Alaska is a result of much industrial and human activity in the region. Recent oil spills and a regional background of natural petroleum hydrocarbons originating from active hydrocarbon systems in the northern Gulf of Alaska also contribute to the geochemical record. Pyrogenic and petrogenic polycyclic aromatic hydrocarbons (PAH) are introduced regularly to the subtidal sediments at sites of past and present human activities including villages, fish hatcheries, fish camps and recreational campsites as well as abandoned settlements, canneries, sawmills and mines. Hydrocarbon contributions are fingerprinted and quantified using a holistic approach where contributions from multiple sources is determined. The approach involves a good understanding of the history of the area to identify potential sources. It also involves extensive collection of representative samples and an accurate quantitative analysis of the source and sediment samples for PAH analytes and chemical biomarker compounds. Total organic carbon (TOC) does not work in restricted embayments because of a constrained least-square algorithm to determine hydrocarbon sources. It has been shown that sources contributing to the natural petrogenic background are present in Prince William Sound. In particular, pyrogenic hydrocarbons such as combustion products of diesel is significant where there was much human activity. In addition, petroleum produced from the Monterey Formation in California is present in Prince William Sound because in the past, oil and asphalt shipped from California was widely used for fuel. Low level residues of weathered Alaskan North Slope crude oil from the Exxon Valdez spill are also still present. 30 refs., 4 tabs., 2 figs

  18. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  19. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  20. 40 CFR 86.1321-94 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... good example of trading off response on propane for relative responses to other hydrocarbon species is... known volume of methanol is injected, using a microliter syringe, into the heated mixing zone (250 °F...

  1. Enhancement of spilled oil biodegradation by nutrients of natural origin

    International Nuclear Information System (INIS)

    Basseres, A.; Eyraud, P.; Ladousse, A.; Tramier, B.

    1993-01-01

    Ten years ago, Elf Aquitaine began developing the technologies for the acceleration of hydrocarbon biodegradation. The continuation of this work has involved the study of new additives to complement the oleophilic nutrient, INIPOL EAP 22. In particular, it has been shown in both laboratory and in situ tests that hydrocarbon degradation can be accelerated by animal meals, which are natural products. Preliminary laboratory studies carried out under batch conditions have shown that the use of these products has resulted in considerable growth of the bacteria, coupled with a notable increase in the biological degradation kinetics of the hydrocarbons. These results are comparable with the performance of the nutrient INIPOL EAP 22. In situ experiments undertaken on soils polluted by hydrocarbons have shown that by using animal meals, 50 percent biodegradation was obtained after six weeks and this increased to 80 percent when mechanical aeration was also employed. Under nutrient-free control conditions, 25 percent biodegradation was obtained with no aeration and 35 percent with mechanical aeration. In trials using coastal sandy sediments, the use of these nutrients has resulted in an increase of both the number of hydrocarbon specific bacteria and the hydrocarbon degradation. It can be concluded from these pilot experiments that in the development of bioremediation as an operational tool in the response to accidental oil spills, these nutrients of natural origin represent an interesting advance

  2. Evaluation of hydrocarbon-liquid disposition. Topical report, July 1990-November 1990

    International Nuclear Information System (INIS)

    Gibbs, J.E.; Tannehill, C.C.

    1991-08-01

    The report examines the current practice and technology used in natural gas liquids (NGL) extraction in small scale gas processing facilities. The removal of NGLs from a natural gas stream is driven by two factors: (1) hydrocarbon dew point and heating value control; and (2) economic recovery of the NGLs. Wellhead condensates are purchased at a price per barrel adjusted for transportation costs. Water is disposed of by truck at an approximate cost of $1.00 per barrel. Natural gas with a BTU content greater than 1150 normally will require NGL extraction prior to pipeline delivery. NGL recovery, if not required for hydrocarbon dew point or heating value control, must be justified by the value of the liquids exceeding the sum of the following costs: BTU value of the liquids; fuel consumed in the process; operating costs for the plant; and return of the plant investment capital. Liquids are purchased based on component posted prices with the cost of transportation, component fractionation and marketing subtracted. Rich gas in small quantities is normally processed in a straight refrigeration plant. Leaner gas in larger quantities is normally processed in a cryogenic expansion plant. With current technology, there is not sufficient margin to treat lean gases on a small scale

  3. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  4. A review of case histories of induced seismicity caused by hydrocarbon production and storage

    International Nuclear Information System (INIS)

    Vadillo Fernández, L.; Fernández Naranjo, F.J.; Rodríguez Gómez, V.; López Gutiérrez, J.

    2017-01-01

    In this article we review the stress-strain relationships that take place in the crust during some of the main hydrocarbon production and storage processes: gas extraction; water injection in wells to stimulate the extraction of oil (EOR); unconventional hydrocarbon production by hydraulic fracturing (fracking); disposal of wastewater (saline water) from the extraction of conventional and unconventional hydrocarbons such as saline water return (flowback) of hydraulic fracturing, both with TDS higher than 40000 mg/L. In addition, the type of faults that are more likely to slip and the induced seismicity related to the production and extraction of hydrocarbons are analysed. [es

  5. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    Science.gov (United States)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    positively correlated with the carbohydrate fraction and negatively correlated with the aliphatic fraction of the soil C, while carbohydrate-C and alkyl-C increased and decreased with distance from the road, respectively. It is proposed that petroleum hydrocarbons supress soil biological activity at concentrations above 1500 mg kg-1, and that soil organic matter priming primarily affects the carbohydrate fraction of soil organic matter. It can be concluded that the abundance of solid carbohydrates (O-alkyl C) is of paramount importance for the hydrocarbon mineralization under natural conditions, compared to more recalcitrant SOM fractions (mainly aromatic and alkyl C). References Mykhailova, L., Fischer, T., Iurchenko, V. (2013) Distribution and fractional composition of petroleum hydrocarbons in roadside soils. Applied and Environmental Soil Science, vol. 2013, Article ID 938703, 6 pages, DOI 10.1155/2013/938703 Mykhailova, L., Fischer, T., Iurchenko, V. (2014) Deposition of petroleum hydrocarbons with sediment trapped in snow in roadside areas. Journal of Environmental Engineering and Landscape Management 22(3):237-244, DOI 10.3846/16486897.2014.889698 Nelson P.N. and Baldock J.A. (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses, 2005, Biogeochemistry (2005) 72: 1-34, DOI 10.1007/s10533-004-0076-3 Zyakun, A., Nii-Annang, S., Franke, G., Fischer, T., Buegger, F., Dilly, O. (2011) Microbial Actvity and 13C/12C Ratio as Evidence of N-Hexadecane and N-Hexadecanoic Acid Biodegradation in Agricultural and Forest Soils. Geomicrobiology Journal 28:632-647, DOI 10.1080/01490451.2010.489922

  6. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  7. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  8. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  9. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  10. Hydrocarbons conversions over mineral ion-exchangers used in uranium ore waste treatment

    International Nuclear Information System (INIS)

    Azzouz, A.

    1988-05-01

    Preliminary experiments were carried out in order to investigate catalytic activities in hydrocarbons reactions of natural and synthetic zeolites previously loaded with heavy elements as lanthanides and actinides in yellow cake treatment. This way could be considered as an interesting low coast alternative in revalorifying these mineral ion-exchangers. (author)

  11. Process for producing volatile hydrocarbons from hydrocarbonaceous solids

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-03

    In a process for producing volatile hydrocarbons from hydrocarbonaceous solids, a hydrocarbonaceus solid is passed in subdivided state and in the form of a bed downwardly through an externally unheated distilling retort wherein the evolution of volatiles from the bed is effected while solid material comprising combustible heavy residue is discharged from the lower portion of the bed and retort, combustibles are burned from the discharged solid material. The admixture resultant combustion gases with the vapours evolved in the retort is prevented, and a stream of hydrocarbon fluid is heated by indirect heat exchange with hot combustion gases produced by burning to a high temperature and is introduced into the distilling retort and direct contact with bed, supplying heat to the latter for effecting the evolution of volatiles from the hydrocarbonaceous solid. The improvement consists of subjecting the volatile distillation products evolved and removed from the bed to a fractionation and separating selected relatively light and heavy hydrocarbon fractions from the distillation products, withdrawing at least one of the selected fractions from the prcess as a product heating at least one other of the selected fractions to high temperature by the indirect heat exchange with hot combustion gases, and introducing the thus heated hydrocarbon fraction into direct contact with the bed.

  12. The pulsed migration of hydrocarbons across inactive faults

    Directory of Open Access Journals (Sweden)

    S. D. Harris

    1999-01-01

    Full Text Available Geological fault zones are usually assumed to influence hydrocarbon migration either as high permeability zones which allow enhanced along- or across-fault flow or as barriers to the flow. An additional important migration process inducing along- or across-fault migration can be associated with dynamic pressure gradients. Such pressure gradients can be created by earthquake activity and are suggested here to allow migration along or across inactive faults which 'feel' the quake-related pressure changes; i.e. the migration barriers can be removed on inactive faults when activity takes place on an adjacent fault. In other words, a seal is viewed as a temporary retardation barrier which leaks when a fault related fluid pressure event enhances the buoyancy force and allows the entry pressure to be exceeded. This is in contrast to the usual model where a seal leaks because an increase in hydrocarbon column height raises the buoyancy force above the entry pressure of the fault rock. Under the new model hydrocarbons may migrate across the inactive fault zone for some time period during the earthquake cycle. Numerical models of this process are presented to demonstrate the impact of this mechanism and its role in filling traps bounded by sealed faults.

  13. Mathematical approaches in deriving hydrocarbons expressions from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Farfour, Mohammed; Yoon, Wang Jung; Yoon-Geun [Geophysical Prospecting Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of); Lee, Jeong-Hwan [Petroleum Engineering & Reservoir Simulation Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of)

    2016-06-08

    Defining and understanding hydrocarbon expressions in seismic expression is main concern of geoscientists in oil and gas exploration and production. Over the last decades several mathematical approaches have been developed in this regard. Most of approaches have addressed information in amplitude of seismic data. Recently, more attention has been drawn towards frequency related information in order to extract frequency behaviors of hydrocarbons bearing sediments. Spectrally decomposing seismic data into individual frequencies found to be an excellent tool for investigating geological formations and their pore fluids. To accomplish this, several mathematical approaches have been invoked. Continuous wavelet transform and Short Time Window Fourier transform are widely used techniques for this purpose. This paper gives an overview of some widely used mathematical technique in hydrocarbon reservoir detection and mapping. This is followed by an application on real data from Boonsville field.

  14. REGIONAL MAGNETOTELLURIC SURVEYS IN HYDROCARBON EXPLORATION, PARANA BASIN, BRAZIL.

    Science.gov (United States)

    Stanley, William D.; Saad, Antonio; Ohofugi, Walter

    1985-01-01

    The mangetotelluric geophysical method has been used effectively as a hydrocarbon exploration tool in the intracratonic Parana basin of South America. The 1-2 km thick surface basalts and buried diabase sills pose no problem for the magnetotelluric method because the natural electromagnetic fields used as the energy source pass easily through the basalt. Data for the regional study were taken on six profiles with sounding spaced 8 to 15 km apart. The magnetotelluric sounding data outline a linear uplift known as the Ponta Grossa arch. This major structural feature cuts across the northeast-trending intracratonic basin almost perpendicularly, and is injected with numerous diabase dikes. Significant electrical contrasts occur between the Permian sediments and older units, so that magnetotelluric measurements can give an indication of the regional thickness of the Permian and younger sediments to aid in interpreting hydrocarbon migration patterns and possible trap areas. Refs.

  15. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  16. Hydrocarbon Status of Alluvial Soils in the Istra Morphostructural Node (Moscow Oblast)

    Science.gov (United States)

    Pikovskiy, Yu. I.; Gennadiev, A. N.; Kovach, R. G.; Khlynina, N. I.; Khlynina, A. V.

    2017-12-01

    The effect of the current block structure of the earth's crust and its most active sites (morphostructural nodes) on the natural hydrocarbon status of alluvial soils has been considered. Studies have been performed in the Istra district of Moscow oblast within the Istra morphostructural node. The node represents an area of increased geodynamic activity of the earth's crust located at the convergence or intersection of block boundaries: mobile linear zones following large river valleys with alluvial soils. Soil cover mainly consists of alluvial humic-gley soils (Eutric Gleyic Fluvisols) of different depths and alluvial mucky-gley soils (Eutric Gleyic Histic Fluvisols). Some soils manifest stratification. Two factors forming the hydrocarbon status of soils are considered: soil processes and the effect of geodynamic activity, which is manifested within the morphostructural node. The contents of bitumoids and retained methane and butanes in alluvial soils appreciably increase at the entry of river valley into the node. The occurrence frequency of 5-6-ring polycyclic aromatic hydrocarbons (perylene and benzo[ghi]perylene) in mineral horizons increases. It has been concluded that alluvial soils within the Istra morphostructural node are characterized by the biogeochemical type of hydrocarbon status with signs of emanation type at sites with the highest geodynamic activity.

  17. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer

    Science.gov (United States)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Lee, Kang-Kun; Lee, Seok-Young; Lee, Min-Hyo

    2001-07-01

    The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.

  18. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    Perez, M.; Gonzalez, D.

    1988-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs

  20. Acute toxicity and effect of some petroleum hydrocarbon on the metabolic index in Etroplus suratensis

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A; Farshchi, P.

    lowest for naphthalene, suggesting that this hydrocarbon is most toxic. The oxygen consumption reduced significantly after 6 hours in all the cases. The reduction in oxygen consumption was maximum in naphthalene, reaffirming its high toxic nature...

  1. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  2. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    under field conditions in the bioremediation of a petroleum- hydrocarbon polluted ... an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil ..... 12) Jackson, M.L. Soil chemical analysis. ... biological assay. 3 rd.

  3. Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions

    Science.gov (United States)

    Kim, C.; Ko, K.; Son, J.; Kim, J.

    2008-12-01

    One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the

  4. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories

    OpenAIRE

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L.; Díaz-Ramírez, Ildefonso J.

    2015-01-01

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and

  5. God, design, and naturalism: Implications of methodological naturalism in science for science-religion relation

    OpenAIRE

    Piotr Bylica; Dariusz Sagan

    2015-01-01

    The aim of this paper is to analyze the implications flowing from adopting methodological naturalism in science, with special emphasis on the relation between science and religion. Methodological naturalism, denying supernatural and teleological explanations, influences the content of scientific theories, and in practice leads to vision of science as compatible with ontological naturalism and in opposition to theism. Ontological naturalism in turn justifies the acceptance of methodological na...

  6. Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis.

    Science.gov (United States)

    Olivera, Nelda L; Nievas, Marina L; Lozada, Mariana; Del Prado, Guillermo; Dionisi, Hebe M; Siñeriz, Faustino

    2009-01-01

    Biosurfactant-producing bacteria belonging to the genera Alcanivorax, Cobetia and Halomonas were isolated from marine sediments with a history of hydrocarbon exposure (Aristizábal and Gravina Peninsulas, Argentina). Two Alcanivorax isolates were found to form naturally occurring consortia with strains closely related to Pseudomonas putida and Microbacterium esteraromaticum. Alkane hydroxylase gene analysis in these two Alcanivorax strains resulted in the identification of two novel alkB genes, showing 86% and 60% deduced amino acid sequence identity with those of Alcanivorax sp. A-11-3 and Alcanivorax dieselolei P40, respectively. In addition, a gene homologous to alkB2 from Alcanivorax borkumensis was present in one of the strains. The consortium formed by this strain, Alcanivorax sp. PA2 (98.9% 16S rRNA gene sequence identity with A. borkumensis SK2(T)) and P. putida PA1 was characterized in detail. These strains form cell aggregates when growing as mixed culture, though only PA2 was responsible for biosurfactant activity. During exponential growth phase of PA2, cells showed high hydrophobicity and adherence to hydrocarbon droplets. Biosurfactant production was only detectable at late growth and stationary phases, suggesting that it is not involved in initiating oil degradation and that direct interfacial adhesion is the main hydrocarbon accession mode of PA2. This strain could be useful for biotechnological applications due to its biosurfactant production, catabolic and aggregation properties.

  7. Age estimation of Calliphora (Diptera: Calliphoridae) larvae using cuticular hydrocarbon analysis and Artificial Neural Networks

    OpenAIRE

    Moore, H E; Butcher, J B; Adam, C D; Day, C R; Falko, P D

    2016-01-01

    Cuticular hydrocarbons were extracted daily from the larvae of two closely related blowflies Calliphora vicina and Calliphora vomitoria (Diptera: Calliphoridae). The hydrocarbons were then analysed using Gas Chromatography–Mass Spectrometry (GC–MS), with the aim of observing changes within their chemical profiles in order to determine the larval age. The hydrocarbons were examined daily for each species from 1 day old larvae until pupariation. The results show significant chemical changes occ...

  8. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  9. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  10. Correlation between the solubility of aromatic hydrocarbons in water and micellar solutions, with their normal boiling points

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Powell, J.R.; Thomas, J.K.

    1979-01-01

    A linear correlation between the logarithm of the solubility in water of aromatic hydrocarbons and their normal boiling points is shown. Similarly, the logarithm of the distribution ratio of aromatic hydrocarbons in aqueous micellar solution is shown to be linearly related to the boiling points of the hydrocarbons. 2 figures, 2 tables

  11. Hydrocarbons in the suspended matter and the bottom sediments in different regions of the Black Sea Russian sector

    Directory of Open Access Journals (Sweden)

    I. A. Nemirovskaya

    2017-08-01

    Full Text Available Content and composition of hydrocarbons (mainly the aliphatic ones in the suspended matter and the bottom sediments in the Gelendzhik Bay, the Big Sochi water area, the Feodosiya Bay and the Black Sea central part are defined and compared with the total organic carbon and chlorophyll a contents. It is shown that the aliphatic hydrocarbon concentrations exceeding the background ones are found only in the coastal zone. Advancing to the pelagic zone is accompanied by sharp decrease of their concentrations. Petroleum and pyrogenic hydrocarbons are mainly manifested in the polycyclic aromatic hydrocarbons composition. Influence of construction of the Olympic facilities upon distribution of hydrocarbons in the Big Sochi water area was of short duration, and already by 2015 the aliphatic hydrocarbons concentration decreased, on the average, up to 24 µg/l in the surface waters, and up to 18 µg/g – in the bottom sediments. Accumulation of hydrocarbons took place in bottom sediments, where their concentrations exceeded the background ones in terms of dry weight. In the Gelendzhik Bay, their content reached 252 μg/g, and in the composition of organic carbon (Corg > 1 %, which may indicate the contamination of sediments with oil products. In the Feodosiya Bay their part in the composition of Corg did not exceed 0.73 % and was 0.35 % on average. Natural alkanes dominated in the composition of aliphatic hydrocarbons. The bottom sediments are characterized by the predominance of odd high-molecular terrigenous alkanes. The content of polycyclic aromatic hydrocarbons in the studied sediments was rather low: up to 31 ng/g in the Gelendzhik Bay, up to 348 ng/g in the Feodosiya Bay. These concentrations according to the EPA classification are considered background, or minor petroleum hydrocarbons increase the level of aliphatic hydrocarbons in water and sediments, thus creating a modern hydrocarbon background.

  12. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil.

    Science.gov (United States)

    Han, Tao; Zhao, Zhipeng; Bartlam, Mark; Wang, Yingying

    2016-11-01

    Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.

  13. Analysis of carbon stable isotope to determine the origin and migration of gaseous hydrocarbon in the Brazilian sedimentary basins

    International Nuclear Information System (INIS)

    Takaki, T.; Rodrigues, R.

    1986-01-01

    The carbon isotopic composition of natural gases to determine the origin and gaseous hydrocarbon migration of Brazilian sedimentar basins is analysed. The carbon isotopic ratio of methane from natural gases depends on the process of gas formation and stage of organic matter maturation. In the geochemical surface exploration the biogenic gases are differentiated from thermogenic gases, because the last one is isotopically heavier. As the isotopic composition of methane has not changed during migration, the migrated gases from deeper and more mature source rocks are identified by its relative 13 C enrichment. The methane was separated from chromatography and and the isotopic analysis was done with mass spectrometer. (M.C.K.) [pt

  14. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  15. The Amoco CadizOil Spill: Evolution of Petroleum Hydrocarbons in the Ile Grande Salt Marshes (Brittany) after a 13-year Period

    Science.gov (United States)

    Mille, G.; Munoz, D.; Jacquot, F.; Rivet, L.; Bertrand, J.-C.

    1998-11-01

    The Ile Grande salt marshes (Brittany coast) were polluted by petroleum hydrocarbons after theAmoco Cadizgrounding in 1978. Thirteen years after the oil spill, sediments were analysed for residual hydrocarbons in order to monitor the aliphatic and aromatic hydrocarbon signatures and to assess both qualitatively and quantitatively the changes in composition of theAmoco Cadizoil. Six stations were selected in the Ile Grande salt marshes and sediments were sampled to a depth of 20 cm. For each sample, the hydrocarbon compositions were determined for alkanes, alkenes, aromatics and biomarkers (terpanes, steranes, diasteranes). Hydrocarbon levels drastically decreased between 1978 and 1991, but to different extents according to the initial degree of contamination. In 1991, hydrocarbon concentrations never exceeded 1·7 g kg-1sediment dry weight, and in most cases were less than 0·1 g kg-1sediment dry weight. Even though petroleum hydrocarbons are still present, natural hydrocarbons were also detected at several stations. Changes in some biomarker distributions were observed 13 years after the oil spill. Nevertheless, most of the biomarkers are very stable in the salt marsh environment and remain unaltered even after a 13-year period.

  16. He+ irradiation temperature influence on the structure and nanohardness of hydrocarbon films

    International Nuclear Information System (INIS)

    Fan, Hongyu; Yang, Deming; Sun, Li; Yang, Qi; Niu, Jinhai; Guo, Liping; Chen, Jihong; Bi, Zhenhua; Liu, Dongping

    2013-01-01

    Polymer-like hydrocarbon films were irradiated with 100 keV He + or annealed at sample temperatures varying from 25 to 600 °C. The effects of sample temperature on the structure and nanohardness of hydrocarbon films are investigated by atomic force microscopy (AFM), AFM-based nanoindentation, Fourier transform infrared spectroscopy, and Raman spectroscopy. Analysis shows that annealing results in the decrease in the nanohardness of hydrocarbon films from 4.0 GPa to 0.55 GPa while He + irradiation at an elevated sample temperature results in the formation of dense diamond-like carbon films with nanohardness up to 20.0 GPa. This indicates that polymer-like hydrocarbon films can be transformed into the hard diamond-like carbon films with a relatively low H content on vacuum vessels of fusion devices due to the energetic bombardments at an elevated wall temperature

  17. Geochemical characteristics of natural gas in the hydrocarbon accumulation history, and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available The analysis of hydrocarbon generation, trap formation, inclusion homogenization temperature, authigenic illite dating, and ESR dating were used to understand the history of hydrocarbon accumulation and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin. The results show the hydrocarbon accumulation mainly occurred during the Jurassic and Cretaceous periods; they could also be classified into three stages: (1 early hydrocarbon generation accumulation stage, (2 mass hydrocarbon generation accumulation stage before the Himalayan Epoch, (3 and parts of hydrocarbon adjustment and re-accumulation during Himalayan Epoch. The second stage is more important than the other two. The Hydrocarbon accumulation histories are obviously dissimilar in different regions. In western Sichuan Basin, the gas accumulation began at the deposition period of member 5 of Xujiahe Formation, and mass accumulation occurred during the early Middle Jurassic up to the end of the Late Cretaceous. In central Sichuan Basin, the accumulation began at the early Late Jurassic, and the mass accumulation occurred from the middle Early Cretaceous till the end of the Late Cretaceous. In southern Sichuan Basin, the accumulation began at the middle Late Jurassic, and the mass accumulation occurred from the middle of the Late Cretaceous to the end of the Later Cretaceous. The accumulation history of the western Sichuan Basin is the earliest, and the southern Sichuan Basin is the latest. This paper will help to understand the accumulation process, accumulation mechanism, and gas reservoir distribution of the Triassic gas reservoirs in the Sichuan Basin better. Meanwhile, it is found that the authigenic illite in the Upper Triassic formation of Sichuan Basin origin of deep-burial and its dating is a record of the later accumulation. This suggests that the illite dating needs to fully consider illite origin; otherwise the dating results may not accurately

  18. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    Science.gov (United States)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    using fimbriae and pili. Formation of biofilm with biosurfactant characteristics has been observed in Marinobacter cultures and environmental strains in relation to hydrocarbon degradation. Genomic potential exists for the synthesis of biofilm-related carbon and energy storage compounds, e.g. alginate and isoprenoid wax esters, and quorum sensing encoded by the regulatory luxR gene and N-acyl-L-homoserine lactone (AHL) signals. Halotolerance is predicted to be achieved through biosynthesis and/or import of compatible solutes, including glycine betaine, choline, ectoine, sucrose, periplasmic glucans as well as membrane channel activity regulating intracellular sodium, potassium and chloride concentration balance. Gene abundances concur with those observed in sequenced halophilic Halomonas genomes. Defense mechanisms are plentiful and include arsenate, organic solvent, copper, and mercuric resistance, compounds, which frequently occur in oil refinery wastewater. The Marinobacter genomes reflect dynamic environments and diverse interactions with viruses and other bacteria with similar metabolic strategies, as reflected by the large number of integrases and transposases. This study has provided comprehensive genomic insights into the metabolic versatility and predicted environmental impact potential of one of the most ubiquitous bacterial genera.

  19. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  20. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  1. Applying petroleum biomarkers as a tool for confirmation of petroleum hydrocarbons in high organic content soils

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, G.; Martin, E.J.; Waddell, J.; Sandau, C.D. [TRIUM Environmental Solutions, Cochrane, AB (Canada); Denham, G. [Nexen Inc., Calgary, AB (Canada); Samis, M.W. [Great Plains Environmental Management Ltd., Medecine Hat, AB (Canada)

    2009-10-01

    It is often difficult to separate naturally occurring phytogenic organic materials from petrogenic sources in routine gas chromatography flame ionization detection (GC-FID) analyses. Phytogenic compounds include tannins, waxes, terpenes, fats and oils. This study examined the use of petroleum biomarkers as a means of determining the nature, sources, type and geological conditions of the formation of petroleum hydrocarbons (PHCs). The analysis was conducted at a former well site consisting of low-lying peat marshlands that had the potential to interfere with the delineation of PHC impacts. Fourteen boreholes and 8 hand auger holes were placed at the site. Soil samples were analyzed for salinity, metals, and PHC constituents. Biomarker targets included acyclic isoprenoid compounds, polycyclic aromatic hydrocarbon (PAH) compounds, terpanes, hopanes, and triaromatic steranes. A grain-size analysis showed the presence of peat materials within the saturated zone. Results of the study demonstrated the presence of PHC constituents that exceeded applicable guidelines. The biomarker analysis was used to statistically determine site-specific background levels of hydrocarbons. Nearly 3000 tonnes of soil were excavated from the site. It was concluded that site-specific conditions should be taken into consideration when evaluating reclamation targets. 3 refs., 6 figs.

  2. Endophytic and epiphytic hydrocarbon-utilizing bacteria associated with root nodules of legumes

    International Nuclear Information System (INIS)

    Dashti, N.; Khanafer, M.; Radwan, S.S.

    2005-01-01

    nodulated roots than from water supporting disinfected roots from which nodules had been removed. It was concluded that nodule-associated bacteria appear to play a direct role in hydrocarbon attenuation in oily soils. The nodule-associated oil utilizing bacteria are active in situ. Nitrogen fixed by rhizobium cells in the nodule is a source for compound nitrogen needed for mineralizing hydrocarbons by the nodule associated bacteria, including epiphytes. Legume crops appear to be excellent tools for phytoremediating oily sand that is naturally poor in nitrogenous compounds. 16 refs., 9 figs

  3. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    Science.gov (United States)

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  4. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  5. Stability of hydrocarbon systems at thermobaric conditions corresponding to depth down to 50 km

    Science.gov (United States)

    Kutcherov, V.; Kolesnikov, A.; Mukhina, E.; Serovaiskii, A.

    2017-12-01

    Most of the theoretical models show that crude oil stability is limited by the depth of 6-8 km (`oil window'). Commercial discovery of crude oil deposits on the depth more than 10 km in the different petroleum basins worldwide casts doubt on the validity of the above-mentioned theoretical calculations. Therefore, the question at which depth complex hydrocarbon systems could be stable is important not only from fundamental research point of view but has a great practical application. To answer this question a hydrocarbon mixture was investigated under thermobaric conditions corresponding to the conditions of the Earth's lower crust. Experiments were conducted by means of Raman Mössbauer spectroscopy. The results obtained show that the complex hydrocarbon systems could be stable and remain their qualitative and quantitative composition at temperature 320-450 °C and pressure 0.7-1.4 GPa. The oxidizing resistance of hydrocarbon system was tested in the modelled the Earth's crust surrounding. The hydrocarbon system stability at the presence of Fe2O3 strongly confirms that the Earth's crust oxygen fugacity does not influence on petroleum composition. The data obtained broaden our knowledge about the possible range of depths for crude oil and natural gas deposits in the Earth's crust and give us the possibility to revise the depth of petroleum deposits occurrence.

  6. Safety barriers to prevent release of hydrocarbons during production of oil and gas

    OpenAIRE

    Sklet, Snorre; Hauge, Stein

    2004-01-01

    This report documents a set of scenarios related to release of hydrocarbons during production on oil and gas platforms. For each release scenario, initiating events, barrier functions aimed to prevent loss of containment, and barrier systems that realize these barrier functions are identified and described. Safety barriers to prevent release of hydrocarbons during production of oil and gas

  7. Gamma-radiation induced polymerization of methyl methacrylate in aliphatic hydrocarbons: kinetics and evidence for incorporation of hydrocarbon in the polymer chain

    International Nuclear Information System (INIS)

    Mohan, H.; Iyer, R.M.

    1989-01-01

    On γ-radiolysis, the rate of polymerization of methyl methacrylate in hydrocarbon solvents is observed to decrease. It is explained by hydrocarbon entry into the polymer chains. The hydrocarbon entry into the polymer chains is observed to take place at later stages of polymerization and increases with hydrocarbon chain length. The extent of hydrocarbon entry into the polymer chains is estimated by NMR and GLC analysis. It is observed to be equal to ∼ 12% corresponding to ∼ 97 hexadecane molecules in each polymer chain. The IR, DSC, MW determination and radiation effects on the polymer showed evidences for hydrocarbon entry into the polymer. It is explained by chain transfer from the growing polymer radical to the hydrocarbon molecules. The chain transfer constant is determined to be equal to 1 x 10 -2 . (author)

  8. Acute toxicity and effect of some petroleum hydrocarbon on the metabolic index in @iEtroplus suratensis@@

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A; Farshchi, P.

    lowest for naphthalene, suggesting that this hydrocarbon is most toxic. The oxygen consumption reduced significantly after 6 hours in all the cases. The reduction in oxygen consumption was maximum in naphthalene, reaffirming its high toxic nature...

  9. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  10. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  11. Chemical deactivation of Ag/Al2O3 by sulphur for the selective reduction of NOx using hydrocarbons

    International Nuclear Information System (INIS)

    Houel, Valerie; Millington, Paul; Pollington, Stephen; Poulston, Stephen; Rajaram, Raj R.; Tsolakis, Athanasios

    2006-01-01

    The hydrocarbon-SCR activity of Ag/Al 2 O 3 catalysts is severely deactivated after low temperature (350 o C) sulphur ageing in the form of SO 2 exposure. Catalysts aged with SO 2 , NO and hydrocarbon present accumulate a significantly larger amount of SO 4 2- than those aged in the presence of only O 2 , H 2 O and SO 2 when exposed to an equivalent amount of S. Following sulphation of the catalyst most of the sulphur can be removed by a high temperature (600 o C) treatment in the reaction gas. Regeneration in the absence of hydrocarbon is ineffective. The hydrocarbon-SCR activity of the sulphated catalyst using model hydrocarbons such as n-C 8 H 18 can be restored after a high temperature pre-treatment in the reaction gases. However this desulphation process fails to regenerate the hydrocarbon-SCR activity when diesel fuel is used in the activity test. TPR studies show that a major fraction of the sulphur species present in the catalyst is removed by such pre-treatment, but the slight residual amount of sulphur is sufficient to inhibit the activation of the diesel fuel on the Ag catalyst. The nature of the hydrocarbon species present for the hydrocarbon-SCR reaction and during the regeneration strongly influences the activity. In general aromatics such as C 7 H 8 are less effective for reducing NO x and regenerating the sulphated catalyst. (author)

  12. Chlorinated hydrocarbons in a pelagic community

    International Nuclear Information System (INIS)

    Elder, D.; Fowler, S.W.

    1976-01-01

    For several years data have been accruing on the distribution of chlorinated hydrocarbon pollutants in marine ecosystems. An overall picture of ambient levels in biota, water and sediments is now emerging however, despite the vast amount of data collected to date, questions still arise as to whether certain pollutants such as chlorinated hydrocarbons are indeed magnified through the marine food web. Evidence both for and against trophic concentration of PCB and DDT compounds has been cited. The answer to this question remains unclear due to lack of adequate knowledge on the relative importance of food and water in the uptake of these compounds as well as the fact that conclusions are often confounded by comparing pollutant concentrations in successive links in the food chain sampled at different geographical locations and/or at different points in time. The situation is further complicated by complex prey-predator relationships that exist in many marine communities. In the present study we have tried to eliminate some of these problems by examining PCB and DOT concentrations in species belonging to a relatively well-defined pelagic food chain sampled at one point in space and time

  13. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  14. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  15. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    International Nuclear Information System (INIS)

    Christova, N.; Tuleva, B.; Nikolova-Damyanova, B.

    2004-01-01

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l -1 ). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  16. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  17. Natural relations and Appelquist-Carazzone decoupling theorem

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Krawczyk, P.; Pokorski, S.

    1984-01-01

    It is pointed out that in some cases violation of the Appelquist-Carazzone decoupling theorem in spontaneously broken gauge theories is related to the presence in such theories of the so-called natural zeroth-order relations. In this context heavy-fermion effects in the Glashow-Salam-Weinberg model are discussed

  18. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  19. Hydrocarbon-degrading bacteria isolation and surfactant influence ...

    African Journals Online (AJOL)

    Hydrocarbons are substantially insoluble in water, often remaining partitioned in the non-aqueous phase liquid (NAPL). However, there had been little or no attempts to advance the bioavailability of hydrocarbons through the use of surfactants. This study was conducted based on the need to isolate hydrocarbon degrading ...

  20. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    Science.gov (United States)

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  1. Statistical evaluation of variables affecting occurrence of hydrocarbons in aquifers used for public supply, California

    Science.gov (United States)

    Landon, Matthew K.; Burton, Carmen A.; Davis, Tracy A.; Belitz, Kenneth; Johnson, Tyler D.

    2014-01-01

    The variables affecting the occurrence of hydrocarbons in aquifers used for public supply in California were assessed based on statistical evaluation of three large statewide datasets; gasoline oxygenates also were analyzed for comparison with hydrocarbons. Benzene is the most frequently detected (1.7%) compound among 17 hydrocarbons analyzed at generally low concentrations (median detected concentration 0.024 μg/l) in groundwater used for public supply in California; methyl tert-butyl ether (MTBE) is the most frequently detected (5.8%) compound among seven oxygenates analyzed (median detected concentration 0.1 μg/l). At aquifer depths used for public supply, hydrocarbons and MTBE rarely co-occur and are generally related to different variables; in shallower groundwater, co-occurrence is more frequent and there are similar relations to the density or proximity of potential sources. Benzene concentrations are most strongly correlated with reducing conditions, regardless of groundwater age and depth. Multiple lines of evidence indicate that benzene and other hydrocarbons detected in old, deep, and/or brackish groundwater result from geogenic sources of oil and gas. However, in recently recharged (since ~1950), generally shallower groundwater, higher concentrations and detection frequencies of benzene and hydrocarbons were associated with a greater proportion of commercial land use surrounding the well, likely reflecting effects of anthropogenic sources, particularly in combination with reducing conditions.

  2. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  3. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kothari Shankar L

    2010-05-01

    Full Text Available Abstract Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS. Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.

  4. Polymorphisms in DNA repair genes, traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence

    Czech Academy of Sciences Publication Activity Database

    Mordukhovich, I.; Beyea, J.; Herring, A. H.; Hatch, M.; Stellman, S. D.; Teitelbaum, S. L.; Richardson, D.B.; Millikan, R. C.; Engel, L.S.; Shantakumar, S.; Steck, S.E.; Neugut, A. I.; Rössner ml., Pavel; Santella, R. M.; Gammon, M. D.

    2016-01-01

    Roč. 139, č. 2 (2016), s. 310-321 ISSN 0020-7136 Institutional support: RVO:68378041 Keywords : traffic * DNA repair * polycyclic aromatic hydrocarbons * breast cancer Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 6.513, year: 2016

  5. Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni

    2015-04-15

    In this work, the natural attenuation strategy (no soil amendments done) was compared with two different bioremediation approaches, namely bioaugmentation through soil inoculation with a suspension of Trichoderma sp. mycelium and biostimulation by soil addition with a microbial growth promoting formulation, in order to verify the effectiveness of these methods in terms of degradation efficiency towards toxic hydrocarbons, with particular attention to the high molecular weight (HMW) fraction, in a forest area impacted by recent wildfire in Northern Italy. The area under investigation, divided into three parcels, was monitored to figure out the dynamics of decay in soil concentration of C₁₂₋₄₀ hydrocarbons (including isoalkanes, cycloalkanes, alkyl-benzenes and alkyl-naphthalenes besides PAHs) and low molecular weight (LMW) PAHs, following the adoption of the foregoing different remediation strategies. Soil hydrocarbonoclastic potential was even checked by characterizing the autochthonous microbial cenoses. Field experiments proved that the best performance in the abatement of HMW hydrocarbons was reached 60 days after soil treatment through the biostimulation protocol, when about 70% of the initial concentration of HMW hydrocarbons was depleted. Within the same time, about 55% degradation was obtained with the bioaugmentation protocol, whilst natural attenuation allowed only a 45% removal of the starting C12-40 hydrocarbon fraction. Therefore, biostimulation seems to significantly reduce the time required for the remediation, most likely because of the enhancement of microbial degradation through the improvement of nutrient balance in the burned soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  7. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume.

    Science.gov (United States)

    Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B

    2016-02-01

    The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4-V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1-C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.

  8. Enhancing effects of picocyanobacteria on growth and hydrocarbon consumption potential of the associated oil-utilizing bacteria

    International Nuclear Information System (INIS)

    Radwan, S.S.; Al-Hasan, R.H.; Salamah, S.

    2004-01-01

    Marine surface waters around the world are rich in unicellular cyanobacteria or picocyanobacteria. This paper presents the results of a study which focused on the interaction of microorganisms in naturally occurring marine consortium active in hydrocarbon attenuation. Picocyanobacteria are minute phototrophs which accumulate hydrocarbons from water without any potential for oxidizing these compounds. This study demonstrates that the picocyanobacteria are part of a microbial consortia floating on the water surface of the Arabian Gulf. The consortia are include a rich population of oil-utilizing true bacteria whose growth and activities are improved in the presence of cyanobacterial partners. Each gram of picocyanobacterial biomass was associated with 10 8 - 10 12 cells of oil-utilizing bacteria. Studies have shown that oil-utilizing bacteria grow better in the presence of their partner picocyanobacteria. In addition, the oil-utilizing bacteria resulted in more powerful hydrocarbon attenuation in the presence of picocyanobacteria. Picocyanobacterial cells accumulate hydrocarbon from water without biodegrading it. The oil-utilizing bacteria grew on hydrocarbons for a source of carbon and energy. It was concluded that the oil-polluted environment of the Arabian Gulf can be cleaned effectively by the cooperative activities of this oil consuming group of bacteria composed of symbiotic microorganisms floating in the Gulf waters. 17 refs., 1 tab., 6 figs

  9. Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: Concentrations, composition, and associated risks to protected sea otters

    International Nuclear Information System (INIS)

    Harris, Kate A.; Yunker, Mark B.; Dangerfield, Neil; Ross, Peter S.

    2011-01-01

    Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills. - Highlights: → Sediment hydrocarbon signatures differed between remote and impacted coastal sites. → A natural background comprised terrestrial plant alkanes and petrogenic PAHs. → Impacted sites reflected a history of petrogenic and pyrogenic hydrocarbon inputs. → Hydrocarbons at some sites exceeded guidelines for the protection of aquatic life. → Protected sea otters may thus be at risk as they rely primarily on benthic prey. - Anthropogenically-derived hydrocarbons in coastal sediments in British Columbia may pose a risk to protected sea otters.

  10. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    Science.gov (United States)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  11. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  12. He{sup +} irradiation temperature influence on the structure and nanohardness of hydrocarbon films

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Sun, Li [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics, Liaoning Normal University, Dalian 116023 (China); Yang, Qi; Niu, Jinhai [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Guo, Liping; Chen, Jihong [Accelerator Laboratory, School of Physics, Wuhan University, Wuhan 430072 (China); Bi, Zhenhua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-09-15

    Polymer-like hydrocarbon films were irradiated with 100 keV He{sup +} or annealed at sample temperatures varying from 25 to 600 °C. The effects of sample temperature on the structure and nanohardness of hydrocarbon films are investigated by atomic force microscopy (AFM), AFM-based nanoindentation, Fourier transform infrared spectroscopy, and Raman spectroscopy. Analysis shows that annealing results in the decrease in the nanohardness of hydrocarbon films from 4.0 GPa to 0.55 GPa while He{sup +} irradiation at an elevated sample temperature results in the formation of dense diamond-like carbon films with nanohardness up to 20.0 GPa. This indicates that polymer-like hydrocarbon films can be transformed into the hard diamond-like carbon films with a relatively low H content on vacuum vessels of fusion devices due to the energetic bombardments at an elevated wall temperature.

  13. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  14. Air-dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation.

    Science.gov (United States)

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2012-11-01

    Aquatic and terrestrial associations of phototrophic and heterotrophic microorganisms active in hydrocarbon bioremediation have been described earlier. The question arises: do similar consortia also occur in the atmosphere? Dust samples at the height of 15 m were collected from Kuwait City air, and analyzed microbiologically for phototrophic and heterotrophic hydrocarbon-utilizing microorganisms, which were subsequently characterized according to their 16S rRNA gene sequences. The hydrocarbon utilization potential of the heterotrophs alone, and in association with the phototrophic partners, was measured quantitatively. The chlorophyte Gloeotila sp. and the two cyanobacteria Nostoc commune and Leptolyngbya thermalis were found associated with dust, and (for comparison) the cynobacteria Leptolyngbya sp. and Acaryochloris sp. were isolated from coastal water. All phototrophic cultures harbored oil vapor-utilizing bacteria in the magnitude of 10(5) g(-1). Each phototrophic culture had its unique oil-utilizing bacteria; however, the bacterial composition in Leptolyngbya cultures from air and water was similar. The hydrocarbon-utilizing bacteria were affiliated with Acinetobacter sp., Aeromonas caviae, Alcanivorax jadensis, Bacillus asahii, Bacillus pumilus, Marinobacter aquaeolei, Paenibacillus sp., and Stenotrophomonas maltophilia. The nonaxenic cultures, when used as inocula in batch cultures, attenuated crude oil in light and dark, and in the presence of antibiotics and absence of nitrogenous compounds. Aqueous and diethyl ether extracts from the phototrophic cultures enhanced the growth of the pertinent oil-utilizing bacteria in batch cultures, with oil vapor as a sole carbon source. It was concluded that the airborne microbial associations may be effective in bioremediating atmospheric hydrocarbon pollutants in situ. Like the aquatic and terrestrial habitats, the atmosphere contains dust-borne associations of phototrophic and heterotrophic hydrocarbon

  15. Bioremediation: Technology for treating hydrocarbon-contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Towprayoon, S.; Kuntrangwattana, S. [King Mongkut`s Institute of Technology, Bangkok (Thailand)

    1996-12-31

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradable microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.

  16. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  17. Tuning electronic properties of graphene nanoflake polyaromatic hydrocarbon through molecular charge-transfer interactions

    Science.gov (United States)

    Sharma, Vaishali; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-05-01

    By means of first principles calculation we have tuned the electronic properties of graphene nanoflake polyaromatic hydrocarbon via molecular charge transfer. Acceptor/donor Tetracyanoquinodimethane (TCNQ) and Tetrathiafulvalene (TTF) organic molecules are adsorbed on polyaromatic hydrocarbons (PAH) in order to introduce the charge transfer. The substrate's n- or p- type nature depends on the accepting/donating behavior of dopant molecules. Two different classes of PAH (extended form of triangulene) namely Bow-tie graphene nanoflake (BTGNF) and triangular zigzag graphene nanoflake (TZGNF). It is revealed that all the TCNQ and TTF modified graphene nanoflakes exhibit significant changes in HOMO-LUMO gap in range from 0.58 eV to 0.64 eV and 0.01 eV to 0.05 eV respectively. The adsorption energies are in the range of -0.05 kcal/mol to -2.6 kcal/mol. The change in work function is also calculated and discussed, the maximum charge transfer is for TCNQ adsorbed BTGNF. These alluring findings in the tuning of electronic properties will be advantageous for promoting graphene nanoflake polyaromatic hydrocarbon for their applications in electronic devices.

  18. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)

    International Nuclear Information System (INIS)

    Wei, Liu; Jie, Chen; Deyi, Jiang; Xilin, Shi; Yinping, Li; Daemen, J.J.K.; Chunhe, Yang

    2016-01-01

    Highlights: • Tightness conditions are set to assess use of old caverns for hydrocarbons storage. • Gas seepage and tightness around caverns are numerically simulated under AGC. • κ of interlayers act as a key factor to affect the tightness and use of salt cavern. • The threshold upper permeability of interlayers is proposed for storing oil and gas. • Three types of real application are introduced by using the tightness conditions. - Abstract: In China, the storage of hydrocarbon energies is extremely insufficient partially due to the lack of storage space, but on the other side the existence of a large number of abandoned salt caverns poses a serious threat to safety and geological environments. Some of these caverns, defined as abandoned caverns under adverse geological conditions (AGC), are expected to store hydrocarbon energies (natural gas or crude oil) to reduce the risk of potential disasters and simultaneously support the national strategic energy reserve of China. Herein, a series of investigations primarily related to the tightness and suitability of the caverns under AGC is performed. Laboratory measurements to determine the physical and mechanical properties as well as porosity and permeability of bedded salt cores from a near target cavern are implemented to determine the petro-mechanical properties and basic parameters for further study. The results show that the mechanical properties of the bedded rock salts are satisfactory for the stability of caverns. The interface between the salt and interlayers exhibits mechanical properties that are between those of rock salt and interlayers and in particular is not a weak zone. The silty mudstone interlayers have relatively high porosity and permeability, likely due to their low content of clay minerals and the presence of halite-filled cracks. The conditions for evaluating the tightness and suitability of a cavern for storing hydrocarbons are proposed, including “No tensile stress,”

  19. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  20. Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide

    Science.gov (United States)

    Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,

    2015-01-01

    Shale is now commonly exploited as a hydrocarbon resource. Due to the high degree of geochemical and petrophysical heterogeneity both between shale reservoirs and within a single reservoir, there is a growing need to find more efficient methods of extracting petroleum compounds (crude oil, natural gas, bitumen) from potential source rocks. In this study, supercritical carbon dioxide (CO2) was used to extract n-aliphatic hydrocarbons from ground samples of Marcellus shale. Samples were collected from vertically drilled wells in central and western Pennsylvania, USA, with total organic carbon (TOC) content ranging from 1.5 to 6.2 wt %. Extraction temperature and pressure conditions (80 °C and 21.7 MPa, respectively) were chosen to represent approximate in situ reservoir conditions at sample depth (1920−2280 m). Hydrocarbon yield was evaluated as a function of sample matrix particle size (sieve size) over the following size ranges: 1000−500 μm, 250−125 μm, and 63−25 μm. Several methods of shale characterization including Rock-Eval II pyrolysis, organic petrography, Brunauer−Emmett−Teller surface area, and X-ray diffraction analyses were also performed to better understand potential controls on extraction yields. Despite high sample thermal maturity, results show that supercritical CO2 can liberate diesel-range (n-C11 through n-C21) n-aliphatic hydrocarbons. The total quantity of extracted, resolvable n-aliphatic hydrocarbons ranges from approximately 0.3 to 12 mg of hydrocarbon per gram of TOC. Sieve size does have an effect on extraction yield, with highest recovery from the 250−125 μm size fraction. However, the significance of this effect is limited, likely due to the low size ranges of the extracted shale particles. Additional trends in hydrocarbon yield are observed among all samples, regardless of sieve size: 1) yield increases as a function of specific surface area (r2 = 0.78); and 2) both yield and surface area increase with increasing

  1. Biodegradation of hydrocarbon compounds in Agbabu natural bitumen

    African Journals Online (AJOL)

    Infrared spectral changes and gravimetric analysis from the preliminary biodegradability study carried out on Agbabu Natural Bitumen showed the vulnerability of the bitumen to some bacteria: Pseudomonas putrefaciens, Pseudomonas nigrificans, Bacillus licheniformis, Pseudomonas fragi and Achromobacter aerogenes.

  2. Hydrocarbon distributions in sediments of the open area of the Arabian Gulf following the 1991 Gulf War oil spill

    International Nuclear Information System (INIS)

    Al-Lihaibi, S.S.; Ghazi, S.J.

    1997-01-01

    Surface sediments collected from the open area of the Arabian Gulf were analysed for total petroleum hydrocarbons and specific aliphatic hydrocarbon components in order to provide information on the extent of oil contamination and the degree of weathering of the spilled oil following the Gulf War. The surface distribution of the petroleum hydrocarbons showed an increasing trend towards the north-east, and among the individual transects there was a pronounced increasing trend towards the north-west direction. Despite off-shore oil-related activities as well as a potential impact from the 1991 oil spill, the concentrations of petroleum hydrocarbons in the study area were relatively low. This finding may be attributed to the effectiveness of weathering processes. (author)

  3. Study of hydrocarbons in bottom sediments of the northern Dvina River-White Sea geochemical barrier during spring flood. Volume 2

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2007-01-01

    The Northern Dvina in Northern Russia is the main river of the White Sea reservoir. The water discharge is 108 km 3 per year. With active shipping and several large pulp and paper mills that operate in the region, the river is a supplier of polluting substances. Weathered oil and pyrogenic compounds dominate the composition of hydrocarbons. During flooding, the Northern Dvina - Dvina Bay geochemical barrier becomes a filter, which prevents pollutants from penetrating to the White Sea. This paper summarized data on the concentration and composition of hydrocarbons, aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH) in the marine water and bottom sediments at the mouth of the Northern Dvina/White Sea. Nearly similar concentrations of organic compounds were found in the Northern Dvina River water and in the near-mouth White Sea water area. However, their distribution conforms to the marginal filter rules. Natural terrigenous hydrocarbon compounds were found to dominate in all forms. Biogenic autochthonous hydrocarbons were detected in the near-shore areas and in the outer zone of the marginal filter of the Northern Dvina River, where PAH are formed together with AHC. 20 refs., 2 tabs., 4 figs

  4. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch-Saurashtra: Implication for hydrocarbon prospects

    Science.gov (United States)

    Rao, P. Lakshmi Srinivasa; Madhavi, T.; Srinu, D.; Kalpana, M. S.; Patil, D. J.; Dayal, A. M.

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch-Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through n-butane and the observed concentrations (in ppb) vary from: methane (C1) from 4-291, ethane (C2) from 0-84, propane (C3) from 0-37, i-butane (iC4) from 0-5 and n-butane (nC4) from 0-4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between -42.9‰ to -13.3‰ (Pee Dee Belemnite - PDB) and -21.2‰ to -12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  5. Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M. [Institute of Biology of Romanian Academy, Bucharest (Romania)] [and others

    1995-12-31

    In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

  6. Countercurrent soil washing system for remediation of viscous hydrocarbons, heavy metals, radionuclides

    International Nuclear Information System (INIS)

    Kuhlman, M.I.; Karlsson, M.K.; Downie, C.A.

    1995-01-01

    Drying augers and multicell DAF tanks are excellent machines in which to countercurrently wash soil and remove hazardous hydrocarbons, metals or radionuclides. An auger works well because it preferentially moves soil along one side of its trough. Thus, when enough high pressure and temperature water jets are placed along that path, contaminants can be melted, or dissolved and scoured from the soil. Contaminants and fines flow down the opposite side of the auger and out for extraction in a series of flotation tanks. Countercurrent washing of the silt results when soil settles in tanks through rising water and air bubbles then is pumped through cyclones placed above the next DAF tank of the series. LNAPLs, DNAPLs, or metallic contaminants made hydrophobic by chemicals in the system are removed at the overflow of the cyclones or by flotation in the tanks. The overflow from the cyclones and DAF tanks flows into the previous tank of the series. Examples of contaminants remediated include; arsenic, cadmium, lead and mercury, Naturally Occurring Radioactive Materials (NORM), uranium, solid oils, polyaromatic hydrocarbons in creosote and coal tars, and polychlorinated hydrocarbons

  7. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  8. In-situ hydrocarbon delineation using laser-induced fluorescence

    International Nuclear Information System (INIS)

    Taer, A.D.; Hastings, R.W.; Brown, A.Y.; Frend, R.

    1996-01-01

    An investigation of hydrocarbons in soils was conducted at an active Shell Oil Company petroleum products terminal, located in Carson, California. An investigation approach involving Laser-Induced Fluorescence (LIF) and Cone Penetrometer Testing (CPT) technologies was implemented to provide real-time, in-situ characterization of site stratigraphy, hydrocarbon distribution and importantly, hydrocarbon product differentiation. The area of investigation is located along a property boundary, where a plume of separate phase hydrocarbons has been actively recovered for several years. CPT/LIF technology was selected for the investigation since previous delineation efforts using hydrocarbon fingerprinting methods proved inconclusive. Additionally, the CPT/LIF technology had the potential to provide a cost effective solution to accomplish project objectives. Based on the information obtained during this investigation, it was determined that the plume of separate phase hydrocarbons along the northern property boundary is from a source distinctly different than any identified hydrocarbons known to be from on-site sources. In addition, the plume was determined to not be connected with any other known on-site hydrocarbon plumes. The results of this CPT/LIF investigation were consistent with the known hydrogeologic conditions. This evaluation determined that CPT/LIF technology was very effective in addressing project objectives and resulted in a significant cost savings

  9. Radiolysis of hydrocarbons in liquid phase (Modern state of problem)

    International Nuclear Information System (INIS)

    Saraeva, V.V.

    1986-01-01

    Problems of ionizing radiation effect on hydrocarbons and hydrocarbon systems in a liquid phase are considered. Modern representations on the mechanism of hydrocarbon radiolysis are presented. Electron moderation and ion-electron pair formation, behaviour of charged particles, excited states, radical formation and their reactions are discussed. Behaviour of certain hydrocarbon classes: alkanes, cyclic hydrocarbons, olefines, aromatic hydrocarbons as well as different hydrocarbon mixtures is considered in detail. Radiation-chemical changes in organic coolants and ways of increasing radiation resistance are considered. Polyphenyl compounds are noted to be most perspective here

  10. Correlation between mandibular gland secretion and cuticular hydrocarbons in the stingless bee Melipona quadrifasciata.

    Science.gov (United States)

    Cruz-Landim, C; Ferreira-Caliman, M J; Gracioli-Vitti, L F; Zucchi, R

    2012-04-19

    We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees.

  11. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...

  12. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  13. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  14. God, design, and naturalism: Implications of methodological naturalism in science for science-religion relation

    Directory of Open Access Journals (Sweden)

    Piotr Bylica

    2015-03-01

    Full Text Available The aim of this paper is to analyze the implications flowing from adopting methodological naturalism in science, with special emphasis on the relation between science and religion. Methodological naturalism, denying supernatural and teleological explanations, influences the content of scientific theories, and in practice leads to vision of science as compatible with ontological naturalism and in opposition to theism. Ontological naturalism in turn justifies the acceptance of methodological naturalism as the best method to know the reality. If we accept realistic interpretation of scientific theories, then methodological naturalism conflicts science with religion. Theistic evolution does not seem to be a proper way to reconcile Darwinism and methodological naturalism with theism. Many of such propositions are boiled down to deism. Although evolution can be interpreted theistically, it is not the way in which majority of modern scientists and respectable scientific institutions understand it.

  15. Bioremediation of hydrocarbon and brine contaminated topsoil : annual report (1992-93)

    International Nuclear Information System (INIS)

    Danielson, R.M.

    1996-01-01

    This report presents the results of a study which examined the remediation of hydrocarbon and brine contaminated topsoil in a field-based bioreactor at a gas processing plant in Nevis, Alberta during 1992 and 1993. The hydrocarbon and brine contaminated topsoil was placed in the Bio-Reactor and treated for eleven months. Four treatments were applied to eight Bio-Reactor cells: (1) ambient temperature/no forced aeration, (2) ambient temperature/forced aeration, (3) optimum temperature/no forced aeration and (4) optimum temperature/forced aeration. The ninth cell was filled with 30 cm contaminated topsoil and maintained under optimum temperature/forced aeration. The contaminated topsoil was kept moist throughout the experiment by an automatic irrigation system. The contaminated topsoil in the heated cells lost 40 per cent of its original hydrocarbon content in one year; the soil in the non-heated cells lost between 25 and 29 per cent in the same period. Results showed that the Bio-Reactor offered an inexpensive means for promoting a natural process for degrading organic compounds by microorganisms in soil. Equally important, it is capable of handling the large volumes of waste produced by the oil and gas industry. 64 refs., 35 tabs., 46 figs

  16. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  17. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    Science.gov (United States)

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Predictable weathering of puparial hydrocarbons of necrophagous flies for determining the postmortem interval: a field experiment using Chrysomya rufifacies.

    Science.gov (United States)

    Zhu, Guang-Hui; Jia, Zheng-Jun; Yu, Xiao-Jun; Wu, Ku-Sheng; Chen, Lu-Shi; Lv, Jun-Yao; Eric Benbow, M

    2017-05-01

    Preadult development of necrophagous flies is commonly recognized as an accurate method for estimating the minimum postmortem interval (PMImin). However, once the PMImin exceeds the duration of preadult development, the method is less accurate. Recently, fly puparial hydrocarbons were found to significantly change with weathering time in the field, indicating their potential use for PMImin estimates. However, additional studies are required to demonstrate how the weathering varies among species. In this study, the puparia of Chrysomya rufifacies were placed in the field to experience natural weathering to characterize hydrocarbon composition change over time. We found that weathering of the puparial hydrocarbons was regular and highly predictable in the field. For most of the hydrocarbons, the abundance decreased significantly and could be modeled using a modified exponent function. In addition, the weathering rate was significantly correlated with the hydrocarbon classes. The weathering rate of 2-methyl alkanes was significantly lower than that of alkenes and internal methyl alkanes, and alkenes were higher than the other two classes. For mono-methyl alkanes, the rate was significantly and positively associated with carbon chain length and branch position. These results indicate that puparial hydrocarbon weathering is highly predictable and can be used for estimating long-term PMImin.

  19. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    International Nuclear Information System (INIS)

    Koziol, Lucas; Goldman, Nir

    2015-01-01

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials

  20. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Lucas; Goldman, Nir, E-mail: lucas.koziol@exxonmobil.com, E-mail: ngoldman@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-04-20

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  1. Investigation on the presence of aromatic hydrocarbons, polycyclic aromatic hydrocarbons, persistent organo chloride compounds, phthalates and the breathable fraction of atmospheric particulate in the air of Rieti (Italy) urban area

    International Nuclear Information System (INIS)

    Guidotti, M.; Colasanti, G.; Chinzari, M.; Ravaioli, G.; Vitali, M.

    1998-01-01

    Purpose of this work is to present the results of the investigation on the presence of aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), phthalates, polychlorobiphenyls (PCBs), pesticides and the breathable fraction of atmospheric particulate, in the samples of air collected from 2 different urban areas of Rieti city (Italy). Different values, for the above mentioned analytes, are compared in relation to seasonal factors and the analytical methods used in this research are also presented [it

  2. The offshore hydrocarbon releases (HCR) database

    International Nuclear Information System (INIS)

    Bruce, R.A.P.

    1995-01-01

    Following Cullen Recommendation 39 which states that: ''The regulatory body should be responsible for maintaining a database with regard to hydrocarbon leaks, spills, and ignitions in the Industry and for the benefit of Industry'', HSE Offshore Safety Division (HSE-OSD) has now been operating the Hydrocarbon Releases (HCR) Database for approximately 3 years. This paper deals with the reporting of Offshore Hydrocarbon Releases, the setting up of the HCR Database, the collection of associated equipment population data, and the main features and benefits of the database, including discussion on the latest output information. (author)

  3. Sustainable treatment of hydrocarbon-contaminated industrial land

    OpenAIRE

    Cunningham, Colin John

    2012-01-01

    Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. Sustainable treatment of hydrocarbon-contaminated industrial land was considered with reference to seven published works on contaminated railway land including the track ballast, crude oil wastes and contaminated refinery soils. A methodology was developed...

  4. Hydrocarbon toxicity: an analysis of AAPCC TESS data.

    Science.gov (United States)

    Cobaugh, Daniel J; Seger, Donna L; Krenzelok, Edward P

    2007-01-01

    Human hydrocarbon exposures have the potential to cause significant morbidity and mortality. To determine which hydrocarbons were associated with the most severe adverse outcomes, human exposure data reported to American poison information centers were analyzed. Outcome data for single-substance, hydrocarbon exposures reported to the American Association of Poison Control Centers Toxic Exposure Surveillance System from 1994 through 2003 were analyzed. Only cases with definitive medical outcomes were included. Analyses were stratified by five age groups: 59 years. Hazard factors were determined by calculating the sum of the major effects and fatalities for each hydrocarbon category and dividing this by the total number of exposures for that category. To normalize the data, the overall rate of major effects and deaths for each age group was assigned hazard factor value of 1. Hydrocarbon categories with a HF of > or = 1.5 were included in the final analyses. Estimated rates of major effect and fatal outcomes (outcomes/1000 people) were also calculated. 318,939 exposures were analyzed. Exposures to benzene, toluene/xylene, halogenated hydrocarbons, kerosene and lamp oil resulted in the highest hazard factor values. These data demonstrate that hydrocarbons that are absorbed systemically and those with low viscosities are associated with higher hazard factors. The risks associated with hydrocarbons often implicated in abuse by older children and adolescents are also confirmed.

  5. Experimental simulation of the natural transformation of kerogen

    Energy Technology Data Exchange (ETDEWEB)

    Monin, J C [Institut Francais du Petrole, Rueil-Malmaison, France; Durand, B; Vandenbroucke, M; Huc, A Y

    1980-01-01

    Analytical techniques such as elemental analysis, infrared spectroscopy, ESR, dark-field electron microscopy and reflectance analysis applied to kerogens enables the geochemist to describe how they evolve at depth. Simulation of this evolution is obtained by the temperature-programmed heating of immature samples in a stream of inert gas. Comparison of naturally occurring samples at increasing stages of maturation, and artificially matured samples demonstrates that this simulation generally reproduces the overall characteristics of evolution at depth. However, agreement is better for hydrogen-rich than for oxygen-rich kerogens. In fact, oxygen is eliminated in nature, and in the laboratory, by different mechanisms. In nature, elimination takes place mainly at the beginning of burial. Temperatures used in the laboratory are necessarily much higher and appear to cause secondary reactions which favor water formation. Elimination of hydrogen occurs, during natural maturation, at greater depths and temperatures - i.e., in the oil and gas formation zone. Therefore, laboratory simulation is better for kerogens which have already reached the oil formation stage. Hydrocarbons released by natural and laboratory-simulated maturation are compared. Although quantities and distributions are different, similarities exist which can be used, to a first approximation, to predict the distribution of hydrocarbons obtained from naturally-evolving kerogens.

  6. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  7. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  8. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories.

    Science.gov (United States)

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L; Díaz-Ramírez, Ildefonso J

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and soil samples. Soil suspensions were tested as microbial inocula in biodegradation potential assays using contaminated perlite as an inert support. The basal respiratory rate of the recently contaminated soil was 15-38 mg C-CO 2  kg -1 h -1 , while the weathered soil presented a greater basal mineralisation capacity of 55-70 mg C-CO 2 kg -1 h -1 . The basal levels of lipase and dehydrogenase were significantly greater than those recorded in non-contaminated soils (551 ± 21 μg pNP g -1 ). Regarding the biodegradation potential assessment, the lipase (1000-3000 μg pNP g -1 of perlite) and dehydrogenase (~3000 μg INF g -1 of perlite) activities in the inoculum of the recently contaminated soil were greater than those recorded in the inoculum of the weathered soil. This was correlated with a high mineralisation rate (~30 mg C-CO 2 kg -1 h -1 ) in the recently contaminated soil and a reduction in hydrocarbon concentration (~30 %). The combination of an inert support and enzymatic and respirometric analyses made it possible to detect the different biodegradation capacities of the studied inocula and the natural attenuation potential of a recently contaminated soil at high hydrocarbon concentrations.

  9. A thermodynamic analysis of the environmental indicators of natural gas combustion processes

    Science.gov (United States)

    Elsukov, V. K.

    2010-07-01

    Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.

  10. Degradation of volatile hydrocarbons from steam-classified solid waste by a mixture of aromatic hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Leahy, Joseph G; Tracy, Karen D; Eley, Michael H

    2003-03-01

    Steam classification is a process for treatment of solid waste that allows recovery of volatile organic compounds from the waste via steam condensate and off-gases. A mixed culture of aromatic hydrocarbon-degrading bacteria was used to degrade the contaminants in the condensate, which contained approx. 60 hydrocarbons, of which 38 were degraded within 4 d. Many of the hydrocarbons, including styrene, 1,2,4-trimethylbenzene, naphthalene, ethylbenzene, m-/p-xylene, chloroform, 1,3-dichloropropene, were completely or nearly completely degraded within one day, while trichloroethylene and 1,2,3-trichloropropane were degraded more slowly.

  11. Microsomal aryl hydrocarbon hydroxylase comparison of the direct, indirect and radiometric assays

    International Nuclear Information System (INIS)

    Denison, M.S.; Murray, M.; Wilkinson, C.F.

    1983-01-01

    The direct fluorometric assay of aryl hydrocarbon hydroxlyase has been compared to the more commonly used indirect fluorometric and radiometric assays. Although rat hepatic microsomal activities measured by the direct assay were consistently higher than those obtained by the other assays, the relative changes in activity following enzyme induction and/or inhibition were similar. The direct assay provides an accurate and rapid measure of aryl hydrocarbon hydroxylase activity and avoids several problems inherent in the indirect and radiometric assays. 2 tables

  12. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China.

    Science.gov (United States)

    Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong

    2010-07-01

    Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.

  13. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  14. Effect of hydrocarbons on plasma treatment of NOx

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Pitz, W.J.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Lean burn gasoline engine exhausts contain a significant amount of hydrocarbons in the form of propene. Diesel engine exhausts contain little gaseous hydrocarbon; however, they contain a significant amount of liquid-phase hydrocarbons (known as the volatile organic fraction) in the particulates. The objective of this paper is to examine the fate of NO{sub x} when an exhaust gas mixture that contains hydrocarbons is subjected to a plasma. The authors will show that the hydrocarbons promote the oxidation of NO to NO{sub 2}, but not the reduction of NO to N{sub 2}. The oxidation of NO to NO{sub 2} is strongly coupled with the hydrocarbon oxidation chemistry. This result suggests that gas-phase reactions in the plasma alone cannot lead to the chemical reduction of NO{sub x}. Any reduction of NO{sub x} to N{sub 2} can only be accomplished through heterogeneous reactions of NO{sub 2} with surfaces or particulates.

  15. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    Science.gov (United States)

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Marine organic geochemistry in industrially affected coastal areas in Greece: Hydrocarbons in surface sediments

    Science.gov (United States)

    Hatzianestis, Ioannis

    2015-04-01

    Hydrocarbons are abundant components of the organic material in coastal zones. Their sources are mainly anthropogenic, but several natural ones have also been recognized. Among hydrocarbons, the polycyclic aromatic ones (PAHs) have received special attention since they considered as hazardous environmental chemicals and are included in priority pollutant lists. The purpose of this study was to investigate the distribution, sources and transport pathways of hydrocarbons in marine areas in Greece directly influenced from the operation of major industrial units in the coastal zone by using a molecular marker approach, characteristic compositional patterns and related indices and also to evaluate their potential toxicity. Thirty two surface sediment samples were collected from three marine areas: a) Antikyra bay in Korinthiakos gulf, affected from the operation of an alumina and production plant b) Larymna bay in Noth Evoikos, affected from the operation of a nickel production plant and c) Aliveri bay in South Evoikos Gulf, affected from a cement production plant. In all the studied areas aquaculture and fishing activities have been also developed in the coastal zone. High aliphatic hydrocarbon (AHC) concentrations (~500 μg/g), indicating significant petroleum related inputs, were measured only in Antikyra bay. In all the other samples, AHC values were below 100 μg/g. N-alkanes were the most prominent resolved components (R) with an elevated odd to even carbon number preference, revealing the high importance of terrestrial inputs in the study areas. The unresolved complex mixture (UCM) was the major component of the aliphatic fraction (UCM/R > 4), indicating a chronic oil pollution. A series of hopanes were also identified, with patterns characteristic of oil-derived hydrocarbons, further confirming the presence of pollutant inputs from fossil fuel products. Extremely high PAH concentrations (> 100,000 ng/g) were found in the close vicinity of the alumina production

  17. Methylated polycyclic aromatic hydrocarbons and/or their metabolites are important contributors to the overall estrogenic activity of polycyclic aromatic hydrocarbon-contaminated soils.

    Science.gov (United States)

    Lam, Monika M; Engwall, Magnus; Denison, Michael S; Larsson, Maria

    2018-02-01

    In the present study 42 polycyclic aromatic compounds (PACs) were investigated for their estrogenic potential using the VM7Luc4E2 transactivation assay. Relative potencies were determined for mass-balance analysis. In addition, compounds were tested in combination with the estrogen receptor (ER) antagonist ICI182,780 (ICI) and the aryl hydrocarbon receptor antagonist/CYP1A1 inhibitor α-naphthoflavone. Luciferase induction and CYP1A1-dependent ethoxyresorufin-O-deethylase (EROD) activity were measured to assess whether the estrogenic activity was elicited by the compound itself and/or by its metabolites. Relative potencies ranged between 10 -7 and 10 -4 . The ability of ICI to decrease luciferase activity stimulated by all compounds indicated that the induction responses were ER-dependent. The aryl hydrocarbon receptor antagonist/CYP1A1 inhibitor α-naphthoflavone decreased luciferase induction and EROD activity by several compounds, including the methylated chrysenes, suggesting that metabolites of these chemicals contributed to ER activation. Several PACs, such as acridine and its derivatives, appear to directly activate the ER. Furthermore, extracts of soils from industrial areas were examined using this bioassay, and estrogenic activity was detected in all soil samples. Mass-balance analysis using a combination of relative potencies and chemical analysis of the samples suggested that polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, such as 1- and 3-methylchrysene, are important contributors to the overall estrogenic activity. However, these results revealed that a considerable proportion of the estrogenic activity in the soil remained unexplained, indicating the presence of other significant estrogenic compounds. Environ Toxicol Chem 2018;37:385-397. © 2017 SETAC. © 2017 SETAC.

  18. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  19. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  20. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  1. A method of refining aromatic hydrocarbons from coal chemical production

    Energy Technology Data Exchange (ETDEWEB)

    Zieborak, K.; Koprowski, A.; Ratajczak, W.

    1979-10-01

    A method is disclosed for refining aromatic hydrocarbons of coal chemical production by contact of liquid aromatic hydrocarbons and their mixtures with a strongly acid macroporous sulfocationite in the H-form at atmospheric pressure and high temperature. The method is distinguished in that the aromatic hydrocarbons and their mixtures, from which alkali compounds have already been removed, are supplied for refinement with the sulfocationite with simultaneous addition of olefin derivatives of aromatic hydrocarbons, followed by separation of pure hydrocarbons by rectification. Styrene or alpha-methylstyrene is used as the olefin derivatives of the aromatic hydrocarbons. The method is performed in several stages with addition of olefin derivatives of aromatic hydrocarbons at each stage.

  2. Process for recovery of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Millar, J.F.; Cockshott, J.E.

    1978-04-11

    Methane is recovered as a gas for discharge to a pipeline from a gas stream containing methane and heavier hydrocarbons, principally ethane and propane. Separation is accomplished by condensing the heavier hydrocarbons and distilling the methane therefrom. A liquid product (LPG) comprising the heavier hydrocarbons is subsequently recovered and transferred to storage. Prior to being discharged to a pipeline, the recovered methane gas is compressed and in undergoing compression the gas is heated. The heat content of the gas is employed to reboil the refrigerant in an absorption refrigeration unit. The refrigeration unit is used to cool the LPG prior to its storage.

  3. Worldwide overview of hydrocarbons and perspectives

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-12-01

    This publication presents and comments data regarding the share of hydrocarbons in the world energy consumption, hydrocarbon trade flows, the new situation created by the emergence of shale hydrocarbons and the consequences for the world economy, and possible risks. The authors first comment the evolution of energy consumption and outline that the objectives of CO 2 and greenhouse gas emission will not be reached (these emissions increased in 2012 and in 2013). They indicate the emission situation in the USA and Japan, and notice that the objectives defined by the IEA are quite different from those defined by the EU. They analyse the evolutions by distinguishing different periods: 2005-2008 as a reference period, 2008-2012 as a period of change, and the current period as a period of flow inversion. Then, the authors propose two different scenarios of evolution of economic and energy policies. The evolution of hydrocarbon demand is commented, and the levels of reserves (oil, conventional gas, coal, nuclear fuels) are discussed. The market evolution is also discussed, not only from an economic point of view, but also in relationship with geopolitics. The authors notably outline that the energy price is different from one country to the other, discuss the issue of hydrocarbon refining, the role of CO 2 tax

  4. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    Science.gov (United States)

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  5. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  6. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    Science.gov (United States)

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2016-02-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica.

    Science.gov (United States)

    Sampaio, Dayanna Souza; Almeida, Juliana Rodrigues Barboza; de Jesus, Hugo E; Rosado, Alexandre S; Seldin, Lucy; Jurelevicius, Diogo

    2017-11-01

    Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.

  8. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  9. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China

    Science.gov (United States)

    Wang, Jincui; Zhao, Yongsheng; Sun, Jichao; Zhang, Ying; Liu, Chunyan

    2018-06-01

    This paper has investigated the concentration and distribution of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Results show that the concentration levels of 16 priority polycyclic aromatic hydrocarbons range from 0 to 92.06 ng/L, do not conform to drinking water quality standards in China (GB 5749- 2006). However, the concentration figures of priority polycyclic aromatic hydrocarbons are much lower than that of other studies conducted elsewhere in China. In addition, highly-concentrated polycyclic aromatic hydrocarbons (50-92 ng/L) are fragmentarily distributed. The composition of polycyclic aromatic hydrocarbons from this study indicates that low molecular polycyclic aromatic hydrocarbons are predominant in groundwater samples, medium molecular compounds occur at low concentrations, and high molecular hydrocarbons are not detected. The polycyclic aromatic hydrocarbon composition in groundwater samples is basically the same as that of gaseous samples in the atmosphere in this study. Therefore, the atmospheric input is assumed to be an important source of polycyclic aromatic hydrocarbons, no less than wastewater discharge, adhesion on suspended solids, and surface water leakage. Ratios of specific polycyclic aromatic hydrocarbons demonstrate that they mainly originate from wood or coal combustion as well as natural gas and partially from petroleum according to the result of principal component analysis. On the whole, conclusions are drawn that the contamination sources of these polycyclic aromatic hydrocarbons are likely petrogenic and pyrolytic inputs. Future investigations by sampling topsoil, vadose soil, and the atmosphere can further verify aforementioned conclusions.

  10. The genetic source and timing of hydrocarbon formation in gas hydrate reservoirs in Green Canyon, Block GC955

    Science.gov (United States)

    Moore, M. T.; Darrah, T.; Cook, A.; Sawyer, D.; Phillips, S.; Whyte, C. J.; Lary, B. A.

    2017-12-01

    Although large volumes of gas hydrates are known to exist along continental slopes and below permafrost, their role in the energy sector and the global carbon cycle remains uncertain. Investigations regarding the genetic source(s) (i.e., biogenic, thermogenic, mixed sources of hydrocarbon gases), the location of hydrocarbon generation, (whether hydrocarbons formed within the current reservoir formations or underwent migration), rates of clathrate formation, and the timing of natural gas formation/accumulation within clathrates are vital to evaluate economic potential and enhance our understanding of geologic processes. Previous studies addressed some of these questions through analysis of conventional hydrocarbon molecular (C1/C2+) and stable isotopic (e.g., δ13C-CH4, δ2H-CH4, δ13C-CO2) composition of gases, water chemistry and isotopes (e.g., major and trace elements, δ2H-H2O, δ18O-H2O), and dissolved inorganic carbon (δ13C-DIC) of natural gas hydrate systems to determine proportions of biogenic and thermogenic gas. However, the effects from contributions of mixing, transport/migration, methanogenesis, and oxidation in the subsurface can complicate the first-order application of these techniques. Because the original noble gas composition of a fluid is preserved independent of microbial activity, chemical reactions, or changes in oxygen fugacity, the integration of noble gas data can provide both a geochemical fingerprint for sources of fluids and an additional insight as to the uncertainty between effects of mixing versus post-genetic modification. Here, we integrate inert noble gases (He, Ne, Ar, and associated isotopes) with these conventional approaches to better constrain the source of gas hydrate formation and the residence time of fluids (porewaters and natural gases) using radiogenic 4He ingrowth techniques in cores from two boreholes collected as part of the University of Texas led UT-GOM2-01 drilling project. Pressurized cores were extracted from

  11. Assessment of the biostimulation against bioaugmentation and natural attenuation on contaminated soil with diesel-gasoline mixing

    International Nuclear Information System (INIS)

    Gomez, Wilmar; Gaviria, Jair; Cardona, Santiago

    2009-01-01

    In this study carried out the bioremediation of a contaminated soil with a gasoline-diesel fuel mixture in a laboratory scale, to evaluate biostimulation against natural attenuation and bioaugmentation. The reduction of Total Petroleum Hydrocarbons (TPH) concentration during three months was 52.79 % for natural attenuation, 60.45 % for biostimulation and 64.92 % for bioaugmentation. For the inoculation in the bioaugmentation treatment, was isolated a bacterium with the capacity of degrade hydrocarbons which was identified as Bacillus sp.

  12. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  13. Potential hydrocarbon producing species of Western Ghats, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Augustus, G.D.P.S.; Jayabalan, M.; Rajarathinam, K. [Research Centre in Bombay, V.H.N.S.N. College, Virudhunagar (India); Ray, A.K. [Sardar Patel Univ., Anand (India). Dept. of Chemistry; Seiler, G.J. [USDA, ARS, Northern Crop Science Lab., Fargo, ND (United States)

    2002-09-01

    The decline in the world supplies of hydrocarbons has led to the search for alternate sources of fuel and chemicals. Plant species are potential sources of hydrocarbons. Large-scale screening of plants growing in the Western Ghats, Tamil Nadu, India was conducted to assess the hydrocarbon production and the type of isoprene compound(s) present. Three species contained more than 3% hydrocarbon. Sarcostemma brevistigma had the highest concentration of hydrocarbon with 3.6%. Seven species contained more than 2% of hydrocarbons among the plant species screened. The hydrocarbon fraction of Ficus elastica (leaf) had a gross heat value of 9834 cal/g (41.17 MJ/kg), which is close to the caloric value of fuel oil. Six hydrocarbon fractions contained gross heat values of more than 9000 cal/g (37.68 MJ/kg). Of the 13 species hydrocarbon fraction analysed, seven species contained cis-polyisoprene compounds, while two species contained trans-polyisoprenes. Cis and trans polyisoprenes are potential alternative energy sources for fuel and/or as industrial raw materials. (author)

  14. AD1995: NW Europe's hydrocarbon industry

    International Nuclear Information System (INIS)

    Glennie, K.; Hurst, A.

    1996-01-01

    This volume concerns itself with wide-ranging aspects of the upstream hydro-carbon industry over the whole of NW Europe. As such, the book contrasts with many thematic volumes by presenting a broad range of topics side-by-side. One section of the book looks back at the history of geological exploration and production, and provides an overview of hydrocarbon exploration across NW Europe. Another section covers the state of the art in hydrocarbon exploration and production. This includes an update on computer-based basin modelling overpressure systems, innovations in reservoir engineering and reserve estimation, 3D seismic and the geochemical aspects of secondary migration. The final section of the book takes a look into the future. This covers the remaining hydrocarbon resources of the North Sea, managing risk in oil field development, oil field economics, and pollution and the environment. It is the editors' hope that several key areas of NW Europe's upstream oil industry have been usefully summarized in the volume. (Author)

  15. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  16. A comparison of the C{sub 2}-C{sub 9} hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, B M; Marnane, I S [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2002-07-01

    Hourly roadside hydrocarbon concentrations were measured over a six-week period at a heavily trafficked junction in Dublin city centre. Samples of ten typical leaded and unleaded petrol fuels used in Irish vehicles were also collected and their hydrocarbon compositions determined. The measured ambient hydrocarbon concentrations are presented, as are the properties of each of the analysed fuels. Comparison of the ambient hydrocarbon concentrations and the fuel hydrocarbon composition reveals a strong correlation for most hydrocarbons, except those compounds that were wholly combustion derived (i.e. not present in the fuel). Different characteristics were noted for aromatics, alkanes and alkenes. The comparison of roadside ambient air and fuel hydrocarbon content agrees well with other studies that have compared fuel content and exhaust composition. The relative impacts of exhaust and evaporative emissions on roadside hydrocarbon concentrations are apparent. (Author)

  17. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  18. Characteristics of atmospheric non-methane hydrocarbons during haze episode in Beijing, China.

    Science.gov (United States)

    Guo, Songjun; Tan, Jihua; Duan, Jingchun; Ma, Yongliang; Yang, Fumo; He, Kebin; Hao, Jimin

    2012-12-01

    This study firstly focused on non-methane hydrocarbons (NMHCs) during three successive days with haze episode (16-18 August 2006) in Beijing. Concentrations of alkanes, alkenes, aromatic hydrocarbons, and ethyne all peaked at traffic rush hour, implying vehicular emission; and alkanes also peaked at non-traffic rush hour in the daytime, implying additional source. Especially, alkanes and aromatics clearly showed higher levels in the nighttime than that in the daytime, implying their active photochemical reactions in the daytime. Correlation coefficients (R (2)) showed that propane, n-butane, i-butane, ethene, propene, and benzene correlated with ethyne (R (2) = 0.61-0.66), suggesting that their main source is vehicular emission; 2-methylpentane and n-hexane correlated with i-pentane (R (2) = 0.61-0.64), suggesting that gasoline evaporation is their main source; and ethylbezene, m-/p-xylene, and o-xylene correlated with toluene (R (2) = 0.60-0.79), suggesting that their main source is similar to that of toluene (e.g., solvent usage). The R (2) of ethyne, i-pentane, and toluene with total NMHCs were 0.58, 0.76, and 0.60, respectively, indicating that ambient hydrocarbons are associated with vehicular emission, gasoline evaporation, and solvent usage. The sources of other hydrocarbons (e.g., ethane) might be natural gas leakage, biogenic emission, or long-range transport of air pollutants. Measured higher mean B/T ratio (0.78 ± 0.27) was caused by the more intensive photochemical activity of toluene than benzene, still indicating the dominant emission from vehicles.

  19. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume

    NARCIS (Netherlands)

    Hamonts, K.; Kuhn, T.; Vos, J.; Maesen, M.; Kalka, H.; Smidt, H.; Springael, D.; Meckenstock, R.U.; Dejonghe, W.

    2012-01-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater base flow. Biotrans formation, sorption and dilution of CAHs in the impacted river sediments have been reported to reduce discharge, but the effect of temporal variations in environmental conditions on

  20. THE GEOLOGICAL CONDITIONING OF HYDROCARBON EMISSIONS RESULTING FROM SOIL CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Ewa J. Lipińska

    2014-12-01

    Full Text Available Synchronization economy of oil mining and mineral waters is associated with planning the functions of spa treatment. Environmental protection of the spa areas also applies to preserve their technical and cultural heritage. This article attempts to determine the places of natural and anthropogenic hydrocarbon pollution substances. Their presence in the soil affects the quality of the environment. As a result, maps are produced showing directions of research: (1 the natural background of biodiversity, and (2 potential anthropogenic pollution. They are assessed in the context of the health and human life, protection of the environment and the possibility of damage to the environment. Research is conducted in communes of the status of the spa – for special protection.

  1. Culture-dependent characterization of hydrocarbon utilizing bacteria ...

    African Journals Online (AJOL)

    EARNEST

    Hydrocarbons interact with the environment and micro- organisms determining the .... it is pertinent to study the community dynamics of hydrocarbon degrading bacteria ... Chikere CB (2013). Application of molecular microbiology techniques in.

  2. 33 CFR 157.166 - Hydrocarbon emissions.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166 Section 157.166 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the...

  3. Petroleum hydrocarbons in offshore sediments from the Gulf

    International Nuclear Information System (INIS)

    Al-Lihaibi, S.S.; Al-Omran, Laila

    1996-01-01

    Petroleum hydrocarbons in offshore sediments from the central part of the Gulf were measured using fluorescence spectrophotometry. Concentrations varied between 4.0 and 56.2 μg/g wet sediment (expressed as Kuwait Crude Oil equivalents), with an average of 12.3 μ/g. Highest concentrations were recorded in the north-west sector, with concentrations decreasing in a south-westerly direction. No significant correlations were observed between petroleum hydrocarbons and sedimentary organic carbon (r-0.07), 'mud' content (r=0.09), 'sand' content (r= -0.08) or 'gravel' content (r= -0.12). Distributions of oil are considered to relate more closely to prevailing current and localized pollutant sources in the region. Despite the substantial inputs of oil to the Gulf, contamination can be considered comparatively low, possibly reflecting physical processes and biological degradation which accelerate removal of petroleum from this marine environment. (author)

  4. Impact of Increased Thermokarst Activity on Polycyclic Aromatic Compound (PAC) Accumulation in Sediment of Lakes in the Hydrocarbon-Rich Uplands Adjacent to the Mackenzie Delta, NT, Canada

    Science.gov (United States)

    Eickmeyer, D.; Thienpont, J. R.; Blais, J. M.

    2017-12-01

    In ecologically sensitive, hydrocarbon-rich regions like the western Canadian Arctic, environmental monitoring of oil and gas development often focuses on both direct and unintentional consequences of increased exploration and extraction of hydrocarbon resources. However, proper assessments of impact from these activities could be confounded by natural petrogenic sources in permafrost-rich regions where increased thermokarst activity results in permafrost exposure and erosion of hydrocarbon-rich deposits. Using a paired-lake design in the tundra uplands adjacent to the Mackenzie Delta, NT, we examined 4 lakes with retrogressive thaw slump scars along their shores, and 4 nearby undisturbed reference lakes, focusing on polycyclic aromatic compound (PAC) deposition and composition in the sediment. Total organic carbon (TOC)-normalized concentrations for parent and alkylated PACs were higher in surface sediments of slump-affected lakes than the reference lakes. This followed the pattern previously observed for persistent organic pollutants in these lakes where presence of thaw slumps on the lake shore was associated with lower TOC content in the water column, resulting in a smaller pool of available organic carbon, leading to higher PAC concentrations. Diagnostic ratios of specific PACs also suggested the sediment of slump-affected lakes had greater influence from petroleum-based PAC sources than their reference counterparts. This interpretation was corroborated by a principle components analysis of the metal content in the sediment. Slump-affected lakes were enriched in metals related to shale-based, Quaternary deposits of the Mackenzie Basin (e.g. Ca, Sr, Mg) when compared to reference lakes where these surficial materials were not exposed by thermokarst activity. Higher PAC concentrations and composition indicative of petrogenic sources observed in sediment of slump-affected lakes were best explained as a combination of low TOC availability and increased inputs of

  5. Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones.

    Science.gov (United States)

    Zhang, Dong; Terschak, John A; Harley, Maggy A; Lin, Junda; Hardege, Jörg D

    2011-04-20

    Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.

  6. Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones.

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    Full Text Available Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.

  7. GOM Deepwater Horizon Oil Spill: A Time Series Analysis of Variations in Spilled Hydrocarbons

    Science.gov (United States)

    Palomo, C. M.; Yan, B.

    2013-12-01

    An estimated amount of 210 million gallons of crude oil was released into the Gulf of Mexico (GOM) from April 20th to July 15th 2010 during the Deepwater Horizon oil rig explosion. The spill caused a tremendous financial, ecological, environmental and health impact and continues to affect the GOM today. Variations in hydrocarbons including alkanes, hopanes and poly-cyclic aromatic hydrocarbons (PAHs) can be analyzed to better understand the oil spill and assist in oil source identification. Twenty-one sediment samples*, two tar ball samples and one surface water oil sample were obtained from distinct locations in the GOM and within varying time frames from May to December 2010. Each sample was extracted through the ASE 200 solvent extractor, concentrated down under nitrogen gas, purified through an alumina column, concentrated down again with nitrogen gas and analyzed via GC X GC-TOF MS. Forty-one different hydrocarbons were quantified in each sample. Various hydrocarbon 'fingerprints,' such as parental :alkylate PAH ratios, high molecular weight PAHs: low molecular weight alkane ratios, and carbon preference index were calculated. The initial objective of this project was to identify the relative hydrocarbon contributions of petrogenic sources and combustion sources. Based on the calculated ratios, it is evident that the sediment core taken in October of 2010 was greatly affected by combustion sources. Following the first month of the spill, oil in the gulf was burned in attempts to contain the spill. Combustion related sources have quicker sedimentation rates, and hydrocarbons from a combustion source essentially move into deeper depths quicker than those from a petrogenic source, as was observed in analyses of the October 2010 sediment. *Of the twenty-one sediment samples prepared, nine were quantified for this project.

  8. Enron looking to international arena for growth via hydrocarbon/power schemes

    International Nuclear Information System (INIS)

    Williams, B.

    1998-01-01

    Enron Corp., one of the US pioneers in the business of comarketing hydrocarbons and electricity, is looking to the international arena to provide the bulk of its future growth. Following its successes emanating from opportunities created by the deregulation of the natural gas industry in the US, Enron has ventured into a new area: the wholesale electricity market, which is in the process of deregulating in the US and in Europe. Enron has gained an edge here by transferring its wholesale gas market expertise to the evolving new electric power market. With its wholesale strategy in place, Enron has trained its sights on the deregulating retail natural gas and electricity markets in the US and Europe

  9. Performance estimation of ejector cycles using heavier hydrocarbon refrigerants

    International Nuclear Information System (INIS)

    Kasperski, Jacek; Gil, Bartosz

    2014-01-01

    Computer software basing on theoretical model of Huang et al. with thermodynamic properties of hydrocarbons was prepared. Investigation was focused on nine hydrocarbons: propane, butane, iso-butane, pentane, iso-pentane, hexane, heptane and octane. A series of calculations was carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Calculation results show that none of the hydrocarbons enables high efficiency of a cycle in a wide range of temperature. Each hydrocarbon has its own maximal entrainment ratio at its individual temperature of optimum. Temperatures of entrainment ratios optimum increase according to the hydrocarbon heaviness with simultaneous increase of entrainment ratio peak values. Peak values of the COP do not increase according to the hydrocarbons heaviness. The highest COP = 0.32 is achieved for iso-butane at 102 °C and the COP = 0.28 for pentane at 165 °C. Heptane and octane can be ignored. - Highlights: • Advantages of use of higher hydrocarbons as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of vapor generation for each hydrocarbon was calculated

  10. Development of a System for the Analysis of Hydrocarbons Different to the Methane in Air

    International Nuclear Information System (INIS)

    Rodriguez Harrison, F. A.

    2001-01-01

    In the air there are more than 3000 organic compounds produced by the natural emissions and anthropoid-genetics. Many of these organic compounds are saturated and unsaturated hydrocarbons; the volcanoes and the plants emit some, while others are emitted for the industrial processes and for the mobile sources. The hydrocarbons play a very important role in the Atmospheric Chemistry, since they take place through their oxidation a series of substances that affect the living beings, they sensitize the human being, producing him illnesses and they contribute to alter the climate of the planet. A sampling method by adsorption about cartridges that contained Tenax, Carbopack B, and molecular sieve, and a system for the analysis of hydrocarbons in the air for thermal desertion and cryogenic concentration was developed with the purpose of identifying and quantifying the hydrocarbons different to the methane present in the winds that travel San Jose Central Valley, Costa Rica. The effect of the ozone in these determinations was studied by taking samples with destroyer of ozone made with iodize of potassium and comparing them with samples taken without the destroyer. The samples were taken simultaneously between April 20 and 29 1999 in 3 sampling stations located in the northwest side of the Volcano Irazu, in Escazu and in Turrucares. There were eleven hydrocarbons being among the most abundant anthropoid-genetics the isooctane (among 34 y 149 μg/m 3 ) and etilbenceno while (among 13 y 231 μg/m 3 ), while the one α-pineno (among 25 y 153 μg/m 3 ), β-pineno (among 60 y 192 μg/m 3 ) y el limoneno (among 34 y 244 μg/m 3 ). It was also found that the ozone didn't affect the concentrations of the unsaturated hydrocarbons in the cartridges, since there were not significant differences in the concentrations of the measured hydrocarbons when the destroyer of ozone was used. (Author) [es

  11. Self-potential and Complex Conductivity Monitoring of In Situ Hydrocarbon Remediation in Microbial Fuel Cell

    Science.gov (United States)

    Zhang, C.; Revil, A.; Ren, Z.; Karaoulis, M.; Mendonca, C. A.

    2013-12-01

    Petroleum hydrocarbon contamination of soil and groundwater in both non-aqueous phase liquid and dissolved forms generated from spills and leaks is a wide spread environmental issue. Traditional cleanup of hydrocarbon contamination in soils and ground water using physical, chemical, and biological remedial techniques is often expensive and ineffective. Recent studies show that the microbial fuel cell (MFC) can simultaneously enhance biodegradation of hydrocarbons in soil and groundwater and yield electricity. Non-invasive geophysical techniques such as self-potential (SP) and complex conductivity (induced polarization) have shown the potential to detect and characterize the nature of electron transport mechanism of in situ bioremediation of organic contamination plumes. In this study, we deployed both SP and complex conductivity in lab scale MFCs to monitor time-laps geophysical response of degradation of hydrocarbons by MFC. Two different sizes of MFC reactors were used in this study (DI=15 cm cylinder reactor and 94.5cm x 43.5 cm rectangle reactor), and the initial hydrocarbon concentration is 15 g diesel/kg soil. SP and complex conductivity measurements were measured using non-polarizing Ag/AgCl electrodes. Sensitivity study was also performed using COMSOL Multiphysics to test different electrode configurations. The SP measurements showed stronger anomalies adjacent to the MFC than locations afar, and both real and imaginary parts of complex conductivity are greater in areas close to MFC than areas further away and control samples without MFC. The joint use of SP and complex conductivity could in situ evaluate the dynamic changes of electrochemical parameters during this bioremediation process at spatiotemporal scales unachievable with traditional sampling methods. The joint inversion of these two methods to evaluate the efficiency of MFC enhanced hydrocarbon remediation in the subsurface.

  12. BioKonversion technology recovers, remediates and reuses waste and hydrocarbons from oil drilling

    Energy Technology Data Exchange (ETDEWEB)

    Topf, A.

    2008-01-15

    Houston-based Nopal Group has developed a solution to dispose of oilfield waste in a safe and cost-effective manner. The company is actively engaged in a large-scale project to remediate a 400-hectare site on the Aspheron Peninsula in Azerbaijan. The site is currently regarded as the most polluted place in the world after a century of oil extraction with little regard for the surrounding environment. The Nopal Group will use its patented BioKonversion technology, which cleanses the soil of hydrocarbons in a two-part process using a large machine known as the Green Machine. Several pipelines will need to be relocated, and ancient drilling rigs that have been there as long as 100 years will have to be dealt with. The cleanup cost has been estimated at between $20 million to $40 million, and will take between 18 and 36 months, depending on how deep into the ground the machines have to dig for hydrocarbons. The 90-foot by 40-foot machine processes drill cuttings, contaminated soil and drill fluids by first separating the dirt from the liquid hydrocarbons, which can be recycled or refined for resale. The remaining dirt, which still contains 3 to 7 percent oil, is then placed into a centrifuge and mixed with a heating agent and other elements, including naturally oleophilic kenaf powder. The process micronizes and absorbs hydrocarbons. Once the process is finished, the hydrocarbons are immediately non-detectable and non-leachable. The leftover benign dirt can be used as landfill cover, or mixed with road aggregate. BioKonversion can also be adapted for use on oil rigs. This article demonstrated that the process has clear advantages over traditional oilfield remediation methods such as land farming. Opportunities exist to utilize the process in Venezuela and Kuwait. 1 fig.

  13. Deep catalytic oxidation of heavy hydrocarbons on Pt/Al{sub 2}O{sub 3} catalysts; Oxydation catalytique totale des hydrocarbures lourds sur Pt/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, F.

    1998-12-09

    Deep oxidation by air on Pt supported on alumina of a large number of heavy hydrocarbons representative of those found in a real Diesel car exhaust has been studied. Light-off temperatures between 140 and 320 deg. C on 1%Pt/alumina (80% metal dispersion) have been found. Results show that not only the physical state around the conversion area but also the chemical nature of the hydrocarbon plays an important role. Heavy hydrocarbons deep oxidation behaviour has been classified as a function of their chemical category (alkane, alkene, aromatics etc..). Oxidation of binary mixtures of hydrocarbons has shown strong inhibition effects on n-alkane or CO oxidation by polycyclic compounds like 1-methyl-naphthalene. In some cases, by-product compounds in the gas effluent (other than CO{sub 2} and H{sub 2}O) have been identified by mass-spectrometry leading to oxidation mechanism proposals for different hydrocarbons. Catalyst nature (metal dispersion, content) influence has also been studied. It is shown that turn-over activity is favoured by the increase of the metal bulk size. Acidity influence of the carrier has shown only very little influence on n-alkane or di-aromatic compound oxidation. (author)

  14. Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2016-06-01

    Full Text Available Aromatic hydrocarbons and n-alkanes were analyzed in shellfish collected from 13 different sites along the Egyptian Red Sea coast. All samples were analyzed for n-alkanes (C8–C40 and polycyclic aromatic hydrocarbons (EPA list of PAHs. n-Alkanes in shellfish samples from 13 locations were found to be in the range of 71.0–701.1 ng/g with a mean value of 242.2 ± 192.1 ng/g dry wt. Different indices were calculated for the n-alkanes to assess their sources. These were carbon preference index (CPI, average chain length (ACL, terrigenous/aquatic ratio (TAR, natural n-alkane ratio (NAR and proxy ratio (Paq. Most of the collected samples of n-alkanes were discovered to be from natural sources. Aromatic hydrocarbons (16 PAHs from 13 sites varied between 1.3 and 160.9 ng/g with an average of 47.9 ± 45.5 ng/g dry wt. Benzo(apyrine (BaP, a cancer risk assessment, was calculated for the PAHs and resulted in ranges between 0.08 and 4.47 with an average of 1.25 ng/g dry wt.

  15. 77 FR 11039 - Proposed Confidentiality Determinations for the Petroleum and Natural Gas Systems Source Category...

    Science.gov (United States)

    2012-02-24

    ... liquids (NGLs) or non-methane gases from produced natural gas, or the separation of NGLs into one or more... than or reveal the composition of the hydrocarbon equal to 10 barrels per liquid or the reporter's... composition of the hydrocarbon equal to 10 barrels per liquid or the reporter's productivity. Data on day...

  16. Volatile Organic Compounds in the Boundary Layer in Tikveš, Kopački Rit Nature Reserve

    Directory of Open Access Journals (Sweden)

    Kovač-Andrić, E.

    2013-07-01

    Full Text Available This paper represents one of the first measurements of volatile hydrocarbon concentrations within the surface layer of the troposphere in Tikveš, Kopaeki Rit Nature Park. This Nature Park is situated about 20 kilometres from the city of Osijek and represents an interesting example of the interaction of the urban and rural (wetland areas, which is also the reason for selecting the Tikveš site as the measurement station.Volatile organic compounds with two to seven carbon atoms were measured and analysed on a gas chromatograph with flame ionization (FID and mass-selective detector (MSD. The results for the hydrocarbons with 2 to 7 carbon atoms are shown. Ozone volume fractions in the air were also measured. All data obtained are given as hourly averages: for volatile hydrocarbons of concentrations and for ozone of volume fractions. The most significant changes in the concentration were found for ethane, propane and butane. With the exception of isoprene, whose daily concentration changes similarly as found for ozone, the daily variations of the measured hydrocarbons in Tikveš differ from the observed ozone diurnal variation. The Spearman's test showed no significant negative correlation between the measured hydrocarbons.

  17. Cage occupancies of natural gas hydrates encaging methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Kida, M.; Hachikubo, A.; Sakagami, H.; Minami, H.; Krylov, A.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Kida, M. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan); Khlystov, O. [Limnological Inst., Irkutsk (Russian Federation). Siberian Branch of the Russian Academy of Sciences; Poort, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan)

    2008-07-01

    Natural gas hydrates are crystalline compounds that contain large amounts of natural gas in its structure and are expected to provide natural gas resources in the future. The gas species are trapped in different types of polyhedral cages which consist of hydrogen bonded water molecules. Three main types of crystallographic structures exist, notably structure 1, structure 2 and structure H (sH). The crystallographic structure of natural gas hydrates depends on the encaged gas components. The cage occupancy is the ratio of the number of cages occupied by guest molecules to the number of total cages. It is also important to estimate the amount of natural gas, since it depends on the condition of the hydrate formation such as gas composition. The cages of natural gas hydrates mainly contain methane. However, other heavier hydrocarbons such as ethane (C{sub 2}H{sub 6}), propane (C{sub 3}H{sub 8}), and isobutane (i-C{sub 4}H{sub 1}0) may be encaged together with CH{sub 4}. Little is known about cage occupancies of natural gas hydrates including CH{sub 4} and heavier hydrocarbons. This paper discussed a study that developed cage occupancy estimations of natural gas hydrates encaging heavier hydrocarbons. 13C nuclear magnetic resonance (NMR) measurements were conducted. The assignments of resonance lines were based on 13C chemical shifts obtained by artificial sample measurements. The paper presented the experimental data and discussed the results of the study. The large cages were almost fully occupied with CH{sub 4} and C{sub 2}H{sub 6} molecules, whereas the small cage occupancies of CH{sub 4} were below 0.8. The distribution of CH{sub 4} and C{sub 2}H{sub 6} in each cage were similar to that of synthetic CH{sub 4} + C{sub 2}H{sub 6} hydrate. It was concluded that these results should be useful for optimal estimation of the amount of natural gas in gas hydrates. 18 refs., 1 tab., 3 figs.

  18. Method for production of unsaturated gaseous hydrocarbons, particularly ethylene, and of aromatic hydrocarbons, adapted as motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1952-10-24

    A method is described for the production of unsaturated gaseous hydrocarbons, in particular of ethylene, and of aromatic hydrocarbons from hydrocarbon oils or from fractions of the same, characterized by the fact that the raw materials are brought into contact with porous, inert substances in the form of fine distribution or of pieces at a temperature of above 500 and in particular from 600 to about 700/sup 0/C and with a traversing speed of from 0.3 up to about 3.0 volumetric parts, preferably up to 1.5 volumetric parts of raw material per volumetric part of the chamber and per hour.

  19. Determination of dew point in natural gas; Determinacion del punto de rocio en el gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Avila Calzada, S.; Marco Martinez, G.; Montenegro Soto, S. [ENAGAS (Spain)

    1995-07-01

    The natural gas can contain water and heavy hydrocarbons very dangerous for the equipments and the pipes. This is the reason of the importance of dew point. The value of this dew point is fixed in the supply contract conditions. This article studies the different evaluation methods, pointing out the advantages and disadvantages (Author)

  20. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    Science.gov (United States)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  1. Natural attenuation: A feasible approach to remediation of ground water pollution at landfills?

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, T.H.; Bjerg, P.L.; Kjeldsen, P.

    2000-12-31

    Remediation of ground water pollution at old landfills with no engineered leachate collection system is a demanding and costly operation. It requires control of the landfill body, since the majority of the pollutants are still present in the landfilled waste for decades after the site has been closed. However, natural attenuation of the plume without removing the source is an attractive approach to managing leachate plumes. Natural attenuation has been implemented for petroleum hydrocarbon plumes and for chlorinated solvent plumes, primarily in the US. Natural attenuation has not yet gained a foothold with respect to leachate plumes, however. Based on the experiences gained from 10 years of research on two Danish landfills, it is suggested that natural attenuation is a feasible approach but is more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent.

  2. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  3. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  4. Sources of hydrocarbons in urban road dust: Identification, quantification and prediction.

    Science.gov (United States)

    Mummullage, Sandya; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2016-09-01

    Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bill project putting an end to the search for as well as to the exploitation of hydrocarbons, and bearing various applications related to energy and to the environment, adopted on new reading by the National Assembly - Nr 40

    International Nuclear Information System (INIS)

    Colas-Roy, Jean-Charles

    2017-01-01

    While considering objectives of limitation of temperature increase, and in order to limit the use of fossil energies likes conventional and non-conventional hydrocarbons, the exploitation of which would result in an increase of CO 2 emissions, France has to modify its rules related to hydrocarbon extraction. This bill project therefore aims at programming the end of the exploration and of the exploitation of hydrocarbons. As mentioned, some articles of this bill project concern energy regulation, or can be a transposition of a European directive. This document presents the final version of each article adopted by the National Assembly

  6. RECENT ADVANCES IN NATURALLY FRACTURED RESERVOIR MODELING

    OpenAIRE

    ORDOÑEZ, A; PEÑUELA, G; IDROBO, E. A; MEDINA, C. E

    2001-01-01

    Large amounts of oil reserves are contained in naturally fractured reservoirs. Most of these hydrocarbon volumes have been left behind because of the poor knowledge and/or description methodology of those reservoirs. This lack of knowledge has lead to the nonexistence of good quantitative models for this complicated type of reservoirs. The complexity of naturally fractured reservoirs causes the need for integration of all existing information at all scales (drilling, well logging, seismic, we...

  7. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  8. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  9. Steady-state and transient hydrocarbon production in graphite by low energy impact of atomic and molecular deuterium projectiles

    International Nuclear Information System (INIS)

    Zhang, H.; Meyer, F.W.

    2009-01-01

    We report measurements of steady-state yields of methyl, methane and heavier hydrocarbons for deuterium atomic and molecular ions incident on ATJ graphite, HOPG, and a-C:D thin films in the energy range 10-200 eV/D. The yields were determined using a QMS technique in conjunction with calibrated hydrocarbon leaks. We have also studied transient hydrocarbon production and hydrogen (deuterium) re-emission for 80 and 150 eV/D D + , D 2 + , and D 3 + projectiles incident on ATJ graphite surfaces pre-loaded to steady state by 20 eV/D beams of the corresponding species. Immediately after starting the higher-energy beams, transient hydrocarbon and D 2 re-emission yields significantly larger than steady-state values were observed, which exponentially decayed as a function of beam fluence. The initial yield values were related to the starting hydrocarbon and deuterium densities in the prepared sample, while the exponential decay constants provided information on the hydrocarbon kinetic release and hydrogen (deuterium) detrapping cross-sections.

  10. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  11. Degradation of petroleum hydrocarbons in a laboratory aquifer column

    International Nuclear Information System (INIS)

    Billowits, M.; Whyte, L.; Greer, C.; Ramsay, J.

    1998-01-01

    One of the primary mechanisms for eliminating hydrocarbon pollutants from the environment is degradation of hydrocarbons by indigenous microorganisms. This report describes a study in which samples from a petroleum polluted shallow aquifer in the Yukon were used which contained a hundred times greater concentration of psychrotropic bacteria than mesophilic bacteria. Results showed a maximum degradation of 47 per cent of the total petroleum hydrocarbon in columns which simulated the aquifer conditions and to which nutrients were added. It was concluded that although in this case bioaugmentation of the columns with a psychrotropic hydrocarbon-degrading consortium increased microbial numbers, total petroleum hydrocarbon degradation was not much greater than could be achieved by remediation with nutrients alone

  12. Hydrocarbons in Argentina: networks, territories, integration

    International Nuclear Information System (INIS)

    Carrizo, S.C.

    2003-12-01

    Argentinean hydrocarbons networks have lived a huge reorganizing the structure, after the State reform in the 90's. Activities deregulation and the privatization of YPF and Gas del Estado forced the sector re-concentration, since then dominated by foreign companies, leaded by Repsol YPF. The hydrocarbons federalization contributed to the weakening and un-capitalization loss of wealth of the State. These changes resulted in an increase of the hydrocarbons production allowing to achieve the self-supply. Nevertheless, the expansion of internal networks has not been large enough to ensure the coverage of new requirements. Besides, several infrastructures have been built up to join external markets. National networks are connected to those of near neighboring countries. This integration is an opportunity for the 'South Cone' countries to enhance their potentials. In the country, hydrocarbons territories undergo the reorganizing the structure effects (unemployment, loss of territorial identity, etc). With many difficulties and very different possibilities, those territories, like Comodoro Rivadavia, Ensenada et and Bahia Blanca, look for their re-invention. (author)

  13. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development

    International Nuclear Information System (INIS)

    Incardona, John P.; Linbo, Tiffany L.; Scholz, Nathaniel L.

    2011-01-01

    Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40 μM) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4–40 μM) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 μM) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: ► PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. ► These compounds produced differential cardiac

  14. Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

    Science.gov (United States)

    Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M

    2012-09-04

    Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.

  15. Distribution of some hydrocarbons in ambient air near Delft and the influence on the formation of secondary air pollutants

    NARCIS (Netherlands)

    Bos, R.; Guicherit, R.; Hoogeveen, A.

    1977-01-01

    The relative concentrations of hydrocarbons in the atmosphere may provide information concerning their origin. It appears that the hydrocarbon composition measured in Delft (The Netherlands) is entirely different for northern and southern wind directions. This points to different sources. The most

  16. The EED [Emergencies Engineering Division] solvent extraction process for the removal of petroleum-derived hydrocarbons from soil

    International Nuclear Information System (INIS)

    Bastien, C.Y.

    1994-03-01

    Research was conducted to investigate the ability of hexane and natural gas condensate (NGC) to extract three different types of hydrocarbon contaminant (light crude oil, diesel fuel, and bunker C oil) from three types of soil (sand, peat, and clay). A separate but related study determined the efficiency of solvent extraction (using hexane and five other solvents but not NGC) for removal of polychlorinated biphenyls (PCB) from contaminated soil. The process developed for this research includes stages of mixing, extraction, separation, and solvent recovery, for eventual implementation as a mobile solvent extraction unit. In experiments on samples created in the laboratory, extraction efficiencies of hydrocarbons often rose above 95%. On samples from a petroleum contaminated site, average extraction efficiency was ca 82%. Sandy soils contaminated in the laboratory were effectively cleaned of all hydrocarbons tested but only diesel fuel was successfully extracted from peat soils. No significant differences were observed in the effectiveness of hexane and NGC for contamination levels above 3%. Below this number, NGC seems more effective at removing oil from peat while hexane is slightly more effective on clay soils. Sand is equally cleaned by both solvents at all contamination levels. Safety considerations, odor, extra care needed to deal with light ends and aromatics, and the fact that only 26% of the solvent is actually usable make NGC an unfeasible option in spite of its significantly lower cost compared to hexane. For extracting PCBs, a hexane/acetone mixture proved to have the best removal efficiency. 14 refs., 14 figs., 7 tabs

  17. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    OpenAIRE

    María Alejandra Trujillo Toro; Juan Fernando Ramírez Quirama

    2012-01-01

    This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for cont...

  18. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  19. Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification.

    Science.gov (United States)

    Eroglu, Ela; Okada, Shigeru; Melis, Anastasios

    2011-08-01

    Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications.

  20. Inventory, distribution, and origin of aliphatic and polyaromatic hydrocarbons in sea water, the surface microlayer, and the aerosols in the tropical Eastern Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Marty, J C; Saliot, A; Tissier, M J

    1978-03-20

    Hydrocarbons have been analyzed in several samples from ''Midlante'' cruise, Cape Verde islands-Canary islands, in the Eastern tropical Atlantic: subsurface water, sea surface microlayer collected by a metallic screen and aerosols collected by filtration of large air volumes at about 12 m. above the sea surface. Detailed analysis of aliphatic and polyaromatic hydrocarbons has been made by computerized gas chromatography/mass spectrometry. This study of the air/sea interface indicates a discontinuity in hydrocarbon composition between the underlying water and the microlayer and a similarity between the surface microlayer and the aerosols. The origin of the collected aerosols is essentially marine with a minor terrestrial contribution. The hydrocarbon pattern shows that, superimposed on the typical marine components, a contribution from smokes of natural and industrial origin and/or from pollution associated with crude oil sea slicks is present.

  1. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    Science.gov (United States)

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  2. Radiation-induced volatile hydrocarbon production in platelets

    International Nuclear Information System (INIS)

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets

  3. Conversion of hydrocarbon oils into motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-09

    The abstract describes a process for producing lower boiling hydrocarbon motor fuels with a starting material of wide boiling range composed primarily of hydrocarbon oils boiling substantially above the boiling range of the desired product. Separate catalytic and pyrolytic conversion zones are simultaneously maintained in an interdependent relationship. Higher boiling constituents are separated from residual constituents by fractionation while desirable reaction conditions are maintained. All or at least a portion of the products from the catalytic and pyrolytic conversion zones are blended to yield the desired lower boiling hydrocarbons or motor fuels.

  4. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  5. The effect of remedial measures upon groundwater quality in connection with soil contamination by chlorinated hydrocarbons and the related costs - by example of the City of Hanover

    International Nuclear Information System (INIS)

    Mull, R.; Mull, J.; Pielke, M.

    1992-01-01

    The effectiveness of remedial actions on the groundwater quality was investigated in the aquifer of the City of Hannover. The improvement of groundwater quality was related to the costs for the remedial actions. The attention was focussed on groundwater pollution by chlorinated hydrocarbons as the most important contaminants of groundwater in urban areas. (orig.)

  6. Relations between Hume’s philosophy and Natural Law Ethics

    Directory of Open Access Journals (Sweden)

    Fernando Arancibia C.

    2018-05-01

    Full Text Available The philosophy of D. Hume has been commonly related to positivism and moral subjectivism. Though his explicit influence is undeniable in these schools of thought, it does not prevent the effective existence of relations of harmony between theories traditionally opposed to the humean philosophy. In this work I will present the convergences between the philosophy of Hume and the natural law ethics, particularly the developed by the New Natural Law Theory. I will argue the link from the following points: (a the relevance of the common life, (b the experience and (c the role of philosophy in the human behavior.

  7. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  8. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil

    OpenAIRE

    Han, Tao; Zhao, Zhipeng; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the rem...

  9. Hydrocarbon degassing of the earth and origin of oil-gas fields (isotope-geochemical and geodynamic aspects)

    Science.gov (United States)

    Valyaev, Boris; Dremin, Ivan

    2016-04-01

    More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the

  10. Aspects of petroleum hydrocarbon metabolism in marine animals

    Science.gov (United States)

    Mironov, O. G.

    1980-03-01

    Studies on hydrocarbon composition of Black Sea mussels Mytilus galloprovincialis sampled from different habitats indicate that the quantity and composition of hydrocarbons distributed in the molluscs depend on season and sea-water quality. The data obtained under experimental conditions testify to the possibility of hydrocarbon concentration in mussel tissues after death. During filtration in sea water containing oil and oil products, these pollutants are bound into faeces and pseudofaeces which contain a greater percentage of aromatic compounds than the oil initially present in sea water. Quantitative data are presented on hydrocarbon changes in mussel excretory products during transfer from oil-polluted to clean sea water. When Black Sea crabs Eriphia verrucosa are fed with mussels containing fuel-oil components accumulated from sea water, the pollutants concentrate in the whole body of the crab. This is in contrast to parenteral oil uptake, which leads to a concentration of most of the hydrocarbon in the muscles.

  11. Total site integration of light hydrocarbons separation process

    OpenAIRE

    Ulyev, L.; Vasilyev, M.; Maatouk, A.; Duic, Neven; Khusanovc, Alisher

    2016-01-01

    Ukraine is the largest consumer of hydrocarbons per unit of production in Europe (Ukraine policy review, 2006). The most important point is a reduction of energy consumption in chemical and metallurgical industries as a biggest consumer. This paper deals with energy savings potential of light hydrocarbons separation process. Energy consumption of light hydrocarbons separation process processes typical of Eastern European countries were analysed. Process Integration (PI) was used to perform a ...

  12. The Attribute for Hydrocarbon Prediction Based on Attenuation

    International Nuclear Information System (INIS)

    Hermana, Maman; Harith, Z Z T; Sum, C W; Ghosh, D P

    2014-01-01

    Hydrocarbon prediction is a crucial issue in the oil and gas industry. Currently, the prediction of pore fluid and lithology are based on amplitude interpretation which has the potential to produce pitfalls in certain conditions of reservoir. Motivated by this fact, this work is directed to find out other attributes that can be used to reduce the pitfalls in the amplitude interpretation. Some seismic attributes were examined and studies showed that the attenuation attribute is a better attribute for hydrocarbon prediction. Theoretically, the attenuation mechanism of wave propagation is associated with the movement of fluid in the pore; hence the existence of hydrocarbon in the pore will be represented by attenuation attribute directly. In this paper we evaluated the feasibility of the quality factor ratio of P-wave and S-wave (Qp/Qs) as hydrocarbon indicator using well data and also we developed a new attribute based on attenuation for hydrocarbon prediction -- Normalized Energy Reduction Stack (NERS). To achieve these goals, this work was divided into 3 main parts; estimating the Qp/Qs on well log data, testing the new attribute in the synthetic data and applying the new attribute on real data in Malay Basin data. The result show that the Qp/Qs is better than Poisson's ratio and Lamda over Mu as hydrocarbon indicator. The curve, trend analysis and contrast of Qp/Qs is more powerful at distinguishing pore fluid than Poisson ratio and Lamda over Mu. The NERS attribute was successful in distinguishing the hydrocarbon from brine on synthetic data. Applying this attribute on real data on Malay basin, the NERS attribute is qualitatively conformable with the structure and location where the gas is predicted. The quantitative interpretation of this attribute for hydrocarbon prediction needs to be investigated further

  13. Study on surface geochemistry and microbiology for hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. The device is capable of determining hydrocarbon gases in water to the concentration of less than 5 x 10{sup -4} ml/l of water. According to the results of microbiological studies, the plate count technique can be a useful supplementary method for hydrocarbon exploration. This is based on the facts that the average survival rate to hydrocarbons (pentane, hexane) for heterotrophs is higher in the area known as containing considerable hydrocarbon gases than other areas in the Pohang region. However, it is still necessary to develop techniques to treat the bacteria with gaseous hydrocarbons. (author). 2 figs., 41 tabs.

  14. Three Essays in the Public Economics of Offshore Hydrocarbon Investment and Production

    Science.gov (United States)

    Kearney, Owen P.

    Offshore sources, in both shallow and deep waters, are increasingly important contributors to global oil and natural gas production. As both resource owner and taxing authority, national governments play an important role in the production of these offshore hydrocarbons. How the policy choices of these governments affect firm behavior, however, is not necessarily well understood. This dissertation contributes to our knowledge of how public policy influences offshore hydrocarbon investment and production. In the first essay, I estimate the investment responses of hydrocarbon producers to the suspension of the royalty, a type of production tax levied on production from federal lands. I find that the potential for a royalty payments waiver: (1) increases the probability that an individual tract is acquired by an average of 193% (a mean increase of 5.6 percentage points); (2) decreases the probability that a lease is ever drilled during its observed lease term by an average of 14.5% (a mean decrease of 1.3 percentage points); and (3) increases the expected number of explored leases by 150%. The introduction of DWRRA also increases the average winning bid per lease by 60%. These estimates quantify the magnitudes of the discouraging effects of production taxation on oil and natural gas investment. In the second essay, I quantify the implied value of information spillovers in oil and natural gas exploration using an event study design. I find that 25 trading days after a discovery, firms that own leases adjacent to the discovery lease (but not the discovery lease, itself) realize an average abnormal return translating to 315 million in market capitalization. This effect is quantitatively large compared to costs for drilling an exploratory well. In the final essay, I measure how oil price affects water injection, a method for prolonging the productive lifetime of oil fields. I find that a 1 rise in price increases the water injected into the well's reservoir by

  15. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...

  16. Evaluation of hydrocarbon potential

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-01-01

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the open-quotes Eleana Formationclose quotes are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock

  17. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  18. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    Science.gov (United States)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  19. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-01-01

    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  20. Method for the conversion of hydrocarbon charges

    Energy Technology Data Exchange (ETDEWEB)

    Whittam, T V

    1976-11-11

    The basis of the invention is the application of defined zeolites as catalysts to hydrocarbon conversion processes such as reformation, isomerization, dehydrocyclization, and cracking. By charging the zeolite carrier masses with 0.001 to 5% metal of the 8th group of the periodic system, preferably noble metals, a wide region of applications for the catalysts is achieved. A method for the isomerization of an alkyl benzene (or mixture of alkyl benzenes) in the liquid or gas phase under suitable temperature, pressure and flow-rate conditions, as well as in the presence of a cyclic hydrocarbon, is described as preferential model form of the invention; furthermore, a method for the reformation of a hydrocarbon fraction boiling in the gasoline or benzene boiling region and a method for the hydrocracking of hydrocarbon charge (e.g. naphtha, kerosine, gas oils) are given. Types of performance of the methods are explained using various examples.