WorldWideScience

Sample records for hydrocarbon recovery process

  1. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  2. Recovery Process for Lighter Hydrocarbon of Natural Gas in Liaohe Oilfield

    Institute of Scientific and Technical Information of China (English)

    Sun Fulu

    1995-01-01

    @@ Liaohe Oilfield, the third largest oilfield in China is richer in natural gas. Up to the end of 1993,the accumulative production of natural gas reached 31. 15 billion m3,among which associated gas occupied 19.83 billion m3. In the recent ten years ,more than ten of lighter hydrocarbon recovery units with different scales have been constructed. The following is describing the main process features about recovery units of 200 × 104m3/d,120× 104 m3/d and other small recovery units for lighter hydrocarbon of natural gas.

  3. Hydrocarbon processing

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S.G.; Seddon, D.

    1989-06-28

    A process for the catalytic conversion of synthesis-gas into a product which comprises naphtha, kerosene and distillate is characterized in that the catalyst is a Fischer-Tropsch catalyst also containing a zeolite, the naphtha fraction contains 60% or less linear paraffins and the kerosene and distillated fractions contain more linear paraffins and olefins than found in the naphtha fraction. Reduction of the relative amount of straight chain material in the naphtha fraction increases the octane number and so enhances the quality of the gasoline product, while the high quality of the kerosene and distillate fractions is maintained.

  4. 大型炼油厂轻烃回收流程的设计%Design of Recovery Process of light hydrocarbon in Large Refineries

    Institute of Scientific and Technical Information of China (English)

    谢国宏; 刘晓燕; 李爱凌; 王德会

    2011-01-01

    通过对大型炼厂分散和集中设置轻烃回收装置利弊的研究,以某千万吨级大型炼厂为例,介绍了集中设置轻烃回收装置的设计和优化过程,表明了集中设置轻烃回收装置能够对炼厂多套工艺装置的饱和烃进行有效回收,不仅可以避免流程的重复设置,节省投资,而且可以充分提高轻烃的回收率.%Merits and drawbacks of individual and central installing light hydrocarbon recovery units in large refineries were studied. Taking a large refinery as an example, design and optimization of central installing light hydrocarbon recovery unit were introduced. The results show that the central installing saturated gas recovery unit can effectively recover saturated gas from multi-units, which can not only avoid to individually install saturated gas recovery unit and save investment, but also increase yield of light hydrocarbons.

  5. Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kita, K.; Okada, S.; Sekino, H.; Imou, K.; Yokoyama, S. [Laboratory of Biological and Mechanical Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Amano, T. [Technology Research Institute, Tokyo Gas Co., Ltd., 1-7-7 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045 (Japan)

    2010-07-15

    Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons. In this study, wet microalgae harvest was thermally pretreated to enhance hydrocarbon recovery using a solvent extraction process. Samples containing a mixture of B. braunii and water were kept below 100 C for 10 min. The observed hydrocarbon recovery was 97.8% at 90 C. The extraction results suggest that the energy-intensive concentration and drying processes of the harvest could be eliminated. The proposed thermal pretreatment would revolutionize the conventional downstream processes. (author)

  6. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems.

  7. Hydrocarbon conversion process and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.40 A, a water adsorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of between 10% and 15% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; am amorphous cracking component, a binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  8. 40 CFR 144.22 - Existing Class II enhanced recovery and hydrocarbon storage wells.

    Science.gov (United States)

    2010-07-01

    ... and hydrocarbon storage wells. 144.22 Section 144.22 Protection of Environment ENVIRONMENTAL... of Underground Injection by Rule § 144.22 Existing Class II enhanced recovery and hydrocarbon storage wells. (a) An existing Class II enhanced recovery or hydrocarbon storage injection well is authorized...

  9. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Yuschak, Thomas; LaPlante, Timothy J.; Rankin, Scott; Perry, Steven T.; Fitzgerald, Sean Patrick; Simmons, Wayne W.; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  10. 40 CFR 144.21 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells.

    Science.gov (United States)

    2010-07-01

    ... recovery and hydrocarbon storage) and III wells. 144.21 Section 144.21 Protection of Environment... hydrocarbon storage) and III wells. (a) An existing Class I, II (except enhanced recovery and hydrocarbon... decision; or (9) For Class II wells (except enhanced recovery and hydrocarbon storage), five years...

  11. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  12. Do sealless pumps belong in hydrocarbon processing services?

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shawn L. [Sundyne Corporation, Arvada, CO (Brazil)

    2004-07-01

    Sealless pump technology seems unimaginable in the hot, dirty and high-pressure world of hydrocarbon processing. Furthermore the high flow rates typical of the industry seem incompatible with sealless pumps. Seals and their environmental controls used in conventional technologies are not immune from these factors making sealless worth another look. In October 2000 the Sealless Centrifugal Pump Specification API 685 was published. This specification lends sealless pumps credibility and emphasizes the proper application of the technology. In many process units seal leaks can be extremely dangerous and costly. The heavy hydrocarbons can auto-ignite and light hydrocarbons will tend to find a source of ignition. The ever-increasing requirements for clean fuels are driving many of the current refinery upgrades. Best Also available control technology requirements and additional focus on Environmental Health and Safety increase the attractiveness of sealless technology to mitigate the hazards associated with seal leaks. Sealless has a place in hydrocarbon processing to eliminate seals, provide mechanical simplification, and ensure personnel/environmental protection. The proper application involves evaluating canned motor/magnetic drive technology, API 685 Guidelines, and vapor pressure versus pump circuit pressure analysis. There are four (4) specific processes where sealless pumps should be targeted: Alkylation, Sulfur Recovery/Hydrotreating, Naphtha Reforming Production, and Neutralization. (author)

  13. URANIUM RECOVERY PROCESS

    Science.gov (United States)

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  14. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2015-08-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  15. 40 CFR 147.1154 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1154 Section 147.1154 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Michigan § 147.1154 Existing Class II enhanced recovery and hydrocarbon... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage will may not...

  16. 40 CFR 147.504 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND INJECTION CONTROL PROGRAMS Florida § 147.504 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery...

  17. 40 CFR 147.1354 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND INJECTION CONTROL PROGRAMS Montana § 147.1354 Existing Class II enhanced recovery and hydrocarbon... existing enhanced recovery or hydrocarbon storage well may not be in compliance with the requirements of... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery...

  18. 40 CFR 147.904 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND INJECTION CONTROL PROGRAMS Kentucky § 147.904 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery...

  19. 40 CFR 147.304 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND INJECTION CONTROL PROGRAMS Colorado § 147.304 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery...

  20. 40 CFR 147.104 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND INJECTION CONTROL PROGRAMS Alaska § 147.104 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery...

  1. 40 CFR 147.1454 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND INJECTION CONTROL PROGRAMS Nevada § 147.1454 Existing Class II enhanced recovery and hydrocarbon... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery...

  2. 40 CFR 147.1654 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND INJECTION CONTROL PROGRAMS New York § 147.1654 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery...

  3. System and process for upgrading hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  4. Microwave plasma torch for processing hydrocarbon gases

    Directory of Open Access Journals (Sweden)

    Alex G. Zherlitsyn

    2016-03-01

    Full Text Available We designed and developed an ultrahigh-frequency (microwave plasma torch with a combined (nitrogen, methane plasma-forming environment, and microwave output of up to 2 kW, continuously. We demonstrate the possibility of using it in order to process natural and associated petroleum (APG gas into valuable products (hydrogen and carbon nanomaterial CNM with up to 70% efficiency. Based on the developed microwave plasma torch, we developed an apparatus capable of converting hydrocarbon feedstock at a capacity of 50 g/h yielding CNM and hydrogen of up to 70 vol. %. In its mobile small-tonnage version, this technology can be used on gas-condensate fields.

  5. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    Science.gov (United States)

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  6. A comparative study on the recovery of polycyclic aromatic hydrocarbons from fly ash and lignite coal.

    Science.gov (United States)

    Arditsoglou, Anastasia; Terzi, Eleni; Kalaitzoglou, Maria; Samara, Constantini

    2003-01-01

    The recovery of polycyclic aromatic hydrocarbons (PAHs) from lignite coal burnt in Greek power stations and the fly ash produced is examined comparatively using Soxhlet, ultrasonic and accelerated solvent extraction procedures with various organic solvents. Soxhlet using toluene/methanol mixture and accelerated solvent extraction/toluene were found to be the most efficient methods for fly ash PAHs, yielding average recoveries of about 80%. The accelerated solvent extraction/toluene procedure was superior for lignite PAHs, yielding 96% average recovery, whereas ultrasonic and Soxhlet extraction yielded relatively lower recoveries (75% and 67%, respectively).

  7. Culture of the green microalga Botryococcus braunii Showa with LED irradiation eliminating violet light enhances hydrocarbon production and recovery.

    Science.gov (United States)

    Atobe, Sueko; Saga, Kiyotaka; Maeyama, Haruko; Fujiwara, Kazuhiro; Okada, Shigeru; Imou, Kenji

    2014-01-01

    The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii.

  8. 40 CFR 147.1653 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1653 Section 147.1653 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  9. 40 CFR 147.503 - Existing Class II (except enhanced recovery and hydrocarbon storage) wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II (except enhanced recovery and hydrocarbon storage) wells authorized by rule. 147.503 Section 147.503 Protection of... recovery and hydrocarbon storage) wells authorized by rule. Maximum injection pressure. To meet...

  10. 40 CFR 147.1953 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1953 Section 147.1953 Protection of... enhanced recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection...

  11. 40 CFR 147.1453 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1453 Section 147.1453 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  12. 40 CFR 147.103 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.103 Section 147.103 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  13. 40 CFR 147.1353 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1353 Section 147.1353 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  14. 40 CFR 147.1153 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1153 Section 147.1153 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  15. 40 CFR 147.2153 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.2153 Section 147.2153 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  16. 40 CFR 147.903 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.903 Section 147.903 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  17. 40 CFR 147.303 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.303 Section 147.303 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  18. 40 CFR 147.253 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.253 Section 147.253 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The...

  19. Possible cause for an improbable earthquake: The 1997 MW 4.9 southern Alabama earthquake and hydrocarbon recovery

    Science.gov (United States)

    Gomberg, J.; Wolf, L.

    1999-01-01

    Circumstantial and physical evidence indicates that the 1997 MW 4.9 earthquake in southern Alabama may have been related to hydrocarbon recovery. Epicenters of this earthquake and its aftershocks were located within a few kilometers of active oil and gas extraction wells and two pressurized injection wells. Main shock and aftershock focal depths (2-6 km) are within a few kilometers of the injection and withdrawal depths. Strain accumulation at geologic rates sufficient to cause rupture at these shallow focal depths is not likely. A paucity of prior seismicity is difficult to reconcile with the occurrence of an earthquake of MW 4.9 and a magnitude-frequency relationship usually assumed for natural earthquakes. The normal-fault main-shock mechanism is consistent with reactivation of preexisting faults in the regional tectonic stress field. If the earthquake were purely tectonic, however, the question arises as to why it occurred on only the small fraction of a large, regional fault system coinciding with active hydrocarbon recovery. No obvious temporal correlation is apparent between the earthquakes and recovery activities. Although thus far little can be said quantitatively about the physical processes that may have caused the 1997 sequence, a plausible explanation involves the poroelastic response of the crust to extraction of hydrocarbons.

  20. Possible cause for an improbable earthquake: The 1997 Mw 4.9 southern Alabama earthquake and hydrocarbon recovery

    Science.gov (United States)

    Gomberg, Joan; Wolf, Lorraine

    1999-04-01

    Circumstantial and physical evidence indicates that the 1997 Mw 4.9 earthquake in southern Alabama may have been related to hydrocarbon recovery. Epicenters of this earthquake and its aftershocks were located within a few kilometers of active oil and gas extraction wells and two pressurized injection wells. Main shock and aftershock focal depths (2 6 km) are within a few kilometers of the injection and withdrawal depths. Strain accumulation at geologic rates sufficient to cause rupture at these shallow focal depths is not likely. A paucity of prior seismicity is difficult to reconcile with the occurrence of an earthquake of Mw 4.9 and a magnitude-frequency relationship usually assumed for natural earthquakes. The normal-fault main-shock mechanism is consistent with reactivation of preexisting faults in the regional tectonic stress field. If the earthquake were purely tectonic, however, the question arises as to why it occurred on only the small fraction of a large, regional fault system coinciding with active hydrocarbon recovery. No obvious temporal correlation is apparent between the earthquakes and recovery activities. Although thus far little can be said quantitatively about the physical processes that may have caused the 1997 sequence, a plausible explanation involves the poroelastic response of the crust to extraction of hydrocarbons.

  1. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  2. Distillation sequence for the purification and recovery of hydrocarbons

    Science.gov (United States)

    Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  3. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-05-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{trademark} (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described.

  4. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-04-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{sup SM} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H{sub 2}S present. The experiments showed that hexane oxidation is suppressed when H{sub 2}S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H{sub 2}S oxidation conditions, and more importantly, does not

  5. 40 CFR 147.1954 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery... UNDERGROUND INJECTION CONTROL PROGRAMS Pennsylvania § 147.1954 Existing Class II enhanced recovery and...

  6. 40 CFR 147.2154 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery... UNDERGROUND INJECTION CONTROL PROGRAMS Tennessee § 147.2154 Existing Class II enhanced recovery and...

  7. 40 CFR 147.2103 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Science.gov (United States)

    2010-07-01

    ... Administrator determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II enhanced recovery... UNDERGROUND INJECTION CONTROL PROGRAMS South Dakota § 147.2103 Existing Class II enhanced recovery and...

  8. Steep Decline and Low Hydrocarbon Recovery in Fractured Shale: What and Why?

    Science.gov (United States)

    Hu, Q.; Barber, T.; Gao, Z.; Gao, X.; Ewing, R. P.

    2014-12-01

    Since 2000, the technological advances of horizontal drilling and hydraulic fracturing in the United States have led to a dramatic increase in hydrocarbon (gas and oil) production from shale formations, changing the energy landscape in the US and worldwide. Since 2005, the surge in tight oil production from shale formations has provided tremendous optimism regarding future United States hydrocarbon production, unexpectedly becoming the fastest-growing frontier of unconventional resources. According to the Energy Information Administration's newly released report in 2014, US oil output from tight oil prospects will almost double from the 2012 level of 2.5 million barrels per day, to 4.8 by 2019. However, total gas recovery from the Barnett play was reported to be only12-30%, and the tight-oil recovery rate from shale formations is even lower at 5-10%. The main barrier to sustainable development of US shale, the pore structure of the nanopores storing and transporting hydrocarbons, has been quietly ignored. We have studied pore structure, edge-accessible porosity, and how wettability is associated with mineral and organic kerogen phases, from four complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with SEM imaging and elemental mapping. The first three tests use tracer-bearing fluids (API brine or n-decane), with tracer distribution on shale mapped with micro-scale laser ablation-ICP-MS analyses. These innovative approaches indicate the limited accessibility (several millimeters from shale sample edge) and connectivity of nanopores in shales under atmospheric condition, which is linked to the steep initial (e.g., 1st year) decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  9. Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations

    KAUST Repository

    Zhang, Ke

    2013-11-07

    The framework hydrophobicity and flexibility of ZIF-8 are investigated by a detailed adsorption and diffusion study of a series of probe molecules including ethanol, 1-butanol, water, hexane isomers, xylene isomers, and 1,2,4-trimethylbenzene. The prospects for using ZIF-8 in biofuel recovery and hydrocarbon separations are discussed in terms of adsorption or kinetic selectivities. ZIF-8 shows extremely low water vapor uptakes and is especially suitable for vapor phase butanol-based biofuel recovery. The extraordinary framework flexibility of ZIF-8 is demonstrated by the adsorption of hydrocarbon molecules that are much larger than its nominal pore size, such as m-xylene, o-xylene and 1,2,4-trimethylbenzene. The calculation of corrected diffusion coefficients reveals an interesting spectrum of promising kinetic hydrocarbon separations by ZIF-8. These findings confirm that a molecular sieving effect tends to occur in the sorbate molecular size range of 4-6 Å rather than around the nominal ZIF-8 pore size of 3.4 Å, due to its surprising framework flexibility. © 2013 American Chemical Society.

  10. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Tan, E. C. D.; Biddy, M. J.; Beckham, G. T.; Scarlata, C.; Jacobson, J.; Cafferty, K.; Ross, J.; Lukas, J.; Knorr, D.; Schoen, P.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  11. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Buekens, A.G.; Huang, H. [Department of Chemical Engineering and Industrial Chemistry - CHIS 2, Free University of Brussels, Pleinlaan 2, Brussels 1050 (Belgium)

    1998-08-01

    This paper reviews recent developments in plastics cracking, a process developed to recycle plastic wastes into useful petrochemical materials. Under thermal cracking conditions, plastic wastes can be decomposed into three fractions: gas, liquid and solid residue. The liquid products are usually composed of higher boiling point hydrocarbons. By adopting customary fluid cracking catalysts and reforming catalysts, more aromatics and naphthenes in the C{sub 6}-C{sub 8} range can be produced, which are valuable gasoline-range hydrocarbons. More tests are, however, needed to verify the pyrolysis process in a pilot scale particularly for treatment of mixtures of bulk plastics. Plastics cracking is only an elementary conversion technology; its application has to be combined with other technologies such as municipal solid waste collection, classification and pretreatment at the front end, as well as hydrocarbon distillation and purification at the back end. Social, environmental and economic factors are also important in industrial implementation of the technology

  12. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-07-01

    This second quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. This report describes testing using the laboratory apparatus but operated at the pilot plant using the actual pilot

  13. Catalysts and process for liquid hydrocarbon fuel production

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  14. Simulation Opportunity Index, A Simple and Effective Method to Boost the Hydrocarbon Recovery

    KAUST Repository

    Saputra, Wardana

    2016-09-08

    During periods of low oil prices, profitability of field developments drops drastically. To help with this difficulty, a cost-effective method has been proposed to boost the hydrocarbon recovery by optimizing well locations through the Simulated Opportunity Index (SOI). SOI is an intelligent method to identify zones with high potential for production which is empirically calculated from basic rock and fluid properties, and from reservoir pressure as its energy capacity. In order to obtain the best results, the original SOI formula (Molina et al., 2009) was extended to both oil and gas fields. Based on this modified SOI formula, a software program has been developed to locate the best well locations considering multilayer, existing wells, and fault existences. This paper describes how the SOI software helps as a simple, fast, and accurate way to obtain the higher hydrocarbon production than that of trial-error method and previous studies in two different fields located in offshore Indonesia. On one hand, the proposed method could save money by minimizing the required number of wells. On the other hand, it could maximize profit by maximizing recovery.

  15. Financial and Organizational Aspects of the Recovery of Hydrocarbon Resource Base in the Regional Context

    Directory of Open Access Journals (Sweden)

    Irina Valeryevna Sharf

    2017-06-01

    Full Text Available The characteristics of hydrocarbon resource base qualitative and quantitative degrade are reflected in the increase of the share of small and medium−sized deposits, as well as hard−to−recover reserves. This makes the need to update the approaches to the implementation of the geological prospecting programmes. The geological exploration performance differs in oil−producing regions of the Russian Federation due to a number of various factors. The subject matter of the study is the assessment of the strength of these factors in various working, geological, infrastructure and economic conditions to determine the effectiveness of the existing economic model of the recovery of hydrocarbon resource base, as well as to develop the author’s suggestions. The hypothesis of the study proposes to change the economic, as well as financial and tax mechanisms of government regulation of the geological exploration, carried out by small oil producing companies on license areas with one or several fields in order to stimulate the development of hydrocarbon resource base. The method of the study is the correlation analysis of the impact of various factors on geological exploration on mineral resource base recovery. It is carried out utilizing K. Mohn model and the statistical data of three subjects of the Russian Federation (the Republic of Tatarstan, Khanty−Mansiysk Autonomous District and Tomsk region. The results of the study can be applied in the tax and financial legislation, as well as in the management of oil and gas industry in the field of geological exploration. On the basis of the conducted analysis and international experience, the author suggests to introduce reasonable tax incentives and the mechanism of public private partnership in the realization of geological prospecting programmes with the aim to support small oil producing companies at the initial stage of the development of a field.

  16. Catalysts and process for liquid hydrocarbon fuel production

    Science.gov (United States)

    White, Mark G; Liu, Shetian

    2014-12-09

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  17. Processing of spent nickelcatalyst for fat recovery

    Directory of Open Access Journals (Sweden)

    NASIR Mohammad Ibraim

    2001-01-01

    Full Text Available Spent nickel catalyst (SNC has the potential of insulting the quality of the environment in a number of ways. Its disposal has a pollution effect. Optimum recovery of fat from SNC, could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents considered to have been safer have been evaluated. Hexane, isopropanol, ethanol and heptane were examined using soxhlet extraction. While hexane is more efficient in oil recovery from SNC, isopropanol proved to be very good in clear separation of oil from waste material and also provides high solvent recovery compared to other solvents. Isopropanol extraction with chill separation of miscella into lower oil-rich phase, and an upper, solvent-rich recyclable phase save mush energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.

  18. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed.

  19. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    Science.gov (United States)

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  20. Hydrocarbonization process evaluation report. Volume II. Evaluation of process feasibility. [49 refs

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, J.M.; Dyslin, D.A.; Edwards, M.S.; Joy, D.S.; Peterson, G.R.

    1977-07-01

    Volume II of a two-volume study concerning the preliminary design and economic evaluation of a Hydrocarbonization Facility includes: (1) a review of the current status of the major processing units, (2) an assessment of operating problems, (3) considerations of possible process alternatives, (4) an evaluation of the overall process feasibility, and (5) recommendations for future process development. Results of the study emphasize the need for testing the evaluated process, which is based on the Clean Coke Process, in a continuous pilot plant using a wide variety of highly caking bituminous coals as feed material. A program suggested for the pilot plant would encompass: (1) development of improved methods for the prevention of agglomeration of highly caking coals during hydrocarbonization, (2) optimization of the yields of coal liquids, (3) investigation of a single-stage high-temperature hydrocarbonizer optimized for char production, and (4) optimization of beneficiation ratios employed during coal preparation.

  1. Pyrolysis processing for solid waste resource recovery

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  2. Total phosphorus recovery in flowback fluids after gelled hydrocarbon fracturing fluid treatments

    Energy Technology Data Exchange (ETDEWEB)

    Fyten, G.; Houle, P.; Taylor, R.S. [Halliburton Energy Services, Calgary, AB (Canada); Stemler, P.S. [Petro-Canada Oil and Gas Inc., Calgary, AB (Canada); Lemieux, A. [Omnicon Consultants Inc., Calgary, AB (Canada)

    2006-07-01

    Carbon dioxide miscible hydrocarbon fracturing fluids are used in unconventional gas reservoirs such as tight gas, shale gas, and coalbed methane. These fracturing fluids address phase trapping concerns by using oil-based fracturing fluid technology for use in reservoirs that are water sensitive. This paper addressed the problem of refinery tower fouling caused by volatile phosphorous components found in phosphate ester oil gellants. In order to address costly unplanned refinery shutdowns, a maximum 0.5 ppm volatile phosphorus in crude specification has been proposed. However, this specification is based on average concentrations of phosphorus added to the oil to gel it. The specification also falsely assumes that the oil is phosphorus free to begin with. The authors noted that refinery tower fouling is actually the result of total phosphorus throughput rather than peak concentrations at any one point. This paper focused on the total phosphorus recovery in addition to peak concentrations. It also examined what percentage of the total recovered phosphorus is in fact volatile, since this is the material that plugs the trays. The total per cent recovery of phosphorus originally added as phosphorus based gellant was examined along with the total percent recovery of volatile phosphorus as a function of total phosphorus. The phosphorus concentrations in both new and reused fracturing fluids before addition of gellants was also examined along with the potential explanations for phosphorus concentrations higher than those originally added. It was shown that the first 50 per cent of a hydraulic fracturing fluid flowback can result in recovery of greater than or less than the amount of phosphorus added to that portion of the fracturing fluid. The initial high concentrations of total and volatile phosphorus are greater than the phosphorus concentrations inherent in the system. Therefore, as flowback continues, there would be a rapid decline in the concentration of phosphorus

  3. [Recovery of consciousness: process-oriented approach].

    Science.gov (United States)

    Gusarova, S B

    2014-01-01

    Traditionally psychological neurorehabilitation of neurosurgical patients is provided subject to availability of clear consciousness and minimal potential to communicate verbally. Cognitive and emotional disorders, problems in social adaptation, neurotic syndromes are normally targets in such cases. We work with patients having survived severe brain damage being in different states of consciousness: vegetative state, minimal state of consciousness, mutism, confusion, posttraumatic Korsaroff syndrom. Psychologist considers recovery of consciousness as the target besides traditional tasks. Construction of communication with patient is central part of such job, where the patient remains unable to contact verbally, yet it is impossible to consider potential aphasia. This is a non-verbal "dialogue" with patient created by psychologist with gradual development and involving other people and objects of environment. Inline with modern neuroscientific achievements demonstrating ability to recognize by patients with severe brain injury (A. Owen, S. Laureys, M. Monti, M. Coleman, A. Soddu, M. Boly and others) we base upon psychological science, on psychotherapeutic approaches containing instruments inevitable to work with patients in altered states of consciousness and creation of non-verbal communication with patient (Jung, Reich, Alexander, Lowen, Keleman, Arnold and Amy Mindell, S. Tomandl, D. Boadella, A. Längle, P. Levin etc). This article will include 15 years of experience to apply Process-oriented approach by A. Mindell to recovery of consciousness of neurosurgical patients based on work with "minimal signals" (micro moves, breath, mimic reactions etc.), principle of feedback, psychosomatic resonance, empathy.

  4. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Toxicity Characteristic - Hydrocarbon Recovery Operations - Federal Register Notice, April 2, 1991

    Science.gov (United States)

    Proposal to extend the compliance date for the Toxicity Characteristic until January 25, 1993 for produced groundwater from free phase hydrocarbon recovery operations at certain petroleum industry sites-namely, refineries, marketing terminals, bulk plants.

  5. Heating hydrocarbon containing formations in a line drive staged process

    Science.gov (United States)

    Miller, David Scott

    2009-07-21

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

  6. Cogeneration systems and processes for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Fowler, Thomas David; Karanikas, John Michael

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  7. Process for the continuous biological production of lipids, hydrocarbons or mixtures thereof

    NARCIS (Netherlands)

    Van der Wielen, L.A.M.; Heijnen, J.J.

    2010-01-01

    The present invention is directed to a process for the continuous biological production of lipids, hydrocarbons, hydrocarbon like material or mixtures thereof by conversion of a suitable substrate using micro-organisms, in which process the said substrate is continuously, anaerobically fermented to

  8. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  9. The Process of Divorce Recovery: A Review of the Research.

    Science.gov (United States)

    Gastil, Richard W.

    Many researchers have speculated over the nature of the divorce recovery process. Is the process similar to Kubler-Ross's stages of grief or does divorce recovery follow a unique process? This paper examines the current body of empirical research in an attempt to answer these questions. From the 91 sources analyzed, it was discovered that most of…

  10. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    Science.gov (United States)

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  11. Economic feasibility study for phosphorus recovery processes.

    Science.gov (United States)

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón; Garrido-Baserba, Manel

    2011-06-01

    Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view.

  12. Recovery of Aliphatic Hydrocarbons from Oil Field Sludge using Bacillus sp

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Bhutto

    2015-04-01

    Full Text Available Bioremediation of aliphatic HC (Hydrocarbons in the oily sludge of Kunnar oil and gas field, Pakistan was attempted by means of previously isolated and developed Bacillus sp. Both autoclaved and non-autoclaved sludge samples were analyzed for a reaction time of 30 days with pH 7 and temperature of 380C in 50 ml MSM growth media for the sludge concentration of 5, 10 and 50% with 2, 4 and 6ml of Bacillus sp. relatively, in air atmosphere. Stabilization of the samples by microbial activity resulted in the decrease in TPH (Total Petroleum Hydrocarbon concentration by 60, 69 and 87% in autoclaved samples in contrast to the decrease of 70, 84 and 94% observed in non-autoclaved samples, relatively. Hydrocarbon degradation in oily sludge was investigated via GC which transpired that 97 and 99% concentration of aliphatic hydrocarbons in autoclaved and non-autoclaved samples was removed at 5% of TPH concentration, relatively. However, with 10% TPH concentration aliphatic hydrocarbons reduction was 68% in autoclaved samples to that of 87% in non-autoclaved samples. Further increase in the hydrocarbons concentration by 50% yielded in the removal of aliphatic hydrocarbons by 65% in autoclaved samples as compared to 98% decrease in non-autoclaved samples.

  13. Illness Insight and Recovery: How Important is Illness Insight in Peoples’ Recovery Process?

    DEFF Research Database (Denmark)

    Korsbek, Lisa

    2013-01-01

    Topic: This account reflects on the topic of illness insight and recovery. Purpose: The purpose of the account is to clarify our understanding about the importance of illness insight in peoples’ recovery process, especially when relating the question of illness insight to the question of identity....... Sources Used:The writing is based on research literature related to illness insight and on personal recovery experiences.Conclusions and Implications for Practice: It is helpful to consider the integration of the issue of illness insight when addressing the questions and consequences of diagnosis...... in relation to the importance of illness insight in the recovery process....

  14. Fundamental research in the chemistry of industrial oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N.M.

    1984-01-01

    The causes of low oil recovery from formations and physiochemical methods for increasing oil recovery are analyzed. A survey of results from research in this field at the chemical institutes of the Academy of Sciences of the USSR is given. The primary concepts of interformation combustion are examined together with the possibilities for using this method to control the combustion processes and enhance oil recovery as well as to optimize combustion processes.

  15. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  16. Heat recovery in a meat processing factory

    Energy Technology Data Exchange (ETDEWEB)

    Richter, N.

    1982-05-01

    The positive results obtained here encourage installing more heat recovery systems. A high quantity of energy is needed to heat the water in the boilers. This water would be pre-heated by utilizing the still existing heat from other cooling systems. Presently, 50% of the cooling efficiency are being used for heat recovery. In order to obtain an optimal energy yield from cooling systems the running times of the aggregates should be as long as possible over the whole year. These preconditions are fulfilled in this system because the enterprise produces mainly in two slufs. Taking the heat need for hot water and heating as a basis, the saving of fuel oil by using heat recovery systems is calculated to be appr. 35,000 l/a.

  17. Study on the enhancement of hydrocarbon recovery by characterization of the reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Son, Jin Dam; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    Three year project is being carried out on the enhancement of hydrocarbon recovery by the reservoir characterization. This report describes the results of the second year's work. This project deals with characterization of fluids, bitumen ad rock matrix in the reservoir. New equipment and analytical solutions for naturally fractured reservoir were also included in this study. Main purpose of the reservoir geochemistry is to understand the origin of fluids (gas, petroleum and water) and distribution of the bitumens within the reservoir and to use them not only for exploration but development of the petroleum. For the theme of reservoir geochemistry, methods and principles of the reservoir gas and bitumen characterization, which is applicable to the petroleum development, are studied. and case study was carried out on the gas, water and bitumen samples in the reservoir taken form Haenam area and Ulleung Basin offshore Korea. Gases taken form the two different wells indicate the different origin. Formation water analyses show the absence of barrier within the tested interval. With the sidewall core samples from a well offshore Korea, the analysis using polarizing microscope, scanning electron microscope with EDX and cathodoluminoscope was performed for the study on sandstone diagenesis. The I/S changes were examined on the cuttings samples from a well, offshore Korea to estimate burial temperature. Oxygen stable isotope is used to study geothermal history in sedimentary basin. Study in the field is rare in Korea and basic data are urgently needed especially in continental basins to determine the value of formation water. In the test analyses, three samples from marine basins indicate final temperature from 55 deg.C to 83 deg.C and one marine sample indicate the initial temperature of 36 deg.C. One sample from continental basin represented the final temperature from 53 and 80 deg.C. These temperatures will be corrected because these values were based on assumed

  18. Phosphorus recovery from wastewater through microbial processes.

    Science.gov (United States)

    Yuan, Zhiguo; Pratt, Steven; Batstone, Damien J

    2012-12-01

    Waste streams offer a compelling opportunity to recover phosphorus (P). 15-20% of world demand for phosphate rock could theoretically be satisfied by recovering phosphorus from domestic waste streams alone. For very dilute streams (application is effective, but the product is bulky and carries contaminant risks that need to be managed. Phosphorus release can be achieved using either thermochemical or biochemical methods, while recovery is generally by precipitation as struvite. We conclude that while EBPR technology is mature, the subsequent phosphorus release and recovery technologies need additional development.

  19. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  20. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2011-12-01

    Full Text Available Thermal degradation of waste plastics in an inert atmosphere has been regarded as a productive method, because this process can convert waste plastics into hydrocarbons that can be used either as fuels or as a source of chemicals. In this work, waste high-density polyethylene (HDPE plastic was chosen as the material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse waste HDPE with the objective of optimizing the liquid product yield at a temperature range of 400ºC to 550ºC. Results of pyrolysis experiments showed that, at a temperature of 450ºC and below, the major product of the pyrolysis was oily liquid which became a viscous liquid or waxy solid at temperatures above 475ºC. The yield of the liquid fraction obtained increased with the residence time for waste HDPE. The liquid fractions obtained were analyzed for composition using FTIR and GC-MS. The physical properties of the pyrolytic oil show the presence of a mixture of different fuel fractions such as gasoline, kerosene and diesel in the oil.

  1. The recovery process utilizing Erikson's stages of human development.

    Science.gov (United States)

    Vogel-Scibilia, Suzanne E; McNulty, Kathryn Cohan; Baxter, Beth; Miller, Steve; Dine, Max; Frese, Frederick J

    2009-12-01

    Of current interest to the field are clinical frameworks that foster recovery. The authors offer a psycho-developmental model that parallels Erik Erikson's theory of human development, and theorize that the process of psychiatric recovery involves a psychic reworking of these fundamental steps. Understanding recovery in this context allows the client and the practitioner of psychiatric rehabilitation to design and implement a coherent treatment strategy.

  2. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    Science.gov (United States)

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  3. Method for determining processability of a hydrocarbon containing feedstock

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  4. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  5. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  6. In situ recovery from residually heated sections in a hydrocarbon containing formation

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Ryan, Robert Charles (Houston, TX)

    2010-12-14

    Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.

  7. Fundamental processes affecting recovery in hydrogen thyratrons

    Science.gov (United States)

    Braun, C. G.; Erwin, D. A.; Gundersen, M. A.

    1987-05-01

    Experimental measurements in the positive column of wall-confined high-current hydrogen thyratron discharges show a pronounced increase in atomic hydrogen excited state populations after the end of the current pulse. The decay rate of the electron and excited state populations is observed to decrease as the energy flux increases. A time-dependent collisional-radiative model is used to calculate electron and excited state densities. This model is in reasonable agreement with experimental measurements and explains the afterpulse behavior. The analysis shows that the coupling between electron and atom temperatures is an important mechanism in high-power thyratron recovery. A new method using laser-induced fluorescence to obtain time-resolved Stark broadening data for electron density measurements is presented.

  8. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  9. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria; Mo, Weijian; Muylle, Michel Serge Marie; Mandema, Remco Hugo; Nair, Vijay

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  10. The role of complaint management in the service recovery process.

    Science.gov (United States)

    Bendall-Lyon, D; Powers, T L

    2001-05-01

    Patient satisfaction and retention can be influenced by the development of an effective service recovery program that can identify complaints and remedy failure points in the service system. Patient complaints provide organizations with an opportunity to resolve unsatisfactory situations and to track complaint data for quality improvement purposes. Service recovery is an important and effective customer retention tool. One way an organization can ensure repeat business is by developing a strong customer service program that includes service recovery as an essential component. The concept of service recovery involves the service provider taking responsive action to "recover" lost or dissatisfied customers and convert them into satisfied customers. Service recovery has proven to be cost-effective in other service industries. The complaint management process involves six steps that organizations can use to influence effective service recovery: (1) encourage complaints as a quality improvement tool; (2) establish a team of representatives to handle complaints; (3) resolve customer problems quickly and effectively; (4) develop a complaint database; (5) commit to identifying failure points in the service system; and (6) track trends and use information to improve service processes. Customer retention is enhanced when an organization can reclaim disgruntled patients through the development of effective service recovery programs. Health care organizations can become more customer oriented by taking advantage of the information provided by patient complaints, increasing patient satisfaction and retention in the process.

  11. The process of remembering: recovery and discovery.

    Science.gov (United States)

    Fónagy, I

    1999-10-01

    Experiences of gradually recovering lost memories may shed some light on the cognitive mechanism underlying remembering. We (1) easily remember the external frame (the context) of the lost memory; (2) experience the emergence of its internal frame (category or genre); (3) recall its configuration, its rhythmic skeleton or its dynamic structure; (4) and even sketch it by a gesture; (5) recall our evaluation of the person or our impression of the event we cannot remember; (6) find the central object may emerge in a disguised (symbolic) form; (7) find the abortive first attempt to reconstruct the lost memory may contain an unconscious interpretation of the hidden event or the forgotten dream. Gradual remembering follows on the whole the path of verbal evolution. Trying to recapture lost memories we are compelled to make use of preverbal forms of mental elaboration and expression (visual thinking, gesture language, symbols). At the same time, recovery of lost memories has much in common with the procedure of scientific discovery. Discovery could be considered as a paradoxical form of remembering: recovering the unknown. Scientific metaphors uncover ('remember') preconscious and unconscious knowledge. In his studies on Farkas Bólyai, Imre Hermann made an attempt to interpret scientific theories much in the same way that Freud, Jones, Rank, Reik, Hanns Sachs, Róheim analysed myths, rituals, literary and artistic works. He traces back some essential features of Bólyai's discovery to repressed early memories and fantasies of the great mathematician.

  12. Hydrocarbon recovery comprising injecting a slug comprising oil soluble alkoxylated surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; DaGue, M.G.; Dunn, N.G.

    1993-07-27

    A method is described of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of oil soluble surfactants produced from lignin, said oil soluble surfactants produced by placing lignin in contact with water, converting the lignin into relatively low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen, said reduction occurring at a temperature greater than about 200 C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reaction mixture, alkoxylating the lignin phenols by reacting the lignin phenols with an a-olefin epoxide having about 6 to about 20 carbon atoms at about 100 to about 200 C for about 1 to about 3 hours in an organic solvent, and changing the alkoxylated lignin phenols into oil soluble lignin surfactants by a reaction selected from the group consisting of sulfonation, sulfation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  13. Recovery of benthic megafauna from anthropogenic disturbance at a hydrocarbon drilling well (380 m depth in the Norwegian Sea.

    Directory of Open Access Journals (Sweden)

    Andrew R Gates

    Full Text Available Recovery from disturbance in deep water is poorly understood, but as anthropogenic impacts increase in deeper water it is important to quantify the process. Exploratory hydrocarbon drilling causes physical disturbance, smothering the seabed near the well. Video transects obtained by remotely operated vehicles were used to assess the change in invertebrate megafaunal density and diversity caused by drilling a well at 380 m depth in the Norwegian Sea in 2006. Transects were carried out one day before drilling commenced and 27 days, 76 days, and three years later. A background survey, further from the well, was also carried out in 2009. Porifera (45% of observations and Cnidaria (40% dominated the megafauna. Porifera accounted for 94% of hard-substratum organisms and cnidarians (Pennatulacea dominated on the soft sediment (78%. Twenty seven and 76 days after drilling commenced, drill cuttings were visible, extending over 100 m from the well. In this area there were low invertebrate megafaunal densities (0.08 and 0.10 individuals m(-2 in comparison to pre-drill conditions (0.21 individuals m(-2. Three years later the visible extent of the cuttings had reduced, reaching 60 m from the well. Within this area the megafaunal density (0.05 individuals m(-2 was lower than pre-drill and reference transects (0.23 individuals m(-2. There was a significant increase in total megafaunal invertebrate densities with both distance from drilling and time since drilling although no significant interaction. Beyond the visible disturbance there were similar megafaunal densities (0.14 individuals m(-2 to pre-drilling and background surveys. Species richness, Shannon-Weiner diversity and multivariate techniques showed similar patterns to density. At this site the effects of exploratory drilling on megafaunal invertebrate density and diversity seem confined to the extent of the visible cuttings pile. However, elevated Barium concentration and reduced sediment grain size

  14. Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers

    OpenAIRE

    1995-01-01

    A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids {LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The pumping approach is developed using detailed simulations, multiple linear regression and graphical plots. The approach uses ARMOS©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic sim...

  15. Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen: A Two-Step Process

    Science.gov (United States)

    2013-08-14

    with an immersion cooler (SP Scientific) in a water bath, and the product gas stream was first dried over a bed of 3 Å molecular sieves prior to GC...Commonwealth realm Crown government in the course of their duties. Article Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen: A Two-Step Process...AUG 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen: A

  16. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  17. Stability of Spreading Processes with General Transmission and Recovery Times

    CERN Document Server

    Ogura, Masaki

    2016-01-01

    Although viral spreading processes taking place in networks are commonly analyzed using Markovian models in which both the transmission times and the recovery times follow exponential distributions, empirical studies show that, in most real scenarios, the distribution of these times are far from exponential. To overcome this limitation, we first introduce a generalized spreading model that allows for transmission and recovery times to follow arbitrary distributions within an arbitrary accuracy. In this context, we derive conditions for the generalized spreading process to converge towards the disease-free equilibrium (in other words, to eradicate the viral spread) without relying on mean-field approximations. Based on our results, we illustrate how the particular shape of the transmission/recovery distribution heavily influences the boundary of the stability region of the spread, as well as the decay rate inside this region. Therefore, modeling non-exponential transmission/recovery times observed in realistic...

  18. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  19. Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings

    Science.gov (United States)

    Verma, Mahendra K.; Warwick, Peter D.

    2011-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

  20. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing

    Energy Technology Data Exchange (ETDEWEB)

    Torres, L. g.; Belloc, C.; Iturbe, R.; Bandala, E.

    2009-07-01

    A wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. the wastewater treatment in this work continued petroleum hydrocarbons, a surfactant, i. e., sodium dodecyl sulphate (SDS) as well as salts, humic acids and other constituents that were lixiviated rom the soil during the washing process. The aim of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and at the end of the cleaning up, the waters could be disposed properly. (Author)

  1. Process for converting hydrocarbon oils and catalyst for use in such a process

    Energy Technology Data Exchange (ETDEWEB)

    Huizinga, T.; Schaper, H.; Hoek, A.

    1990-05-08

    This invention is directed at increasing the utilization of residual oil found in currently available crude oil feedstocks. The process of the invention is particularly suitable for hydrocracking, and comprises contacting a hydrocarbon oil in the presence of hydrogen with a hydrocracking catalyst. Suitable feedstocks include tar oils, vacuum gas oil, deasphalted oils, long and short residues, catalytically cracked cycle oils, thermally cracked gas oils, and synthetic crudes, or combinations of various such oils. Suitable process conditions comprise temperatures from 200 to 500{degree}C, hydrogen pressures up to 300 bar, space velocities of 0.1-10 kg feed per liter of catalyst per hour, and gas/feed ratios of 100-5000 Nl/kg feed. The catalyst used in the process comprises zeolite Y particles, with an average size in the range of 0.8 to 5.0 mm, and a unit cell size preferably from 24.19 to 24.35 {angstrom}. Preference is given to zeolite Y having a silica/alumina molar ratio of 8-15. The zeolite is combined with a hydrogenation component of a Group VI and/or VIII metal, preferably nickel and tungsten. Alumina is the preferred binder. The catalyst contains 60-85% zeolite and 15-40% binder, based on the total amount of zeolite and binder. The products of the process include gaseous material (in general C1-4 hydrocarbons), naphtha, and a middle distillate fraction. Experiments are described to illustrate the preparation of catalysts and the process of the invention. 1 tab.

  2. Recovery process for electroless plating baths

    Science.gov (United States)

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  3. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  4. Conceptual process synthesis for recovery of natural products from plants

    DEFF Research Database (Denmark)

    Malwade, Chandrakant R.; Qu, Haiyan; Rong, Ben-Guang;

    2013-01-01

    A systematic method of conceptual process synthesis for recovery of natural products from their biological sources is presented. This methodology divides the task into two major subtasks namely, isolation of target compound from a chemically complex solid matrix of biological source (crude extract......) and purification of target compound(s) from the crude extract. Process analytical technology (PAT) is used in each step to understand the nature of material systems and separation characteristics of each separation method. In the present work, this methodology is applied to generate process flow sheet for recovery...

  5. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    Science.gov (United States)

    Muradov, Nazim Z.

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  6. A novel zeolite process for clean end use of hydrocarbon products

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, K.M. [Neste Oy, Porvoo (Finland). Technology Centre

    1996-12-31

    In recent years zeolites such as ZSM-5 have attracted considerable interest for the catalysis of a wide range of hydrocarbon transformations. A novel process developed by Neste converts light olefins to higher molecular weight hydrocarbon products. A wide range of high quality diesel, solvents and lube oils can be produced by the new NESKO process. Hydrotreated products have excellent properties; negligible sulphur or nitrogen compounds, very low aromatic content and pour point lower than -50 deg C. Proprietary technology is used in this olefin oligomerization process. (author) (7 refs.)

  7. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  8. EFFICIENCY OF THE LIQUID HYDROCARBONS USAGE IN THE ENRICHMENT PROCESS OF IRON ORE

    OpenAIRE

    SHKURENOK V.; PANOVA A.; AKYLBEK B.; OSTANINA N.

    2012-01-01

    This work proposes the liquid hydrocarbon reductant (LHR) usage in the process of iron ore opening-up to a metallurgic range. Calcination process optimization of Lisakovsk gravity-magnetic concentrate (LGMC) was performed by the planning of experiments using Seidel – Gauss method. Iron content in the concentrate increases from 47,6 % to 54,17 % in optimal conditions.

  9. EFFICIENCY OF THE LIQUID HYDROCARBONS USAGE IN THE ENRICHMENT PROCESS OF IRON ORE

    Directory of Open Access Journals (Sweden)

    SHKURENOK V.

    2012-01-01

    Full Text Available This work proposes the liquid hydrocarbon reductant (LHR usage in the process of iron ore opening-up to a metallurgic range. Calcination process optimization of Lisakovsk gravity-magnetic concentrate (LGMC was performed by the planning of experiments using Seidel – Gauss method. Iron content in the concentrate increases from 47,6 % to 54,17 % in optimal conditions.

  10. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  11. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  12. Proceedings of the workshop on hydrocarbon processing mixing and scale-up problems. [Fuels processing for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, J. D. [ed.

    1978-01-01

    A workshop was convened by the Division of Fossil Fuel Utilization of the US Department of Energy in cooperation with the Particulate and Multiphase Process Program of the National Science Foundation to identify needs for fundamental engineering support for the design of chemical reactors for processing heavy hydrocarbon liquids. The problems associated with dispersing liquid hydrocarbons in a reacting gas and mixing within the gas phase are of primary concern. The transactions of the workshop begin with an introduction to the immediate goals of the Department of Energy. Fuel cell systems and current research and development are reviewed. Modeling of combustion and the problems of soot formation and deposits in hydrocarbon fuels are next considered. The fluid mechanics of turbulent mixing and its effect on chemical reactions are then presented. Current experimental work and process development provide an update on the present state-of-the-art.

  13. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB...

  14. Polycyclic aromatic hydrocarbon contamination and recovery characteristics in some organisms after the Nakhodka oil spill.

    Science.gov (United States)

    Koyama, Jiro; Uno, Seiichi; Kohno, Kumiko

    2004-12-01

    Following the oil spill from the Russian tanker Nakhodka in 1997 in the Sea of Japan, polycyclic aromatic hydrocarbons (PAH) were monitored for three years in some molluscs from the Mikuni-cho shore in Japan. Total PAH concentrations in marine organisms except for spiny top shell, ranged from 5.3 to 32.7 ng/g wet weight, but no trends were evident. Total PAH concentration in spiny top shell (Turbo cornutus) was 44 ng/g w.w. in the first month after the oil spill. However, it rapidly decreased to less than 5.4 ng/g w.w. from the second month. Spiny top shell, which was exposed to dietary Nakhodka heavy fuel oil, concentrated benzo(a)pyrene to 17.1 ng/g w.w. after two weeks of exposure and then rapidly eliminated it during an elimination phase. These results suggest that spiny top shell accumulates PAHs because of their low ability to metabolize PAH, but it can excrete parent PAHs rapidly when removed from the source of contamination. Thus it is suitable as an indicator organism in monitoring oil contamination. It can also be inferred from these field and laboratory investigations that, in three years, organisms from the Mikuni-cho shore seem to have adequately recovered from the Nakhodka oil spill contamination.

  15. Polycyclic aromatic hydrocarbon contamination and recovery characteristics in some organisms after the Nakhodka oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Jiro; Uno, Seiichi [Kagoshima University (Japan). Faculty of Fisheries; Kohno, Kumiko [National Research Institute of Fisheries and Environment of Inland Sea, Hiroshima (Japan)

    2005-12-01

    Following the oil spill from the Russian tanker Nakhodka in 1997 in the Sea of Japan, polycyclic aromatic hydrocarbons (PAH) were monitored for three years in some molluscs from the Mikuni-cho shore in Japan. Total PAH concentrations in marine organisms except for spiny top shell, ranged from 5.3 to 32.7 ng/g wet weight, but no trends were evident. Total PAH concentration in spiny top shell (Turbo cornutus) was 44 ng/g w.w. in the first month after the oil spill. However, it rapidly decreased to less than 5.4 ng/g w.w. from the second month. Spiny top shell, which was exposed to dietary Nakhodka heavy fuel oil, concentrated benzo(a)pyrene to 17.1 ng/g w.w. after two weeks of exposure and then rapidly eliminated it during an elimination phase. These results suggest that spiny top shell accumulates PAHs because of their low ability to metabolize PAH, but it can excrete parent PAHs rapidly when removed from the source of contamination. Thus it is suitable as an indicator organism in monitoring oil contamination. It can also be inferred from these field and laboratory investigations that, in three years, organisms from the Mikuni-cho shore seem to have adequately recovered from the Nakhodka oil spill contamination. (author)

  16. Lithological architecture, geological processes and energy-field environments are major factors for the formation of hydrocarbon reservoirs

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wenzhi; WANG Zecheng; LI Xiaoqing; WANG Hongjun; WANG Zhaoyun

    2005-01-01

    The formation of hydrocarbon reservoirs is controlled by three major factors: lithological architecture, geological processes and energy-field environments. Among the three major factors, lithological architecture provides the storing medium for hydrocarbon; geological processes include hydrocarbon generation, migration, accumulation, preservation and modification; and energy-field environments refer to the various geothermal and geodynamic forces that affect the lithological architecture and drive the geological processes.In this study, we take Kela-2 and Sulige gas reservoirs as two examples to study relationships among the three major factors, and explain how these factors influence the scale and quality of hydrocarbon reservoirs.

  17. SELECTIVE SEPARATION AND RECOVERY PROCESS —Supercritical fluid extraction and fractionation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A selective separation and recovery process has been developed based on the supercritical fluid extraction and fractionation (SFEF) technology. The solvent used varies from C3 to C5, depending on process objective. Basic research work has been done on the phase behavior, phase equilibria and modeling of a number of systems including petroleum residue, polymers, waxes and lubricants with the light hydrocarbon solvents. Semi-batch pilot and continuous pilot experiments were performed to establish data base for the process design of industrial scale. The effects of operation para-meters, such as temperature, pressure, ratio of solvent to oil and residence time, on separation selectivity and yield of extracts were studied in a wide range. Industrial demonstration plant with a capacity of 15 kt/a was setup and has run for a sufficient long period of time to confirm the design and to obtain the energy cost and economic analysis data for further commercial scale up. It was found that the process offers high efficient products and solvent recovery.

  18. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  19. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography - flame ionization detector.

    Science.gov (United States)

    Olatunji, Olatunde S; Fatoki, Olalekan S; Opeolu, Beatrice O; Ximba, Bhekumusa J

    2014-08-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in smoked, grilled and boiled meats were determined using gas chromatography - flame ionization detector (GC-FID). PAHs in the processed meats were extracted in n-hexane after hydrolysis with methanolic KOH. Clean-up was achieved using solid phase extraction in neutral-Si/basic-Si/acidic-Si/neutral-Si frits. The fractions, benzo[k]fluoranthene (BkP), benzo[a]pyrene (BaP), indeno[123-cd]pyrene (IP) and benzo[ghi]perylene (BghiP) were separated and quantified using GC-FID. The method and instrument limits of detections were 0.1, 0.1, 0.2, 0.3μg/kg and 0.5, 0.5, 1.0, 1.5μg/kg, respectively, for BkP, BaP, IP and BghiP. The method's recovery and precision generally varied between 83.69% and 94.25% with relative standard deviation (RSD) of 3.18-15.60%; and 90.38-96.71% with relative standard deviation (RSD) of 1.82-12.87% respectively. The concentration of BkP, BaP, IP and BghiP in smoked, grilled and boiled meat samples were ranged 0.64-31.54μg/kg, 0.07-7.04μg/kg, 0.09-15.03, 0.51-46.67μg/kg and 0.01-5.11μg/kg, respectively.

  20. Process for simultaneously processing of used metal and/or metal scrap and scrap containing halogenated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dapper, G.; Kirchner, W.; Sloterdijk, W.; Verbraak, C.A.

    1982-03-02

    A process is presened for reducing environmental pollution resulting from disposal of waste containing halogenated hydrocarbons by simultaneous treatment with used metal and/or metal scrap at elevated temperatures. The halogenated hydrocarbons are pyrolyzed and the resulting hydrogen halide containing gas is brought into contact with the used metal and/or metal scrap at elevated temperatures so as to form metal halogenides that are volatile under the conditions applied. The volatile metal halogenides are largely separated from the gaseous mixture formed, and at least part of the remaining gaseous mixture and/or hydrocarbon residue is used as fuel to maintain the required temperature. The waste feed compositions and process conditions can be chosen to effect separation between various metals by selective halogenation and condensation, and substantially all of the hydrogen halide can be tied up and recovered as metal halogenides.

  1. Investigation of non-volatile additives on the process of distillation of hydrocarbon mixtures

    Directory of Open Access Journals (Sweden)

    М.Б. Степанов

    2009-02-01

    Full Text Available  The given results of researches of influence of nonvolatile additives on processes of distillation of individual hydrocarbons and their mixes, including petroleum and mineral oil. With the help of the developed computer system of the continuous control of distillation it is shown, that at the presence of small amounts of the additive decrease of temperature of the beginning of boiling of hydrocarbons is observed, their speeds of banish and exits of light fuel mineral oil grow during initial oil refining

  2. Normal hydrocarbons as a source of resin formation in the process of obtaining isoprene from isopentane

    Energy Technology Data Exchange (ETDEWEB)

    Isagulyants, G.V.; Sire, Y.M.; Vasil' yeva, V.P.; Gitis, K.M.; Rozengart, M.I.

    1981-01-01

    A study was made on a catalyst of dehydrogenation of olefins of the conversion of isoamylenes and other C/sub 5/ hydrocarbons (isoprene, n-pentenes, piperylene), formed during dehydrogenation of isoamylenes to isoprene. It was found that the yield of heavy products increases on transition from hydrocarbons of iso-structure to normal hydrocarbons, which is due to the greater ease of polycondensation of cyclopentadiene formed from n-pentenes and particularly from piperylene under conditions of dehydrogenation. A study was made by chromato-mass-spectrometry of the composition of heavy products of conversion of piperylene and isoprene. In contrast with the catalysate of isoprene, the catalysate of piperylene contains a significant proportion of hydrocarbons containing a five-membered ring in the molecule (dicyclopentadiene, indane, indene, methylindenes, azilene), this being due to the participation of cyclopentadiene in the formation of heavy products. In the two-stage process of dehydrogenation of isopentane to isoprene 95% normal hydrocarbons are formed on dehydrogenation of isopentane to isoamylenes. (JMT)

  3. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  4. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    Energy Technology Data Exchange (ETDEWEB)

    Professor Francisco Zaera

    2007-08-09

    production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a β-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the

  5. Development of Nitrogen-Hydrocarbon Atmospheric Carburizing and Process Control Methods

    Science.gov (United States)

    Wang, Xiaolan; Zurecki, Zbigniew; Sisson, Richard D.

    2013-07-01

    Atmospheric pressure carburizing and neutral carbon potential annealing in nitrogen containing small additions of hydrocarbon gases can offer cost and steel surface quality alternatives to the comparable, endothermic atmosphere, or vacuum operations. An experimental program was conducted for refining real-time process control methods in carburizing of AISI 8620 steel under N2-CH4, N2-C3H8 blends containing <5 vol.% of hydrocarbon gas at 900 and 930 °C. Multiple types of gas analyzers were used to monitor residual concentrations of H2, CO, CO2, H2O, O2, CH4, C3H8, and other hydrocarbons inside furnace. A modified shim stock technique was additionally evaluated for correlation with gas analysis and diffusional modeling using measured carbon mass flux values (g/cm2/s). Results of this evaluation work are presented.

  6. Speciation and recovery of chromium from chromite ore processing residues.

    Science.gov (United States)

    Sreeram, K J; Ramasami, T

    2001-10-01

    The processing of chromite ore is associated with the generation of large quantities of solid wastes containing chromium, which have been disposed of as landfill for many years. The mobilization and operational speciation of chromium contained in soils contaminated with metal salts are important in terms of the environment. Several methods have been employed for the extraction and recovery of solid wastes. Chromium contained in contaminated soils and solid wastes can be categorized as exchangeable, oxidizable, carbonate-bound, reducible and residual. The results from this study indicate a need for efficient leaching methodologies in chromite ore processing plants to decrease the non-detrital fractions of chromium in the residue. Aggressive methodologies are required to recover chromium from the detrital fractions. The potential benefits of employing sodium peroxide for the complete recovery of chromium from chromite residue have been demonstrated, and the need to ensure the safety of the process has been emphasized.

  7. Method and facility for the recovery of hydrocarbons from a gas-air compound. Verfahren und Vorrichtung zur Rueckgewinnung von Kohlenwasserstoffen aus einem Gas-Luft-Gemisch

    Energy Technology Data Exchange (ETDEWEB)

    Hagenkoetter, M.; Hoelter, H.; Sdrojewski, R.

    1991-08-01

    A method or rather facility for the recovery of hydrocarbons from a gas-air compound works as follows: At first the gas-air compound is cooled down and brought to condensation. The hydrocarbons remaining in the gas-air compound after condensation are combusted in an internal combustion engine. The energy generated by the internal combustion engine is utilized for the operation of the cooling system planned for cooling and condensation. The cooling systen is developed and operated in a way that the gas-air compound is purified as far as possible from hydrocarbons and impurities when penetrating the cooling system. Behind the cooling system in front of the internal combustion engine fuel is apportioned to the gas-air compound.

  8. Applications of Condensate Refrigeration Technology in Small Light Hydrocar-bon Recovery Unit%小型轻烃回收装置自凝液制冷工艺及应用

    Institute of Scientific and Technical Information of China (English)

    陈自振; 赵滢; 赵燕; 刘宗耀

    2016-01-01

    小型轻烃回收装置自凝液制冷工艺设计的指导思想是不设置外冷源,利用自产凝液把制冷系统复叠在小型轻烃回收工艺加工过程中,合二为一。利用小型轻烃回收装置低温分离器自产的凝液将其节流降压,在蒸发器中吸收热介质的热量,自身汽化,汽化后的气体进原料气压缩机与原料气一起增压、冷却冷凝、分离。与外冷源制冷工艺相比,自凝液制冷工艺具有简化工艺、降低能耗、减少投资的优势。自凝液制冷小型轻烃回收工艺适用于富原料气,且原料气体C3+含量不能低于25%。组分中C3+含量越高,制冷效果越明显。%Process design guiding principle of condensate refrigeration of small light hydro-carbon recovery unit is that:not setting the external cooling source, but using self-conden-sate cooling, refrigeration system is set and combined in small light hydrocarbon recovery processes, where two in one. The condensate generated from the cryogenic separation of light hydrocarbon recovery unit will be utilized, throttled and depressurized. Next, in the evaporator, it will exchange heat with the media and be evaporated. Lastly, the evaporated gas will enter the feed gas compressor together with the feed gas, they would be pressurized, cooled, condensed and separated. Being compared with the external cooling source pro-cess, this method has the advantages of simplifying the process, reducing the energy con-sumption, and the investment, etc. Condensate refrigeration technology of small light hy-drocarbon recovery unit is suitable for the rich raw material gas, and C3+ content of raw ma-terial gas can't be lower than 25%. The higher component of C3+ content, the more obvious cooling effect.

  9. Diamond Processing by Focused Ion Beam - Surface Damage and Recovery

    CERN Document Server

    Bayn, Igal; Cytermann, Catherine; Meyler, Boris; Richter, Vladimir; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    The Nitrogen Vacancy color center (NV-) in diamond is of great interest for novel photonic applications. Diamond nano-photonic structures are often implemented using Focused-Ion-Beam (FIB) processing, leaving a damaged surface which has a detrimental effect on the color center luminescence. The FIB processing effect on single crystal diamond surfaces and their photonic properties is studied by Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and photoluminescence (PL). Exposing the processed surface to hydrogen plasma, followed by chemical etching, drastically decreases implanted Ga concentration, resulting in a recovery of the NV- photo-emission and in a significant increase of the NV-/NV0 ratio.

  10. Phosphorus recovery from sewage sludge by an electrokinetic process

    DEFF Research Database (Denmark)

    Ribeiro, A.B.; Couto, N.; Mateus, E.P.

    to supply P for the next ca. 80 years. Additionaly, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nutrients, like P, from secondary resources urges. Sewage sludge (SS) and sewage sludge ash (SSA) from...... waste water treatment plants (WWTP) may contain contaminants or unwanted elements regarding specific applications, but they also contain secondary resources of high value. Using these ash as a P resource, while removing the contaminants, seems a sustainable option. The electrokinetic (EK) process can....... This communication aims to discuss preliminary results of the feasibility of EK process to recover P from WWTP target wastes....

  11. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    Science.gov (United States)

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  12. Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  13. A Fractional Order Recovery SIR Model from a Stochastic Process.

    Science.gov (United States)

    Angstmann, C N; Henry, B I; McGann, A V

    2016-03-01

    Over the past several decades, there has been a proliferation of epidemiological models with ordinary derivatives replaced by fractional derivatives in an ad hoc manner. These models may be mathematically interesting, but their relevance is uncertain. Here we develop an SIR model for an epidemic, including vital dynamics, from an underlying stochastic process. We show how fractional differential operators arise naturally in these models whenever the recovery time from the disease is power-law distributed. This can provide a model for a chronic disease process where individuals who are infected for a long time are unlikely to recover. The fractional order recovery model is shown to be consistent with the Kermack-McKendrick age-structured SIR model, and it reduces to the Hethcote-Tudor integral equation SIR model. The derivation from a stochastic process is extended to discrete time, providing a stable numerical method for solving the model equations. We have carried out simulations of the fractional order recovery model showing convergence to equilibrium states. The number of infecteds in the endemic equilibrium state increases as the fractional order of the derivative tends to zero.

  14. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    Science.gov (United States)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    able to recognize the strong correlation between the displacement mechanism and the reservoir characteristics as they effectively forecast hydrocarbon production for different types of reservoir undergoing diverse recovery processes. The artificial neuron networks are able to capture the similarities between different displacement mechanisms as same network architecture is successfully applied in both CO2 and N2 injection. The neuro-simulation application tool is built within a graphical user interface to facilitate the display of the results. The developed soft-computing tool offers an innovative approach to design a variety of efficient and feasible IOR processes by using artificial intelligence. The tool provides appropriate guidelines to the reservoir engineer, it facilitates the appraisal of diverse field development strategies for oil reservoirs, and it helps to reduce the number of scenarios evaluated with conventional reservoir simulation.

  15. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics'era.

    Science.gov (United States)

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment's complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment's reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying "omics" approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition, we

  16. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era

    Directory of Open Access Journals (Sweden)

    Cristiana eCravo-Laureau

    2014-02-01

    Full Text Available Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature, nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying ‘omics’ approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon

  17. Phosphorus recovery from sewage sludge by an electrokinetic process

    DEFF Research Database (Denmark)

    Ribeiro, A.B.; Couto, N.; Mateus, E.P.

    to supply P for the next ca. 80 years. Additionally, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nutrients, like P, from secondary resources urges. Waste streams as sewage sludge (SS) and sewage sludge......, the matrix volume will be significantly reduced and, at the same time, organic contaminants (such as PCB, PAH, …) will be thermally destructed. However, heavy metals still remain in the ashes and, to “re-use” them as fertilizer, inorganic contaminants should be removed. Electrokinetic transport process (EK...

  18. ENHANCED OIL RECOVERY USING LOCAL ALKALINE

    African Journals Online (AJOL)

    user

    trapped in the reservoir even after primary and secondary recovery process have been completed, ... concerns that most of the newly discovered hydrocarbon .... free sandstone cores. ..... Porous Media: A Review”, SPE 8799, presented at.

  19. UF.sub.6 -Recovery process utilizing desublimation

    Science.gov (United States)

    Eby, Robert S.; Stephenson, Michael J.; Andrews, Deborah H.; Hamilton, Thomas H.

    1985-01-01

    The invention is a UF.sub.6 -recovery process of the kind in which a stream of substantially pure gaseous UF.sub.6 is directed through an externally chilled desublimer to convert the UF.sub.6 directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF.sub.6, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF.sub.6 input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF.sub.6 from high-speed UF.sub.6 gas-centrifuge cascades.

  20. UF/sub 6/-recovery process utilizing desublimation

    Science.gov (United States)

    Eby, R.S.; Stephenson, M.J.; Andrews, D.H.; Hamilton, T.H.

    1983-12-21

    The invention is a UF/sub 6/-recovery process of the kind in which a stream of substantially pure gaseous UF/sub 6/ is directed through an externally chilled desublimer to convert the UF/sub 6/ directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF/sub 6/, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF/sub 6/ input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF/sub 6/ from high-speed UF/sub 6/ gas-centrifuge cascades.

  1. Process Optimization for Valuable Metal Recovery from Dental Amalgam Residues

    Directory of Open Access Journals (Sweden)

    C.M. Parra–Mesa

    2009-07-01

    Full Text Available In this paper, the methodology used for optimizing leaching in a semi pilot plant is presented. This leaching process was applied to recover value metals from dental amalgam residues. 23 factorial design was used to characterize the process during the first stage and in the second one, a central compound rotational design was used for modeling copper percentage dissolved, a function of the nitric acid concentration, leaching time and temperature. This model explained the 81% of the response variability, which is considered satisfactory given the complexity of the process kinetics and, furthermore, it allowed the definition of the operation conditions for better copper recovery, which this was of 99.15%, at a temperature of 55°C, a concentration of 30% by weight and a time of 26 hours.

  2. Problems in Catalytic Oxidation of Hydrocarbons and Detailed Simulation of Combustion Processes

    Science.gov (United States)

    Xin, Yuxuan

    This dissertation research consists of two parts, with Part I on the kinetics of catalytic oxidation of hydrocarbons and Part II on aspects on the detailed simulation of combustion processes. In Part I, the catalytic oxidation of C1--C3 hydrocarbons, namely methane, ethane, propane and ethylene, was investigated for lean hydrocarbon-air mixtures over an unsupported Pd-based catalyst, from 600 to 800 K and under atmospheric pressure. In Chapter 2, the experimental facility of wire microcalorimetry and simulation configuration were described in details. In Chapter 3 and 4, the oxidation rate of C1--C 3 hydrocarbons is demonstrated to be determined by the dissociative adsorption of hydrocarbons. A detailed surface kinetics model is proposed with deriving the rate coefficient of hydrocarbon dissociative adsorption from the wire microcalorimetry data. In Part II, four fundamental studies were conducted through detailed combustion simulations. In Chapter 5, self-accelerating hydrogen-air flames are studied via two-dimensional detailed numerical simulation (DNS). The increase in the global flame velocity is shown to be caused by the increase of flame surface area, and the fractal structure of the flame front is demonstrated by the box-counting method. In Chapter 6, skeletal reaction models for butane combustion are derived by using directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA), and uncertainty minimization by polynomial chaos expansion (MUM-PCE) mothodes. The dependence of model uncertainty is subjected to the completeness of the model. In Chapter 7, a systematic strategy is proposed to reduce the cost of the multicomponent diffusion model by accurately accounting for the species whose diffusivity is important to the global responses of the combustion systems, and approximating those of less importance by the mixture-averaged model. The reduced model is validated in an n-heptane mechanism with 88 species. In Chapter 8, the influence of Soret

  3. Phosphorus recovery from sewage sludge by an electrokinetic process

    DEFF Research Database (Denmark)

    Ribeiro, A.B.; Couto, N.; Mateus, E.P.

    As population keeps growing, it becomes important to guarantee the supply of staple foods, being necessary to assure good level of nutrients in the soil. Phosphorus (P) is a macronutrient indispensable for plants growth and a non-renewable resource, as phosphorites are estimated to be able...... to supply P for the next ca. 80 years. Additionaly, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nutrients, like P, from secondary resources urges. Sewage sludge (SS) and sewage sludge ash (SSA) from...... waste water treatment plants (WWTP) may contain contaminants or unwanted elements regarding specific applications, but they also contain secondary resources of high value. Using these ash as a P resource, while removing the contaminants, seems a sustainable option. The electrokinetic (EK) process can...

  4. An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment.

    Science.gov (United States)

    Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S

    2015-10-15

    This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II.

  5. Recovery processes and dynamics in single and interdependent networks

    Science.gov (United States)

    Majdandzic, Antonio

    Systems composed of dynamical networks --- such as the human body with its biological networks or the global economic network consisting of regional clusters --- often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread, and recovery. Here we develop a model for such systems and find phase diagrams for single and interacting networks. By investigating networks with a small number of nodes, where finite-size effects are pronounced, we describe the spontaneous recovery phenomenon present in these systems. In the case of interacting networks the phase diagram is very rich and becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions, and two forbidden transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyze an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.

  6. Process simulation for a new conceptual design of LNG terminal coupling NGL recovery and LNG re-gasification for maximum energy savings

    Science.gov (United States)

    Muqeet, Mohammed A.

    With the high demands of shale gas and promising development of LNG terminals, a lot of research has focused towards the process development for effective recovery of C2+ hydrocarbons (NGL). Shale gas requires a large amount of cold energy to cool down and recover the NGL; and the LNG re-gasification process requires a lot of heat energy to evaporate for NGL recovery. Thus, coupling the shale gas NGL recovery process and LNG re-gasification process, for utilizing the cold energy from LNG re-gasification process to assist NGL recovery from shale gas has significant economic benefits on both energy saving and high value product recovery. Wang et al. developed new conceptual design of such coupled process in 2013 and later Wang and Xu developed an optimal design considering uncertainties in 2014. This work deals with process simulation of both these designs and the feasibility of the process is verified. A steady state model is developed based on the plant design proposed by Wang et al. using Aspen plusRTM and then a dynamic model of the process is developed using Aspen dynamicsRTM. An effective control strategy is developed and the flexibility of the dynamic model is examined by giving disturbances in the shale gas feed. A comparison is made between the two proposed design and the prospects of the design for real plant scenario is discussed.

  7. Complex Process Couplings Related to Deep Geologic Sequestration and Energy Recovery (Invited)

    Science.gov (United States)

    Elsworth, D.

    2009-12-01

    Fluids in the shallow crust exert important controls on a wide spectrum of natural and engineered phenomena. The complex interaction of stress and particularly that of chemistry exhibit important feedbacks which influence the evolution of the mechanical and transport properties of rocks. These feedbacks in turn relate crucially to the subsurface recovery of hydrocarbons from the full spectrum of conventional through unconventional reservoirs, to the recovery of hydrothermal and non-hydrothermal geothermal resources, to the secure and enduring sequestration of energy by-products, and to the earthquake cycle, for example. Enigmatic interactions between stress and chemistry in mediating the evolution of permeability and strength in natural and engineered systems are explored - as relevant to high-carbon through low-carbon energy systems. Examples are selected to illustrate the significance of these interactions in controlling the response of hydrocarbon and geothermal reservoirs, fracture treatments, radioactive waste disposal and in the response of faults.

  8. Influence of mid-point temperature of heavy hydrocarbons separator to the liquefaction process for small LNG plant

    Science.gov (United States)

    Hakim, H. A.; Indarto, A.

    2016-11-01

    In liquefied natural gas (LNG) process production, one of the important units is heavy hydrocarbon removal unit to prevent freezing during liquefaction. For small scale of LNG plant, this unit is usually integrated with main heat exchanger. Feed is obtained from main heat exchanger then flows to separator to separate liquid from gas. The separator operating condition is called as Midpoint condition. Selecting Midpoint conditions have impact to light hydrocarbon losses, Specific Brake Horse Power (SBHP) process, and heating value of LNG. Hence understanding of selecting this condition and its effect to light hydrocarbon losses, SBHP process, and HHV of LNG will help to design more efficient LNG plant. According to study, the lower of Mid-Point temperature will result in lower SBHP, lower of light hydrocarbon losses, and increase LNG of HHV value. Meanwhile, the higher Mid-Point pressure will result in lower SBHP, higher light hydrocarbon losses, and lower LNG of HHV value. The change of Mid-Point pressures have more impact to light hydrocarbon losses than SBHP process.

  9. Récupération des hydrocarbures des pieds de bacs provenant de la démixtion des mélanges méthanol-supercarburant. Application du procédé de séparation par coalescence Recovery of Hydrocarbons from Bottoms of Storage Tanks Coming from the Demixing of Methanol/Premium-Gasoline Blends. Application of the Coalescence-Separation Process

    Directory of Open Access Journals (Sweden)

    Hoornaert P.

    2006-11-01

    Full Text Available Une solution technique et économique a été mise au point pour traiter les pieds de bacsprovenant de la démixtion de mélanges méthanol - supercarburant au contact de traces d'eau. Le procédé consiste à provoquer une deuxième démixtion par addition d'eau à la phase à traiter. Les hydrocarbures ainsi relargués sont séparés parfaitement en utilisant un coalesceur à résines oléophiles. Il est ainsi possible de récupérer et de recycler la quasi-totalité des hydrocarbures contenus dans lespieds de bacs . L'effluent aqueux résiduel chargé en alcool peut, soit être recyclé, soit traité par la station de traitement d'eaux de la raffinerie. A technical and economic solution has been developed for processing bottoms of storage tankscoming from the demixing of methanol/premium-gasoline blends in contact with traces of water. The process consists in producing a second demixing by the addition of water to the phase to be processed. The hydrocarbons thus salted out are effectively separated by an oleophilic-resin coalescer. In this way almost all of the hydrocarbons contained in the bottoms of storage tankscan be recovered and recycled. The residual aqueous effluent containing alcohol can either be recycled or processed by the waste-water treatment station of the refinery.

  10. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Dalrymple

    2004-06-01

    This final report describes the objectives, technical approach, results and conclusions for a project funded by the U.S. Department of Energy to test a hybrid sulfur recovery process for natural gas upgrading. The process concept is a configuration of CrystaTech, Inc.'s CrystaSulf{reg_sign} process which utilizes a direct oxidation catalyst upstream of the absorber tower to oxidize a portion of the inlet hydrogen sulfide (H{sub 2}S) to sulfur dioxide (SO{sub 2}) and elemental sulfur. This hybrid configuration of CrystaSulf has been named CrystaSulf-DO and represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day and more. This hybrid process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both onshore and offshore applications. CrystaSulf is a nonaqueous sulfur recovery process that removes H{sub 2}S from gas streams and converts it to elemental sulfur. In CrystaSulf, H{sub 2}S in the inlet gas is reacted with SO{sub 2} to make elemental sulfur according to the liquid phase Claus reaction: 2H{sub 2}S + SO{sub 2} {yields} 2H{sub 2}O + 3S. The SO{sub 2} for the reaction can be supplied from external sources by purchasing liquid SO{sub 2} and injecting it into the CrystaSulf solution, or produced internally by converting a portion of the inlet gas H{sub 2}S to SO{sub 2} or by burning a portion of the sulfur produced to make SO{sub 2}. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, the needed SO{sub 2} is produced by placing a bed of direct oxidation catalyst in the inlet gas stream to oxidize

  11. Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.

    Science.gov (United States)

    Alimahmoodi, Mahmood; Mulligan, Catherine N

    2011-01-01

    The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. The multi-factor recombination and processes superimposition model for hydrocarbon accumulation: application to the Silurian in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Meng Qingyang; Pang Xiongqi; Gao Jianbo

    2008-01-01

    The multi-factor recombination and processes superimposition model for hydrocarbon accumulation is put forward in view of the hydrocarbon geological characteristics of multiple episodes of structural evolution, multiple sets of source-reservoir-seal assemblage, multiple cycles of hydrocarbon accumulation and multiple episodes of readjustment and reconstruction in the complex superimposed basins in China. It is a system including theories and methods that can help to predict favorable exploration regions. According to this model, the basic discipline for hydrocarbon generation, evolution and distribution in the superimposed basins can be summarized in multi-factor recombination, processes superimposition, multiple stages of oil filling and latest stage preservation. With the Silurian of the Tarim basin as an example, based on the reconstruction of the evolution history of the four factors (paleo-anticline,source rock, regional cap rock and kinematic equilibrium belt) controlling hydrocarbon accumulation,this model was adopted to predict favorable hydrocarbon accumulation areas and favorable exploration regions following structural destruction in three stages of oil filling, to provide guidance for further exploration of oil and gas in the Silurian of the Tarim basin.

  13. Processing of spent nickel catalyst for fat recovery

    Directory of Open Access Journals (Sweden)

    Ibrahim Nasir, Mohammad

    2002-06-01

    Full Text Available Spent nickel catalyst (SNC have the potential of insulting the quality of the environment in a number of ways. The disposal of SNC will have a pollution effect. Optimum recovery of fat from SNC , could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents that are considered safer have been evaluated. Hexane, isopropanol, ethanol, and heptane were examined using soxhlet extraction. While hexane was more efficient in oil recovery from SNC, isopropanol proved to be very good, to clarifying separation of oil from waste material and also provide high solvent recovery compared to other solvents. Isopropanol extraction with chill provided separation of miscella into two phases: lower oil–rich and an upper solvent – rich. It saved much energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.El catalizador agotado de níquel (SNC tiene el potencial de dañar la calidad del medio ambiente de diversas formas. El depósito de SNC tendrá un efecto de polución. La recuperación óptima de la grasa a partir del SCN, podría conservar el medio ambiente y reducir la pérdida de aceite. El hexano ha sido el disolvente elegido para la extracción del aceite. También se han evaluado disolventes alternativos que son considerados seguros. Se han examinado hexano, isopropanol, etanol y heptano usando extracción con soxhlet. Mientras que el hexano fue el mas eficaz en la recuperación del aceite, el isopropanol demostró ser muy bueno para aclarar la separación del aceite a partir de la materia residual y también proporcionó una alta recuperación del disolvente en comparación con los otros

  14. Estimated discard limits for plutonium-238 recovery processing in the plutonium processing building

    Energy Technology Data Exchange (ETDEWEB)

    Luthy, D.F.; Bond, W.H.

    1975-03-26

    This manual is intended as a basis for plutonium-238 recovery costs and as a guide for removal of plutonium-bearing wastes from the gloveboxes to be safely and economically discarded. Waste materials contaminated with plutonium-238 are generated from in-house production, analytical, process development, recovery and receipts from off-site. The contaminated materials include paper, rags, alpha-box gloves, piping, valves, filters, etc. General categories for all types of plutonium waste have been established by the ERDA and are reflected in this manual. There are numerous processes used in plutonium recovery, such as dissolution, ultrasonic cleaning, ion exchange, etc. One or more of these processes are needed to extract the plutonium-238 from waste materials, purify it and convert it to an oxide acceptable for reuse. This manual is presented in two parts: Part I gives a breakdown and brief explanation of the direct costs for plutonium-238 I recovery, derived from budget data. Direct costs include direct labor (operating personnel), operational materials and supplies, health physics direct labor, calorimetry labor, analytical labor, and engineering direct labor (total costs for Method I). Budgeted costs for labor and material were used in the derivation of discard limits. The data presented is then used to calculate the cost per hour for recovery, as it applies to the three different methods of calculating discard limits referred to, in this manual, as Method I (calculation stated above), Method II and Method III. The cost for Method II is derived by adding to the cost of Method I, payroll related expenses. Method III is then calculated by adding over-head expenses to the total cost of Method II.

  15. Collision processes of hydrocarbon species in hydrogen plasmas. II The ethane and propane families

    CERN Document Server

    Janev, R K

    2002-01-01

    Cross sections and rate coefficients are provided for collision processes of electrons and protons with C sub x H sub y and C sub x H sub y sup + (x = 2, 3; 1 <= y <= 2x + 2) hydrocarbon species in a wide range of collision energies and plasma (gas) temperatures. The considered processes include: electron-impact ionization and dissociation of C sub x H sub y , dissociative excitation, ionization and recombination of C sub x H sub y sup + with electrons, and both charge transfer and atom exchange in proton channels are considered separately. Information is also provided for the energies of each individual reaction channel. The cross sections and rate coefficients are presented in compact analytic forms.

  16. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.

    Science.gov (United States)

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The characterization and the agitation leaching of electric arc furnace dust (EAFD) by diluted sulphuric acid have been studied in Part I, as a separate article. The aim of the present research work (Part II) is the development of a purification process of the leach liquor for the recovery of high-purity zinc by electrowinning. The proposed hydrometallurgical process consists of the following four (4) unit operations: (1) Removal of iron as easily filterable crystalline basic sulphate salt of the jarosite type, at atmospheric pressure, by chemical precipitation at pH: 3.5 and 95 degrees C. (2) Zinc solvent extraction by Cyanex 272 at pH: 3.5, T: 40 degrees C, with 25% extractant concentration. (3) Stripping of the loaded organic phase by zinc spent electrolyte (62.5 g/L Zn(2+)) at T: 40 degrees C with diluted H(2)SO(4) (3 mol/L). (4) Zinc electrowinning from sulphate solutions (at 38 degrees C) using Al as cathode and Pb as anode. The acidity of the electrolyte was fixed at 180 g/L H(2)SO(4), while the current density was kept constant at 500 A/m(2).

  17. Study on thorium recovery from bastnaesite treatment process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongqi; XU Yang; HUANG Xiaowei; LONG Zhiqi; CUI Dali; HU Feng

    2012-01-01

    Thorium (Th) stripping behavior from HEH/EHP (2-(ethylhexyl) phosphoric acid mono-2-ethylhexyl ester) with H2SO4,HCl and HNO3 were investigaated.The results indicated that H2SO4 was the most effective stripping reagent compared with HCl and HNO3.Selecting H2SO4 as the stripping reagent,the effect of phase ratio,acidity,H2SO4 amount,HEH/EHP concentration and Th loading in HEH/EHP on Th stripping were systematically investigated.As a result,the optimum stripping conditions of Th(Ⅳ) were obtained as the concentration of H2SO4 solution was 3.50 mol/L,phase ratio was 4∶1.Low HEH/EHP concentration was benefit for Th stripping.Based on the results,pilot test for new Bastnaesite treatment process was carried out and the recovery of Ce,F and Th were more than 99%,98% and 95% separately.

  18. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  19. Process for the separation of C sub 2 hydrocarbons from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.; Sapper, R.

    1990-08-21

    A process for the separation of C{sub 2+} hydrocarbons from natural gas under pressure is disclosed, in which the natural gas is cooled, partially condensed, and separated into a liquid fraction and a gaseous fraction. The liquid fraction is subcooled and then expanded into the upper zone of a rectifying column. The gaseous fraction, after engine expansion, is also introduced into the rectifying column. During rectification, a product stream containing essentially C{sub 2+} hydrocarbons and a residual gas stream containing predominantly lower-boiling components are obtained. The residual gas stream is initially heated by heat exchange with the liquid fraction and then heated by heat exchange with the gaseous fraction obtained after partial condensation. The residual gas stream is then further heated by heat exchange with the feed stream of natural gas to be partially condensed. The heated residual gas is then engine expanded and reheated again by heat exchange with the feed stream of natural gas to be partially condensed.

  20. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  1. A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bai, D.; Li, J.; Chen, S.B.; Chen, B.-H. [National University of Singapore (Singapore). Dept. of Chemical and Environmental Engineering

    2001-10-01

    Polycyclic aromatic hydrocarbons (PAHs) released in such processes as incomplete coal combustion and during the disposal of coal tar, are subject to strict emission controls in which the determination of PAHs has to be addressed. PAHs have low aqueous solubility which necessitates preconcentration prior to the analytical determination of PAHs. A novel but simple cloud-point extraction (CPE) process is developed to preconcentrate the trace of selected polycyclic aromatic hydrocarbons (PAHs) with the use of the readily biodegradable nonionic surfactant of secondary ethyoxylated alcohol Tergitol 15-S-7 as extractant. The concentrations of PAHs, mixtures of naphthalene and phenanthrene as well as pyrene in the spiked samples were determined with the new CPE process at ambient temperature (23{degree}C) followed by high performance liquid chromatography (HPLC) with fluorescence detection. More than 80% of phenanthrene and pyrene, respectively, and 96% of naphthalene initially present in the aqueous solutions with concentrations near or below their aqueous solubilities were recovered using this new CPE process. Importantly Tergitol 15-S-7 does not give any fluorometric signal to interfere with fluorescence detection of PAHs in the UV range. No special washing step is, thus, required to remove surfactant before HPLC analyses. Different experimental conditions were studied. The optimum conditions for the preconcentration and determination of these selected PAHs at ambient temperature have been established as the following: (1) 3 wt% surfactant; (2) addition of 0.5 M Na{sub 2}SO{sub 4}; (3) 10 min for equilibration time; and (4) 3000 rpm for centrifugal speed with duration of 10 min. 50 refs., 7 figs.

  2. Review : Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry

    National Research Council Canada - National Science Library

    Qian Zhu Li; ; Xing Lin Jiang; Xin Jun Feng; Ji Ming Wang; Chao Sun; Hai Bo Zhang; Mo Xian; Hui Zhou Liu

    2016-01-01

    .... This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects...

  3. Thermodynamic and Thermo-graphic Research of the Interaction Process of the Lisakovsky Gravitymagnetic Concentrate with Hydrocarbons

    Directory of Open Access Journals (Sweden)

    A. A. Мuhtar

    2015-01-01

    Full Text Available The relevance of this work consists in treatment of complex brown iron ores. Large volumes of off-balance ores are an additional source of production raw materials, however, there is still a problem of their treatment by effective complex methods.This work shows a possibility of using liquid hydrocarbons as the reducers during thermochemical preparation of brown iron concentrates of the Lisakovsky field to metallurgical conversion and studies the features and main regularities of a roasting process of Lisakovsky gravitymagnetic concentrate in the presence of liquid hydrocarbons.The initial concentrate was treated by solution of a liquid hydrocarbon reducer (oil: phenyl hydride: water, which was subjected to heat treatment with the subsequent magnetic dressing.Research by the X-ray phase analysis of reducing products has shown that the main phases of magnetic fraction of a roasted product are presented by magnetite in a small amount hematite and quartz. Generally, only relative intensity of peaks is changed.The thermodynamic analysis of interaction between the hydrocarbons, which are a part of oil, and iron oxides was carried out. This analysis allowed us to suppose a reducing mechanism for the brown iron ores by liquid reducers.The data obtained by the thermodynamic analysis are confirmed by experimental results. It is proved that with increasing hydrogen-to-carbon ratio the probability of proceeding reactions of interaction between oxide of iron (III and liquid hydrocarbon increases.The differential and thermal analysis allowed us to study a heat treatment process of the Lisakovsky gravity-magnetic concentrate, which is pre-treated by oil solutions, as well as to show a possibility for proceeding the process of interaction between liquid hydrocarbon and ferriferous products of Lisakovsky gravity-magnetic concentrate.It is found that with increasing temperature in the treated samples of LGMK the hydrogoethite dehydration product interacts with

  4. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  5. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  6. EFFICIENT RECOVERY OF BIOETHANOL USING NOVEL PERVAPORATION-DEPHLEGMATION PROCESS

    Science.gov (United States)

    Bioethanol is the most important liquid fuel made in the U.S. from domestically produced renewable resources. Traditional production of bioethanol involves batch fermation of biomass followed by ethanol recovery from the fermentation broths using distillation. The distillation st...

  7. Studies of Uranium Recovery from Tunisian Wet Process Phosphoric Acid

    OpenAIRE

    2013-01-01

    The growing worldwide energy demand associated with several inter related complex environmental as well as economical issues are driving the increase of the share of uranium in energy mix. Subsequently, over the last few years, the interest for uranium extraction and recovery from unconventional resources has gained considerable importance. Phosphate rock has been the most suitable alternative source for the uranium recovery because of its uranium content. Solvent extraction has been found to...

  8. Identification of existing waste heat recovery and process improvement technologies

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  9. Estimation of the Heat Balance of the Liquid Hydrocarbons Evaporation Process from the Open Surface During Geotechnical Monitoring

    Science.gov (United States)

    Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    Researchers in Tyumen State Oil and Gas University (TSOGU) have conducted a complex research of the heat and mass transfer processes and thermophysical properties of hydrocarbons, taking into account their impact on the reliability and safety of the hydrocarbon transport and storage processes. It has been shown that the thermodynamic conditions on the surface and the color of oil influence the degree of temperature rise in the upper layers of oil when exposed to direct solar radiation. In order to establish the nature of solar radiation impact on the surface temperature the experimental studies were conducted in TSOGU on the hydrocarbon evaporation and the temperature change of various petroleum and petroleum products on the free surface with varying degrees of thermal insulation of the side walls and bottom of the vessel.

  10. Dual phase vacuum extraction technology for the recovery of petroleum hydrocarbon contamination from the subsurface : a case study

    Energy Technology Data Exchange (ETDEWEB)

    Kallur, V.G.; Agar, J.G.; Wong, T.T.; Naus, J. [O' Connor Associates Environmental Inc., Calgary, AB (Canada); Michielsen, A.P. [Imperial Oil Ltd., Burnaby, BC (Canada)

    2003-07-01

    This paper presents a case history concerning the application of dual phase vacuum extraction (DPVE) technology for the remediation of subsurface petroleum hydrocarbon (PHC) contamination in silty soils at a service station site located in Vancouver, British Columbia. It also summarized the design and performance monitoring results for the site, in conjunction with the performance monitoring results from similar DPVE systems in operation at 7 other sites in western Canada. Each of these sites is underlain by both fine-grained and coarser grained sandy soils. The study offers useful design guidance and insight on the practical limitations of DPVE technology for PHC remediation. 2 refs., 6 tabs., 4 figs.

  11. RECOVERY OF POLYHYDROXYALKANOATES (PHAs FROM BACTERIAL CELLS USING ENZYMATIC PROCESS

    Directory of Open Access Journals (Sweden)

    S. Marsudi

    2012-02-01

    Full Text Available Polyhydroxyalkanoates (PHAs are intracellular material accumulated by several bacteria. Commercial production of PHAs faces the issue of high production cost especially substrate cost and recovery/separation cost. An alternative to reduce the production cost is to use enzyme and or chemical to recover PHAs from bacterial cells. Recovery of PHAs from bacterial cells was done using enzyme, chemical, and a mixture of enzyme and chemical. Enzyme (s and or chemical(s were added into culture broth to disrupt cells after adjusting pH and temperature of the culture broth. Treatment by adding enzyme or chemical only into culture broth showed a low level of PHAs recovered from bacterial cells. Treatment by adding a mixture of enzymes and chemicals showed the best result among 22 examined combinations, i.e. a mixture of EDTA, lisozyme, papain enzyme, and SDS. This combination gave a PHA recovery of 65 % w/w.

  12. 78 FR 20393 - Cost Recovery for Permit Processing, Administration, and Enforcement

    Science.gov (United States)

    2013-04-04

    ... CFR Parts 701, 736, 737 et al. Cost Recovery for Permit Processing, Administration, and Enforcement... Parts 701, 736, 737, 738, and 750 RIN 1029-AC65 Cost Recovery for Permit Processing, Administration, and... inspection), and the differing costs for the administration of the Federal and Indian Land Programs among...

  13. 78 FR 18429 - Cost Recovery for Permit Processing, Administration, and Enforcement

    Science.gov (United States)

    2013-03-26

    ... 30 CFR Parts 701, 736, 737 et al. Cost Recovery for Permit Processing, Administration, and... 701, 736, 737, 738, and 750 RIN 1029-AC65 Cost Recovery for Permit Processing, Administration, and... fees to recover the actual costs for permit review and administration and permit enforcement...

  14. Guided reflection: a participatory evaluation and planning process to promote recovery in mental health services agencies.

    Science.gov (United States)

    Jacobson, Nora; Greenley, Dianne; Breedlove, Lynn; Roschke, Ruth; Koberstein, Jen

    2003-01-01

    This brief report describes a participatory evaluation and planning process--a "guided reflection"--that mental health services agencies can use to examine the state of recovery awareness and implementation in their organizations. The process revolves around structured small group discussions, identification of agency strengths and weaknesses, and the formation of an agency "recovery action team" to set priorities and plan for change.

  15. POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D

    Energy Technology Data Exchange (ETDEWEB)

    Tappe, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-72, Cambridge, MA 02138 (United States); Rho, J. [SOFIA Science Mission Operations/USRA, NASA Ames Research Center, MS 211-3, Moffett Field, CA 94035 (United States); Boersma, C. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Micelotta, E. R., E-mail: atappe@cfa.harvard.edu [Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)

    2012-08-01

    We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edge of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.

  16. Process of microbial degradation of petroleum hydrocarbons in the downstream of the Tamagawa river. Tamagawa karyuiki ni okeru sekiyukei tanka suiso no biseibutsu bunkai katei

    Energy Technology Data Exchange (ETDEWEB)

    Morito, M. (Sumitomo 3M Co., Kanagawa (Japan)); Okada, M.; Murakami, A. (Tokyo University of Agriculture and Technology, Tokyo (Japan). Faculty of Engineering)

    1990-12-10

    The process of biodegradation of petroleum hydrocarbons was investigated in the downstream of the Tamagawa river. Petroleum hydrocarbons, such as hexadecane, octylbenzene, and 1-methylnaphtalene were observed to be rapidly degraded by microorganisms in the water sampled from the surface of the river after a period of lag time. The longer lag time was observed in order of hexadecane hydrocarbons, but the rates was not be promoted by physical and chemical emulsification. It was suggested that petroleum hydrocarbons were degraded not in physical and chemical process in which the hydrocarbons were emulsified by microbial extracellular products, microfinded and enhanced contact area or frequency to microbes, but in biochemical process in which the microorganisms gained the ability of petroleum hydrocarbons degradation, that is, induction of production of a degrading enzyme. 12 refs., 7 figs.

  17. Isotopic and geochemical tools to assess the feasibility of methanogenesis as a way to enhance hydrocarbon recovery in oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Morris, B.E.L.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M.; Yao, Jun [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Sicence and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany). Fachbereich Geochemie

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a thermophilic reservoir in Dagang, China using isotopic analyzes, chemical fingerprinting and molecular and biological methods. Our first results, which were already published, demonstrated that anaerobic oil degradation concomitant with methane production was occurring. The reservoir was highly methanogenic and the oil exhibited varying degrees of degradation between different parts of the reservoir, although it was mainly highly weathered, and nearly devoid of nalkanes, alkylbenzenes, alkyltoluenes, and light PAHs. In addition, the isotopic data from reservoir oil, water and gas was used to elucidate the origin of the methane. The average {delta}{sup 13}C for methane was around -47 permille and CO{sub 2} was highly enriched in {sup 13}C. The bulk isotopic discrimination ({Delta}{delta}{sup 13}C) between methane and CO{sub 2} was between 32 and 65 permille, in accordance with previously reported results for methane formation during hydrocarbon degradation. Subsequent microcosm experiments revealed that autochthonous microbiota are capable of degrading oil under methanogenic conditions and of producing methane and/or CO{sub 2} from {sup 13}C-labelled n-hexadecane, 2-methylnaphthalene or toluene ({delta}{sup 13}C values up to 550 permille). These results demonstrate that methanogenesis is linked to aliphatic and aromatic hydrocarbon degradation. Further experiments will elucidate the activation mechanisms for the different compounds. (orig.)

  18. Bangkit: The Processes of Recovery from First Episode Psychosis in Java.

    Science.gov (United States)

    Subandi, M A

    2015-12-01

    There is a growing literature on recovery from schizophrenia. Most studies, however, focused on outcome, with insufficient attention paid to the process of recovery. The aim of this study was to explore the process of recovery from first episode psychotic illness in a Javanese cultural setting. An ethnographic method was applied where researcher conducted a field work and followed seven participants in their natural setting. This study identified three phases of recovery process in the context of Javanese culture: Bangkit, gaining insight; Usaha, struggling to achieve recovery; and Rukun, harmonious integration with family and community integration. Recovery entails regaining insight, followed by simultaneous inward and outward efforts that reconstitute one's inner and outer world, respectively. Participants also expressed their recovery in terms of a movement through physical space, from confinement in their own home to the wider spaces shared with family and community. Movements in physical space parallel movements in social space, where participants accomplish a social recovery. The Javanese phase of recovery found in this study is comparable to the phase of recovery identified by previous literatures in the Western context.

  19. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Science.gov (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%.

  20. The redesign of a warranty distribution network with recovery processes

    NARCIS (Netherlands)

    Ashayeri, J.; Ma, N.; Sotirov, R.

    2015-01-01

    A warranty distribution network provides aftersales warranty services to customers and resembles a closed-loop supply chain network with specific challenges for reverse flows management like recovery, repair, and reflow of refurbished products. We present here a nonlinear and nonconvex mixed integer

  1. Grade and Recovery Prediction for Eddy Current Separation Processes

    NARCIS (Netherlands)

    Rem, P.C.; Beunder, E.M.; Kuilman, W.

    1998-01-01

    Grade and recovery of eddy current separation can be estimated on the basis of trajectory simulations for particles of simple shapes. In order to do so, the feed is characterized in terms of a small set of test-particles, each test-particle representing a fraction of the feed of a given size, shape

  2. Recovery of Pu,Np in 1BP of Dilute TBP Extraction Process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In the TBP extraction process, Np and Pu need to be recovered from effluents of the TBP extraction process. In this work, the recovery of Np and Pu from TBP extraction effluents is studied was investigated

  3. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    Science.gov (United States)

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  4. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U. [Univ. of Tennessee, Knoxville, TN (United States); Burlage, R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  5. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, NE; Myers, JA; Tuerk, AL; Curtis, WR

    2014-11-01

    Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus (R) bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2(sic)/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. (C) 2014 Elsevier Ltd. All rights reserved.

  6. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    Science.gov (United States)

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.

  7. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms.

    Science.gov (United States)

    Khan, Nymul E; Myers, John A; Tuerk, Amalie L; Curtis, Wayne R

    2014-11-01

    Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus® bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2¢/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility.

  8. The Recovery Process Utilizing Erikson’s Stages of Human Development

    OpenAIRE

    2009-01-01

    Of current interest to the field are clinical frameworks that foster recovery. The authors offer a psycho-developmental model that parallels Erik Erikson’s theory of human development, and theorize that the process of psychiatric recovery involves a psychic reworking of these fundamental steps. Understanding recovery in this context allows the client and the practitioner of psychiatric rehabilitation to design and implement a coherent treatment strategy.

  9. Simulation and modeling of the hydrocarbon generation-migration-mixing processes in Louisiana`s sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.K.; Shi, Ying [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-09-01

    Mixed-age Mesozoic and Cenozoic hydrocarbons are present in many Louisiana oil and gas reservoirs. This phenomenon has added fuel to the controversy over whether the hydrocarbon source rocks underwent {open_quotes}shallow{close_quotes} or {open_quotes}deep{close_quotes} burial. Source rock generating capacities and timing of maturation, expulsion, and migration are important factors in providing a potential solution to the problem. The purpose of this paper is to reconstruct the dynamic processes of oil and gas generation-migration-mixing in Louisiana basins by using numerical simulation. Problem solution employed a finite difference model which simulates numerically five processes on 2D vertical grids: (1) reconstruction of geological evolution as a result of sedimentation, erosion, and compaction; (2) computation of paleotemperatures based on constant crustal heat flow; (3) computation of source rock maturity based on a first-order kinetic model; (4) computation of geopressure based upon the result of compaction disequilibrium; and (5) computation of hydrocarbon expulsion and migration rates based on calculated results of maturity and geopressure reconstruction. This simulation/model yields plausible results for estimating potential regional reservoir volumetric distributions. The integrated approach used in this study provides a means for analyzing the dynamic processes of oil and gas generation-migration-mixing in Louisiana`s hydrocarbon systems. It also provides a basis for designing objective oil and gas trend analysis.

  10. Petroleum recovery process utilizing formaldehyde-sulfite-reacted polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-09-25

    Micellar slugs followed by thickened water floods were injected into Berea cores (20.4 percent porosity, 398.4 md permeability, see Patent 3,692,113 for pretreatment) for enhanced oil recovery. About 61.1 percent residual oil was produced when the polymer in the thickened water was sulfomethylated hydrolyzed polyacrylamide. However, use of the conventional unhydrolyzed polyacrylamide recovered only 27.7 percent residual oil.

  11. PROCESS FOR THE RECOVERY OF URANIUM FROM PHOSPHATIC ORE

    Science.gov (United States)

    Long, R.L.

    1959-04-14

    A proccss is described for the recovery of uranium from phosphatic products derived from phosphatic ores. It has been discovered that certain alkyl phosphatic, derivatives can be employed in a direct solvent extraction operation to recover uranium from solid products, such as superphosphates, without first dissolving such solids. The organic extractants found suitable include alkyl derivatives of phosphoric, pyrophosphoric, phosof the derivative contains from 4 to 7 carbon atoms. A diluent such as kerosene is also used.

  12. Sorption dehumidification and heat recovery: applications in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    A new sorption dehumidification plant is proposed for industrial drying. It works with a LiBr-H[sub 2]O mixture and it recovers a large fraction of sensible and latent heat from the exhaust air. It gives an energy saving higher than 25% if compared with a conventional air drying plant equipped with a heat recovery system. A scheme operating in a closed loop is also considered. (author).

  13. Platinum group metal recovery and catalyst manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Kim, Y. S.; Yoo, J. H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Paek, S. W.; Kang, H. S.

    1998-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metal such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solution was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400 m{sup 2}/g. The content of palladium impregnated on the support was 10 wt.%. Hydrogen isotope exchange efficiency of 93 % to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its actively is unimportant as in nuclear industries. (author). 63 refs., 38 tabs., 36 figs.

  14. Detection of polycyclic aromatic hydrocarbons in different types of processed foods.

    Science.gov (United States)

    Kumosani, Taha A; Moselhy, Said S; Asseri, Abdullah M; Asseri, Amer Hamzah

    2013-04-01

    Polycyclic aromatic hydrocarbons (PCAHs), particularly those with a high molecular weight, have been classified as probable carcinogens to humans. The aim of the present study is to determine the levels of PCAHs in samples of meat, fish, chicken, fried potato, and toasted bread, which will be thermally processed using conventional and microwave ovens. Different samples will be collected and analyzed for five PCAHs including pyrene, benzo(a)anthracene, benzo(e)pyrene, benzoflouroanthene, and benzo(a)pyrene. The analytical method involves saponification with methanolic potassium hydroxide, extraction with cyclohexane, and determination by high-performance liquid chromatography. The obtained results showed that there is a variation in the detected PCAHs in different foodstuffs. Fried potato processed by conventional oven or microwave oven showed none of the selected studied PCAHs. It was found that, chicken showed higher content levels of total PCAHs than the meat and fish. Data are the highest mean concentrations of fluoranthene and benzo(a)pyrene but within low limit. The obtained results were compared with international permissible levels to avoid pollution, which may cause hazardous effects on individual and society.

  15. Hydrocarbon fuels from brown grease: Moving from the research laboratory toward an industrial process

    Science.gov (United States)

    Pratt, Lawrence M.; Strothers, Joel; Pinnock, Travis; Hilaire, Dickens Saint; Bacolod, Beatrice; Cai, Zhuo Biao; Sim, Yoke-Leng

    2017-04-01

    Brown grease is a generic term for the oily solids and semi-solids that accumulate in the sewer system and in sewage treatment plants. It has previously been shown that brown grease undergoes pyrolysis to form a homologous series of alkanes and 1-alkenes between 7 and 17 carbon atoms, with smaller amounts of higher hydrocarbons and ketones up to about 30 carbon atoms. The initial study was performed in batch mode on a scale of up to 50 grams of starting material. However, continuous processes are usually more efficient for large scale production of fuels and commodity chemicals. This work describes the research and development of a continuous process. The first step was to determine the required reactor temperature. Brown grease consists largely of saturated and unsaturated fatty acids, and they react at different rates, and produce different products and intermediates. Intermediates include ketones, alcohols, and aldehydes, and Fe(III) ion catalyzes at least some of the reactions. By monitoring the pyrolysis of brown grease, its individual components, and intermediates, it was determined that a reactor temperature of at least 340 °C is required. A small scale (1 L) continuous stirred tank reactor was built and its performance is described.

  16. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and

  17. Applications of density functional theory calculations to selected problems in hydrocarbon processing

    Science.gov (United States)

    Nabar, Rahul

    Recent advances in theoretical techniques and computational hardware have made it possible to apply Density Functional Theory (DFT) methods to realistic problems in heterogeneous catalysis. Hydrocarbon processing is economically, and strategically, a very important industrial sector in today's world. In this thesis, we employ DFT methods to examine several important problems in hydrocarbon processing. Fischer Tropsch Synthesis (FTS) is a mature technology to convert synthesis gas derived from coal, natural-gas or biomass into liquid fuels, specifically diesel. Iron is an active FTS catalyst, but the absence of detailed reaction mechanisms make it difficult to maximize activity and optimize product distribution. We evaluate thermochemistry, kinetics and Rate Determining Steps (RDS) for Fischer Tropsch Synthesis on several models of Fe catalysts: Fe(110), Fe(211) and Pt promoted Fe(110). Our studies indicated that CO-dissociation is likely to be the RDS under most reaction conditions, but the DFT-calculated activation energy ( Ea) for direct CO dissociation was too large to explain the observed catalyst activity. Consequently we demonstrate that H-assisted CO-dissociation pathways are competitive with direct CO dissociation on both Co and Fe catalysts and could be responsible for a major fraction of the reaction flux (especially at high CO coverages). We then extend this alternative mechanistic model to closed-packed facets of nine transition metal catalysts (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt). H-assisted CO dissociation offers a kinetically easier route on each of the metals studied. DFT methods are also applied to another problem from the petroleum industry: discovery of poison-resistant, bimetallic, alloy catalysts (poisons: C, S, CI, P). Our systematic screening studies identify several Near Surface Alloys (NSAs) that are expected to be highly poison-resistant yet stable and avoiding adsorbate induced reconstruction. Adsorption trends are also correlated with

  18. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  19. Coal-oxygen process provides CO/sub 2/ for enhanced recovery

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, B.M.

    1982-03-15

    Carbon dioxide for use in enhanced oil recovery could be produced by electric power plants which burn coal in an O/SUB/2/CO/SUB/2 mixture. The process appears to be competitive with the monoethanol amine and hot potassium carbonate methods of CO/SUB/2 recovery from flue gases.

  20. First Principles Simulations of Hydrocarbon Conversion Processes in Functionalized Zeolitic Materials

    Science.gov (United States)

    Mazar, Mark Nickolaus

    With increasing demand for chemicals and fuels, and finite traditional crude oil resources, there is a growing need to invent, establish, or optimize chemical processes that convert gasifiable carbon-based feedstocks (e.g., coal, natural gas, oil sands, or biomass) into the needed final products. Catalysis is central to almost every industrial chemical process, including alkane metathesis (AM) and the methanol-to-hydrocarbons (MTH) process, which represent final steps in a sequence of hydrocarbon conversion reactions. An in depth understanding of AM and MTH is essential to the selective production of the desired end products. In this dissertation, ab initio density functional theory simulations provide unique mechanistic and thermodynamic insight of specific elementary steps involved in AM and MTH as performed on zeolite supports. Zeolites have been employed throughout the petroleum industry because of their ability to perform acid-catalyzed reactions (e.g., cracking or MTH). The crystalline structure of zeolites imparts regular microporous networks and, in turn, the selective passage of molecules based on shape and functionality. Many different elements can be grafted onto or substituted into zeolites, resulting in a broad range of catalytic behavior. However, due to the variety of competing and secondary reactions that occur at experimental conditions, it is often difficult to extract quantitative information regarding individual elementary steps. ab initio calculations can be particularly useful for this purpose. Alkane metathesis (i.e., the molecular redistribution or chain length averaging of alkanes) is typically performed by transition metal hydrides on amorphous alumina or silica supports. In Chapter 3, the feasibility of AM in zeolites is assessed by using a grafted Ta-hydride complex to explore the full catalytic cycle in the self-metathesis of ethane. The decomposition of a Ta-metallacyclobutane reaction intermediate that forms during olefin metathesis

  1. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  2. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions

    Science.gov (United States)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs

  3. Process and apparatus for conversion of water vapor with coal or hydrocarbon into a product gas

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Barnert, H.; Oertel, M.; Schulten, R.

    1990-03-27

    A process and apparatus are provided for conversion of steam and hydrocarbon, or steam and coal, into a product gas which contains hydrogen. The conversion rate is augmented by effective extraction and removal of hydrogen as and when hydrogen is generated. Within a reaction vessel wherein the conversion takes place, a chamber for collection of hydrogen is formed by the provision of a hydrogen permeable membrane. The chamber is provided with a hydrogen extraction means and houses a support structure, for example, in the form of a mesh providing structural support to the membrane. The membrane may be of a pleated or corrugated construction, so as to provide an enlarged surface for the membrane to facilitate hydrogen extraction. Also, to further facilitate hydrogen extraction, a hydrogen partial pressure differential is maintained across the membrane, such as, for example, by the counter pressure of an inert gas. A preferred configuration for the apparatus of the invention is a tubular construction which houses generally tubular hydrogen extraction chambers. 5 figs.

  4. Optimization of purification processes to remove polycyclic aromatic hydrocarbons (PAHs) in polluted raw fish oils.

    Science.gov (United States)

    Yebra-Pimentel, Iria; Fernández-González, Ricardo; Martínez-Carballo, Elena; Simal-Gándara, Jesús

    2014-02-01

    Fish oils are one of the main sources of health promoting nutrients such as n-3 fatty acids in animal and human diet. Nevertheless, they could be an important source of persistent organic pollutants (POPs). Different strategies of decontamination processes to reduce polycyclic aromatic hydrocarbon (PAH) levels in fish oils, such as solvent extraction (ethanol) and adsorbent extraction using commercially available (activated carbon) and sustainable adsorbents (mussel shell and wood ashes), were compared. Adsorption conditions were evaluated and optimized by an experimental design and the experimental results were adjusted to response surfaces. In this way, PAH removals increased with increasing of individual PAH molecular weight and they range from 80% to 100% using activated carbon and from 10% to 100% using wood ashes. Pine wood ashes showed similar removal rates to activated carbon (87%-100%) excluding F (51%) and P (42%). No PAH removal was observed using mussel shell ashes. Ethanol extraction was also optimized and showed a good performance in the extraction of PAHs. However, it does affect their ω-3 fatty acid contents. Finally, real oil samples from different fishing areas: Spain, South America, and North Europe were selected for the decontamination experiments under experimental conditions previously optimized.

  5. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    Science.gov (United States)

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized.

  6. Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: evaluation of bioremediation technologies.

    Science.gov (United States)

    Frutos, F J García; Pérez, R; Escolano, O; Rubio, A; Gimeno, A; Fernandez, M D; Carbonell, G; Perucha, C; Laguna, J

    2012-01-15

    The usual fate of highly contaminated fine products (silt-clay fractions) from soil washing plants is disposal in a dump or thermal destruction (organic contaminants), with consequent environmental impacts. Alternative treatments for these fractions with the aim of on-site reuse are needed. Therefore, the feasibility of two technologies, slurry bioremediation and landfarming, has been studied for the treatment of sludge samples with a total petroleum hydrocarbon (TPH) content of 2243 mg/kg collected from a soil washing plant. The treatability studies were performed at the laboratory and pilot-real scales. The bioslurry assays yielded a TPH reduction efficiency of 57% and 65% in 28 days at the laboratory and pilot scale, respectively. In the landfarming assays, a TPH reduction of 85% in six months was obtained at laboratory scale and 42% in three months for the bioremediation performed in the full-scale. The efficiency of these processes was evaluated by ecotoxicity assessments. The toxic effects in the initial sludge sample were very low for most measured parameters. After the remediation treatments, a decrease in toxic effects was observed in earthworm survival and in carbon mineralisation. The results showed the applicability of two well known bioremediation technologies on these residues, this being a novelty.

  7. Evaluation of electrochemical processes for the removal of several target aromatic hydrocarbons from petroleum contaminated water.

    Science.gov (United States)

    Alsalka, Yamen; Karabet, François; Hashem, Shahir

    2011-03-01

    Ground and surface water contamination resulting from the leakage of crude oil and refined petroleum products is a serious and growing environmental problem throughout the world. Consequently, a study of the use of electrochemical treatment in the clean-up was undertaken with the aim of reducing the water contamination by aromatic pollutants to more acceptable levels. In the experiments described, water contamination by refined petroleum products was simulated under laboratory conditions. Electrochemical treatment, using aluminium electrodes, has been optimised by full factorial design and surface response analysis in term of BTEX and PAHs removal and energy consumption. The optimal conditions of pH, current density, electrolysis time, electrolyte type, and electrolyte concentration have then been applied in the treatment of real water samples which were monitored as petroleum contaminated samples. Treatment results have shown that electrochemical methods could achieve the concentration of these pollutants to undetectable levels in particular groundwater and surface water, hence, they can be highly effective in the remediation of water contaminated by aromatic hydrocarbons, and the use of these processes is therefore recommended.

  8. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  9. Preliminary chemical analysis and biological testing of materials from the HRI catalytic two-stage liquefaction (CTSL) process. [Aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Wilson, B.W.

    1985-01-01

    Coal-derived materials from experimental runs of Hydrocarbon Research Incorporated's (HRI) catalytic two-stage liquefaction (CTSL) process were chemically characterized and screened for microbial mutagenicity. This process differs from two-stage coal liquefaction processes in that catalyst is used in both stages. Samples from both the first and second stages were class-fractionated by alumina adsorption chromatography. The fractions were analyzed by capillary column gas chromatography; gas chromatography/mass spectrometry; direct probe, low voltage mass spectrometry; and proton nuclear magnetic resonance spectrometry. Mutagenicity assays were performed with the crude and class fractions in Salmonella typhimurium, TA98. Preliminary results of chemical analyses indicate that >80% CTSL materials from both process stages were aliphatic hydrocarbon and polynuclear aromatic hydrocarbon (PAH) compounds. Furthermore, the gross and specific chemical composition of process materials from the first stage were very similar to those of the second stage. In general, the unfractionated materials were only slightly active in the TA98 mutagenicity assay. Like other coal liquefaction materials investigated in this laboratory, the nitrogen-containing polycyclic aromatic compound (N-PAC) class fractions were responsible for the bulk of the mutagenic activity of the crudes. Finally, it was shown that this activity correlated with the presence of amino-PAH. 20 figures, 9 tables.

  10. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    Science.gov (United States)

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  11. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  12. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  13. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  14. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  15. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  16. Local Risk-Minimization for Defaultable Claims with Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, Francesca, E-mail: biagini@mathematik.uni-muenchen.de [LMU, Department of Mathematics (Germany); Cretarola, Alessandra, E-mail: alessandra.cretarola@dmi.unipg.it [Universita degli Studi di Perugia, Dipartimento di Matematica e Informatica (Italy)

    2012-06-15

    We study the local risk-minimization approach for defaultable claims with random recovery at default time, seen as payment streams on the random interval [0,{tau} Logical-And T], where T denotes the fixed time-horizon. We find the pseudo-locally risk-minimizing strategy in the case when the agent information takes into account the possibility of a default event (local risk-minimization with G-strategies) and we provide an application in the case of a corporate bond. We also discuss the problem of finding a pseudo-locally risk-minimizing strategy if we suppose the agent obtains her information only by observing the non-defaultable assets.

  17. Geochemical processes during five years of aquifer storage recovery.

    Science.gov (United States)

    Herczeg, Andrew L; Rattray, Karen J; Dillon, Peter J; Pavelic, Paul; Barry, Karen E

    2004-01-01

    A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment.

  18. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  19. Novel antifoam for fermentation processes: fluorocarbon-hydrocarbon hybrid unsymmetrical bolaform surfactant.

    Science.gov (United States)

    Calik, Pinar; Ileri, Nazar; Erdinç, Burak I; Aydogan, Nihal; Argun, Muharrem

    2005-09-13

    As foaming appears as a problem in chemical and fermentation processes that inhibits reactor performance, the eminence of a novel fluorocarbon-hydrocarbon unsymmetrical bolaform (FHUB: OH(CH2)11N+(C2H4)2(CH2)2(CF2)5CF3 I-) surfactant as an antifoaming agent as well as a foam-reducing agent was investigated and compared with other surfactants and a commercial antifoaming agent. The surface elasticity of FHUB was determined as 4 mN/m, indicating its high potential on thinning of the foam film. The interactions between FHUB and the microoganism were investigated in a model fermentation process related with an enzyme production by recombinant Escherichia coli, in V = 3.0 dm3 bioreactor systems with V(R) = 1.65 dm3 working volume at air inlet rate of Q(o)/V(R) = 0.5 dm3 dm(-3) min(-1) and agitation rate of N = 500 min(-1) oxygen transfer conditions, at T = 37 degrees C, pH(o) = 7.2, and C(FHUB) = 0 and 0.1 mM, in a glucose-based defined medium. As FHUB did not influence the metabolism, specific enzyme activity values obtained with and without FHUB were close to each other; however, because of the slight decrease in oxygen transfer coefficient, slightly lower volumetric enzyme activity and cell concentrations were obtained. However, when FHUB is compared with widely used silicon oil based Antifoam A, with the use of the FHUB, higher physical oxygen transfer coefficient (K(L)a) values are obtained. Moreover, as the amount required for the foam control is very low, minute changes in the working volume of the bioreactor were obtained indicating the high potential of the use of FHUB as an antifoaming agent as well as a foam-reducing agent.

  20. Impact of oxidation process on polycyclic aromatic hydrocarbon (PAH) content in bitumen.

    Science.gov (United States)

    Bolliet, Christophe; Juery, Catherine; Thiebaut, Benoit

    2013-01-01

    This study investigated the impact of the oxidation process on the concentration of polycyclic aromatic hydrocarbons (PAH) in blown bitumen and identified some key contributing parameters. The U.S. Environmental Protection Agency's PAH list was used for this study. PAHs are considered a good toxicological marker, and measurement of PAHs in bitumen can be performed easily. The results of PAH content in blown bitumen and the corresponding feedstock was determined from the limit of detection up to 120 mg/kg for 24 samples. Compared to PAH levels in coal tar pitch, PAH levels in bitumen are very low. Measurements were performed by three laboratories using different methods to allow robust conclusions. The results highlight the difficulties in measuring PAHs in bitumen with accuracy for values below 30 mg/kg; therefore the discussion is based on summary statistics by adding concentrations of PAHs with common ring sizes. Incorporation of flux oil in the feed of the blowing bitumen unit tends to increase PAH content in feed stock and in blown bitumen, particularly the 4- to 6-ring PAHs, which are the most carcinogenic as identified by an animal skin painting test. The amount of PAH content from blown bitumen with flux oil can be at least three times higher than the amount in blown bitumen without flux oil, depending on the quality and quantity of the flux oil used. This study shows that the blowing process does not produce PAHs in bitumen. Conversely, it appears to reduce them in the final product. Close to 10 to 30% of PAHs are probably stripped from the liquid phase of bitumen during the blowing operation.

  1. Aquatic worm reactor for improved sludge processing and resource recovery

    NARCIS (Netherlands)

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste

  2. Aquatic worm reactor for improved sludge processing and resource recovery

    NARCIS (Netherlands)

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste

  3. Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process

    Energy Technology Data Exchange (ETDEWEB)

    Compere, A L [ORNL; Griffith, William {Bill} L [ORNL

    2009-04-01

    This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

  4. Perspectives on Resource Recovery from Bio-Based Production Processes: From Concept to Implementation

    DEFF Research Database (Denmark)

    S.B.A. Udugama, Isuru; Mansouri, Seyed Soheil; Mitic, Aleksandar

    2017-01-01

    Recovering valuable compounds from waste streams of bio-based production processes is in line with the circular economy paradigm, and is achievable by implementing “simple-to-use” and well-established process separation technologies. Such solutions are acceptable from industrial, economic...... and NPV contribute significantly to the techno-economic evaluation of future and promising process solutions. Based on the present review, a qualitative guideline for resource recovery from bio-based production processes is proposed. Finally, future approaches and perspectives toward identification...... and implementation of suitable resource recovery units for bio-based production processes are discussed....

  5. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1979-10-30

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  6. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1981-05-26

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  7. Complex evaluation of health status and life quality of employees occupied in mining and processing of hydrocarbon raw materials

    OpenAIRE

    G.G. Gimranova; A.B. Bakirov; L.K. Karimova; Z.F. Gimaeva; N.A. Beigul

    2016-01-01

    A complex social-hygienic investigation for the assessment of health-related life quality and living standards among 1200 male workers occupied in mining and primary processing of hydrocarbon raw materials has been performed. The study included the method of the anonymous survey for the employee with using a questionnaire developed by WHO experts for the realization of Health, environment and social capital management in enterprises (HESME). The health risk factors’ prevalence associated with...

  8. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  9. Acceptance and Avoidance Processes at Different Levels of Psychological Recovery from Enduring Mental Illness

    Directory of Open Access Journals (Sweden)

    Vinicius R. Siqueira

    2015-01-01

    Full Text Available Objective. This study examined the use of psychological acceptance and experiential avoidance, two key concepts of Acceptance and Commitment Therapy (ACT, in the psychological recovery process of people with enduring mental illness. Method. Sixty-seven participants were recruited from the metropolitan, regional, and rural areas of New South Wales, Australia. They all presented some form of chronic mental illness (at least 12 months as reflected in DSM-IV Axis I diagnostic criteria. The Acceptance and Action Questionnaire (AAQ-19 was used to measure the presence of psychological acceptance and experiential avoidance; the Recovery Assessment Scale (RAS was used to examine the levels of psychological recovery; and the Scales of Psychological Well-Being was used to observe if there are benefits in utilizing psychological acceptance and experiential avoidance in the recovery process. Results. An analysis of objectively quantifiable measures found no clear correlation between the use of psychological acceptance and recovery in mental illness as measured by the RAS. The data, however, showed a relationship between psychological acceptance and some components of recovery, thereby demonstrating its possible value in the recovery process. Conclusion. The major contribution of this research was the emerging correlation that was observed between psychological acceptance and positive levels of psychological well-being among individuals with mental illness.

  10. Two-step optimization of pressure and recovery of reverse osmosis desalination process.

    Science.gov (United States)

    Liang, Shuang; Liu, Cui; Song, Lianfa

    2009-05-01

    Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-step optimization procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the optimal net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the optimal recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the optimal net driving pressure and recovery. The dependences of the optimal net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed.

  11. Meaningful work in supportive environments: experiences with the recovery process.

    Science.gov (United States)

    Strong, S

    1998-01-01

    This ethnographic study examined what makes work meaningful for persons with persistent mental illness and how this meaningfulness relates to their recovery. Twelve persons between 32 and 58 years of age who had been involved an average of 19 years with a formal mental health system participated in in-depth interviews and a focus group. Thematic analysis and case studies were understood in the context of the investigator's 15 months of participant observation of 35 persons with psychiatric disabilities working at an affirmative business. The meaning of work varied with participants perception of their illness and their self-concept. Changes in their self-efficacy and self-concept were driven by their participation in work activities to operate the affirmative business. Findings suggest that therapists could potentially facilitate these changes in clients' sense of self-efficacy and self-concept by helping them make connections with meaningful occupations and contributions to organizations in the community and to experience challenges and successes in the context of meaningful work.

  12. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  13. Ultrasonic processing for recovery of chicken erythrocyte hemoglobin

    Science.gov (United States)

    Hemoglobin from chicken blood has been shown to be a good substitute for synthetic polymeric flocculants. One stage of processing the blood entails breaking open the cells and releasing the cytoplasmic contents; in the present study, we investigate the use of ultrasonic processing at this stage. Was...

  14. An approach to business process recovery from source code

    NARCIS (Netherlands)

    Pacini, Luiz A.; Prado, do Antonio F.; Lopes de Souza, Wanderley; Ferreira Pires, Luis; Latifi, S.

    2015-01-01

    Over time Business Process has become an asset for organization since it allows managing what happens within their environments. It is possible to automate some activities of the business process using information systems and accordingly decrease the execution time and increase the production. How-

  15. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  16. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    Science.gov (United States)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  17. Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture

    Science.gov (United States)

    Rao, V. Udaya S.; Gormley, Robert J.

    1987-01-01

    Synthesis gas containing CO and H.sub.2 is converted to a high-octane hydrocarbon liquid in the gasoline boiling point range by bringing the gas into contact with a heterogeneous catalyst including, in physical mixture, a zeolite molecular sieve, cobalt at 6-20% by weight, and thoria at 0.5-3.9% by weight. The contacting occurs at a temperature of 250.degree.-300.degree. C., and a pressure of 10-30 atmospheres. The conditions can be selected to form a major portion of the hydrocarbon product in the gasoline boiling range with a research octane of more than 80 and less than 10% by weight aromatics.

  18. Changing the composition of the group hydrocarbons of diesel fractions in the process of hydrotreating

    Science.gov (United States)

    Krivtcova, N.; Baklashkina, К; Sabiev, Sh; Krivtsov, E.; Syskina, A.

    2016-09-01

    Change in group composition of sulfur compounds and structural group composition of the diesel fractions in the course of hydrotreating is presented in the paper. The removal degree of sulfur compounds is shown to comprise 95.8% rel. The homologs of benzothiophenes are removed for 93.9% rel., ones of the dibenzothiophenes are for 90.7% rel. A considerable change in group composition of diesel fraction is established in the course of hydrotreating. Hydrogenation degree of aromatic hydrocarbons is 24.4% wt., the amount of saturated hydrocarbons has increased by 20.4% wt.

  19. Optimal operation of integrated processes. Studies on heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Glemmestad, Bjoern

    1997-12-31

    Separators, reactors and a heat exchanger network (HEN) for heat recovery are important parts of an integrated plant. This thesis deals with the operation of HENs, in particular, optimal operation. The purpose of heat integration is to save energy, but the HEN also introduces new interactions and feedback into the overall plant. A prerequisite for optimisation is that there are extra degrees of freedom left after regulatory control is implemented. It is shown that extra degrees of freedom may not always be utilized for energy optimisation, and a quantitative expression for the degrees of freedom that can be so utilized are presented. A simplified expression that is often valid is also deduced. The thesis presents some improvements and generalisations of a structure based method that has been proposed earlier. Structural information is used to divide possible manipulations into three categories depending on how each manipulation affects the utility consumption. By means of these categories and two heuristic rules for operability, the possible manipulations are ordered in a priority table. This table is used to determine which manipulation should be preferred and which manipulation should be selected if an active manipulation is saturated. It is shown that the method may correspond to split-range control. A method that uses parametric information in addition to structural information is proposed. In this method, the optimal control structure is found through solving an integer programming problem. The thesis also proposes a method that combines the use of steady state optimisation and optimal selection of measurements. 86 refs., 46 figs., 8 tabs.

  20. Chattanooga shale: uranium recovery by in situ processing

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.D.

    1977-04-25

    The increasing demand for uranium as reactor fuel requires the addition of sizable new domestic reserves. One of the largest potential sources of low-grade uranium ore is the Chattanooga shale--a formation in Tennessee and neighboring states that has not been mined conventionally because it is expensive and environmentally disadvantageous to do so. An in situ process, on the other hand, might be used to extract uranium from this formation without the attendant problems of conventional mining. We have suggested developing such a process, in which fracturing, retorting, and pressure leaching might be used to extract the uranium. The potential advantages of such a process are that capital investment would be reduced, handling and disposing of the ore would be avoided, and leaching reagents would be self-generated from air and water. If successful, the cost reductions from these factors could make the uranium produced competitive with that from other sources, and substantially increase domestic reserves. A technical program to evaluate the processing problems has been outlined and a conceptual model of the extraction process has been developed. Preliminary cost estimates have been made, although it is recognized that their validity depends on how successfully the various processing steps are carried out. In view of the preliminary nature of this survey (and our growing need for uranium), we have urged a more detailed study on the feasibility of in situ methods for extracting uranium from the Chattanooga shale.

  1. A parametric study of VAPEX process as improved oil recovery method; Estudo parametrico do processo VAPEX como metodo de recuperaco avancada de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.F.; Barillas, J.L.M.; Mata, W.; Dutra Junior, T.V. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    There is still a large amount of natural resources in heavy oil reservoirs which can be explored using new methods. The world estimate of resources as heavy oil and bitumen may be 6 trillion barrels of OOIP. However, this enormous amount of hydrocarbon resources which are in these reservoirs may be explored with new concepts. The VAPEX process is a promising recovery method since its invention in 1991 by Dr. Roger Butler. The process consists of two horizontal wells, parallel between themselves, producer and injector, where vaporized solvent is injected with the objective of reducing the oil or bitumen viscosity. The purpose of this study is to examine how some important operational parameters influence the VAPEX process, in the produced oil rates, the cumulative produced oil and the recovery factor. Parameters such as the spacing between wells, the injection pressure and the type of solvent are addressed in this study. The choice of solvent to be used was the factor that showed more influence in the process and this allowed a greater recovery factor. Another important parameter was the injection pressure. (author)

  2. Comparison of salient features of alternative CO{sub 2} recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Molburg, J.C.; Thimmapuram, P.; Doctor, R.D.

    1994-06-01

    In the case of direct coal combustion, the recovery of carbon dioxide (CO{sub 2}) is complicated by dilution of the flue gas with nitrogen (N{sub 2}) from the combustion air, as well as with excess air, which invariably accompanies coal combustion. For a representative boiler using bituminous coal, the mole fraction of CO{sub 2} in the flue gas is in the range of 10--15%. For coal gasification, no excess air is provided. In fact, the air supplied is inadequate for complete combustion. The mole fraction of carbon monoxide (CO) plus CO{sub 2} in the fuel gas from the Kellogg-Rust-Westinghouse (KRW) gasifier, which is the gasifier for which these CO{sub 2} recovery processes are designed, is about 22% for an air-blown gasifier and 59.1% for an oxygen-blown gasifier. The CO can be converted to CO{sub 2} via the water-gas shift reaction. Because of the higher CO{sub 2} partial pressure, recovery of the CO{sub 2} from this shifted synthesis gas requires a less costly recovery system than that which would be required for recovery following direct coal combustion in air. This analysis is intended to provide a first-order estimate of the effects of CO{sub 2} recovery on the cost and performance of a gasifier and to compare these effects for common commercial CO{sub 2} recovery processes.

  3. Temperature model for process impact non-uniformity in genipin recovery by high pressure processing.

    Science.gov (United States)

    Ramos-de-la-Peña, Ana Mayela; Montañez, Julio C; Reyes-Vega, María de la Luz; Contreras-Esquivel, Juan Carlos

    2015-11-15

    A model for the process impact temperature non-uniformity during high pressure processing (HPP) of genipap fruit purees was found during genipin recovery. Purees were subjected to HPP (130-530 MPa) under quasi-isobaric non-isothermal conditions (15 min; 0, 4.6 and 9.3mg pectinases/g fruit). Genipin and protein concentration was determined, and pH was measured. Polygalacturonase activity was quantified indirectly by protein content (mg/g fruit). First order kinetics described temperature changes (0-4 min). Polygalacturonase was activated at 130 MPa, inactivated reversibly at 330 MPa and activated again at 530 MPa. Enzyme reaction rate constant (k) was placed in the 0-4 min model and temperature from 2 to 15 min was described. Protein content and pH characterization in terms of decimal reduction time improved highly the 2-15 min model. Since temperature changes were modeled, more insight of its behavior in an HPP reactor was obtained, avoiding uniformity assumptions, making easier the industrial scale HPP implementation.

  4. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment.

  5. On the enhancement of the efficiency of the energy complexes of crude hydrocarbon processing plants

    Science.gov (United States)

    Dolotovskij, I. V.; Larin, E. A.; Dolotovskaja, N. V.

    2015-07-01

    A method for circuit-parametric analysis of the efficiency of the heat-and-power system of the energy complexes at gas and natural-gas condensate processing plants is proposed. An energy complex of an alternative structure with an independent source of thermal and electric energy integrated into the production line has been developed. The energy carriers are produced accompanied by recovery of the secondary energy resources, waste, and effluents. Using the developed information-analytical software, multicriterion assessment of the efficiency of the alternative energy complexes and its systems based on independent energy sources of the combined-cycle cogeneration plant type has been performed for the gas processing plant in Astrakhan and the most effective equipment composition variant has been determined. The effect of the basic technical and economic factors on the economic efficiency has been established. The investments in construction of the power- and water-supply system within the plant's energy complex pay off in 8-9 years.

  6. Availabiltiy and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods

    NARCIS (Netherlands)

    Roskam, G.; Comans, R.N.J.

    2009-01-01

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (¿16 US-EPA PAHs 3412 mg/kg) and gasworks soil (¿PAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, se

  7. Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device

    OpenAIRE

    Veidenbergs, I; Blumberga, D; Vīgants, E; Kozuhars, G

    2010-01-01

    The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the Microsoft Office Excel environment...

  8. The process of recovery for people diagnosed with personality disorder: a case study of The Haven

    OpenAIRE

    Castillo, Heather

    2010-01-01

    The study investigates the process of recovery for people diagnosed with personality disorder. This is related to the application of the new meaning of recovery from mental illness as explored by members of The Haven which, as the service setting for the study, addresses the problems of a client group that suffers significant social exclusion, known to impact on demand for health and other public services. It aims to examine efforts which attempt to reverse this social exclusion as an aspect ...

  9. Exergy driven process synthesis for isoflavone recovery from okara

    NARCIS (Netherlands)

    Jankowiak, L.; Jonkman, J.; Rossier-Miranda, F.; Goot, van der A.J.; Boom, R.M.

    2014-01-01

    Isoflavones, found in soybeans and other members of the fabaceae family, are considered bioactive components of high economic value. An opportunity would be to separate isoflavones from okara, the by-product of the soymilk and tofu production. Such a process would not only valorise that side-stream

  10. Trace elements and petroleum hydrocarbons in the aquatic bird food chain of process water evaporation ponds at the Little America Refinery, Casper, Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study determined the nature and extent of trace elements, metals, and petroleum hydrocarbons in evaporation ponds used for the disposal of process water from...

  11. Webinar Presentation: Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes

    Science.gov (United States)

    This presentation, Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Childhood Obesity

  12. Stressors, recovery processes, and manifestations of training distress in dance.

    Science.gov (United States)

    Grove, J Robert; Main, Luana C; Sharp, Lucinda

    2013-01-01

    Dancers are expected to maintain consistently high levels of performance capability and to perform on demand. To meet these expectations, they subject their bodies to long hours of intensive physical training. Such training regimens are often combined with tight rehearsal and performance schedules, which over time can lead to persistent fatigue, psychological distress, performance decrements, and injury. A similar process has been observed as a consequence of high-intensity training in many different sports, and considerable sport-related research has been devoted to identifying the antecedents, the symptoms that are experienced, and the most cost-effective ways of monitoring symptom development. This paper presents a general heuristic framework for understanding this "training distress process" and discusses the framework with specific reference to dance.

  13. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2016-12-30

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  14. Competitive and sustainable growth - new European research programmes (projects and actions concerning waste processing and recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Adjemian, A. [European Commission, DG-RTD, Brussels (Belgium)

    2001-07-01

    Eco-efficient processes and design, production with zero waste, life cycle optimization and material recycling characterize the Fifth Framework Program of the European Union's Directorate General for Science, Research and Development. Some new projects under this Program, related to waste prevention and recovery are described. Workshops, conferences, international cooperation, networks, and virtual institutes are discussed to illustrate the process of program development. Major achievements in the field of liquid effluent processing, solid waste incineration, recycling, recovery and reuse of materials from waste, projects undertaken as part of the Forth Framework Program, which are now nearing completion, are also reviewed. 4 tabs.

  15. Pathological reactions and recovery of hepatopancreatic digestive cells from the marine snail Littorina littorea following exposure to a polycyclic aromatic hydrocarbon.

    Science.gov (United States)

    Lowe, D M; Moore, M N; Readman, J W

    2006-06-01

    The aim of this study was to investigate the cellular pathological responses of hepatopancreatic digestive cells from the periwinkle Littorina littorea exposed to the polycyclic aromatic hydrocarbon (PAH) fluoranthene and to ascertain whether any injurious effects were reversible within the experimental time scale. A secondary objective was to establish the relationship of the various reactions to animal health status, using lysosomal stability as an index of well-being. Exposure of snails to a concentration of 335 microgl(-1) (1.7 microM) fluoranthene (seawater renewed and spiked daily with fluoranthene) for 5 days resulted in a reduction in lysosomal stability (neutral red retention) and endocytosis; and an increase in smooth endoplasmic reticulum (ER) and 7-ethoxycoumarin-o-deethylase (ECOD; measured as cyano-ECOD) activity measured in isolated live digestive cells. Exposed snails treated with clean seawater for a further 8 days resulted in a return to control levels of lysosomal stability, ECOD and ER; endocytosis showed only a partial recovery. Multi-variate and uni-variate analysis showed that there were strong correlations between the various cellular biomarker responses. These findings are interpretable within the current framework of molluscan biomarker responses to PAHs. Principal component analysis was used to derive the first principal component for endocytosis, ER and ECOD reactions and these were plotted against lysosomal stability as a measure of cellular well-being. The resulting significant regression represents the mapping of the individual biomarkers within health status space for a gradient of fluoranthene toxicity. From this analysis, we concluded that endocytosis is an indicator of healthy snails while proliferation of ER and to a lesser extent induced ECOD are indicative of dysfunction and reduced health. Finally, the results indicate that stress induced by chronic exposure to a PAH is reversible.

  16. Simulation of petroleum recovery in naturally fractured reservoirs: physical process representation

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Hernani P.; Miranda Filho, Daniel N. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    The naturally fractured reservoir recovery normally involves risk especially in intermediate to oil wet systems because of the simulations poor efficiency results under waterflood displacement. Double-porosity models are generally used in fractured reservoir simulation and have been implemented in the major commercial reservoir simulators. The physical processes acting in petroleum recovery are represented in double-porosity models by matrix-fracture transfer functions, therefore commercial simulators have their own implementations, and as a result different kinetics and final recoveries are attained. In this work, a double porosity simulator was built with Kazemi et al. (1976), Sabathier et al. (1998) and Lu et al. (2008) transfer function implementations and their recovery results have been compared using waterflood displacement in oil-wet or intermediate-wet systems. The results of transfer function comparisons have showed recovery improvements in oil-wet or intermediate-wet systems under different physical processes combination, particularly in fully discontinuous porous medium when concurrent imbibition takes place, coherent with Firoozabadi (2000) experimental results. Furthermore, the implemented transfer functions, related to a double-porosity model, have been compared to double-porosity commercial simulator model, as well a discrete fracture model with refined grid, showing differences between them. Waterflood can be an effective recovery method even in fully discontinuous media for oil-wet or intermediate-wet systems where concurrent imbibition takes place with high enough pressure gradients across the matrix blocks. (author)

  17. Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA

    Science.gov (United States)

    Svensen, Henrik; Karlsen, Dag A.; Sturz, Anne; Backer-Owe, Kristian; Banks, David A.; Planke, Sverre

    2007-01-01

    Water-, mud-, gas-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in Southern California. Seeps in the Davis-Schrimpf seep field (˜14,000 m2) show considerable variations in water temperature, pH, density, and solute content. Water-rich springs have low densities (98 vol%). Halogen geochemistry of the waters indicates that mixing of deep and shallow waters occurs and that near-surface dissolution of halite may overprint the original fluid compositions. Carbon isotopic analyses suggest that hydrocarbon seep gases have a thermogenic origin. This hypothesis is supported by the presence of petroleum in a water-dominated spring, composed of 53% saturated compounds, 35% aromatics, and 12% polar compounds. The abundance of polyaromatic hydrocarbons and immature biomarkers suggests a hydrothermal formation of the petroleum, making the SSGS a relevant analogue to less accessible hydrothermal seep systems, e.g., the Guaymas Basin in the Gulf of California.

  18. Service user experiences of REFOCUS: a process evaluation of a pro-recovery complex intervention.

    Science.gov (United States)

    Wallace, Genevieve; Bird, Victoria; Leamy, Mary; Bacon, Faye; Le Boutillier, Clair; Janosik, Monika; MacPherson, Rob; Williams, Julie; Slade, Mike

    2016-09-01

    Policy is increasingly focused on implementing a recovery-orientation within mental health services, yet the subjective experience of individuals receiving a pro-recovery intervention is under-studied. The aim of this study was to explore the service user experience of receiving a complex, pro-recovery intervention (REFOCUS), which aimed to encourage the use of recovery-supporting tools and support recovery-promoting relationships. Interviews (n = 24) and two focus groups (n = 13) were conducted as part of a process evaluation and included a purposive sample of service users who received the complex, pro-recovery intervention within the REFOCUS randomised controlled trial (ISRCTN02507940). Thematic analysis was used to analyse the data. Participants reported that the intervention supported the development of an open and collaborative relationship with staff, with new conversations around values, strengths and goals. This was experienced as hope-inspiring and empowering. However, others described how the recovery tools were used without context, meaning participants were unclear of their purpose and did not see their benefit. During the interviews, some individuals struggled to report any new tasks or conversations occurring during the intervention. Recovery-supporting tools can support the development of a recovery-promoting relationship, which can contribute to positive outcomes for individuals. The tools should be used in a collaborative and flexible manner. Information exchanged around values, strengths and goals should be used in care-planning. As some service users struggled to report their experience of the intervention, alternative evaluation approaches need to be considered if the service user experience is to be fully captured.

  19. Solid hydrocarbon assisted reduction: a new process of generating micron scale metal particles

    OpenAIRE

    Ryan M McCabe

    2015-01-01

    Approved for public release; distribution is unlimited The goal of this research is to test a central hypothesis: that gas species generated by the thermal and/or catalytically assisted decomposition of hydrocarbons in an inert atmosphere can reduce metal oxides to a metallic state. It is postulated that the decomposition releases gas phase radicals that can bind with oxygen in the metal oxides, forming volatile, stable oxides such as CO2 and water. This research consisted of thermally dec...

  20. A mathematical modelling of imbibition phenomenon in inclined homogenous porous media during oil recovery process

    Directory of Open Access Journals (Sweden)

    Shreekant Pathak

    2016-09-01

    Full Text Available The approximate solution of imbibition phenomenon governed by non-linear partial differential equation is discussed in the present paper. Primary oil recovery process due to natural soil pressure, but in the secondary oil recovery process water flooding plays an important role. When water is injected in the injection well for recovering the reaming oil after primary oil recovery process, it comes to contact with the native oil and at that time the imbibition phenomenon occurs due to different viscosity. For the mathematical modelling, we consider the homogeneous porous medium and optimal homotopy analysis method has been used to solve the partial differential equation governed by it. The graphical representation of the solution is given by MATHEMATICA and physically interpreted.

  1. MANAGEMENT OF PROCESSING AND RECOVERY OF LEATHER WASTE

    Directory of Open Access Journals (Sweden)

    STAN Ovidiu Valentin

    2014-05-01

    Full Text Available The leather and leather goods industry development is conditioned by the development of the supply of raw materials - animal husbandry and chemical industries, sectors that tend to develop intensive on vertical - which causes a shortage of raw materials in relation with the market demand for quality products. The leather is the basic raw material of the leather and leather goods industry, this raw material is the most substantial contribution to downstream sectors, giving them a competitive advantage and it is known that the leather has the greatest potential to add value to the products in which it is incorporated. The advantages of using leather are many, the most important qualities are its hygienic properties, flexibility and adaptability to a wide variety of applications. Leather is manufactured on demand for each type of application, such as shoes, clothes, gloves, handbags, furniture upholstery or car interiors, yachts and planes. It requires better use of raw materials by using new technologies and manufacturing processes based on non-invasive methods on the environment leading to increase the product life cycle. The leather and leather goods industry is a supplier of large amounts of waste from the production cycle, waste that has the same properties and qualities as raw material used in the base product. Leather waste represents a loss for the companies, an additional cost related to storage and environmental protection.

  2. Recovery of Nutrients from Struvite Crystallization process using Dairy Manure

    Directory of Open Access Journals (Sweden)

    T.SUVATHIKA

    2016-04-01

    Full Text Available Wastes collected from dairy farm are converted into manure by various processes for their application in agricultural fields in order to yield more production of crops. But unexpectedly the nutrient present in the manure is not completely utilized by the plants sometimes due to surface water runoff, floods and certain other aspects. The production of mineral fertilizers has a significant environmental impact, including depletion of fossil fuels and minerals. Therefore, the nutrients present in this manure comprise of minerals such as Magnesium, Ammonium and Phosphate which is otherwise called as struvite. This struvite can be precipitated separately and can be made as a substitute for manure since struvite is far rich in nutrients compared to manure and also it is considered as a slow releasing fertilizer which has less soluble in water. This thesis work shows the amount of MAP (Mg, Nh4, and P nutrients generated when Dairy manure is used as the influent to the fluidized bed reactor with addition of Mgcl which acts as a precipitating agent and also the impact of struvite precipitation in the concentration of total solids, hardness, pH, BOD/COD from the dairy wastewater is observed.

  3. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).

    Science.gov (United States)

    Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

    2011-01-01

    The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.

  4. New Process of Direct Metal Recovery from Drosses in the Aluminum Casthouse

    Science.gov (United States)

    Zahorka, G.

    Traditional methods of aluminum recovery from drosses mean: transportation outside the casthouse, high, energy consumption and pollution problems by fumes and dumping of oxides and salt. The newly developed process permits extraction of liquid metal by simple compression of drosses. The recovery rate is better than any other known process, while cost is much lower. Industrial tests have established that aluminum extraction by compression can be carried out on drosses of all major alloys, and is compatible with standard remelt or alloying procedure of each casthouse or foundry. Further the metal can be recycled immediately in the same furnace.

  5. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Rivas, O. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  6. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration.

    Science.gov (United States)

    Blöcher, Christoph; Niewersch, Claudia; Melin, Thomas

    2012-04-15

    Phosphorus recovery from sewage sludge will become increasingly important within the next decades due to depletion of mineral phosphorus resources. In this work a new process concept was investigated, which aims at realising phosphorus recovery in a synergistic way with the overall sewage sludge treatment scheme. This process combines a low pressure wet oxidation for sewage sludge decomposition as well as phosphorus dissolution and a nanofiltration process to separate phosphorus from heavy metals and obtain a clean diluted phosphoric acid, from which phosphorus can be recovered as clean fertiliser. It was shown that this process concept is feasible for sewage sludge for wastewater treatment plants that apply enhanced biological removal or precipitation with alumina salts for phosphorus removal. The critical parameter for phosphorus dissolution in the low pressure wet oxidation process is the iron concentration, while in the nanofiltration multi-valent cations play a predominant role. In total, a phosphorus recovery of 54% was obtained for an exemplary wastewater treatment plant. Costs of the entire process are in the same range as conventional sewage sludge disposal, with the benefit being phosphorus recovery and reduced emission of greenhouse gases due to avoidance of sludge incineration.

  7. Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes.

    Science.gov (United States)

    Song, Wen; Kovscek, Anthony R

    2015-08-21

    Sandstone formations are ubiquitous in both aquifers and petroleum reservoirs, of which clay is a major constituent. The release of clay particles from pore surfaces as a result of reduced injection fluid salinity can greatly modify the recovery of hydrocarbons from subsurface formations by shifting the wettability properties of the rock. In this paper we demonstrate a microfluidic approach whereby kaolinite is deposited into a two-dimensional microfluidic network (micromodel) to enable direct pore-scale, real-time visualization of fluid-solid interactions with representative pore-geometry and realistic surface interactions between the reservoir fluids and the formation rock. Structural characterization of deposited kaolinite particles agrees well with natural modes of occurrence in Berea sandstones; hence, the clay deposition method developed in this work is validated. Specifically, more than 90% of the deposited clay particles formed pore-lining structures and the remainder formed pore bridging structures. Further, regions of highly concentrated clay deposition likely leading to so-called Dalmatian wetting properties were found throughout the micromodel. Two post-deposition treatments are described whereby clay is adhered to the silicon surface reversibly and irreversibly resulting in microfluidic systems that are amenable to studies on (i) the fundamental mechanisms governing the increased oil recovery during low salinity waterfloods and (ii) the effect of a mixed-wet surface on oil recovery, respectively. The reversibly functionalized platform is used to determine the conditions at which stably adhered clay particles detach. Specifically, injection brine salinity below 6000 ppm of NaCl induced kaolinite particle release from the silicon surface. Furthermore, when applied to an aged system with crude oil, the low salinity waterflood recovered an additional 14% of the original oil in place compared to waterflooding with the formation brine.

  8. Effect of acidulants on the recovery of milk constituents and quality of Mozzarella processed cheese.

    Science.gov (United States)

    Seth, Karuna; Bajwa, Usha

    2015-03-01

    The investigation was undertaken to study the effect of acidulants on the recovery of milk constituents and composition of Mozzarella pre-cheese and physical, chemical and sensory characteristics and texture profile analysis (TPA) of processed cheese prepared there from. The pre-cheese was made by direct acidification technique using citric, acetic and lactic acid and processed with 1 % tri-sodium citrate. The acidulants significantly (p cheese. These also had a significant (p processed cheese.

  9. Downstream extraction process development for recovery of organic acids from a fermentation broth.

    Science.gov (United States)

    Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A

    2016-11-01

    The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Impact of Hydrocarbon Control in Ultraviolet-Assisted Restoration Process for Extremely Porous Plasma Enhanced Chemical Vapor Deposition SiOCH Films with k = 2.0

    Science.gov (United States)

    Kimura, Yosuke; Ishikawa, Dai; Nakano, Akinori; Kobayashi, Akiko; Matsushita, Kiyohiro; de Roest, David; Kobayashi, Nobuyoshi

    2012-05-01

    We investigated the effects of UV-assisted restoration on porous plasma-enhanced chemical vapor deposition (PECVD) SiOCH films with k = 2.0 and 2.3 having high porosities. By applying the UV-assisted restoration to O2-plasma-damaged films with k = 2.0 and 2.3, the recovery of the k-value was observed on the k = 2.3 film in proportion to -OH group reduction. However, the k = 2.0 film did not show recovery in spite of -OH group reduction. We found that hydrocarbon content in the k = 2.0 film was significantly increased by the UV-assisted restoration compared with the k = 2.3 film. According to these findings, we optimized the UV-assisted restoration to achieve improved controllability of the hydrocarbon uptake in the k = 2.0 film and confirmed the recovery of the k-value for O2-plasma-damaged film. Thus, adjusting the hydrocarbon uptake was crucial for restoring extremely porous SiOCH film.

  11. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, E. C. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ross, J. [Harris Group Inc., New York, NY (United States); Lukas, J. [Harris Group Inc., New York, NY (United States); Sexton, D. [Harris Group Inc., New York, NY (United States)

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  12. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    Science.gov (United States)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  13. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process.

    Science.gov (United States)

    Zhang, Zhiyuan; Zhang, Fu-Shen

    2014-08-30

    An environmental benign, non-acid process was successfully developed for selective recovery of palladium from waste printed circuit boards (PCBs). In the process, palladium was firstly enriched during copper recovery procedure and dissolved in a special solution made of CuSO4 and NaCl. The dissolved palladium was then extracted by diisoamyl sulfide (S201). It was found that 99.4% of Pd(II) could be extracted from the solution under the optimum conditions (10% S201, A/O ratio 5 and 2min extraction). In the whole extraction process, the influence of base metals was negligible due to the relatively weak nucleophilic substitution of S201 with base metal irons and the strong steric hindrance of S201 molecular. Around 99.5% of the extracted Pd(II) could be stripped from S201/dodecane with 0.1mol/L NH3 after a two-stage stripping at A/O ratio of 1. The total recovery percentage of palladium was 96.9% during the dissolution-extraction-stripping process. Therefore, this study established a benign and effective process for selective recovery of palladium from waste printed circuit boards.

  14. MODELING AND SIMULATION OF A BENZENE RECOVERY PROCESS BY EXTRACTIVE DISTILLATION

    Directory of Open Access Journals (Sweden)

    L. B. Brondani

    2015-03-01

    Full Text Available Abstract Extractive distillation processes with N-formylmorpholine (NFM are used industrially to separate benzene from six carbon non-aromatics. In the process studied in this work, the stream of interest consists of nearly 20 different hydrocarbons. A new set of NRTL parameters was correlated based on literature experimental data. Both vapor-liquid equilibrium as well as infinite dilution activity coefficient data were taken into account; missing parameters were estimated with the UNIFAC group contribution model. The extractive distillation process was simulated using ASPEN Plus®. Very good agreement with plant data was obtained. The influences of the main operational parameters, solvent to feed ratio and solvent temperature, were studied. Theoretical optimum operating values were obtained and can be implemented to improve the industrial process. Extreme static sensitivity with respect to reboiler heat was observed, indicating that this can be the source of instabilities.

  15. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  16. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  17. 78 FR 22451 - Cost Recovery for Permit Processing, Administration, and Enforcement

    Science.gov (United States)

    2013-04-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Parts 701, 736, 737, 738, and 750 RIN 1029-AC65 Cost Recovery for Permit Processing, Administration, and Enforcement Correction In proposed...

  18. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  19. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    Energy Technology Data Exchange (ETDEWEB)

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  20. Recovery of Work-Related Stress: Complaint Reduction and Work-Resumption are Relatively Independent Processes

    NARCIS (Netherlands)

    Vente, W. de; Kamphuis, J.H.; Blonk, R.W.; Emmelkamp, P.M.

    2015-01-01

    Purpose The process of recovery from work-related stress, consisting of complaint reduction and work-resumption, is not yet fully understood. The aim of this study was to investigate predictors of complaint reduction and work-resumption, as well as testing complaint reduction as a mediator in the as

  1. Recovery of work-related stress: Complaint reduction and work-resumption are relatively independent processes

    NARCIS (Netherlands)

    de Vente, W.; Kamphuis, J.H.; Blonk, R.W.B.; Emmelkamp, P.M.G.

    2015-01-01

    Purpose: The process of recovery from work-related stress, consisting of complaint reduction and work-resumption, is not yet fully understood. The aim of this study was to investigate predictors of complaint reduction and work-resumption, as well as testing complaint reduction as a mediator in the a

  2. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Spears, B.M.; Feld, C.K.; Brucet, S.; Keizer-Vlek, H.E.; Borja, A.; Elliot, M.; Kernan, M.; Johnson, R.K.

    2013-01-01

    The European Water Framework Directive aims to improve ecological status within river basins. This requires knowledge of responses of aquatic assemblages to recovery processes that occur after measures have been taken to reduce major stressors. A systematic literature review comparatively assesses

  3. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Spears, B.M.; Feld, C.K.; Brucet, S.; Keizer-Vlek, H.E.; Borja, A.; Elliot, M.; Kernan, M.; Johnson, R.K.

    2013-01-01

    The European Water Framework Directive aims to improve ecological status within river basins. This requires knowledge of responses of aquatic assemblages to recovery processes that occur after measures have been taken to reduce major stressors. A systematic literature review comparatively assesses r

  4. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  5. A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale

    CERN Document Server

    Panahi, Hamed; Renard, Francois; Mazzini, Adriano; Scheibert, Julien; Dysthe, Dag Kristian; Jamtveit, Bjorn; Malthe-Sørenssen, Anders; Meakin, Paul

    2014-01-01

    Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interests in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms for the transport of hydrocarbons from the source rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures have been proposed, and a better understanding of this complex process (primary migration) is needed. To characterize these processes it is imperative to use the ...

  6. Hydrocarbons in the Bay of Bengal and Central Indian Basin bottom sediments: Indicators of geochemical processes in the lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Chernova, T.G.; Paropkari, A.L.; Pikovskii, Yu.I.; Alekseeva, T.A.

    that the hydrocarbons are mostly derived from marine sources. Sharp increases fo hydrocarbons are found in the vicinity of the tectonically active region of the Central Indian Basin, particularly in the sediments collected from the fracture zone. The total concentration...

  7. DEVELOPMENT AND DEMONSTRATION OF INTEGRATED CARBON RECOVERY SYSTEMS FROM FINE COAL PROCESSING WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Y.P. Chugh; D. Patil; A. Patwardhan; R.Q. Honaker; B.K. Parekh; D. Tao; Latif Khan

    2000-07-01

    The project involves the development of an efficient, environmentally friendly system for the economical recovery of carbon from fine-coal refuse ponds. The project will be conducted in two phases. Phase I was involved in the development and evaluation of process equipment and techniques to be used in carbon recovery, product dewatering and reconstitution, and refuse management. Phase II will integrate the various units into a continuously operating circuit that will be demonstrated at a site selected based on the results presented in this study.

  8. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  9. Calcium hydroxide as a processing base in alkali-aided pH-shift protein recovery process.

    Science.gov (United States)

    Paker, Ilgin; Jaczynski, Jacek; Matak, Kristen E

    2017-02-01

    Protein may be recovered by using pH shifts to solubilize and precipitate protein. Typically, sodium hydroxide is used as the processing base; however, this has been shown to significantly increase sodium in the final recovered protein. Protein was extracted from black bullhead catfish (Ameiurus melas) using a pH-shift method. Protein was solubilized using either sodium hydroxide (NaOH) or calcium hydroxide (Ca(OH)2 ) and precipitated at pH 5.5 using hydrochloric acid (HCl). Protein solubility was greater when Ca(OH)2 was used compared to NaOH during this process. Using Ca(OH)2 as the processing base yielded the greatest lipid recovery (P protein recovery yield was recorded as 53 g 100 g(-1) protein using NaOH. Protein solubilized with Ca(OH)2 had more (P protein fraction, whereas using NaOH increased (P protein solubility was increased and the recovered protein had significantly more calcium when Ca(OH)2 was used as the processing base. Results showed both NaOH and Ca(OH)2 to be an effective processing base for pH-shift protein recovery processes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  11. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue

    Science.gov (United States)

    Borra, Chenna Rao; Blanpain, Bart; Pontikes, Yiannis; Binnemans, Koen; Van Gerven, Tom

    2016-09-01

    Environmental concerns and lack of space suggest that the management of bauxite residue needs to be re-adressed. The utilization of the residue has thus become a topic high on the agenda for both academia and industry, yet, up to date, it is only rarely used. Nonetheless, recovery of rare earth elements (REEs) with or without other metals from bauxite residue, and utilization of the left-over residue in other applications like building materials may be a viable alternative to storage. Hence, different processes developed by the authors for recovery of REEs and other metals from bauxite residue were compared. In this study, preliminary energy and cost analyses were carried out to assess the feasibility of the processes. These analyses show that the combination of alkali roasting-smelting-quenching-leaching is a promising process for the treatment of bauxite residue and that it is justified to study this process at a pilot scale.

  12. Recovery of Ferric Oxide from Bayer Red Mud by Reduction Roasting-Magnetic Separation Process

    Institute of Scientific and Technical Information of China (English)

    LIU Yanjie; ZUO Kesheng; YANG Guang; SHANG Zhe; ZHANG Jianbin

    2016-01-01

    A great amount of red mud generated from alumina production by Bayer process was considered as a low-grade iron ore with a grade of 5wt% to 30wt% iron. We adopted the reduction roasting-magnetic separation process to recover ferric oxide from red mud. The red mud samples were processed by reduction roasting, grinding and magnetic separating respectively. The effects of different parameters on the recovery rate of iron were studied in detail. The optimum techqical parameters were proposed with 700℃ roasting for 20 min, as 50wt% carbon and 4wt% additive were added. The experimental results indicated that the iron recovery and the grade of total iron were 91% and 60%, respectively. A novel process is applicable to recover ferric oxide from the red mud waste ifnes.

  13. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue

    Science.gov (United States)

    Borra, Chenna Rao; Blanpain, Bart; Pontikes, Yiannis; Binnemans, Koen; Van Gerven, Tom

    2016-11-01

    Environmental concerns and lack of space suggest that the management of bauxite residue needs to be re-adressed. The utilization of the residue has thus become a topic high on the agenda for both academia and industry, yet, up to date, it is only rarely used. Nonetheless, recovery of rare earth elements (REEs) with or without other metals from bauxite residue, and utilization of the left-over residue in other applications like building materials may be a viable alternative to storage. Hence, different processes developed by the authors for recovery of REEs and other metals from bauxite residue were compared. In this study, preliminary energy and cost analyses were carried out to assess the feasibility of the processes. These analyses show that the combination of alkali roasting-smelting-quenching-leaching is a promising process for the treatment of bauxite residue and that it is justified to study this process at a pilot scale.

  14. Systematic review of SMART Recovery: Outcomes, process variables, and implications for research.

    Science.gov (United States)

    Beck, Alison K; Forbes, Erin; Baker, Amanda L; Kelly, Peter J; Deane, Frank P; Shakeshaft, Anthony; Hunt, David; Kelly, John F

    2017-02-01

    Clinical guidelines recommend Self-Management and Recovery Training (SMART Recovery) and 12-step models of mutual aid as important sources of long-term support for addiction recovery. Methodologically rigorous reviews of the efficacy and potential mechanisms of change are available for the predominant 12-step approach. A similarly rigorous exploration of SMART Recovery has yet to be undertaken. We aim to address this gap by providing a systematic overview of the evidence for SMART Recovery in adults with problematic alcohol, substance, and/or behavioral addiction, including (i) a commentary on outcomes assessed, process variables, feasibility, current understanding of mental health outcomes, and (ii) a critical evaluation of the methodology. We searched six electronic peer-reviewed and four gray literature databases for English-language SMART Recovery literature. Articles were classified, assessed against standardized criteria, and checked by an independent assessor. Twelve studies (including three evaluations of effectiveness) were identified. Alcohol-related outcomes were the primary focus. Standardized assessment of nonalcohol substance use was infrequent. Information about behavioral addiction was restricted to limited prevalence data. Functional outcomes were rarely reported. Feasibility was largely indexed by attendance. Economic analysis has not been undertaken. Little is known about the variables that may influence treatment outcome, but attendance represents a potential candidate. Assessment and reporting of mental health status was poor. Although positive effects were found, the modest sample and diversity of methods prevent us from making conclusive remarks about efficacy. Further research is needed to understand the clinical and public health utility of SMART as a viable recovery support option. (PsycINFO Database Record

  15. Processing of Phosphorus Slag with Recovery of Rare Earth Metals and Obtaining Silicon Containing Cake

    Science.gov (United States)

    Karshigina, Zaure; Abisheva, Zinesh; Bochevskaya, Yelena; Akcil, Ata; Sharipova, Aynash; Sargelova, Elmira

    2016-10-01

    The present research is devoted to the processing of slag generating during the yellow phosphorus production. In this paper are presented studies on leaching of phosphorus production slag by nitric acid with recovery of rare earth metals (REMs) into solution. REMs recovery into the solution achieved 98 % during the leaching process with using 7.5 mol/L of HNO3, liquid-to-solid ratio is 2.6:1, temperature is 60°C, process duration is 1 hour and stirrer speed is 500 rpm. Behaviour during the leaching of associated components such as calcium, aluminium, and iron was studied. After the leaching cake contains ∼⃒75-85 % of SiO2 and it might be useful for obtaining of precipitated silicon dioxide. With the purpose of separation from the impurities, recovery and concentrating of REMs, the obtained solution after leaching was subjected to extraction processing methods. The influence of ratio of organic and aqueous phases (O: A) on the extraction of rare earth metals by tributyl phosphate (TBP) with concentrations from 20 up to 100 % was studied. The REMs extraction with increasing TBP concentration under changes O:A ratio from 1:20 down to 1:1 into the organic phase from the solutions after nitric acid leaching increased from 22.2 up to 99.3%. The duration effect of REMs extraction process was studied by tributyl phosphate. It is revealed that with increasing of duration of the extraction process from 10 to 30 minutes REMs recovery into the organic phase almost did not changed. The behaviour of iron in the extraction process by TBP was studied. It was found that such accompanying components as calcium and aluminium by tributyl phosphate didn't extracted. To construct isotherm of REMs extraction of by tributyl phosphate was used variable volume method. It was calculated three-step extraction is needed for REMs recovery from the solutions after nitric acid leaching of phosphorus production slag. The process of the three-steps counter current extraction of rare earth

  16. Automated product recovery in a Hg-196 photochemical isotope separation process

    Science.gov (United States)

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  17. Impact of bacterial and fungal processes on {sup 14}C-hexadecane mineralisation in weathered hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Adetutu, Eric M.; Ball, Andy S. [School of Biological Sciences, Flinders University, Adelaide, South Australia, 5001 (Australia); Weber, John; Aleer, Samuel; Dandie, Catherine E. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia, 5095 (Australia); Juhasz, Albert L., E-mail: Albert.Juhasz@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia, 5095 (Australia)

    2012-01-01

    In this study, the impact of bacterial and fungal processes on {sup 14}C-hexadecane mineralisation was investigated in weathered hydrocarbon contaminated soil. The extent of {sup 14}C-hexadecane mineralisation varied depending on the bioremediation strategy employed. Under enhanced natural attenuation conditions, {sup 14}C-hexadecane mineralisation after 98 days was 8.5 {+-} 3.7% compared to < 1.2% without nitrogen and phosphorus additions. {sup 14}C-hexadecane mineralisation was further enhanced through Tween 80 amendments (28.9 {+-} 2.4%) which also promoted the growth of a Phanerochaete chyrsosporium fungal mat. Although fungal growth in weathered hydrocarbon contaminated soil could be promoted through supplementing additional carbon sources (Tween 80, sawdust, compost, pea straw), fungal {sup 14}C-hexadecane mineralisation was negligible when sodium azide was added to soil microcosms to inhibit bacterial activity. In contrast, when fungal activity was inhibited through nystatin additions, {sup 14}C-hexadecane mineralisation ranged from 6.5 {+-} 0.2 to 35.8 {+-} 3.8% after 98 days depending on the supplied amendment. Bacteria inhibition with sodium azide resulted in a reduction in bacterial diversity (33-37%) compared to microcosms supplemented with nystatin or microcosms without inhibitory supplements. However, alkB bacterial groups were undetected in sodium azide supplemented microcosms, highlighting the important role of this bacterial group in {sup 14}C-hexadecane mineralisation. - Highlights: Black-Right-Pointing-Pointer The roles of different microbial groups in hydrocarbon mineralisation was assessed. Black-Right-Pointing-Pointer Inhibiting fungal growth did not affect {sup 14}C-hexadecane mineralisation. Black-Right-Pointing-Pointer Inhibiting bacterial growth resulted in negligible {sup 14}C-hexadecane mineralisation. Black-Right-Pointing-Pointer alkB bacterial groups were undetected in sodium azide supplemented microcosms. Black

  18. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors.

    Science.gov (United States)

    Cookney, J; Cartmell, E; Jefferson, B; McAdam, E J

    2012-01-01

    This paper demonstrates the potential for recovering dissolved methane from low temperature anaerobic processes treating domestic wastewater. In the absence of methane recovery, ca. 45% of the produced methane is released as a fugitive emission which results in a net carbon footprint of -0.47 kg CO(2e) m(-3). A poly-di-methyl-siloxane (PDMS) membrane contactor was applied to support sweep gas desorption of dissolved methane using nitrogen. The dense membrane structure controlled gaseous mass transfer thus recovery was maximised at low liquid velocities. At the lowest liquid velocity, V(L), of 0.0025 m s(-1), 72% of the dissolved methane was recovered. A vacuum was also trialled as an alternative to sweep-gas operation. At vacuum pressures below 30 mbar, reasonable methane recovery was observed at an intermediate V(L) of 0.0056 m s(-1). Results from this study demonstrate that dissolved methane recovery could increase net electrical production from low temperature anaerobic processes by ca. +0.043 kWh(e) m(-3) and reduce the net carbon footprint to +0.01 kg CO(2e) m(-3). However, further experimental work to optimise the gas-side hydrodynamics is required as well as validation of the long-term impacts of biofouling on process performance.

  19. Process design and parameter optimization of Yibin Data light hydrocarbons recycle project%宜宾大塔轻烃回收项目工艺设计及参数优化

    Institute of Scientific and Technical Information of China (English)

    朱琳

    2014-01-01

    宜宾大塔轻烃回收项目是对宜宾大塔浅层油气田气进行处理以回收天然气中的轻烃并联产液化天然气(LNG )的项目。根据油气田天然气组分和项目的特点,轻烃回收工艺采用DHX工艺,天然气液化采用单循环双节流混合冷剂制冷工艺。由于宜宾地区的外输气管网压力已定,需要对典型的DHX工艺进行调整优化。采用 HYSYS模拟软件对轻烃回收及天然气液化过程进行模拟、计算和优化,对比不同操作温度下工艺装置运行结果,并从能耗、回收率、经济效益等方面进行比较以确定最优的工艺操作参数。%Yibin Data light hydrocarbons recycle project deals with gas from shallow oil and gas field to recycle light hydrocarbons ,liquefied petroleum gas (LPG) and produce liquefied nat-ural gas (LNG) in Data ,Yibin .According to the gas components of oil and gas field and charac-teristics of the project ,the direct heat exchange (DHX) technology is adopted to recycle light hy-drocarbons and single cycle compound throttling mixed refrigerant-cycle refrigeration (SMCR) is used for natural gas liquefaction .The output pressure of natural gas pipeline network had been set ,so the operating parameters of the process need to be optimized .HYSYS was applied to sim-ulate ,optimize and calculate the recovery of light hydrocarbons and process of LNG liquefaction . This article analyzed DHX process under different temperatures to optimize operating parameters on the basis of energy consumption ,recovery rate and economic benefits .

  20. Effects of Neutralization, Decoloration, and Deodorization on Polycyclic Aromatic Hydrocarbons during Laboratory-Scale Oil Refining Process

    Directory of Open Access Journals (Sweden)

    Yuxiang Ma

    2017-01-01

    Full Text Available The influence of technological operations during oil refining process on polycyclic aromatic hydrocarbons (PAHs in neutralized, bleached, and deodorized oils was investigated on the basis of laboratory-scale study. Under the best experimental conditions, benzo[a]pyrene decreased by 85.1%, 99.7%, and 40.8% in neutralized, bleached, and deodorized oils, respectively. Total of 16 analytes decreased by 55.7%, 87.5%, and 47.7%, respectively. Bleaching with activated charcoal was the most efficient procedure to reduce PAHs in crude oil. Neutralization had a modest influence on sixteen analytes; however, deodorization was only responsible for a slight decrease in the light PAHs and heavy PAHs contents. Data obtained in this study suggest that the use of activated carbon during oil refining process is highly recommended; moreover, these results provide a useful guidance for oil refining plant to reduce security risk and ensure the quality of the vegetable oil products.

  1. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    Science.gov (United States)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  2. A Unified Process Model of Syntactic and Semantic Error Recovery in Sentence Understanding

    CERN Document Server

    Holbrook, J K; Mahesh, K; Holbrook, Jennifer K.; Eiselt, Kurt P.; Mahesh, Kavi

    1994-01-01

    The development of models of human sentence processing has traditionally followed one of two paths. Either the model posited a sequence of processing modules, each with its own task-specific knowledge (e.g., syntax and semantics), or it posited a single processor utilizing different types of knowledge inextricably integrated into a monolithic knowledge base. Our previous work in modeling the sentence processor resulted in a model in which different processing modules used separate knowledge sources but operated in parallel to arrive at the interpretation of a sentence. One highlight of this model is that it offered an explanation of how the sentence processor might recover from an error in choosing the meaning of an ambiguous word. Recent experimental work by Laurie Stowe strongly suggests that the human sentence processor deals with syntactic error recovery using a mechanism very much like that proposed by our model of semantic error recovery. Another way to interpret Stowe's finding is this: the human sente...

  3. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    Science.gov (United States)

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS.

  4. Geochemical constraints on mixed source and hydrocarbon filling process in theYingjisu Sag, Tarim Basin, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    PANG Lingyun; CHANG Xiangchun; WANG Mingzhen; YU Xinghe; MA Lixin; DUAN Yunge

    2009-01-01

    The Yingjisu Sag was petroliferous for normal oil, condensate oil, reservoir bitumen and natural gases. Geochemical studies showed that natural gases in the Yingjisu Sag were a gas mixture consisting mainly of Cambrian pyrolysis gas, Jurassic condensate oil in well Yingnan 2 and normal oil in well Tadong 2, reflecting the characteristics of marine-phase gases and oils, while crude oils in well Longkou 1 demonstrated the characteristics of both marine and terrestrial oils, which were derived from lower algae and higher plants. Jurassic oils from wells Longkou 1 and Huayingcan 1 and Cambrian crude oils from well Tadong 2 were derived mainly from Cambrian-Lower Ordovician source rocks. Jurassic and Silurian reservoir bitumens from well Yingnan 2 were biodegradated, suggesting they are of marine and terrestrial origins. The bitumens have similar geochemical characteristics, which are correlated well with Ordovician crude oils from well Tadong 2 and Jurassic condensate oil from well Yingnan 2. Based on the characteristics of tectonic evolution in this area and the analysis of hydrocarbon accumulation, the constraints on the mixed source and hydrocarbon filling process in the Yingjisu Sag were brought forward.

  5. Bio-testing integral toxicity of corrosion inhibitors, biocides and oil hydrocarbons in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Chugunov, V.A.; Kholodenko, V.P.; Irkhina, I.A.; Fomchenkov, V.M.; Novikov, I.A. [State Research Center for Applied Microbiology, Obolensk, Moscow (Russian Federation)

    2004-07-01

    In recent years bioassays have been widely used for assessing levels of contamination of the environment. This is due to the fact that test-organisms provide a general response to toxicants present in samples. Based on microorganisms as test objects, it is possible to develop cheap, sensitive and rapid assays to identify environmental xenobiotics and toxicants. The objective of the research was to develop different microbiological assays for assessing integral toxicity of water environments polluted with corrosion inhibitors, biocides and hydrocarbons in oil- and gas-processing industry. Bio-luminescent, electro-orientational, osmo-optic and microorganism reducing activity assays were used for express evaluation of integral toxicity. They are found to determine promptly integral toxicity of water environments containing various pollutants (oil, oil products, corrosion inhibitors, biocides). Results conclude that the assays may be used for analyzing integral toxicity of water polluted with hydrocarbons, as well as for monitoring of water changes as a result of biodegradation of pollutants by microorganisms and their associations. Using a kit of different assays, it is also possible to evaluate ecological safety of biocides, corrosion inhibitors, and their compositions. Bioassays used as a kit are more effective than each assay individually, allowing one to get complete characterization of a reaction of bacterial test organisms to different environments. (authors)

  6. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of Environment... XIII to Part 266—Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units These...

  7. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.

    Science.gov (United States)

    Ozgur, Cihan; Coskun, Sezen; Akcil, Ata; Beyhan, Mehmet; Üncü, Ismail Serkan; Civelekoglu, Gokhan

    2016-11-01

    In this paper, oxidative leaching and electrowinnig processes were performed to recovery of mercury from spent tubular fluorescent lamps. Hypochlorite was found to be effectively used for the leaching of mercury to the solution. Mercury could be leached with an efficiency of 96% using 0.5M/0.2M NaOCl/NaCl reagents at 50°C and pH 7.5 for 2-h. Electrowinning process was conducted on the filtered leaching solutions and over the 81% of mercury was recovered at the graphite electrode using citric acid as a reducing agent. The optimal process conditions were observed as a 6A current intensity, 30g/L of reducing agent concentration, 120min. electrolysis time and pH of 7 at the room temperature. It was found that current intensity and citric acid amount had positive effect for mercury reduction. Recovery of mercury in its elemental form was confirmed by SEM/EDX. Oxidative leaching with NaOCl/NaCl reagent was followed by electrowinning process can be effectively used for the recovery of mercury from spent fluorescent lamps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven technologies 33%, but in Gulf Cooperation Council (GCC) countries their shares are 42% and 56% respectively due to severe feed water quality. In RO processes, intake, pretreatment and brine disposal cost 25% of total desalination cost at 30–35% recovery. We proposed a tri-hybrid system to enhance overall recovery up to 81%. The conditioned brine leaving from RO processes supplied to proposed multi-evaporator adsorption cycle driven by low temperature industrial waste heat sources or solar energy. RO membrane simulation has been performed using WinFlow and IMSDesign commercial softwares developed by GE and Nitto. Detailed mathematical model of overall system is developed and simulation has been conducted in FORTRAN. The final brine reject concentration from tri-hybrid cycle can vary from 166,000ppm to 222,000ppm if RO retentate concentration varies from 45,000ppm to 60,000ppm. We also conducted economic analysis and showed that the proposed tri-hybrid cycle can achieve highest recovery, 81%, and lowest energy consumption, 1.76kWhelec/m3, for desalination reported in the literature up till now.

  9. Complex evaluation of health status and life quality of employees occupied in mining and processing of hydrocarbon raw materials

    Directory of Open Access Journals (Sweden)

    G.G. Gimranova

    2016-06-01

    Full Text Available A complex social-hygienic investigation for the assessment of health-related life quality and living standards among 1200 male workers occupied in mining and primary processing of hydrocarbon raw materials has been performed. The study included the method of the anonymous survey for the employee with using a questionnaire developed by WHO experts for the realization of Health, environment and social capital management in enterprises (HESME. The health risk factors’ prevalence associated with alcohol, smoking, low physical activity, poor nutrition, stress in the workplace has been established. The feeling of stress and nervousness is generated by the fear of dismissal (18 % of employees, conflicts with administration (4% and by financial problems. About 47% of persons are anxious about social and economic instability. Not more than 4% of employees consider that the health deterioration is directly related to harmful working conditions. The survey has revealed an inflated self-esteem regarding the health. Thus 59.00 % of employee considers their health status to be excellent or normal, while an objective assessment revealed only 29.7 % of healthy employee. Due to the employee’s opinion, the saving of health is conditioned by healthy lifestyle, but the practice of self-preservation behavior is poorly spread. Not more than 37 % of respondents follow the doctors’ recommendations. Among the positive process there are changes in dietary habits in everyday life, namely 60 % of the respondents have chosen the balanced diet. The obtained data regarding the quality and way of life of the employee, occupied in mining and processing of hydrocarbon raw materials, should be taken into consideration when developing complex social development programs on an enterprise.

  10. Sulfomethylated lignite salt as a sacrifical agent in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Kudchadker, M.V.; Weiss, W.J.

    1978-02-07

    A process is described for recovering petroleum from oil reservoirs by secondary recovery methods. The process involves injecting via an injection well into the reservoir an aqueous solution of sulfomethylated lignite salt as a sacrificial agent to inhibit the deposition of surfactant and polymer on the reservoir matrix. The process is conducted by first injecting the lignite salt into the formation through the injection well and following it with either a polymer or a surfactant solution, which also may contain the lignite salt. The polymer or surfactant would then be followed by a drive fluid, such as water, to push the chemicals and oil to the production well. (18 claims)

  11. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  12. Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy "click" systems

    Science.gov (United States)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia; Serra, Àngels

    2016-07-01

    The shape-memory response (SMR) of "click" thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures ( T_{prog}) and isothermal-recovery temperatures ( T_{iso}) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of T_{iso}: a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to Tg. The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time ( t_{sr}) is significantly reduced when the isothermal-recovery temperature T_{iso} increases from below to above Tg because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by T_{iso}; at higher T_{iso} it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at T_{iso} < Tg to maximize the effect of the structure and/or by increasing T_{iso} to minimize the effect but increasing the shape-recovery rate.

  13. Recovery Process of Li, Al and Si from Lepidolite by Leaching with HF

    Directory of Open Access Journals (Sweden)

    Gustavo D. Rosales

    2017-03-01

    Full Text Available This work describes the development of a new process for the recovery of Li, Al and Si along with the proposal of a flow sheet for the precipitation of those metals. The developed process is comprised of lepidolite acid digestion with hydrofluoric acid, and the subsequent precipitation of the metals present in the leach liquor. The leaching operational parameters studied were: reaction time, temperature and HF concentration. The experimental results indicate that the optimal conditions to achieve a Li extraction higher than 90% were: solid-liquid ratio, 1.82% (w/v; temperature, 123 °C; HF concentration, 7% (v/v; stirring speed, 330 rpm; and reaction time, 120 min. Al and Si can be recovered as Na3AlF6 and K2SiF6. LiF was separated from the leach liquor during water evaporation, with recovery values of 92%.

  14. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  15. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    CERN Document Server

    Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

    2013-01-01

    In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

  16. On the Self-Recovery Phenomenon in the Process of Diffusion

    CERN Document Server

    Chang, Dong Eui

    2013-01-01

    We report a new phenomenon, called self-recovery, in the process of diffusion in a region with boundary. Suppose that a diffusing quantity is uniformly distributed initially and then gets excited by the change in the boundary values over a time interval. When the boundary values return to their initial values and stop varying afterwards, the value of a physical quantity related to the diffusion automatically comes back to its original value. This self-recovery phenomenon has been discovered and fairly well understood for finite-dimensional mechanical systems with viscous damping. In this paper, we show that it also occurs in the process of diffusion. Several examples are provided from fluid flows, quasi-static electromagnetic fields and heat conduction. In particular, our result in fluid flows provides a dynamic explanation for the famous experiment by Sir G.I. Taylor with glycerine in an annulus on kinematic reversibility of low-Reynolds-number flows.

  17. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    Science.gov (United States)

    Romero-Mangado, Jaione; Parodi, Jurek; Gamboa-Vazquez, Sonia; Stefanson, Ofir; Diaz-Cartagena, Diana C.; Flynn, Michael

    2016-01-01

    Wastewater treatment through forward osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flux rate. The aim of this study is to identify the materials that cause flux rate reduction due to membrane fouling, as well as to evaluate the flux rate recovery after membrane treatment using commercially available antifoulants. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flux rate recovery after membrane treatment using antifoulants.

  18. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Martin, F.D.

    1991-11-01

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  19. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  20. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  1. The Effects of Children on the Process of Recovery in Oxford Houses.

    Science.gov (United States)

    Legler, Ray; Chiaramonte, Danielle; Patterson, Meaghan; Allis, Ashley; Runion, Hilary; Jason, Leonard

    2012-01-01

    The effects of children on the process of substance use recovery for adults living in Oxford Houses is explored in two qualitative studies. Oxford Houses are self-run, community-based residential homes for small groups of adults who live together and support each other's efforts to recover from drug and/or alcohol addiction. In the first study, telephone interviews were conducted with 29 adults who were living in Oxford Houses that allowed children to live in the house with their parent. Results suggest that having children in the house supported a positive living environment for the recovery of house members. In the second study, telephone interviews were conducted with an additional 15 mothers who lived in Oxford Houses. These interviews focused on the effects of the mothers' addiction and recovery on their relationships with their children. This study found that most parents acknowledged the negative effects of their addiction on their relationship with their child and the effects of their recovery on improving those relationships.

  2. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); De Michelis, Ida [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy)

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  3. Recovery process of wall condition in KSTAR vacuum vessel after temporal machine-vent for repair

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke; Hong, Suk-Ho; Lee, Hyunmyung; Song, Jae-in; Jung, Nam-Yong; Lee, Kunsu; Chu, Yong; Kim, Hakkun; Park, Kaprai; Oh, Yeong-Kook

    2015-10-15

    Highlights: • Efforts have been made to obtain vacuum condition that is essential for the plasma experiments. • For example, the vacuum vessel should be vented to repair in-vessel components such as diagnostic shutter, and PFC damaged by high energy plasma. • Here, we present the recovery process of wall condition in KSTAR after temporal machine-vent for repair. • It is found that an acceptable vacuum condition has been achieved only by plasma based wall conditioning techniques such as baking, GDC, and boronization. • This study was that the proper recovering method of the vacuum condition should be developed according to the severity of the accident. - Abstract: Efforts have been made to obtain vacuum condition that is essential for the plasma experiments. Under certain situations, for example, the vacuum vessel should be vented to repair in-vessel components such as diagnostic shutter, exchange of window for diagnostic equipment, and PFC damaged by high energy plasma. For the quick restart of the campaign, a recovery process was established to make the vacuum condition acceptable for the plasma experiment. In this paper, we present the recovery process of wall condition in KSTAR after temporal machine-vent for repair. It is found that an acceptable vacuum condition has been achieved only by plasma based wall conditioning techniques such as baking, GDC, and boronization. This study was that the proper recovering method of the vacuum condition should be developed according to the severity of the accident.

  4. PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lister, T. E.; Diaz, L. A.; Clark, G. G.; Keller, P.

    2016-09-01

    As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste present an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.

  5. Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor

    Science.gov (United States)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2008-11-01

    A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.

  6. The copper recovery from cupric oxide catalysts by plasma reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Imris, I.; Klenovcanova, A. [Technical Univ. of Kosice, Kosice (Slovakia). Dept. of Power Engineering

    2007-07-01

    A plasma reduction process was used to recover copper from cupric oxide catalysts. Two types of plasma reduction smelting tests were conducted to verify the thermodynamic calculations. The plasma reactor consisted of a cylindrical steel shell lined with a castable alumina and a graphite crucible. Cupric oxide catalyst ESM 461 was mixed with stoichiometric amounts of carbon reductant and a 10 per cent addition of calcium oxide flux. Results of the experimental tests and the thermodynamic analysis showed that the copper can be extracted from cupric oxide using the plasma reduction process. Copper recovery was limited by physico-chemical copper losses. Copper oxide solubility was relatively high, so that copper recovery was low in their first series of plasma tests. The addition of calcium oxide flux improved copper recovery rates when dicalcium silicate was formed in the slag. The offgas samples indicated that concentrations of carbon monoxide (CO) in the gas phase was very high. It was concluded that the process is both commercially feasible and does not produce liquid or solid wastes. 7 refs., 2 tabs., 4 figs.

  7. Ultrasound-Assisted Extraction, Centrifugation and Ultrafiltration: Multistage Process for Polyphenol Recovery from Purple Sweet Potatoes

    Directory of Open Access Journals (Sweden)

    Zhenzhou Zhu

    2016-11-01

    Full Text Available This work provides an evaluation of an ultrasound-assisted, combined extraction, centrifugation and ultrafiltration process for the optimal recovery of polyphenols. A purple sweet potato (PSP extract has been obtained using ultrasonic circulating extraction equipment at a power of 840 W, a frequency of 59 kHz and using water as solvent. Extract ultrafiltration, using polyethersulfone (PES, was carried out for the recovery of polyphenol, protein and anthocyanin. Pre-treatment, via the centrifugation of purple sweet potato extract at 2500 rpm over 6 min, led to better polyphenol recovery, with satisfactory protein removal (reused for future purposes, than PSP extract filtration without centrifugation. Results showed that anthocyanin was efficiently recovered (99% from permeate. The exponential model fit well with the experimental ultrafiltration data and led to the calculation of the membrane’s fouling coefficient. The optimization of centrifugation conditions showed that, at a centrifugation speed of 4000 rpm (1195× g and duration of 7.74 min, the optimized polyphenol recovery and fouling coefficient were 34.5% and 29.5 m−1, respectively. The removal of proteins in the centrifugation process means that most of the anthocyanin content (90% remained after filtration. No significant differences in the intensities of the HPLC-DAD-ESI-MS2 peaks were found in the samples taken before and after centrifugation for the main anthocyanins; peonidin-3-feruloylsophoroside-5-glucoside, peonidin-3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, and peonidin-3-caffeoyl-feruloyl sophoroside-5-glucoside. This proves that centrifugation is an efficient method for protein removal without anthocyanin loss. This study considers this process an ultrasound-assisted extraction-centrifugation-ultrafiltration for purple sweet potato valorization in “green” technology.

  8. Availability and leaching of polycyclic aromatic hydrocarbons. Controlling processes and comparison of testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Roskam, G.D. [ECN Biomass, Coal and Environment, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Comans, R.N.J. [Wageningen University, Department of Soil Quality, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2009-01-15

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (R16 US-EPA PAHs 3412 mg/kg) and gasworks soil (RPAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  9. Availability and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods.

    Science.gov (United States)

    Roskam, Gerlinde D; Comans, Rob N J

    2009-01-01

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (Sigma16 US-EPA PAHs 3412mg/kg) and gasworks soil (SigmaPAHs 900mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  10. Polycyclic aromatic hydrocarbon (PAH) sorption process to the "black carbon" (BC) component in river sediments

    Science.gov (United States)

    Zhang, Jing; Séquaris, Jean-Marie; Narres, Hans-Dieter; Vereecken, Harry; Klumpp, Erwin

    2010-05-01

    The importance of BC for the long term sequestration of organic carbon is actually discussed for mitigating climate change. In this context, the role of BC as a filter or source of nutrients or toxic chemicals is questioned. The fate of polycyclic aromatic hydrocarbons (PAHs) is especially concerned. In this study, we have investigated the binding of PAH compounds, pyrene and phenanthrene, to Yangtze River sediments. For this purpose, the PAHs sorption to pristine and preheated sediments at 375°C was studied, which allow discriminating the contributions of amorphous organic carbon (AOC) and black carbon (BC) fractions to the PAH sorption extent. An analytical procedure for the determination of PAHs in the solution phase of the batch experiments has been developed with fluorescence spectroscopy. The PAHs sorption isotherms to pristine sediments were fitted by Freundlich and composite models as linear Langmuir model (LLM) and linear Polanyi-Dubinin-Manes model (LPDMM). The sequential application of composite models LLM and LPDMM to the sorption isotherms allows assessing the partition of PAHs into AOC and its nonlinear adsorption in the porous structure of BC. The modelling results indicate that the PAHs sorption to minor BC component of sediments (molecular sieving plays an important role in the competitive PAHs sorption in a multi-solute system. J. Zhang, Ph.D. Dissertation, RWTH Aachen, Germany, 2010 J. Zhang et al., Effects of organic carbon and clay fractions on the pyrene sorption and distribution in Yangtze River sediments (submitted). J. Zhang et al., Pyrene and phenanthrene sorptions to Yangtze River sediments and their components in single and binary solute systems (submitted)

  11. An environmentally friendly process for the recovery of valuable metals from spent refinery catalysts.

    Science.gov (United States)

    Rocchetti, Laura; Fonti, Viviana; Vegliò, Francesco; Beolchini, Francesca

    2013-06-01

    The present study dealt with the whole valorization process of exhaust refinery catalysts, including metal extraction by ferric iron leaching and metal recovery by precipitation with sodium hydroxide. In the leaching operation the effects on metal recovery of the concentration and kind of acid, the concentration of catalyst and iron (III) were determined. The best operating conditions were 0.05 mol L(-1) sulfuric acid, 40 g L(-1) iron (III), 10% catalyst concentration; almost complete extraction of nickel and vanadium, and 50%extraction efficiency of aluminium and less than 20% for molybdenum. Sequential precipitation on the leach liquor showed that it was not possible to separate metals through such an approach and a recovery operation by means of a single-stage precipitation at pH 6.5 would simplify the procedures and give a product with an average content of iron (68%), aluminium (13%), vanadium (11%), nickel (6%) and molybdenum (1%) which would be potentially of interest in the iron alloy market. The environmental sustainability of the process was also assessed by means of life cycle assessment and yielded an estimate that the highest impact was in the category of global warming potential with 0.42 kg carbon dioxide per kg recovered metal.

  12. Chromium (III Removal and Recovery from Tannery Wastewater by Precipitation Process

    Directory of Open Access Journals (Sweden)

    Abass Esmaeili

    2005-01-01

    Full Text Available Chromium (III salts are the most widely used chemicals for tanning processes, but 60-70% of total chromium salts reacts with the hides. In the other word, about 30-40% of the chromium amount remains in the solids and liquid wastes (especially spent tanning solutions. Therefore, the removal and recovery of the chromium content of these wastewaters are necessary for environmental protection and economic reasons. Removal and recovery of chromium were carried out by using precipitation process. For this purpose, three precipitating agents calcium hydroxide, sodium hydroxide and magnesium oxide were used. The effects of pH, stirring time, settling rate and sludge volume were studied in batch experiments. Results show that the optimum pH is 8-9 and the good sludge with high settling rate and lower volume obtain by the MgO precipitating agent. Hence the MgO is a good precipitating agent for removal and recovery of chromium from tanning wastewater.

  13. A novel process for recovery and refining of L-lactic acid from fermentation broth.

    Science.gov (United States)

    Chen, Lijun; Zeng, Aiwu; Dong, Haibo; Li, Qi; Niu, Congcong

    2012-05-01

    This paper introduces a novel process for recovery and refining of L-lactic acid from a fermentation broth. The use of a solvent extraction step, in the novel approach, has significant impacts on the following centrifugal short-path distillation conditions (operating pressure, evaporator temperature and feed flow rate). As the conditions were varied, the l-lactic acid purity and yield in the distillate were monitored. For the purpose of comparison, a series of experiments were also carried out using the existing purification process. The results showed that both of the two processes can obtain l-lactic acid with a high purity around 91.3%, while the yield obtained using the novel process reached 61.73%, which was about 20.43% higher than that using the existing process. Additionally, multiple-pass distillation observed special attention by improving the yield up to 74.63%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  15. Economical Analysis and Optimization of Recovery Processing Policies about Discarded Product

    Institute of Scientific and Technical Information of China (English)

    XieJiaping; KongLingcheng; ChenRongqiu

    2005-01-01

    On the foundation of analyzing the closed loop logistics chain of product with multi-lifecycle, the connotation of environmental value is set forth, recurring to such conceptions as supply chain and value chain.The plotting rules about disassembly tree are discussed in detail. The reachable matrix R of components' disassembly is introduced into distinguishing if disassembly is needed, in combination with disassembly-deciding vector X. Furthermore, the arithmetic of disassembly cost is put forward. And the cost-benefits of components'reusing, materials' recycling, safety disposing are dissertated based on the activity-based costing. Then the 0- 1 goal-programming model on product recovery processing is established, with components' demotion calculated.In addition, takinq the PC's recovery Drocessinq for example, we Dut it into application.

  16. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  17. Viability analysis of heat recovery solution for industrial process of roasting coffee

    Directory of Open Access Journals (Sweden)

    Kljajić Miroslav V.

    2016-01-01

    Full Text Available Every industrial heat recovery solution is specific engineering challenge but not because predicted energy rationalization or achieved energy savings but potential unavoidable technological deviations and consequences on related processes and for sure, high investment because of delicate design and construction. Often, the energy savings in a particular segment of the industrial process is a main goal. However, in the food industry, especially roasting coffee, additional criteria has to be strictly observed and fulfilled. Such criteria may include prescribed and uniform product quality, compliance with food safety standards, stability of the processes etc., and all in the presence of key process parameters variability, inconsistency of raw material composition and quality, complexity of measurement and analytical methods etc. The paper respects all circumstances and checks viability of proposed recovery solution. The paper analyzes the possibility of using waste heat from the roasting process to ensure shortening of roasting cycle, reduction of fuel consumption and increasing capacity of roasting lines on daily basis. Analysis concludes that effects are valuable and substantial, although the complete solution is on the threshold of economic sustainability with numerous opportunities to improve of both technical and economic indicators. The analysis combines measuring and analytical methods with standard cost-benefit analysis. Conclusions are derived from measurements and calculations of key parameters in the operating conditions and checked by experimental methods. Test results deviate from 10 to 15%, in relation with parameters in main production line.

  18. Control structure design for resource recovery using the enhanced biological phosphorus removal and recovery (EBP2R) activated sludge process

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Fuentes-Martínez, José Manuel; Flores Alsina, Xavier

    2016-01-01

    Nowadays, wastewater is considered as a set of resources to be recovered rather than a mixture of pollutantsthat should be removed. Many resource recovery schemes have been proposed, involving the useof novel technologies whose controllability is poorly studied. In this paper we present a control...

  19. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  20. Bioremediation of crude oil-polluted soil--effect of poultry droppings and natural rubber processing sludge application on biodegradation of petroleum hydrocarbons.

    Science.gov (United States)

    Okieimen, C O; Okieimen, F E

    2005-01-01

    Laboratory bioremediation experiments were carried out on crude oil-polluted soil samples by applying various amounts of poultry droppings and natural rubber processing sludge as nutrient supplements at 29 degrees and using slurry-phase and solid-phase biodegradation techniques. Changes in the total hydrocarbon content of the soil were determined using a spectrophotometric technique as a function of time. It was found that the extent of crude oil degradation in untreated soil samples was markedly lower (by up to 100%) than in the soil samples treated with nutrient supplements. Hydrocarbon degradation efficiency was higher in the slurry-phase than in the soil-phase technique.

  1. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  2. Study on the Recovery of Rhodium from Spent Organic Rhodium Catalysts of Acetic Acid Industry Using Pyrometallurgical Process

    Institute of Scientific and Technical Information of China (English)

    HE Xiaotang; WANG Huan; WU Xilong; LI Yong; ZHAO Yu; HAN Shouli; LI Kun; GUO Junmei

    2012-01-01

    A new process recycling rhodium from organic waste containing rhodium in acetic acid industry is developed.Use the special affinity of base metal sulfides (FeS,Ni2S3,CuS,etc.) on platinum group metals,adopting high nickel matte trapping-aluminothermic activation method to recovery rhodium from incinerator residue of organic rhodium waste.The method is shorter process,lower equipment requirement,and the higher activity of rhodium black.In pyrometallurgy enrichment process,the recovery rate of rhodium reached 94.65%,the full flow of rhodium recovery rate was 92.04%.

  3. A New Quenching Process and Tower to Improve the Recovery of Acrylonitrile

    Institute of Scientific and Technical Information of China (English)

    甘永胜; 顾军民; 方永成

    2004-01-01

    Quenching process and design of the quenching tower in acrylonitrile production in China were studied in order to decrease the polymerization loss of acrylonitrile in the quenching tower. Based on the research of acrylonitrile polymerization in the quenching tower, a new quenching process was proposed to avoid the disadvantages of the original process. Two kinds of internals were installed to improve the performance of the quenching tower. Through a series of air-flow and real-flow model experiments, the new quenching process and new design were showed to be successful in enhancing the mass and heat transfer in the vapor-liquid system and decreasing the loss of acrylonitrile.Industrial application showed satisfactory results of decrease of the acrylonitrile loss in the quenching tower by about 4.5% and increase of the acrylonitrile recovery of the whole plant by more than 4%.

  4. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M

    2004-08-01

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes.

  6. Music and speech listening enhance the recovery of early sensory processing after stroke.

    Science.gov (United States)

    Särkämö, Teppo; Pihko, Elina; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Mikkonen, Mikko; Autti, Taina; Silvennoinen, Heli M; Erkkilä, Jaakko; Laine, Matti; Peretz, Isabelle; Hietanen, Marja; Tervaniemi, Mari

    2010-12-01

    Our surrounding auditory environment has a dramatic influence on the development of basic auditory and cognitive skills, but little is known about how it influences the recovery of these skills after neural damage. Here, we studied the long-term effects of daily music and speech listening on auditory sensory memory after middle cerebral artery (MCA) stroke. In the acute recovery phase, 60 patients who had middle cerebral artery stroke were randomly assigned to a music listening group, an audio book listening group, or a control group. Auditory sensory memory, as indexed by the magnetic MMN (MMNm) response to changes in sound frequency and duration, was measured 1 week (baseline), 3 months, and 6 months after the stroke with whole-head magnetoencephalography recordings. Fifty-four patients completed the study. Results showed that the amplitude of the frequency MMNm increased significantly more in both music and audio book groups than in the control group during the 6-month poststroke period. In contrast, the duration MMNm amplitude increased more in the audio book group than in the other groups. Moreover, changes in the frequency MMNm amplitude correlated significantly with the behavioral improvement of verbal memory and focused attention induced by music listening. These findings demonstrate that merely listening to music and speech after neural damage can induce long-term plastic changes in early sensory processing, which, in turn, may facilitate the recovery of higher cognitive functions. The neural mechanisms potentially underlying this effect are discussed.

  7. Richness and species composition of ants in the recovery process of a gully erosion

    Directory of Open Access Journals (Sweden)

    Gabriel Biagiotti

    2013-12-01

    Full Text Available This study aimed to determine how the richness and composition of ant species behaves with changes in the recovery process of a gully erosion. The study area has 0.9 hectares subdivided into three sections called sector: "A", "B" and "C". For the definition of the sectors, erosive and natural restoring were taken as the base level of activity. Four transects were laid systematically throughout the area and surrounding compound with forest and grassland. Each transect had three "pitfall trap" ten meters apart from each other, with catches of ants were held in rainy and dry seasons. Analysis of variance was applied to compare the number of ant species per plot captured and Scott-Knott test 5% for comparison of means. To verify the similarity of species between environments it was performed an analysis of similarity (ANOSIM and ordering of environments a "Nonmetric Multidimensional Scaling" (NMDS. We captured 74 species of ants inside and around the gully erosion. The more degraded environment and initial stage of regeneration, showed greater richness of ant species. The composition of ant species was different between the recovery environments and around. The parameters of ant communities analyzed, richness and composition species were influenced by the regeneration of the area, indicating that ants can be used as bioindicators of gullies recovery.

  8. Single well tracer method to evaluate enhanced recovery

    Science.gov (United States)

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  9. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.

    Science.gov (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2013-05-01

    Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420°C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes

    KAUST Repository

    Wan, Chun Feng

    2015-11-11

    Pressure retarded osmosis (PRO) is a promising technology to reduce the specific energy consumption of a seawater reverse osmosis (SWRO) plant. In this study, it is projected that 25.6-40.7millionkWh/day of energy can be recovered globally, if the brines from SWRO are used as the draw solution and diluted to the seawater level in a PRO system. Detailed integrated SWRO-PRO processes are developed in this study with the option to form a closed-loop SWRO-PRO process that can substantially reduce the pretreatment cost of desalination. The governing mathematical models that describe both the transport phenomena on a module level and the energy flow on a system level are developed to evaluate the performances of the SWRO-PRO processes. The model aims to investigate the performance of the hollow fibers as dilution occurs and provides guidelines on hollow fiber module design and process operation. Determining the dilution factor and the corresponding operating pressure of PRO is the key to optimize the integrated process. The specific energy consumptions of three SWRO-involved processes; namely, (1) SWRO without a pressure exchanger, (2) SWRO with a pressure exchanger, and (3) SWRO with pressure exchangers and PRO are compared. The results show that the specific energy consumptions for the above three processes are 5.51, 1.79 and 1.08kWh/(m of desalinated water) for a 25% recovery SWRO plant; and 4.13, 2.27 and 1.14kWh/(m of desalinated water) for a 50% recovery SWRO plant, using either freshwater or wastewater as the feed solution in PRO.

  11. Photo-reduction of CO{sub 2} into gaseous hydrocarbon through photocatalytic process. Paper no. IGEC-1-009

    Energy Technology Data Exchange (ETDEWEB)

    Tan, S.S.; Zou, L.; Hu, E. [Deakin Univ., School of Engineering and Technology (Australia)]. E-mail: erichu@deakin.edu.au

    2005-07-01

    The present concern of the global warming has made the photoreduction of CO{sub 2} under the artificial conditions of vital interest. It has been established that CO{sub 2} could be transformed into hydrocarbons when it is in contact with water and catalysts (eg. titanium oxides) under the UV irradiation. However, the current efficiency of the artificial photoreduction of CO{sub 2} process is still quite low. This paper presents a new approach of heterogeneous photocatalysis involving gas-solid interfaces using titanium oxides pellets instead of immobilized photocatalysts on solid substrates. In this study, the CO{sub 2} mixed with H{sub 2}O vapour in saturation state was discharged into a quartz tube reactor composed of the UVC lamp illuminated for 48 hrs continuously. The reformed species collected were identified by gas chromatography. The results showed fairly good yield as compared with process using thin-film technique. The pellet form of catalyst was confirmed to be feasible and attractive for use in further investigation of CO{sub 2} reforming. (author)

  12. Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Wu; Lizhong Zhu

    2012-01-01

    The optimal condition for a one-step process removing organic compounds from coiking wastewater by simultaneously synthesized organobentonite as a pretreatment was investigated.Results showed that sorption of organic compounds by organobentonite was positively correlated to the cation surfactant exchange on the bentonite and the octanol-water partition coefficient (Kow) of the solutes.With 0.75 g/L bentonite and 180 mg/L (60% of bentonite cation exchange capacity) cetyltrimethylammonium bromide,the removal efficiencies of the 16 polycyclic aromatic hydrocarbon (PAHs) specified by the US Environmental Protection Agency in coking waste0water except naphthalene were more than 90%,and that of benzo(a)pyrene was 99.5%.At the same time,the removal efficiencies of CODCr,NH3-N,volatile phenols,colour and turbidity were 28.6%,13.2%,8.9%,55% and 84.3%,respectively,and the ratio of BOD5/CODcr increased from 0.31 to 0.41.These results indicated that the one-step process had high removal efficiency for toxic and refractory hydrophobic organic compounds,and could improve the biodegradability of the coking wastewater.Therefore it could be a promising technology for the pretreatment of toxic and refractory organic wastewater.

  13. Conversion of a deasphalting unit for use in the process of supercritical solvent recovery

    Directory of Open Access Journals (Sweden)

    Waintraub S.

    2000-01-01

    Full Text Available In order to reduce energy consumption and to increase deasphalted oil yield, an old PETROBRAS deasphalting unit was converted for use in the process of supercritical solvent recovery. In-plant and pilot tests were performed to determine the ideal solvent-to-oil ratio. The optimum conditions for separation of the supercritical solvent from the solvent-plus-oil liquid mixture were determined by experimental tests in PVT cells. These tests also allowed measurement of the dew and bubble points, determination of the retrograde region, observation of supercritical fluid compressibility and as a result construction of a phase equilibrium diagram.

  14. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions

    DEFF Research Database (Denmark)

    Roselló-Soto, Elena; Galanakis, Charis M.; Brnčić, Mladen;

    2015-01-01

    Ultrasound treatment is an alternative affordable, effective and reproducible method for the improved recovery of bioactive compounds from various processing streams. The objective of this review is to discuss the impact of ultrasound-assisted extraction on the recovery of polyphenols, carotenoids...

  15. Removal and recovery of carbon disulfide emitted by the viscose process

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, M.J.

    1992-02-01

    Teepak, Inc., which manufactures cellulose food casings by means of the viscose process, has a plant in Danville, Illinois, that emits approximately 400,000 cubic feet per minute (cfm) of water-saturated air containing approximately 100 parts per million (ppm) of carbon disulfide (CS{sub 2}). Both Teepak and the state of Illinois desire to reduce these emissions as soon as possible; however, the large air flow and very small CS{sub 2} concentration result in a difficult and costly separations problem without an obvious economically viable solution. One possibility is to incinerate the CS{sub 2}, but a more environmentally and economically acceptable alternative is to recover the CS{sub 2} for recycle to the process. The recovered CS{sub 2} would be worth about $700,000 annually to Teepak. Teepak has sponsored, with the Hazardous Waste Research and Information Center (HWRIC) of the Illinois Department of Natural Resources, a research project at Argonne National Laboratory (ANL) to evaluate current gas- purification and recovery technology and to suggest a route of development that will lead to a CS{sub 2} recovery process. The Illinois Department of Commerce and Community Affairs later provided on Illinois Challenge Grant to allow laboratory studies to supplement this effort. This report is a result of all those studies.

  16. Removal and recovery of carbon disulfide emitted by the viscose process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, M.J.

    1992-02-01

    Teepak, Inc., which manufactures cellulose food casings by means of the viscose process, has a plant in Danville, Illinois, that emits approximately 400,000 cubic feet per minute (cfm) of water-saturated air containing approximately 100 parts per million (ppm) of carbon disulfide (CS{sub 2}). Both Teepak and the state of Illinois desire to reduce these emissions as soon as possible; however, the large air flow and very small CS{sub 2} concentration result in a difficult and costly separations problem without an obvious economically viable solution. One possibility is to incinerate the CS{sub 2}, but a more environmentally and economically acceptable alternative is to recover the CS{sub 2} for recycle to the process. The recovered CS{sub 2} would be worth about $700,000 annually to Teepak. Teepak has sponsored, with the Hazardous Waste Research and Information Center (HWRIC) of the Illinois Department of Natural Resources, a research project at Argonne National Laboratory (ANL) to evaluate current gas- purification and recovery technology and to suggest a route of development that will lead to a CS{sub 2} recovery process. The Illinois Department of Commerce and Community Affairs later provided on Illinois Challenge Grant to allow laboratory studies to supplement this effort. This report is a result of all those studies.

  17. Process control and recovery in the Link Monitor and Control Operator Assistant

    Science.gov (United States)

    Lee, Lorrine; Hill, Randall W., Jr.

    1993-01-01

    This paper describes our approach to providing process control and recovery functions in the Link Monitor and Control Operator Assistant (LMCOA). The focus of the LMCOA is to provide semi-automated monitor and control to support station operations in the Deep Space Network. The LMCOA will be demonstrated with precalibration operations for Very Long Baseline Interferometry on a 70-meter antenna. Precalibration, the task of setting up the equipment to support a communications link with a spacecraft, is a manual, time consuming and error-prone process. One problem with the current system is that it does not provide explicit feedback about the effects of control actions. The LMCOA uses a Temporal Dependency Network (TDN) to represent an end-to-end sequence of operational procedures and a Situation Manager (SM) module to provide process control, diagnosis, and recovery functions. The TDN is a directed network representing precedence, parallelism, precondition, and postcondition constraints. The SM maintains an internal model of the expected and actual states of the subsystems in order to determine if each control action executed successfully and to provide feedback to the user. The LMCOA is implemented on a NeXT workstation using Objective C, Interface Builder and the C Language Integrated Production System.

  18. Solar Energy for a Solvent Recovery Stage in a Biodiesel Production Process

    Directory of Open Access Journals (Sweden)

    José A. León

    2016-01-01

    Full Text Available Recent research and development of clean energy have become essential due to the global climate change problem, which is caused largely by fossil fuels burning. Therefore, biodiesel, a renewable and ecofriendly biofuel with less environmental impact than diesel, continues expanding worldwide. The process for biodiesel production involves a significant energy demand, specifically in the methanol recovery stage through a flash separator and a distillation column. Traditionally, the energy required for this process is supplied by fossil fuels. It represents an opportunity for the application of renewable energy. Hence, the current study presents a system of thermal energy storage modeled in TRNSYS® and supported by simulations performed in ASPEN PLUS®. The aim of this research was to supply solar energy for a methanol recovery stage in a biodiesel production process. The results highlighted that it is feasible to meet 91% of the energy demand with an array of 9 parabolic trough collectors. The array obtained from the simulation was 3 in series and 3 in parallel, with a total area of 118.8 m2. It represents an energy saving of 70 MWh per year.

  19. Conformational dynamics of Rouse chains during creep/recovery processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi; Inoue, Tadashi [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2005-05-18

    The Rouse model is a well-established model for non-entangled polymer chains and also serves as a fundamental model for entangled chains. The dynamic behaviour of this model under strain-controlled conditions has been fully analysed in the literature. However, despite the importance of the Rouse model, no analysis has been made so far of the orientational anisotropy of the Rouse eigenmodes during the stress-controlled, creep and recovery processes. For completeness of the analysis of the model, the Rouse equation of motion is solved to calculate this anisotropy for monodisperse chains and their binary blends during the creep/recovery processes. The calculation is simple and straightforward, but the result is intriguing in the sense that each Rouse eigenmode during these processes has a distribution in the retardation times. This behaviour, reflecting the interplay/correlation among the Rouse eigenmodes of different orders (and for different chains in the blends) under the constant stress condition, is quite different from the behaviour under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time). Furthermore, the calculation indicates that the Rouse chains exhibit affine deformation on sudden imposition/removal of the stress and the magnitude of this deformation is inversely proportional to the number of bond vectors per chain. In relation to these results, a difference between the creep and relaxation properties is also discussed for chains obeying multiple relaxation mechanisms (Rouse and reptation mechanisms). (topical review)

  20. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  1. Economic Assessment for Recycling Critical Metals From Hard Disk Drives Using a Comprehensive Recovery Process

    Science.gov (United States)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.

    2017-09-01

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.

  2. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil

    Science.gov (United States)

    Silvestri, Erin E.; Feldhake, David; Griffin, Dale; Lisle, John T.; Nichols, Tonya L.; Shah, Sanjiv; Pemberton, A; Schaefer III, Frank W

    2016-01-01

    Following a release of Bacillus anthracis spores into the environment, there is a potential for lasting environmental contamination in soils. There is a need for detection protocols for B. anthracis in environmental matrices. However, identification of B. anthracis within a soil is a difficult task. Processing soil samples helps to remove debris, chemical components, and biological impurities that can interfere with microbiological detection. This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the protocol included: identifying an ideal extraction diluent, variation in the number of wash steps, variation in the initial centrifugation speed, sonication and shaking mechanisms. The optimized protocol was demonstrated at two laboratories in order to evaluate the recovery of spores from loamy and sandy soils. The new protocol demonstrated an improved limit of detection for loamy and sandy soils over the non-optimized protocol with an approximate matrix limit of detection at 14 spores/g of soil. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol will be robust enough to use at multiple laboratories while achieving comparable recoveries.

  3. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil.

    Science.gov (United States)

    Silvestri, Erin E; Feldhake, David; Griffin, Dale; Lisle, John; Nichols, Tonya L; Shah, Sanjiv R; Pemberton, Adin; Schaefer, Frank W

    2016-11-01

    Following a release of Bacillus anthracis spores into the environment, there is a potential for lasting environmental contamination in soils. There is a need for detection protocols for B. anthracis in environmental matrices. However, identification of B. anthracis within a soil is a difficult task. Processing soil samples helps to remove debris, chemical components, and biological impurities that can interfere with microbiological detection. This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the protocol included: identifying an ideal extraction diluent, variation in the number of wash steps, variation in the initial centrifugation speed, sonication and shaking mechanisms. The optimized protocol was demonstrated at two laboratories in order to evaluate the recovery of spores from loamy and sandy soils. The new protocol demonstrated an improved limit of detection for loamy and sandy soils over the non-optimized protocol with an approximate matrix limit of detection at 14spores/g of soil. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol will be robust enough to use at multiple laboratories while achieving comparable recoveries. Copyright © 2016. Published by Elsevier B.V.

  4. Cleanup of metals and hydrocarbons contaminated soils using the ChemTech process

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, R.; Yan, V.; Lim, S. [Klohn-Crippen Consultants Ltd., Richmond, BC (Canada)

    1997-10-01

    The ChemTech soil treatment process, an on-site ex-situ system, comprised of a three-phase fluidized bed to scour, emulsify and chemically leach soil contaminants into a process water, was described. The cleaned soils are then removed from the process circuit by means of a hydrodynamic classifier. At this point they are suitable for return to the excavation site. The process was demonstrated on a pilot scale in January 1997 by Klohn-Crippen Consultants at a demonstration program of emerging and innovative technologies sponsored by the Bay Area Defence Conversion Action Team (BADCAT), to assist with the remediation of twelve closing military bases in the San Francisco area. The ChemTest demonstration involved the removal of copper, chromium, lead and zinc from the Hunter Point Naval Reserve, plus treatability tests on a number of other contaminated soil samples. The ChemTech process was selected by federal and state regulatory agencies from 21 proposed technologies on the basis of performance, effectiveness, low cost, and absence of secondary environmental impacts. This paper provides details of the demonstration program, addresses the applicability of the technology to other sites, and provides cost estimates of unit cleanup costs. 3 refs., 4 tabs., 4 figs.

  5. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  6. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  7. Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage.

    Science.gov (United States)

    Resnik, Jennifer; Polley, Daniel B

    2017-03-21

    Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries.

  8. Effects of processing on the recovery of food allergens from a model dark chocolate matrix.

    Science.gov (United States)

    Khuda, Sefat E; Jackson, Lauren S; Fu, Tong-Jen; Williams, Kristina M

    2015-02-01

    To alleviate the risk to allergic consumers, it is crucial to improve factors affecting the detection of food allergens in processed chocolate products. This study evaluated processing effects on (1) recovery of peanut, egg, and milk allergens using five different extraction buffers, and (2) identification of specific allergenic proteins from extracts of incurred chocolate using allergen-specific antibodies and human allergic sera. Immunochemical staining with polyclonal antibodies showed that the addition of detergent or reducing agent improved extraction efficiency of peanut proteins, but not of egg and milk proteins. Tempering decreased antibody binding regardless of extractant. Detection of IgE-reactive peanut, egg, and milk allergens was differentially affected by tempering and extractant. Detection problems associated with matrix and processing effects may be overcome by the choice of extraction buffer and detecting antibody.

  9. Collision processes of hydrocarbon species in hydrogen plasmas. Pt. 3. The Silane-family

    CERN Document Server

    Janev, R K

    2003-01-01

    Cross sections are provided for most important collision processes of the Silicon-Hydrides from the ''Silane-family'': SiH sub y (y = 1 - 4) molecules and their ions SiH sub y sup + , with (plasma) electrons and protons. The processes include: electron impact ionization and dissociation of SiH sub y , dissociative excitation, ionization and recombination of SiH sub y sup + ions with electrons, and charge - and atom - exchange in proton collisions with SiH sub y. All important channels of dissociative processes are considered. Information is also provided on the energetics (reactants/products energy loss / gain) of each individual reaction channel. Total and partial cross sections are presented in compact analytic forms. The critical assessment of data, derivation of new data and presentation of results follow closely the concepts of the recently published related databases for Carbon-Hydrides, namely for the Methane family, and for the Ethane- and the Propane families, respectively.

  10. Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter

    Directory of Open Access Journals (Sweden)

    Christopher Ryan Penton

    2013-09-01

    Full Text Available Targeting sequencing to genes involved in key environmental processes, i.e. ecofunctional genes, provides an opportunity to sample nature’s gene guilds to greater depth and help link community structure to process-level outcomes. Vastly different approaches have been implemented for sequence processing and, ultimately, for taxonomic placement of these gene reads. The overall quality of next generation sequence analysis of functional genes is dependent on multiple steps and assumptions of unknown diversity. To illustrate current issues surrounding amplicon read processing we provide examples for three ecofunctional gene groups. A combination of in-silico, environmental and cultured strain sequences was used to test new primers targeting the dioxin and dibenzofuran degrading genes dxnA1, dbfA1, and carAa. The majority of obtained environmental sequences were classified into novel sequence clusters, illustrating the discovery value of the approach. For the nitrite reductase step in denitrification, the well-known nirK primers exhibited deficiencies in reference database coverage, illustrating the need to refine primer-binding sites and/or to design multiple primers, while nirS primers exhibited bias against five phyla. Amino acid-based OTU clustering of these two N-cycle genes from soil samples yielded only 114 unique nirK and 45 unique nirS genus-level groupings, likely a reflection of constricted primer coverage. Finally, supervised and non-supervised OTU analysis methods were compared using the nifH gene of nitrogen fixation, with generally similar outcomes, but the clustering (non-supervised method yielded higher diversity estimates and stronger site-based differences. High throughput amplicon sequencing can provide inexpensive and rapid access to nature’s related sequences by circumventing the culturing barrier, but each unique gene requires individual considerations in terms of primer design and sequence processing and classification.

  11. Récupération assistée des hydrocarbures par injection de CO2. Aspects techniques et économiques Enhanced Hydrocarbon Recovery by CO2 Flooding. Technical and Economic Aspects

    Directory of Open Access Journals (Sweden)

    Simandoux P.

    2006-11-01

    Full Text Available L'injection de gaz carbonique dans les gisements pétroliers a donné lieu depuis une quinzaine d'années à de très nombreuses études de laboratoire et sur modèles. De multiples pilotes ont été réalisés et quelques projets industriels sont en cours. II est donc intéressant de faire un bilan des connaissances et de l'expérience ainsi acquise, afin de tenter de dégager les perspectives de développement du procédé. La première partie rappelle le comportement du CO2 en présence d'hydrocarbures et les principaux mécanismes d'action dans le processus de récupération. On examine ensuite dans une deuxième partie les principales applications pilotes ou industrielles et les problèmes opérationnels rencontrés. Ce bilan permet de dégager les caractéristiques principales du procédé, les difficultés essentielles rencontrées. Un aperçu est donné sur les recherches en cours en vue de résoudre ces difficultés et améliorer le procédé. La dernière partie s'attache à préciser les perspectives d'application de l'injection de CO2 et pour cela trois aspects essentiels pour le développement du procédé sont discutés : les performances et le domaine d'emploi, la disponibilité et le coût des différentes sources potentielles de CO2 et enfin l'évaluation économique du procédé. The injection of carbon dioxide into oil fields has been the subject of extensive laboratory and modeling research for the last 15 years. Many pilot experiments have been performed, and several industrial projects are under way. Therefore it is interesting to review the state-of-the-art of the know-how and experience thus acquired so as to try to determine the outlook for the development of the process. The first part of this article reviews the behavior of CO2 in the presence of hydrocarbons and the leading action mechanisms in the recovery process. The second part examines the leading pilot or industrial applications and the operational problems

  12. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.

    Science.gov (United States)

    Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry

    2011-01-01

    The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied.

  13. Modeling Parameters of Reliability of Technological Processes of Hydrocarbon Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Shalay Viktor

    2016-01-01

    Full Text Available On the basis of methods of system analysis and parametric reliability theory, the mathematical modeling of processes of oil and gas equipment operation in reliability monitoring was conducted according to dispatching data. To check the quality of empiric distribution coordination , an algorithm and mathematical methods of analysis are worked out in the on-line mode in a changing operating conditions. An analysis of physical cause-and-effect relations mechanism between the key factors and changing parameters of technical systems of oil and gas facilities is made, the basic types of technical distribution parameters are defined. Evaluation of the adequacy the analyzed parameters of the type of distribution is provided by using a criterion A.Kolmogorov, as the most universal, accurate and adequate to verify the distribution of continuous processes of complex multiple-technical systems. Methods of calculation are provided for supervising by independent bodies for risk assessment and safety facilities.

  14. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A. V., E-mail: ponomarev@ipc.rssi.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Pershukov, V. A. [ROSATOM National Nuclear Corporation (Russian Federation); Smirnov, V. P. [CJSC “Nauka i Innovatsii” (Russian Federation)

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  15. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work.

  16. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes.

    Science.gov (United States)

    Navarro, R; Guzman, J; Saucedo, I; Revilla, J; Guibal, E

    2007-01-01

    In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation.

  17. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  18. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  19. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    Science.gov (United States)

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. © 2015 American Institute of Chemical Engineers.

  20. Stagewise processing of yellow water using clinoptilolite for nitrogen and phosphorus recovery and higher residual quality.

    Science.gov (United States)

    Allar, A D; Beler Baykal, B

    2015-01-01

    Source-separated human urine may be used as a source of fertilizers indirectly through processing with clinoptilolite. The suggested form of fertilizer is clinoptilolite loaded with plant nutrients from urine, where nitrogen and phosphorus will be released upon contact with water. Triggered by the need for handling high concentrations remaining in the liquid phase to be disposed of, this paper aims to present the option of improving the residual nutrient quality through stagewise processing with clinoptilolite, while investigating any improvement in nutrient removal. Two sets of experiments, stagewise operation under (i) constant loadings and (ii) variable loadings in each stage, are discussed. Stagewise operation has been observed to be successful for attaining reduced residual liquid phase concentrations as well as improvements in nitrogen recovery as compared to single-stage operation. Comparing constant and variable stagewise loadings, the final concentration is 10 times lower with variable loadings. The latter is comparable to a level found in only 1% of conventional domestic wastewater volume. Stagewise operation was beneficial from the standpoint of both additional nutrient recovery and for residuals control, with more pronounced benefits for attaining higher quality residual liquid phase concentrations to be disposed of.

  1. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    Science.gov (United States)

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions.

  2. [Dynamics of polycyclic aromatic hydrocarbons (PAHs) in the paddy-soil system during the crop rotation process].

    Science.gov (United States)

    Jiao, Xing-chun; Ye, Chuan-yong; Chen, Su-hua; Yang, Yong-liang; Wu, Zhen-yan

    2010-07-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the paddy root-soil system were determined to study the dynamic and the influencing factors during crop rotation period. It showed that the dynamic of PAHs in paddy roots was most correlative with the factor of root surface area, but less correlated with PAHs in air and particles, which indicates that the physiological characters rather than the environment media are the main factors influencing the PAHs accumulation in paddy roots. According to the EPA risk standard about BaP and sigma PAHs, the PAHs accumulation in the paddy seeds won't decrease the food security to human being. The PAHs concentrations in paddy soil showed a declined trend during the period of paddy growth, which was affected not only by the processes of water elution and microbe degradation, but also depended on the absorption rate of paddy roots. When the crop rotation begins and paddy planting rolls into the next growing period, the PAHs in the paddy soil will again increase into a higher level which is correlated with the TOC content in the soil.

  3. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform

    Institute of Scientific and Technical Information of China (English)

    Zhimin QIANG; Weiwei BEN; ChinPao HUANG

    2008-01-01

    The degradation of selected chlorinated ali-phatic hydrocarbons (CAHs) exemplified by trichloroethy-lene (TCE), 1,1-dichloroethylene (DCE), and chloroform (CF) was investigated with Fenton oxidation process. The results indicate that the degradation rate was primarily affected by the chemical structures of organic contami-nants. Hydroxyl radicals (·OH) preferred to attack the organic contaminants with an electron-rich structure such as chlorinated alkenes (i.e., TCE and DCE). The dosing mode of Fenton's reagent, particularly of Fe2+, significantly affected the degradation efficiency of studied organic compound. A new "time-squared" kinetic model, C = Coexp(-kobst2), was developed to express the degrada-tion kinetics of selected CAHs. This model was applicable to TCE and DCE, but inapplicable to CF due to their varied reaction rate constants towards ·OH. Chloride release was monitored to examine the degree of dechlorina- tion during the oxidation of selected CAHs. TCE was more easily dechlorinated than DCE and CF. Dichloroacetic acid (DCAA) was identified as the major reaction intermediate in the oxidation of TCE, which could be completely removed as the reaction proceeded. No reaction intermedi- ates or byproducts were identified in the oxidation of DCE and CF. Based on the identified intermediate, the reaction mechanism of TCE with Fenton's reagent was proposed.

  4. Solid Hydrocarbon Assisted Reduction: A New Process of Generating Micron Scale Metal Particles

    Science.gov (United States)

    2015-03-01

    2C O2  2CO (2) This reaction is exothermic with a -32.808 kcal/mol change in standard free energy, and provides the heat needed for furnace...operation. The temperature can be controlled through the precise control of moisture in the supplied air, as it reacts endothermically in the manner...Rearranging this definition then yields the unknown X in Table 16. X  Keq 1 Keq  79.025 1 79.025  0.987 (20) This process shows that when a

  5. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  6. Efficiency of in-vessel composting process in removal of petroleum hydrocarbons from bottom sludge of crude oil storage tanks

    Directory of Open Access Journals (Sweden)

    K Naddafi

    2016-01-01

    Full Text Available Background and Objectives: Remaining of crude oil in storage tanks usually results in accumulating oily sludge at the bottom of the tank, which should be treated and disposed of in a suitable manner. The efficiency of in-vessel composting process in removing total petroleum hydrocarbons (TPH from bottom sludge of crude oil storage tanks was investigated in the present study. Material and methods: The sludge was mixed with immature compost at the ratios of 1:0 (as control, 1:2, 1:4, 1:6, 1:8, and 1:10 (as dry basis with the initial C:N:P and moisture content of 100:5:1 and 55% respectively for a period of 10 weeks. The moisture adjustment and mixing process were done 3 times a day during the composting period. Sampling and analysis of TPH and pH were done every week and every two days, respectively. Results: TPH removal in the 1:2, 1:4, 1:6, 1:8, and 1:10 composting reactors was 66.59, 73.19, 74.81, 80.20, and 79.91%, respectively. Thus, initial adjustment of sludge to immature compost ratios plays a great role in reduction of TPH. The results of the control reactors indicated that the main mechanism of TPH removal in the composting reactors was biological process. Conclusions: In-vessel composting by addition of immature compost as amendment is a viable choice for bioremediation of the bottom sludge of crude oil storage tanks.

  7. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    Science.gov (United States)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  8. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  9. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process

    Directory of Open Access Journals (Sweden)

    Parisa Jafari Fesharaki

    2010-06-01

    Full Text Available The use of biologically derived metal nanoparticles for various proposes is going to be an issue of considerable importance; thus, appropriate methods should be developed and tested for the biological synthesis and recovery of these nanoparticles from bacterial cells. In this research study, a strain of Klebsiella pneumoniae was tested for its ability to synthesize elemental selenium nanoparticles from selenium chloride. A broth of Klebsiella pneumoniae culture containing selenium nanoparticles was subjected to sterilization at 121ºC and 17 psi for 20 minutes. Released selenium nanoparticles ranged in size from 100 to 550 nm, with an average size of 245 nm. Our study also showed that no chemical changes occurred in selenium nanoparticles during the wet heat sterilization process. Therefore, the wet heat sterilization process can be used successfully to recover elemental selenium from bacterial cells.

  10. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  11. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  13. Mathematical evaluation of activated carbon adsorption for surfactant recovery in a soil washing process.

    Science.gov (United States)

    Ahn, Chi K; Lee, Min W; Lee, Dae S; Woo, Seung H; Park, Jong M

    2008-12-15

    The performances of various soil washing processes, including surfactant recovery by selective adsorption, were evaluated using a mathematical model for partitioning a target compound and surfactant in water/sorbent system. Phenanthrene was selected as a representative hazardous organic compound and Triton X-100 as a surfactant. Two activated carbons that differed in size (Darco 20-40 mesh and >100 mesh sizes) were used in adsorption experiments. The adsorption isotherms of the chemicals were used in model simulations for various washing scenarios. The optimal process conditions were suggested to minimize the dosage of activated carbon and surfactant and the number of washings. We estimated that the requirement of surfactant could be reduced to 33% of surfactant requirements (from 265 to 86.6g) with a reuse step using 9.1g activated carbon (>100 mesh) to achieve 90% removal of phenanthrene (initially 100mg kg-soil(-1)) with a water/soil ratio of 10.

  14. Process Model of the Gas Recovery System in an IFE reactor

    Science.gov (United States)

    Gentile, Charles; Aristova, Maria

    2007-11-01

    It is necessary to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. In order to observe the interaction of all components, a chemical process model is developed as part of the conceptual design phase of the project. Initially, the reactants, system structure, and processes are defined using the known contents of the vacuum vessel exhaust. The output, which will include physical properties and chemical content of the products, is analyzed to determine the most efficient and productive system parameters. The results of the modeling will be presented in this paper. This modeling exercise will be instrumental in optimizing and closing the fusion fuel cycle in the IFE power reactor.

  15. Decreasing polycyclic aromatic hydrocarbons emission from bitumen using alternative bitumen production process.

    Science.gov (United States)

    Rasoulzadeh, Y; Mortazavi, S B; Yousefi, A A; Khavanin, A

    2011-01-30

    In 1988, the National Institute for Occupational Safety and Health (NIOSH) recommended that bitumen fumes should also be considered a potential occupational carcinogen and management practices such as engineering controls should be implemented. Changing the production process of bitumen, as a source control method, was investigated in our study. For the first time, a novel alternative process was used to produce paving grade bitumen with decreased PAH emissions as well as improved bitumen performance grade (PG). Post-consumer latex and natural bitumen (NB) were used as additives to obtain 60/70 modified bitumen directly from the vacuum bottom (VB) without any need for air-blowing. The emissions were produced by a laboratory fume generation rig and were sampled and analyzed by GC-Mass and GC-FID as described in NIOSH method 5515. The PG of the resulting modified 60/70 bitumen in this study covers a wider range of climatic conditions and has higher total resistance against deformation than conventional 60/70 bitumen. The total PAH emissions from modified 60/70 bitumen (100.2619 ng/g) were decreased approximately to 50% of PAHs emitted from conventional 60/70 bitumen (197.696 ng/g). Therefore, it is possible to obtain modified bitumen with lower PAH emissions and better quality than conventional bitumen via additives and without air-blowing.

  16. Process for separating C/sub 2+/ hydrocarbons from natural gas. Verfahren zur Abtrennung von C/sub 2+/-Kohlenwasserstoffen aus Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.; Sapper, R.

    1987-03-05

    A process for separating C/sub 2+/ hydrocarbons from natural gas is claimed in which the natural gas is cooled, partially condensed, and separated into a liquid and a gaseous fraction. The liquid fraction is subcooled, expanded in the top region of a rectification column, and mixed with the expanded gaseous fraction. The rectification process produces a product flow containing C/sub 2+/ hydrocarbons, and a residual gas containing mostly lower-boiling constituents. The residual gas is heated up by indirect heat exchange with condensate and then by heat exchange with the gaseous fraction after partial condensation and with the natural gas led into the partial condensation process. The heated residual gas is expanded, producing work, and heated again by heat exchange with the natural gas to be cooled.

  17. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  18. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  19. Influence of plasma processing on recovery and analysis of circulating nucleic acids.

    Directory of Open Access Journals (Sweden)

    Karen Page

    Full Text Available Circulating nucleic acids (CNAs are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA and microRNAs (miRNAs. Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates. We also compare the effects of increasing time between venepuncture and centrifugation and differential centrifugation force on recovery of CNAs. cfDNA was quantified by TaqMan qPCR and targeted deep sequencing. miRNA profiles were assessed with TaqMan low-density arrays and assays. The QIAamp(® DNA Blood Mini and Circulating nucleic acid kits gave the highest recovery of cfDNA and efficient recovery (>90% of a 564bp spike-in. Moreover, targeted sequencing revealed overlapping cfDNA profiles and variant depth, including detection of HER2 gene amplification, using the Ion AmpliSeq™Cancer Hotspot Panel v2. Highest yields of miRNA and the synthetic Arabidopsis thaliana miR-159a spike-in were obtained using the miRNeasy Serum/Plasma kit, with saturation above 200 µl of plasma. miRNA profiles showed significant variation with increasing time before centrifugation (p 12 years, highlighting the potential for analysis of stored sample biobanks. In the era of the liquid biopsy, standardisation of methods is required to minimise variation, particularly for miRNA.

  20. An inexpensive strategy for facilitated recovery of metals and fermentation products by foam fractionation process.

    Science.gov (United States)

    Rangarajan, Vivek; Sen, Ramkrishna

    2013-04-01

    Microbial biosurfactants produce foam during aerobic-fermentation processes. The degree of foaminess and foam stability of the lipopeptide-biosurfactant produced by a marine Bacillus megaterium strain were investigated using simulated biosurfactant solution (SBS), biosurfactant broth without cells (BBWOC) and biosurfactant broth with cells (BBWC) in bubble column experiments. The experimental data for foam collapse were fitted using a first-order foam decay model. The first-order rate constant (k), a measure of foam stability, was maximum (k=0.0003 S(-1)) for BBWOC in the pH range 6-9. However, maximum foam stability (k=0.0006 S(-1)) was restricted to pH 7 for BBWC. Foam-based metal removal studies revealed that the metal removal followed a saturation model. The relative binding capacity of each divalent metal was greatly affected by the presence of other divalent metals. The order of lipopeptide binding capacity of the metals was Fe(2+)>Ca(2+)>Mg(2+), with Fe(2+) significantly influencing the foam stability. In case of Fe(2+), Ca(2+) and Mg(2+), maximum metal recovery of 64.7±4.3%, 52±3.1% and 41.4±3.6% respectively was observed at pH 7. The enrichment (E) of the other media components, including cells, was comparatively insignificant. The results of this study have implications in designing and optimizing biosurfactant or protein recovery in situ by foam fractionation as an inexpensive strategy, and also in facilitated metal recovery from industrial effluents and ores. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  2. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  3. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  4. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  5. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    Science.gov (United States)

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications.

  6. Reactive extraction of carboxylic acids from apolar hydrocarbons using aqueous solutions of sodium hydrogen carbonate with back-recovery using carbon dioxide under pressure

    NARCIS (Netherlands)

    Kuzmanovic, Boris; Kuipers, Norbert J.M.; Haan, de Andre B.; Kwant, Gerard

    2007-01-01

    A combination of using an aqueous solution of sodium hydrogen carbonate for forward-extraction of carboxylic acids from a dilute apolar organic solvent, and carbon dioxide under pressure for its back-recovery, is studied. Used in combination, these two steps might provide a technique for the recover

  7. Reactive extraction of carboxylic acids from apolar hydrocarbons using aqueous solutions of sodium hydrogen carbonate with back-recovery using carbon dioxide under pressure

    NARCIS (Netherlands)

    Kuzmanovic, B.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2005-01-01

    A combination of using an aqueous solution of sodium hydrogen carbonate for forward-extraction of carboxylic acids from a dilute apolar organic solvent, and carbon dioxide under pressure for its back-recovery, is studied. Used in combination, these two steps might provide a technique for the

  8. The process of recovery in eating disorder sufferers' own words: an Internet-based study.

    Science.gov (United States)

    Keski-Rahkonen, Anna; Tozzi, Federica

    2005-01-01

    This exploratory Internet-based study attempts to understand what eating disorder sufferers suggest when they mention the word recovery. All messages (N = 685) posted in a Finnish-language eating disorders discussion group during a 3-month period were analyzed for the contexts of the word recovery using text analysis software and qualitative methods. The discussion group participants' views of recovery changed according to their current stage of change. Mentioning recovery was least likely during precontemplation and relapse. Internet discussion group was seen as helpful in the early stages of change, but as impeding recovery in the last stages. Willpower and ceasing to identify with eating disorders were viewed as essential to recovery. The value of professional help in recovery was viewed as conditional on the eating disorders sufferer's own willingness to change. Internet-based support groups have many potential therapeutic applications. Motivational aspects need to be taken into account in promoting recovery.

  9. Energy loss process analysis for radiation degradation and immediate recovery of amorphous silicon alloy solar cells

    Science.gov (United States)

    Sato, Shin-ichiro; Beernink, Kevin; Ohshima, Takeshi

    2015-06-01

    Performance degradation of a-Si/a-SiGe/a-SiGe triple-junction solar cells due to irradiation of silicon ions, electrons, and protons are investigated using an in-situ current-voltage measurement system. The performance recovery immediately after irradiation is also investigated. Significant recovery is always observed independent of radiation species and temperature. It is shown that the characteristic time, which is obtained by analyzing the short-circuit current annealing behavior, is an important parameter for practical applications in space. In addition, the radiation degradation mechanism is discussed by analyzing the energy loss process of incident particles (ionizing energy loss: IEL, and non-ionizing energy loss: NIEL) and their relative damage factors. It is determined that ionizing dose is the primarily parameter for electron degradation whereas displacement damage dose is the primarily parameter for proton degradation. This is because the ratio of NIEL to IEL in the case of electrons is small enough to be ignored the damage due to NIEL although the defect creation ratio of NIEL is much larger than that of IEL in the cases of both protons and electrons. The impact of “radiation quality effect” has to be considered to understand the degradation due to Si ion irradiation.

  10. Downstream processing for xylitol recovery from fermented sugar cane bagasse hydrolysate using aluminium polychloride.

    Science.gov (United States)

    Silva, S S; Ramos, R M; Rodrigues, D C; Mancilha, I M

    2000-01-01

    Xylitol, a sweetener comparable to sucrose, is anticariogenic and can be consumed by diabetics. This sugar has been employed successfully in many foods and pharmaceutical products. The discovery of microorganisms capable of converting xylose present in lignocellulosic biomass into xylitol offers the opportunity of producing this poliol in a simple way. Xylitol production by biotechnological means using sugar cane bagasse is under study in our laboratories, and fermentation parameters have already been established. However, the downstream processing for xylitol recovery is still a bottleneck on which there is only a few data available in the literature. The present study deals with xylitol recovery from fermented sugar cane bagasse hydrolysate using 5.2 g/l of aluminium polychloride associated with activated charcoal. The experiments were performed at pH 9, 50 degrees C for 50 min. The results showed that aluminium polychloride and activated charcoal promoted a 93.5% reduction in phenolic compounds and a 9.7% loss of xylitol from the fermented medium, which became more discoloured, facilitating the xylitol separation.

  11. Tensiomygraphic Measurement of Atrophy Related Processes During Bed Rest and Recovery

    Science.gov (United States)

    Simunic, B. ostjan; Degens, Hans; Rittweger, Jorn; Narici, Marcco; Pisot, Venceslav; Mekjavic, Igor B.; Pisot, Rado

    2013-02-01

    Tensiomyographic (TMG) parameters were recently proposed for a non-invasive estimation of MHC distribution in human vastus lateralis muscle. However, TMG potential is even higher, offers additional insight into the skeletal muscle physiology, especially in the field of atrophy and hypertrophy. The purpose of this study is in developing time dynamics of TMG-measured contraction time (Tc) and maximal response amplitude (Dm), together with muscle belly thickness, measure thoroughly during 35-day bed rest and followed in 30-day recovery (N = 10 males; age 24.3 ± 2.6 years). Measurements were performed in two postural muscles (vastus medialis and lateralis) and one non-postural muscle (biceps femoris). During bed rest period we found different dynamics of muscle thickness decrease and Dm increase. Tc was unchanged in postural muscles, but in non-postural muscle increased significantly and stayed as such even at the end of recovery. We could conclude that TMG related parameters are more sensitive in measuring muscle atrophic and hypertrophic processes than biomedical imaging technique. However, a mechanism that regulates Dm still needs to be identified.

  12. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  13. Removal of petroleum hydrocarbons from contaminated groundwater by the combined technique of adsorption onto perlite followed by the O3/H2O2 process.

    Science.gov (United States)

    Moussavi, Gholamreza; Bagheri, Amir

    2012-09-01

    Groundwater contaminated with petroleum hydrocarbons was treated using a combined system of adsorption onto powdered expanded perlite (PEP) followed by the O3/H2O2 process. The pretreatment investigations indicated a high capacity for PEP to remove petroleum hydrocarbons from the contaminated water. An experimental total petroleum hydrocarbon (TPH) adsorption capacity of 275 mg/g PEP was obtained at the natural pH of water. The experimental data fit best with the Freundlich isotherm model and pseudo-second-order adsorption model. The second phase of the experiment evaluated the performance of the O3/H2O2 process in the removal of residual TPH from pretreated water and compared the results with that of raw water. The O3/H202 process attained a maximum TPH removal rate for the pretreated water after 70 min, when 93% of the residual TPH in the effluent of the adsorption system was removed. Overall, the combination of adsorption onto PEP for 100 min and the subsequent treatment with the O3/H2O2 process for 70min eliminated over 99% of the TPH of highly petroleum-contaminated groundwater, with initial values of 162 mg/L. Therefore, we can conclude that the developed treatment system is an appropriate method of remediation for petroleum-contaminated waters.

  14. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    Science.gov (United States)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  15. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    Science.gov (United States)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally

  16. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.

    Science.gov (United States)

    Reddy, B Ramachandra; Raju, B; Lee, Jin Young; Park, Hyung Kyu

    2010-08-15

    Spent catalysts from automobile industry contain environmentally critical and economically valuable metals such as Pt, Pd, Fe, Ni, Mn, and Cr. In this paper, we present a process for the selective separation and complete recovery of palladium (Pd) and platinum (Pt) from hydrochloric acid leach liquors of spent automobile catalyst employing solvent extraction method. Typical composition of leach liquor used for the present study contains (mg/L): Pd-150, Pt-550, Mn-500, Ni-1000, Fe-1500, Cr-100 and 3 M HCl. Selective separation of Pd from the leach liquor is achieved with 0.5 vol.% LIX 84I (2-hydroxy-5-nonylacetophenone oxime in a mixture with a high flash point hydrocarbon diluent) in kerosene at an aqueous to organic (A/O) ratio of 3 in 2 stages, with an enrichment factor of three. Quantitative stripping of Pd from loaded organic is achieved with 0.5 M thiourea and 1 M HCl. Co-extraction of Fe and Pt with 5 vol.% Alamine 336 (tertiary amine of mixed tri-octyl/decyl amine) in kerosene followed by selective scrubbing of Fe with dilute HCl and complete stripping of Pt from loaded organic was proposed with 0.5 M thiourea and 0.1 M HCl. Purity of Pd and Pt strip solutions are 99.7%. Finally, the present process can solve environmental related issues and at the same time recover valuable metals in pure form.

  17. Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process

    Directory of Open Access Journals (Sweden)

    Janet L. Rachlow

    2013-08-01

    Full Text Available United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1 if a current population size was given, (2 if a measure of uncertainty or variance was associated with current estimates of population size and (3 if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.

  18. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula.

    Science.gov (United States)

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-06-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth.During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants.Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible new

  19. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  20. Recovery of hydrogen and removal of nitrate from water by electrocoagulation process.

    Science.gov (United States)

    Lakshmi, Jothinathan; Sozhan, Ganapathy; Vasudevan, Subramanyan

    2013-04-01

    The present study provides an optimization of electrocoagulation process for the recovery of hydrogen and removal of nitrate from water. In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. Aluminum alloy of size 2 dm(2) was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. The results show that a significant amount of hydrogen can be generated by this process during the removal of nitrate from water. The energy yield calculated from the hydrogen generated is 3.3778 kWh/m(3). The results also showed that the maximum removal efficiency of 95.9% was achieved at a current density of 0.25 A/dm(2), at a pH of 7.0. The adsorption process followed second-order kinetics model. The adsorption of NO3(-) preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. Thermodynamic studies showed that adsorption was exothermic and spontaneous in nature. The energy yield of generated hydrogen was ~54% of the electrical energy demand of the electrocoagulation process. With the reduction of the net energy demand, electrocoagulation may become a useful technology to treat water associated with power production. The aluminum hydroxide generated in the cell removes the nitrate present in the water and reduced it to a permissible level making the water drinkable.

  1. Magnetic and Hardness Analysis During Precipitation and Recovery Process of Deformed Fe-Cu Alloy

    Science.gov (United States)

    Kikuchi, Hiroaki; Sasaki, Takahiro; Murakami, Takeshi; Ito, Fumiya

    This paper describes the characteristics of the coercive force and Vickers hardness for cold-rolled and thermally aged Fe-Cu alloys with varying isothermal aging times. Fe-1 wt% Cu alloys were cold-rolled and then thermally aged at 553 or 773 K from 0 to 104 min. The coercive force for the cold-rolled specimen decreases with increasing aging time, and the slope of the reduction becomes higher with increasing aging temperature. The recovery process contributes to the change in the coercive force. In contrast, the hardness increases with increasing aging time at an early aging stage and then eventually peaks. The copper precipitates play an important role in the change in the hardness and barely have an effect on the magnetic properties.

  2. Critical value for the contact process with random recovery rates and edge weights on regular tree

    Science.gov (United States)

    Xue, Xiaofeng

    2016-11-01

    In this paper we are concerned with contact processes with random recovery rates and edge weights on rooted regular trees TN. Let ρ and ξ be two nonnegative random variables such that P(ɛ ≤ ξ 0. For each vertex x on TN, ξ(x) is an independent copy of ξ while for each edge e on TN, ρ(e) is an independent copy of ρ. An infected vertex x becomes healthy at rate ξ(x) while an infected vertex y infects an healthy neighbor z at rate proportional to ρ(y , z) . For this model, we prove that the critical value under the annealed measure approximately equals (N E ρ E 1/ξ )-1 as N grows to infinity. Furthermore, we show that the critical value under the quenched measure equals that under the annealed measure when the cluster containing the root formed with edges with positive weights is infinite.

  3. Bioterrorism: processing contaminated evidence, the effects of formaldehyde gas on the recovery of latent fingermarks.

    Science.gov (United States)

    Hoile, Rebecca; Walsh, Simon J; Roux, Claude

    2007-09-01

    In the present age of heightened emphasis on counter terrorism, law enforcement and forensic science are constantly evolving and adapting to the motivations and capabilities of terrorist groups and individuals. The use of biological agents on a population, such as anthrax spores, presents unique challenges to the forensic investigator, and the processing of contaminated evidence. In this research, a number of porous and non-porous items were contaminated with viable [corrected] spores and marked with latent fingermarks. The test samples were then subjected to a standard formulation of formaldehyde gas. Latent fingermarks were then recovered post decontamination using a range of methods. Standard fumigation, while effective at destroying viable spores, contributed to the degradation of amino acids leading to loss of ridge detail. A new protocol for formaldehyde gas decontamination was developed which allows for the destruction of viable spores and the successful recovery of latent marks, all within a rapid response time of less than 1 h.

  4. Use of chlorine dioxide in a secondary recovery process to inhibit bacterial fouling and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Knickrehm, M.; Caballero, E.; Romualdo, P.; Sandidge, J.

    1987-01-01

    A major oil company operates a secondary recovery waterflood in Inglewood, California. The waterflood currently processes 250,000 bbls. per day of produced fluid. The major economic and operational problems associated with a secondary recovery waterflood are: 1) corrosion due to oxygen, carbon dioxide, hydrogen sulfide, and bacteria (sulfate reducers and slime biomass), 2) plugging from deposits due to salts, sulfides, and biofilms. These problems lead to deterioration of water handling equipment, injection lines (surface and subsurface), and decreased water quality resulting in the plugging of injection wells. During the last 8 years the operator has used varying mechanical and chemical technology to solve these problems. From 1978 to 1982 traditional chemical programs were in effect. Over this time period there was a continuing decline in water quality, and a substantial increase in chemical and operational costs. It was determined at that time that the major reason for this was due to microbiological activity. With this in mind, the operator proceeded to test the effects of using Aqueous Chlorine Dioxide in one portion of their water handling facilities. Due to the success of the program it was applied field wide. Presently, the primary problems associated with bacteria have been arrested. Solving one corrosion problem can lead to the onset of another. The operator is now in the process of making a concentrated effort to eliminate the other synergistically related corrosive and plugging agents (O/sub 2/, CO/sub 2/, H/sub 2/S). A field history of the problems, findings, and solutions, are discussed along with an overview of our present direction.

  5. Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-12-31

    With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

  6. Energetics, transition states, and intrinsic reaction coordinates for reactions associated with O(3P) processing of hydrocarbon materials

    Science.gov (United States)

    Yan, Tianying; Hase, William L.; Doubleday, Charles

    2004-05-01

    Electronic structure calculations based on multiconfiguration wave functions are used to investigate a set of archetypal reactions relevant to O(3P) processing of hydrocarbon molecules and surfaces. These include O(3P) reactions with methane and ethane to give OH plus methyl or ethyl radicals, O(3P)+ethane to give CH3O+CH3, and secondary reactions of the OH product radical with ethane and the ethyl radical. Geometry optimization is carried out with CASSCF/cc-pVTZ for all reactions, and with CASPT2/cc-pVTZ for O(3P)+methane/ethane. Single-point energy corrections are applied with CASPT2, CASPT3, and MRCI+Q with the cc-pVTZ and cc-pVQZ basis sets, and the energies extrapolated to the complete basis set limit (CBL). Where comparison of computed barriers and energies of reaction with experiment is possible, the agreement is good to excellent. The best agreement (within experimental error) is found for MRCI+Q/CBL applied to O(3P)+methane. For the other reactions, CASPT2/CBL and MRCI+Q/CBL predictions differ from experiment by 1-5 kcal/mol for 0 K enthalpies of reaction, and are within 1 kcal/mol of the best-estimate experimental range of 0 K barriers for O(3P)+ethane and OH+ethane. The accuracy of MRCI+Q/CBL is limited mainly by the quality of the active space. CASPT2/CBL barriers are consistently lower than MRCI+Q/CBL barriers with identical reference spaces.

  7. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g-1 COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L-1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg-1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L-1 d-1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell-1 d-1, which finally led to the stable operation of the system.

  8. Dynamic Engagement of Cognitive Control Modulates Recovery From Misinterpretation During Real-Time Language Processing.

    Science.gov (United States)

    Hsu, Nina S; Novick, Jared M

    2016-04-01

    Speech unfolds swiftly, yet listeners keep pace by rapidly assigning meaning to what they hear. Sometimes, though, initial interpretations turn out to be wrong. How do listeners revise misinterpretations of language input moment by moment to avoid comprehension errors? Cognitive control may play a role by detecting when processing has gone awry and then initiating behavioral adjustments accordingly. However, no research to date has investigated a cause-and-effect interplay between cognitive-control engagement and the overriding of erroneous interpretations in real time. Using a novel cross-task paradigm, we showed that Stroop-conflict detection, which mobilizes cognitive-control procedures, subsequently facilitates listeners' incremental processing of temporarily ambiguous spoken instructions that induce brief misinterpretation. When instructions followed incongruent Stroop items, compared with congruent Stroop items, listeners' eye movements to objects in a scene reflected more transient consideration of the false interpretation and earlier recovery of the correct one. Comprehension errors also decreased. Cognitive-control engagement therefore accelerates sentence-reinterpretation processes, even as linguistic input is still unfolding. © The Author(s) 2016.

  9. Recovery of phosphorus from sewage sludge in combination with the supercritical water process.

    Science.gov (United States)

    Zhai, Yunbo; Xiang, Bobin; Chen, Hongmei; Xu, Bibo; Zhu, Lu; Li, Caiting; Zeng, Guangming

    2014-01-01

    In this paper, the fraction transformation and recovering of phosphorus (P) from sewage sludge (SS) residues, derived from supercritical water process, was investigated by extraction and precipitation processes. In addition, the form of heavy metals existing during the recovery process is also discussed. First, P in the solid residues was recovered by acid leaching with HCl, and then the derived P was adsorbed by activated alumina (Al(2)O(3)). Finally, the Al2O3 was desorbed with low concentration of NaOH. Results showed that 80% organic P was converted into HCl-P. The total P (the chief ingredient of HCl-P) in solid residue increased from 86.1 to 95.6% as temperature increased from 350 to 400 °C. The amount of P in the solid residue that was dissolved by 1 M HCl was 97.8%, and over 95% of P in the leaching solution (15 mg/L for P concentration) was adsorbed after 5.0 g of Al(2)O(3) powder was added. The amount of P desorbed from Al(2)O(3) with 0.1 M NaOH was 98.7%. Ultimately, over 85% of TP in SS was recovered. Moreover, the proportion of Cu, Zn and Pb in the extracted P products was lower than 5%.

  10. Designing of an intensification process for biosynthesis and recovery of menaquinone-7.

    Science.gov (United States)

    Berenjian, Aydin; Mahanama, Raja; Talbot, Andrea; Regtop, Hubert; Kavanagh, John; Dehghani, Fariba

    2014-02-01

    A nutritional food rich in menaquinone-7 has a potential in preventing osteoporosis and cardiovascular diseases. The static fermentation of Bacillus subtilis natto is widely regarded as an optimum process for menaquinone-7 production. The major issues for the bulk production of menaquinone-7 are the low fermentation yield, biofilm formation and the use of organic solvents for the vitamin extraction. In this study, we demonstrate that the dynamic fermentation involving high stirring and aeration rates enhances the yield of fermentation process significantly compared to static system. The menaquinone-7 concentration of 226 mg/L was produced at 1,000 rpm, 5 vvm, 40 °C after 5 days of fermentation. This concentration is 70-fold higher than commercially available food products such as natto. Additionally, it was found that more than 80% of menaquinone-7 was recovered in situ in the vegetable oil that was gradually added to the system as an anti-foaming agent. The intensification process developed in this study has a capacity to produce an oil rich in menaquinone-7 in one step and eliminate the use of organic solvents for recovery of this compound. This oil can, therefore, be used for the preparation of broad range of supplementary and dietary food products rich in menaquinone-7 to reduce the risk of osteoporotic fractures and cardiovascular diseases.

  11. A combined recovery process of metals in spent lithium-ion batteries.

    Science.gov (United States)

    Li, Jinhui; Shi, Pixing; Wang, Zefeng; Chen, Yao; Chang, Chein-Chi

    2009-11-01

    This work proposes a new process of recovering Co from spent Li-ion batteries (LIBs) by a combination of crushing, ultrasonic washing, acid leaching and precipitation, in which ultrasonic washing was used for the first time as an alternative process to improve the recovery efficiency of Co and reduce energy consumption and pollution. Spent LIBs were crushed with a 12 mm aperture screen, and the undersize products were put into an ultrasonic washing container to separate electrode materials from their support substrate. The washed materials were filtered through a 2mm aperture screen to get underflow products, namely recovered electrodes. Ninety two percent of the Co was transferred to the recovered electrodes where Co accounted for 28% of the mass and impurities, including Al, Fe, and Cu, accounted for 2%. The valuable materials left in 2-12 mm products, including Cu, Al, and Fe, were presented as thin sheets, and could be easily separated. The recovered electrodes were leached with 4.0M HCl for 2.0 h, at 80 degrees C, along with concurrent agitation. Ninety seven percent of the Li and 99% of the Co in recovered electrodes could be dissolved. The impurities could be removed at pH 4.5-6.0 with little loss of Co by chemical precipitation. This process is feasible for recycling spent LIBs in scale-up.

  12. The process of recovery of people with mental illness: The perspectives of patients, family members and care providers: Part 1

    Directory of Open Access Journals (Sweden)

    Leclerc Claude

    2010-06-01

    Full Text Available Abstract Background It is a qualitative design study that examines points of divergence and convergence in the perspectives on recovery of 36 participants or 12 triads. Each triad comprising a patient, a family member/friend, a care provider and documents the procedural, analytic of triangulating perspectives as a means of understanding the recovery process which is illustrated by four case studies. Variations are considered as they relate to individual characteristics, type of participant (patient, family, member/friend and care provider, and mental illness. This paper which is part of a larger study and is based on a qualitative research design documents the process of recovery of people with mental illness: Developing a Model of Recovery in Mental Health: A middle range theory. Methods Data were collected in field notes through semi-structured interviews based on three interview guides (one for patients, one for family members/friends, and one for caregivers. Cross analysis and triangulation methods were used to analyse the areas of convergence and divergence on the recovery process of all triads. Results In general, with the 36 participants united in 12 triads, two themes emerge from the cross-analysis process or triangulation of data sources (12 triads analysis in 12 cases studies. Two themes emerge from the analysis process of the content of 36 interviews with participants: (1 Revealing dynamic context, situating patients in their dynamic context; and (2 Relationship issues in a recovery process, furthering our understanding of such issues. We provide four case studies examples (among 12 cases studies to illustrate the variations in the way recovery is perceived, interpreted and expressed in relation to the different contexts of interaction. Conclusion The perspectives of the three participants (patients, family members/friends and care providers suggest that recovery depends on constructing meaning around mental illness experiences and

  13. Analysis of Exhaust Gas Waste Heat Recovery and Pollution Processing for Z12V190 Diesel Engine

    Directory of Open Access Journals (Sweden)

    Hou Xuejun

    2012-06-01

    Full Text Available With the increasingly prominent problem regarding rapid economy development and the gradually serious environmental pollution, the waste heat recovery and waste gas pollution processing have received significant attention. Z12V190 diesel engine has high fuel consumption and low thermal efficiency and releases large amounts of exhaust gas and waste heat into the atmosphere, causing serious problems of energy waste and environmental pollution. In this work, the diesel engine exhaust gas components are analysed and the diesel engine exhaust emission rates and exhaust gas waste heat rates are calculated. The calculating results proved the economic feasibility of waste heat recovery from Z12V190 diesel engine exhaust gas. Then, the mainly harmful components are analysed and the corresponding methods of purification and processing about Z12V190 diesel engine exhaust gas pollution discussed. In order to achieve full recovery of waste heat, save energy, purify treatment pollution and ultimate to lay the foundation for waste gas recovery and pollution treatment, the comprehensive process flows of Z12V190 diesel engine exhaust gas pollution processing and waste heat recovery are preliminary designed.

  14. Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost

    Science.gov (United States)

    McCarthy, K.; Walker, L.; Vigoren, L.

    2004-01-01

    Accidental releases of approximately 2000 m3 of fuel have resulted in subsurface contamination adjacent to Imikpuk Lake, a drinking-water source near Barrow, AK. This paper presents a conceptual model of the distribution and transport of subsurface free-phase hydrocarbons at this site. The mean annual temperature in Barrow is -13 ??C, and average monthly temperatures exceed 0 ??C only during the months of June, July, and August. As a result, the region is underlain by areally continuous permafrost that extends to depths of up to 300 m and constrains subsurface hydrologic processes to a shallow zone that temporarily thaws each summer. During the 1993 and 1994 thaw seasons, the measured depth of thaw varied across the site from approximately 0.5 to 2 m. However, exploratory borings in 1995 showed that free-phase hydrocarbons were present at depths greater than 3 m, indicating that permafrost at this site is not a barrier to the vertical migration of nonaqueous-phase liquids. In 1996, a subsurface containment barrier was installed to prevent lateral movement of contaminated water to Imikpuk Lake, and a recovery trench was excavated upgradient of the barrier to facilitate removal of free-phase hydrocarbons. Free-phase hydrocarbons were recovered from the trench during 1996, 1997, and 1998. Recovery rates diminished over this time, and in 1999, no further product was recovered and the recovery operation was halted. Subsequent exploratory borings in 2001 and 2002 have revealed that some product remains in the subsurface. Data indicate that this remaining product exists in small discrete pockets or very thin layers of hydrocarbon floating on brine. These small reservoirs appear to be isolated from one another by relatively impermeable permafrost. Published by Elsevier B.V.

  15. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    Science.gov (United States)

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal.

  16. Assessing Energy Efficiency of Compression Heat Pumps in Drying Processes when Zeotropic Hydrocarbon Mixtures are Used as Working Agents

    Directory of Open Access Journals (Sweden)

    Shurayts Alexander

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of renewable energy.The paper proposes a design and a formula for assessing energy efficiency of the heat pump air dryer, which uses zeotropic hydrocarbon mixtures of saturated hydrocarbons as a working agent and applies the principle of a counter-current heat exchanger with a variable temperature of both the working and the drying agents. Energy efficiency of the heat pump is achieved by means of obtaining a greater part of heat from renewable energy sources, in this case by cooling the air and condensing the water vapors in the heat pump. A conducted analysis identified correlations in establishing the marginal real coefficient of performance of the compression heat pump dryer running on zeotropic hydrocarbon mixtures and operating a cycle with variable temperatures of both the working and the drying agent in the evaporator and the condenser of the heat pump. According to the established correlations, the marginal real coefficient of performance of the compression heat pump dryers running on zeotropic hydrocarbon mixtures of 40 mol% of R600a and 60 mol% of R601 is 1.92 times higher than that of the same dryers running on only R600 (n-butane.

  17. Yttrium recovery from primary and secondary sources: a review of main hydrometallurgical processes.

    Science.gov (United States)

    Innocenzi, Valentina; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco

    2014-07-01

    Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  18. Recovery of Work-Related Stress: Complaint Reduction and Work-Resumption are Relatively Independent Processes.

    Science.gov (United States)

    de Vente, Wieke; Kamphuis, Jan Henk; Blonk, Roland W B; Emmelkamp, Paul M G

    2015-09-01

    The process of recovery from work-related stress, consisting of complaint reduction and work-resumption, is not yet fully understood. The aim of this study was to investigate predictors of complaint reduction and work-resumption, as well as testing complaint reduction as a mediator in the association between predictors and work-resumption. Seventy-one patients on sickness-leave because of work-related stress complaints were followed over a period of 13 months. Predictors comprised personal (demographics, coping, cognitions), work-related (job-characteristics, social support), and illness-related (complaint duration, absence duration) variables. Dependent variables were distress complaints, burnout complaints, and work-resumption. Complaints reduced considerably over time to borderline clinical levels and work-resumption increased to 68% at 13 months. Predictors of stronger reduction of distress complaints were male gender, less working hours, less decision authority, more co-worker support, and shorter absence duration. Predictors of stronger reduction of burnout complaints were male gender, lower age, high education, less avoidant coping, less decision authority, more job security, and more co-worker support. Predictors of work-resumption were lower age and stronger reduction of burnout complaints. No indication for a mediating role of burnout complaints between the predictor age and work-resumption was found. Complaint reduction and work-resumption are relatively independent processes. Symptom reduction is influenced by individual and work-related characteristics, which holds promise for a multidisciplinary treatment approach for work-related stress.

  19. Performance of a pinch analysis for the process of recovery of ethanol from fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.; Riverol, C. [Chemical Engineeering Department, University of West Indies (Trinidad and Tobago)

    2007-10-15

    The objectives of the project reported here were to perform an energy analysis for the process of the recovery of ethanol from fermentation broths by catalytic conversion to gasoline and to conduct a pinch analysis to obtain a new heat exchanger network, and thus, reduce the utility costs. A minimum temperature difference of 10 C was used. A temperature interval diagram and cascade diagram were drawn to identify the pinch points and four such points were observed. New heat exchanger networks were formulated from this information. The least number of heat exchangers for the different networks created was 19, whereas the original process had 9. The cost of utilities was the same for both systems. Therefore, it was concluded that the implementation of this system in the Caribbean could be expensive since in the first instance, ethanol is not particularly plentiful. Secondly, electricity and water costs are expensive in the Caribbean compared to other countries in America, such that any effort in reducing CO{sub 2} emissions by using ethanol would not be feasible. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2014-08-01

    Full Text Available Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF. The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  1. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  2. The influence of age, muscle strength and speed of information processing on recovery responses to external perturbations in gait.

    Science.gov (United States)

    Senden, R; Savelberg, H H C M; Adam, J; Grimm, B; Heyligers, I C; Meijer, K

    2014-01-01

    Dynamic imbalance caused by external perturbations to gait can successfully be counteracted by adequate recovery responses. The current study investigated how the recovery response is moderated by age, walking speed, muscle strength and speed of information processing. The gait pattern of 50 young and 45 elderly subjects was repeatedly perturbed at 20% and 80% of the first half of the swing phase using the Timed Rapid impact Perturbation (TRiP) set-up. Recovery responses were identified using 2D cameras. Muscular factors (dynamometer) and speed of information processing parameters (computer-based reaction time task) were determined. The stronger, faster reacting and faster walking young subjects recovered more often by an elevating strategy than elderly subjects. Twenty three per cent of the differences in recovery responses were explained by a combination of walking speed (B=-13.85), reaction time (B=-0.82), maximum extension strength (B=0.01) and rate of extension moment development (B=0.19). The recovery response that subjects employed when gait was perturbed by the TRiP set-up was modified by several factors; the individual contribution of walking speed, muscle strength and speed of information processing was small. Insight into remaining modifying factors is needed to assist and optimise fall prevention programmes.

  3. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.

    Science.gov (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco

    2016-12-15

    Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4(2)). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths.

  4. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  5. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    Science.gov (United States)

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Developing a vacuum thermal stripping - acid absorption process for ammonia recovery from anaerobic digester effluent.

    Science.gov (United States)

    Ukwuani, Anayo T; Tao, Wendong

    2016-12-01

    To prevent acetoclastic methanogens from ammonia inhibition in anaerobic digestion of protein-rich substrates, ammonia needs to be removed or recovered from digestate. This paper presents an innovative ammonia recovery process that couples vacuum thermal stripping with acid absorption. Ammonia is stripped out of digestate boiling at a temperature below the normal boiling point due to vacuum. Stripped ammonia is absorbed to a sulfuric acid solution, forming ammonium sulfate crystals as a marketable product. Three common types of digestate were found to have boiling point temperature-vacuum curves similar to water. Seven combinations of boiling temperature and vacuum (50 °C 16.6 kPa, 58 °C 20.0 kPa, 65 °C 25.1 kPa, 70 °C 33.6 kPa, 80 °C 54.0 kPa, 90 °C 74.2 kPa, and 100 °C 101.3 kPa) were tested for batch stripping of ammonia in dairy manure digestate. 93.3-99.9% of ammonia was stripped in 3 h. The Lewis-Whitman model fitted ammonia stripping process well. Ammonia mass transfer coefficient was significantly higher at boiling temperature 65-100 °C and vacuum pressure 25.1-101.3 kPa than 50-58 °C and 16.6-20.0 kPa. The low ammonia saturation concentrations (0-24 mg N/L) suggested a large driving force to strip ammonia. The optimum boiling point temperature - vacuum pressure for ammonia recovery in a recirculation line of a mesophilic digester was 65 °C and 25.1 kPa, at which the ammonia mass transfer coefficient was as high as 37.3 mm/h. Installation of a demister and liquid trap could avoid negative effects of higher stripping temperature and stronger vacuum on formation of ammonium sulfate crystals. Pilot tests demonstrated that high-purity ammonium sulfate crystals could be produced by controlling sulfuric acid content and maintaining acid solution saturated with ammonium sulfate. Although volatile organic compounds such as cyclohexene were found in the final acid solutions, no volatile organic compounds were found in the recovered

  7. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  8. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  9. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    Science.gov (United States)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  10. Energy Recovery from a Low Consistency TMP Process - A Feasibility Study; Energiaatervinning vid LC-raffinering - Foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkqvist, Olof; Engstrand, Per; Friden, Haakan

    2008-11-15

    Normally, steam recovery from a conventional low consistency (LC) mechanical pulp refining system is not possible. This is due to the fact that the temperature level in the LC-refiner is less than 100 deg C. The steam with such a low temperature and associated pressure has limited value in the mill. In this project, we study a concept of increasing the temperature in the refiner to a level were process steam with higher quality can be recovered. The temperature level can be increased by transferring heat from outgoing pulp or drainage to incoming pulp or water. This makes it possible to recover heat from the process. An initial estimate indicates that steam recovery from LC-refining systems may have a good economic potential. Three cases have been analyzed: Case A: Steam recovery in combination with pulp/pulp heat exchanging, Case B: Steam recovery in combination with a pressurized screw press and finally Case C: steam recovery in combination with pump/water heat exchanging. Case B show the best specific steam recovery, 87% kWh recovered steam per kWh used electricity. This concept has a lower technological uncertainty compared to cases A and C as it does not need heat exchanging from pulp. The specific heat recovery from case A and C is 78% and 82% respectively. However, the suggested heat exchangers used in these cases do not exist on the market today. There is hence a need for development of exchangers that can handle pulp with high viscosity. The technological risk associated with the screw press scenario is lower and it is likely that this concept is easier to implement

  11. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  12. Membrane filtration process and bioreactor for elimination of chlorinated hydrocarbons from industrial effluents; Membranfiltration und Bioreaktor zur Eliminierung chlorierter Kohlenwasserstoffe aus Industrieabwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Schierenbeck, A.

    2003-07-01

    Selective separation and elimination of chlorinated hydrocarbons from industrial effluents directly at the production site was to be achieved by a combined process including membrane technology and biodegradation. This way, closed cycle processes can be designed which will be a major contribution to environmental protection integrated in production processes. First, chlorinated hydrocarbons are characterized in terms of occurrence and biodegradability. Two model substances are discussed (3-chlorobenzoic acid and 4-chlorophenol), and a practical example is presented. The fundamentals of the processes used for treatment of industrial effluents are outlined, and their advantages and shortcomings are discussed, with particular regard to integrated application in production processes. [German] Das Ziel dieser Arbeit ist die Entwicklung einer Verfahrenstechnik, bei der durch die Kombination der Membrantechnik mit dem biologischen Abbau die selektive Abtrennung und Eliminierung chlorierter Kohlenwasserstoffe aus dem Industrieabwasser schon am Ort des Entstehens realisiert werden. Durch den Einsatz dieser Technik wird die Schliessung von Wasserkreislaeufen moeglich. Dies stellt fuer alle Bereiche, in denen chlorierte Kohlenwasserstoffe in das Abwasser gelangen koennen, einen wichtigen Beitrag zum produktionsintegrierten Umweltschutz dar. Dazu wird zunaechst die Problemstoffgruppe der chlorierten Kohlenwasserstoffe hinsichtlich ihres Auftretens und der biologischen Abbaubarkeit charakterisiert. Zwei Modellsubstanzen (3-Chlorbenzoesaeure und 4-Chlorphenol) werden diskutiert sowie ein Beispiel aus der Praxis vorgestellt, bei dem ein Abwasser mit chlorierten Kohlenwasserstoffen anfaellt. Die Grundlagen der verwendeten Verfahren zur Behandlung von Industrieabwaessern mit entsprechenden Abwasserinhaltsstoffen werden dargestellt. Die Moeglichkeiten und Grenzen dieser Verfahren, insbesondere im Hinblick auf den produktionsintegrierten Einsatz, werden diskutiert. (orig.)

  13. Processes in petroleum chemistry. Technical and economical characteristics Vol. 1. Synthesis gas and derivatives. Main hydrocarbon intermediaries (2 ed. )

    Energy Technology Data Exchange (ETDEWEB)

    Chauvel, A.; Lefebvre, G.; Castex, L.

    1985-01-01

    The aim of this book is to give rudiments for a preliminary study to outline petrochemical operation and cost estimation. Basic operations are examined: Steam reforming or partial oxidation, steam or thermal cracking and catalytic reforming. The main topics examined include: hydrogen purification, hydrogen fabrication from hydrocarbons, carbonaceous materials or water, production of carbon monoxide, ammoniac synthesis methanol synthesis from synthesis gas, preparation of formol, urea, acetylene and monomers for the preparation of plastics.

  14. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    Energy Technology Data Exchange (ETDEWEB)

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  15. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  16. A simple recovery process for biodegradable plastics accumulated in cyanobacteria treated with ionic liquids.

    Science.gov (United States)

    Kobayashi, Daigo; Fujita, Kyoko; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2015-02-01

    Here, we proposed a simple recovery process for poly(3-hydroxybutyrate) (PHB) accumulated in cyanobacteria by using ionic liquids (ILs), which dissolve cyanobacteria but not PHB. First, we investigated the effects of IL polarity on hydrogen-bonding receipt ability (β value) and hydrogen-bonding donating ability (α value) and evaluated the subsequent dissolution of cyanobacteria. We found that ILs having α values higher than approximately 0.4 and β values of approximately 0.9 were suitable for dissolution of cyanobacteria. In particular, 1-ethyl-3-methylimidazolium methylphosphonate ([C2mim][MeO(H)PO2]) was found to dissolve cyanobacteria components, but not PHB. Thus, we verified that PHB produced in cyanobacteria could be separated and recovered by simple filtering after dissolution of cyanobacteria in [C2mim][MeO(H)PO2]. Using this technique, more than 98 % of PHB was obtained on the filter as residues separated from cyanobacteria. Furthermore, [C2mim][MeO(H)PO2] maintained the ability to dissolve cyanobacteria after a simple recycling procedure.

  17. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  18. Process for the recovery of tungsten in a pure form from tungsten-containing materials

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, M.; Moscovici, A.

    1986-12-16

    A process is described for the recovery of tungsten from tungsten-containing materials which comprises the steps of (i) admixing the tungsten-containing material with a melt at a temperature of between 680/sup 0/C and 750/sup 0/C. The melt consists of a salt selected from the group consisting of sodium nitrate, sodium nitrite and mixtures thereof in a substantially stoichiometrical amount to the tungsten constituent of the tungsten-containing material. This is done to disintegrate the tungsten-containing material and to form sodium tungstate, cooling the melt, and leaching the cooled melt with water to obtain an aqueous solution of sodium tungstate; (ii) admixing a solution of calcium chloride with the aqueous solution of sodium tungstate at a temperature of between 40/sup 0/C and 95/sup 0/C to form a calcium tungstate precipitate and separating the calcium tungstate; (iii) admixing the calcium tungstate with a preheated concentrated hydrochloric acid solution to form a tungstic acid precipitate and a CaCl/sub 2/ solution having a concentration of between 80 g/l and 180 g/l free HCl and separating the tungstic acid precipitate and obtaining tungstic acid which is substantially free of calcium ions, and (iv) calcining the tungstic acid to convert it to tungstic oxide and reducing the tungstic oxide to form metallic tungsten.

  19. RECOVERY OF URANIURN FROM CARBONATE SOLUTIONS USING STRONGLY BASIC ANION EXCHANGER 3.THE MECHANISMS OF RECOVERY PROCESSES

    Institute of Scientific and Technical Information of China (English)

    SongYinjie; ZhangHui; 等

    1997-01-01

    A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of reecovering uranium from carbonate solutions using strongly basic anion exchanger.Two important factors,swelling and ion exchange,which directly affect the violume of ion exchangers were taken into account.An ion exchange mechanism has been found for the forward reaction PCl/[UO2(CO3)3]4-,and is partical diffusion governing at high concentration of the complex anion.The mechanism of RCl/U(VI) at pH 5.5-7.5 is a chemical reaction taking place at the moving boundary of the unreacted nucleus.For the reverse reaction RnU/NaCl,the uranyl tricarbonate complex anion in the resin phase is replaced by Cl- ions with an ion exchange mechanism alway determined by particle diffusion.The other forms of uranium in the solid phase loaded on the resin at pH5.5-7.5 should belong to non-exchangeable uranium.The mechanism of the reverse reaction RnU/HCl is always chemical reaction which is not restricted to the moving boundary of the unreacted core.

  20. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260

    Science.gov (United States)

    A simultaneous saccharification, fermentation, and recovery (SSFR) process was developed for production of acetone butanol ethanol (AB or ABE), of which butanol is the main product, from corn stover employing Clostridium beijerinckii P260. Of the 86 gL^-1^ corn stover, over 97% of the sugars were r...

  1. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  2. Optimization of process parameters by Taguchi method in the recovery of lactose from whey using sonocrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S. V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2010-07-15

    Anti-solvent crystallization of lactose in the presence of ultrasound will reduce crystal size and the level of agglomeration as compared to the commercial cooling crystallization. It offers a potential route to enhance the physical properties as well as the rapid recovery of lactose. Since lactose recovery itself can reduce biological oxygen demand of whey by more then 80%, recovery of lactose from dairy waste stream (whey) solves the problems of dairy industries by improving economics of whey utilization and pollution reduction. In the present study, recovery of lactose from partially deproteinated whey using an anti-solvent (acetone) by sonocrystallization was optimized for finding the most influencing operating parameters; such as sonication time, anti-solvent concentration, initial lactose concentration in the whey and initial pH of sample mixture at three levels using L{sub 9}-orthogonal method. The responses were analyzed for recovery of lactose from whey. The anti-solvent concentration and the sonication time were found to be most influencing parameters for the recovery of lactose and the recovery of lactose was found to be 89.03% at the identified optimized level. The crystal size distribution of recovered lactose was found to be narrower (2.5 - 6.5 {mu}m) as compared to the commercial lactose crystals (3.5 - 9.5 {mu}m). (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Natural stone muds as secondary raw materials: towards a new sustainable recovery process

    Science.gov (United States)

    Zichella, Lorena; Tori, Alice; Bellopede, Rossana; Marini, Paola

    2016-04-01

    The production of residual sludge is a topical issue, and has become essential to recover and reuse the materials, both for the economics and the environmental aspect. According to environmental EU Directives, in fact ,the stone cutting and processing should characterized by following objectives, targets and actions: the reduction of waste generated, the decreasing of use of critical raw material, the zero landfilling of sludge and decreasing in potential soil contamination, the prevention of transport of dangerous waste, the reduction of energy consumption, the zero impact on air pollution and the cost reduction . There are many industrial sector in which residual sludge have high concentrations of metals and/or elements deemed harmful and therefore hazardous waste. An important goal, for all industrial sectors, is an increase in productivity and a parallel reduction in costs. The research leads to the development of solutions with an always reduced environmental impact. The possibility to decrease the amount of required raw materials and at the same time the reduction in the amount of waste has become the aim for any industrial reality. From literature there are different approaches for the recovery of raw and secondary materials, and are often used for the purpose chemical products that separate the elements constituting the mud but at the same time make additional pollutants. The aim of the study is to find solutions that are environmentally sustainable for both industries and citizens. The present study is focused on three different Piedmont rocks: Luserna, Diorite from Traversella and Diorite from Vico, processed with three different stone machining technologies: cutting with diamond wire in quarry (blocks), in sawmill (slabs) and surface polishing. The steps are: chemical analysis, particle size analysis and mineralogical composition and characterization of the sludge obtained from the various machining operations for the recovery of the metal material by

  4. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.

    Science.gov (United States)

    Fan, Bailin; Chen, Xiangping; Zhou, Tao; Zhang, Jinxia; Xu, Bao

    2016-05-01

    In this work, an eco-friendly and hydrometallurgical process for the recovery of cobalt and lithium from spent lithium-ion batteries has been proposed, which includes pretreatment, citric acid leaching, selective chemical precipitation and circulatory leaching. After pretreatment (manual dismantling, N-methyl pyrrolidone immersion and calcination), Cu and Al foils are recycled directly and the cathode active materials are separated from the cathode efficiently. Then, the obtained cathode active materials (waste LiCoO2) was firstly leached with 1.25 mol l(-1) citric acid and 1 vol.% H2O2 solution. Then cobalt was precipitated using oxalic acid (H2C2O4) under a molar ratio of 1:1.05 (H2C2O4: Co(2+)). After filtration, the filtrate (containing Li(+)) and H2O2 was employed as a leaching agent and the optimum conditions are studied in detail. The leaching efficiencies can reach as high as 98% for Li and 90.2% for Co, respectively, using filter liquor as leaching reagent under conditions of leaching temperature of 90°C, 0.9 vol.% H2O2 and a solid-to-liquid ratio of 60 ml g(-1) for 35 min. After three bouts of circulatory leaching, more than 90% Li and 80% Co can be leached under the same leaching conditions. In this way, Li and Co can be recovered efficiently and waste liquor re-utilization is achievable with this hydrometallurgical process, which may promise both economic and environmental benefits.

  5. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    Science.gov (United States)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated

  6. In defence of a humanistic approach to mental health care: recovery processes investigated with the help of clients' narratives on turning points and processes of gradual change.

    Science.gov (United States)

    Kogstad, R E; Ekeland, T-J; Hummelvoll, J K

    2011-08-01

    Several studies in recent years have shown that recovery factors as experienced by clients are not always compatible with professional approaches. For example, clients often emphasize the importance of relationships and the satisfaction of universal human needs. The aim of the study has been to explore clients' descriptions of beneficial factors and to discuss the implications of those factors for the delivery of mental health services. Method has been qualitative content analysis of 347 user narratives. The study confirms findings in earlier recovery studies, but also demonstrates that the investigation of clients' stories leads to a range of existential dilemmas. Fundamental beliefs about what constitutes effective and necessary treatment are challenged. Recovery is a fundamentally personal process that involves finding a new sense of self and feeling of hope. Furthermore, it is not only an internal process; it also requires external conditions that facilitate a positive culture of healing.

  7. Application des fluides supercritiques à la production d'hydrocarbures. Exploitation des gisements par récupération assistée et applications diverses : pétrole, sables, schistes, charbons Application of Supercritical Fluids to Hydrocarbon Production. Enhanced Oi Recovery and Miscellaneous Applications: Oil, Tar Sands, Shales, Coals

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-11-01

    Full Text Available Le taux moyen de récupération par drainage naturel des gisements pétroliers atteint à peine 30 %. La récupération assistée désigne l'ensemble des procédés d'exploitation qui permettent d'accroître très sensiblement ce taux. Parmi ces procédés, l'injection de fluides supercritiques joue un rôle prometteur. Les principaux fluides actuellement utilisés sont : le méthane (ou plus généralement les gaz hydrocarbures dits pauvres , l'azote et enfin le gaz carbonique. Les domaines d'application et les mécanismes thermodynamiques mis en jeu sont brièvement exposés, les sources de fluides supercritiques disponibles au voisinage des gisements pétroliers sont rapidement répertoriées et certains problèmes d'exploitation évoqués. Outre leur application en récupération assistée, les fluides supercritiques sont également impliqués dans des procédés de raffinage et d'extraction divers. C'est le procédé de désasphaltage de fractions pétrolières lourdes qui, en 1956, a fait l'objet de la première application industrielle exploitant les fortes variations du pouvoir solvant d'un fluide au voisinage de son point critique. Ce procédé connaît, depuis une dizaine d'années, un regain d'intérêt du fait de l'économie d'énergie qu'il permet de réaliser. D'autre part, les schistes bitumineux, les sables asphaltiques et les charbons, sources d'hydrocarbures considérables pour l'avenir, constituent des domaines d'applications potentielles originales des fluides supercritiques. Les procédés spécifiques, pour la plupart en cours de développement au stade pilote, sont passés en revue. The average recovery by natural drainage from oil fields is barely 30%. Enhanced recovery includes all production processes which appreciably increase this rate. Among such processes, supercritical fluid flooding is quite promising. The main fluids now used are methane (or, more generally, so-called leangaseous hydrocarbons, nitrogen and carbon

  8. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  9. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  10. Konditherm process for heat recovery. From concept to implementation; Konditherm-Verfahren zur Waermerueckgewinnung. Von der Idee zur Realisierung

    Energy Technology Data Exchange (ETDEWEB)

    Schu, G.F.

    2007-07-01

    The development of a process for heat recovery from vapours is presented. Vapours are bound to dispersed condensates by a process of mixed condensation. This will heat the condensate up to a high temperature level which can be used for supplying room heating systems, water heating systems and refrigeration systems working by the absorption technique. The contribution outlines the development from the first concept to experiments, pilot plant constructing and industrial-scale application. (orig.)

  11. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  12. Biomass Conversion to Hydrocarbon Fuels Using the MixAlcoTM Process Conversion de la biomasse en combustibles hydrocarbonés au moyen du procédé MixAlcoTM

    Directory of Open Access Journals (Sweden)

    Taco-Vasquez S.

    2013-04-01

    Full Text Available The MixAlcoTM process converts biomass to hydrocarbons (e.g., gasoline using the following generic steps: pretreatment, fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, oligomerization and saturation. This study describes the production of bio-gasoline from chicken manure and shredded office paper, both desirable feedstocks that do not require pretreatment. Using a mixed culture of microorganisms derived from marine soil, the biomass was fermented to produce a dilute aqueous solution of carboxylate salts, which were subsequently descummed and dried. The dry salts were thermally converted to raw ketones, which were distilled to remove impurities. Using Raney nickel catalyst, the distilled ketones were hydrogenated to mixed secondary alcohols ranging from C3 to C12. Using zeolite HZSM-5 catalyst, these alcohols were oligomerized to hydrocarbons in a plug -flow reactor. Finally, these unsaturated hydrocarbons were hydrogenated to produce a mixture of hydrocarbons that can be blended into commercial gasoline. Le procédé MixAlcoTM convertit la biomasse en hydrocarbures (par exemple, en essence selon les étapes génériques suivantes : prétraitement, fermentation, écumage, déshydratation, cétonisation thermique, distillation, hydrogénation, oligomérisation et saturation. Cette étude décrit la production de bioessence à partir de fumier de poulet et de papier en lambeaux, ces deux sources étant des matières premières convoitées ne nécessitant pas de prétraitement. À l’aide d’une culture mixte de microorganismes dérivés de sols marins, la biomasse a été soumise à une fermentation de manière à produire une solution aqueuse diluée de sels de carboxylates, ultérieurement écumés et séchés. Les sels séchés ont été thermiquement convertis en cétones brutes, ensuite distillées afin d’éliminer les impuretés. À l’aide du catalyseur à base de nickel de Raney, les c

  13. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process.

    Science.gov (United States)

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-06-15

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu(2)O and beta-PbO(2) in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11h, 20 mA cm(-2), respectively. The recovery percentages of copper and lead under optimum SCWO+EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  14. Development of a higher-order finite volume method for simulation of thermal oil recovery process using moving mesh strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, M. [Heriot Watt Univ., Edinburgh (United Kingdom)

    2008-10-15

    This paper described a project in which a higher order up-winding scheme was used to solve mass/energy conservation equations for simulating steam flood processes in an oil reservoir. Thermal recovery processes are among the most complex because they require a detailed accounting of thermal energy and chemical reaction kinetics. The numerical simulation of thermal recovery processes involves localized phenomena such as saturation and temperatures fronts due to hyperbolic features of governing conservation laws. A second order accurate FV method that was improved by a moving mesh strategy was used to adjust for moving coordinates on a finely gridded domain. The Finite volume method was used and the problem of steam injection was then tested using derived solution frameworks on both mixed and moving coordinates. The benefits of using a higher-order Godunov solver instead of lower-order ones were qualified. This second order correction resulted in better resolution on moving features. Preferences of higher-order solvers over lower-order ones in terms of shock capturing is under further investigation. It was concluded that although this simulation study was limited to steam flooding processes, the newly presented approach may be suitable to other enhanced oil recovery processes such as VAPEX, SAGD and in situ combustion processes. 23 refs., 28 figs.

  15. Using Fluvial Geomorphology as a Physical Template in Process-Based and Recovery Enhancement Approaches to River Management

    Science.gov (United States)

    Fryirs, K.

    2016-12-01

    In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.

  16. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  17. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium.

    Science.gov (United States)

    Kwon, Eilhann E; Oh, Jeong-Ik; Kim, Ki-Hyun

    2015-09-01

    Our work reported the CO2-assisted mitigation of PAHs and VOCs in the thermo-chemical process (i.e., pyrolysis). To investigate the pyrolysis of used tires to recover energy and chemical products, the experiments were conducted using a laboratory-scale batch-type reactor. In particular, to examine the influence of the CO2 in pyrolysis of a tire, the pyrolytic products including C1-5-hydrocarbons (HCs), volatile organic carbons (VOCs), and polycyclic aromatic hydrocarbons (PAHs) were evaluated qualitatively by gas chromatography (GC) with mass spectroscopy (MS) as well as with a thermal conductivity detector (TCD). The mass balance of the pyrolytic products under various pyrolytic conditions was established on the basis of their weight fractions of the pyrolytic products. Our experimental work experimentally validated that the amount of gaseous pyrolytic products increased when using CO2 as a pyrolysis medium, while substantially altering the production of pyrolytic oil in absolute content (7.3-17.2%) and in relative composition (including PAHs and VOCs). Thus, the co-feeding of CO2 in the pyrolysis process can be considered an environmentally benign and energy efficient process.

  18. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    Science.gov (United States)

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  19. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.

    Science.gov (United States)

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  20. Optimal swab processing recovery method for detection of bioterrorism-related Francisella tularensis by real-time PCR.

    Science.gov (United States)

    Walker, Roblena E; Petersen, Jeannine M; Stephens, Kenyatta W; Dauphin, Leslie A

    2010-10-01

    Francisella tularensis, the etiological agent of tularemia, is regarded as a potential bioterrorism agent. The advent of bioterrorism has heightened awareness of the need for validated methods for processing environmental samples. In this study we determined the optimal method for processing environmental swabs for the recovery and subsequent detection of F. tularensis by the use of real-time PCR assays. Four swab processing recovery methods were compared: heat, sonication, vortexing, and the Swab Extraction Tube System (SETS). These methods were evaluated using cotton, foam, polyester and rayon swabs spiked with six pathogenic strains of F. tularensis. Real-time PCR analysis using a multi-target 5'nuclease assay for F. tularensis showed that the use of the SETS method resulted in the best limit of detection when evaluated using multiple strains of F. tularensis. We demonstrated also that the efficiency of F. tularensis recovery from swab specimens was not equivalent for all swab processing methodologies and, thus, that this variable can affect real-time PCR assay sensitivity. The effectiveness of the SETS method was independent of the automated DNA extraction method and real-time PCR platforms used. In conclusion, diagnostic laboratories can now potentially incorporate the SETS method into specimen processing protocols for the rapid and efficient detection of F. tularensis by real-time PCR during laboratory bioterrorism-related investigations.

  1. Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of Gammarus pulex populations after exposure to pesticides.

    Science.gov (United States)

    Galic, Nika; Ashauer, Roman; Baveco, Hans; Nyman, Anna-Maija; Barsi, Alpar; Thorbek, Pernille; Bruns, Eric; Van den Brink, Paul J

    2014-07-01

    Because aquatic macroinvertebrates may be exposed regularly to pesticides in edge-of-the-field water bodies, an accurate assessment of potential adverse effects and subsequent population recovery is essential. Standard effect risk assessment tools are not able to fully address the complexities arising from multiple exposure patterns, nor can they properly address the population recovery process. In the present study, we developed an individual-based model of the freshwater amphipod Gammarus pulex to evaluate the consequences of exposure to 4 compounds with different modes of action on individual survival and population recovery. Effects on survival were calculated using concentration-effect relationships and the threshold damage model (TDM), which accounts for detailed processes of toxicokinetics and toxicodynamics. Delayed effects as calculated by the TDM had a significant impact on individual survival and population recovery. We also evaluated the standard assessment of effects after short-term exposures using the 96-h concentration-effect model and the TDM, which was conservative for very short-term exposure. An integration of a TKTD submodel with a population model can be used to explore the ecological relevance of ecotoxicity endpoints in different exposure environments. © 2014 SETAC.

  2. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level.IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  3. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  4. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    Science.gov (United States)

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro

    2016-09-19

    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics.

  5. Soil C recovery on eroded land: progress towards representing erosion processes in UNFCC reporting

    Science.gov (United States)

    Baisden, W. T.; Tate, K. R.; Wilde, R. H.; Lambie, S. M.

    2006-05-01

    New Zealand's tectonic activity and mountainous landscape present unique problems for quantifying the terrestrial C cycle. Recent work has shown that New Zealand's riverine flux of particulate organic carbon to the oceans is approximately 30 percent of the nation's carbon dioxide emissions, and evidence exists to suggest that a similar or greater quantity of soil C is eroded and redeposited in the terrestrial landscape. These results motivated our work to understand the rate of soil C recovery from erosion and estimate the uncertainty related to the fate of C in depositional zones on national land-atmosphere carbon dioxide exchange. Because landslides occur at a known time, they present a unique opportunity for studying erosion and recovery. We measured soil organic C stocks on chronosequences of landslides under grazed pastures and regenerating forests, and compared them to soil C stocks in unslipped pastures and forests. Soil C stocks in landslides were measured to the lesser of approximate depth of the soil contact with unweathered rock, or to 1 m depth. Results suggest that uneroded soils under regenerating forest recover to approximately 40 percent and 55 percent of unslipped C stocks during 18 and 77 years, respectively. Pasture soils recovered to 40 percent and 70 percent of unslipped C stocks during 23 and 37 years. Thus, initial rates of recovery are similar under pasture and forest, but after several decades recovery under pasture may be faster, presumably due to higher rates of N fixation. These rates of soil C recovery, combined with rates of riverine transport following major storms, suggest that the fate of C in the depositional zone remains the largest source of uncertainty in estimates of the effect of erosion on the C cycle in New Zealand's landscapes. Nevertheless, quantifying rates of soil C recovery from erosion and riverine particulate organic C transport make it possible to calculate robust uncertainties which could potentially be included in

  6. Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater.

    Science.gov (United States)

    Dubey, Kirti V; Juwarkar, Asha A; Singh, S K

    2005-01-01

    Methods used for biosurfactant recovery include solvent extraction, precipitation, crystallization, centrifugation and foam fractionation. These methods cannot be used when distillery wastewater (DW) is used as the nutrient medium for biosurfactant production by Pseudomonas aeruginosa strain BS2, because recovery of biosurfactant by any of these methods imparts color to the biosurfactant. The biosurfactant has a nonaesthetic appearance with lowered surface active properties. These methods cannot be used for continuous recovery of biosurfactant during cultivation. Hence, a new downstream technique for biosurfactant recovery from fermented DW comprised of adsorption-desorption processes using wood-based activated carbon (WAC) was developed. This study involves batch experiments to standardize the factors affecting the rate of biosurfactant adsorption onto WAC. WAC was the most efficient adsorbent among various ones tested (i.e., silica gel, activated alumina and zeolite). The WAC (1% w v(-1)), equilibrium time (90 min), pH range of 5-10 and temperature of 40 degrees C were optimum to achieve 99.5% adsorption efficiency. Adsorption kinetics and intraparticle diffusion studies revealed the involvement of both boundary layer diffusion and intraparticle diffusion. The Langmuir adsorption isotherm of WAC indicated the formation of a monolayer coverage of the biosurfactant over a homogeneous carbon surface, while the Freundlich isotherm showed high adsorption at strong solute concentrations and low adsorption at dilute solute concentrations. WAC concentration of 4% w v(-1) facilitated complete removal of the biosurfactant from collapsed foam (contained 5-fold higher concentration of biosurfactant than was present in fermented DW). Biosurfactant adsorption was of chemisorption type. Acetone (polar solvent) was a specific viable eluant screened among various ones tested because it selectively facilitated maximum recovery, i.e., 89% biosurfactant from WAC. By acetone

  7. Microfinance institutions and a coastal community's disaster risk reduction, response, and recovery process: a case study of Hatiya, Bangladesh.

    Science.gov (United States)

    Parvin, Gulsan Ara; Shaw, Rajib

    2013-01-01

    Several researchers have examined the role of microfinance institutions (MFIs) in poverty alleviation, but the part that they play in disaster risk reduction remains unaddressed. Through an empirical study of Hatiya Island, one of the most vulnerable coastal communities of Bangladesh, this research evaluates perceptions of MFI support for the disaster risk reduction, response, and recovery process. The findings reveal no change in relation to risk reduction and income and occupation aspects for more than one-half of the clients of MFIs. In addition, only 26 per cent of them have witnessed less damage as a result of being members of MFIs. One can argue, though, that the longer the membership time period the better the disaster preparedness, response, and recovery process. The outcomes of this study could help to guide the current efforts of MFIs to enhance the ability of coastal communities to prepare for and to recover from disasters efficiently and effectively.

  8. Use of liquid/supercritical CO2 extraction process for butanol recovery from fermentation broth

    Science.gov (United States)

    In order for butanol fermentation to be a viable option, it is essential to recover it from fermentation broth using economical alternate in-situ product recovery techniques such as liquid/supercritical CO2 extraction as compared to distillation. This technique (liquid CO2 extraction & supercritical...

  9. Improving oil recovery in the CO2 flooding process by utilizing nonpolar chemical modifiers☆

    Institute of Scientific and Technical Information of China (English)

    Yong Yang; Xiangliang Li; Ping Guo; Yayun Zhuo; Yong Sha

    2016-01-01

    By means of experiments of CO2 miscibility with crude oil, four nonpolar chemicals were evaluated in order to enhance the miscibility of CO2 with crude oil. Through pre-slug injection and joint injection of toluene in CO2, crude oil displacement experiments in the slim-tube were conducted to investigate effects of the toluene-enhanced CO2 flooding under simulated subterranean reservoir conditions. Experimental results showed that toluene can enhance extraction of oil into CO2 and dissolution of CO2 into oil with the increment of 251%and 64%respectively. Addition of toluene can obviously improve the oil recovery in either pre-slug injection or joint injection, and the crude oil recovery increased with the increase of the toluene concentration. The oil recov-ery can increase by 22.5%in pre-slug injection with the high toluene concentration. Pre-slug injection was recom-mended because it can consume less toluene than joint injection. This work could be useful to development and application of the CO2 flooding in the oil recovery as wel as CO2 emission reduction.

  10. Visual processing during recovery from vegetative state to consciousness: Comparing behavioral indices to brain responses

    NARCIS (Netherlands)

    Wijnen, V.J.; Eilander, H.J.; Gelder, B. de; Boxtel, G.J. Van

    2014-01-01

    BACKGROUND: Auditory stimulation is often used to evoke responses in unresponsive patients who have suffered severe brain injury. In order to investigate visual responses, we examined visual evoked potentials (VEPs) and behavioral responses to visual stimuli in vegetative patients during recovery to

  11. Hydrometallurgical Processing and Recovery of Nickel from Spent Cathode Ray Tubes

    Directory of Open Access Journals (Sweden)

    Coman V.

    2013-04-01

    elevated Ni market price. In the current study we propose a technological process for Ni recovery from the metallic components of CRT waste. After a preliminary separation into glass, plastic, ceramic and metallic parts, the metallic components were subjected to a magnetic separation and their composition was determined. We have chosen to recover Ni from the magnetic components due to a higher content of Ni and to avoid the contamination with Cr (present in the non-magnetic components. In the next step, chemical and electrochemical waste solubilisation was performed (Robotin et al., 2011. Apart from Ni (25–36 %, the resulting solutions contain large amounts of Fe (50–64 % and small quantities of Co and Mn. In order to obtain metallic Ni, the solution needed to be purified, the first step being Fe removal. Fe was separated by chemical precipitation of Fe3+ under pH and temperature control. Ni was deposited on copper electrodes by electrowinning. At the same time, the electrodeposition of Ni-Fe alloys from synthetic solutions similar to those obtained by dissolution of EG waste was studied. The influence of some parameters (current density, bath composition, Ni2+:Fe2+ ratio on the electrodeposition process was investigated.

  12. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  13. ANALYTICAL STUDY ON FLOW PROCESS OF FLOATING-OIL RECOVERY DEVICE FROM OIL-CONTAMINATED SEAWATER BY MHD METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-yan; PENG Yan; ZHAO Ling-zhi; LI Ran; SHA Ci-wen

    2007-01-01

    A new method of recovering maritime oil-spill based on electromagnetic force, the so-called MHD oil-spill recovery method was proposed in the IEECAS. The operating process of MHD channel was described in this article. Numerical study was carried out using a two-dimensional water-air two-phase model and the VOF method. The agreement between the numerical and the experimental results was reached.

  14. CELL-ENGINEERING DESIGNS TRANSPLANTED INTO LIVER PROVIDE WITH PROLONGED SUPPORT OF RECOVERY PROCESSES IN DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    M. Y. Shagidulin

    2013-01-01

    Full Text Available Aim is to develop a method for a prolonged support of recovery processes in damaged liver. Materials and me- thods. It was carried out 3 groups of experiments on Wistar rats with the modeling of chronic fibrotic liver injury (n = 70: I group control (n = 20; in the II group (n = 20 a suspension of liver cells was transplanted into liver; in the III group (n = 30 cell-engineering designs (CED, which contained liver cells and BM MMSC, enclosed in a heterogeneous biodegradable gel “Sphero®GEL-long” were transplanted into damaged liver. The activity of recovery processes was evaluated by using biochemical and morphological methods in dynamics on 30, 60, 90 and 180 days. Results. It was shown that in the II and III gr. significantly accelerated the recovery processes in damaged livers compared with the I gr. The normalization of biochemical parameters took place in II and III du- ring 30 days instead of 90 days in the I group. However, the normalization of morphological signs of hepatocytes theirs viability and a degree of defibrotic changes in liver were more pronounced and prolonged in the III group. A study showed integration of CED by liver structures with formation of new bile ducts after 90 and 180 days. Conclusion. Higher levels and prolonged periods of recovery processes in damaged liver after CED transplanta- tion were due to the creation of biologically appropriate conditions for prolonged cell activity, included in their structure (donor liver cells and BM MMSC. 

  15. Recovery after work: the role of work beliefs in the unwinding process.

    Directory of Open Access Journals (Sweden)

    Zoe Zoupanou

    Full Text Available According to the Effort-Recovery model, mental or physical detachment from work is an important mechanism of work related recovery, as delayed recovery has been associated with range of negative health symptoms. In this paper, we examine whether recovery from work (in the form of mentally disengagement from work is affected by the concept of 'work ethic', which refers to beliefs workers hold about their work and leisure and the effects of experiencing interruptions at work. Two indices of post-work recovery were utilized: problem solving pondering and psychological detachment. The study was conducted with 310 participants employed from diverse occupational sectors. Main effects of positive and negative appraisal of work interruption and beliefs were analysed using mediated and moderated regression analysis on problem-solving pondering and detachment. Weakened belief in wasted time as a partial mediator, reduced problem-solving pondering post work when interruptions were appraised as positive, and a high evaluation of leisure partially mediated problem-solving pondering when interruptions were appraised as positive. The results also showed that a high evaluation of centrality of work and leisure moderated the effect of negative appraisal of work interruption on elevated problem-solving pondering. Positive appraisal of work interruption was related to problem-solving pondering, and the strength of this association was further moderated by a strong belief in delay of gratification. In addition, employees' positive appraisal of work interruption was related to work detachment, and the strength of this association was further moderated by strong beliefs in hard work and self-reliance. These findings are discussed in terms of their theoretical and practical implications for employees who are strongly influenced by such work beliefs.

  16. Simplified recovery process of Ralstonia solanacearum-synthesized polyhydroxyalkanoates via chemical extraction complemented by liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    Karine L. Macagnan

    Full Text Available Poly (3-hydroxybutyrate (P(3HB is the most studied thermoplastic biopolymer belonging to the polyhydroxyalkanoate (PHA family, the main features of which include rapid biodegradability and biocompatibility. The bioplastic recovery process is an important step during production and can directly influence the characteristics of PHAs. However, more efficient methods for the production of P(3HB are necessary to make it economically viable. The aim of the present study was to improve the standard, chloroform-based, extraction step for the recovery of P(3HB. The polymer was produced using a Ralstonia solanacearum strain. The following parameters were improved in the recovery process: heating time, separation method (filtration or liquid-liquid phase separation, biomass state (fresh or dry cell concentrate and the solvent:biomass ratio. By improving the chemical extraction of P(3HB we recovered 98% of the cumulative polymer and reduced the heating time by 75%. Furthermore, we improved the separation process and developed an extraction solution that was faster and more economical.

  17. Design trends in low temperature gas processing

    Energy Technology Data Exchange (ETDEWEB)

    White, W.E.; Battershell, D.D.

    1966-01-01

    The following basic trends reflected in recent design of low-temperature gas processing are discussed: (1) higher recovery levels of light hydrocarbon products; (2) lower process temperatures and lighter absorption oils; (3) increased thermodynamic efficiencies; (4) automation; (5) single rather than multiple units; and (6) prefabrication and preassembly of the operating unit.

  18. A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives.

    Science.gov (United States)

    Booth, Eric; Strobel, Gary; Knighton, Berk; Sears, Joe; Geary, Brad; Avci, Recep

    2011-10-01

    A custom-made stainless steel column was designed to contain various materials that would trap the hydrocarbons and hydrocarbon derivatives during the processes of fungal fermentation ultimately yielding preparative amounts of volatile organic substances (VOCs). Trapping materials tested in the column were Carbotrap materials A and B (Supelco) as well as bentonite-shale from the oil bearing areas of Eastern Montana, the former allowed for the effective and efficient trapping of VOCs from purged cultures of Hypoxylon sp. Trapping efficiencies of various materials were measured by both gravimetric as well as proton transfer reaction mass spectroscopy with the Carbotraps A and B being 99% efficient when tested with known amounts of 1,8-cineole. Trapped fungal VOCs could effectively be removed and recovered via controlled heating of the stainless steel column followed by passage of the gases through a liquid nitrogen trap at a recovery rate of ca 65-70%. This method provides for the recovery of mg quantities of compounds normally present in the gas phase that may be needed for spectroscopy, bioassays and further separation and analysis and may have wide applicability for many other biological systems involving VOCs. Other available Carbotraps could be used for other applications.

  19. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L. J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  20. Correlation between work process-related exposure to polycyclic aromatic hydrocarbons and urinary levels of alpha-naphthol, beta-naphthylamine and 1-hydroxypyrene in iron foundry workers

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Omland, Øyvind; Poulsen, O M

    1994-01-01

    risk of lung cancer, the present study suggests that the elevated risk may be due to exposure to carcinogenic PAH compounds in iron foundries, particularly in some high-risk work processes, e.g. casting and molding. In addition, the present study suggests that biological monitoring of 1-hydroxypyrene......In two Danish iron foundries the concentration of polycyclic aromatic hydrocarbons (PAH) in 24 personal air samples of workers employed in selected processes, i.e. melters, melted iron transporters, casters, machine molders, hand molders, shake-out workers and finishing workers, were measured...... foundry workers. Hand molders, finishing workers and truck drivers tended to have the highest levels. Concerning alpha-naphthol the highest concentrations were measured in urine from casters and shake-out workers. With regard to epidemiologic studies demonstrating that molders and casters have a higher...