Sample records for hydrocarbon exhaust emissions

  1. Optimization of gasoline hydrocarbon compositions for reducing exhaust emissions. (United States)

    Shen, Yitao; Shuai, Shijin; Wang, Jianxin; Xiao, Jianhua


    Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (degrees CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents.

  2. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)


    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  3. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil (United States)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan


    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  4. Exhaust emission control and diagnostics (United States)

    Mazur, Christopher John; Upadhyay, Devesh


    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  5. Wall quench and flammability limit effects on exhaust hydrocarbon emissions. Final technical report, Phase 5: 1 August 1980-30 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Fendell, F.


    Progress is reported in a project concerned with simple modeling and laboratory experiments to elucidate the mechanisms whereby trace amounts of unburned hydrocarbons may persist after the combustion event in Otto-cycle-type internal-combustion-engine cylinders, and the fate of these residual hydrocarbons during the power-stroke and exhaust-event portions of the cycle. The motivation for the research is that a highly fuel-lean fast-burn design for the spark-ignition homogeneous-charge, four-stroke engine may permit exceptionally fuel-efficient operation of this highly driveable, relatively well-understood automotive engine. Work during this period concentrated on the mathematical modelling of wall quenching and turbulent flame propagation. (LCL)

  6. Controlling automotive exhaust emissions: successes and underlying science. (United States)

    Twigg, Martyn V


    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures.

  7. Exhaust gas emission from a two-stroke engine

    Energy Technology Data Exchange (ETDEWEB)

    Lippitsch, H.H.; Eichlseder, H.


    According to present day ideas, carbon monoxide CO, hydrocarbons HC and nitrogen oxide NO are regarded as harmful substances in the exhaust gas and are therefore limited by law in some countries. After a survey of the regulations in Europe and the USA, the origin of these substances in a two-stroke engine is briefly described. The effect of the type of engine is then shown by results from various engines. It was found that emission can be drastically reduced by new engine designs. The introduction of exhaust gas regulations in Austria has caused the firm of Bombadier-Rotax to intensify their development work in this field. The state of exhaust gas emission of present day mass-produced engines was compared with previous engines at this opportunity.

  8. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)


    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  9. Turbine Engine Exhaust Hydrocarbon Analysis. Task 1 and 2 (United States)


    exhausts. 2. to determine the effect of these hydrocarbons on atmospheric photochemical processes,using an outdoor smog chamber. This program is to be...other than phthalate esters (plasticizers) which were presumably present as contaminants . The direct-acting mutagens , nitro PAHs, were not detected in...Applicable to Genetic Bioassavs," in Genotoxic Effects of Airborne Agents, R. R. Tice, D. L. Costa, and K. M. Schaich, ed., Plenum Press, 1982. 74

  10. An experimental investigation of exhaust emission from agricultural tractors

    Directory of Open Access Journals (Sweden)

    Rashid Gholami, Hekmat Rabbani, Ali Nejat Lorestani, Payam Javadikia, Farzad Jaliliantabar


    Full Text Available Agricultural machinery is an important source of emission of air pollutant in rural locations. Emissions of a specific tractor engine mainly depend on engine speed. Various driving methods and use of implements with different work capacities can affect the engine load. This study deals with the effects of types of tractors and operation conditions on engine emission. In this study two types of agricultural tractors (MF285 and U650 and some tillage implements such as centrifugal type spreader, boom type sprayer and rotary tiller were employed. Some of the exhausted gases from both tractors in each condition were measured such as, hydrocarbon (HC, carbon monoxide (CO, carbon dioxide (CO2, oxygen (O2 and nitrogen oxide (NO. Engine oil temperature was measured at every step for both types of tractors. Difference between steady-state condition and operation conditions was evaluated. The results showed all exhaust gases that measured and engine oil temperature at every operation conditions are higher than steady-state condition. A general conclusion of the work was that, using various implements and employing different types of tractors effect on engine emissions. The results of variance analysis showed all exhausted gases had a significant relationship with types of implements used at 1%. Also, all exhausted gases except CO had a significant relationship with types of tractors. A further conclusion was that NO emission increased as engine oil temperature increased. The final conclusion was about the difference between MF285 and U650; using U650 at operation conditions is better than MF285 in terms of pollution.

  11. An experimental investigation of exhaust emission from agricultural tractors

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Rashid; Rabbani, Hekmat; Lorestani, Ali Nejat; Javadikia, Payam; Jaliliantabar, Farzad [Mechanics of Agricultural Machinery Department, Razi University of Kermanshah (Iran, Islamic Republic of)


    Agricultural machinery is an important source of emission of air pollutant in rural locations. Emissions of a specific tractor engine mainly depend on engine speed. Various driving methods and use of implements with different work capacities can affect the engine load. This study deals with the effects of types of tractors and operation conditions on engine emission. In this study two types of agricultural tractors (MF285 and U650) and some tillage implements such as centrifugal type spreader, boom type sprayer and rotary tiller were employed. Some of the exhausted gases from both tractors in each condition were measured such as, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2) and nitrogen oxide (NO). Engine oil temperature was measured at every step for both types of tractors. Difference between steady-state condition and operation conditions was evaluated. The results showed all exhaust gases that measured and engine oil temperature at every operation conditions are higher than steady-state condition. A general conclusion of the work was that, using various implements and employing different types of tractors effect on engine emissions. The results of variance analysis showed all exhausted gases had a significant relationship with types of implements used at 1%. Also, all exhausted gases except CO had a significant relationship with types of tractors. A further conclusion was that NO emission increased as engine oil temperature increased. The final conclusion was about the difference between MF285 and U650; using U650 at operation conditions is better than MF285 in terms of pollution.

  12. Low temperature operation and exhaust emission

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J.


    Ambient temperature has the greatest effect on the exhaust emissions of internal combustion engines during the initial cold star and before the engine is fully warmed-up. Fuel evaporation is poor in a cold engine and the fuel-air mixture must be made richer to ensure that the engine weill start and be driveable. However, the combustion of a rich fuel-air mixture is incomplete because of the lack of oxygen, and the exhaust gases will contain an excessive amount of carbon monoxide (CO). The formation of nitrogen oxides (NO/sub x/) in a combustion engine is tied to high temperatures and oxygen concentrations. The conditions in a non-warmed engine using a rich fuel-air mixture are unfavourable for the formation of NO/sub x/ and the emission of NO/sub x/ may even diminish with falling ambient temperature. When the engine has reached its normal operating temperature the exhaust emissions are usually independent of the ambient temperature if the engine is equipped with intake air preheating that is sufficiently powerful. The reduction efficiency of a catalytic converter mainly depends on its operation temperature. Continuous operation at low temperatures may cause rapid poisoning of the converter. At low temperatures, carbon and other particles that do not burn collect on the active surface of the converter reducing its effectiveness.

  13. 33 CFR 157.166 - Hydrocarbon emissions. (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  14. Validated analytical modeling of diesel engine regulated exhaust CO emission rate

    Directory of Open Access Journals (Sweden)

    Waleed F Faris


    Full Text Available Albeit vehicle analytical models are often favorable for explainable mathematical trends, no analytical model has been developed of the regulated diesel exhaust CO emission rate for trucks yet. This research unprecedentedly develops and validates for trucks a model of the steady speed regulated diesel exhaust CO emission rate analytically. It has been found that the steady speed–based CO exhaust emission rate is based on (1 CO2 dissociation, (2 the water–gas shift reaction, and (3 the incomplete combustion of hydrocarbon. It has been found as well that the steady speed–based CO exhaust emission rate based on CO2 dissociation is considerably less than the rate that is based on the water–gas shift reaction. It has also been found that the steady speed–based CO exhaust emission rate based on the water–gas shift reaction is the dominant source of CO exhaust emission. The study shows that the average percentage of deviation of the steady speed–based simulated results from the corresponding field data is 1.7% for all freeway cycles with 99% coefficient of determination at the confidence level of 95%. This deviation of the simulated results from field data outperforms its counterpart of widely recognized models such as the comprehensive modal emissions model and VT-Micro for all freeway cycles.

  15. Benzene exhaust emissions from in-use General Motors vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, J.M.; Williams. R.L. (General Motors Research Labs., Warren, MI (United States))


    Benzene emissions were measured from the exhaust of 73 in-use, light-duty vehicles. Benzene averaged 27 mg/mile for 1983-1987 cars. Hydrocarbon emissions also decreased after 1982 as closed-loop systems and fuel control improved. Benzene emissions showed a modest increase with mileage: the base-line benzene was 6.6 mg/mile with an increase of 1.0 mg/mile for each additional 10,000 miles of travel. Lower levels of benzene were emitted from dual-bed catalysts than from three-way catalysts. However, since many engine modifications were made during the period when dual-bed catalysts were replaced with three-way catalysts than from three-way catalysts. However, since many engine modifications were made during the period when dual-bed catalysts were replaced with three-way catalysts, a direct comparison is difficult. In a recent EPA paper, benzene emissions were calculated to be 102-119 mg/mile for the 1986 vehicle fleet. Based on the in-use values measured in this study of 9.4 mg/mile for 1983-1987 vehicles, substantial decreases in the fleet average are expected as these newer vehicles dominate the vehicle fleet.

  16. A Study on the Model of Traffic Flow and Vehicle Exhaust Emission

    Directory of Open Access Journals (Sweden)

    Han Xue


    Full Text Available The increase of traffic flow in cities causes traffic congestion and accidents as well as air pollution. Traffic problems have attracted the interest of many researchers from the perspective of theory and engineering. In order to provide a simple and practical method for measuring the exhaust emission and assessing the effect of pollution control, a model is based on the relationship between traffic flow and vehicle exhaust emission under a certain level of road capacity constraints. In the proposed model, the hydrocarbons (HC, carbon monoxide (CO, and nitrogen oxides (NOx are considered as the indexes of total exhaust emission, and the speed is used as an intermediate variable. To verify the rationality and practicality of the model, a case study for Beijing, China, is provided in which the effects of taxi fare regulation and the specific vehicle emission reduction policy are analyzed.

  17. Measuring soot particles from automotive exhaust emissions (United States)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul


    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  18. Measuring soot particles from automotive exhaust emissions

    Directory of Open Access Journals (Sweden)

    Andres Hanspeter


    Full Text Available The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  19. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  20. Exhaust after-treatment system with in-cylinder addition of unburnt hydrocarbons (United States)

    Coleman, Gerald N.; Kesse, Mary L.


    Certain exhaust after-treatment devices, at least periodically, require the addition of unburnt hydrocarbons in order to create reductant-rich exhaust conditions. The present disclosure adds unburnt hydrocarbons to exhaust from at least one combustion chamber by positioning, at least partially within a combustion chamber, a mixed-mode fuel injector operable to inject fuel into the combustion chamber in a first spray pattern with a small average angle relative to a centerline of the combustion chamber and a second spray pattern with a large average angle relative to the centerline of the combustion chamber. An amount of fuel is injected in the first spray pattern into a non-combustible environment within the at least one combustion chamber during at least one of an expansion stroke and exhaust stroke. The exhaust with the unburnt amount of fuel is moved into an exhaust passage via an exhaust valve.

  1. Determination of Polycyclic Aromatic Hydrocarbons in Automobile Exhaust by Means of High-Performance Liquid Chromatography with Fluorescence Detection

    DEFF Research Database (Denmark)

    Nielsen, Tom


    A chromatographic method has been developed and applied to the determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter in automobile exhaust, in petrols, and in crankcase oils. The PAHs were purified from other organic compounds by thin-layer chromatography, separated by high......-performance liquid chromatography, and measured by means of on-line fluorescence detection. The identities of the PAHs were verified by comparing the emission spectra obtained by a stop-flow technique with those of standard PAHs...

  2. Exhaust emissions from small engines in handheld devices

    Directory of Open Access Journals (Sweden)

    Lijewski Piotr


    Full Text Available The paper presents the results of investigations on the exhaust emissions carried out under real operating conditions of gasoline engines operating in a power generator and a chainsaw. During the operation of these devices the authors measured the following exhaust emissions: CO, HC, NOx and CO2. For the measurements the authors used a portable exhaust emission analyzer SEMTECH DS by SENSORS. This analyzer measures the concentrations of the exhaust gas components in an on-line mode while the engine is running under real operating conditions (road, field etc.. The exhaust emissions tests of non-road engine applications are performed on engine test beds in the NRSC (ISO 8178 and NRTC tests. The presented method is a new solution in determining of the exhaust emissions from such engines. The obtained results were compared with the applicable emission requirements. Besides, based on the performed investigations, the authors attempted an evaluation of the possibilities of the use of the measurement method for development works related to the reduction of the emission from small gasoline engines.

  3. Non-exhaust PM emissions from electric vehicles (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.


    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  4. Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends. (United States)

    Li, Lan; Ge, Yunshan; Wang, Mingda; Peng, Zihang; Song, Yanan; Zhang, Liwei; Yuan, Wanli


    The emission characteristics of motorcycles using gasoline and E10 (90% gasoline and 10% ethanol by volume) were investigated in this article. Exhaust and evaporative emissions of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED) including regulated and unregulated emissions. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions including carbonyls and volatile organic compounds (VOCs) were sampled through battery-operated air pumps using tubes coated with 2,4-dinitrophenylhydrazine (DNPH) and Tenax TA, respectively. The experimental results showed that the emission factors of total hydrocarbons (THC) and carbon monoxide (CO) from E10 fueling motorcycles decreased by 26%-45% and 63%-73%, while the emission factor of NOx increased by 36%-54% compared with those from gasoline fueling motorcycles. For unregulated emissions, the emission amount of VOCs from motorcycles fueled with E10 decreased by 18%-31% while total carbonyls were 2.6-4.5 times higher than those for gasoline. For evaporative emissions of THC and VOCs, for gasoline or E10, the diurnal breathing loss (DBL) was higher than hot soak loss (HSL). Using E10 as a fuel does not make much difference in the amount of evaporative THC, while resulted in a slightly growth of 14%-17% for evaporative BETX (benzene, toluene, ethylbenzene, xylene). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Froelund, K.


    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  6. Hydrogen cyanide exhaust emissions from in-use motor vehicles. (United States)

    Baum, Marc M; Moss, John A; Pastel, Stephen H; Poskrebyshev, Gregory A


    Motor vehicle exhaust emissions are known to contain hydrogen cyanide (HCN), but emission rate data are scarce and, in the case of idling vehicles, date back over 20 years. For the first time, vehicular HCN exhaust emissions from a modern, in-use fleet at idle have been measured. The 14 tested light duty motor vehicles were operating at idle as these conditions are associated with the highest risk exposure scenarios (i.e., enclosed spaces). Vehicular HCN was detected in 89% of the sampled exhaust streams and did not correlate with instantaneous air-fuel-ratio or with any single, coemitted pollutant. However, a moderate correlation between HCN emissions and the product of carbon monoxide and nitric oxide emissions was observed under cold-start conditions. Fleet average, cold-start, undiluted HCN emissions were 105 +/- 97 ppbV (maximum: 278 ppbV), whereas corresponding emissions from vehicles operating under stabilized conditions were 79 +/- 71 ppbV (maximum: 245 ppbV); mean idle fleet HCN emission rates were 39 +/- 35 and 21 +/- 18 microg-min(-1) for cold-start and stabilized vehicles, respectively. The significance of these results is discussed in terms of HCN emissions inventories in the South Coast Air Basin of California and of health risks due to exposure to vehicular HCN.

  7. 40 CFR 86.1777-99 - Calculations; exhaust emissions. (United States)


    ... subpart, with the following additional requirement: (1) Organic material non-methane hydrocarbon... operating on natural gas shall add to the product of the NMOG mass emission value and the reactivity adjustment factor, the product of the methane mass emission value and the methane reactivity...

  8. Emissions of non-methane hydrocarbons from cars in China

    Institute of Scientific and Technical Information of China (English)


    This study investigated the exhaust emission of non-methane hydrocarbons(NMHCs) from cars in China at the Beijing driving cycle on the chassis dynamometer.The emission factor average of NMHCs was 0.9 g/km,which was over twice that from the Australian car fleet and 2-4 times that of the American car emission in the 1990s-2000s.The emission profile of Beijing cars showed higher fractions of aromatics and C4?C7 HCs,and lower percentages of C2?C3 HCs,compared with those of the US car fleet.The average ratio of benzene/toluene for cars tested was 0.5,the average benzene/toluene/ethyl benzene/xylenes(BTEX) ratios were 1/2.2/0.1/1.8,which were consistent with those of the Tanyugou tunnel located in the suburb of Beijing.α-pinene and β-pinene were detected from the exhaust gas on dynamometer for the first time,and had likely similar exhaust emission characteristics with C2?C3 HCs and styrene,giving an evidence that air pinenes may be related to human activities.Isoprene was also detected directly.These observations suggest that the procedure regarding pinenes and isoprene as coming from biologic sources of VOCs in the atmosphere should be applied with great care,especially in the core of the big city like Beijing.The specific reactivity of NMHCs was higher than that of cars of US,and the specific reactivity of volatile aromatic compounds was higher than that of the US SPECIATE database.

  9. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki


    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  10. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)



    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  11. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission. (United States)

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru


    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  12. Utilization of LPG and gasoline engine exhaust emissions by microalgae. (United States)

    Taştan, Burcu Ertit; Duygu, Ergin; Ilbaş, Mustafa; Dönmez, Gönül


    The effect of engine exhaust emissions on air pollution is one of the greatest problems that the world is facing today. The study focused on the effects of realistic levels of engine exhaust emissions of liquid petroleum gas (LPG) and gasoline (GSN) on Phormidium sp. and Chlorella sp. Multi parameters including pH, different medial compositions, fuel types, flow rates and biomass concentrations were described in detail. Effects of some growth factors such as triacontanol (TRIA) and salicylic acid (SA) have also been tested. The maximum biomass concentration of Phormidium sp. reached after 15 days at 0.36 and 0.15 g/L initial biomass concentrations were found as 1.160 g/L for LPG emission treated cultures and 1.331 g/L for GSN emission treated cultures, respectively. The corresponding figures were 1.478 g/L for LPG emission treated cultures and 1.636 g/L for GSN emission treated cultures at 0.65 and 0.36 g/L initial Chlorella sp. biomass concentrations. This study highlights the significance of using Phormidium sp. and Chlorella sp. for utilization of LPG and GSN engine exhaust emissions by the help of growth factors. Copyright © 2013. Published by Elsevier B.V.

  13. Effects of vehicle exhaust emissions on urban wild plant species. (United States)

    Bell, J N B; Honour, S L; Power, S A


    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Chemical chacterization of biofuel exhaust emissions

    NARCIS (Netherlands)

    Jedynska, A.D.; Tromp, P.C.; Houtzager, M.M.G.; Kooter, I.M.


    Use of biodiesel is increasing following implementation of various policy instruments and a surge in demand due to growing urbanized populations. A series of experiments to characterize the chemical composition of emissions generated during combustion of petro-diesel (B0), biodiesel blends (B5, B10,

  15. Particulate matters from diesel engine exhaust emission

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.


    Full Text Available Air pollution caused by diesel engine emissions, especially particulate matters and nitric oxides emissions, is one of the biggest problems of current transportation. In the near future the emission of diesel particulate matters will become one of the most important factors that will affect the trend of engine development. Ambient airborne particles have adverse environmental and health effects and therefore their concentration in the air is regulated. Recent medical studies showed that different particle properties are important (for example: number/concentration, active surface, chemical composition/morphology and may take role in the responsibility for their human health impact. Thus, diesel engines are one of the most important sources of particles in the atmosphere, especially in urban areas. Studying health effects and diesel engine particulate properties, it has been concluded that they are a complex mixture of solids and liquids. Biological activity of particulate matter may be related to particle sizes and their number. The paper presents the activities of UN-ECE working group PMP on defining the best procedure and methodology for the measurement of passenger cars diesel engines particle mass and number concentrations. The results of inter-laboratory emissions testing are presented for different engine technologies with special attention on repeatability and reproducibility of measured data. .

  16. Exhaust emission characteristics of various types of biofuels

    Directory of Open Access Journals (Sweden)

    De-Xing Peng


    Full Text Available Meeting the growing demand for sustainable energy is one of the major challenges of the 21st century. In the Kyoto conference on global climate change, numerous nations committed to large reductions in greenhouse gas emissions. Reduced greenhouse gas emissions are a major advantage of using biodiesel on diesel engines. The test uses three biodiesels (soybean oil, palm oil, and waste edible oil in the engine, comparing engine performance and exhaust emissions with the baseline (pure petrodiesel case. The results indicated that the use of biodiesel produces decreased smoke opacity but increased fuel consumption up to 7.38% compared with petrodiesel. Exhaust emissions, such as CO and HC, were reduced using biodiesel in fuels, primarily because of the effect of complete combustion of the oxygen contained in biodiesel.

  17. 40 CFR 86.244-94 - Calculations; exhaust emissions. (United States)


    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; exhaust emissions. 86.244-94 Section 86.244-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations;...

  18. Development of alternative ship propulsion in terms of exhaust emissions

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław


    Full Text Available The introduction of new emission limits for exhaust emissions of ship engines contributes to the development of new powertrain solutions. New solutions in the simplest approach concern the reduction of the concentration of sulfur in motor fuels. Typically, the aforementioned fuels have a lower value of viscosity which causes a number of supply system problems. It is becoming more and more common to use fuel cells in engine rooms of various types of marine vessels. Unlike conventional systems that use internal combustion engines, these systems have zero exhaust emissions. Hydrogen, methanol, methane and other substances may be used as a fuel in fuel cells. However, so far the best operating parameters are manifested by cells powered by hydrogen, which is associated with difficulties in obtaining and storing this fuel. Therefore, the use of turbine engines allows the obtaining of large operating and environmental advantages. The paper presents a comparison of the ecological parameters of turbine and piston engines.

  19. 40 CFR 52.987 - Control of hydrocarbon emissions. (United States)


    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  20. Development of experimental methods to investigate non-exhaust particle emissions from a light duty vehicle


    Mathissen, Marcel


    Vehicle related non-exhaust particle emissions resulting from the abrasion of brakes, tires, road and the resuspension of road dust may contribute considerably to ambient air pollution. While exhaust particulate matter emissions are expected to decrease, non-exhaust emissions will rise due to higher traffic volume and the absence of legal regulations. However, there is still limited scientific knowledge of non-exhaust emissions, especially for the climate conditions found in central Europe...

  1. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control. (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung


    The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500°C. When the pyrolysis temperature was lower than 300°C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400°C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Studies on exhaust emissions of catalytic coated spark ignition engine with adulterated gasoline. (United States)

    Muralikrishna, M V S; Kishor, K; Venkata Ramana Reddy, Ch


    Adulteration of automotive fuels, especially, gasoline with cheaper fuels is widespread throughout south Asia. Some adulterants decrease the performance and life of the engine and increase the emission of harmful pollutants causing environmental and health problems. The present investigation is carried out to study the exhaust emissions from a single cylinder spark ignition (SI) engine with kerosene blended gasoline with different versions of the engine, such as conventional engine and catalytic coated engine with different proportions of the kerosene ranging from 0% to 40% by volume in steps of 10% in the kerosene-gasoline blend. The catalytic coated engine used in the study has copper coating of thickness 400 microns on piston and inner surface of the cylinder head. The pollutants in the exhaust, carbon monoxide (CO) and unburnt hydrocarbons (UBHC) are measured with Netel Chromatograph CO and HC analyzer at peak load operation of the engine. The engine is provided with catalytic converter with sponge iron as a catalyst to control the pollutants from the exhaust of the engine. An air injection is also provided to the catalytic converter to further reduce the pollutants. The pollutants found to increase drastically with adulterated gasoline. Copper-coated engine with catalytic converter significantly reduced pollutants, when compared to conventional engine.

  3. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN

    Directory of Open Access Journals (Sweden)

    K. Prasada Rao


    Full Text Available Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI engine fueled with Rice Bran Methyl Ester (RBME with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN modeling. The study used IDI engine experimental data to evaluate nine engine performance and emission parameters including Exhaust Gas Temperature (E.G.T, Brake Specific Fuel Consumption (BSFC, Brake Thermal Efficiency (B.The and various emissions like Hydrocarbons (HC, Carbon monoxide (CO, Carbon dioxide (CO2, Oxygen (O2, Nitrogen oxides (NOX and smoke. For the ANN modeling standard back propagation algorithm was found to be the optimum choice for training the model. A multi-layer perception (MLP network was used for non-linear mapping between the input and output parameters. It was found that ANN was able to predict the engine performance and exhaust emissions with a correlation coefficient of 0.995, 0.980, 0.999, 0.985, 0.999, 0.999, 0.980, 0.999, and 0.999 for E.G.T, BSFC, B.The, HC, O2, CO2, CO, NOX, smoke respectively.

  4. Bioethanol-gasoline fuel blends: exhaust emissions and morphological characterization of particulate from a moped engine. (United States)

    Seggiani, Maurizia; Prati, M Vittoria; Costagliola, M Antonietta; Puccini, Monica; Vitolo, Sandra


    This study was aimed at evaluating the effects of gasoline-ethanol blends on the exhaust emissions in a catalyst-equipped four-stroke moped engine. The ethanol was blended with unleaded gasoline in at percentages (10, 15, and 20% v/v). The regulated pollutants and the particulate matter emissions were evaluated over the European ECE R47 driving cycle on the chassis dynamometer bench. Particulate matter was characterized in terms of total mass collected on filters and total number ofparticles in the range 7 nm-10 microm measured by electrical low-pressure impactor (ELPI). In addition, particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions were evaluated to assess the health impact of the emitted particulate. Finally, an accurate morphological analysis was performed on the particulate by high-resolution transmission electron microscope (TEM) equipped with a digital image-processing/data-acquisition system. In general, CO emission reductions of 60-70% were obtained with 15 and 20% v/v ethanol blends, while the ethanol use did not reduce hydrocarbon (HC) and NOx emissions. No evident effect of ethanol on the particulate mass emissions and associated PAHs emissions was observed. Twenty-one PAHs were quantified in the particulate phase with emissions ranging from 26 to 35 microg/km and benzo[a]pyrene equivalent (BaPeq) emission factors from 2.2 to 4.1 microg/km. Both particulate matter and associated PAHs with higher carcinogenic risk were mainly emitted in the submicrometer size range (<0.1 microm). On the basis of the TEM observations, no relevant effect of the ethanol use on the particulate morphology was evidenced, showing aggregates composed ofprimary particles with mean diameters in the range 17.5-32.5 nm.

  5. Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles (United States)

    de Abrantes, Rui; Vicente de Assunção, João; Pesquero, Célia Regina; Bruns, Roy Edward; Nóbrega, Raimundo Paiva

    The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 μg km -1 to 612 μg km -1 in the gasohol vehicle, and from 11.7 μg km -1 to 27.4 μg km -1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo( a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km -1 to 4.61 μg TEQ km -1 for the gasohol vehicle and from 0.0117 μg TEQ km -1 to 0.0218 μg TEQ km -1 in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed

  6. Exhaust emissions of methanol and ethanol-unleaded gasoline blends in a spark-ignition engine

    Directory of Open Access Journals (Sweden)

    Altun Şehmus


    Full Text Available In this study, the effect of unleaded gasoline and unleaded gasoline blended with 5% and 10% of ethanol or methanol on the performance and exhaust emissions of a spark-ignition engine were experimentally investigated. The engine tests were performed by varying the engine speed between 1000 and 4000 rpm with 500 rpm period at threefourth throttle opening position. The results showed that brakespecific fuel consumption increased while brake thermal efficiency, emissions of carbon monoxide (CO and hydrocarbon (HCs decreased with methanol-unleaded gasoline and ethanol-unleaded gasoline blends. It was found that a 10% blend of ethanol or methanol with unleaded gasoline works well in the existing design of engine and parameters at which engines are operating.

  7. Nonintrusive optical measurements of aircraft engine exhaust emissions and comparison with standard intrusive techniques. (United States)

    Schäfer, K; Heland, J; Lister, D H; Wilson, C W; Howes, R J; Falk, R S; Lindermeir, E; Birk, M; Wagner, G; Haschberger, P; Bernard, M; Legras, O; Wiesen, P; Kurtenbach, R; Brockmann, K J; Kriesche, V; Hilton, M; Bishop, G; Clarke, R; Workman, J; Caola, M; Geatches, R; Burrows, R; Black, J D; Hervé, P; Vally, J


    Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NO(x), total unburned hydrocarbon, and smoke), together with CO(2) and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO(2), CO, and NO data showed agreement with intrusive techniques of approximately ?30%. A narrow-band spectroscopic device was used to measure CO(2) (with deviations of less than ?10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.

  8. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)


    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  9. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.


    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  10. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.


    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  11. Bioethanol/gasoline blends for fuelling conventional and hybrid scooter. Regulated and unregulated exhaust emissions (United States)

    Costagliola, Maria Antonietta; Prati, Maria Vittoria; Murena, Fabio


    The aim of this experimental activity was to evaluate the influence of ethanol fuel on the pollutant emissions measured at the exhaust of a conventional and a hybrid scooter. Both scooters are 4-stroke, 125 cm3 of engine capacity and Euro 3 compliant. They were tested on chassis dynamometer for measuring gaseous emissions of CO, HC, NOx, CO2 and some toxic micro organic pollutants, such as benzene, 1,3-butadiene, formaldehyde and acetaldehyde. The fuel consumption was estimated throughout a carbon balance on the exhaust species. Moreover, total particles number with diameter between 20 nm up to 1 μm was measured. Worldwide and European test cycles were carried out with both scooters fuelled with gasoline and ethanol/gasoline blends (10/90, 20/80 and 30/70% vol). According to the experimental results relative to both scooter technologies, the addiction of ethanol in gasoline reduces CO and particles number emissions. The combustion of conventional scooter becomes unstable when a percentage of 30%v of bioethanol is fed; as consequence a strong increasing of hydrocarbon is monitored, including carcinogenic species. The negative effects of ethanol fuel are related to the increasing of fuel consumption due to the less carbon content for volume unit and to the increasing of formaldehyde and acetaldehyde due to the higher oxygen availability. Almost 70% of Ozone Formation Potential is covered by alkenes and aromatics.

  12. Exhaust emissions from a diesel power generator fuelled by waste cooking oil biodiesel. (United States)

    Valente, Osmano Souza; Pasa, Vanya Márcia Duarte; Belchior, Carlos Rodrigues Pereira; Sodré, José Ricardo


    The exhaust emissions from a diesel power generator operating with waste cooking oil biodiesel blends have been studied. Fuel blends with 25%, 50% and 75% of biodiesel concentration in diesel oil were tested, varying engine load from 0 to 25 kW. The original engine settings for diesel oil operation were kept the same during the experiments with the biodiesel blends. The main physical-chemical characteristics of the fuel blends used were measured to help with the analysis of the emission results. The results show that the addition of biodiesel to the fuel increases oxides of nitrogen (NO(X)), carbon monoxide (CO) and hydrocarbon (HC) emissions. Carbon dioxide (CO(2)) and exhaust gas opacity were also increased with the use of biodiesel. Major increase of NO(X) was observed at low loads, while CO and HC were mainly increased at high loads. Using 50% of biodiesel in diesel oil, the average increase of CO(2), CO, HC and NO(X) throughout the load range investigated was 8.5%, 20.1%, 23.5% and 4.8%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Prediction of cold start hydrocarbon emissions of air cooled two wheeler spark ignition engines by simple fuzzy logic simulation

    Directory of Open Access Journals (Sweden)

    Samuel Raja Ayyanan


    Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.

  14. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)


    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  15. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S.; Morihisa, H.; Tamanouchi, M.; Araki, H.; Yamada, S. [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)


    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  16. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R.; Usui, K.; Moriya, A.; Sato, M.; Nomura, T.; Sue, H. [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)


    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  17. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine. (United States)

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D


    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.


    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain


    Full Text Available A more sensitive GC-MS method has been established for the determination of some carcinogenic polycyclic aromatic hydrocarbons (PAHs in vehicles exhaust tar samples. The tar samples were extracted using dichloromethane (DMC: n-hexane solvent mixture. A multi-layer clean-up (silica gel/sodium sulphate column was used, followed by glass fiber filter (GFF paper. The method was successfully applied to determine a number of PAHs present in exhaust tar sample of different vehicles of the Atomic Energy Centre, Dhaka, Bangladesh.   Keywords: Carcinogenic polycyclic aromatic hydrocarbons, vehicles tar samples, identification, GC-MS/MS

  19. 40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits. (United States)


    ... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Averaging, banking, and trading of exhaust emission credits. 91.103 Section 91.103 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. Influence of ethanol-diesel blended fuels on diesel exhaust emissions and mutagenic and genotoxic activities of particulate extracts. (United States)

    Song, Chong-Lin; Zhou, Ying-Chao; Huang, Rui-Jing; Wang, Yu-Qiu; Huang, Qi-Fei; Lü, Gang; Liu, Ke-Ming


    This study was aimed at evaluating the influence of ethanol addition on diesel exhaust emissions and the toxicity of particulate extracts. The experiments were conducted on a heavy-duty diesel engine and five fuels were used, namely: E0 (base diesel fuel), E5 (5%), E10 (10%), E15 (15%) and E20 (20%), respectively. The regulated emissions (THC, CO, NOx, PM) and polycyclic aromatic hydrocarbon (PAH) emissions were measured, and Ames test and Comet assay, respectively, were used to investigate the mutagenicity and genotoxicity of particulate extracts. From the point of exhaust emissions, the introduction of ethanol to diesel fuel could result in higher brake specific THC (BSTHC) and CO (BSCO) emissions and lower smoke emissions, while the effects on the brake specific NOx (BSNOx) and particulate matters (BSPM) were not obvious. The PAH emissions showed an increasing trend with a growth of ethanol content in the ethanol-diesel blends. As to the biotoxicity, E20 always had the highest brake specific revertants (BSR) in both TA98 and TA100 with or without metabolizing enzymes (S9), while the lowest BSR were found in E5 except that of TA98-S9. DNA damage data showed a lower genotoxic potency of E10 and E15 as a whole.

  1. Comparison of the mutagenicity of exhaust emissions from motor vehicles using leaded and unleaded gasoline as fuel. (United States)

    Yuan, D; Zhou, W; Ye, S H


    While unleaded gasoline has the advantage of eliminating lead from automobile exhaust, its potential to reduce the exhaust gas and particles, merits further examination. In the present studies, the concentrations of hydrocarbons (HC) and carbon mono-oxides (CO) in emissions were analyzed on Santana engine Dynamometer under a standard test cycle, and total exhaust particles were collected from engines using leaded and unleaded gasoline. It was found that unleaded gasoline reduced the emissions of CO and HC, and decreased the quantity of vehicle exhaust particulate matters by 60%. With the unleaded gasoline, only 23 kinds of organic substances, adsorbed in the particles, were identified by gas chromatography/mass spectrometer (GC/MS) while 32 components were detected using the leaded gasoline. The results of in vitro Salmonella/microsomal test and micronucleus induction assay in CHL cells indicated that both types of gasoline increased the number of histidine-independent colonies and the frequencies of micronucleus induction; no significant difference was found in their mutagenicity.

  2. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)


    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)


    Directory of Open Access Journals (Sweden)

    Binyamin Binyamin


    Full Text Available The reduction of carbon monoxide (CO, unburnthydrocarbon (UHC emission and fuel consumption on spark-ignition four-stroke engine is continuously attempted. The purposes from this research were to determine the effect of Hydrocarbon Treating System (HTS  on levels of CO, UHC and fuel consumption. This is an experimental research. Its is conducted by comparing the exhaust pollutant concentration such as carbon monoxide, unburnt hydrocarbon and also fuel consumption between standard engine setting and Hydrocarbon Treating System applied. The research variable are HTS flow rate from Q1 = 0 cc/s (without HTS, Q2 = 1,5 cc/s, Q3 = 2 cc/s, Q4 = 2,5 cc/s, and Q5 = 33 cc/s. The research will be done in three conditions which are low, medium and high rotation. The result showed that Hydrocarbon Threating System decrease fuel consumption up to 19,43% with flow rate Q5 = 3 cc/s, but on the other hand it increase CO emission up to 80.84% with flow rate Q5 = 3 cc/s and UHC emission level up to 124.75% with flow rate Q5 = 3 cc/s from engine standart condition.

  4. Control of harmful hydrocarbon species in the exhaust of modern advanced GDI engines (United States)

    Hasan, A. O.; Abu-jrai, A.; Turner, D.; Tsolakis, A.; Xu, H. M.; Golunski, S. E.; Herreros, J. M.


    A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C5-C11, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NOx with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NOx control. The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.

  5. Investigation of nanoparticle additives to biodiesel for improvement of the performance of the exhaust emissions in a compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Tayfun; Ozcanli, Mustafa; Aydin, Kadir [Cukurova University Engineering Architecture Faculty Mechanical Engineering Department (Turkey)], E-mail:, email:, email:


    Reformulated diesel fuels have been studied recently to achieve substantial reductions in harmful emissions by varying the physicochemical properties and combustion characteristics of the hydrocarbon fuel. This article investigates the effects of the addition of oxygen containing nanoparticle additives to biodiesel on fuel properties, engine performance and exhaust emission characteristics. Due to the addition of magnesium oxide (MgO) and silicon oxide (SiO2) nanoparticles at different dosing levels (25 and 50 ppm), it was observed that the density of biodiesel fuel does not show significant variation but the viscosity of biodiesel fuel was found to decrease. As a result of this study, optimum additive and addition dosage was determined as 25 ppm MgO and 25 ppm SiO2, engine emission values namely nitrogen oxides (NOx) and carbon monoxide (CO) were decreased and engine performance values slightly increased with the addition of nanoparticle additives at low extra cost of the biodiesel.

  6. Exhaust emissions survey of a turbofan engine for flame holder swirl type augmentors at simulated altitude flight conditions (United States)

    Moss, J. E., Jr.


    Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.

  7. Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: a chemometric approach. (United States)

    Clairotte, M; Adam, T W; Chirico, R; Giechaskiel, B; Manfredi, U; Elsasser, M; Sklorz, M; DeCarlo, P F; Heringa, M F; Zimmermann, R; Martini, G; Krasenbrink, A; Vicet, A; Tournié, E; Prévôt, A S H; Astorga, C


    Two-stroke mopeds are a popular and convenient mean of transport in particular in the highly populated cities. These vehicles can emit potentially toxic gaseous and aerosol pollutants due to their engine technology. The legislative measurements of moped emissions are based on offline methods; however, the online characterization of gas and particulate phases offers great possibilities to understand aerosol formation mechanism and to adapt future emission standards. The purpose of this work was to study the emission behavior of two mopeds complying with different European emission standards (EURO-1 and EURO-2). A sophisticated set of online analyzers was applied to simultaneously monitor the gas phase and particulate phase of exhaust on a real time basis. The gaseous emission was analyzed with a high resolution Fourier transform infrared spectrometer (FTIR; nitrogen species) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-ToF-MS; polycyclic aromatic hydrocarbons: PAH), whereas the particulate phase was chemically characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; organic, nitrate and chloride aerosol) and a multiangle absorption photometer (MAAP; black carbon). The physical characterization of the aerosol was carried out with a condensation particle counter (CPC; particle number concentration) and a fast mobility particle sizer (FMPS; size distribution in real time). In order to extract underlying correlation between gas and solid emissions, principal component analysis was applied to the comprehensive online dataset. Multivariate analysis highlighted the considerable effect of the exhaust temperature on the particles and heavy PAH emissions. The results showed that the after-treatment used to comply with the latest EURO-2 emission standard may be responsible for the production of more potentially harmful particles compared to the EURO-1 moped emissions.

  8. Compilation of a source profile database for hydrocarbon and OVOC emissions in China (United States)

    Mo, Ziwei; Shao, Min; Lu, Sihua


    Source profiles are essential for quantifying the role of volatile organic compound (VOC) emissions in air pollution. This study compiled a database of VOC source profiles in China, with 75 species drawn from five major categories: transportation, solvent use, biomass burning, fossil fuel burning, and industrial processes. Source profiles were updated for diesel vehicles, biomass burning, and residential coal burning by measuring both hydrocarbons and oxygenated VOCs (OVOCs), while other source profiles were derived from the available literature. The OVOCs contributed 53.8% of total VOCs in the profiles of heavy - duty diesel vehicle exhaust and 12.4%-46.3% in biomass and residential coal burning, which indicated the importance of primary OVOCs emissions from combustion-related sources. Taking the national emission inventory from 2008 as an example, we established an approach for assigning source profiles to develop a speciation-specific VOC and OVOC emission inventory. The results showed that aromatics contributed 30% of the total 26 Tg VOCs, followed by alkanes (24%), alkenes (19%) and OVOCs (12%). Aromatics (7.9 Tg) were much higher than in previous results (1.1 Tg and 3.4 Tg), while OVOCs (3.1 Tg) were comparable with the 3.3 Tg and 4.3 Tg reported in studies using profiles from the US. The current emission inventories were built based on emission factors from non-methane hydrocarbon measurements, and therefore the proportions from OVOC emissions was neglected, leading to up to 30% underestimation of total VOC emissions. As a result, there is a need to deploy appropriate emission factors and source profiles that include OVOC measurements to reduce the uncertainty of estimated emissions and chemical reactivity potential.

  9. Polycyclic aromatic hydrocarbons in ultrafine particles of diesel exhaust fumes – The use of ultrafast liquid chromatography


    Małgorzata Szewczyńska; Małgorzata Pośniak


    Background: The article presents the results of the determination of polycyclic aromatic hydrocarbons (PAHs) in the fine particles fraction emitted from 3 types of diesel fuels using ultra-high pressure liquid chromatography. Material and Methods: Samples of diesel Eco, Verwa and Bio exhaust combustion fumes were generated at the model station which consisted of a diesel engine from the 2007 Diesel TDI 2.0. Personal Cascade Sioutas Impactor (PCSI) with Teflon filters was used to collect sampl...

  10. [Effect of ethanol gasoline and unleaded gasoline on exhaust emissions of EFI vehicles with TWC]. (United States)

    Wang, Chun-jie; Wang, Wei; Tang, Da-gang; Cui, Ping


    The injectors' flow-rate of all test vehicles that each was fixed with a three-way catalytic converter (TWC) and Electronic Fuel Injection System (EFI) was tested including before and after vehicles operated on unleaded and ethanol gasoline respectively running for a long time on real road. The three main engine-out exhaust emissions (HC, CO and NOx) from vehicles operating on different fuels were also analyzed by exhaust testing procedure for the whole light-duty vehicle. Test results showed that comparing with unleaded gasoline and ethanol gasoline has a remarkable effect on decreasing engine-out exhaust emissions of CO and HC (both at about ten percent) and the exhaust emissions of CO, HC and NOx from vehicles with TWC respectively. When burning with unleaded gasoline the three main pollutants from vehicles with TWC have already or nearly reached Europe Exhaust First Standard, after changing to ethanol gasoline CO has drastically decreased at about thirty percent, while HC and NOx decreased at about eighteen and ten percent respectively, at this time which they were all above Europe Exhaust Standard First or nearly reached Europe Exhaust Second Standard; ethanol gasoline has also other better performance such as a slight cleaning function on injectors, a slower deteriorative trend of engine-out CO and HC and a longer operating life-span of TWC.

  11. 40 CFR 91.104 - Exhaust emission standards for outboard and personal watercraft engines. (United States)


    ... procedure in § 91.207 to determine compliance with the corporate average HC+NOX exhaust emission standard... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION..., for their useful life. (d) A manufacturer must comply with a corporate average HC+NOX...

  12. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions (United States)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.


    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  13. Urban air quality: the challenge of traffic non-exhaust emissions. (United States)

    Amato, Fulvio; Cassee, Flemming R; Denier van der Gon, Hugo A C; Gehrig, Robert; Gustafsson, Mats; Hafner, Wolfgang; Harrison, Roy M; Jozwicka, Magdalena; Kelly, Frank J; Moreno, Teresa; Prevot, Andre S H; Schaap, Martijn; Sunyer, Jordi; Querol, Xavier


    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exhausts, no actions are currently in place to reduce the non-exhaust part of emissions such as those from brake wear, road wear, tyre wear and road dust resuspension. These "non-exhaust" sources contribute easily as much and often more than the tailpipe exhaust to the ambient air PM concentrations in cities, and their relative contribution to ambient PM is destined to increase in the future, posing obvious research and policy challenges. This review highlights the major and more recent research findings in four complementary fields of research and seeks to identify the current gaps in research and policy with regard to non-exhaust emissions. The objective of this article is to encourage and direct future research towards an improved understanding on the relationship between emissions, concentrations, exposure and health impact and on the effectiveness of potential remediation measures in the urban environment.

  14. An experimental investigation of exhaust emission from agricultural tractors


    Rashid Gholami, Hekmat Rabbani, Ali Nejat Lorestani, Payam Javadikia, Farzad Jaliliantabar


    Agricultural machinery is an important source of emission of air pollutant in rural locations. Emissions of a specific tractor engine mainly depend on engine speed. Various driving methods and use of implements with different work capacities can affect the engine load. This study deals with the effects of types of tractors and operation conditions on engine emission. In this study two types of agricultural tractors (MF285 and U650) and some tillage implements such as centrifugal type spreader...

  15. On-Road Measurement of Exhaust Emission Factors for Individual Diesel Trucks (United States)

    Dallmann, T. R.; DeMartini, S.; Harley, R. A.; Kirchstetter, T. W.; Wood, E. C.; Onasch, T. B.; Herndon, S. C.


    Diesel trucks are an important source of primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. More stringent exhaust emission standards for new engines, effective starting in 2007, considerably reduce allowable emissions and have led to use of after-treatment control devices such as diesel particle filters. The state of California is also implementing programs to accelerate replacement or retrofit of older trucks. In light of these changes, measurements of emissions from in-use heavy-duty diesel trucks are timely and needed to understand the impact of new control technologies on emissions. PM2.5, BC mass, particle light absorption, and particle light extinction emission factors for hundreds of individual diesel trucks were measured in this study. Emissions were measured in July 2010 from trucks driving through the Caldecott tunnel in the San Francisco Bay area. Gas-phase emissions including nitric oxide, nitrogen dioxide, carbon monoxide, and carbon dioxide (CO2) were also measured. Pollutants were measured using air sampling inlets located directly above the vertical exhaust stacks of heavy-duty trucks driving by on the roadway below. All of these measurements were made using fast time response (1 Hz) sensors. Particle optical properties were simultaneously characterized with direct measurements of absorption (babs) and extinction (bext) coefficients. Emission factors for individual trucks were calculated using a carbon balance method in which emissions of PM2.5, BC, babs, and bext in each exhaust plume were normalized to emissions of CO2. Emission factor distributions and fleet-average values are quantified. Absorption and extinction emission factors are used to calculate the aerosol single scattering albedo and BC mass absorption efficiency for individual truck exhaust plumes.

  16. Concentration measurement in a road tunnel as a method to assess "real-world" vehicles exhaust emissions (United States)

    Zanini, G.; Berico, M.; Monforti, F.; Vitali, L.; Zambonelli, S.; Chiavarini, S.; Georgiadis, T.; Nardino, M.

    An experiment aimed at comparing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) concentrations produced in a road tunnel by buses is described. The experiment took place in 2001 in Bologna when a couple of buses belonging to the public transport fleet where driven backwards and forwards in a road tunnel closed to all other vehicles. Buses run in the tunnel for 8 h a day for 4 experiment days, each day using a different fuel: biodiesel, diesel-water emulsion, diesel-water emulsion with low sulphur content and commercial diesel. Average daily concentrations of PM of different sizes and of 12 PHAs were measured and comparison between different fuels was attempted in order to assess "real-world" exhaust emissions of different fuels. Due to heterogeneity of experimental conditions in different days and the relatively large measurement uncertainties, the effort was only partially successful, and it was not possible to state any firm conclusion on fuels reliability even if some indications in agreement with literature were found. Nevertheless, the experiment and the data analysis method developed could be of interest as a methodological approach for future experiments aimed at evaluating "real-world" exhaust emissions of single vehicles.

  17. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.


    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitronaphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.


    The report presents progress toward the development of a computer tool called MEASURE, the Mobile Emission Assessment System for Urban and Regional Evaluation. The tool works toward a goal of providing researchers and planners with a way to assess new mobile emission mitigation s...

  19. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine]. (United States)

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan


    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  20. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.


    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during


    Directory of Open Access Journals (Sweden)

    Özer CAN


    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  2. Studies on health effects of automotive exhaust emissions. How dangerous are diesel emissions? (United States)

    Klingenberg, H; Winneke, H


    The following paper indicates that current results of research conducted on the effects of intentionally increased concentrations of diesel engine exhaust emissions, particularly the results of animal experiments, do not lead scientifically to final conclusions. According to the current level of knowledge, we must continue to assume that the risk of cancer, possibly due to diesel particles, is negligible, particularly under real environmental conditions. The preventive measures taken by governments are of course supported by the automotive industry, an additional research outlay, however, is necessary not only to clear up contradictions and answer new questions arising from current test results, but also to take positive, and not merely precautionary, action in the future. Due to its links to other influences on humans and plants, research conducted on the effects of motor vehicle emissions is a task that lies very much in the public interest. At the same time, the overview of concluded and ongoing research objectives presented in this paper indicates that the automotive industry is greatly committed to this issue and will meet well-justified expectations.

  3. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  4. Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution (United States)

    Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.


    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  5. The effects of biodiesel and its blends with diesel oil on the emission of volatile aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Adam Prokopowicz


    Full Text Available Background: In recent times, the emphasis is placed on the use of renewable fuels as well as biodiesel as an attractive alternative to conventional diesel fuel. Due to the fact that the impact of biodiesel on various chemical compounds exhaust emissions is not completely characterized, we have evaluated the emissions of volatile aromatic hydrocarbons in relation to biodiesel content in conventional diesel fuel. Material and methods: In the study we have assessed the emission of benzene, toluene, ethylbenzene and xylens during New European Driving Cycle NEDC for a passenger car with a diesel engine using the following fuels: 100% diesel fuel (B0, 100% rapeseed methyl esters (B100, 7, 15 and 30% rapeseed methyl esters in diesel fuel (B7, B15, B30, and 30% hydrotreated vegetable oil in diesel fuel (HVO30. Results: Among all determined compounds, benzene and toluene were emitted in the largest quantities. Higher emissions were determined during urban driving cycle then during extraurban driving cycle. A clear trend was observed when along with increasing amount of added rapeseed methyl esters the emission increased. However, additive of HVO decreased the emission of the most volatile aromatic compounds even when compared to conventional diesel fuel. During extra-urban driving cycle the emission was significantly lower and comparable for most fuels tested. Nevertheless in the context of conventional diesel fuel, lower emission for fuels with biodiesel was observed. Conclusion: The results have indicated the increase in benzene and toluene exhaust emissions mostly during urban driving cycle and its decrease during extra-urban driving cycle in NEDC test with increasing content of fatty acids methyl esters in diesel fuel. The emission in urban cycle was probably influenced by cold-start condition during this cycle. Generation of volatile aromatic hydrocarbons may be related to higher density of fuel with biodiesel in comparison to density of diesel oil

  6. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil (United States)

    Al-lwayzy, Saddam H.; Yusaf, Talal; Jensen, Troy


    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  7. Accuracy of exhaust emission factor measurements on chassis dynamometer

    NARCIS (Netherlands)

    Joumard, R.; Laurikko, J.; Han, T.L.; Geivanidis, S.; Samaras, Z.; Merétei, T.; Devaux, P.; André, J.-M.; Cornelis, E.; Lacour, S.; Prati, M.V.; Vermeulen, R.; Zallinger, M.


    The influence of 20 parameters on the measurement of light-vehicle emission factors on chassis dynamometer based on driving patterns, vehicle-related parameters, vehicle sampling, and laboratory-related parameters, was studied. The results were based on literature synthesis, ≈ 2700 specific tests

  8. 40 CFR 86.144-94 - Calculations; exhaust emissions. (United States)


    ...=The measured driving distance from the “transient” phase of the cold start test, in miles. (6) Dht=The... = 1758 grams per test phase. (v) Dht = 3.598 miles. (vi) NMHCmass = 0.44 grams per test phase. (4... grams per test phase. (v) Dht=3.577 miles. (vi) NMHCE=0.426 grams per test phase. (4) Weighted emission...

  9. Generic methods for aero-engine exhaust emission prediction

    NARCIS (Netherlands)

    Shakariyants, S.A.


    In the thesis, generic methods have been developed for aero-engine combustor performance, combustion chemistry, as well as airplane aerodynamics, airplane and engine performance. These methods specifically aim to support diverse emission prediction studies coupled with airplane and engine simulation

  10. 40 CFR 1054.107 - What is the useful life period for meeting exhaust emission standards? (United States)


    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What is the useful life period for meeting exhaust emission standards? 1054.107 Section 1054.107 Protection of Environment ENVIRONMENTAL... product warranty statements and marketing materials regarding engine life, in making this...

  11. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions. (United States)


    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described in...

  12. Particle-Bound PAH Emission from the Exhaust of Combustion Chamber (United States)

    Asgari Lamjiri, M.; Medrano, Y. S.; Guillaume, D. W.; Khachikian, C. S.


    Polycyclic Aromatic Hydrocarbons (PAHs) are harmful, semi-volatile organic compounds which are generated due to the incomplete combustion of organic substances. PAHs are of concern as a pollutant because some of these compounds are carcinogenic and mutagenic even at low levels. Most of the PAHs are recalcitrant and persistent in the environment. The PAHs carcinogenic potential can be increased by the adsorption onto small size particles (jet engine are evaluated. The engine was operated at different swirl numbers (S; the ratio of tangential air flow to axial air flow) to investigate the effect of this parameter on the effluent of combustion chamber. The samples were collected using two instruments simultaneously: a particle analyzer and a Micro-Orifice Uniform Deposited Impactor (MOUDI). Particle analyzer was used to count the number of particles in different sizes and MOUDI was used to collect particles with respect to their size as they were emitted from the exhaust. The MOUDI's aluminum substrates were weighed before and after the experiment in order to measure the mass of particles that were collected during the sampling period. The concentration of PAHs associated with the particles was measured by extracting the particles with dichloromethane followed by analysis via gas chromatography/mass spectrometry (GC/MS). In general, lower molecular weight PAHs emitted from the exhaust of combustion chamber are mostly in gas phase while PAHs of higher molecular weight are adsorbed onto particles. Preliminary results from GC/MS confirm the presence of higher molecular weight PAHs like Benzo[a]pyrene in most of the samples. Better recirculation between air and fuel in higher swirl numbers results in better combustion. In higher swirl numbers, the temperature of the combustion process increases which leads to a more complete combustion. Another result of higher swirl number is a longer residence time which allows the organic substances in the fuel to remain in the

  13. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwanam [Automobile Research Center, Chonnam National University, Gwangju 500-757 (Korea); Choi, Byungchul [School of Mechanical Systems Engineering, Chonnam National University, Gwangju 500-757 (Korea)


    Biofuel (biodiesel, bioethanol) is considered one of the most promising alternative fuels to petrol fuels. The objective of the work is to study the characteristics of the particle size distribution, the reaction characteristics of nanoparticles on the catalyst, and the exhaust emission characteristics when a common rail direct injection (CRDI) diesel engine is run on biofuel-blended diesel fuels. In this study, the engine performance, emission characteristics, and particle size distribution of a CRDI diesel engine that was equipped with a warm-up catalytic converters (WCC) or a catalyzed particulate filter (CPF) were examined in an ECE (Economic Commission Europe) R49 test and a European stationary cycle (ESC) test. The engine performance under a biofuel-blended diesel fuel was similar to that under D100 fuel, and the high fuel consumption was due to the lowered calorific value that ensued from mixing with biofuels. The use of a biodiesel-diesel blend fuel reduced the total hydrocarbon (THC) and carbon monoxide (CO) emissions but increased nitrogen oxide (NO{sub x}) emissions due to the increased oxygen content in the fuel. The smoke emission was reduced by 50% with the use of the bioethanol-diesel blend. Emission conversion efficiencies in the WCC and CPF under biofuel-blended diesel fuels were similar to those under D100 fuel. The use of biofuel-blended diesel fuel reduced the total number of particles emitted from the engine; however, the use of biodiesel-diesel blends resulted in more emissions of particles that were smaller than 50 nm, when compared with the use of D100. The use of a mixed fuel of biodiesel and bioethanol (BD15E5) was much more effective for the reduction of the particle number and particle mass, when compared to the use of BD20 fuel. (author)

  14. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China (United States)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong


    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  15. Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing with Focus on Stability and Emissions

    Directory of Open Access Journals (Sweden)

    Johan E. Hustad


    Full Text Available Exhaust gas recirculation can be applied with the intention of reducing CO2 emissions. When a fraction of the exhaust gas is injected in the entry of a gas turbine, the amount of CO2 in the exhaust gas not being recirculated will be higher and less complicated to capture. However, with this change in combustion air composition, especially the reduced concentration of oxygen, the combustion process will be affected. The lower oxygen concentration decreases the stability and the increased amount of CO2, H2O and N2 will decrease the combustion temperature and thus, the NOx emissions. Testing has been performed on a 65 kW gas turbine combustor, to investigate the effect of adding N2, CO2 and O2 in the combustion process, with focus on stability and emissions of NOx. Results show that adding N2 and CO2 decreases the NOx emissions, whereas O2 addition increases the NOx emissions. The tests have been performed both in a diffusion flame (pilot burner and a premixed flame (main burner, and for additives being injected with the fuel or with the air stream. Addition into the fuel stream is proven to affect the NOx emissions the most. The stability limits of the flames are indicated with respect to mass-based additive-to-fuel ratios.

  16. Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques. (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal


    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM10 and PM2.5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM2.5 fraction contributes 66% of PM10 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM10 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003-0.001 mg/vkm), Cars (26.1-33.4 mg/vkm), LDVs (2.4-3.0 mg/vkm), HDVs (2.2-2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM10 emission of brake wear (3.8-4.4 mg/vkm), petrol exhaust (3.9-4.5 mg/vkm), diesel exhaust (7.2-8.3 mg/vkm), re-suspension (9-10.4 mg/vkm), road surface wear (3.9-4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM10 emission factor (16.7-19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1-12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations.

  17. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil. (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu


    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  18. Hydrocarbons emissions from Cerro Prieto Geothermal Power Plant, Mexico (United States)

    Navarro, Karina; Navarro-González, Rafael; de la Rosa, José; Peralta, Oscar; Castro, Telma; Imaz, Mireya


    One of the most important environmental issues related to the use of geothermal fluids to generate electricity is the emission of non-condensable gases to the atmosphere. Mexico has one of the largest geothermal plants in the world. The facility is located at Cerro Prieto, Baja California, roughly 30 km south of Mexicali and the international boundary between Mexico and United States. The Cerro Prieto power plant has 13 units grouped on four individual powerhouses. Gas samples from 9 units of the four powerhouses were collected during 4 campaigns conducted in May-July, 2010, February, 2012, December, 2012, and May, 2013. Gas samples from the stacks were collected in 1000 ml Pyrex round flasks with Teflon stopcocks, and analyzed by gas chromatography-mass spectrometry. Methane was the most abundant aliphatic hydrocarbon, with a concentration that ranged from less than 1% up to 3.5% of the total gas mixture. Normal alkanes represented the second most abundant species, and displayed a decreasing abundance with increasing carbon number in the homologous series. Isoalkanes were also present as isobutane and isopentane. Cycloalkanes occurring as cyclopentane and cyclohexane, were detected only at trace level. Unsaturated hydrocarbons (alkenes and alkynes) were not detected. Benzene was detected at levels ranging from less than 1% up to 3.4% of the total gas mixture. Other aromatic hydrocarbons detected were toluene, and xylenes, and were present at lower concentrations (

  19. Hydrocarbon emission rings in protoplanetary disks induced by dust evolution

    CERN Document Server

    Bergin, Edwin A; Cleeves, L Ilsedore; Blake, Geoffrey A; Schwarz, Kamber; Visser, Ruud; Zhang, Ke


    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array (ALMA). In each case the emission ring is found to arise at the edge of the observable disk of mm-sized grains (pebbles) traced by (sub)mm-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e. not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that ...

  20. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)


    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  1. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Directory of Open Access Journals (Sweden)

    Yen Kuei Tseng, Hsien Chang Cheng


    Full Text Available In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series burning tests, the fuel saving can be over 8~15%. Also, from the comparison of decline for the heat value and total energy output of varies emulsified fuel, one can find that the water as the dispersed phase in the combustion process will leading a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, that means the reduction of the exhaust gas is truly effectively. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  2. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory. (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C


    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  3. The effects of oxygen-enriched intake air on FFV exhaust emissions using M85

    Energy Technology Data Exchange (ETDEWEB)

    Poola, R.B.; Sekar, R.; Ng, H.K. [Argonne National Lab., IL (United States); Baudino, J.H. [Autoresearch Labs., Inc., Chicago, IL (United States); Colucci, C.P. [National Renewable Energy Lab., Golden, CO (United States)


    This paper presents results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85 (methanol), and supplied with oxygen-enriched intake air containing 21, 23, and 25 vol% O2. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the O2 content of the intake air was either 23 or 25%. However, CO emissions did not vary much, and NOx emissions were higher. HCHO emissions were reduced by 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle with 25% oxygen-enriched intake air. During cold-phase FTP,reductions of 42% in THCs, 40% in unburned methanol, 60% in nonmethane hydrocarbons, and 45% in nonmethane organic gases (NMOGs) were observed with 25% enriched air; NO{sub x} emissions increased by 78%. Converter-out emissions were also reduced with enriched air but to a lesser degree. FFVs operating on M85 that use 25% enriched air during only the initial 127 s of cold-phase FTP or that use 23 or 25% enriched air during only cold-phase FTP can meet the reactivity-adjusted NMOG, CO, NO{sub x}, and HCHO emission standards of the transitional low-emission vehicle.

  4. Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations (United States)

    Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.


    A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.

  5. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters. (United States)

    Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing


    This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully

  6. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics


    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  7. Improvement of fuel consumption and exhaust emissions in ceramics low heat rejection engine

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hideo; Higashino, Akira; Sasaki, Hiroshi [Isuzu Ceramics Research Inst. Co., Ltd. (Japan)


    In order to improve fuel consumption and eliminate the cooling system on a diesel engine having low fuel consumption, a low heat rejection (LHR) engine constructed with the thermos structure was studied. Since air temperature at the end of the compression stroke in a LHR engine are much higher than that of a water-cooled engine, the combustion of LHR engine deteriorated and the fuel consumption and exhaust emissions degraded. The combustion phenomenon in the LHR engine were observed. The reason of deterioration in combustion was insufficient air and fuel mixing. In order to improve the mixing, a new pre-combustion chamber was located in the center of the cylinder. Drilled connecting holes radiating to cylinder wall were developed. The desired characteristics at the LHR engine including fuel consumption and exhaust emissions was achieved in the LHR engine with the new precombustion chamber.

  8. GIS-based modal model of automobile exhaust emissions. Final report, January 1997--May 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, W.H.


    The report presents progress toward the development of a computer tool called MEASURE, the Mobile Emission Assessment System for Urban and Regional Evaluation. The tool works toward a goal of providing researchers and planners with a way to assess new mobile emission mitigation strategies. The model is based on a geographic information system (GIS) and uses modal operation (acceleration, deceleration, cruise, and idle). Estimates of spatially resolved fleet composition and activity are combined with situation-specific emission rates to predict engine start and running exhaust emissions. The estimates are provided at user-defined spatial scales. A demonstration of model operation is provided using a 100 sq km study area in Atlanta, Georgia. Future mobile emissions modeling research needs are developed from an analysis of the sources of model error.

  9. Mobile Laboratory Measurements of Black Carbon and Polycyclic Aromatic Hydrocarbon Emissions in Mexico City: A New Method for Motor Vehicle Emission Inventory Calculations (United States)

    Jiang, M.; Marr, L. C.; Dunlea, E.; Herndon, S.; Jayne, J.; Rogers, T.; Knighton, B.; Zavala, M.; Molina, L. T.; Molina, M. J.


    Aerosol black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) are two products of carbonaceous fuel combustion that are of major concern for urban air quality and global climate change. As part of the Mexico City Metropolitan Area field campaign in April 2003 (MCMA-2003), a mobile laboratory drove throughout the city and chased vehicles to measure pollutants in their exhaust emissions. The laboratory is a van designed and built by Aerodyne Research, Inc. and is equipped with a suite of gas and particle analyzers, including an aethalometer that measures BC and a photoemission aerosol sensor that measures particle-bound PAHs. The main goal of this research is to determine fuel-based emission factors, or the mass of BC and PAH emitted per volume of fuel burned, for Mexico City¡_s vehicle fleet. We can then calculate the megacity¡_s emission inventory of these compounds, which is important on both the urban and global scales. In previous analyses, the mobile laboratory has been used to target emissions from specific vehicles. While chasing events can be analyzed to obtain emission factors for specific vehicles, data from the entire time period while the lab is driving through the streets, whether chasing individual vehicles or not, can also provide valuable information about mobile source emissions. The laboratory continuously samples ambient air from an inlet at the front of the van, and it is always ¡°seeing¡± exhaust plumes from the vehicles around it. This ¡°macroscopic¡± approach that considers all vehicles on the road, similar to tunnel and remote sensing studies, complements the ¡°microscopic¡± approach that focuses on individual vehicles. We have developed a method that automatically identifies exhaust plumes and quantifies emission factors from data collected by the mobile lab. While 200 individual chasing events were identified during the field campaign, over 40,000 exhaust plume points were identified using the macroscopic approach. The

  10. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs. (United States)

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E


    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions. PMID:7529705

  11. Gas purge-microsyringe extraction: a rapid and exhaustive direct microextraction technique of polycyclic aromatic hydrocarbons from plants. (United States)

    Wang, Juan; Yang, Cui; Li, Huijie; Piao, Xiangfan; Li, Donghao


    Gas purge-microsyringe extraction (GP-MSE) is a rapid and exhaustive microextraction technique for volatile and semivolatile compounds. In this study, a theoretical system of GP-MSE was established by directly extracting and analyzing 16 kinds of polycyclic aromatic hydrocarbons (PAHs) from plant samples. On the basis of theoretical consideration, a full factorial experimental design was first used to evaluate the main effects and interactions of the experimental parameters affecting the extraction efficiency. Further experiments were carried out to determine the extraction kinetics and desorption temperature-dependent. The results indicated that three factors, namely desorption temperature (temperature of sample phase) Td, extraction time t, and gas flow rate u, had a significantly positive effect on the extraction efficiency of GP-MSE for PAHs. Extraction processes of PAHs in plant samples followed by first-order kinetics (relative coefficient R(2) of simulation curves were 0.731-1.000, with an average of 0.958 and 4.06% relative standard deviation), and obviously depended on the desorption temperature. Furthermore, the effect of the matrix was determined from the difference in Eapp,d. Finally, satisfactory recoveries of 16 PAHs were obtained using optimal parameters. The study demonstrated that GP-MSE could provide a rapid and exhaustive means of direct extraction of PAHs from plant samples. The extraction kinetics were similar that of the inverse process of the desorption kinetics of the sample phase.

  12. Frozen Hydrocarbon Particles of Cometary Halos as Carriers of Unidentified Emissions

    Indian Academy of Sciences (India)

    Irakli Simonia


    The possible nature of unidentified cometary emissions is under discussion. We propose a new model of the ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons and acyclic hydrocarbons.We describe principal properties of frozen hydrocarbon particles (FHPs) and suggest interpreting some of the unidentified cometary emission lines as the photoluminescence of FHPs. The results of comparative analysis are present.

  13. A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG (United States)

    Bielaczyc, P.; Szczotka, A.; Woodburn, J.


    This paper presents an analysis of THC, NMHC, CO, NOx and CO2 emissions during testing of two bi-fuel vehicles, fuelled with petrol and gaseous fuels, on a chassis dynamometer in the context of the Euro 6 emissions requirements. The analyses were performed on one Euro 5 bi-fuel vehicle (petrol/LPG) and one Euro 5 bi-fuel vehicle (petrol/CNG), both with SI engines equipped with MPI feeding systems operating in closed-loop control, typical three-way-catalysts and heated oxygen sensors. The vehicles had been adapted by their manufacturers for fuelling with LPG or CNG by using additional special equipment mounted onto the existing petrol fuelling system. The vehicles tested featured multipoint gas injection systems. The aim of this paper was an analysis of the impact of the gaseous fuels on the exhaust emission in comparison to the emission of the vehicles fuelled with petrol. The tests subject to the analyses presented here were performed in the Engine Research Department of BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biala, Poland, within a research programme investigating the influence of alternative fuels on exhaust emissions from light duty vehicle vehicles with spark-ignition and compression-ignition engines.

  14. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  15. Research on the 2nd generation biofuel BIOXDIESEL in aspects of emission of toxic substances in exhaust gases (United States)

    Struś, M. S.; Poprawski, W.; Rewolte, M.


    This paper presents results of research of Diesel engines emission of toxic substances in exhaust gases fuelled with a second generation biofuel BIOXDIESEL, which is a blend of Fatty Acid Ethyl Esters obtained from waste resources such waste vegetable and animal fats, bioethanol and standard Diesel fuel. Presented results are very promising, showing that the emission of toxic substances in exhaust gases are significantly reduced when fuelling with BIOXDIESEL fuel in comparison with standard Diesel fuel.

  16. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression. (United States)

    Kamarianakis, Yiannis; Gao, H Oliver


    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  17. Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok. (United States)

    Nutramon, Tamsanya; Supachart, Chungpaibulpatana


    The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.

  18. Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok

    Institute of Scientific and Technical Information of China (English)

    NUTRAMON Tamsanya; SUPACHART Chungpaibulpatana


    The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.

  19. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail:; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)


    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  20. Characteristics of volatile organic compounds from motorcycle exhaust emission during real-world driving (United States)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung


    The number of motorcycles has increased significantly in Asia, Africa, Latin American and Europe in recent years due to their reasonable price, high mobility and low fuel consumption. However, motorcycles can emit significant amounts of air pollutants; therefore, the emission characteristics of motorcycles are an important consideration for the implementation of control measures for motorcycles in urban areas. Results of this study indicate that most volatile organic compound (VOC) emission factors were in the range of several decades mg/km during on-road driving. Toluene, isopentane, 1,2,4-trimethylbenzene, m,p-xylene, and o-xylene were the most abundant VOCs in motorcycle exhaust, with emission factors of hundreds mg/km. Motorcycle exhaust was 15.4 mg/km for 15 carbonyl species. Acetaldehyde, acetone, formaldehyde and benzaldehyde were the major carbonyl species, and their emission factors ranged from 1.4 to 3.5 mg/km 1,2,4-trimethylbenzene, m,p-xylene, 1-butene, toluene, o-xylene, 1,2,3-trimethylbenzene, propene, 1,3,5-trimethylbenzene, isoprene, m-diethylbenzene, and m-ethyltoluene were the main ozone formation potential (OFP) species, and their OFP was 200 mg-O3/km or higher.


    Energy Technology Data Exchange (ETDEWEB)



    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus

  2. C2-C10 hydrocarbon emissions from a boreal wetland and forest floor

    Directory of Open Access Journals (Sweden)

    H. Hellén


    Full Text Available Emissions of various C2-C10 hydrocarbons (VOCs and halogenated hydrocarbons (VHOCs from a boreal wetland and a Scots pine forest floor in south-western Finland were measured by the static chamber technique. Isoprene was the main non-methane hydrocarbon emitted by the wetland, but small emissions of ethene, propane, propene, 1-butene, 2-methylpropene, butane, pentane and hexane were also detected. The isoprene emission from the wetland was observed to follow the commonly-used isoprene emission algorithm. The mean emission potential of isoprene was 224 µg m-2 h-1 for the whole season. This is lower than the emission potentials published earlier; that is probably at least partly due to the cold and cloudy weather during the measurements. No emissions were detected of monoterpenes or halogenated hydrocarbons from the wetland. The highest hydrocarbon emissions from the Scots pine forest floor were measured in spring and autumn. However, only a few measurements were conducted during summer. The main compounds emitted were monoterpenes. Isoprene emissions were negligible. The total monoterpene emission rates varied from zero to 373 µg m-2 h-1. The results indicated that decaying plant litter may be the source for these emissions. Small emissions of chloroform (100-800 ng m-2 h-1, ethene, propane, propene, 2-methylpropene, cis-2-butene, pentane, hexane and heptane were detected. Comparison with Scots pine emissions showed that the forest floor may be an important monoterpene source, especially in spring.

  3. A laboratory comparison of two methods of characterizing exhaust stack emissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, C.; LaBauve, J.; Kissane, R. [Los Alamos National Lab., NM (United States); Ortiz, C. [Los Alamos National Lab., NM (United States)]|[Texas A and M Univ., College Station, TX (United States)


    Concern for the environment and public health, and compliance with DOE and EPA regulations require that representative sampling be conducted on exhaust stacks that emit radioactive materials. In order to design and install particulate samplers, EPA Regulation 40CFR61, Subpart H (NESHAP) specifies that particle concentration profiles be determined, in addition to velocity profiles, at the sampling cross section of all stacks requiring sampling. Neither the NESHAP regulation nor ANSI standard N13.1-1969, A3.2, p27, which is incorporated into NESHAP by reference, specify detection or analytical methods for determining effluent concentration uniformity in stacks that may emit radioactive gases or particles. Methods are described for stacks emitting nonradioactive materials, but these are not suitable for radioactive emissions, nor do the regulations specify any tolerances on the concentration uniformity for exhaust stacks. Mass tracer detection and laser light scattering detection methods are compared.

  4. Dioxins, furans and polycyclic aromatic hydrocarbons emissions from a hospital and cemetery waste incinerator (United States)

    Mininni, Giuseppe; Sbrilli, Andrea; Maria Braguglia, Camilla; Guerriero, Ettore; Marani, Dario; Rotatori, Mauro

    An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200-350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm -3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t -1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41-3700 μg ITEQ t -1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91-414 μg kg -1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018-0.5 μg Nm -3) were below the Italian limit of 10 μg Nm -3.


    Directory of Open Access Journals (Sweden)

    Mirosław WITASZEK


    Full Text Available This article presents data that concerns emission of nitrogen oxides, hydrocarbons, carbon monoxide and particles by different transport means. The road, rail and air transport were taken into account. The data published in references were analysed. To compare freight and passenger road transport emission expressed in grams per kilometre was presented. The emission in mg per passenger-kilometre enabled comparison of cars trains and planes in terms of air pollutant discharge. The data comparison revealed significant differences between transport modes. For aviation significant influence of flight distance on emission was observed. For flights running evenly with a parallel of latitude also the direction – according or opposite to the Earth rotation is significant.

  6. 40 CFR 86.159-00 - Exhaust emission test procedures for US06 emissions. (United States)


    ... adjustment. (e) Perform the test bench sampling sequence outlined in § 86.140-94 prior to or in conjunction... sample bag, turn on the petroleum-fueled diesel-cycle THC analyzer system integrator, mark the recorder.... 1 (and the petroleum-fueled diesel hydrocarbon integrator No. 1 and mark the petroleum-fueled diesel...

  7. Chemical and biological characterization of exhaust emissions from ethanol and ethanol blended diesel fuels in comparison with neat diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R.; Christensen, Anders [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Toernqvist, M. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Ehrenberg, L. [Stockholm Univ. (Sweden). Dept. of Radiobiology; Haupt, D. [Luleaa Univ. of Technology (Sweden)


    This report presents results from a project with the aim of investigating the potential environmental and health impact of emissions from ethanol, ethanol blended diesel fuels and to compare these with neat diesel fuels. The exhaust emissions were characterized regarding regulated exhaust components, particulate and semivolatile Polycyclic Aromatic Compounds (PAC) and with bioassays. The bioassays were mutagenicity and TCDD receptor affinity tests. Results: Neat ethanol fuels are `low emission` fuels, while European diesel fuel quality (EDF) and an ethanol blended EDF are `high emission` fuels. Other fuels, such as Swedish Environmental Class one (MK1) and an ethanol blended MK1, are `intermediate` fuels regarding emissions. When using an oxidizing catalyst exhaust after-treatment device a reduction of harmful substances in the exhaust emissions with respect to determined exhaust parameters was found. The relatively low emission of PAH from ethanol fuelled engines would indicate a lower cancer risk from ethanol than from diesel fuels due to this class of compounds. However, the data presented emphasize the importance of considering the PAH profile 27 refs, 3 figs, 19 tabs

  8. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine. (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A


    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  9. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)


    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  10. Experimental Investigation of 2nd Generation Bioethanol Derived from Empty-fruit-bunch (EFB of Oil-palm on Performance and Exhaust Emission of SI Engine

    Directory of Open Access Journals (Sweden)

    Yanuandri Putrasari


    Full Text Available The experimental investigation of 2nd generation bioethanol derived from EFB of oil-palm blended with gasoline for 10, 20, 25% by volume and pure gasoline were conducted on performance and exhaust emission tests of SI engine. A four stroke, four cylinders, programmed fuel injection (PGMFI, 16 valves variable valve timing and electronic lift control (VTEC, single overhead camshaft (SOHC, and 1,497 cm3 SI engine (Honda/L15A was used in this investigation. Engine performance test was carried out for brake torque, power, and fuel consumption. The exhaust emission was analyzed for carbon monoxide (CO and hydrocarbon (HC. The engine was operated on speed range from1,500 until 4,500 rev/min with 85% throttle opening position. The results showed that the highest brake torque of bioethanol blends achieved by 10% bioethanol content at 3,000 to 4,500 rpm, the brake power was greater than pure gasoline at 3,500 to 4,500 rpm for 10% bioethanol, and bioethanol-gasoline blends of 10 and 20% resulted greater bsfc than pure gasoline at low speed from 1,500 to 3,500 rpm. The trend of CO and HC emissions tended to decrease when the engine speed increased.

  11. Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Jiang


    Full Text Available Black carbon (BC and polycyclic aromatic hydrocarbons (PAHs are of concern due to their effects on climate and health. The main goal of this research is to provide the first estimate of emissions of BC and particle-phase PAHs (PPAHs from motor vehicles in Mexico City. The emissions of other pollutants including carbon monoxide (CO, oxides of nitrogen (NOx, volatile organic compounds (VOCs, and particulate matter of diameter 2.5 μm and less (PM2.5 are also estimated. As a part of the Mexico City Metropolitan Area field campaign in April 2003 (MCMA-2003, a mobile laboratory was driven throughout the city. The laboratory was equipped with a comprehensive suite of gas and particle analyzers, including an aethalometer that measured BC and a photoionization aerosol sensor that measured PPAHs. While driving through traffic, the mobile lab continuously sampled exhaust plumes from the vehicles around it. We have developed a method of automatically identifying exhaust plumes, which are then used as the basis for calculation of fleet-average emissions. In the approximately 75 h of on-road sampling during the field campaign, we have identified ~30 000 exhaust measurement points that represent a variety of vehicle types and driving conditions. The large sample provides a basis for estimating fleet-average emission factors and thus the emission inventory. Motor vehicles in the Mexico City area are estimated to emit 1700±200 metric tons BC, 57±6 tons PPAHs, 1 190 000±40 000 tons CO, 120 000±3000 tons NOx, 240 000±50 000 tons VOCs, and 4400±400 tons PM2.5 per year, not including cold start emissions. The estimates for CO, NOx, and PPAHs may be low by up to 10% due to the slower response time of analyzers used to measure these species. Compared to the government's official motor vehicle emission inventory for the year 2002, the estimates for CO, NOx, VOCs, and PM2.5 are 38% lower, 23% lower, 27% higher, and 25% higher, respectively. The

  12. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review (United States)

    Masiol, Mauro; Harrison, Roy M.


    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  13. Gas- and particle-phase distribution of polycyclic aromatic hydrocarbons in two-stroke, 50-cm 3 moped emissions (United States)

    Spezzano, Pasquale; Picini, Paolo; Cataldi, Dario

    Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) concentrations evaluated in the exhaust of 10 two-stroke, 50-cm 3 mopeds belonging to three different levels of emission legislation (EURO-0, EURO-1 and EURO-2) were used to assess the prevalent mechanism driving the gas/particle partitioning of PAHs in moped exhaust. Sampling was performed on a dynamometer bench both during the "cold-start" and the "hot" phases of the ECE-47 driving cycle. Gas and particulate phase PAHs were collected on polyurethane foam (PUF) plugs and 47-mm Pallflex T60A20 filters, respectively, under isokinetic conditions by using sampling probes inserted into the dilution tunnel of a Constant Volume Sampling - Critical Flow Venturi (CVS-CFV) system. The results show that semi-volatile PAHs were predominantly partitioned to the particle phase. The soluble organic fraction (SOF) of the collected particulates ranged between 72 and 98%. Measured total suspended particulate matter normalized partition coefficients ( Kp) were predicted within a factor of 3-5 by assuming absorption into the organic fraction according to a model developed by Harner and Bidleman [Harner, T., Bidleman, T.F., 1998. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science & Technology 32, 1494-1502.]. This suggests that the gas/particle partitioning in moped exhaust is mainly driven by the high fraction of organic matter of the emitted particles and that absorption could be the main partitioning mechanism of PAHs.

  14. Emissions of polycyclic aromatic hydrocarbons from coking industries in China

    Institute of Scientific and Technical Information of China (English)

    Ling Mu; Lin Peng; Junji Cao; Qiusheng He; Fan Li; Jianqiang Zhang; Xiaofeng Liu


    This study set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emission from coking industries,with field samplings conducted at four typical coke plants.For each selected plant,stack flue gas samples were collected during processes that included charging coal into the ovens (CC),pushing coke (PC) and the combustion of coke-oven gas (CG).Sixteen individual PAHs on the US EPA priority list were analyzed by gas chromatography/mass spectrometry (GC/MS).Results showed that the total PAH concentrations in the flue gas ranged from 45.776 to 414.874 μg/m3,with the highest emission level for CC (359.545 μg/m3).The concentration of PAH emitted from the CC process in CP1 (stamp charging) was lower than that from CP3 and CP4 (top charging).Low-molecular-weight PAHs (i.e.,two-to three-ring PAHs) were predominant contributors to the total PAH contents,and Nap,AcPy,Flu,PhA,and AnT were found to be the most abundant ones.Total BaPeq concentrations for CC (2.248 iμg/m3) were higher than those for PC (1.838 μg/m3) and CG (1.082 μg/m3),and DbA was an important contributor to carcinogenic risk as BaP in emissions from coking processes.Particulate PAH accounted for more than 20% of the total BaPeq concentrations,which were significantly higher than the corresponding contributions to the total PAH mass concentration (5%).Both particulate and gaseous PAH should be taken into consideration when the potential toxicity risk of PAH pollution during coking processes is assessed.The mean total-PAH emission factors were 346.132 and 93.173 μg/kg for CC and PC,respectively.

  15. Influence Of Aircraft Engine Exhaust Emissions At A Global Level And Preventive Measures

    Directory of Open Access Journals (Sweden)

    Jasna Golubić


    Full Text Available The work considers the differences in the aircraft engine exhaustemissions, as well as the impact of the emissions on theenvironment depending on several factors. These include theage of the engine, i. e. technical refinement, engine operating regimesat different thrusts during time periods: takeoff, climb,approach, etc. Also, the exhaust emissions do not have thesame influence on different atmospheric layers. The pollutantsemitted at higher altitudes during cruising have become agreater problem, although the volume of pollutants is smaller,due to the chemical complexity and sensitivity of these layers ascompared to the lower layers of atmosphere. One of the reasonswhy these problems have long remained outside the focus of interestof the environmentalists is that the air transport of goodsand people is performed at high altitudes, so that the pollutionof atmosphere does not present a direct threat to anyone, sincethe environment is being polluted at a global level and thereforeis more difficult to notice at the local level.

  16. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.


    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.


    Directory of Open Access Journals (Sweden)



    Full Text Available Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode to analyze the performance and emission characteristics of pure diesel first and then CNG-Diesel dual fuel mode. The measurements were recorded for the compression ratio of 15 and 17.5 at CNG substitution rates of 30% and 60% and varying theload from idle to rated load of 3.5kW in steps of 1 up to 3kW and then to 3.5kW. The results reveal that brake thermal efficiency of dual fuel engine is in the range of 30%-40% at the rated load of 3.5 kW which is 11%-13% higher than pure diesel engine for 30% and 60% CNG substitution rates. This trend is observed irrespective of the compression ratio of the engine. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates. It is found that there is drastic reduction in CO, CO2, HC, NOx and smoke emissions in the exhaust of dual fuel engine at all loads and for 30% and 60% CNG substitution rates by employing some optimum operating conditions set forth for experimental investigations in this study.

  18. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS. (United States)

    Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E


    Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust (United States)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.


    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were

  20. Implications of changing urban and rural emissions on non-methane hydrocarbons in the Pearl River Delta region of China (United States)

    Tang, J. H.; Chan, L. Y.; Chan, C. Y.; Li, Y. S.; Chang, C. C.; Wang, X. M.; Zou, S. C.; Barletta, Barbara; Blake, D. R.; Wu, Dui


    Guangzhou (GZ) is one of the highly industrialized and economically vibrant cities in China, yet it remains relatively understudied in terms of its air quality, which has become severely degraded. In this study, extensive air sampling campaigns had been conducted at GZ urban sites and in Dinghu Mountain (DM), a rural site, in the Pearl River Delta (PRD) during the spring of 2001 and 2005. Additionally, roadside and tunnel samples were collected in GZ in 2000 and 2005. Later, exhaust samples from liquefied petroleum gas (LPG)- and gasoline-fueled taxis were collected in 2006. All samples were analyzed for C2-C10 non-methane hydrocarbons (NMHCs). NMHC profiles showed significant differences in the exhaust samples between gasoline- and LPG-fueled taxis. Propane (47%) was the dominant hydrocarbon in the exhaust of the LPG-fueled taxis, while ethene (35%) was the dominant one in that of gasoline-fueled taxis. The use of LPG-fueled buses and taxis since 2003 and the leakage from these LPG-fueled vehicles were the major factors for the much higher level of propane in GZ urban area in 2005 compared to 2001. The mixing ratios of toluene, ethylbenzene, m/p-xylene and o-xylene decreased at the GZ and DM sites between 2001 and 2005, especially for toluene in GZ, despite the sharp increase in the number of registered motor vehicles in GZ. This phenomenon was driven in part by the closure of polluting industries as well as the upgrading of the road network in urban GZ and in part by the implementation of more stringent emission standards for polluting industries and motor vehicles in the PRD region.

  1. Additives for rapeseed oil fuel. Influence on the exhaust gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kastl, Johannes; Remmele, Edgar; Thuneke, Klaus [Technologie- und Foerderzentrum, Straubing (Germany)


    In contrast to fossil diesel fuel, the use of additives is not common in rapeseed oil fuel. In a preceding research project the efficacy of several additives, that are commercially available for the use in fossil diesel or FAME, has been investigated for rapeseed oil fuel in the lab. Four additives could be identified, which have a significant influence on the ignition delay or the low temperature flow behaviour of rapeseed oil fuel. To investigate whether there are negative effects of the additives on other fuel-related properties in practical use, a test series on an agricultural tractor capable of running on vegetable oils has been conducted. Attention is focused on the operating parameters like power, torque or fuel consumption as well as on regulated emissions (CO, HC, particulate matter or NOx) and non-regulated emissions like polycyclic aromatic hydrocarbons. Additionally, the influence of the additives on the storage stability of rapeseed oil fuel is investigated in long term studies. No negative influence of the additives on the regulated emissions could be seen in the experiments, the data of the non-regulated emissions is still being analysed. This paper will focus on the emissions testing; results of the long term studies will be given in the presentation. (orig.)

  2. On exhaust emissions from petrol-fuelled passenger cars at low ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use


    The study at hand deals with regulated and unregulated exhaust emissions from petrol-fuelled cars at low ambient temperatures with present-day or near-future exhaust after treatment systems. The subject has been investigated at VTT over a decade and this report compiles data from various sub-studies carried out between the years 1993 - 1997. Each one of them viewed different aspects of the phenomenon, like determining the low-temperature response of today`s new cars employing three-way catalytic converters or assessing the long-term durability and the influence of vehicle mileage upon the low-temperature emissions performance. Within these studies, together more than 120 cars of model years from 1990 to 1997 have been tested. Most of them were normal, in-service vehicles with total mileages differing between only a few thousand kilometres for new cars up to 80,000 km or even more for the in-use vehicles. Both the US FTP75 and the European test cycle have been employed, and the ambient temperatures ranged from the baseline (+22 deg C) down to +- O deg C, -7 deg C and in some cases even to -20 deg C. The studies attested that new cars having today`s advanced emissions control systems produced fairly low levels of emissions when tested in conditions designated in the regulations that are the basis of the current new-vehicle certification. However, this performance was not necessarily attained at ambient temperatures that were below the normative range. Fairly widespread response was recorded, and cars having almost equal emissions output at baseline could produce largely deviating outcomes in low-temperature conditions. On average, CO and HC emissions increased by a factor of five to 10, depending on the ambient temperature and vehicle type. However, emissions of NO{sub x} were largely unaffected. Apart from these regulated emissions, many unregulated species were also determined, either by using traditional sampling and chromatography methods or on-line, employing

  3. A comparison on the emission of polycyclic aromatic hydrocarbons and their corresponding carcinogenic potencies from a vehicle engine using leaded and lead-free gasoline. (United States)

    Mi, H H; Lee, W J; Tsai, P J; Chen, C B


    Our objective in this study was to assess the effect of using two kinds of lead-free gasoline [including 92-lead-free gasoline (92-LFG) and 95-lead-free gasoline (95-LFG), rated according to their octane levels] to replace the use of premium leaded gasoline (PLG) on the emissions of polycyclic aromatic hydrocarbons (PAHs) and their corresponding benzo[a]pyrene equivalent (BaP(eq)) amounts from the gasoline-powered engine. The results show that the three gasoline fuels originally contained similar total PAHs and total BaP(eq) contents; however, we found significant differences in the engine exhausts in both contents. The above results suggest that PAHs originally contained in the gasoline fuel did not affect the PAH emissions in the engine exhausts. The emission factors of both total PAHs and total BaP(eq) obtained from the three gasoline fuels shared the same trend: 95-LFG > PLG > 92-LFG. The above result suggests that when PLG was replaced by 95-LFG, the emissions would increase in both total PAHs and total BaP(eq), but when replaced by 92-LFG would lead to the decreased emissions of both contents. By taking emission factors and their corresponding annual gasoline consumption rates into account, we found that both total PAH and total BaP(eq) emissions increased from 1994 to 1999. However, the annual increasing rates in total BaP(eq) emissions were slightly higher than the corresponding increasing rates in total PAHs.

  4. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode. (United States)

    Fu, Xian-Zhu; Lin, Jie-Yuan; Xu, Shihong; Luo, Jing-Li; Chuang, Karl T; Sanger, Alan R; Krzywicki, Andrzej


    A dehydrogenation anode is reported for hydrocarbon proton conducting solid oxide fuel cells (SOFCs). A Cu-Cr(2)O(3) nanocomposite is obtained from CuCrO(2) nanoparticles as an inexpensive, efficient, carbon deposition and sintering tolerant anode catalyst. A SOFC reactor is fabricated using a Cu-Cr(2)O(3) composite as a dehydrogenation anode and a doped barium cerate as a proton conducting electrolyte. The protonic membrane SOFC reactor can selectively convert ethane to valuable ethylene, and electricity is simultaneously generated in the electrochemical oxidative dehydrogenation process. While there are no CO(2) emissions, traces of CO are present in the anode exhaust when the SOFC reactor is operated at over 700 °C. A mechanism is proposed for ethane electro-catalytic dehydrogenation over the Cu-Cr(2)O(3) catalyst. The SOFC reactor also has good stability for co-generation of electricity and ethylene at 700 °C.

  5. An experimental study on the effects of the thermal barrier plating over engine fuel consumption exhaust temperature and emissions

    Directory of Open Access Journals (Sweden)

    Hüseyin Gürbüz


    Full Text Available The aim of this study, the combustion chamber elements of a one-cylinder diesel engine which is air-cooled, single-cylinder, direct injection, 4-stroke and starter motor were plated with thermal barrier plating and tested with diesel fuel between the speeds of 1600 1/min to 3200 1/min and determined the effects of the thermal barrier plating on the engine exhaust gas temperature, emissions and fuel consumption. Increase in the temperature of the exhaust gas, decrease in HC and CO emissions that are harmful to the environment and living things and improvement in fuel consumption were observed.

  6. Carbonaceous aerosol in jet engine exhaust: emission characteristics and implications for heterogeneous chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, A.; Schroeder, F.P.; Kaercher, B. [Deutsches Zentrum fuer Luft- und Raumfahrt, Wessling (Germany). Institut fuer Physik der Atmosphaere; Stroem, J. [Stockholm University (Sweden). Dept. of Meteorology


    Characteristic parameters of black carbon aerosol (BC) emitted from jet engine were measured during ground tests and in-flight behind the same aircraft. Size distribution features were a primary BC mode at a model diameter D {approx} 0.045 {mu}m, and a BC agglomeration mode at D < 0.2 {mu}m. The total BC number concentration at the engine exit was 2.9 x 10{sup 7} cm{sup -3} with good agreement between model results and in-flight measured number concentrations of non-volatile particles with D {>=} 0.014 {mu}m. A comparison between total number concentration of BC particles and the non-volatile fraction of the total aerosol at the exit plane suggests that the non-volatile fraction of jet engine exhaust aerosol consists almost completely of BC. In-flight BC mass emission indices ranged from 0.11 to 0.15 g BC (kg fuel){sup -1}. The measured in-flight particle emission value was 1.75 {+-} 0.15 x 10{sup 15} kg{sup -1} with corresponding ground test values of 1.0-8.7 x 10{sup 14} kg{sup -1}. Both size distribution properties and mass emission indices can be scaled from ground test to in-flight conditions. Implications for atmosphere BC loading, BC and cirrus interaction and the potential of BC for perturbation of atmospheric chemistry are briefly outlined. (author)

  7. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust (United States)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin


    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.

  8. Development of the methodology of exhaust emissions measurement under RDE (Real Driving Emissions) conditions for non-road mobile machinery (NRMM) vehicles (United States)

    Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Ziolkowski, A.


    The paper analyzes the exhaust emissions from farm vehicles based on research performed under field conditions (RDE) according to the NTE procedure. This analysis has shown that it is hard to meet the NTE requirements under field conditions (engine operation in the NTE zone for at least 30 seconds). Due to a very high variability of the engine conditions, the share of a valid number of NTE windows in the field test is small throughout the entire test. For this reason, a modification of the measurement and exhaust emissions calculation methodology has been proposed for farm vehicles of the NRMM group. A test has been developed composed of the following phases: trip to the operation site (paved roads) and field operations (including u-turns and maneuvering). The range of the operation time share in individual test phases has been determined. A change in the method of calculating the real exhaust emissions has also been implemented in relation to the NTE procedure.

  9. Theoretical modeling of infrared emission from neutral and charged polycyclic aromatic hydrocarbons. II.

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM; Bauschlicher, CW; Hudgins, DM; Allamandola, LJ


    The nature of the carriers of the interstellar infrared (IR) emission features between 3.3 and 12.7 mum is complex. We must consider emission from a family of polycyclic aromatic hydrocarbons (PAHs) in a multiplicity of cationic charge states (+1, +2, +3, and so on), along with neutral and anionic P

  10. Effect of measurement protocol on organic aerosol measurements of exhaust emissions from gasoline and diesel vehicles (United States)

    Kim, Youngseob; Sartelet, Karine; Seigneur, Christian; Charron, Aurélie; Besombes, Jean-Luc; Jaffrezo, Jean-Luc; Marchand, Nicolas; Polo, Lucie


    Exhaust emissions of semi-volatile organic compounds (SVOC) from passenger vehicles are usually estimated only for the particle phase via the total particulate matter measurements. However, they also need to be estimated for the gas phase, as they are semi-volatile. To better estimate SVOC emission factors of passenger vehicles, a measurement campaign using a chassis dynamometer was conducted with different instruments: (1) a constant volume sampling (CVS) system in which emissions were diluted with filtered air and sampling was performed on filters and polyurethane foams (PUF) and (2) a Dekati Fine Particle Sampler (FPS) in which emissions were diluted with purified air and sampled with on-line instruments (PTR-ToF-MS, HR-ToF-AMS, MAAP, CPC). Significant differences in the concentrations of organic carbon (OC) measured by the instruments are observed. The differences can be explained by sampling artefacts, differences between (1) the time elapsed during sampling (in the case of filter and PUF sampling) and (2) the time elapsed from emission to measurement (in the case of on-line instruments), which vary from a few seconds to 15 min, and by the different dilution factors. To relate elapsed times and measured concentrations of OC, the condensation of SVOC between the gas and particle phases is simulated with a dynamic aerosol model. The simulation results allow us to understand the relation between elapsed times and concentrations in the gas and particle phases. They indicate that the characteristic times to reach thermodynamic equilibrium between gas and particle phases may be as long as 8 min. Therefore, if the elapsed time is less than this characteristic time to reach equilibrium, gas-phase SVOC are not at equilibrium with the particle phase and a larger fraction of emitted SVOC will be in the gas phase than estimated by equilibrium theory, leading to an underestimation of emitted OC if only the particle phase is considered or if the gas-phase SVOC are estimated

  11. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions. (United States)


    ... fuel as determined in § 600.113-08(a) and (b); FEpet is the fuel economy while operated on petroleum... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS...

  12. The Effect of Fuel Dose Division on The Emission of Toxic Components in The Car Diesel Engine Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz


    Full Text Available The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and

  13. Certification of Pd and Pt single spikes and application to the quantification of Pt and Pd in automotive exhaust emissions (United States)

    Vogl, Jochen; Meyer, Christian; Noordmann, Janine; Rienitz, Olaf; Geilert, Sonja


    Numerous epidemiological studies show the effect of increased ambient pollution. Therefore measurement networks for air quality have been installed worldwide and legislation requires the monitoring of air pollution. Besides monitoring it is also important to be able to identify, to quantify and finally to regulate the emission of distinct sources in order to improve the quality of life. Automotive vehicles are a major source of environmental pollution especially through contaminants such as CO, NOX, SOX and hydrocarbons which derive from petrol combustion, while for example Platinum Group Elements (PGE) can be present from catalytic converters. The release of PGE into the environment, however, may be damaging in terms of public health, ecological and economic interests. In order to reliably assess the risks from PGEs, traceable and thus comparable data on the release rates of PGE from automotive catalysers are needed. As no Certified Reference Materials (CRM) are available for such samples the development of analytical procedures enabling SI-traceable results will be challenging. Therefore reference procedures for Pd and Pt in automotive exhaust emissions based on isotope dilution mass spectrometry (IDMS) have been developed and applied to specifically sampled automotive exhaust emissions. Due to the commonly known advantages, IDMS often is applied for quantification PGEs, as is the case within this work. The main reasons here are the required accuracy and the low PGE mass fractions in the sample. In order to perform IDMS analysis the analyte element must be available in an isotopically enriched form as so-called spike material or solution thereof, which is mixed with the sample. Unfortunately, no certified PGE spike solutions are available yet. To fill this gap two single PGE spikes, one 106Pd and one 194Pt spike, have been produced and characterized. The selection of the isotopes, the production of the solutions and the ampoulation will be described in this

  14. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen


    Full Text Available An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  15. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Sanchez, D. [Univ. of California Los Angeles School of Medicine, Div. of Clinical Immunology and Allergy, Los Angles, CA (United States)


    The increase in allergic airway disease has paralleled the increase in the use of fossil fuels. Studies were undertaken to examine whether extracts of polyaromatic hydrocarbons (PAH) from diesel exhaust particles (DEP) (PAH-DEP) acted as mucosal adjuvants to help initiate or enhance immunoglobulin E (IgE) production in response to common inhaled allergens. In vitro studies demonstrated that PAH-DEP enhanced IgE production by tonsilar B-cells in the presence of interleukin-4 (IL-4) and CD40 monoclonal antibody, and altered the nature of the IgE produced, i.e. a decrease in the CH4`-CHe5 variant, a marker for differentiation of IgE-producing B-cells, and an increase in the M2` variant. In vivo nasal provocation studies using 0.30 mg DEP in saline also showed enhanced IgE production in the human upper respiratory mucosa, accompanied by a reduced CH4`-CHe5 mRNA splice variant. The effect of DEP were also isotype-specific, with no effect on IgG, IgA, IgM, or albumin, but it produced a small increase in the IgG{sub 4} subclass. The ability of DEP to act as an adjuvant to the ragweed allergen Amb a I was examined by nasal provocation in ragweed allergic subjects using 0.3 mg DEP, Amb a I, or both. Although allergen and DEP each enhanced ragweed-specific IgE, DEP plus allergen promoted a 16-times greater antigen-specific IgE production. Nasal challenge with DEP also influenced cytokine production. Ragweed challenge resulted in a weak response, DEP challenge caused a strong but non-specific response, while allergen plus DEP caused a significant increase in the expression of mRNA for TH{sub 0} and TH{sub 2}-type cytokines (IL-4, IL-5, IL-6, IL-10, IL-13) with a pronounced inhibitory effect on IFN-{gamma} gene expression. These studies suggest that DEP can enhance B-cell differentiation, and by initiating and elevating IgE production, may play an important role in the increased incidence of allergic airway disease. (au)

  16. Characteristics of hopanoid hydrocarbons in ambient PM₁₀ and motor vehicle emissions and coal ash in Taiyuan, China. (United States)

    Han, Feng; Cao, Junji; Peng, Lin; Bai, Huiling; Hu, Dongmei; Mu, Ling; Liu, Xiaofeng


    Hopanoid hydrocarbon content in ambient particulate matter (PM) of less than or equal to 10 μm aerodynamic diameter (PM10) was sampled at seven sites representative of different functional districts, and measured by gas chromatography-mass spectrometry. 17α(H),21β(H)-hopane (C30αβ) and 17α(H),21β(H)-30-norhopane (C29αβ) were dominant in all samples. Hopanes in motor vehicle emissions from various fuel-type engines (gasoline, diesel and natural gas) and coal ash were qualitatively measured, and the amount of C30αβ was about two to three times greater than that of C29αβ. Distinct seasonal variations (winter/summer differences) were observed at higher concentrations (45.54-108.29 ng/m(3)) of total hopanes in winter and lower (2.59-28.26 ng/m(3)) in summer. There were also clear spatial variations of hopanes in Taiyuan, with samples with greater hopane concentrations in downtown areas, but less in summer. The spatial distribution reversed in winter. Distributions and relative abundances of selected hopanes from PM10 and source emissions indicated that in summer, vehicle exhaust was the dominant fossil fuel combustion source (C30αβ was >C29αβ), and that the contribution of coal combustion was slightly greater at suburban sites. However, the contribution of coal combustion sources increased significantly at all sites in winter, especially in suburban areas, where C29αβ exceeded C30αβ. Hopanoid indexes revealed a classification of vehicle exhaust and coal combustion emissions in PM10. The results imply that during rapid urbanization, it is crucial to strengthen the construction of infrastructure such as central heating in new city districts and to increase the use of natural gas instead of residential coal burning.

  17. Developing Mathematical Provisions for Assessment of Liquid Hydrocarbon Emissions in Emergency Situations (United States)

    Zemenkova, M. Yu; Zemenkov, Yu D.; Shantarin, V. D.


    The paper reviews the development of methodology for calculation of hydrocarbon emissions during seepage and evaporation to monitor the reliability and safety of hydrocarbon storage and transportation. The authors have analyzed existing methods, models and techniques for assessing the amount of evaporated oil. Models used for predicting the material balance of multicomponent two-phase systems have been discussed. The results of modeling the open-air hydrocarbon evaporation from an oil spill are provided and exemplified by an emergency pit. Dependences and systems of differential equations have been obtained to assess parameters of mass transfer from the open surface of a liquid multicomponent mixture.

  18. Nitric oxide-assisted atmospheric pressure corona discharge ionization for the analysis of automobile hydrocarbon emission species. (United States)

    Dearth, M A; Komiski, T J


    Nitric oxide reagent gas has been found to improve the sensitivity and robustness of the atmospheric pressure corona discharge ionization (APCDI) process. Sensitivity has been increased by a factor of 20-100, depending on the compound, over APCDI without nitric oxide. The robustness (defined as the sensitivity to matrix interferences) of APCDI in the presence of water has been improved by a factor of 3 over normal APCDI. These improvements are due in part to a modification of the commercial inlet system and ionization chamber that allows the chamber and sample gases to be heated to 100 and 350°C, respectively. Nitric oxide was chosen as the reagent gas because of the variety and selectivity of its interaction with hydrocarbons with differing functional groups. Product ions of nitric oxide ionization and their subsequent tandem mass spectra are presented and discussed for selected alkanes; alkenes, alkylbenzenes, alcohols; aldehydes, and an ether. A tandem mass spectrometry (unique parent ion-daughter ion transition) method was developed to quantify compounds of specific interest in vehicle emissions. The absolute sensitivity for these compounds, under ideal conditions, was determined and ranges from 0.006 ppb for xylene (most sensitive) to 80 ppb for C8 (or larger) normal alkanes. Routine sensitivity for real-world samples was in the single parts per billion range for aromatic and olefinic species. Potential applications include the real-time, on-line monitoring of selected hydrocarbons in automobile exhaust.

  19. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions. (United States)


    ...(a)(2) or § 157.10c(b)(2) without sufficient segregated ballast tanks or dedicated clean ballast... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Cargo tanks: Hydrocarbon vapor... SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK...


    The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...

  1. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine (United States)

    Rifal, Mohamad; Sinaga, Nazaruddin


    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  2. Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines (United States)

    Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł


    The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.

  3. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil. (United States)

    Mohamed Ibrahim, N H; Udayakumar, M


    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NOx emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Hydrocarbon raw emission characterization of a direct-injection spark ignition engine operated with alcohol and furan-based bio fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thewes, Matthias [FEV GmbH, Aachen (Germany); Mauermann, Peter; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Bluhm, Kerstin; Hollert, Henner [RWTH Aachen Univ. (Germany). Inst. for Environmental Research, Dept. of Ecosystem Analysis


    Within the Cluster of Excellence ''Tailor-Made Fuels from Biomass'' the impact of various potential bio fuels on engine combustion is studied. Besides alcohols, furan-based bio fuels have come into the focus with novel production routes to transform biomass into 2-Methylfuran or 2,5-Dimethylfuran. In the present study, the influence of these and other bio fuels on the hydrocarbon raw emission spectrum of a direct-injection spark-ignition single cylinder engine is studied experimentally by means of gas chromatographic and mass spectroscopic analysis of exhaust gas samples. The results obtained are compared to operation with conventional EN 228 gasoline fuel. This fuel showed slip of partially carcinogenic aromatic fuel molecule(s) in warm and in cold engine conditions. For the bio fuels, slip was found to be significant for the alcohol fuels. The carcinogenic molecule 1,3-Butadiene was present in the exhaust gas of all fuels. Furan as another possibly carcinogenic molecule was found at significantly higher concentrations in the exhaust gas of the furan-based bio fuels compared to conventional gasoline fuel but not in the exhaust gas of the alcohol fuels. (orig.)

  5. Emissions in the exhaust of fishing boats after adding viscous agents into fuel oils. (United States)

    Hsieh, Lien-Te; Shih, Shun-I; Lin, Sheng-Lun; Yang, Tsun-Lirng; Wu, Tser-Son; Hung, Chung-Hsien


    In order to avoid the illegal use of fishing boat fuel A (FBFA) by traveling diesel vehicles (TDVs) in Taiwan, alternatives that are easily distinguished from premium diesel fuel (PDF) were prepared to evaluate their suitability. Two new ingredients, pyrolysis fuel oil (PFO) and residue of desulfurization unit (RDS), were added into FBFA and formed PFO0.5 and RDS0.5, respectively. Along with FBFA, these three fuels were analyzed for their chemical and physical properties. Furthermore, they were used by three fishing boats with different sizes, output powers, and weights. The engine performances and pollutant emissions were examined and monitored. Experimental results show that there are significant differences in appearance between PDF and the two new blended fuels (PFO0.5 and RDS0.5), and thus misuse or illegal use of FBFA could be substantially reduced. The fuel consumption, which is negatively related to the heating value of fuels, is in order of FBFAfishing boats, using RDS0.5 resulted in a decrease in CO and NO(x) emissions, while the PM emission factors (g bhp(-1) h(-1) and g L(-1)-fuel) were reduced by approximately 36% and 33%, respectively. Owing to the higher total aromatic content in PFO0.5 and RDS0.5, total-PAH concentrations in the exhausts from the three fishing boats using PFO0.5 and RDS0.5 were slightly (1.2 and 1.1 times, respectively) higher than for those using FBFA. Nevertheless, the estimated total BaP(eq) from the three fishing boats using RDS0.5 was 27.5, 19.5, and 8.25% lower than those using FBFA. With using PFO0.5, they were totally different, at 23.5, 2.79, and 2.58% higher. With regard to looking different to PDF, RDS0.5 is superior to PFO0.5, and is thus recommended as a better alternative to FBFA, particularly because it can help lower more emissions of CO, NO(x), PM and BaP(eq).

  6. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)


    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  7. Using engine exhaust gas as energy source for an absorption refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Manzela, Andre Aleixo [PETROBRAS, Exploration and Production, Av. Rui Barbosa, 1940 - 3 andar, 27915-012 - Macae - RJ (Brazil); Hanriot, Sergio Morais; Cabezas-Gomez, Luben; Sodre, Jose Ricardo [Pontifical Catholic University of Minas Gerais, Department of Mechanical Engineering, Av. Dom Jose Gaspar, 500, 30535-610 - Belo Horizonte - MG (Brazil)


    This work presents an experimental study of an ammonia-water absorption refrigeration system using the exhaust of an internal combustion engine as energy source. The exhaust gas energy availability and the impact of the absorption refrigeration system on engine performance, exhaust emissions, and power economy are evaluated. A production automotive engine was tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust pipe. The engine was tested for 25%, 50%, 75% and wide-open throttle valve. The refrigerator reached a steady state temperature between 4 and 13 C about 3 h after system start up, depending on engine throttle valve opening. The calculated exhaust gas energy availability suggests the cooling capacity can be highly improved for a dedicated system. Exhaust hydrocarbon emissions were higher when the refrigeration system was installed in the engine exhaust, but carbon monoxide emissions were reduced, while carbon dioxide concentration remained practically unaltered. (author)

  8. Hydrocarbons Emissions Due to Wellbore and other Subsurface Leakage in the Uintah Basin, Utah (United States)

    Watkins, C.; Lyman, S. N.


    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. One potentially important emissions source is subsurface leakage of natural gas. Better understanding of wellbore and other subsurface leaks are important in providing ways to decrease pollution while increasing the efficiency of oil and gas production. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near wells are typically low, soil gas near some wells can contain more than 50% methane. In the summers of 2013-2015 we carried out campaigns to measure the emission rate of methane and other hydrocarbons from soils near wells in the Uintah Basin, Utah. We also measured emissions at several locations on individual well pads and determined that concentrations of hydrocarbons tend to decrease with distance from the well head. Soil emissions were also measured at non-well sites in the same area to determine background emission rates. Emissions from exposed coal, oil shale, gilsonite, and fault zone surfaces were also measured. Relationships of emissions with soil gas concentrations, meteorological conditions, and soil properties were also investigated.

  9. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    Directory of Open Access Journals (Sweden)

    A. Polidori


    Full Text Available A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH content, and the physical/chemical characteristics of aerosols collected a in Wilmington (CA near the Los Angeles port and close to 2 major freeways, and b at a dynamometer testing facility in downtown Los Angeles (CA, where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00–11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converter were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (μg/m3 and the measured photo-electric aerosol sensor signal (fA was also established. Estimated ambient p-PAH concentrations (Average=0.64 ng/m3; Standard deviation=0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant

  10. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    Directory of Open Access Journals (Sweden)

    A. Polidori


    Full Text Available A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH content, and the physical/chemical characteristics of aerosols collected a in Wilmington (CA near the Los Angeles port and close to 2 major freeways, and b at a dynamometer testing facility in downtown Los Angeles (CA, where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4–8 times higher at 09:00–11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converted were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (μg/m3 and the measured photo-electric aerosol sensor signal (fA was also established. Estimated ambient p-PAH concentrations (Average = 0.64 ng/m3; Standard deviation = 0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a

  11. Mechanisms for the formation of exhaust hydrocarbons in a single cylinder spark-ignition engine, fueled with deuterium-labeled ortho-, meta-, and para-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.; Jackson, R.A. [Univ. of Sussex, Brighton (United Kingdom). School of Chemistry, Physics and Environmental Science; Bennett, P.J. [BP Oil, Sunbury-on-Thames (United Kingdom)


    Combustion studies in engines have investigated the chemistry leading to the formation in the exhaust of aromatic hydrocarbons from deuterium-labeled isomeric xylenes. These fuels were: ortho-xylene-d{sub 0} and ortho-xylene=d{sub 10} (1:1); para-xylene-d{sub 0} and para-xylene-d{sub 10} (1:1); and meta-xylene-2,4,5,6-d{sub 4}. Isotopic distributions within the exhausted hydrocarbons establish the postflame chemistry involved. There is an isotope effect in the consumption of residual fuel in the postflame region. The residual fuel from each experiment exhibits minimal H-D exchange. Toluene is an intermediate in the formation of ethylbenzene, and is produced through X{sup {sm_bullet}} atom (X{sup {sm_bullet}} = H or D) displacement of methyl radicals from the xylene fuel. Benzene is formed by direct demethylation, but there are other routes. Styrene from o- and p-xylene fuels is formed intramolecularly, probably involving xylylene and methylcycloheptatetraene intermediates. Ethyltoluene is formed by combination of methyl and methylbenzyl radicals.

  12. Influence of fuel properties, nitrogen oxides, and exhaust treatment by an oxidation catalytic converter on the mutagenicity of diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Juergen; Bruening, Thomas [Ruhr University Bochum, Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Krahl, Juergen; Schroeder, Olaf [Federal Agricultural Research Centre, Institute of Biosystems Engineering, Braunschweig (Germany); Weigel, Andreas; Mueller, Michael; Hallier, Ernst; Westphal, Goetz [University of Goettingen, Department of Occupational and Social Medicine, Gottingen (Germany)


    Particle emissions of diesel engines (DEP) content polycyclic aromatic hydrocarbons (PAH) these compounds cause a strong mutagenicity of solvent extracts of DEP. We investigated the influence of fuel properties, nitrogen oxides (NO{sub x}), and an oxidation catalytic converter (OCC) on the mutagenic effects of DEP. The engine was fuelled with common diesel fuel (DF), low-sulphur diesel fuel (LSDF), rapeseed oil methyl ester (RME), and soybean oil methyl ester (SME) and run at five different load modes in two series with and without installation of an OCC in the exhaust pipe. Particles from the cooled and diluted exhaust were sampled onto glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The mutagenicity of the extracts was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Without OCC the number of revertant colonies was lower in extracts of LSDF than in extracts of DF. The lowest numbers of revertant colonies were induced by the plant oil derived fuels. In three load modes, operation with the OCC led to a reduction of the mutagenicity. However, direct mutagenic effects under heavy duty conditions (load mode A) were significantly increased for RME (TA98, TA100) and SME (TA98). A consistent but not significant increase in direct mutagenicity was observed for DF and LSDF at load mode A, and for DF at idling (load mode E) when emissions were treated with the OCC. These results raise concern over the use of oxidation catalytic converters with diesel engines. We hypothesise that the OCC increases formation of direct acting mutagens under certain conditions by the reaction of NO{sub x} with PAH resulting in the formation of nitrated-PAH. Most of these compounds are powerful direct acting mutagens. (orig.)

  13. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit. (United States)

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying


    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.

  14. Influence of fuel composition on polycyclic aromatic hydrocarbon emissions from a fleet of in-service passenger cars (United States)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia.; Ristovski, Zoran D.; Jayaratne, E. Rohan

    The composition of exhaust emissions from eight in-service passenger cars powered by liquefied petroleum gas (LPG) and unleaded petrol (ULP) were measured on a chassis dynamometer at two driving speeds (60 and 80 km h -1) with the aims of evaluating their polycyclic aromatic hydrocarbon (PAH) contents and investigating the effects of the type of fuel on vehicle performance, ambient air quality and associated health risks. Naphthalene, fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene were the most prominent PAHs emitted by both ULP and LPG powered cars. The total emission factors of PAHs from LPG cars were generally lower than (but statistically comparable with) those of ULP cars. Similarly, the total BAP eq of the PAHs emitted by LPG cars were lower than those from ULP cars. Multi-criteria decision making (MCDM) methods showed that cars powered by LPG fuel performed better than those powered by ULP fuel in term of PAH levels. The implications of these observations on the advantages and disadvantages of using ULP and LPG fuels are discussed.

  15. Effect of fuel composition on the emission of phenols in the exhaust gas from a European car. (United States)

    Candeli, A; Morozzi, G; Zoccolillo, L


    The emission of phenols from a European car working with leaded and unleaded fuels with different percentage of aromatics has been considered. Fuels having the same aromatic content, but with a different composition of aromatic fraction, have also been taken into account. The results obtained showed that the emission of phenols increases with the increase of the aromatic content of fuel and also when unleaded instead of leaded fuels are used. The type of aromatic present in fuels was found to be important in forming the amount of both total and individual phenols emitted in the exhaust gas and in determining the number of phenolic compounds formed during combustion, although the phenol and isomer cresols were produced by combustion of all the fuels tested. The quantitative determination of individual phenols has been carried out on the benzene extract of the aqueous condensate and of the particulate matter of exhaust gas by the NaOH-extraction-GC-chromatographic method.

  16. Analytical study to minimize the engine exhaust emissions and safe knock limit of CNG powered four-stroke SI engine

    Directory of Open Access Journals (Sweden)

    Jeewan V. Tirkey, H.N. Gupta, S.K. Shukla


    Full Text Available In this paper, theoretical analysis has been done to minimise engine emissions and safe knock limit by changing some operational and design parameters such as equivalence ratio, spark plug location, compression ratio, and cylinder diameter by using computer simulation model. For this purpose a zero dimensional knock model, two zone combustion model(one in front and one behind the flame front, and gas dynamic model have been incorporated. Subsequently, the Nitric Oxide exhaust emission concentrations have been predicted by using the rate kinetic model in the power cycle and along the exhaust pipes. Furthermore, Carbon Monoxide is computed under chemical equilibrium condition and then empirical adjustment is made for kinetic behaviours based upon experimental results. It is inferred that the value of cylinder pressure data, BMEP, BSFC obtained by using computer simulation model based on theoretical analysis are in closer agreement with those which are obtained by previous studies.

  17. Estimated IR and phosphorescence emission fluxes for specific Polycyclic Aromatic Hydrocarbons in the Red Rectangle

    CERN Document Server

    Mulas, G; Joblin, C; Toublanc, D


    Following the tentative identification of the blue luminescence in the Red Rectangle by Vijh et al. (2005), we compute absolute fluxes for the vibrational IR emission and phosphorescence bands of three small polycyclic aromatic hydrocarbons. The calculated IR spectra are compared with available ISO observations. A subset of the emission bands are predicted to be observable using presently available facilities, and can be used for an immediate, independent, discriminating test on their alleged presence in this well-known astronomical object.

  18. Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China


    SHEN, Guofeng; TAO, SHU; WEI, Siye; ZHANG, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; HUANG, YE; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wang, Xilong; Liu, Wenxin


    Residential wood combustion is one of the important sources of air pollution in developing countries. Among the pollutants emitted, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives, including nitrated and oxygenated PAHs (nPAHs and oPAHs), are of concern because of their mutagenic and carcinogenic effects. In order to evaluate their impacts on regional air quality and human health, emission inventories, based on realistic emission factors (EFs), are needed. In this study,...

  19. Size-resolved polycyclic aromatic hydrocarbon emission factors from on-road gasoline and diesel vehicles: temperature effect on the nuclei-mode. (United States)

    Eiguren-Fernandez, Arantzazu; Miguel, Antonio H


    Motor vehicles are a major source of polycyclic aromatic hydrocarbon (PAH) emissions in urban areas. Motor vehicle emission control strategies have included improvements in engine design, exhaust emission control, and fuel reformulation. Therefore, an updated assessment of the effects of the shifts in fuels and vehicle technologies on PAH vehicular emission factors (EFs) is needed. We have evaluated the effects of ambient temperature on the size-resolved EFs of nine US EPA Priority Pollutant PAH, down to 10 nm diameter, from on-road California gasoline light-duty vehicles with spark ignition (SI) and heavy-duty diesels with compression ignition (CI) in summer 2004 and winter 2005. During the winter, for the target PAH with the lowest subcooled equilibrium vapor pressure --benzo[a]pyrene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene-- the mass in the nucleation mode, defined here as particles with dp <32 nm, ranged between 14 and 38% for SI vehicles and 29 and 64% for CI vehicles. Our observations of the effect of temperature on the mass of PAH in the nucleation mode are similar to the observed effect of temperature on the number concentration of diesel exhaust particles in the nucleation mode in a previous report.

  20. Study of Miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine. (United States)

    Heikkilä, Juha; Happonen, Matti; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele


    The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC -50 and -70 degrees CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

  1. Hydrogen sulfide and nonmethane hydrocarbon emissions from broiler houses in the Southeastern United States (United States)

    Hydrogen sulfide (H2S) and nonmethane hydrocarbon (NMHC) emissions from two mechanically ventilated commercial broiler houses located in the Southeastern United States were continuously monitored over 12 flocks during the one-year period of 2006-2007 as a joint effort between Iowa State University a...

  2. Nitrous oxide emissions in a membrane bioreactor treating saline wastewater contaminated by hydrocarbons. (United States)

    Mannina, Giorgio; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Morici, Claudia; Ødegaard, Hallvard


    The joint effect of wastewater salinity and hydrocarbons on nitrous oxide emission was investigated. The membrane bioreactor pilot plant was operated with two phases: i. biomass acclimation by increasing salinity from 10gNaClL(-1) to 20gNaClL(-1) (Phase I); ii. hydrocarbons dosing at 20mgL(-1) with a constant salt concentration of 20gNaClL(-1) (Phase II). The Phase I revealed a relationship between nitrous oxide emissions and salinity. During the end of the Phase I, the activity of nitrifiers started to recover, indicating a partial acclimatization. During the Phase II, the hydrocarbon shock induced a temporary inhibition of the biomass with the suppression of nitrous oxide emissions. The results revealed that the oxic tank was the major source of nitrous oxide emission, likely due to the gas stripping by aeration. The joint effect of salinity and hydrocarbons was found to be crucial for the production of nitrous oxide.

  3. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions

    Institute of Scientific and Technical Information of China (English)

    Jingnan Hu; Ye Wu; Zhishi Wang; Zhenhua Li; Yu Zhou; Haitao Wang; Xiaofeng Bao; Jiming Hao


    The real-world fuel efficiency and exhaust emission profiles of CO,HC and NOx for light-duty diesel vehicles were investigated.Using a portable emissions measurement system,16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method.The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 ± 0.6) L/100 km,while other five diesel taxies showed relatively high values at (8.5 ± 1.7) L/100 km due to the variation in transmission systems and emission control strategies.Compared to similar Corolla gasoline models,the diesel cars confirmed an advantage of ca.20% higher fuel efficiency.HC and CO emissions of all the 16 taxies are quite low,with the average at (0.05 ± 0.02) g/km and (0.38 ± 0.15) g/km,respectively.The average NOx emission factor of the 11 Corolla taxies is (0.56 ± 0.17) g/krn,about three times higher than their gasoline counterparts.Two of the three Hyundai Sonata taxies,configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies,indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination.A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified.To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area,traffic planning also needs improvement.

  4. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions. (United States)

    Hu, Jingnan; Wu, Ye; Wang, Zhishi; Li, Zhenhua; Zhou, Yu; Wang, Haitao; Bao, Xiaofeng; Hao, Jiming


    The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 +/- 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 +/- 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 +/- 0.02) g/km and (0.38 +/- 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 +/- 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement.

  5. Analysis of tractor particulate emissions in a modified NRSC test after implementing a particulate filter in the exhaust system

    Directory of Open Access Journals (Sweden)

    Siedlecki Maciej


    Full Text Available Retrofitting, which means retrofitting old generation engine systems with modern exhaust after treatment systems, is becoming increasingly popular, which allow vehicles to adhere to the newer and more stringent emission norms. This can save the operators of such vehicles money using older engineered designs without the need to design a new unit or buy an expensive new machine or vehicle. At present, there is a growing interest in emissions from off-road vehicles and the introduction of minimum limits for older vehicles that must be met in order to be able to allow for their operation. For the purposes of this article, the Stage IIIA farm tractor has been fitted with a particulate filter in the exhaust system. The study investigated the impact of the use of exhaust after treatment systems on particle emissions in terms of mass, size distribution and number using PEMS analyzers in the modified NRSC stationary test by engine loading, using a mobile engine dynamometer and comparison of test results.

  6. 40 CFR 600.113-12 - Fuel economy and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold... (United States)


    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy and carbon-related... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-12 Fuel economy and carbon-related exhaust...

  7. Influences of vehicles’ fuel consumption and exhaust emissions on the trip cost without late arrival under car-following model (United States)

    Tang, Tie-Qiao; Yu, Qiang


    In this paper, we use car-following model to explore the influences of the vehicle’s fuel consumption and exhaust emissions on each commuter’s trip cost without late arrival on one open road. Our results illustrate that considering the vehicle’s fuel cost and emission cost only enhances each commuter’s trip cost and the system’s total cost, but has no prominent impacts on his optimal time headway at the origin of each open road under the minimum total cost.

  8. Investigations of the causes of hydrocarbon emissions in spark ignition engines with homogeneous charge compression ignition (HCCI). A report of the Institute for Internal Combustion Engines and Automotive Engineering, TU Vienna (IVK); Untersuchung der Ursachen fuer Kohlenwasserstoff-Emissionen beim Ottomotor mit homogener Selbstzuendung (HCCI). Bericht des Instituts fuer Verbrennungskraftmaschinen und Kraftfahrzeugbau derTechnischen Universitaet Wien (IVK)

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, B. (ed.) [Technische Univ., Vienna (Austria); Loch, A.


    The main aim of research and development in the field of internal combustion engine is to create an engine with low fuel consumption and hence low carbon dioxide emissions to meet future emissions regulations as well as providing a good driving experience. Homogeneous charge compression ignition (HCCI) is an alternative combustion process being currently developed that promises a good fuel consumption rate and low nitrogen oxide emissions for the gasoline engine. The only legally restricted exhaust gas emissions for this combustion process are carbon monoxide (CO) and hydrocarbons (HC). The aim of this research was a better understanding of the causes and sources of hydrocarbon emissions with HCCI using gasoline so as to further reduce hydrocarbon emissions. A description of the HCCI combustion process is followed by a list of the known sources of hydrocarbon emission in conventional gasoline engines and current knowledge of the causes of hydrocarbon emission with HCCI. It is assumed that many of the known causes of hydrocarbon emissions in the conventional gasoline combustion process are the same for HCCI. For this reason, this study focused on combustion and carburation, which is where the combustion processes differ the most. (orig.)


    Directory of Open Access Journals (Sweden)

    Ewa J. Lipińska


    Full Text Available Synchronization economy of oil mining and mineral waters is associated with planning the functions of spa treatment. Environmental protection of the spa areas also applies to preserve their technical and cultural heritage. This article attempts to determine the places of natural and anthropogenic hydrocarbon pollution substances. Their presence in the soil affects the quality of the environment. As a result, maps are produced showing directions of research: (1 the natural background of biodiversity, and (2 potential anthropogenic pollution. They are assessed in the context of the health and human life, protection of the environment and the possibility of damage to the environment. Research is conducted in communes of the status of the spa – for special protection.

  10. Effect of Fuel Cetane Number on Multi-Cylinders Direct Injection Diesel Engine Performance and Exhaust Emissions

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan


    Full Text Available Due to the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, a lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics.A kind of cetane number improver has been proposed and tested to be used with diesel fuel as ameans of reducing exhaust emissions. The addition of (2-ethylhexyl nitrate was designed to raise fuel cetane number to three stages, 50, 52 and 55 compared to the used conventional diesel fuel whose CN was 48.5. The addition of CN improver results in the decrease brake specific fuel consumption by about 12.55%, and raise brake thermal efficiency to about 9%. Simultaneously, the emission characteristics of four fuels are determined in a diesel engine. At high loads, a little penalty on CO and HC emissions compared to baseline diesel fuel. NOx emissions of the higher CN fuels are decreased 6%, and CO of these fuels is reduced to about 30.7%. Engine noise reduced with increasing CN to about 10.95%. The results indicate the potential of diesel reformation for clean combustion in diesel engines.

  11. Investigation on Methane Decomposition and the Formation of C2 Hydrocarbons in DC Discharge Plasma byEmission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    贺建勋; 韩媛媛; 高爱华; 周引穗; 陆治国


    The IR emission spectra of methane were measured under DC glow discharge conditions. The distinct difference in time between methane decomposition and C2 hydrocarbons formation was specially pointed out. C2 hydrocarbons formed at the end of methane decomposition. The optimum condition for C2 hydrocarbon formation was studied and the optimum combination between electric current density and methane input quantity was suggested. The appropriate reaction conditions for methane decomposition and C2 hydrocarbons formation are different, so high yield of C2 hydrocarbons will be probably obtained when different conditions are taken.

  12. Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sujit Banerjee


    Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially inexpensive mate-rial for efficiently reducing formaldehyde in dryer emissions. A heat transfer model for estimating pinene emissions from hot-pressing strand for the manufacture of flakeboard has been constructed from first principles and validated. The model shows that most of the emissions originate from the 1-mm layer of wood adjoining the platen surface. Hence, a simple control option is to surface a softwood mat with a layer of hardwood prior to pressing. Fines release a disproportionate large quantity of HAPs, and it has been shown both theo-retically and in full-scale work that particles smaller than 400 µm are principally responsible. Georgia-Pacific is considering green

  13. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences


    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  14. Observations and model calculations of B747 engine exhaust products at cruise altitude and inferred initial OH emissions

    Energy Technology Data Exchange (ETDEWEB)

    Tremmel, H.G.; Schlager, H.; Konopka, P.; Schulte, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F.; Klemm, M.; Droste-Franke, B. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)


    NO{sub y} (NO, HNO{sub 2} and HNO{sub 3}) exhaust emissions in the near-field plume of two B747 jet airliners cruising in the upper troposphere were measured in situ using the DLR Falcon research aircraft. In addition CO{sub 2} was measured providing exhaust plume dilution rates for the species. The observations were used to estimate the initial OH concentration and NO{sub 2}/NO{sub x} ratio at the engine exit and the combustor exit by back calculations using a chemistry box model. From the two different plume events, and using two different model simulation modes in each case, we inferred OH emission indices EI(OH) = 0.32-0.39 g/kg fuel (OH{sub 0} = 9-14.4 ppmv) and (NO{sub 2}/NO{sub x}){sub 0} = 0.12-0.17. Furthermore, our results indicate that the chemistry of the exhaust species during the short period between the combustion chamber exit and the engine exit must be considered, because OH is already consumed to a great extent in this engine section, due to conversion to HNO{sub 2} and HNO{sub 3}. For the engines discussed here, the modeled OH concentration between combustor exit und engine exit decreases by a factor of about 350, leading to OH concentrations of 1-2.10{sup 12} molec/cm{sup 3} at the engine exit. (orig.) 45 refs.

  15. Estimates for biogenic non-methane hydrocarbons and nitric oxide emissions in the Valley of Mexico (United States)

    Velasco, Erik

    Biogenic non-methane hydrocarbons (NMHC), 2-methyl-3-buten-2-ol (methylbutenol or MBO) and nitrogen oxide (NO) emissions were estimated for the Valley of Mexico developing a spatially and temporally resolved emission inventory for air quality models. The modeling domain includes all the Metropolitan Mexico City Area, the surrounding forests and agriculture fields. The estimates were based on several sources of land use and land cover data and a biogenic emission model; the biomass density and tree characteristics were obtained from reforestation program data. The biogenic emissions depend also on climatic conditions, mainly temperature and solar radiation. The temperature was obtained from a statistical revision of the last 10 yr data reported by the Mexico City Automatic Atmospheric Monitoring Network, while the solar radiation data were obtained from measurements performed in a typical oak forest in the Valley and from sources of total solar radiation data for Mexico City. The results indicated that 7% of total hydrocarbon emissions in Mexico Valley are due to vegetation and NO emissions from soil contribute with 1% to the total NO x emissions.

  16. Measurements of hydrocarbons, oxygenated hydrocarbons, carbon monoxide, and nitrogen oxides in an urban basin in Colorado: Implications for Emission Inventories (United States)

    Goldan, P. D.; Trainer, M.; Kuster, W. C.; Parrish, D. D.; Carpenter, J.; Roberts, J. M.; Yee, J. E.; Fehsenfeld, F. C.


    Concentrations of a wide variety of volatile organic compounds (VOCs) in the C3 to C10 range, CO, NOy (total reactive oxidized nitrogen), SO2, and meteorological parameters were measured concurrently at a site on the western perimeter of Boulder, Colorado, during February 1991. The measurement site, located some 150 m above the Boulder urban basin, receives air masses typifying averaged local sources. The highest hydrocarbon concentrations observed showed little effects of photochemical loss processes and reflect the pattern of the local emission sources. The observed ratios of CO and the VOCs to NOy are compared to those predicted by the 1985 National Acid Precipitation Assessment Program (NAPAP) inventory.These comparisons indicate (1) good agreement for CO/NOY, (2) significant overpredictions by the NAPAP inventory for many of the hydrocarbon to NOY ratios, (3) much more benzene from mobile sources (and less from area sources) than predicted by the NAPAP inventory, and (4) large underpredictions of the light alcohols and carbonyls by the NAPAP inventory. These first two results are in marked contrast to the conclusions of the recent tunnel study reported by Ingalls in 1989. Source profile reconciliation implies substantial input from both a local propane source and gasoline headspace venting.

  17. Estimation of road vehicle exhaust emissions from 1992 to 2010 and comparison with air quality measurements in Genoa, Italy (United States)

    Zamboni, Giorgio; Capobianco, Massimo; Daminelli, Enrico

    An investigation into road transport exhaust emissions in the Genoa urban area was performed by comparing the quantities of carbon monoxide (CO), nitrogen oxides (NO x), nitrogen dioxide (NO 2) and particulate matter (PM) emitted by different vehicle categories with air quality measurements referred to the same pollutants. Exhaust emissions were evaluated by applying the PROGRESS (computer PROGramme for Road vehicle EmiSSions evaluation) code, developed by the Internal Combustion Engines Group of the University of Genoa, to eight different years (from 1992 to 2010), considering spark ignition and Diesel passenger cars and light duty vehicles, heavy duty vehicles and buses, motorcycles and mopeds. Changes in terms of vehicles number, mileage and total emissions are presented together with relative distributions among the various vehicle categories. By comparing 1992 and 2010 data, calculated trends show a 7% increase in the number of vehicles, with total mileage growing at a faster rate (approx. 22%); total emissions decrease considerably, by approximately 50% for NO x and PM, 70% for HC and 80% for CO, due to improvements in engines and fuels forced by the stricter European legislation and the fleet renewal, while primary NO 2 emission will be very close to 1992 level, after a decrease of about 18% in 2000. Air quality was analysed by selecting traffic and background measuring stations from the monitoring network managed by the Environmental Department of the Province of Genoa: average annual concentrations of considered pollutants from 1994 to 2007 were calculated in order to obtain the relative historical trends and compare them with European public health limits and with road vehicle emissions. Though an important reduction in pollutant concentrations has been achieved as a consequence of cleaner vehicles, some difficulties in complying with present and/or future NO 2 and PM 10 limits are also apparent, thus requiring suitable measures to be taken by the local


    Directory of Open Access Journals (Sweden)

    Gilson Rodrigo de Miranda


    Full Text Available Air pollution has emerged as major global problems. In the last decade, the development of new engines, the use of different forms of treatment of exhaust gases and the increase in fuel quality were used to reduce pollutants (regulated or not. Among the various developments to reduce emissions, the use of oxygenated additives to diesel and paraffin is a quick and effective measure to reduce pollutants. In this work we studied the influence of oxygenated compounds (diethyl ether (DEE, 1-dodecanol (DOD, 2-methoxy-acetate (MEA and terc-butanol (TERC and paraffin (heptane (HEPT and n- hexadecane (CET added to diesel in order to improve the quality of CO, NO and NOx in the exhaust of diesel engine, single cylinder. The fuels used in the studies are formulations of diesel reference, here named S10, which contains low sulfur (

  19. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing


    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  20. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system (United States)

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L


    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  1. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories (United States)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.


    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  2. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi


    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  3. The relationship between polycyclic aromatic hydrocarbon emission and far-infrared dust emission from NGC 2403 and M83

    CERN Document Server

    Jones, A G; Baes, M; Boquien, M; Boselli, A; De Looze, I; Fritz, J; Galliano, F; Hughes, T M; Lebouteiller, V; Lu, N; Madden, S C; Remy-Ruyer, A; Smith, M W L; Spinoglio, L; Zijlstra, A A


    We examine the relation between polycyclic aromatic hydrocarbon (PAH) emission at 8 microns and far-infrared emission from hot dust grains at 24 microns and from large dust grains at 160 and 250 microns in the nearby spiral galaxies NGC 2403 and M83 using data from the Spitzer Space Telescope and Herschel Space Observatory. We find that the PAH emission in NGC 2403 is better correlated with emission at 250 microns from dust heated by the diffuse interstellar radiation field (ISRF) and that the 8/250 micron surface brightness ratio is well-correlated with the stellar surface brightness as measured at 3.6 microns. This implies that the PAHs in NGC 2403 are intermixed with cold large dust grains in the diffuse interstellar medium (ISM) and that the PAHs are excited by the diffuse ISRF. In M83, the PAH emission appears more strongly correlated with 160 micron emission originating from large dust grains heated by star forming regions. However, the PAH emission in M83 is low where the 24 micron emission peaks withi...

  4. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft. (United States)

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C


    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  5. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto G.; Oliveira, Jorge L.; Oliveira, Paulo Cesar P. [Federal Fluminense University, Mechanical Engineering Department, Rua Passo da Patria 156, CEP 24.210-240, Niteroi-RJ (Brazil); Oliveira, Cesar D. [Institute of Chemistry, Federal Fluminense University (Brazil); Fellows, Carlos E. [Institute of Physics, Federal Fluminense University (Brazil); Piamba, Oscar E. [Federal Fluminense University, Mechanical Engineering Department, Rua Passo da Patria 156, CEP 24.210-240, Niteroi-RJ (Brazil); National University of Colombia-Bogota (Colombia)


    The present work describes an experimental investigation concerning the electric energy generation using blends of diesel and soybean biodiesel. The soybean biodiesel was produced by a transesterification process of the soybean oil using methanol in the presence of a catalyst (KOH). The properties (density, flash point, viscosity, pour point, cetane index, copper strip corrosion, conradson carbon residue and ash content) of the diesel and soybean biodiesel were determined. The exhaust emissions of gases (CO, CO{sub 2},C{sub x}H{sub y},O{sub 2}, NO, NO{sub x} and SO{sub 2}) were also measured. The results show that for all the mixtures tested, the electric energy generation was assured without problems. It has also been observed that the emissions of CO, C{sub x}H{sub y} and SO{sub 2} decrease in the case of diesel-soybean biodiesel blends. The temperatures of the exhaust gases and the emissions of NO and NO{sub x} are similar to or less than those of diesel. (author)


    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur


    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  7. Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yujue Wang; Fred S. Cannon; Magda Salama; Jeff Goudzwaard; James C. Furness [Pennsylvania State University, University Park, PA (United States). Department of Civil and Environmental Engineering


    Analytical pyrolysis was conducted to compare the hydrocarbon and greenhouse gas emissions of three foundry sand binders: (a) conventional phenolic urethane resin, (b) biodiesel phenolic urethane resin, and (c) collagen-based binder. These binders are used in the metal casting industry to create internal cavities within castings. Green sand contains silica sand, clay, carbonaceous additives (eg bituminous coal) and water. The core samples were flash pyrolyzed in a Curie-point pyrolyzer at 920{sup o}C with a heating rate of about 3000{sup o}C/sec. This simulated some key features of the fast heating conditions that the core binders would experience at the metal-core interface when molten metal is poured into green sand molds. The core samples were also pyrolyzed in a thermogravimetric analyzer (TGA) from ambient temperature to 1000{sup o}C with a heating rate of 30{sup o}C/min, and this simulated key features of the slow heating conditions that the core binders would experience at distances that are further away from the metal-core interface during casting cooling. Hydrocarbon emissions from flash pyrolysis were analyzed with a gas chromatography-flame ionization detector, while hydrocarbon and greenhouse gas emissions from TGA pyrolysis were monitored with mass spectrometry. The prominent hazardous air pollutant emissions during pyrolysis of the three binders were phenol, cresols, benzene, and toluene for the conventional phenolic urethane resin and biodiesel resin, and benzene and toluene for the collagen-based binder. Bench-scale analytical pyrolysis techniques could be a useful screening tool for the foundries to compare the relative emissions of alternative core binders and to choose proper materials in order to comply with air-emission regulations. 20 refs., 4 figs., 1 tab.

  8. Novel techniques for characterization of hydrocarbon emission sources in the Barnett Shale (United States)

    Nathan, Brian Joseph

    Changes in ambient atmospheric hydrocarbon concentrations can have both short-term and long-term effects on the atmosphere and on human health. Thus, accurate characterization of emissions sources is critically important. The recent boom in shale gas production has led to an increase in hydrocarbon emissions from associated processes, though the exact extent is uncertain. As an original quantification technique, a model airplane equipped with a specially-designed, open-path methane sensor was flown multiple times over a natural gas compressor station in the Barnett Shale in October 2013. A linear optimization was introduced to a standard Gaussian plume model in an effort to determine the most probable emission rate coming from the station. This is shown to be a suitable approach given an ideal source with a single, central plume. Separately, an analysis was performed to characterize the nonmethane hydrocarbons in the Barnett during the same period. Starting with ambient hourly concentration measurements of forty-six hydrocarbon species, Lagrangian air parcel trajectories were implemented in a meteorological model to extend the resolution of these measurements and achieve domain-fillings of the region for the period of interest. A self-organizing map (a type of unsupervised classification) was then utilized to reduce the dimensionality of the total multivariate set of grids into characteristic one-dimensional signatures. By also introducing a self-organizing map classification of the contemporary wind measurements, the spatial hydrocarbon characterizations are analyzed for periods with similar wind conditions. The accuracy of the classification is verified through assessment of observed spatial mixing ratio enhancements of key species, through site-comparisons with a related long-term study, and through a random forest analysis (an ensemble learning method of supervised classification) to determine the most important species for defining key classes. The hydrocarbon

  9. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004 (United States)

    Zhang, Yanxu; Tao, Shu

    The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y -1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y -1), India (90 Gg y -1) and United States (32 Gg y -1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km -2 y in the Falkland Islands to 360 kg km -2 y in Singapore with a global mean value of 3.98 kg km -2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.

  10. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust (United States)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.


    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  11. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for... (United States)

    2012-12-31 . For legal questions concerning this rule contact Karen Petronis, International Law, Legislation... manufacturers. They are: Standardizing the terminology relating to engine thrust/ power. Clarifying the need to... appropriate value of fuel flow to be used at each LTO test point. Clarifying exhaust nozzle terminology for...

  12. General Motors Corporation and Pacific Northwest Laboratory Staff Exchange: Instrumentation for rapid measurement of automotive exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, J.W.; Sharpe, S.W. [Pacific Northwest Lab., Richland, WA (United States); Sloane, T.M. [General Motors Corp., Warren, MI (United States)


    Information in this report on the staff exchange of Pacific Northwest Laboratory (PNL) staff with the AIGER Consortium (General Motors, Ford, Chrysler, Navistar, the environmental protection Agency, and the California Air Resources Board) includes the purpose and objectives, a summary of activities, significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefits from that work, and two appendices. Appendix A is a brief description of the fast gas chromatography and infrared spectroscopy chemometric technologies and their application to the rapid characterization of automobile exhaust emissions. Appendix B is a list of key contacts and the schedule of activities pertaining to the staff exchange.

  13. Effects of a flexible utilization of biogas on the electrical efficiency and the exhaust gas emissions from cogeneration plants; Auswirkungen einer flexiblen Biogasverwertung auf den elektrischen Wirkungsgrad und die Abgasemissionen von Blockheizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Tappen, Simon Juan; Effenberger, Mathias [Bayerische Landesanstalt fuer Landwirtschaft (LfL), Freising (Germany). Arbeitsgruppe Technikfolgenabschaetzung


    The German Renewable Energy Act of 2014 implements improved conditions to support market and grid integration of renewable energies, which resulted in the generated electricity to be sold directly to the market. In supporting the application of start-stop procedure and part load condition (e.g. during operating reserve), new requirements need to be set for biogas driven eo-generation units (CGU). Seven CGUs were analyzed during on-field measurements in Bavaria. The following article shows how results of part load adjustments affect the electrical efficiency and emissions, such as carbon monoxide (CO), nitrous oxide (NO{sub x}) and unburned hydrocarbons (C{sub n}H{sub m}). Under part load condition, the CGU showed a decrease in electrical efficiency and NO{sub x}-concentration. No significant changes have been identified in the exhaust treated emissions. In general, part load response leads to higher environmental impact. However, the environmental impact is expected to be low, since the application and extent of using flexible driving behavior is still limited. In contrast, stricter emission limit values set by TA Luft 2017 could impact the electrical efficiency and lead to higher costs for monitoring and exhaust treatment.

  14. Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra low sulfur diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Bryan R. [United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University St, Peoria, IL 61604 (United States); Williams, Aaron; McCormick, Robert L. [United States Department of Energy, National Renewable Energy Laboratory, ReFUEL Laboratory, 1617 Cole Blvd, Golden, CO 80401 (United States); Haas, Michael J. [United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E Mermaid Ln, Wyndmoor, PA 19038 (United States)


    Important fuel properties and emission characteristics of blends (20 vol.%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes were observed for B20 blends of SME and PHSME versus neat ULSD: improved lubricity, higher kinematic viscosity and cetane number, lower sulfur content, and inferior low-temperature properties and oxidative stability. With respect to exhaust emissions, B20 blends of PHSME and SME exhibited lower PM and CO emissions in comparison to those of neat ULSD. The PHSME blend also showed a significant reduction in THC emissions. Both SME and PHSME B20 blends yielded small increases in NO{sub x} emissions. The reduction in double bond content of PHSME did not result in a statistically significant difference in NO{sub x} emissions versus SME at the B20 blend level. The test engine consumed a greater amount of fuel operating on the SME and PHSME blends than on neat ULSD, but the increase was smaller for the PHSME blend. (author)

  15. Characteristics of polycyclic aromatic hydrocarbon emissions of particles of various sizes from smoldering incense. (United States)

    Yang, T T; Lin, T S; Wu, J J; Jhuang, F J


    Release of polycyclic aromatic hydrocarbons (PAHs) in particles of various sizes from smoldering incenses was determined. Among the three types of incense investigated, yielding the total PAH emission rate and factor ranges for PM0.25 were 2,139.7-6,595.6 ng/h and 1,762.2-8,094.9 ng/g, respectively. The PM0.25/PM2.5 ratio of total PAH emission factors and rates from smoldering three incenses was greater than 0.92. This study shows that total particle PAH emission rates and factors were mainly incenses. The benzo[a]pyrene accounted for 65.2%-68.0% of the total toxic equivalency emission factor of PM2.5 for the three incenses. Experimental results clearly indicate that the PAH emission rates and factors were influenced significantly by incense composition, including carbon and hydrogen content. The study concludes that smoldering incense with low atomic hydrogen/carbon ratios minimized the production of total polycyclic aromatic hydrocarbons of both PM2.5 and PM0.25.

  16. Sensitivity of ozone predictions to biogenic hydrocarbon chemistry and emissions in air quality models

    Energy Technology Data Exchange (ETDEWEB)

    Jang, C.J.; Lo, S.C.Y.; Vukovich, J.; Kasibhatla, P. [MCNC-North Carolina Supercomputing Center, Research Triangle Park, NC (United States)


    Over the last decade, there is growing evidence that biogenic hydrocarbons play an important role in regional and urban ozone (O{sub 3}) formation in the United States. As a result, the regulatory guidelines issued by the USEPA require that biogenic emissions be included in photochemical modeling. Significant changes and improvement have also been made for estimating the emissions and chemical reaction rates of biogenic hydrocarbons in air quality models. In this paper the authors examine the sensitivity of ozone predictions to the changes in biogenic hydrocarbon chemistry and emissions and investigate why ozone is sensitive to these changes. They first use a Lagrangian box model, the OZIPR/EKMA model, to examine the differences of O{sub 3} predicted using two sets of chemical mechanisms, the original CB4 mechanism and the updated CB4 mechanism with new isoprene chemistry under various emission scenarios. The results show that in the selected urban case, the updated CB4 mechanism predicted lower O{sub 3} than the original CB4 mechanism because of the lower isoprene incremental reactivity in the updated CB4 mechanism. However, in the selected rural case, the updated CB4 mechanism predicted higher O{sub 3} than the original CB4, which is in contradiction to a recent OTAG study using the updated CB4 mechanism. The Eulerian grid model simulation using the MCNC`s EDSS/MAQSIP system further lends support to the box model results. The grid model simulations show that the updated CB4 mechanism predicts much lower O{sub 3} than the original CB4 mechanism over the areas where significant amount of NO{sub x} is emitted; on the contrary, over the Southeastern US region with high isoprene emission rates, the updated CB4 mechanism predicts much higher O{sub 3}.

  17. 40 CFR 1051.103 - What are the exhaust emission standards for snowmobiles? (United States)


    ...) Natural gas-fueled snowmobiles: NMHC emissions. (2) Alcohol-fueled snowmobiles: THCE emissions. (3) Other... be less than either of the following: (i) Your projected operating life from advertisements or...

  18. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet? (United States)


    ... emissions for engines powered by the following fuels: (1) Alcohol-fueled engines: THCE emissions. (2... from advertisements or other marketing materials for any engines in the engine family. (B) Your...

  19. Final Summary Report on Project 3310 Marine Diesel Exhaust Emissions (Alternative Fuels) (United States)


    soluble acid anhydrides . This was important to know since the concern of this project was under the Clean Air Act Amendments of 1990 (See Section 1.2... anhydrides (nitrogen and sulfur oxides) would end up more in the water column, rather than the air. Saturated concentrations of nitric oxide in the water...with the results of the analysis discussed in sections that follow. The procedures and nomenclature in ISO standard DP 8178-1, RIC Engines - Exhaust

  20. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends (United States)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.


    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  1. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area

    Directory of Open Access Journals (Sweden)

    T. Stipa


    Full Text Available A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS, which enable the identification and location determination of ships. The use of the AIS data facilitates the positioning of ship emissions with a high spatial resolution, which is limited only by the inaccuracies of the Global Positioning System (typically a few metres that is used in vessel navigation. The emissions are computed based on the relationship of the instantaneous speed to the design speed, and the detailed technical information of the engines of the ships. The modelling of emissions is also based on a few basic principles of ship design, including the modelling of the propelling power of each vessel in terms of its speed. We have investigated the effect of waves on the consumption of fuel, and on the emissions to the atmosphere. The predictions of fuel consumption were compared with the actual values obtained from the shipowners. For a Roll on – Roll off cargo/passenger ship (RoPax, the predicted and reported values of annual fuel consumption agreed within an accuracy of 6%. According to the data analysis and model computations, the emissions of NOx, SOx and CO2 originating from ships in the Baltic Sea during the full calendar year of 2007 were in total 400 kt, 138 kt and 19 Mt, respectively. A breakdown of emissions by flag state, the type of ship and the year of construction is also presented. The modelling system can be used as a decision support tool in the case of issues concerning, e.g., the health effects caused by shipping emissions or the construction of emission-based fairway dues systems or emissions trading. The computation of emissions can be automated, which will save resources in constructing emission inventories. Both the methodologies and the emission computation program can be applied in any sea region in the world

  2. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen


    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  3. Time trend of polycyclic aromatic hydrocarbon emission factors from motor vehicles (United States)

    Tao, Shu; Shen, Huizhong; Wang, Rong; Sun, Kang


    Motor vehicle is an important emission source of polycyclic aromatic hydrocarbons (PAHs) and this is particularly true in urban areas. Motor vehicle emission factors (EFs) for individual PAH compound reported in the literature varied for 4 to 5 orders of magnitude, leading to high uncertainty in emission estimation. In this study, the major factors affecting EFs were investigated and characterized by regression models. Based on the model developed, a motor vehicle PAH emission inventory at country level was developed. It was found that country and model year are the most important factors affecting EFs for PAHs. The influence of the two factors can be quantified by a single parameter of per capita gross domestic production (purchasing power parity), which was used as the independent variables of the regression models. The models developed using randomly selected 80% of measurements and tested with the remained data accounted for 28 to 48% of the variations in EFs for PAHs measured in 16 countries over 50 years. The regression coefficients of the EF prediction models were molecular weight dependent. Motor vehicle emission of PAHs from individual countries in the world in 1985, 1995, 2005, 2015, and 2025 were calculated and the global emission of total PAHs were 470, 390, and 430 Gg in 1985, 1995, and 2005 and will be 290 and 130 Gg in 2015 and 2025, respectively. The emission is currently passing its peak and will decrease due to significant decrease in China and other developing countries.

  4. An experimental study on the effects of exhaust gas on spruce (Picea abies L. Karst.)

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E.L.; Holopainen, J.; Kaerenlampi, L. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J.; Ruuskanen, J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences


    Motor vehicle exhausts are significant contributors to air pollution. Besides fine particles and inorganic gases, like CO, SO{sub 2} and NO{sub x}, exhaust gas contains a large group of aromatic hydrocarbon compounds, many of which are phytotoxic. In field studies, exhausts are found to have both direct and indirect harmful effects on roadside plants. However, only few experimental studies have been made about the effects of exhaust gas emissions on coniferous trees. The aim of this study was to survey the effects of exhausts on spruce (Picea abies L. Karst.) in standardized conditions. The concentrations of major exhaust gas components in the chamber atmosphere were detected simultaneously. The effects of exhaust on epistomatal waxes of first-year spruce needles are described. (author)

  5. Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps

    Directory of Open Access Journals (Sweden)

    Patrycja Kuna-Gwoździewicz


    Full Text Available The article presents results of research carried out on the occurrence of polycyclic aromatic hydrocarbons (PAH in gases of exhalation zones, created on the surface of a thermally active coal mine waste dump. The oxidation and self-heating of mine waste are accompanied with the intensive emission of flue gases, including PAH group compounds. Taking into consideration the fact the hydrocarbons show strong genotoxic, mutagenic and carcinogenic properties, research was conducted to establish their content in the examined gases. The research object was a gangue dump located in Rybnik. The research was performed in 2012. In total, 24 samples of gas were collected with PUF (polyurethane foam sampling cartridges with a quartz fibre filter and an aspirator. The collected samples were analysed with the use of high performance liquid chromatography (HPLC and a fluorescence detector (FLD to evaluate the amount of PAH present.

  6. Toroidally Asymmetric Distributions of Hydrocarbon (CD) Emission and Chemical Sputtering Sources in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Groth, M; Brooks, N H; Fenstermacher, M E; Lasnier, C J; McLean, A G; Watkins, J G


    Measurements in DIII-D show that the carbon chemical sputtering sources along the inner divertor and center post are toroidally periodic and highest at the upstream tile edge. Imaging with a tangentially viewing camera and visible spectroscopy were used to monitor the emission from molecular hydrocarbons (CH/CD) at 430.8 nm and deuterium neutrals in attached and partially detached divertors of low-confinement mode plasmas. In contrast to the toroidally periodic CD distribution, emission from deuterium neutrals was observed to be toroidally symmetric along the inner strike zone. The toroidal distribution of the measured tile surface temperature in the inner divertor correlates with that of the CD emission, suggesting larger parallel particle and heat fluxes to the upstream tile edge, either due to toroidal tile gaps or height steps between adjacent tiles.

  7. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios (United States)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.


    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  8. 北京市机动车尾气排放因子研究%Emission Factors of Vehicle Exhaust in Beijing

    Institute of Scientific and Technical Information of China (English)

    樊守彬; 田灵娣; 张东旭; 曲松


    通过调研北京市机动车车型构成﹑车辆行驶工况﹑环境温度﹑油品品质等基础数据,利用 COPERT Ⅳ模型计算了机动车尾气中 CO﹑ NOx﹑ HC 和 PM 的排放因子.应用车载测试系统对典型轻型汽油客车和柴油货车的实际道路排放因子进行测量,并将测量结果与模型计算结果对比,结果发现国Ⅳ标准下,轻型汽油客车的 CO 排放因子的实测数据是模型数据的0.96倍,NOx 的实测数据是模型数据的0.64倍,HC 的实测数据是模型数据的4.89倍.对于国Ⅲ排放标准的柴油货车,轻型﹑中型和重型货车的 CO 排放因子,实测数据分别是模型数据的1.61﹑1.07和1.76倍,NOx 排放因子的实测数据是模型数据的1.04﹑1.21和1.18倍,HC 排放因子的实测数据是模型数据的3.75﹑1.84和1.47倍,PM 排放因子则为模型数据是实测数据的1.31﹑3.42和6.42倍.%Based on the investigation of basic data such as vehicle type composition, driving conditions, ambient temperature and oil quality, etc. , emission factors of vehicle exhaust pollutants including carbon monoxide(CO), nitrogen oxides(NOx ), hydrocarbons (HC) and particulate matter(PM) were calculated using COPERT Ⅳ model. Emission factors of typical gasoline passenger cars and diesel trucks were measured using on-board measurement system on actual road. The measured and modeled emission factors were compared and the results showed that: the measured emission factors of CO, NOx and HC were 0. 96, 0. 64 and 4. 89 times of the modeled data for passenger cars conforming to the national Ⅳ emission standard. For the light, medium and heavy diesel trucks conforming to the national Ⅲ emission standard, the measured data of CO emission factors were 1. 61, 1. 07 and 1. 76 times of the modeled data, respectively, the measured data of NOx emission factors were 1. 04, 1. 21 and 1. 18 times of the modeled data, and the measured data of HC emission factors were 3. 75, 1. 84 and 1. 47

  9. Hanford Site radionuclide national emission standards for hazardous ari pollutants registered and and unregistered stack (powered exhaust) source assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.E.


    On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of the compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.


    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  11. Urban air quality: The challenge of traffic non-exhaust emissions

    NARCIS (Netherlands)

    Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; Prevot, A.S.H.; Schaap, M.; Sunyer, J.; Querol, X.


    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exha

  12. Emissions of polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and dibenzofurans from incineration of nanomaterials. (United States)

    Vejerano, Eric P; Holder, Amara L; Marr, Linsey C


    Disposal of some nanomaterial-laden waste through incineration is inevitable, and nanomaterials' influence on combustion byproduct formation under high-temperature, oxidative conditions is not well understood. This work reports the formation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated-dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from incineration of paper and plastic waste containing various nanomaterials, including titania, nickel oxide, silver, ceria, iron oxide, quantum dots, and C60-fullerene, in a laboratory-scale furnace. The presence of nanomaterials in the waste stream resulted in higher emissions of some PAH species and lower emissions of others, depending on the type of waste. The major PAH species formed were phenanthrene and anthracene, and emissions were sensitive to the amount of nanomaterials in the waste. Generally, there were no significant differences in emission factors for the larger PAH species when nanomaterials were added to the waste. The total PAH emission factors were on average ~6 times higher for waste spiked with nanomaterials v. their bulk counterparts. Emissions of chlorinated dioxins from poly(vinyl chloride) (PVC) waste were not detected; however, chlorinated furans were formed at elevated concentrations with wastes containing silver and titania nanomaterials, and toxicity was attributable mainly to 2,3,4,7,8-pentachlorodibenzofuran. The combination of high specific surface area and catalytic, including electrocatalytic, properties of nanomaterials might be responsible for affecting the formation of toxic pollutants during incineration.

  13. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine. (United States)

    Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph


    The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend.

  14. Catalysts, systems and methods to reduce NOX in an exhaust gas stream (United States)

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard


    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  15. Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries. (United States)

    Liberti, Lorenzo; Notarnicola, Michele; Primerano, Roberto; Zannetti, Paolo


    A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory.

  16. New Insights into Benzene Hydrocarbon Decomposition from Fuel Exhaust Using Self-Support Ray Polarization Plasma with Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Tao Zhu


    Full Text Available A new insight into self-support ray polarization (SSRP of nonthermal plasma for benzene hydrocarbon decomposition in fuel exhaust was put forward. A wire-tube dielectric barrier discharge (DBD AC plasma reactor was used at atmospheric pressure and room temperature. The catalyst was made of nano-TiO2 and ceramic raschig rings. Nano-TiO2 was prepared as an active component by ourselves in the laboratory. Ceramic raschig rings were selected for catalyst support materials. Then, the catalyst was packed into nonthermal plasma (NTP reactor. Six aspects, benzene initial concentration, gas flux, electric field strength, removal efficiency, ozone output, and CO2 selectivity on benzene removal efficiency, were investigated. The results showed SSRP can effectively enhance benzene removal efficiency. The removal efficiency of benzene was up to 99% at electric field strength of 12 kV/cm. At the same time, SSRP decreases ozone yield and shows a better selectivity of CO2 than the single technology of nonthermal plasma. The final products were mostly CO, CO2, and H2O. Our research will lay the foundation for SSRP industrial application in the future.

  17. The emissions of monoaromatic hydrocarbons from small polymeric toys placed in chocolate food products. (United States)

    Marć, Mariusz; Formela, Krzysztof; Klein, Marek; Namieśnik, Jacek; Zabiegała, Bożena


    The article presents findings on the emissions of selected monoaromatic hydrocarbons from children's toys placed in chocolate food products. The emission test system involved the application of a new type of microscale stationary emission chamber, μ-CTE™ 250. In order to determine the type of the applied polymer in the manufacture of the tested toys, Fourier transform infrared spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry were used. It was found that the tested toy components or the whole toys (figurines) are made of two main types of polymers: polyamide and acrylonitrile-butadiene-styrene copolymer. Total number of studied small polymeric toys was 52. The average emissions of selected monoaromatic hydrocarbons from studied toys made of polyamide were as follows: benzene: 0.45 ± 0.33 ng/g; toluene: 3.3 ± 2.6 ng/g; ethylbenzene: 1.4 ± 1.4 ng/g; p,m-xylene: 2.5 ± 4.5 ng/g; and styrene: 8.2 ± 9.9 ng/g. In the case of studied toys made of acrylonitrile-butadiene-styrene copolymer the average emissions of benzene, toluene, ethylbeznene, p,m-xylene and styrene were: 0.31 ± 0.29 ng/g; 2.5 ± 1.4 ng/g; 4.6 ± 8.9 ng/g; 1.4 ± 1.1 ng/g; and 36 ± 44 ng/g, respectively.

  18. Influence of biofuels on exhaust gas and noise emissions of small industrial diesel engines; Einfluss von Biokraftstoffen auf die Abgas- und Geraeuschemission kleiner Industriedieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Spessert, B.M. [Fachhochschule Jena (Germany). Fachgebiet Kraft- und Arbeitsmaschinen; Schleicher, A. [Fachhochschule Jena (Germany). Fachgebiet Umweltmesstechnik


    At small industrial diesel engines, as they were brought in oftentimes on building sites, in the farming and forest industry and on boats, biofuels are increasingly used. In a research project of the University of Applied Sciences Jena, Germany, thus the changes of the exhaust gas pollutant and noise emissions of these diesel engines were investigated. Test fuels were diesel fuel, and also biofuels as biodiesel (RME), rape seed oil and sun flower oil. Depending on the operating point these biofuels increased or reduced the emissions of exhaust gas and noise of the investigated engines clearly. (orig.)

  19. The indicative effects of inefficient urban traffic flow on fuel cost and exhaust air pollutant emissions

    CSIR Research Space (South Africa)

    Moselakgomo, M


    Full Text Available Poor urban traffic management such as poor intersection controls, congestions, illegal roadway blockages and construction works causes “stop-go” driving conditions with excessive idling resulting in wasted fuel and increased air pollutant emissions...

  20. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles? (United States)


    ... gas-fueled off-highway motorcycles: NMHC emissions. (2) Alcohol-fueled off-highway motorcycles: THCE... operating life from advertisements or other marketing materials for any vehicles in the engine family....

  1. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter. (United States)

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto


    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).

  2. EU-project AEROJET. Non-intrusive measurements of aircraft engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, K.; Heland, J. [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany); Burrows, R. [Rolls-Royce Ltd. (United Kingdom). Engine Support Lab.; Bernard, M. [AUXITROL, S.A. (France). Aerospace Equipment Div.; Bishop, G. [British Aerospace (United Kingdom). Sowerby Research Centre; Lindermeir, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e. V. (DLR), Bonn (Germany). Inst. fuer Optoelektronik; Lister, D.H. [Defence and Research Agency, Hants (United Kingdom). Propulsion and Development Dept.; Wiesen, P. [Bergische Univ. Wuppertal (Gesamthochshule) (Germany); Hilton, M. [University of Reading (United Kingdom). Dept. of Physics


    The main goal of the AEROJET programme is to demonstrate the equivalence of remote measurement techniques to conventional extractive methods for both gaseous and particulate measurements. The different remote measurement techniques are compared and calibrated. A demonstrator measurement system for exhaust gases, temperature and particulates including data-analysis software is regarded as result of this project. Non-intrusive measurements are the method of choice within the AEROJET project promising to avoid the disadvantages of the gas sampling techniques which are currently used. Different ground based non-intrusive measurement methods are demonstrated during a final evaluation phase. Several non-intrusive techniques are compared with conventional gas sampling and analysis techniques. (R.P.) 3 refs.

  3. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements (United States)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang


    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  4. Conversion of the exhaust emission results obtained from combustion engines of heavy-duty vehicles (United States)

    Merkisz, J.; Pielecha, J.


    The use of internal combustion engines as the drive for heavy-duty vehicles forces these engines to be tested on an engine dynamometer. Thus, these engines operate under forced conditions, which are significantly different from their actual application. To assess the ecology of such vehicles (or more accurately the engine alone) the emission of pollution per unit of work done by the engine must be determined. However, obtaining the results of unit emissions (expressed in grams of the compound per a unit of performed work) does not give the grounds for determining the mass of pollutants on a given stretch of the road travelled by the vehicle. Therefore, there is a need to change the emission value expressed in units referenced to the engine work into a value of road emissions. The paper presents a methodology of determining pollutant emissions of heavy-duty road vehicles on the basis of the unit emissions, as well as additional parameters determined on the basis of the algorithm presented in the article. A solution was obtained that can be used not only for heavy-duty vehicles, but was also extended to allow use for buses.

  5. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland (United States)

    Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A. S. H.; Baltensperger, U.; Buchmann, B.; Gehrig, R.


    Recent studies have shown clear contributions of non-exhaust emissions to the traffic related PM10 load of the ambient air. These emissions consist of particles produced by abrasion from brakes, road wear, tire wear, as well as vehicle induced resuspension of deposited road dust. The main scope of the presented work was to identify and quantify the non-exhaust fraction of traffic related PM10 for two roadside locations in Switzerland with different traffic regimes. The two investigated locations, an urban street canyon with heavily congested traffic and an interurban freeway, are considered as being typical for Central Europe. Mass-relevant contributions from abrasion particles and resuspended road dust mainly originated from particles in the size range 1-10 μm. The results showed a major influence of vehicle induced resuspension of road dust. In the street canyon, the traffic related PM10 emissions (LDV: 24 ± 8 mg km -1 vehicle -1, HDV: 498 ± 86 mg km -1 vehicle -1) were assigned to 21% brake wear, 38% resuspended road dust and 41% exhaust emissions. Along the freeway (LDV: 50 ± 13 mg km -1 vehicle -1, HDV: 288 ± 72 mg km -1 vehicle -1), respective contributions were 3% brake wear, 56% resuspended road dust and 41% exhaust emissions. There was no indication for relevant contributions from tire wear and abrasion from undamaged pavements.

  6. Effects of Specific Fuel Consumption and Exhaust Emissions of Four Stroke Diesel Engine with CuO/Water Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Senthilraja S.


    Full Text Available This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2% of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx, exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.

  7. A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan; Eberle, Annika; Heath, Garvin


    Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel selling price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.

  8. RSM Based Optimization of Chemical and Enzymatic Transesterification of Palm Oil: Biodiesel Production and Assessment of Exhaust Emission Levels

    Directory of Open Access Journals (Sweden)

    Muhammad Waseem Mumtaz


    Full Text Available Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well. Optimized palm oil fatty acid methyl esters (POFAMEs yields were depicted to be 47.6±1.5,  92.7±2.5, and 95.4±2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2±3.1 and 62.8±2.4%, respectively. Distinct decrease in particulate matter (PM and carbon monoxide (CO levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from −2.1 to −68.7% and −6.2 to −58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100 showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.

  9. Spatial and temporal allocation of ship exhaust emissions in Australian coastal waters using AIS data: Analysis and treatment of data gaps (United States)

    Goldsworthy, Brett


    Ship exhaust emissions need to be allocated accurately in both space and time in order to examine many of the associated impacts, including on air quality and health. Data on ship activity from the Automatic Identification System (AIS) allow ship exhaust emissions to be calculated with fine spatial and temporal resolution. However, there are spatial gaps in the coverage afforded by the coastal network of ground stations that are used to collect the AIS data. This paper focuses on the problem of allocating emissions to the coastal gap regions. Allocating emissions to these regions involves generating interpolated ship tracks that both span the gaps and avoid coming too close to land. In most cases, a simple shortest path or straight line interpolation produces tracks that do not overlap or come too close to land. Where the simple method does not produce acceptable results, vessel tracks are steered around land on shortest available paths using a combination of visibility graphs and Dijkstra's algorithm. A geographical cluster analysis is first used to identify the boundary regions of the data gaps. The properties of the data gaps are summarised in terms of the length, duration and speed of the spanning tracks. The interpolation methods are used to improve the spatial distribution of emissions. It is also shown that emissions in the gap regions can contribute substantially to the total ship exhaust emissions in close proximity to highly populated areas.

  10. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Dominik A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Daddi, Emanuele; Elbaz, David [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Armus, Lee; Chary, Ranga-Ram [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Carilli, Christopher L. [National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801 (United States); Walter, Fabian; Hodge, Jacqueline [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Morrison, Glenn E. [Canada-France-Hawaii Telescope, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743-8432 (United States); Dickinson, Mark [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Dannerbauer, Helmut, E-mail: [Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, A-1180 Wien (Austria)


    We report the detection of 6.2 μm polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7 μm continuum emission in the z = 4.055 submillimeter galaxy GN20, using the Infrared Spectrograph on board the Spitzer Space Telescope. This represents the first detection of PAH emission at z > 4. The strength of the PAH emission feature is consistent with a very high star formation rate of ∼1600 M {sub ☉} yr{sup –1}. We find that this intense starburst powers at least ∼1/3 of the faint underlying 6 μm continuum emission, with an additional, significant (and perhaps dominant) contribution due to a power-law-like hot dust source, which we interpret to likely be a faint, dust-obscured active galactic nucleus (AGN). The inferred 6 μm AGN continuum luminosity is consistent with a sensitive upper limit on the hard X-ray emission as measured by the Chandra X-Ray Observatory if the previously undetected AGN is Compton-thick. This is in agreement with the finding at optical/infrared wavelengths that the galaxy and its nucleus are heavily dust-obscured. Despite the strong power-law component enhancing the mid-infrared continuum emission, the intense starburst associated with the photon-dominated regions that give rise to the PAH emission appears to dominate the total energy output in the infrared. GN20 is one of the most luminous starburst galaxies known at any redshift, embedded in a rich protocluster of star-forming galaxies. This investigation provides an improved understanding of the energy sources that power such exceptional systems, which represent the extreme end of massive galaxy formation at early cosmic times.

  11. Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine

    KAUST Repository

    Kozarac, Darko


    The use of highly reactive fuel as an ignition promoter enables operation of biogas fueled homogeneous charge compression ignition (HCCI) engine at low intake temperatures with practical control of combustion phasing. In order to gain some insight into this operation mode the influence of addition of n-heptane on combustion, performance, emissions and control of combustion phasing of a biogas fueled HCCI engine is experimentally researched and presented in this paper. Additionally, the performance analysis of the practical engine solution for such operation is estimated by using the numerical simulation of entire engine. The results showed that the introduction of highly reactive fuel results with a significant change in operating conditions and with a change in optimum combustion phasing. The addition of n-heptane resulted in lower nitrogen oxides and increased carbon monoxide emissions, while the unburned hydrocarbons emissions were strongly influenced by combustion phasing and at optimal conditions are lowered compared to pure biogas operation. The results also showed a practical operation range for strategies that use equivalence ratio as a control of load. Simulation results showed that the difference in performance between pure biogas and n-heptane/biogas operation is even greater when the practical engine solution is taken into account.

  12. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for... (United States)


    ... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... aircraft engines which, in the EPA Administrator's judgment, causes or contributes to air pollution that... aircraft engine emission standards for oxides of nitrogen (NO X ), compliance flexibilities, and...

  13. Estimation of exhaust emission from ocean-going vessels for the Port of Cape Town

    CSIR Research Space (South Africa)

    Moodley, FB


    Full Text Available International shipping is recognised as an important sector of the global economy with over 80% of trading goods being transported by ships. Emissions from Ocean-Going Vessels (OGVs) which are generally powered by diesel fuel are thus increasingly...

  14. Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software

    Directory of Open Access Journals (Sweden)

    E. Lindermeir

    Full Text Available A Fourier transform spectrometer was used to measure infrared spectra of the exhaust gas of an aircraft's jet engine. The measured spectra were modelled by use of the program FASCODE. For this simulation, the inhomogeneous gas mixture is divided into several homogenous layers which are characterized by their geometrical extents, temperatures, pressures and chemical compositions. To obtain values for the temperatures and the CO, NO, H2O and CO2 concentrations of the layers a nonlinear least-squares algorithm was implemented. The program (FITFAS not only changes the parameters to find the minimum of the squared differences between measurement and calculation; it also provides the variances and covariances of the parameters. Thus information is obtained to which parameters (besides the interesting ones must be fitted (or be accurately known. It also tells us whether or not another spectral interval is more suitable for the determination of a specific parameter.

  15. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.


    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

  16. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... (United States)


    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles...

  17. 40 CFR 1039.102 - What exhaust emission standards and phase-in allowances apply for my engines in model year 2014... (United States)


    ... years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112... 40 CFR part 89. However, except as specified by paragraph (a)(1) of this section, the transient PM...+NMHC credits from any Tier 2 engine at or above 37 kW certified under 40 CFR part 89 to meet the...

  18. Global atmospheric emissions and transport of polycyclic aromatic hydrocarbons: Evaluation of modeling and transboundary pollution (United States)

    Shen, Huizhong; Tao, Shu


    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimated country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). MOZART-4 (The Model for Ozone and Related Chemical Tracers, version 4) was applied to simulate the global tropospheric transport of Benzo(a)pyrene, one of the high molecular weight carcinogenic PAHs, at a horizontal resolution of 1.875° (longitude) × 1.8947° (latitude). The reaction with OH radical, gas/particle partitioning, wet deposition, dry deposition, and dynamic soil/ocean-air exchange of PAHs were considered. The simulation was validated by observations at both background and non-background sites, including Alert site in Canadian High Arctic, EMEP sites in Europe, and other 254 urban/rural sites reported from literatures. Key factors effecting long-range transport of BaP were addressed, and transboundary pollution was discussed.

  19. Random mixtures of polycyclic aromatic hydrocarbon spectra match interstellar infrared emission

    CERN Document Server

    Rosenberg, Marissa J F; Boersma, Christiaan


    The mid-infrared (IR; 5-15~$\\mu$m) spectrum of a wide variety of astronomical objects exhibits a set of broad emission features at 6.2, 7.7, 8.6, 11.3 and 12.7 $\\mu$m. About 30 years ago it was proposed that these signatures are due to emission from a family of UV heated nanometer-sized carbonaceous molecules known as polycyclic aromatic hydrocarbons (PAHs), causing them to be referred to as aromatic IR bands (AIBs). Today, the acceptance of the PAH model is far from settled, as the identification of a single PAH in space has not yet been successful and physically relevant theoretical models involving ``true'' PAH cross sections do not reproduce the AIBs in detail. In this paper, we use the NASA Ames PAH IR Spectroscopic Database, which contains over 500 quantum-computed spectra, in conjunction with a simple emission model, to show that the spectrum produced by any random mixture of at least 30 PAHs converges to the same 'kernel'-spectrum. This kernel-spectrum captures the essence of the PAH emission spectrum...

  20. Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China. (United States)

    Geng, Chunmei; Chen, Jianhua; Yang, Xiaoyang; Ren, Lihong; Yin, Baohui; Liu, Xiaoyu; Bai, Zhipeng


    Domestic coal stove is widely used in China, especially for countryside during heating period of winter, and polycyclic aromatic hydrocarbons (PAHs) are important in flue gas of the stove. By using dilution tunnel system, samples of both gaseous and particulate phases from domestic coal combustion were collected and 18 PAH species were analyzed by GC-MS. The average emission factors of total 18 PAH species was 171.73 mg/kg, ranging from 140.75 to 229.11 mg/kg for bituminous coals, while was 93.98 mg/kg, ranging from 58.48 to 129.47 mg/kg for anthracite coals. PAHs in gaseous phases occupied 95% of the total of PAHs emission of coal combustion. In particulate phase, 3-ring and 4-ring PAHs were the main components, accounting for 80% of the total particulate PAHs. The total toxicity potency evaluated by benzo[a]pyrene-equivalent carcinogenic power, sum of 7 carcinogenic PAH components and 2,3,7,8-tetrachlorodibenzodioxin had a similar tendency. And as a result, the toxic potential of bituminous coal was higher than that of anthracite coal. Efficient emission control should be conducted to reduce PAH emissions in order to protect ecosystem and human health.

  1. [Emission factors of polycyclic aromatic hydrocarbons (PAHs) in residential coal combustion and its influence factors]. (United States)

    Hai, Ting-Ting; Chen, Ying-Jun; Wang, Yan; Tian, Chong-Guo; Lin, Tian


    As the emission source of polycyclic aromatic hydrocarbons (PAHs), domestic coal combustion has attracted increasing attention in China. According to the coal maturity, combustion form and stove type associated with domestic coal combustion, a large-size, full-flow dilution tunnel and fractional sampling system was employed to collect the emissions from five coals with various maturities, which were burned in the form of raw-coal-chunk (RCC)/honeycomb-coal-briquettes (HCB) in different residential stoves, and then the emission factors of PAHs (EF(PAHs)) were achieved. The results indicate that the EF(PAHs) of bituminous coal ranged from 1.1 mg x kg(-1) to 3.9 mg x kg(-1) for RCC and 2.5 mg x kg(-1) to 21. 1 mg x kg(-1) for HCB, and the anthracite EF(PAH8) were 0.2 mg x kg(-1) for RCC and 0.6 mg x kg(-1) for HCB, respectively. Among all the influence factors of emission factors of PAHs from domestic coal combustion, the maturity of coal played a major role, the range of variance reaching 1 to 2 orders of magnitude in coals with different maturity. Followed by the form of combustion (RCC/HCB), the EF(PAHs) of HCB was 2-6 times higher than that of RCC for the same geological maturity of the coal. The type of stove had little influence on EF(PAHs).

  2. Emission and Size Distribution of Particle-bound Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Bin; Wang, Rong; Shen, Huizhong; Li, Wei; Huang, Ye; Chen, Yuanchen; Chen, Han; Tao, Shu


    Emissions and size distributions of 28 particle-bound polycyclic aromatic hydrocarbons (PAHs) from residential combustion of 19 fuels in a domestic cooking stove in rural China were studied. Measured emission factors of total PAHs were 1.79±1.55, 12.1±9.1, and 5.36±4.46 mg/kg for fuel wood, brushwood, and bamboo, respectively. Approximate 86.7, 65.0, and 79.7% of the PAHs were associated with fine particulate matter with size less than 2.1 µm for these three types of fuels. Statistically significant difference in emission factors and size distributions of particle-bound PAHs between fuel wood and brushwood was observed, with the former had lower emission factors but more PAHs in finer PM. Mass fraction of the fine particles associated PAHs was found to be positively correlated with fuel density and moisture, and negatively correlated with combustion efficiency. Low and high molecular weight PAHs segregated into the coarse and fine PM, respectively. The high accumulation tendency of the PAHs from residential wood combustion in fine particles implies strong adverse health impact. PMID:25678760

  3. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions (United States)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs

  4. Effect of ambient temperature on species lumping for total organic gases in gasoline exhaust emissions (United States)

    Roy, Anirban; Choi, Yunsoo


    Volatile organic compound (VOCs) emissions from sources often need to be compressed or "lumped" into species classes for use in emissions inventories intended for air quality modeling. This needs to be done to ensure computational efficiency. The lumped profiles are usually reported for one value of ambient temperature. However, temperature-specific detailed profiles have been constructed in the recent past - the current study investigates how the lumping of species from those profiles into different atmospheric chemistry mechanisms is affected by temperature, considering three temperatures (-18 °C, -7 °C and 24 °C). The mechanisms considered differed on the assumptions used for lumping: CB05 (carbon bond type), SAPRC (ozone formation potential) and RACM2 (molecular surrogate and reactivity weighting). In this space, four sub-mechanisms for SAPRC were considered. Scaling factors were developed for each lumped model species and mechanism in terms of moles of lumped species per unit mass. Species which showed a direct one-to-one mapping (SAPRC/RACM2) reported scaling factors that were unchanged across mechanisms. However, CB05 showed different trends since one compound often is mapped onto multiple model species, out of which the paraffinic double bond (PAR) is predominant. Temperature-dependent parameterizations for emission factors pertaining to each lumped species class and mechanism were developed as part of the study. Here, the same kind of model species showed varying lumping parameters across the different mechanisms. These differences could be attributed to differing approaches in lumping. The scaling factors and temperature-dependent parameterizations could be used to update emissions inventories such as MOVES or SMOKE for use in chemical transport modeling.

  5. Trends of non-methane hydrocarbons (NMHC emissions in Beijing during 2002–2013

    Directory of Open Access Journals (Sweden)

    M. Wang


    Full Text Available Non-methane hydrocarbons (NMHCs play a critical role in the photochemical production of ozone (O3 and organic aerosols. Obtaining an accurate understanding on NMHC emission trends is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, we evaluated temporal trends in NMHC emissions in Beijing based on ambient measurements during the summer at an urban site in Beijing from 2002 to 2013. In contrast to the results of the most recent inventory (Multi-resolution Emission Inventory for China, MEIC, which reported that total NMHC emissions increased at a rate of ~4% yr−1, mixing ratios of NMHCs measured at this urban site displayed an obvious decrease (~30% during the last decade. A Positive Matrix Factorization (PMF model was applied to the NMHC measurements for source apportionment, and the results showed a decrease in the concentrations contributed by transportation-related sources to total NMHC emissions by 66% during 2004–2012, which was comparable to the relative decline of 65% reported by the MEIC inventory. This finding indicates that the implementation of stricter emissions standards and control measures has been effective for reducing transportation-related NMHC emissions. In addition, the PMF results suggested that there were no significant temporal changes in NMHC concentrations from paint and solvent use during 2004–2012, in contrast with the rapid rate of increase (27.5% yr−1 reported by the MEIC inventory. To re-evaluate the NMHC emissions trends for paint and solvent use, annual variations in NMHC / NOx ratios were compared between ambient measurements and the MEIC inventory. In contrast to the significant rise in NMHC / NOx ratios from the inventory, the measured ratios declined by 14% during 2005–2012. However, the inferred NMHC / NOx ratios based on PMF results exhibited a comparable decline of 11% to measurements. These results indicate that the increase

  6. Characterization and concentrations of polycyclic aromatic hydrocarbons in emissions from different heating systems in Damascus, Syria. (United States)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan


    Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet-visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43 ± 0.4 and 316 ± 1.4 μg/m(3). Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m(3).

  7. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude


    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  8. Effect of varying the combustion parameters on the emissions of carbon monoxide and nitrogen oxides in the exhaust gases from propane-fueled vehicles. (United States)

    Roberge, B


    Propane-fueled forklifts are one source of carbon monoxide (CO) contamination of workplace air. The previous study carried out by the Quebec Occupational Health and Safety Research Institute dealt with worker exposure to CO during forklift use in buildings. It recommends that exhaust gas emissions be kept below a 1 percent concentration. However, this control has not produced a significant reduction in worker exposure to CO, when factors (ventilation, type of work tasks, and management of vehicle fleet) specific to companies are taken into account. Consequently, a reduction in CO emissions below the threshold of 0.3 percent should be considered. The experience acquired with propane-fueled ice resurfacers can be used to determine the effect of combustion parameters on exhaust gas emissions. It is known that a reduction in CO emissions from ice resurfacers resulted in the appearance of nitrogen oxides (NOx) and eventually in nitrogen dioxide (NO2) poisoning. Few publications present NOx results in relation to the CO measured in the exhaust gases of propane-fueled vehicles. The objective of this study is to define the level to which CO emissions can be reduced without increasing NOx concentrations. This real-situation study quantified the CO, NO, and NOx in the exhaust gases of a fleet of propane-fueled forklifts in relation to the mixture ratio. The results show the impact of the motor speed and mixture ratio on the CO, NO, and NO2 concentrations. They confirm an increase in NOx concentrations when CO concentrations are reduced. They also show that proper maintenance of forklifts combined with optimal adjustments can reduce CO and NOx emissions. The study proposes a compromise between CO and NOx emissions by taking into account worker health and safety as well as vehicle performance. Monitoring must be done to control air quality in work areas and worker exposure to CO and NO2. A forklift preventive maintenance program and general building ventilation are the favored

  9. Impact of using fishing boat fuel with high poly aromatic content on the emission of polycyclic aromatic hydrocarbons from the diesel engine (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Li, Hsing-Wang; Chen, Chung-Ban; Fang, Guor-Cheng; Tsai, Perng-Jy

    Because of the fishery subsidy policy, the fishing boat fuel oil (FBFO) exemption from commodity taxes, business taxes and air pollution control fees, resulted in the price of FBFO was ˜50% lower than premium diesel fuel (PDF) in Taiwan. It is estimated that ˜650,000 kL FBFO was illegally used by traveling diesel-vehicles (TDVs) with a heavy-duty diesel engine (HDDE), which accounted for ˜16.3% of the total diesel fuel consumed by TDVs. In this study, sulfur, poly aromatic and total-aromatic contents in both FBFO and PDF were measured and compared. Exhaust emissions of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies (BaP eq) from a HDDE under transient cycle testing for both FBFO and PDF were compared and discussed. Finally, the impact caused by the illegal use of FBFO on the air quality was examined. Results show that the mean sulfur-, poly aromatic and aromatic-contents in FBFO were 43.0, 3.89 and 1.04 times higher than that of PDF, respectively. Emission factors of total-PAHs and total-BaP eq obtained by utilizing FBFO were 51.5 and 0.235 mg L -1-Fuel, which were 3.41 and 5.82 times in magnitude higher than obtained by PDF, respectively. The estimated annual emissions of total-PAHs and total-BaP eq to the ambient environment due to the illegally used FBFO were 23.6 and 0.126 metric tons, respectively, which resulted in a 17.9% and a 25.0% increment of annual emissions from all mobile sources, respectively. These results indicated that the FBFO used illegally by TDVs had a significant impact on PAH emissions to the ambient environment.

  10. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli


    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  11. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems (United States)

    Pisupati; Wasco; Scaroni


    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  12. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking (United States)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu


    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  13. Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater. (United States)

    Wang, Lin-Chi; Wang, I-Ching; Chang, Juu-En; Lai, Soon-Onn; Chang-Chien, Guo-Ping


    This study investigated the emission of polycyclic aromatic hydrocarbons (PAHs) from stack flue gas and air pollution control device (APCD) effluent of the liquid injection incinerator (LII) disposing the petrochemical industrial wastewater, and PAH removal efficiencies of wet electrostatic precipitator (WESP) and wet scrubber (WSB). The PAH carcinogenic potency were investigated with the benzo(a)pyrene equivalent concentration (BaP(eq)). The remarkably high total-BaP(eq) concentration (220 microgNm(-3)) in the stack flue gas was much higher than those of several published emission sources, and indicated the possible influence on its surrounding environment. The total-PAH emission factors of the WESP, WSB and stack flue gas were 78.9, 95.7 and 30,900 microgL(-1) wastewater, respectively. The removal efficiencies of total-PAHs were 0.254, 0.309 and 0.563% for WESP, WSB and overall, respectively, suggesting that the use of both WESP and WSB shows insignificant PAH removal efficiencies, and 99.4% of total-PAHs was directly emitted to the ambient air through the stack flue gas. This finding suggested that the better incineration efficiencies, and APCD removal efficiencies for disposing the petrochemical industrial wastewater are necessary in future.

  14. Emission of polycyclic aromatic hydrocarbons and lead during Chinese mid-autumn festival. (United States)

    Kuo, Chung-Yih; Lee, Hong-Shen; Lai, Jeang-Hung


    The emission factors of total particulate polycyclic aromatic hydrocarbons (PAHs), Benzo(a)pyrene (BaP), BaP-equivalent doses (BaP(eq)) and Pb for burning three kinds of charcoal were investigated in this study: fast-lighting charcoal, Taiwanese, and Indonesian charcoal (the latter two of which are not fast-lighting). Compared to the burning of Taiwanese and Indonesian charcoal, the burning of fast-lighting charcoal can emit much larger amounts of total PAHs, BaP(eq) and Pb into the atmosphere. The emission factors of total PAHs, BaP and BaP(eq) for broiling meat were noticeably higher than those for broiling vegetables and non-fish seafood. When using Indonesian charcoal to broil meat, the total emission factors of particulate PAHs and BaP were about 15.7 and 0.39 mg/kg, respectively. The total amounts of particulate PAHs and Pb emitted from cookouts during Mid-Autumn Festival were 2881 and 120 g, respectively. Total PAHs and BaP(eq) in PM(10) aerosols on Mid-Autumn Festival nights increased about 1.6 and 1.5 times, respectively, higher than those on non-festival nights. The mean concentration of Pb on the nights of Mid-Autumn Festival increases to about 2.8 times that of non-festival nights.

  15. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei (United States)

    Shipley, Heath V.


    For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 blackhole accretion contemporaneously in a galaxy.

  16. Denuder for measuring emissions of gaseous organic exhaust gas constituents; Denuder zur Emissionsmessung von gasfoermigen organischen Abgasinhaltsstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Gerchel, B.; Jockel, W.; Kallinger, G.; Niessner, R.


    Industrial plants which emit carcinogenic or other noxious substances should be given top priority in any policy to ward off harmful environmental effects. This also applies to many volatile and semi-volatile air constituents such as volatile aliphatic carbonyls or amines. To date there are no satisfactory methods for determining trace organic components of exhaust gases. It is true that aldehydes are considered in the VDI Guideline 3862, but the measuring methods given there are based on absorption in liquids and are accordingly difficult to use and show a high cross-sensitivity for other substances. No VDI Guideline exists to date on amine emissions. In view of the complexity of exhaust gases a selective enrichment of certain families of substances would appear indicated. Sampling trouble could be reduced if it was possible only to accumulate the gaseous phase, or even just one family of gaseous constituents. A particularly suitable air sampling method is that of diffusion separation. These diffusion separators (denuders) are well known as a powerful measuring system which is able to accumulate trace pollutants in the outside air. The purpose of the present study was to find out whether the concept of diffusion separation is also applicable to emission monitoring, and in particular whether it is suitable for detecting volatile aliphatic aldehydes and amines (primary and secondary) at extremely low concentrations (<10 ppb). (orig./SR) [Deutsch] Fuer Anlagen mit Emissionen von krebserzeugenden und gesundheitsgefaehrdenden Stoffen ergibt sich ein besonderer Handlungsbedarf zum Schutz vor schaedlichen Umwelteinwirkungen. Zu diesen Stoffen gehoeren auch viele leicht- und mittelfluechtigen Luftinhaltsstoffe, wie z.B. die leichtfluechtigen aliphatischen Carbonyle oder Amine. Fuer organische Komponenten, die nur in geringen Konzentrationen im Abgas vorkommen, existieren bisher keine zufriedenstellenden Messverfahren. Fuer die Aldehyde liegt zwar die VDI-Richtlinie 3862

  17. Studies on exhaust emissions of mahua oil operated compression ignition engine. (United States)

    Kapilan, N; Reddy, R P


    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.


    Directory of Open Access Journals (Sweden)

    Karoon Fangsuwannarak


    Full Text Available The purpose of this study is to perform comparative analysis of the effect of the different fuel additives as polymer based-bio-solution, natural organic based-bio-solution and nano-titanium metalloid (TiO2 compound on the performance parameters and exhuast emissions of a pickup Diesel engine, operating on commercial Diesel fuel (D and B5 palm biodiesel (95% D+5% palm oil. The basic properties of the fuel blended with TiO2 metalloid compound and bio-solution based additives were measured according to ASTM standard. Engine performance of a pickup diesel engine was investigated by testing on a chassis dynamometer with the simulation of road load condition. It was found that TiO2 based-additive is more effective for improving engine power than pure Diesel and B5 fuels by 7.78% and 1.36%, respectively. Meanwhile, with using TiO2 additive, the maximum engine torque on average increased by 1.01% and 1.53% in the wide range between 1,700 and 3,000 rpm as compared with Diesel and B5 fuels, respectively. The TiO2 and natural organic additives is significantly effective on Diesel fuel for reducing brake specific fuel consumption reached by 13.22% and 10.01%, respectively as compared with pure Diesel. Moreover, the exhuast emissions (NOx, CO and CO2 decreased from the engine using the TiO2 additive in Diesel fuel and natural organic additive in Diesel fuel.

  19. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire (United States)

    T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos


    Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...

  20. Hydrocarbon emissions from lean-burn natural gas engines. Kinetic modelling and visualization

    Energy Technology Data Exchange (ETDEWEB)

    Broe Bendtsen, A.


    Motivated by emissions of unburned fuel from natural gas engines, a detailed chemical kinetic model describing NO{sub x} sensitized oxidation of methane was developed. New methods for visualization of such complex models have been developed, based on chemometrics and explorative data analysis. They may find application in combustion chemistry and in atmospheric chemistry, where detailed kinetic models are widely used. The motivation of the project was the discovery of significant emissions of unburned fuel from natural gas engines. The thesis contains a brief summary of emission levels and the sources of these emissions. Results from experiments by the Danish Gas Technology Centre on a pilot scale engine showed that oxidation of methane may occur in an extended exhaust manifold. Based on these results experiments were initiated to obtain detailed knowledge of the governing oxidation chemistry in the exhaust manifold. A series of laboratory experiments showed that at a residence time of 200 ms the threshold temperature for oxidation of methane was lowered by 200 {kappa} from 1100 {kappa} to 900 {kappa} in the presence of NO or NO{sub 2}. Experiments with a residence time of 140 ms showed that the sensitizing effect of NO was related to a longer lag time, compared to effect of NO{sub 2}. The major product of oxidation from 900 {kappa} to 1100 {kappa} was CO. Published detailed chemical kinetic models were not able to describe these phenomena. It was attempted to modify existing kinetic models to describe this sensitization by estimation of reaction rates. A literature survey of various method for estimation of reaction rates is given, and one methods for estimation of reaction rates using Partial Least Squares regression is demonstrated, but only with moderate success. To obtain a better kinetic model, a conventional approach to the refinement of the kinetic model was assisted by visualization methods and explorative data analysis. Through this approach an existing


    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E. [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Allamandola, L. J. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States); Tielens, A. G. G. M., E-mail: [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA (Netherlands)


    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5–15 μm. For each object we have spectral maps at a spatial resolution of ∼4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  2. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. (United States)

    Chen, Yingjun; Sheng, Guoying; Bi, Xinhui; Feng, Yanli; Mai, Bixian; Fu, Jiamo


    Emission factors of carbonaceous particles, including black carbon (BC) and organic carbon (OC), and polycyclic aromatic hydrocarbons (PAHs) were determined for five coals, which ranged in maturity from sub-bituminous to anthracite. They were burned in the form of honeycomb briquettes in a residential coalstove, one of the most common fuel/stove combinations in China. Smoke samples were taken through dilution sampling equipment, with a high volume sampler that could simultaneously collect emissions in both particulate and gaseous phases, and a cascade impactor that could segregate particles into six fractions. Particulate BC and OC were analyzed by a thermal-optical method, and PAHs in emissions of both phases were analyzed by GC-MS. Burning of bituminous coals produced the highest emission factors of particulate matter (12.91 g/kg), BC (0.28 g/kg), OC (7.82 g/kg), and 20 PAHs (210.6 mg/kg) on the basis of burned dry ash-free (daf) coal, while the anthracite honeycomb-briquette was the cleanest household coal fuel. The size-segregated results show that more than 94% of the particles were submicron, and calculated mass median aerodynamic diameters (MMAD) of all particles were under 0.3 microm. Based on the coal consumption in the residential sector of China, 290.24 Gg (gigagrams) of particulate matter, 5.36 Gg of BC, 170.33 Gg of OC, and 4.72 Gg of 20 PAHs mass were emitted annually from household honeycomb-briquette burning during 2000. Anthracite coal should be selected preferentially and more advanced burning conditions should be applied in domestic combustion, from the viewpoint of both climate change and adverse health effects.

  3. Multispectral imaging of aircraft exhaust (United States)

    Berkson, Emily E.; Messinger, David W.


    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  4. Identification of emission sources of particle-bound polycyclic aromatic hydrocarbons in the vicinity of the industrial zone of the city of Novi Sad

    Directory of Open Access Journals (Sweden)

    Jovčić Nataša S.


    Full Text Available Data on polycyclic aromatic hydrocarbons (PAHs in ambient air accessed at selected locations in the vicinity of the industrial zone of the city of Novi Sad, Serbia, have been presented and analyzed in order to determine seasonal and spatial variations and to identify emission sources of particle-bound PAHs. Previous studies have demonstrated that the major contributors of PAHs in urban areas are the emissions from vehicle exhaust, and emissions releases from industrial processes like aluminium production, creosote and wood preservation, waste incineration, cement manufacture, petrochemical and related industries, commercial heat/power production etc. The sampling campaigns have been conducted at three sampling sites, during the two 14-day periods. The first site was situated near industrial area, with a refinery, power plant and heavy-traffic road in the vicinity. The second site was located nearby the heavy traffic area, especially busy during the rush hour. The third site was residential district. Summer sampling period lasted from June 26th to July 10th 2008, while sampling of ambient air during the winter was undertaken from January 22nd to February 5th 2009. Eighty-four (84 air samples were collected using a high volume air sampler TCR Tecora H0649010/ECHO. 16 US EPA polycyclic aromatic hydrocarbons were determined in all samples using a gas chromatographer with a mass spectrometer as a detector (Shimatzu MDGC/GCMS-2010. The total average concentrations of PAHs ranged from 1.21 to 1.77 ng/m3 during the summer period and from 6.31 to 7.25 ng/m3 in the winter. Various techniques, including diagnostic ratio (DR and principal component analysis (PCA, have been used to define and evaluate potential emission sources of PAHs. Diagnostic ratio analysis indicated that vehicles, diesel or/and gasoline, industrial and combustion emissions were sources of PAHs in the vicinity of the industrial zone. Additionally, principal component analysis was used

  5. The Petrol Vehicles Exhaust Emission Characteristics of Different Emission Standards%不同排放标准汽油车尾气排放特征的研究

    Institute of Scientific and Technical Information of China (English)

    梁灿钦; 伍建军; 林锦权


    Motor vehicle exhaust is the major source of air pollution. In Dongguan City, the growing number of motor vehi- cles make motor vehicle pollution control imminent. According to test data of various types of gasoline exhaust, the paper analyzes the exhaust emissions of different pollutants in gasoline vehicle license plate features, comparing different emission standards for gas- oline exhaust pollutants emissions, and providing basis for decision-making of the vehicle exhaust pollution remediation.%机动车尾气是目前大气污染的主要来源之一。东莞市机动车数量日趋增多,机动车污染治理迫在眉睫,根据各种类型汽油车尾气检测数据,对不同车牌汽油车尾气排放污染物特征进行了分析,对不同排放标准的汽油车尾气污染物排放情况进行了比较,进而为机动车尾气污染整治提供决策依据。

  6. The effect of clove oil and diesel fuel blends on the engine performance and exhaust emissions of a compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)


    Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO-diesel blended fuels. The effects of the CSO-diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO-diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO-diesel blended fuels than the pure diesel fuel whereas the NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel. (author)

  7. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    Directory of Open Access Journals (Sweden)

    Lance M Hallberg


    Full Text Available Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES, in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay, blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay, and hippocampus (lipid peroxidation assay, across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective.

  8. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons. [in interstellar medium (United States)

    Bauer, S. H.; Borchardt, D. B.


    The wavelength range of a previously constructed multichannel fast recording spectrometer was extended to the mid-infrared. With the initial configuration, light intensities were recorded simultaneously with a silicon-diode array simultaneously at 20 adjacent wavelengths, each with a 20-micron time resolution. For studies in the infrared, the silicon diodes were replaced by a 20-element PbSe array of similar dimensions, cooled by a three-stage thermoelectric device. It is proposed that infrared emissions could be due to shock-heated low molecular-weight hydrocarbons. The full Swan band system appeared in time-integrated emission spectra from shock-heated C2H2; no soot was generated. At low resolution, the profiles on the high-frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no conversion) and T5(eq).

  9. Decentralized production of hydrogen from hydrocarbons with reduced CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi [Florida Solar Energy Center, University of Central Florida, Cocoa, Florida, (United States)


    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO{sub 2} into the atmosphere. CO{sub 2} sequestration is one approach to solving the CO{sub 2} emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H{sub 2} production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO{sub 2} emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  10. Hydrocarbons peaks at Weybourne: What role do natural gas emissions play in the regional background? (United States)

    Jacob, M. J.; Fleming, Z. L.; Monks, P. S.; Hulse, A.; Oram, D.; Bandy, B. J.; Penkett, S. A.; Hamilton, J. F.; Hopkins, J. R.


    Detailed chemical measurements were carried out during the TORCH II (Tropospheric ORganic CHemistry Experiment) campaign at the Weybourne Atmospheric Observatory on the north coast of Norfolk, UK in May 2004. On a number of occasions, large short-lived concentrations of alkenes were observed that correlated with CO, acetaldehyde, HCHO and some alkanes. Foremost was propene, which indicated to have come from emissions from oil and natural gas industries in the North Sea. Simultaneously, a sharp increase in peroxy radicals was observed (from ozone alkene reactions that also produced secondary species such as alkyl nitrates) and subsequent ozone destruction. These emission events were marked by O3 reduction with no corresponding NOy peaks but with extremely high levels of alkene and alkyl nitrates, implying the formation of large levels of peroxy radicals, leading to oxidation consequences in this clean marine environment. Steady state modelling to calculate OH and RO2 values during the episodes revealed that the only source of such high OH and ROx was the ozonolysis of propene. An air mass origin study linked the hydrocarbon peaks with northerly air masses, over the path of known North Sea oil and gas fields. Analysis of VOC measurements at Weybourne during the past 15 years reveals the frequency of such VOC spikes and the impact they could have on photochemical ozone production when they to occur during the daytime and ozone-alkene reactions at nighttime.

  11. Observations of primary and secondary emissions in a B747 exhaust plume in the upper troposphere and inferred engine exit plane OH concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H.; Schulte, P.; Tremmel, H.G.; Ziereis, H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F.; Droste-Franke, B.; Klemm, M.; Schneider, J. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)


    The speciation of NO{sub y} exhaust emissions in the near-field plume of a B747 cruising at 9.2 km was measured in situ using the DLR Falcon research aircraft instrumented with a chemical ionisation mass spectrometer of MPI-K and a chemiluminescence NO detector of DLR. In addition, CO{sub 2} was measured providing a dilution factor for the exhaust species. Observed maximum peak concentrations above background in the plume 60 s after emission were 25.4 ppmv (CO{sub 2}), 184 ppbv (NO), 2.6 ppbv (HNO{sub 2}), and 1.3 ppbv (HNO{sub 3}). The observations were used to infer the initial OH concentration (15.4 ppmv) and NO{sub 2}/NO{sub x} ratio (0.08) at the engine exit by back calculations using a chemistry box model. (author) 20 refs.

  12. Assessing the impact of the forthcoming decrease in diesel exhaust particulate matter emissions on air quality: implications for black carbon concentrations in ambient air (United States)

    González, Y.; Rodríguez, S.; Cuevas, E.; Ramos, R.; Abreu-Afonso, J.; Baldasano, J. M.


    Forthcoming regulations (e.g. EURO 5 and EURO 6) are planned to reduce particulate matter emissions (PM) in the exhaust of forthcoming vehicles. In this study we assess the impact of such reduction in the diesel PM exhaust emissions on the urban ambient air PM concentrations. This has been done by studying the relationship between black carbon (BC) and carbon monoxide (CO) in urban ambient air and in the exhaust of current and forthcoming vehicles. The slope of the BC-vs-CO linear relationship is mainly affected by the percentage (%) of diesel automobiles in the urban vehicles fleet. This slope is a better indicator of the diesel PM emissions than bulk BC concentrations in urban ambient air. BC-vs-CO slopes within the range 1-3 and 7-14 ngBC/µgCO are typically observed in urban areas with low (fuel consumption for on road transportation, respectively. The entry into force of forthcoming regulations will decrease the BC-vs-CO slope in urban ambient air from about 10 to 5 ngBC/µgCO in the next decade, according to calculations based on the current data on diesel vehicles in urban fleets in Spanish cities. However, this will not necessary prompt a significant decrease in the urban BC concentrations if road traffic volume follows the increasing trend of the last decade. The results of this study shows that the analysis of the BC-vs-CO slope trend in ambient air is an useful tool for understanding the involvement "of the changes in the vehicle exhaust emissions rates" and "of the changes in the road traffic volume" in the BC and PMx trends in urban ambient air.

  13. Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission

    Energy Technology Data Exchange (ETDEWEB)

    Arpa, Orhan [Dicle University, Mechanical Engineering Department, Diyarbakir (Turkey); Yumrutas, Recep [University of Gaziantep, Mechanical Engineering Department, Gaziantep (Turkey); Argunhan, Zeki [University of Batman, Mechanical Engineering Department, Batman (Turkey)


    In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation. (author)

  14. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires (United States)

    Chen, Shui-Jen; Su, Hung-Bin; Chang, Juu-En; Lee, Wen-Jhy; Huang, Kuo-Lin; Hsieh, Lien-Te; Huang, Yi-Chu; Lin, Wen-Yinn; Lin, Chih-Chung

    This work investigated the PAHs generated in a waste-tire pyrolysis process and the PAHs removal by a wet scrubber (WSB) and a flare. IND, DBA, and BaP were found to dominate in the powders of scrap tires before the pyrolysis. The PAHs in the carbon blacks formed in the pyrolysis were mainly 2-, 3-, 6-, and 7-ring PAHs. Nap was the most predominant water-phase PAH in the WSB effluent. About 40% of the water-phase total-PAHs in the WSB effluent were contributed by nine carcinogenic PAHs. NaP, IND, and COR displayed higher mean gas- and particulate-phase concentrations than the other PAHs in the flare exhaust. The mean removal efficiencies of individual PAHs, total-PAHs, and high carcinogenic BaP+IND+DBA were 39.1-90.4%, 76.2%, and 84.9%, respectively for the WSB. For the flare, the mean removal efficiencies of gaseous, particulate, and combined (gaseous+particulate) total-PAHs were 59.8%, 91.2%, and 66.8%, respectively, whereas the removal efficiencies were 91.0%, 80.1%, and 89.1%, respectively for the total-BaPeq. However, the gaseous BaA displayed a negative mean removal efficiency. The total PAH emission rate and factor estimated for the scrap tire pyrolysis plant were 42.3 g d -1 and 4.00 mg kg-tire -1, respectively.

  15. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik


    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  16. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol (United States)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than

  17. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. (United States)

    Keyte, Ian J; Albinet, Alexandre; Harrison, Roy M


    Vehicular emissions are a key source of polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAH) and nitrated (NPAH) derivatives, in the urban environment. Road tunnels are a useful environment for the characterisation of on-road vehicular emissions, providing a realistic traffic fleet and a lack of direct sunlight, chemical reactivity and non-traffic sources. In the present investigation the concentrations of selected PAHs, OPAHs and NPAHs have been measured in the Parc des Princes Tunnel in Paris (PdPT, France), and at the Queensway Road Tunnel and an urban background site in Birmingham (QT, U.K). A higher proportion of semi-volatile (3-4 ring) PAH, OPAH and NPAH compounds are associated with the particulate phase compared with samples from the ambient environment. A large (~85%) decline in total PAH concentrations is observed between 1992 and 2012 measurements in QT. This is attributed primarily to the introduction of catalytic converters in the U.K as well as increasingly stringent EU vehicle emissions legislation. In contrast, NPAH concentrations measured in 2012 are similar to those measured in 1996. This observation, in addition to an increased proportion of (Phe+Flt+Pyr) in the observed PAH burden in the tunnel, is attributed to the increased number of diesel passenger vehicles in the U.K during this period. Except for OPAHs, comparable PAH and NPAH concentrations are observed in both investigated tunnels (QT and PdP). Significant differences are shown for specific substances between PAC chemical profiles in relation with the national traffic fleet differences (33% diesel passenger cars in U.K. vs 69% in France and up to 80% taking into account all vehicle categories). The dominating and sole contribution of 1-Nitropyrene observed in the PdPT NPAH profile strengthens the promising use of this compound as a diesel exhaust marker for PM source apportionment studies.

  18. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge


    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  19. Investigation of PCDD/F emissions from mobile source diesel engines: impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations. (United States)

    Liu, Z Gerald; Wall, John C; Barge, Patrick; Dettmann, Melissa E; Ottinger, Nathan A


    This study investigated the impact of copper zeolite selective catalytic reduction (SCR) catalysts and exhaust aftertreatment configurations on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from mobile source diesel engines. Emissions of PCDD/Fs, reported as the weighted sum of 17 congeners called the toxic equivalency quotient (TEQ), were measured using a modified EPA Method 0023A in the absence and presence of exhaust aftertreatment. Engine-out emissions were measured as a reference, while aftertreatment configurations included various combinations of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), Cu-zeolite SCR, Fe-zeolite SCR, ammonia oxidation catalyst (AMOX), and aqueous urea dosing. In addition, different chlorine concentrations were evaluated. Results showed that all aftertreatment configurations reduced PCDD/F emissions in comparison to the engine-out reference, consistent with reduction mechanisms such as thermal decomposition or combined trapping and hydrogenolysis reported in the literature. Similarly low PCDD/F emissions from the DOC-DPF and the DOC-DPF-SCR configurations indicated that PCDD/F reduction primarily occurred in the DOC-DPF with no noticeable contribution from either the Cu- or Fe-zeolite SCR systems. Furthermore, experiments performed with high chlorine concentration provided no evidence that chlorine content has an impact on the catalytic synthesis of PCDD/Fs for the chlorine levels investigated in this study.

  20. Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. (United States)

    Liu, Guijian; Niu, Zhiyuan; Van Niekerk, Daniel; Xue, Jian; Zheng, Liugen


    Coal may become more important as an energy source in the 21st century, and coal contains large quantities of organic and inorganic matter. When coal burns chemical and physical changes take place, and many toxic compounds are formed and emitted. Polycyclic aromatic hydrocarbons (PAHs) are among those compounds formed and are considered to pose potential health hazards because some PAHs are known carcinogens. Based on their toxicology, 16 PAHs are considered as priority pollutants by the USEPA. More attention must be given to the various methods of extraction and analysis of PAH from coal or coal products to accurately explain and determine the species of PAHs. The influences of the extraction time, solvents, and methods for PAH identification are important. In the future, more methods and influences will be studied more carefully and widely. PAHs are environmental pollutants, are highly lipid soluble, and can be absorbed by the lungs, gut, and skin of mammals because they are associated with fine particles from coal combustion. More attention is being given to PAHs because of their carcinogenic and mutagenic action. We suggest that when using a coal stove indoors, a chimney should be used; the particles and gas containing PAHs should be released outdoors to reduce the health hazard, especially in Southwest China. During coal utilization processes, such as coal combustion and pyrolysis, PAHs released may be divided into two categories according to their formation pathways: one pathway is derived from complex chemical reactions and the other is from free PAHs transferred from the original coal. The formation and emission of PAHs is a complex physical and chemical process that has received considerable attention in recent years. It is suggested that the formation mechanisms of PAHs will be an increasingly important topic for researchers to find methods for controlling emissions during coal combustion.

  1. Emissions of polyciclic aromatic hydrocarbons and polyciclic carbonyl biphenils from electric arc furnaces

    Directory of Open Access Journals (Sweden)

    P. Gomes, J. F.


    Full Text Available This paper describes work done in order to determine the emissions of highly toxic organic micropollutants from electric arc furnaces used in the production of carbon steel from scrap. The study will be allowing to derive relationships between the levels of airborne micropollutants and the operational parameters of the production process so that an abatement of pollution could be achieved. By using the European standard method CEN 1948 for dioxin like compounds sampling and measurement, it was possible to determine the characteristic fingerprint of micropollutants such as polyciclic aromatic hydrocarbons (PAHs and polycyclic carbonyl biphenils (PCBs emitted by this particular stationary source.

    Este artículo contiene resultados del trabajo ejecutado para estudiar la determinación de las emisiones de los micropolutantes orgánicos muy tóxicos que se emiten por los hornos eléctricos de arco utilizados en la producción de acero. Este estudio inicial va a permitir relacionar las concentraciones de polutantes emitidos a la atmósfera con las condiciones de operación del horno eléctrico de arco. Utilizando el método normalizado CEN 1948 para captación y análisis de muestras de compuestos análogos a las dioxinas ha sido posible determinar el perfil característico de los micropolutantes tales como PAHs y PCBs emitidos por esta fuente.

  2. Severe aromatic hydrocarbon pollution in the Arctic town of Longyearbyen (Svalbard) caused by snowmobile emissions. (United States)

    Reimann, Stefan; Kallenborn, Roland; Schmidbauer, Norbert


    The aromatic hydrocarbons benzene, toluene and C2-benzenes (ethyl benzene and m,p,o-xylene) (BTEX) were measured during a 2-month monitoring campaign in 2007 in the Arctic town of Longyearbyen (Spitsbergen, Svalbard). Reflecting the remoteness of the location, very low mixing ratios were observed during night and in windy conditions. In late spring (April-May), however, the high frequency of guided snowmobile tours resulted in "rush-hour" maximum values of more than 10 ppb of BTEX. These concentration levels are comparable to those in European towns and are caused predominately by the outdated 2-stroke engines, which are still used by approximately 30% of the snowmobiles in Longyearbyen. During summer, peak events were about a factor of 100 lower compared to those during the snowmobile season. Emissions in summer were mainly caused by diesel-fueled heavy duty vehicles (HDVs), permanently used for coal transport from the adjacent coal mines. The documented high BTEX mixing ratios from snowmobiles in the Arctic provide an obvious incentive to change the regulation practice to a cleaner engine technology.

  3. Hydrocarbon emissions and characterization of methane sources in the Barnett Shale (United States)

    Marrero, J. E.; Townsend-Small, A.; Meinardi, S.; Blake, D. R.


    As energy demand and costs continue to rise worldwide, so does the development of energy from natural gas. The United States in particular has expanded its natural gas industry, becoming one of the world's top gas producing countries. The Barnett Shale of northern Texas is one of the most developed and productive natural gas shale plays in the United States. However, emissions from the many oil and gas system components in the region have not been fully characterized. An extensive list of volatile organic compounds (VOCs) was measured from 120 whole air canisters collected throughout the Barnett shale in October 2013. Known methane sources were targeted and included oil and natural gas well pads, compressor stations, distribution pipelines and city gates, cattle feedlots and landfills. C1-C5 alkanes were elevated throughout the region and were similar to or greater than concentrations in major U.S. cities. The VOC source signature for oil and gas operations was distinguished from biogenic sources. Average ethane content relative to methane was calculated for each of the source types, and ranged from 0.7 to 12.8%. For the whole region, the ethane content was 7.2±6.1%, illustrating the high variability and effect of the various hydrocarbon sources on the local air.

  4. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.


    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  5. 基于燃油消耗的北京农用机械排放清单建立%Fuel consumption based exhaust emissions estimating from agriculture equipment in Beijing

    Institute of Scientific and Technical Information of China (English)

    樊守彬; 聂磊; 阚睿斌; 李雪峰; 杨涛


    - 1, 37.7 1 g· kg- 1, 5 1. 58 g· kg- 1 and 8.23 g· kg- 1 for hydrocarbon compounds (HC), carbon monoxide (CO), nitrogen oxides ( NOx ), and particulate matter (PM10), respectively, whereas the emission factors of farm-use gasoline machinery in the capital area were 236.05 g· kg-1, 405.25 g· kg-1, 3.88 g· kg-1 and 5.01 g· kg-1 for HC, CO, NOx and PM1o. For some specific period of time, the total farm-machinery exhaust emissions in the city in 2007 have been worked out in this paper, with the emission of HC, CO,NOx and PM10 during that year and that of the fuel consumption statistical records made in that year. That is, the total emissions from the farm-machinery were estimated as 1 643.6 t for HC, 4 615.4 t for CO, 4 296.2 t for NOx, and 701.6 t for PM10. The total farm-machinery emission accounts for 1.26%, 0.50%, 2.91% and 4.33% of Beijing vehicle emissions for HC, CO, NOx and PMi0, respectively. At the same time, the spatial distribution of emission inventory can be reduced to the distribution of the farmland and the fuel consomption of the time farm-distribution mainly depends on the farming seasons, with lower emission in January and February, and higher emission in March and April. The investigation results of us show that the estimated emissions from the fanning machinery in Beijing were relatively low as compared to on-road traffic emissions.

  6. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)


    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  7. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars (United States)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  8. 49 CFR 325.91 - Exhaust systems. (United States)


    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...

  9. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology. (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C


    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  10. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases. (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng


    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  11. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)


    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  12. The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission

    Energy Technology Data Exchange (ETDEWEB)

    Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.


    This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

  13. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan


    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  14. A comparison of emissions from vehicles fueled with diesel or compressed natural gas. (United States)

    Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B


    A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment.

  15. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype Fiat 131 NA 2.4 liter automobile (United States)

    Quayle, S. S.; Davis, M. M.; Walter, R. A.


    The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a U.S. no. 2 diesel and a European diesel fuel. The vehicle was tested with retarded timing and with and without an oxidation catalyst. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that while the catalyst was generally effective in reducing hydrocarbon and carbon monoxide levels, it was also a factor in increasing particulate emissions. Increased particulate emission rates were particularly evident when the vehicle was operated on the European fuel which has a high sulfur content.

  16. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine (United States)

    Salvi, B. L.; Jindal, S.


    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  17. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles. (United States)


    ... paragraph (b)(1)(i) of this section, “NMOG” shall mean non-methane hydrocarbons. (iii) NMOG standards for... this section at 50 °F, according to the procedure specified in § 86.1773. Hybrid electric, natural gas... the applicable reactivity adjustment factor, TLEV, LEV, or ULEV natural gas vehicles shall...

  18. 40 CFR 86.1709-99 - Exhaust emission standards for 1999 and later light light-duty trucks. (United States)


    ... standards set forth in paragraph (b)(1)(i) of this section, “NMOG” shall mean non-methane hydrocarbons. (iii... vehicles, natural gas vehicles, and diesel fueled vehicles are not required to comply with the provisions... applicable reactivity adjustment factor, TLEV, LEV, or ULEV natural gas vehicles shall multiply the...

  19. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet? (United States)


    ... following fuels: (1) Alcohol-fueled engines: THCE emissions. (2) Natural gas-fueled engines: NMHC emissions... less than either of the following: (A) Your projected operating life from advertisements or...

  20. Black carbon and polycyclic aromatic hydrocarbon emissions from vehicles in the United States-Mexico border region: pilot study. (United States)

    Kelly, Kerry; Wagner, David; Lighty, JoAnn; Quintero Núñez, Margarito; Vazquez, F Adrian; Collins, Kimberly; Barud-Zubillaga, Alberto


    The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.

  1. 40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year? (United States)


    ... phase-in provisions of § 1039.102 and § 1039.104 expire. See § 1039.102 and 40 CFR 89.112 for exhaust... correction factors are allowed are specified in 40 CFR 86.1370-2007(e). (i) If you choose the ambient... which correction factors are allowed are defined in 40 CFR 86.1370-2007(e)(1). (ii) If you choose...

  2. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan


    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  3. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.


    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  4. Economic implications of incorporating emission controls to mitigate air pollutants emitted from a modeled hydrocarbon-fuel biorefinery in the United States: Economic implications of air emission controls for a hydrocarbon-fuel biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit [National Renewable Energy Laboratory, Golden CO USA; Zhang, Yimin [National Renewable Energy Laboratory, Golden CO USA; Davis, Ryan [National Renewable Energy Laboratory, Golden CO USA; Eberle, Annika [National Renewable Energy Laboratory, Golden CO USA; Heath, Garvin [National Renewable Energy Laboratory, Golden CO USA


    The implementation of the US Renewable Fuel Standard is expected to increase the construction and operation of new biofuel facilities. Allowing this industry to grow without adversely affecting air quality is an important sustainability goal sought by multiple stakeholders. However, little is known about how the emission controls potentially required to comply with air quality regulations might impact biorefinery cost and deployment strategies such as siting and sizing. In this study, we use a baseline design for a lignocellulosic hydrocarbon biofuel production process to assess how the integration of emission controls impacts the minimum fuel selling price (MFSP) of the biofuel produced. We evaluate the change in MFSP for two cases as compared to the baseline design by incorporating (i) emission controls that ensure compliance with applicable federal air regulations and (ii) advanced control options that could be used to achieve potential best available control technology (BACT) emission limits. Our results indicate that compliance with federal air regulations can be achieved with minimal impact on biofuel cost (~$0.02 per gasoline gallon equivalent (GGE) higher than the baseline price of $5.10 GGE-1). However, if air emissions must be further reduced to meet potential BACT emission limits, the cost could increase nontrivially. For example, the MFSP could increase to $5.50 GGE-1 by adopting advanced emission controls to meet potential boiler BACT limits. Given tradeoffs among emission control costs, permitting requirements, and economies of scale, these results could help inform decisions about biorefinery siting and sizing and mitigate risks associated with air permitting.

  5. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. Kabishov


    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  6. Methods of characterizing the distribution of exhaust emissions from light-duty, gasoline-powered motor vehicles in the U.S. fleet. (United States)

    Fulper, Carl R; Kishan, Sandeep; Baldauf, Richard W; Sabisch, Michael; Warila, Jim; Fujit, Eric M; Scarbro, Carl; Crews, William S; Snow, Richard; Gabele, Peter; Santos, Robert; Tierney, Eugene; Cantrell, Bruce


    Mobile sources significantly contribute to ambient concentrations of airborne particulate matter (PM). Source apportionment studies for PM10 (PM gasoline and diesel motor vehicle combustion. Several source apportionment studies conducted in the United States suggested that gasoline combustion from mobile sources contributed more to ambient PM than diesel combustion. However, existing emission inventories for the United States indicated that diesels contribute more than gasoline vehicles to ambient PM concentrations. A comprehensive testing program was initiated in the Kansas City metropolitan area to measure PM emissions in the light-duty, gasoline-powered, on-road mobile source fleet to provide data for PM inventory and emissions modeling. The vehicle recruitment design produced a sample that could represent the regional fleet, and by extension, the national fleet. All vehicles were recruited from a stratified sample on the basis of vehicle class (car, truck) and model-year group. The pool of available vehicles was drawn primarily from a sample of vehicle owners designed to represent the selected demographic and geographic characteristics of the Kansas City population. Emissions testing utilized a portable, light-duty chassis dynamometer with vehicles tested using the LA-92 driving cycle, on-board emissions measurement systems, and remote sensing devices. Particulate mass emissions were the focus of the study, with continuous and integrated samples collected. In addition, sample analyses included criteria gases (carbon monoxide, carbon dioxide, nitric oxide/nitrogen dioxide, hydrocarbons), air toxics (speciated volatile organic compounds), and PM constituents (elemental/organic carbon, metals, semi-volatile organic compounds). Results indicated that PM emissions from the in-use fleet varied by up to 3 orders of magnitude, with emissions generally increasing for older model-year vehicles. The study also identified a strong influence of ambient temperature on

  7. Experimental Study on Emissions of Polycyclic Aromatic Hydrocarbons of Unleaded Gasoline%汽油多环芳香烃排放的试验研究

    Institute of Scientific and Technical Information of China (English)

    李西秦; 蔡仁华; 曹淼龙; 刘冰


    In order to study the effect of three-way catalytic converter on generation of polycyclic aromatic hydrocarbons (PAH)in gasoline combustion process, tests were made in a HL495IQ electronic fuel injection gasoline engine. The emissions of several kinds of PAHs are measured by a gas chromatography - mass spectrometry (GC-MS) analyzer. The test results show that PAH is generated mainly by fuel which is not burnt completely at exhaust temperature of 200~600 t. With the increase of exhaust temperature to 600-800℃, the fuel will be broken up into more free radicals, which results in more PAH being generated. In three-way catalytic converter, PAH may be synthesized or converted, the nature and reaction condition of PAH determines which trend dominates.%为了解三元催化器对汽油燃烧过程中多环芳香烃生成的影响,在HL495IQ电喷汽油机上进行了台架试验,通过气相色谱一质谱联用(GC-MS)分析仪测试了几种多环芳香烃的排放量.试验结果表明,排气温度在200~600℃时,多环芳香烃主要源于未完全燃烧的燃油;排气温度在600~800℃时,随温度的升高燃油裂解出更多的自由基团,从而促使生成更多的多环芳香烃.在三元催化器中存在着多环芳香烃的合成与转化2个趋势,哪个趋势占主导地位取决于多环芳香烃各白的性质和反应条件.

  8. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)


    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  9. PAH emission from Herbig AeBe stars: Do hydrocarbons in proto-planetary disks have a unique aroma? (United States)

    Keller, Luke; Sloan, Greg


    Over half of the intermediate-mass young stellar objects in the Galaxy (e.g. Herbig AeBe stars or HAeBe) have high-contrast emission in the mid-infrared spectral features of polycyclic aromatic hydrocarbons (PAHs) above the continuum produced by thermal emission from dust in the circumstellar disks. We have examined the PAH emission in detail for a sample of 19 HAeBe stars observed with the Spitzer IRS as part of the IRS Disks GTO program. Even with this relatively small sample, we have identified some trends that, should they survive in a larger sample of HAeBe stars, will allow us to infer large-scale disk geometry (both inner and outer) and the degree of photo-processing of organic molecular material in HAeBe disks. The bottom line of our work thus far is that HAeBe apparently have distinctive PAH spectra among the many other astronomical environments that are characterized by strong PAH emission. We therefore propose to apply our spectral analysis methods to an additional 57 HAeBe observed with the IRS and currently (or soon to be) available in the Spitzer archive. Our total sample of 76 HAeBe stars will allow closer scrutiny of the trends that we have identified in our empirical study and will also be the subject of a detailed disk modeling effort that will include the PAH emission.

  10. PAH Emission from Disks around Intermediate-Mass Stars: The Peculiar Aroma of Hydrocarbons Orbiting Herbig Ae/Be Stars (United States)

    Keller, L. D.; Sloan, G. C.


    Over half of the intermediate-mass young stellar objects in the Galaxy (e.g. Herbig Ae/Be stars or HAeBe) have high-contrast emission in the mid-infrared spectral features of polycyclic aromatic hydrocarbons (PAHs) above the continuum produced by thermal emission from dust in the circumstellar disks. We have examined the PAH emission in detail for 30 HAeBe stars observed with the Spitzer IRS. We have identified some trends that, should they survive in a larger sample of HAeBe stars, will allow us to infer large-scale disk geometry (both inner and outer) and the degree of photo-processing of organic molecular material in HAeBe disks: HAeBe stars apparently have distinctive PAH spectra among the many other astronomical environments that are characterized by strong PAH emission; strong PAH emission is not necessarily an indicator of a particular disk geometry; PAH spectra of HAeBe stars change systematically with stellar effective temperature; PAH in HAeBe disks are ionized. As part of a Spitzer archival project we are applying our spectral analysis methods to an even larger sample of HAeBe stars observed with the IRS and currently available in the Spitzer archive. Here we report preliminary results as we begin the larger study.

  11. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas. (United States)

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R


    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h(-1). Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h(-1). While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  12. Emission of polycyclic aromatic hydrocarbons from coal and sewage sludge co-combustion in a drop tube furnace. (United States)

    Han, Jun; Qin, Linbo; Ye, Wei; Li, Yuqi; Liu, Long; Wang, Hao; Yao, Hong


    The emission characteristics of polycyclic aromatic hydrocarbons (PAHs) during coal and sewage sludge co-combustion were investigated in a laboratory-scale drop tube furnace. The experimental results demonstrated that coal and sewage sludge co-combustion was beneficial in reducing PAH emissions and PAH toxic equivalent (TEQ) concentrations. Meanwhile, the five-ring PAHs were the main contributor in reducing the concentration of PAHs and TEQ. Moreover, the two- and five-ring PAH concentrations decreased as the mass fraction of sewage sludge in the mixture increased from 0% to 100%. It was also found that PAHs from coal mono-combustion was dominated by the four- and five-ring PAHs. As for the sewage sludge mono-combustion, the three- and four-ring PAHs were the principal components.

  13. Effect of L-ascorbic acid as additive for exhaust emission reduction in a direct injection diesel engine using mango seed methyl ester

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil


    Full Text Available In this present study the effect of L-ascorbic acid antioxidants additive for oxides of nitrogen emission reduction in a neat mango seed biodiesel fueled direct injection Diesel engine. The antioxidant additive L-ascorbic acid is tested on a Kirloskar-make four stroke water cooled single cylinder Diesel engine of 5.2 kW. There are four proportions of additive are used:1 ml, 2 ml, 3 ml, and 4 ml. Among the different additive proportion,4 ml concentration of L-ascorbic acid additive is optimal as oxides of nitrogen levels are substantially reduced up to 9% in the whole load range in comparison with neat biodiesel. However, hydrocarbon and carbonmonoxide emissions are found to have slightly increased by the addition of additive with biodiesel.

  14. Development of a 100 nmol mol(-1) propane-in-air SRM for automobile-exhaust testing for new low-emission requirements. (United States)

    Rhoderick, George C


    New US federal low-level automobile emission requirements, for example zero-level-emission vehicle (ZLEV), for hydrocarbons and other species, have resulted in the need by manufacturers for new certified reference materials. The new emission requirement for hydrocarbons requires the use, by automobile manufacturing testing facilities, of a 100 nmol mol(-1) propane in air gas standard. Emission-measurement instruments are required, by federal law, to be calibrated with National Institute of Standards and Technology (NIST) traceable reference materials. Because a NIST standard reference material (SRM) containing 100 nmol mol(-1) propane was not available, the US Environmental Protection Agency (EPA) and the Automobile Industry/Government Emissions Research Consortium (AIGER) requested that NIST develop such an SRM. A cylinder lot of 30 gas mixtures containing 100 nmol mol(-1) propane in air was prepared in 6-L aluminium gas cylinders by a specialty gas company and delivered to the Gas Metrology Group at NIST. Another mixture, contained in a 30-L aluminium cylinder and included in the lot, was used as a lot standard (LS). Using gas chromatography with flame-ionization detection all 30 samples were compared to the LS to obtain the average of six peak-area ratios to the LS for each sample with standard deviations of standard deviation of 0.15% of the average for all 30 samples. NIST developed its first set of five propane in air primary gravimetric standards covering a concentration range 91 to 103 nmol mol(-1) with relative uncertainties of 0.15%. This new suite of propane gravimetric standards was used to analyze and assign a concentration value to the SRM LS. On the basis of these data each SRM sample was individually certified, furnishing the desired relative expanded uncertainty of +/-0.5%. Because automobile companies use total hydrocarbons to make their measurements, it was also vital to assign a methane concentration to the SRM samples. Some of the SRM samples

  15. Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)

    Energy Technology Data Exchange (ETDEWEB)

    Tsolakis, A.; Wyszynski, M.L.; Theinnoi, K. [Mechanical and Manufacturing Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Megaritis, A. [Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom)


    The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NO{sub x} emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NO{sub x} emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NO{sub x} emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NO{sub x} at a cost of small increases of smoke and fuel consumption. (author)

  16. Measurement of Gas-phase Acids in Diesel Exhaust (United States)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.


    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  17. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust. (United States)

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A


    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  18. Effects of Exhaust Pipe Heat Insulation on Unregulated Emissions from Gasohol Fueled SI Engine%醇类燃料发动机排气管保温降低醇醛排放研究

    Institute of Scientific and Technical Information of China (English)

    刘方杰; 苗家轩; 刘圣华; 魏衍举; 徐斌; 吴健


    The effects of exhaust pipe insulation on unregulated emissions of a spark ignition (SI) engine fueled with M10 (10% of methanol in blend by volume) and E10 (10% of ethanol in blend by volume) blends respectively were experimentally investigated with gas chromatography (equipped with a pulsed discharge helium ionization detector,PDHID).Experimental results show that methanol and ethanol emissions decreased after exhaust pipe heat insulation.After exhaust pipe heat insulation designed,aldehyde emissions did not change obviously at low engine load conditions (Tc < 850 K),but aldehyde emissions decreased significantly at middle-high engine load conditions (Tc ≥ 850 K),and the decreasing range of unregulated emissions increased with exhaust temperature rising.It is conducive to the oxidation of unregulated emissions with prolonging the reaction time of unregulated emissions in high temperature environment after exhaust pipe heat insulation designed.Unregulated emissions decreased significantly with exhaust pipe heat insulation when the exhaust temperature (Tc) was higher than about 900 K.Exhaust temperature and reaction time had a greater influence on the oxidation of alcohol and aldehyde emissions.%通过对发动机排气管隔热保温,在JL368Q3型电喷汽油机上开展了醇类燃料发动机排气管保温降低醇醛排放的研究,采用气相色谱-氦离子化检测器(PDHID)快速检测方法检测发动机的醇醛排放.结果表明:与排气管保温前相比,排气管保温后醇排放降低,低负荷工况下(Tc <850 K)醛排放变化不大,中高负荷工况下(Tc≥850 K)醛排放降低,醇醛排放降幅随排气温度升高而变大.排气管保温延长了排气在高温下的反应时间,有利于未燃醇、醛的快速氧化,转速为4 000 r/min、负荷高于21 N·m时(Tc≥900 K),排气管保温后未燃醇、醛排放降低70%以上.排气温度和高温下的氧化反应时间对醇醛的氧化影响较大.

  19. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings (United States)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.


    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  20. 4th international exhaust gas and particulate emissions forum. Proceedings; 4. internationales FORUM Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)



    Lectures of the conference addressed the following topics: European and US American pollution regulations, particulate measuring systems, emission factors for vehicles, particulate emission abatement through simulation and optimization, selective catalytic reduction in heavy duty diesel trucks, filters, combustion properties, performance assessment, contribution of biofuels. (uke)

  1. Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants (United States)

    Mu, Ling; Peng, Lin; Liu, Xiaofeng; Song, Chongfang; Bai, Huiling; Zhang, Jianqiang; Hu, Dongmei; He, Qiusheng; Li, Fan


    Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. However, there is little information available on the emission characteristics of PAHs from fugitive emission during coking, especially on the specific processes dominating the gas-particle partitioning of PAHs. In this study, emission characteristics and gas-particle partitioning of PAHs from fugitive emission in four typical coke plants (CPs) with different scales and techniques were investigated. The average concentrations of total PAHs from fugitive emission at CP2, CP3 and CP4 (stamp charging) were 146.98, 31.82, and 35.20 μg m-3, which were 13.38-, 2.90- and 3.20-fold higher, respectively, than those at CP1 (top charging, 10.98 μg m-3). Low molecular weight PAHs with 2-3 rings made up 75.3% of the total PAHs on average, and the contributions of particulate PAH to the total BaP equivalent concentrations (BaPeq) in each plant were significantly higher than the corresponding contributions to the total PAH mass concentrations. The calculated total BaPeq concentrations varied from 0.19 to 10.86 μg m-3 with an average of 3.14 μg m-3, and more efficient measures to control fugitive emission in coke plants should be employed to prevent or reduce the health risk to workers. Absorption into organic matter dominated the gas-particle partitioning for most of the PAHs including PhA, FluA, Chr, BbF, BkF and BaP, while adsorption on elemental carbon appeared to play a dominant role for AcPy, AcP and Flu.

  2. The viewpoints of chemical air pollution caused by traffic subsystems and presented by the example of emission measurements of trucks’ exhaust gases

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ


    Full Text Available For a long time, experts have been emphasizing that we are in an era, in which dangerous climatic changes are getting more and more notable. We have been witnessing large climatic changes, caused by greenhouse gases, for several years. The question is no more “Are there climatic changes or are there not?”, nor “Are they being accelerated by human actions or are they not?” The fact is, the climate is changing more and more rapidly and that extreme weather conditions are becoming a daily matter. Furthermore, even if we stopped polluting the atmosphere immediately, the processes triggered by human-caused pollution would be going on for several decades.Modern logistic systems cannot operate without means of transport which enable the realization of transport. They form a transport system that makes the function of other economic systems possible. The use of different ways of transport has a bad influence on the environment in which we daily live and work. The damage of transportation has a bad influence on human health and nature, too. For that reason, we cannot treat the safety of the transportation means only through the technical impeccability of the devices which make possible direct execution of particular technological phases in different traffic subsystems. Ecological impacts of particular traffic subsystems are very complex, they have a long-term impact on our everyday existence and despite that we still do not devote enough attention to this.We have been aware that traffic, especially road and air traffic, is one of the largest sources of emissions of harmful exhaust gases of combustion engines and particles into the environment. The environmental impact of traffic is especially large due to greenhouse gases, which are part of exhaust gases being produced by internal combustion engines. In addition to that, there are many more toxic components in exhausted gases.

  3. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation. (United States)

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria


    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted.

  4. Evaluation of Partial Oxidation Reformer Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Unnasch, Stefan; Fable, Scott; Waterland, Larry


    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  5. Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. (United States)

    Rybak, Justyna; Olejniczak, Teresa


    Studies focused on the possible use of spider webs as environmental pollution indicators. This was a first time ever attempt to use webs as indicators of polycyclic aromatic hydrocarbons (PAHs) pollution. The aim of the study was (a) to evaluate whether webs are able to accumulate PM-associated road traffic emissions and be analyzed for organic toxics such as PAHs, (b) to assess if the distance from emission sources could have an influence on the accumulation level of pollutants, and (c) to determine types of pollution sources responsible for a structure of monitoring data set. Webs of four species from the family Agelenidae were sampled for PAHs presence. Data from vehicle traffic sites (i.e., road tunnel, arterial surface road, underground parking) and from railway traffic sites (i.e., two railway viaducts) in the city of Wroclaw (Southwest of Poland) showed a significantly higher mean concentrations of PAHs than the reference site 1 (municipal water supply works). We also found a significant differences at sites differed by the distance from emission sources. The result of PCA analysis suggested three important sources of pollution. We conclude that spider webs despite of some limitations proved useful indicators of road traffic emissions; they could be even more reliable compared to use of bioindicators whose activity is often limited by a lack of water and sun.

  6. I. Textural/Structural tuning and nanoparticle stabilization of copper-containing nanocomposite materials. II. Generation of reducing agents for automotive exhaust gas purification via the processing of hydrocarbons in a PACT (plasma and catalysis integrated technologies) reactor (United States)

    Xing, Yu

    This research consists of two parts. The first part deals with the preparation and properties of copper-containing nanocomposite materials. For studies of textural tuning, structural tuning, or material sintering, copper/aluminum and copper/zinc nanocomposites were prepared via various inorganic synthesis methods including conventional coprecipitation methods and a novel urea-gelation/thermal-modification method that produces narrow distributions of pore sizes, high surface areas, and significantly higher specific metal loadings. Solid-solid reaction analysis and differential scanning calorimetry (DSC) analysis were developed for the determination of the mixing homogeneities of the copper/aluminum nanocomposites. A sintering experiment at 250-600°C for 350 h under methanol-steam reforming conditions was carried out to compare the stability of supported Cu0 nanoparticles. The mixing homogeneities of CuO/Al2O3 nanocomposites significantly affected the thermal stability of their reduced Cu0 crystallites. Creation of relatively narrow distributions of pore sizes with relatively small major pore diameters (e.g., 3.5 nm) can also be used for the stabilization of supported Cu0 nanoparticles. The supported nanoparticles with a relatively small initial size cannot ensure good thermal stability. A "hereditary" character on the homogeneity of copper/aluminum nanocomposites was revealed. Stepwise reduction and reoxidation were studied for the structural tuning and purification of Cu-Al-O spinels with isotropic and gradual unit-cell contractions. The second part of the research deals with the processing of hydrocarbons. Conversion of a model hydrocarbon (n-hexane or n-octane) in an AC discharge PACT (plasma and catalysis integrated technologies) reactor was verified to be an effective method to instantly produce reducing agents (e.g., hydrogen or/and light alkanes and alkenes), at room temperature and atmospheric pressure for automotive exhaust gas purification. Effects of

  7. 40 CFR 1051.107 - What are the exhaust emission standards for all-terrain vehicles (ATVs) and offroad utility... (United States)


    ... powered by the following fuels: (1) Natural gas-fueled ATVs: NMHC emissions. (2) Alcohol-fueled ATVs: THCE... operating life from advertisements or other marketing materials for any vehicles in the engine family....

  8. Effects of idle reduction technologies on real world fuel use and exhaust emissions of idling long-haul trucks. (United States)

    Frey, H Christopher; Kuo, Po-Yao; Villa, Charles


    Idling long-haul freight tucks may consume nearly one billion gallons of diesel fuel per year in the U.S. There is a need for real-world data by which to quantify avoided fuel use and emissions attributable to idle reduction techniques of auxiliary power units (APUs) and shore-power (SP). Field data were obtained from 20 APU-equipped and SP-compatible trucks observed during 2.8 million miles of travel in 42 states. Base engine fuel use and emission rates varied depending on ambient temperature. APU and SP energy use and emission rates varied depending on electrical load. APUs reduced idling fuel use and CO2 emissions for single and team drivers by 22 and 5% annually, respectively. SP offers greater reductions in energy use of 48% for single drivers, as well as in emissions, except for SO2. APUs were cost-effective for single drivers with a large number of APU usage hours per year, but not for team drivers or for single drivers with low APU utilization rates. The findings support more accurate assessments of avoided fuel use and emissions, and recommendations to encourage greater APU utilization by single drivers and to further develop infrastructure for SP.

  9. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate phase from burning incenses with various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli, 360, Taiwan (China); Hong, Wei-Lun [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China)


    Polycyclic aromatic hydrocarbons in the particulate phase generated from burning various incense was investigated by a gas chromatography/mass spectrometry. Among the used incenses, the atomic H/C ratio ranged from 0.51 to 1.69, yielding the emission factor ranges for total particulate mass and PAHs of 4.19-82.16 mg/g and 1.20-9.50 {mu}g/g, respectively. The atomic H/C ratio of the incense was the key factor affecting particulate mass and the PAHs emission factors. Both the maximum emission factor and the slowest burning rate appear at the H/C ratio of 1.57. The concentrations of the four-ring PAHs predominated and the major species among the 16 PAHs were fluoranthene, phenanthrene, pyrene, and chrysene for most incense types. The benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and dibenzo[a,h]anthracene accounted for 87.08-93.47% of the total toxic equivalency emission factor. - Highlights: Black-Right-Pointing-Pointer The atomic H/C ratio of incense was the key factor affecting PAHs emission factors. Black-Right-Pointing-Pointer Burning incense with lower atomic H/C ratio minimized the production of total PAHs. Black-Right-Pointing-Pointer The BaP, BaA, BbF, and DBA accounted for 87.08-93.47% of the TEQ emission factor. Black-Right-Pointing-Pointer Special PAH ratios were regarded as characteristic ratios for burning incense.

  10. Concentrations of motor vehicle exhaust emissions and ozone in the area surrounding a motorway; Konzentrationen von Kraftfahrzeugemissionen und Ozon im Nahbereich einer Autobahn

    Energy Technology Data Exchange (ETDEWEB)

    Corsmeier, U.; Vogel, H. [Forschungszentrum Karlsruhe GmbH Umwelt und Technik (Germany). Inst. fuer Meteorologie und Klimaforschung]|[Karlsruhe Univ. (T.H.). (Germany). Inst. fuer Meteorologie und Klimaforschung


    The measuring concept realized along the federal motorway BAB656, which makes use of meteorological and air-chemical measuring techniques under selected meteorological conditions, permits detecting the plume of motorway exhaust emissions beyond doubt. By simultaneous, comprehensive traffic surveys, the input parameters for numerical emission calculation models valid up to now could be verified. In part, as regards trafic density, fleet composition and driving speed, they were corrected. From the difference between the vertical profiles of the meteorological parameters and ozone concentration measured at the luff and lee sides of the motorway and from measurements of the concentrations of primarily emitted substances at ground level, the actual emissions of these substances for the motorway segment in kgh{sup 1} km{sup -}1 were calculated. (orig./KW) [Deutsch] Es konnte gezeigt werden, dass mit dem bei BAB656 realisierten Messkonzept mit Hilfe meteorologischer und luftchemischer Messtechnik bei ausgesuchten meteorologischen Bedingungen die Abluftfahne mit den auf einer Autobahn emittierten Substanzen zweifelsfrei detektiert werden kann. Durch gleichzeitige umfangreiche Verkehrserhebungen konnten die bisher gueltigen Eingabeparameter fuer numerische Emissionsberechnungsmodelle ueberprueft und was Verkehrsdichte, Flottenzusammensetzung und Fahrgeschwindigkeit angeht, teilweise korrigiert werden. Aus der Differenz der im Luv und Lee der Autobahn gemessenen Vertikalprofile meteorologischer Parameter und der Ozonkonzentration sowie der Messung der Konzentrationen primaer emittierter Substanzen am Boden konnten die Emissionen dieser Stoffe fuer den Autobahnabschnitt in kgh{sup -1} km{sup -1} aktuell berechnet werden. (orig./KW)

  11. The carbon isotopic compositions of Non-methane Hydrocarbons in atmosphere

    Institute of Scientific and Technical Information of China (English)

    PENG Lin; ZHANG HuiMin; REN ZhaoFang; MU Ling; SHI RuiLiang; CHANG LiPing; LI Fan


    Carbon isotopic compositions of atmospheric Non-methane Hydrocarbons (NMHCs) in the urban areas of Taiyuan and Lanzhou in summer were reported and the sources of NMHCs are discussed.Carbon isotopic ratios (δ13C) of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust were also measured with thermal desorption-gas chromatography-isotope ratio-mass spectrometry (TD-GC-IR-MS).δ13C values of NMHCs in the urban areas of Lanzhou and Taiyuan range from -32.3‰ to -22.3‰ and from -32.8‰ to -18.1‰.δ13C values of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust are -32.5‰--21.7‰,-24.5‰--22.3‰,-32.5%--27.4‰ and -31.6‰--24.5‰,respectively.The data indicate that vehicle exhaust and cooking exhaust make a significant contribution to the atmospheric NMHCs.Therefore,to reduce emissions of vehicle exhaust and cook-ing exhaust is critical for controlling atmospheric NMHCs pollution in summer.

  12. Improvement of emissions and performance by using of air jet, exhaust gas re-circulation and insulation methods in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jafarmadara S.


    Full Text Available This article investigates the improvement of operation characteristics and emissions reduction by means of creating an air-cell inside the piston body, exhaust gases recirculating and insulating combustion chamber in a direct injection diesel engine simultaneously. The engine considered is a caterpillar 3401 which was modeled with an air-cell included as part of the piston geometry. This air-cell demonstrates that air injection in late combustion period can be effective in a significant reduction of Soot emission while cold EGR can be effective in reduction of NOx emission. Also for increasing of performance parameters, combustion chamber with air-cell is insulated. The analyses are carried out at part (75% of full load and full load conditions at the same engine speed 1600 rpm. The obtained results indicate that creating the air-cell has a slight effect on improvement of performance parameters and it has significantly effect on Soot reduction. The air-cell decreases the Soot pollutant as a factor of two at both part and full load conditions. Also, the adding 5% of cold EGR in inlet air decreases NOx by about half and insulating the engine increases the power and IMEP by about 7.7% and 8.5% and decreases the ISFC by about 7.5% at part load and increases power and IMEP by 8.5%, 8.5% and decreases ISFC by 8% at full load condition, respectively. Using this method, it was possible to control emissions formation and increase performance parameters simultaneously. The predicted results for mean in-cylinder pressure and emissions are compared to the corresponding experimental results and show good agreements.

  13. 降低车用汽油机排气污染物技术研究%Reduction of Exhaust Emission from an Automotive Gasoline Engine

    Institute of Scientific and Technical Information of China (English)

    徐百龙; 郭英男; 刘金山; 刘忠长; 姜立永; 刘巽俊


    介绍了同时降低车用汽油机NOx、CO、HC三种有害排放物的一套技术方案。其中NOx排放通过排气再循环降低,开发出了具有较优排气再循环率特性的排气压力控制式EGR系统,并阐明了其结构及工作原理,由于采用EGR系统而产生的整机小负荷油耗恶化状况可通过适当提前点火加以弥补;CO排放通过严格控制空燃比加以限制;强制怠速工况HC排放可通过采用强制怠速断油装置消除。给出了相应的整机排放控制和优化试验结果,证实了所提方案是有效、可行的。%A strategy for controlling NOx、CO and HC emissions from an automotive gasoline engine was proposed. NOx emission was decreased by exhaust gas recirculation(EGR) and a set of EGR system, which could give the optimizing EGR characteristics needed by engine emission test cycle was developed.The structure and constitution of these EGR system were also introduced.The fuel economy penalty at low load conditions caused by EGR was alleviated by a little advance of ignition.CO emission was controlled by strict adjustment of air-fuel ratio.HC emission at high speed idling was eliminated by a corresponding fuel cut-off device.This strategy as well as its validity were proved by the engine tests.

  14. Effects of antioxidant additives on exhaust emissions reduction in compression ignition engine fueled with methyl ester of annona oil

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil


    Full Text Available In this present study, biodiesel is a cleaner burning alternative fuel to the Neat diesel fuel. However, several studies are pointed out that increase in NOx emission for biodiesel when compared with the Neat diesel fuel. The aim of the present study is to analyze the effect of antioxidant (p-phenylenediamine on engine emissions of a Diesel engine fuelled with methyl ester of annona oil. The antioxidant is mixed in various concentrations (0.010 to 0.040% (w/w with methyl ester of annona oil. Result shows that antioxidant additive mixture (MEAO+P200 is effective in control of NOx and HC emission of methyl ester of annona oil fuelled engine without doing any engine modification.

  15. [Polar neutral organic compounds (POCN) in city aerosols. 2. Measuring of emissions from domestic fuel and vehicle exhaust and from immission particles in Berlin (West)]. (United States)

    Moriske, H J; Freise, R; Schneider, C; Rüden, H


    During April and May 1985, some emission samples from private coal firing (domestic fuel) were taken and were fired with two different kind of coal (bituminous and brown coal). Also, measurements were done under different combustion conditions (low and high concentrations of oxygenium during the combustion process). In June and November 1985, some emission samples from heavy diesel-engines were taken in a special tunnel equipment, at different engine conditions. During September 1985, also suspended particulates in a highway traffic tunnel were taken. All these samples were taken using high volume cascade impactors which give a fractionation of the suspended particulates into different particle sizes, according to their retention behaviour in the human respiratory system. The results of these emission samples and samples in the highway tunnel were compared with prior immission measurements of urban suspended particulates in Berlin-West, during January 1984. The etherextractable organic matter (= EEOM) of the total suspended particulate matter (= TPM) was determined using ultrasonic extraction method. The EEOM was separated into an acidic (= AF), a basic (= BF) and a neutral fraction (= NF) by dissolution in acidic and basic agents. Of the neutral fraction (NF), further separation was done into aliphatic compounds (= AIP), polycyclic aromatic hydrocarbons (= PAH) and polar neutral organic compounds (POCN) by using thin layer chromatography. From the PAH and POCN, single compounds were identified by gas chromatographic analysis with dual capillary collumns and internal standard method. All organic fractions were tested to their mutagenic activity in the Salmonella typhimurium mammalian microsome bioassay by Ames. The following results were gained: the neutral fraction (NF) made the highest part of the EEOM (greater than or equal to 60%) whereas the part of the AF amounted to 10-25% and of the basic fraction (BF) to approximatively 5-20%. Making further separation of

  16. Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant

    Energy Technology Data Exchange (ETDEWEB)

    Ettore Guerriero; Antonina Lutri; Rosanna Mabilia; Maria Concetta Tomasi Sciano; Mauro Rotatori [Istituto sull' Inquinamento Atmosferico, Monterotondo Scalo (Italy). Consiglio Nazionale delle Ricerche


    A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and the performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.

  17. Increase in polycyclic aromatic hydrocarbon (PAH) emissions due to briquetting: A challenge to the coal briquetting policy. (United States)

    Chen, Yingjun; Zhi, Guorui; Feng, Yanli; Chongguo Tian; Bi, Xinhui; Li, Jun; Zhang, Gan


    Both China and UNEP recommend replacing raw coal chunks with coal briquettes in household sector as clean coal technology (CCT), which has been confirmed by the decreased emissions of particulate matter and black carbon. However, the clean effect has never been systematically checked by other pollutants like polycyclic aromatic hydrocarbons (PAHs). In this study, 5 coals with different geological maturities were processed as both chunks and briquettes and burned in 3 typical coal stoves for the measurement of emission factors (EFs) of particle-bound PAHs. It was found that the EFs of 16 parent PAHs, 26 nitrated PAHs, 6 oxygenated PAHs, and 8 alkylated PAHs for coal briquettes were 6.90 ± 7.89, 0.04 ± 0.03, 0.65 ± 0.40, and 72.78 ± 18.23 mg/kg, respectively, which were approximately 3.1, 3.7, 1.9, and 171 times those for coal chunks, respectively. Such significant increases in PAH emissions increased human health risk and challenged the policy of CCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dispersion of traffic-related exhaust particles near the Berlin urban motorway – estimation of fleet emission factors

    Directory of Open Access Journals (Sweden)

    W. Birmili


    Full Text Available Atmospheric particle number size distributions of airborne particles (diameter range 10–500 nm were collected over ten weeks at three sites in the vicinity of the A100 urban motorway in Berlin, Germany. The A100 carries about 180 000 vehicles on a weekday. The roadside particle distributions showed a number maximum between 20 and 60 nm clearly related to the motorway emissions. The average total number concentration at roadside was 28 000 cm−3 with a total range of 1200–168 000 cm−3. At distances of 80 and 400 m from the motorway the concentrations decreased to mean levels of 11 000 and 9000 cm−3, respectively. An obstacle-resolving dispersion model was applied to simulate the 3-D flow field and traffic tracer transport in the urban environment around the motorway. By inverse modelling, vehicle emission factors were derived that are representative of a fleet with a relative share of 6% lorry-like vehicles, and driving at a speed of 80 km h−1. Three different calculation approaches were compared, which differ in the choice of the experimental winds driving the flow simulation. The average emission factor per vehicle was 2.1 (±0.2 · 1014 km−1 for particle number and 0.077 (±0.01 · 1014 cm3 km−1 for particle volume. Regression analysis suggested that lorry-like vehicles emit 123 (±28 times more particle number than passenger car-like vehicles, and lorry-like vehicles account for about 91% of particulate number emissions on weekdays. Our work highlights the increasing applicability of 3-D flow models in urban microscale environments and their usefulness for determining traffic emission factors.


    Directory of Open Access Journals (Sweden)

    Rafał Bigda


    Full Text Available Coke oven battery is complex and multifaceted facility in terms of air pollutant emissions. As far as stack or quenching tower does not cause major difficulties of emission measurement, the fugitive emission measurement from sources such as battery top elements (charging holes, ascension pipes or oven doors is still complicated and not fully solved problem. This article presents the discussion concerning main problems and errors likely to be made in particular stages of procedure of fugitive emissions characterization from coke oven battery (selection of sampling points, sampling itself, measurement of air velocity over battery top and laboratory analyses. In addition, results of concentrations measurements of selected substances characteristic for the coking process (naphthalene, anthracene, 4 PAHs and TSP originating from fugitive sources of coke oven battery and subjected to reporting under the E-PRTR are presented. The measurements were carried out on coke oven battery top in points selected on the basis of the preceding detailed air convection velocity measurements over battery top. Results of the velocity measurements were compared with results of numerical modelling using CFD software. The presented material is an attempt to cross-sectional presentation of issues related to the quantitative evaluation of fugitive emission from coke oven battery, discussed on the example of PAHs emission as a group of substances characteristic for coking of coal.

  20. Impact of intake CO 2 addition and exhaust gas recirculation on NO x emissions and soot reactivity in a common rail diesel engine

    KAUST Repository

    Al-Qurashi, Khalid


    The impact of intake CO 2 addition and exhaust gas recirculation (EGR) on engine combustion characteristics, NO x emissions, and soot oxidative reactivity was studied in a common rail diesel engine equipped with a cooled EGR system. The engine test results and the heat release analysis show that the reduced flame temperature, induced by the reduction of the oxygen concentration (dilution effect) is the dominant mechanism via which CO 2 and EGR lower NO x emissions in diesel engines. On the other hand, the collected soot from the engine tests was examined for its oxidative reactivity using a thermogravimetric analyzer (TGA). Results show that EGR has a significant effect on soot reactivity and results in higher initial active sites compared to the CO 2 case. We conclude that the reduced flame temperature (thermal effect) which is a consequence of the dilution effect is responsible for the observed increase in soot reactivity. These results confirm observations from our past work on flame soot, which showed that the peak adiabatic flame temperature is the governing factor affecting soot reactivity. These findings imply that driving the combustion concepts toward low temperature is favorable to effectively control engine pollutants, including soot reactivity. © 2012 American Chemical Society.

  1. Exhaust-gas aftertreatment concepts for meeting future emission requirements; Abgasnachbehandlungs-Konzepte zur Erfuellung zukuenftiger Emissionsrichtlinien

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Tobias; Weiskirch, Christian; Behnk, Kai [IAV GmbH, Berlin (Germany). Fachbereich Nutzfahrzeuge; Mueller, Raimund [Emitec Gesellschaft fuer Emissionstechnologie mbH, Lohmar (Germany). Technischer Vertrieb Nutzfahrzeuge und Non-road Anwendungen


    Proceeding from a modern two-stage supercharged commercial-vehicle engine employing measures inside the engine to satisfy the NO{sub x} limit values for Euro V and EEV as well as a partial-flow particulate filter system for meeting the particulate limit values prescribed under Euro V and EEV, the IAV investigated potential approaches to complying with future emission standards in the on-road and off-road segments. (orig.)

  2. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester (United States)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny


    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  3. Effects of ethanol added fuel on exhaust emissions and combustion in a premixed charge compression ignition diesel engine

    Directory of Open Access Journals (Sweden)

    Kim Yungjin


    Full Text Available The use of diesel engines for vehicle has been increasing recently due to its higher thermal efficiency and lower CO2 emission level. However, in the case of diesel engine, NOx increases in a high temperature combustion region and particulate matter is generated in a fuel rich region. Therefore, the technique of PCCI (premixed charge compression ignition is often studied to get the peak combustion temperature down and to make a better air-fuel mixing. However it also has got a limited operating range and lower engine power produced by the wall wetting and the difficulty of the ignition timing control. In this research, the effect of injection strategies on the injected fuel behavior, combustion and emission characteristics in a PCCI engine were investigated to find out the optimal conditions for fuel injection, and then ethanol blended diesel fuel was used to control the ignition timing. As a result, the combustion pressures and ROHR (rate of heat release of the blended fuel became lower, however, IMEP showed fewer differences. Especially in the case of triple injection, smoke could be reduced a little and NOx emission decreased a lot by using the ethanol blended fuel simultaneously without much decreasing of IMEP compared to the result of 100% diesel fuel.

  4. Evaluation of Exhaust Emissions from Three Diesel-Hybrid Cars and Simulation of After-Treatment Systems for Ultralow Real-World NOx Emissions. (United States)

    Franco, Vicente; Zacharopoulou, Theodora; Hammer, Jan; Schmidt, Helge; Mock, Peter; Weiss, Martin; Samaras, Zissis


    Hybridization offers great potential for decreasing pollutant and carbon dioxide emissions of diesel cars. However, an assessment of the real-world emissions performance of modern diesel hybrids is missing. Here, we test three diesel-hybrid cars on the road and benchmark our findings with two cars against tests on the chassis dynamometer and model simulations. The pollutant emissions of the two cars tested on the chassis dynamometer were in compliance with the relevant Euro standards over the New European Driving Cycle and Worldwide harmonized Light vehicles Test Procedure. On the road, all three diesel-hybrids exceeded the regulatory NOx limits (average exceedance for all trips: +150% for the Volvo, +510% for the Peugeot, and +550% for the Mercedes-Benz) and also showed elevated on-road CO2 emissions (average exceedance of certification values: +178, +77, and +52%, respectively). These findings point to a wide discrepancy between certified and on-road CO2 and suggest that hybridization alone is insufficient to achieve low-NOx emissions of diesel powertrains. Instead, our simulation suggests that properly calibrated selective catalytic reduction filter and lean-NOx trap after-treatment technologies can reduce the on-road NOx emissions to 0.023 and 0.068 g/km on average, respectively, well below the Euro 6 limit (0.080 g/km).

  5. Geographic variations in female breast cancer incidence in relation to ambient air emissions of polycyclic aromatic hydrocarbons. (United States)

    Large, Courtney; Wei, Yudan


    A significant geographic variation of breast cancer incidence exists, with incidence rates being much higher in industrialized regions. The objective of the current study was to assess the role of environmental factors such as exposure to ambient air pollution, specifically carcinogenic polycyclic aromatic hydrocarbons (PAHs) that may be playing in the geographic variations in breast cancer incidence. Female breast cancer incidence and ambient air emissions of PAHs were examined in the northeastern and southeastern regions of the USA by analyzing data from the Surveillance, Epidemiology, and End Results (SEER) Program and the State Cancer Profiles of the National Cancer Institute and from the Environmental Protection Agency. Linear regression analysis was conducted to evaluate the association between PAH emissions and breast cancer incidence in unadjusted and adjusted models. Significantly higher age-adjusted incidence rates of female breast cancer were seen in northeastern SEER regions, when compared to southeastern regions, during the years of 2000-2012. After adjusting for potential confounders, emission densities of total PAHs and four carcinogenic individual PAHs (benzo[a]pyrene, dibenz[a,h]anthracene, naphthalene, and benzo[b]fluoranthene) showed a significantly positive association with annual incidence rates of breast cancer, with a β of 0.85 (p = 0.004), 58.37 (p = 0.010), 628.56 (p = 0.002), 0.44 (p = 0.041), and 77.68 (p = 0.002), respectively, among the northeastern and southeastern states. This study suggests a potential relationship between ambient air emissions of carcinogenic PAHs and geographic variations of female breast cancer incidence in the northeastern and southeastern US. Further investigations are needed to explore these interactions and elucidate the role of PAHs in regional variations of breast cancer incidence.

  6. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission (United States)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and

  7. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations (United States)

    Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean-François; De Smedt, Isabelle; Van Roozendael, Michel; van der Werf, Guido R.; Wiedinmyer, Christine; Kaiser, Johannes W.; Sindelarova, Katerina; Guenther, Alex


    As formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The long record of space-based HCHO column observations from the Ozone Monitoring Instrument (OMI) is used to infer emission flux estimates from pyrogenic and biogenic volatile organic compounds (VOCs) on the global scale over 2005-2013. This is realized through the method of source inverse modeling, which consists in the optimization of emissions in a chemistry-transport model (CTM) in order to minimize the discrepancy between the observed and modeled HCHO columns. The top-down fluxes are derived in the global CTM IMAGESv2 by an iterative minimization algorithm based on the full adjoint of IMAGESv2, starting from a priori emission estimates provided by the newly released GFED4s (Global Fire Emission Database, version 4s) inventory for fires, and by the MEGAN-MOHYCAN inventory for isoprene emissions. The top-down fluxes are compared to two independent inventories for fire (GFAS and FINNv1.5) and isoprene emissions (MEGAN-MACC and GUESS-ES). The inversion indicates a moderate decrease (ca. 20 %) in the average annual global fire and isoprene emissions, from 2028 Tg C in the a priori to 1653 Tg C for burned biomass, and from 343 to 272 Tg for isoprene fluxes. Those estimates are acknowledged to depend on the accuracy of formaldehyde data, as well as on the assumed fire emission factors and the oxidation mechanisms leading to HCHO production. Strongly decreased top-down fire fluxes (30-50 %) are inferred in the peak fire season in Africa and during years with strong a priori fluxes associated with forest fires in Amazonia (in 2005, 2007, and 2010), bushfires in Australia (in 2006 and 2011), and peat burning in Indonesia (in 2006 and 2009), whereas generally increased fluxes

  8. Time Resolved FTIR Analysis of Tailpipe Exhaust for Several Automobiles (United States)

    White, Allen R.; Allen, James; Devasher, Rebecca B.


    The automotive catalytic converter reduces or eliminates the emission of various chemical species (e.g. CO, hydrocarbons, etc.) that are the products of combustion from automobile exhaust. However, these units are only effective once they have reached operating temperature. The design and placement of catalytic converters has changed in order to reduce both the quantity of emissions and the time that is required for the converter to be effective. In order to compare the effectiveness of catalytic converters, time-resolved measurements were performed on several vehicles, including a 2010 Toyota Prius, a 2010 Honda Fit, a 1994 Honda Civic, and a 1967 Oldsmobile 442 (which is not equipped with a catalytic converter but is used as a baseline). The newer vehicles demonstrate bot a reduced overall level of CO and hydrocarbon emissions but are also effective more quickly than older units. The time-resolved emissions will be discussed along with the impact of catalytic converter design and location on the measured emissions.

  9. Probing the Ionization States of Polycyclic Aromatic Hydrocarbons via the 15-20 {\\mu}m Emission Bands

    CERN Document Server

    Shannon, M J; Peeters, E


    We report new correlations between ratios of band intensities of the 15-20 {\\mu}m emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of fifty-seven sources observed with Spitzer/IRS. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the SINGS survey, two Galactic ISM cirrus sources and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4 and 17.8 {\\mu}m band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 {\\mu}m band intensities. The 15.8 {\\mu}m band correlates only with the 15-20 {\\mu}m plateau and the 11.2 {\\mu}m emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4 and 17.8 {\\mu}m bands; the 11.2, 15.8 {\\mu}m bands and the 15-18 {\\mu}m plateau; and the 11.0 and 17.4 {\\mu}m bands. We also f...

  10. Estimating emissions of toxic hydrocarbons from natural gas production sites in the Barnett Shale region (United States)

    Marrero, J. E.; Townsend-Small, A.; Lyon, D. R.; Tsai, T.; Meinardi, S.; Blake, D. R.


    Throughout the past decade, shale gas operations have moved closer to urban centers and densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants (HAPs). These HAPs include gases like hexane, 1,3-butadiene and BTEX compounds, which can cause minor health effects from short-term exposure or possibly cancer due to prolonged exposure. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples revealed enhancements in several of these toxic volatile organic compounds (VOCs) downwind of natural gas well pads and compressor stations. Two methods were used to estimate the emission rate of several HAPs in the Barnett Shale. The first method utilized CH4 flux measurements derived from the Picarro Mobile Flux Plane (MFP) and taken concurrently with whole air samples, while the second used a CH4 emissions inventory developed for the Barnett Shale region. From these two approaches, the regional emission estimate for benzene (C6H6) ranged from 48 ± 16 to 84 ± 26 kg C6H6 hr-1. A significant regional source of atmospheric benzene is evident, despite measurement uncertainty and limited number of samples. The extent to which these emission rates equate to a larger public health risk is unclear, but is of particular interest as natural gas productions continues to expand.

  11. Theoretical modeling of infrared emission from neutral and charged polycyclic aromatic hydrocarbons. I.

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM; Bauschlicher, CW


    Since the discovery of interstellar infrared emission features in the 3.3-12.7 mum wavelength range three decades ago, the carriers of these features have been the subject of much debate. Recent observational work with the Infrared Space Observatory, experimental work, and quantum chemical calculati

  12. Polycyclic Aromatic Hydrocarbon emission in Spitzer/IRS maps I: Catalog and simple diagnostics

    CERN Document Server

    Stock, D J; Moya, L G V; Otaguro, J N; Sorkhou, S; Allamandola, L J; Tielens, A G G M; Peeters, E


    We present a sample of resolved galactic HII regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph (IRS) in spectral mapping mode between the wavelengths of 5--15 $\\mu$m. For each object we have spectral maps at a spatial resolution of $\\sim$4" in which we have measured all of the mid-infrared emission and absorption features. These include the PAH emission bands, primarily at 6.2, 7.7, 8.6, 11.2 and 12.7 $\\mu$m, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 $\\mu$m. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups, the first comprising the HII regions and the second the reflection nebulae (RNe). Three sources, the reflection nebu...

  13. Decreasing polycyclic aromatic hydrocarbons emission from bitumen using alternative bitumen production process. (United States)

    Rasoulzadeh, Y; Mortazavi, S B; Yousefi, A A; Khavanin, A


    In 1988, the National Institute for Occupational Safety and Health (NIOSH) recommended that bitumen fumes should also be considered a potential occupational carcinogen and management practices such as engineering controls should be implemented. Changing the production process of bitumen, as a source control method, was investigated in our study. For the first time, a novel alternative process was used to produce paving grade bitumen with decreased PAH emissions as well as improved bitumen performance grade (PG). Post-consumer latex and natural bitumen (NB) were used as additives to obtain 60/70 modified bitumen directly from the vacuum bottom (VB) without any need for air-blowing. The emissions were produced by a laboratory fume generation rig and were sampled and analyzed by GC-Mass and GC-FID as described in NIOSH method 5515. The PG of the resulting modified 60/70 bitumen in this study covers a wider range of climatic conditions and has higher total resistance against deformation than conventional 60/70 bitumen. The total PAH emissions from modified 60/70 bitumen (100.2619 ng/g) were decreased approximately to 50% of PAHs emitted from conventional 60/70 bitumen (197.696 ng/g). Therefore, it is possible to obtain modified bitumen with lower PAH emissions and better quality than conventional bitumen via additives and without air-blowing.

  14. Polycyclic aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effect of the primary furnace temperature. (United States)

    Wang, J; Levendis, Y A; Richter, H; Howard, J B; Carlson, J


    A study is presented on laboratory-scale combustion of polystyrene (PS) to identify staged-combustion conditions that minimize emissions. Batch combustion of shredded PS was conducted in fixed beds placed in a bench-scale electrically heated horizontal muffle furnace. In most cases, combustion of the samples occurred by forming gaseous diffusion flames in atmospheric pressure air. The combustion effluent was mixed with additional air, and it was channeled to a second muffle furnace (afterburner) placed in series. Further reactions took place in the secondary furnace at a residence time of 0.7 s. The gas temperature of the primary furnace was varied in the range of 500-1,000 degrees C, while that of the secondary furnace was kept fixed at 1,000 degrees C. Sampling for CO, CO2, O2, soot, and unburned hydrocarbon emissions (volatile and semivolatile, by GC-MS) was performed at the exits of the two furnaces. Results showed that the temperature of the primary furnace, where PS gasifies, is of paramount importance to the formation and subsequent emissions of organic species and soot. Atthe lowesttemperatures explored, mostly styrene oligomers were identified at the outlet of the primary furnace, but they did not survive the treatment in the secondary furnace. The formation and emission of polycyclic aromatic hydrocarbons (PAH) and soot were suppressed. As the temperature in the first furnace was raised, increasing amounts of a wide range of both unsubstituted and substituted PAH containing up to at least seven condensed aromatic rings were detected. A similar trend was observed for total particulate yields. The secondary furnace treatment reduced the yields of total PAH, but it had an ambiguous effect on individual species. While most low molecular mass PAH were reduced in the secondary furnace, concentrations of some larger PAH increased under certain conditions. Thus, care in the selection of operating conditions of both the primary furnace (gasifier/ burner) and the

  15. Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks. (United States)

    Lung, Shih-Chun Candice; Hu, Shu-Chuan


    The generation rates and emission factors of particulate matter and associated polycyclic aromatic hydrocarbons (PAHs) from incense burning were assessed in a laboratory setting. The differences among different segments of the same stick, among different sticks of the same kind of incense, and between two kinds of manually made Chih-Chen incense sticks (A and B) were evaluated. Joss sticks were burned inside a 44 cm long elutriator; personal environmental monitors fitted into the top of the elutriator were used to take PM2.5 and PM10 samples of incense smoke. Samples were analyzed for PAHs by gas chromatography-flame ionization Detector. It was found that particle and associated PAHs were generated approximately at 561 microg/min (geometric standard deviation (GSD) = 1.1) and 0.56 microg/min (GSD = 1.1) from Incense A, and at 661 microg/min (GSD = 1.7) and 0.46 microg/min (GSD = 1.3) from Incense B, respectively. One gram of Incense A emitted about 19.8 mg (GSD = 1.1) particulate matter and 17.1 microg (GSD = 1.2) particulate-phase PAHs, while one gram of Incense B produced around 43.6 mg (GSD = 1.1) of particles and 25.2 microg (GSD = 1.2) of particle-bound PAHs. There were significant differences in emissions between Incenses A and B, although they belong to the same class of incense. A 10-20% variability in emissions was observed in the main part of the manually produced stick, and a larger variation was found at both tips of the combustible part.

  16. Emissions of Polycyclic Aromatic Hydrocarbons from Natural Gas Extraction into Air. (United States)

    Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A


    Natural gas extraction, often referred to as "fracking", has increased rapidly in the United States in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. Levels of benzo[a]pyrene, phenanthrene, and carcinogenic potency of PAH mixtures were highest when samplers were closest to active wells. PAH levels closest to natural gas activity were comparable to levels previously reported in rural areas in winter. Sourcing ratios indicated that PAHs were predominantly petrogenic, suggesting that PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. At sites closest to active wells, the risk estimated for maximum residential exposure was 0.04 in a million, which is below the U.S. Environmental Protection Agency's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest from them. This work suggests that natural gas extraction is contributing PAHs to the air, at levels that would not be expected to increase cancer risk.

  17. HITEMP derived spectral database for the prediction of jet engine exhaust infrared emission using a statistical band model (United States)

    Lindermeir, E.; Beier, K.


    The spectroscopic database HITEMP 2010 is used to upgrade the parameters of the statistical molecular band model which is part of the infrared signature prediction code NIRATAM (NATO InfraRed Air TArget Model). This band model was recommended by NASA and is applied in several codes that determine the infrared emission of combustion gases. The upgrade regards spectral absorption coefficients and line densities of the gases H2O, CO2, and CO in the spectral region 400-5000 cm-1 (2-25μm) with a spectral resolution of 5 cm-1. The temperature range 100-3000 K is covered. Two methods to update the database are presented: the usually applied method as provided in the literature and an alternative, more laborious procedure that employs least squares fitting. The achieved improvements resulting from both methods are demonstrated by comparisons of radiance spectra obtained from the band model to line-by-line results. The performance in a realistic scenario is investigated on the basis of measured and predicted spectra of a jet aircraft plume in afterburner mode.


    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, V. V.; Öberg, K. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pety, J. [Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Goicoechea, J. R. [Instituto de Ciencia de Materiales de Madrid (CSIC), E-28049 Cantoblanco, Madrid (Spain); Gerin, M. [LERMA, Observatoire de Paris, École Normale Supérieure, PSL Research University, CNRS, UMR8112, F-75014 Paris (France); Roueff, E. [Sorbonne Universités, UPMC Univ. Paris 06, UMR8112, LERMA, F-75005 Paris (France); Gratier, P., E-mail: [Université de Bordeaux, LAB, UMR 5804, F-33270, Floirac (France)


    Small hydrocarbons, such as C{sub 2}H, C{sub 3}H, and C{sub 3}H{sub 2} are more abundant in photo-dissociation regions (PDRs) than expected based on gas-phase chemical models. To explore the hydrocarbon chemistry further, we observed a key intermediate species, the hydrocarbon ion l-C{sub 3}H{sup +}, in the Horsehead PDR with the Plateau de Bure Interferometer at high-angular resolution (6″). We compare with previous observations of C{sub 2}H and c-C{sub 3}H{sub 2} at similar angular resolution and new gas-phase chemical model predictions to constrain the dominant formation mechanisms of small hydrocarbons in low-UV flux PDRs. We find that at the peak of the HCO emission (PDR position), the measured l-C{sub 3}H{sup +}, C{sub 2}H, and c-C{sub 3}H{sub 2} abundances are consistent with current gas-phase model predictions. However, in the first PDR layers, at the 7.7 μm polycyclic aromatic hydrocarbon band emission peak, which are more exposed to the radiation field and where the density is lower, the C{sub 2}H and c-C{sub 3}H{sub 2} abundances are underestimated by an order of magnitude. At this position, the l-C{sub 3}H{sup +} abundance is also underpredicted by the model but only by a factor of a few. In addition, contrary to the model predictions, l-C{sub 3}H{sup +} peaks further out in the PDR than the other hydrocarbons, C{sub 2}H and c-C{sub 3}H{sub 2}. This cannot be explained by an excitation effect. Current gas-phase photochemical models thus cannot explain the observed abundances of hydrocarbons, in particular, in the first PDR layers. Our observations are consistent with a top-down hydrocarbon chemistry, in which large polyatomic molecules or small carbonaceous grains are photo-destroyed into smaller hydrocarbon molecules/precursors.

  19. Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol Oxygenated Organic Compounds

    Directory of Open Access Journals (Sweden)

    Dhanapal Balaji


    Full Text Available Problem statement: The objective of this study is to investigate the effect of using unleaded gasoline and additives blends on Spark Ignition engine (SI engine combustion and exhaust emission. Approach: A four stroke, single cylinder SI engine was used for conducting this study. Exhaust emissions were analysed for Carbon Monoxide (CO, Hydrocarbon (HC and Oxides of Nitrogen (NOx and carbon dioxide (CO2 using unleaded gasoline and additives blends with different percentages of fuel at varying engine torque condition and constant engine speed. Results: The result showed that the blending of unleaded gasoline increases the octane number and power output this may leads to increase the brake thermal efficiency. The CO, HC and NOx emissions concentrations in the engine exhaust decreases while the CO2 concentration increases. Conclusion: Using ethanol as a fuel additive to unleaded gasoline causes an improvement in combustion characteristics and significant reduction in exhaust emissions.

  20. Emissions of volatile hydrocarbons (VOC) during drying of sawdust; Utslaepp av laettflyktiga kolvaeten vid torkning av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Granstroem, Karin


    In the project 'Emissions of volatile hydrocarbons (VOC) during drying of sawdust' the identity, amount and composition of monoterpenes found in the drying medium of a fluidized bed drier drying sawdust from Norwegian spruce and Scotch pine has been determined. The energy efficiency of the drier has also been measured. The aim of this project was to reduce both emissions and energy required for drying, to minimize environmental and health hazards, and make drying more competitive. This would help our primary target group - small scale saw mills - to make use of the sawdust produced as a by- product by making pellets and briquettes. If the VOC remains in the sawdust its energy content will improve and therefore also its value as a fuel. The sawdust was dried to different moisture levels in a spouted bed drier at atmospheric pressure, using either recirculating or not recirculating drying medium with temperatures 140, 170 or 200 deg C. The emissions of VOC were measured using a flame ionization detector (FID) and the nature of the emissions analyzed with a gas chromatograph with mass spectrometric detector (GC-MS). The GC-MS data is reported as emitted substance per oven dry weight (odw). Experiments show that terpenes do not leave the sawdust in great amounts until it is dried to a moisture content (water/total weight) below 10%. When sawdust is dried to a predetermined moisture level, the terpene emissions increase when warmer incoming drying medium is used. The monoterpenes found in greatest amount are a-pinene, b-pinene, 3-carene, limonene and myrcene. y-terpinene was detected in emissions from pine but not from spruce. The relative amounts of different monoterpenes did not vary significantly with post-drying moisture content, but drying medium of higher temperature caused an increase in the relative amount of less volatile monoterpenes. The FID data is reported as concentration of VOC in the drying medium, and as weight VOC per odw. The concentration

  1. Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Chelsea R. Thompson


    Full Text Available Abstract The Northern Front Range (NFR region of Colorado has experienced rapid expansion of oil and gas extraction from shale and tight sands reservoirs in recent years due to advances in hydraulic fracturing technology, with over 25,000 wells currently in operation. This region has also been designated as a federal ozone non-attainment area by the U.S. EPA. High ozone levels are a significant health concern, as are potential health impacts from chronic exposure to primary emissions of non-methane hydrocarbons (NMHC for residents living near wells. From measurements of ambient atmospheric NMHC present in residential areas located in close proximity to wells in Erie, Colorado, we find that mean mole fractions of the C2–C5 alkanes are enhanced by a factor of 18–77 relative to the regional background, and present at higher levels than typically found in large urban centers. When combined with NMHC observations from downtown Denver and Platteville, it is apparent that these compounds are elevated across the NFR, with highest levels within the Greater Wattenberg Gas Field. This represents a large area source for ozone precursors in the NFR. The BTEX aromatic compounds in Erie were comparable to (e.g., benzene or lower than (e.g., toluene, ethylbenzene, xylene in large urban centers, however, benzene was significantly higher in Platteville, and within the range of chronic health-based exposure levels. An initial look at comparisons with data sets from previous years reveal that ambient levels for oil and gas-related NMHC in Erie, as well as further downwind in Boulder, have not decreased, but appear to have been increasing, despite tightening of emissions standards for the oil and gas industries in 2008.

  2. Study of NOx Emissions of S.I. Engine Fueled with Different Kinds of Hydrocarbon Fuels and Hydrogen

    Directory of Open Access Journals (Sweden)

    Qahtan A. Abass


    Full Text Available Liquefied petroleum gas (LPG, Natural gas (NG and hydrogen were used to operate spark ignition internal combustion engine Ricardo E6, to compare NOx emissions emitted from the engine, with that emitted from engine fueled with gasoline as a fuel.The study was done when engine operated at HUCR for gasoline, compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 25rps.The results appeared that NOx concentrations will be at maximum value in the lean side near the stoichiometric ratio, and reduced with moving away from this ratio for mixture at both sides, these concentrations were at its highest value when hydrogen used at CR=8:1, and got near to each other for the three hydrocarbon fuels used in the study, when the engine operated at HUCR for each fuel, but still hydrogen had maximum value, the main variable affect these concentrations was spark timing

  3. A New Star-Formation Rate Calibration from Polycyclic Aromatic Hydrocarbon Emission Features and Application to High Redshift Galaxies

    CERN Document Server

    Shipley, Heath V; Rieke, George H; Brown, Michael J I; Moustakas, John


    We calibrate the integrated luminosity from the polycyclic aromatic hydrocarbon (PAH) features at 6.2\\micron, 7.7\\micron\\ and 11.3\\micron\\ in galaxies as a measure of the star-formation rate (SFR). These features are strong (containing as much as 5-10\\% of the total infrared luminosity) and suffer minimal extinction. Our calibration uses \\spitzer\\ Infrared Spectrograph (IRS) measurements of 105 galaxies at $0 < z < 0.4$, infrared (IR) luminosities of $10^9 - 10^{12} \\lsol$, combined with other well-calibrated SFR indicators. The PAH luminosity correlates linearly with the SFR as measured by the extinction-corrected \\ha\\ luminosity over the range of luminosities in our calibration sample. The scatter is 0.14 dex comparable to that between SFRs derived from the \\paa\\ and extinction-corrected \\ha\\ emission lines, implying the PAH features may be as accurate a SFR indicator as hydrogen recombination lines. The PAH SFR relation depends on gas-phase metallicity, for which we supply an empirical correction for...

  4. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion. (United States)

    Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao


    Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal.

  5. Reduction of low temperature engine pollutants by understanding the exhaust species interactions in a diesel oxidation catalyst. (United States)

    Lefort, I; Herreros, J M; Tsolakis, A


    The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants.

  6. 烧结烟气污染物综合减排工艺分析%The Analyses of Sinter Exhaust Emission and Processes of Maximized Emission Reduction

    Institute of Scientific and Technical Information of China (English)

    瞿晶晶; 望西萍; 沈汉年; 李宁


    为解决钢铁企业烧结烟气污染问题,分析了烧结烟气的排放状况及其烧结烟气治理的现状,针对烧结烟气的特点,特别推荐了适合烧结机烟气治理的烧结污染物最大减排技术(Maximized Emission Reduction of Sintering,简称MEROS工艺),介绍了该技术的工艺流程和特点,为烧结烟气污染治理提供了一种高效可靠的方法.

  7. Evaluation of Local Exhaust Ventilation Efficiency to Control Emissions of Fe2O3 Dust in Ambient Air of the Oxide Screen Unit in steel industry

    Directory of Open Access Journals (Sweden)

    Mahdi Jamshidi Rastani


    Full Text Available Introduction: There are numerous strategies to reduce of workers' exposure to chemical pollutants and control of emitted pollutants. Local exhaust ventilation (LEV is most common equipment for engineering controls that is more preferred than other control methods. The aim of this study was to determine efficiency of LEV to control emissions dust in ambient air of a screen unit of steel industry. Methods: This is a descriptive study and in order evaluate efficiency of LEV, the screen unit divided into four parts including: ground floor, floor screen, hood 1 floor and platform hoods 15, 16, 17. The 36 air samples collected with the method of NIOSH -600 (cyclone samplers were used to conduct both respirable and total dust sampling in the ON & OFF mode of ventilation system. Results: The results showed that the first floor had highest concentration with an average and range of 271.3 (118.1-434.47 mg/m3 (Approximately 18.2 times the PEL-OSHA and its control efficiency was 3.9%. The lowest concentration was found at the screen floor with the average and range of 20.77 (8.95-31.51mg/m3 (Approximately1.4 times the PEL-OSHA and also its efficiency for ventilation in ''ON'' mode was 29.35 %. The average and range of concentration and overall efficiency in whole of the unit were found to be 127.6 (20.77-234.63 mg/m3 and 7.96 %, respectively. (TLV-ACGIH:10mg/m3, PEL-OSHA: 15mg/m3 Conclusion: In this study the efficiency of the system was different in different parts and LEV had not appropriate efficiency, which could be attributable to lack of regular and scheduled system for maintenance and monitoring of LEV and also change of production rates.

  8. Pollutant monitoring of aircraft exhaust with multispectral imaging (United States)

    Berkson, Emily E.; Messinger, David W.


    Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.

  9. Electrically heated particulate filter regeneration using hydrocarbon adsorbents (United States)

    Gonze, Eugene V [Pinckney, MI


    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  10. 40 CFR 1065.130 - Engine exhaust. (United States)


    ... emission constituents. (2) Minimize the number of bends in the laboratory crankcase tubing and maximize the radius of any unavoidable bend. (3) Use laboratory crankcase exhaust tubing that meets the engine... point, or first point of dilution. If laboratory exhaust tubing consists of several different outside...

  11. Neighborhood-Scale Spatial Models of Diesel Exhaust Concentration Profile Using 1-Nitropyrene and Other Nitroarenes (United States)

    Schulte, Jill K.; Fox, Julie R.; Oron, Assaf P.; Larson, Timothy V.; Simpson, Christopher D.; Paulsen, Michael; Beaudet, Nancy; Kaufman, Joel D.; Magzamen, Sheryl


    With emerging evidence that diesel exhaust exposure poses distinct risks to human health, the need for fine-scale models of diesel exhaust pollutants is growing. We modeled the spatial distribution of several nitrated polycyclic aromatic hydrocarbons (NPAHs) to identify fine-scale gradients in diesel exhaust pollution in two Seattle, WA neighborhoods. Our modeling approach fused land-use regression, meteorological dispersion modeling, and pollutant monitoring from both fixed and mobile platforms. We applied these modeling techniques to concentrations of 1-nitropyrene (1-NP), a highly specific diesel exhaust marker, at the neighborhood scale. We developed models of two additional nitroarenes present in secondary organic aerosol: 2-nitro-pyrene and 2-nitrofluoranthene. Summer predictors of 1-NP, including distance to railroad, truck emissions, and mobile black carbon measurements, showed a greater specificity to diesel sources than predictors of other NPAHs. Winter sampling results did not yield stable models, likely due to regional mixing of pollutants in turbulent weather conditions. The model of summer 1-NP had an R2 of 0.87 and cross-validated R2 of 0.73. The synthesis of high-density sampling and hybrid modeling was successful in predicting diesel exhaust pollution at a very fine scale and identifying clear gradients in NPAH concentrations within urban neighborhoods. PMID:26501773

  12. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries

    Energy Technology Data Exchange (ETDEWEB)

    Tang, N.; Hattori, T.; Taga, R.; Igarashi, K.; Yang, X.Y.; Tamura, K.; Kakimoto, H.; Mishukov, V.F.; Toriba, A.; Kizu, R.; Hayakawa, K. [Kanazawa University, Kanazawa (Japan)


    Airborne particulates were collected in seven cities in the Pan-Japan Sea countries, Shenyang (China), Vladivostok (Russia), Seoul (South Korea), Kitakyushu, Kanazawa, Tokyo and Sapporo (Japan), in winter and summer from 1997 to 2002. In addition, particulates from domestic coal-burning heaters and diesel engine automobiles were collected in Shenyang and Kanazawa, respectively. Nine polycyclic aromatic hydrocarbons (PAHs) and four nitropolycyclic aromatic hydrocarbons (NPAHs) in the extracts from the particulates were analysed by HPLC with fluorescence and chemiluminescence detections, respectively. Mean atmospheric concentrations of PAHs in Shenyang and Vladivostok were substantially higher than those in Seoul, Tokyo, Sapporo, Kitakyushu and Kanazawa. However, the mean atmospheric concentrations of NPAHs were at the same levels in all cities except Kitakyushu. The expected seasonal variations (greater PAH and NPAH concentrations in winter than in summer) were observed in all cities. In order to study the major contributors of atmospheric PAHs and NPAHs, both cluster analysis and factor analysis were used and three large clusters were identified. The 1-nitropyrene/pyrene concentration ratio seemed to be a suitable indicator of the contribution made by diesel-engine vehicles and coal combustion to urban air particulates.

  13. Volatile organic compounds from the exhaust of light-duty diesel vehicles (United States)

    Tsai, Jiun-Horng; Chang, Sheng-You; Chiang, Hung-Lung


    The exhaust gas constituents of light-duty diesel vehicles (LDDVs), including total hydrocarbon (THC), non-methane hydrocarbon (NMHC), carbon monoxide (CO), nitrogen oxide (NOx), and volatile organic compounds (VOCs) were measured by a dynamometer study following federal test procedure-75 (FTP-75) and highway fuel economy cycle. The average fuel consumption of these LDDVs was 0.126 L km-1 for FTP-75, with about 10% fuel consumption savings for highway driving. The average emission factors of NMHC, CO and NOx for light-duty vehicles were 0.158/0.132 (90% of THC), 1.395/1.138, and 1.735/1.907 g km-1 for FTP-75/Highway, respectively. Styrene, n-propylbenzene, n-undecane, o-ethyltoluene, 1,2,4-trimethylbenzene, toluene, o-xylene, isopropylbenzene, m,p-xylene, and ethylbenzene were the dominant VOCs of LDDV exhaust, and the emission factors were about 10-60 mg kg-1. In addition, formaldehyde, acetaldehyde, acetone, butyraldehyde, and m-tolualdehyde were the major carbonyl species from LDDV exhaust, and the emission factors ranged from 1 to 10 mg km-1. The ozone formation potentials of m,p-xylene, o-ethyltoluene, 1,2,4-trimethylbenzene, o-xylene, n-propylbenzene, styrene, and isoprene were >50 mg-O3 km-1. In addition, formaldehyde, acetaldehyde, and butyraldehyde revealed high ozone formation potential of carbonyl species, with values ranging from 10 to 95 mg-O3 km-1. Based on the exhaust constituents and ozone formation potential observed, diesel vehicles could be an important air pollution source for urban and industrial areas.

  14. Hydrocarbon pneumonia (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  15. Power-dependent speciation of volatile organic compounds in aircraft exhaust (United States)

    Beyersdorf, Andreas J.; Thornhill, K. Lee; Winstead, Edward L.; Ziemba, Luke D.; Blake, Donald R.; Timko, Michael T.; Anderson, Bruce E.


    As part of the third NASA Aircraft Particle Emissions Experiment (APEX-3, November 2005), whole air samples were collected to determine the emission rates of volatile organic compounds (VOCs) from aircraft equipped with three different gas-turbine engines (an Allison Engine 3007-A1E, a Pratt-Whitney 4158, and a Rolls-Royce RB211-535E4B). Samples were collected 1 m behind the engine exhaust plane of the engines while they were operated at powers ranging from idle up to 30% of maximum rated thrust. Exhaust emission indices (mass emitted per kilogram of fuel used) for CO and non-methane hydrocarbons (NMHCs) were calculated based on enhancements over background relative to CO2. Emissions of all NMHCs were greatest at low power with values decreasing by an order of magnitude with increasing power. Previous studies have shown that scaling idle hydrocarbon emissions to formaldehyde or ethene (which are typically emitted at a ratio of 1-to-1 at idle) reduces variability amongst engine types. NMHC emissions were found to scale at low power, with alkenes contributing over 50% of measured NMHCs. However, as the power increases hydrocarbon emissions no longer scale to ethene, as the aromatics become the dominant species emitted. This may be due in part to a shift in combustion processes from thermal cracking (producing predominantly alkenes) to production of new molecules (producing proportionally more aromatics) as power increases. The formation of these aromatics is an intermediate step in the production of soot, which also increases with increasing power. The increase in aromatics relative to alkenes additionally results in a decrease in the hydroxyl radical reactivity and ozone formation potential of aircraft exhaust. Samples collected 30 m downwind of the engine were also analyzed for NMHCs and carbonyl compounds (acetone, 2-butanone and C1-C9 aldehydes). Formaldehyde was the predominant carbonyl emitted; however, the ratio of ethene-to-formaldehyde varied between the

  16. Study on Individual PAHs Content in Ultrafine Particles from Solid Fractions of Diesel and Biodiesel Exhaust Fumes

    Directory of Open Access Journals (Sweden)

    Małgorzata Szewczyńska


    Full Text Available In order to characterize PAHs emissions of diesel engine fuelled with diesel and its blend (B20, B40. In the particle phase, PAHs in engine exhausts were collected by fiberglass filters using Electrical Low Pressure Impactor (ELPI and then determined by a high performance liquid chromatography with a fluorimetric detector (HPLC-FL. The main content in exhaust gases from diesel engine, regardless the type of applied fuel, is constituted by the particles fraction of diameter <0.25 μm. Particles sized <0.25 μm constituted on average approximately 68% of particles in diesel exhaust gases and approx. 50% of particles emitted by biodiesel B20 and B40. When the B100 bioester additive was applied, the total emission of particles was reduced thus the volume of toxic substances adsorbed on them was lower. The analysis of chemical composition of <0.25 μm exhaust gas fraction showed that there were mainly 3- and 4-ring aromatic hydrocarbons in the exhaust gas of diesel fuel while in B40 single PAHs with the number of rings of 4 and 5 were detected. An application of ELPI permitted a further separation of <0.25 μm particle’s fraction and a real-time determination of interalia number, mass, and surface concentrations.

  17. The application of forest classification from Landsat data as a basis for natural hydrocarbon emission estimation and photochemical oxidant model simulations in southeastern Virginia (United States)

    Salop, J.; Wakelyn, N. T.; Levy, G. F.; Middleton, W. M.; Gervin, J. C.


    The possible contribution by natural hydrocarbon emissions to the total ozone budget recorded in the Tidewater region of southeastern Virginia during the height of the summer period was examined. Natural sources investigated were limited to the primary HC emitters and most prevalent natural vegetation, the forests. Three types and their areal coverage were determined for Region VI of the Virginia State Air Pollution Control Board using remotely sensed data from Landsat, a NASA experimental earth resources satellite. Emission factors appropriate to the specific types (coniferous 0.24 x 10 to the 13th, mixed 0.63 x 10 to the 13th, deciduous 1.92 x 10 to the 13th, microgram/h), derived from contemporary procedures, were applied to produce an overall regional emission rate of 2.79 x 10 to the 13th microgram/h for natural non-methane hydrocarbons (NMHC). This rate was used with estimates of the anthropogenic NO(x) and NMHC loading, as input into a photochemical box model. Additional HC loading on the order of that estimated to be produced by the natural forest communities was required in order to reach certain measured summer peak ozone levels as the computer simulation was unable to account for the measured episodic levels on the basis of the anthropogenic inventory alone.

  18. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    Diesel engine exhaust gases contain several harmful substances. The main pollutants are carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrous gases such as nitrogen oxide (NO) and nitrogen dioxide (NO2) (together NOx). Reducing the emission of these pollutants is of great...... Filter (DPF) which filters PM, a Selective Catalytic Reduction (SCR) catalyst which removes NO and NO2 through reaction with NH3, and an Ammonia Slip Catalyst (ASC) which removes excess ammonia (NH3) before the gases are released to the atmosphere. SCR is a widely used technology to reduce NOx to N2......-off for different urea dosing con-trollers was developed, and applied to P, PI, PD, and PID controllers, both with and without Ammonia-NOx-Ratio (ANR) based feedforward. Simulation results showed that the PI controller with feedforward had the best NOx-NH3 trade-off, and that feedforward coupled with feedback...

  19. Properties, performance and emissions of biofuels in blends with gasoline (United States)

    Eslami, Farshad

    The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding of exhaust products of fuels such as gasoline, ethanol and 2,5-dimethylfuran and comparison of results. A quantitative analysis of individual hydrocarbon species from exhaust emissions of these three fuels were carried out with direct injects spark ignition (DISI) single cylinder engine. The analysis of hydrocarbon species were obtained using gas chromatography-mass spectrometry (GCMS) connected on-line to SI engine. During this project, novel works have been done including the set up of on-line exhaust emission measurement device for detection and quantification of individual volatile hydrocarbons. Setting of a reliable gas chromatography mass spectrometry measurement system required definition and development of a precise method. Lubricity characteristics of biofuels and gasoline were investigated using High Frequency Reciprocating Rig (HFRR). Results showed great enhancing lubricity characteristics of biofuels when added to conventional gasoline. 2,5-dimenthylfuran was found to be the best among the fuels used, addition of this fuel to gasoline also showed better result compared with ethanol addition.

  20. A comparison on the emission of polycyclic aromatic hydrocarbons and their corresponding carcinogenic potencies from a vehicle engine using leaded and lead-free gasoline.


    Mi, H H; Lee, W J; Tsai, P.J.; Chen, C B


    Our objective in this study was to assess the effect of using two kinds of lead-free gasoline [including 92-lead-free gasoline (92-LFG) and 95-lead-free gasoline (95-LFG), rated according to their octane levels] to replace the use of premium leaded gasoline (PLG) on the emissions of polycyclic aromatic hydrocarbons (PAHs) and their corresponding benzo[a]pyrene equivalent (BaP(eq)) amounts from the gasoline-powered engine. The results show that the three gasoline fuels originally contained sim...

  1. Study on diesel combustion with high-pressure fuel injection. Improvement of combustion and exhaust emissions using small-hole-diameter nozzles; Koatsu funsha diesel kikan no nensho kaiseki. Shofunkokei nozzle ni yoru nensho haiki kaizen koka

    Energy Technology Data Exchange (ETDEWEB)

    Nakakita, K.; Kondo, T. [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Watanabe, S. [Toyota Motor Corp., Aichi (Japan)


    This paper discusses the relationship between exhaust and combustion characteristics of small-hole-diameter nozzles in diesel engines and the reduction of the hole diameter. The combustion chambers used are of deep tray type and shallow tray type. The paper describes the result when using the deep tray chamber as follows: reduced hole diameter prolongs the injection period and reduces the average injection rate; amount of exhaust NOx depends only on injection pressures, but not on the hole diameters; this is because the combustion rate increasing effect as a result of the accelerated gas mixture forming and combustion due to the hole diameter reduction is offset by the combustion rate suppressing effect due to reduced average injection rate; the hole diameter reduction presents smoke reducing effect; with a large-diameter nozzle, the smoke increases in association with reduction in the injection pressure, but with the small-diameter nozzle, low smoke emission is maintained regardless of the injection pressures, and the NOx emission can be suppressed even with an injection pressure of 55 MPa. With the shallow tray type combustion chamber, the smoke increases as the injection pressure is decreased irrespective of the nozzle hole diameter sizes, indicating a correlation between the smoke amount and the injection period. A nozzle with small diameter hole of the deep tray type is more advantageous in reducing NOx and particulate emission. 10 refs., 14 figs., 1 tab.

  2. Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate (United States)

    Ryerson, T. B.; Aikin, K. C.; Angevine, W. M.; Atlas, E. L.; Blake, D. R.; Brock, C. A.; Fehsenfeld, F. C.; Gao, R.-S.; de Gouw, J. A.; Fahey, D. W.; Holloway, J. S.; Lack, D. A.; Lueb, R. A.; Meinardi, S.; Middlebrook, A. M.; Murphy, D. M.; Neuman, J. A.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ravishankara, A. R.; Roberts, J. M.; Schwarz, J. P.; Spackman, J. R.; Stark, H.; Warneke, C.; Watts, L. A.


    The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (˜258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (˜33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (˜14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills.

  3. Performance and Emission Studies of a SI Engine using Distilled Plastic Pyrolysis Oil-Petrol Blends


    Kumar Kareddula Vijaya; Puli Ravi Kumar; Swarna Kumari A.; Shailesh P.


    In the present work, an experimental investigation is carried out to evaluate the use of plastic oil derived from waste plastic which used in a Spark Ignition engine. Experiments are conducted, the measured performance and emissions of plastic oil blends at different proportions are compared with the baseline operation of the SI engine running with gasoline fuel. Engine performance and exhaust gas emissions such as carbon monoxide, total unburned hydrocarbons, carbon dioxide and oxides of nit...

  4. Air pollutants and toxic emissions of various mileage motorcycles for ECE driving cycles (United States)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung


    Motorcycles were selected to determine their fuel consumption and exhaust emissions following ECE driving cycles. Exhaust constituents including CO2, CO, NOx, total hydrocarbons (THC) and hydrocarbon species (27 paraffins, 9 olefins, 16 aromatics and 15 carbonyls) were investigated for this work. The age of 10- 90% of the selected motorcycles ranged from 2.5 to 12.4 years, and their mileage ranged from 5400 to 39,300 km. CO emission ranged from 1.4 to 6.4 g/km (median value: 2.98 g/km), THC from 0.41 to 1.54 g/km (median value: 0.98 g/km), NOx from 0.16 to 0.28 g/km (median value: 0.21 g/km), CO2 from 58.9 to 62.2 g/km (median value: 60.5 g/km) and fuel consumption from 30.7 to 36.4 km/L (median value: 33.4 km/L), corresponding to the percentage cumulative data from 10 to 90% of the selected motorcycles. Results indicated that the motorcycle exhaust emission and fuel consumption depended on their mileage and ages. An increase in mileage of 1000 km resulted in an increase of 103 mg for CO emission and 14.7 mg for hydrocarbon emission and a reduction of 1.52 mg NOx emission and 0.11 km per liter fuel consumption. For various VOC groups, a mileage increase of 1000 km corresponding to the increased exhaust emission of paraffins was 6.71 mg, olefins 1.90 mg, aromatics 7.04 mg, carbonyls 0.283 mg and 67 VOC species 15.9 mg. Fuel consumption and emissions of CO and hydrocarbon increased in motorcycles over the guaranteed mileage of 15,000 km.

  5. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase. (United States)

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen


    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced

  6. Cut off from supplies - sulfate exhaustion and implications for methane emissions in a brackish rewetted peatland after separation from the coast (United States)

    Koebsch, Franziska; Liu, Bo; Schmiedinger, Iris; Spitzy, Alejandro; Köhler, Stefan; Koch, Marian; Jurasinski, Gerald; Gehre, Matthias; Sachs, Torsten; Böttcher, Michael


    in the bottom up to +4.2‰ in the top profile, thereby indicating zones of high CH4 production in the top 30 cm of the peat, whilst non-fractionating C metabolic processes such as SO42- reduction are dominating in the deeper parts. Our study shows that coastal wetlands can turn to strong sources for CH4 when marine SO42-supply is cut off. Indeed, brackish impact might still be present in form of high salinities, however, the contemporary SO42- pool becomes exhausted. Thus, locally high SO42-concentrations do not inhibit high CH4 emissions on ecosystem scale. Citation: Hahn J, Köhler S, Glatzel S, Jurasinski G (2015) Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift. PLoS ONE 10(10): e0140657. doi:10.1371/journal.pone.0140657

  7. Assessment of Component-level Emission Measurements Using a High Volume Sampler at Oil and Natural Gas Production Pads in Utah (United States)

    Oil and natural gas (ONG) production facilities have the potential to emit a substantial amount of greenhouse gasses, hydrocarbons and hazardous air pollutants into the atmosphere. These emissions come from a wide variety of sources including engine exhaust, combustor gases, atm...

  8. Creating mechanisms of toxic substances emission of combustion engines

    Directory of Open Access Journals (Sweden)

    Jankowski Antoni


    Full Text Available The paper analyses the mechanisms of creation of toxic exhaust gases, which mainly derived from inexact fuel metering and improper air-fuel mixture preparation. The paper describes the process of creating toxic components in the exhaust gases of piston engines during engine operation, and impact on the emission of these components determining the composition of the fuel mixture determined equivalence factor Φ. The principal mechanisms of formation of toxic exhaust gases, in particular nitrogen oxides, carbon monoxide and hydrocarbons, and also essential according to create each of toxic exhaust gases are the subject of the paper. Moreover, empirical relationships, by means of which it is possible to determine the time of creation of the individual components of toxic exhaust gases, are presented. For example, one of the mechanisms for prompt formation of nitrogen oxides and hydrocarbons graphic illustration of formation as a function of crank angle is described. At the conclusion, the summary and significance of information on creation mechanisms of toxic components in the exhaust gases of piston engines are presented.

  9. Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson


    Full Text Available It is feared that the increasing population of vehicles in the world and the depletion of fossil-based fuel reserves could render transportation and other activities that rely on fossil fuels unsustainable in the long term. Concerns over environmental pollution issues, the high cost of fossil-based fuels and the increasing demand for fossil fuels has led to the search for environmentally friendly, cheaper and efficient fuels. In the search for these alternatives, liquefied petroleum gas (LPG has been identified as one of the viable alternatives that could be used in place of gasoline in spark-ignition engines. The objective of the study was to present the modeling and multi-objective optimization of brake mean effective pressure and hydrocarbon emissions for a spark-ignition engine retrofitted to run on LPG. The use of a one-dimensional (1D GT-Power™ model, together with Group Method of Data Handling (GMDH neural networks, has been presented. The multi-objective optimization was implemented in MATLAB® using the non-dominated sorting genetic algorithm (NSGA-II. The modeling process generally achieved low mean squared errors (0.0000032 in the case of the hydrocarbon emissions model for the models developed and was attributed to the collection of a larger training sample data using the 1D engine model. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

  10. Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines

    Indian Academy of Sciences (India)

    Avinash Kumar Agrawal; Shrawan Kumar Singh; Shailendra Sinha; Mritunjay Kumar Shukla


    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of reducing the NOx emission of a diesel engine is by late injection of fuel into the combustion chamber. This technique is effective but increases fuel consumption by 10–15%, which necessitates the use of more effective NOx reduction techniques like exhaust gas recirculation (EGR). Re-circulating part of the exhaust gas helps in reducing NOx, but appreciable particulate emissions are observed at high loads, hence there is a trade-off between NOx and smoke emission. To get maximum benefit from this trade-off, a particulate trap may be used to reduce the amount of unburnt particulates in EGR, which in turn reduce the particulate emission also. An experimental investigation was conducted to observe the effect of exhaust gas re-circulation on the exhaust gas temperatures and exhaust opacity. The experimental setup for the proposed experiments was developed on a two-cylinder, direct injection, air-cooled, compression ignition engine. A matrix of experiments was conducted for observing the effect of different quantities of EGR on exhaust gas temperatures and opacity.

  11. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust. (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn


    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  12. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  13. Study of Vehicle Exhaust Variation with Test Modes

    Institute of Scientific and Technical Information of China (English)


    Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration an...

  14. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga


    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  15. [Unregulated emissions from the gasoline vehicle]. (United States)

    You, Qiu-Wen; Ge, Ytun-Shan; You, Ke-Wei; Wang, Jun-Fang; He, Chao


    Based on the emission test cycle of China National Regulation Stage III, the aldehyde and alkone emissions and VOCs emissions of three typical gasoline cars were studied with HPLC and TD-GC/MS and the exhausted particulates number and mass concentration were researched using ELPI. The results indicate that the unregulated emissions of different cars is diverse changed, the brake specific emission of the carbonyls in three cars are 36.44, 16.71 and 10.43 mg/km respectively and TVOC are 155.39, 103.75 and 42.29 mg/km respectively. Formaldehyde, acetaldehyde, acrolein, acetone and cyclohexanone are the main compounds in gasoline cars exhaust, which accounted for 77.9%-89.7% of total carbonyl compounds. Aromatic hydrocarbons and alkane are the main part of VOCs, the detected number of which is occupied 31.6%-39.2% and 23.1%-27.9% of VOCs. Toluene, xylene and benzene have high concentration, which are occupied 16.68%, 16.87% and 5.23% of TVOC in average. Ultra-fine particles (emission. Exhausted particulate number of high speeds is higher than that of slow and medium speeds.

  16. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines. (United States)

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara


    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  17. MTU series 1600 HCCI engine with extremely low exhaust emissions over the entire engine map; HCCI-Motor der MTU Baureihe 1600 mit extrem niedrigen Abgasemissionen im gesamten Motorkennfeld

    Energy Technology Data Exchange (ETDEWEB)

    Teetz, Christoph; Bergmann, Dirk; Sauer, Christina; Schneemann, Arne [MTU, Friedrichshafen (Germany); Eichmeier, Johannes; Spicher, Ulrich [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). IFKM


    The main challenge when developing off-highway engines is to keep emissions within the limits to apply in the future while maintaining low fuel consumption and low CO{sub 2} output. In the USA in particular, diesel engines in the 130 - 560 kW power range are to be subject from 2014 to EPA Tier 4 legislation, which imposes limits of 0.4 g/kWh for NO{sub x} and 0.02 g/kWh for particulate matter. Diesel units can only satisfy those requirements using a combination of in-engine measures and exhaust aftertreatment systems (SCR, particulate filters), which makes them a good deal more complex and expensive. In the face of CO{sub 2} emissions regulations and the growing demand for diesel fuel, greater emphasis is now being placed on alternative fuels. Homogeneous Charge Compression Ignition or 'HCCI' provides an alternative to complex exhaust aftertreatment systems which generates virtually no soot or nitrous oxide emissions. It does, however, present new challenges with respect to combustion control and engine load. Up to the present, it has not been possible to exploit the full potential of this combustion process over the entire engine map, since the high ignition performance of diesel fuel at high loads results in excessively early combustion and inadmissible pressure gradients. The pre-development department of MTU Friedrichshafen worked with the Institute of Internal Combustion Engines at the Karlsruhe Institute of Technology (KIT) to devise a research prototype for an industrial application which would allow semi-homogenous combustion with controlled self-ignition over the full engine map. The engine is based on a 6-cylinder version of the MTU Series 1600 unit and has a rated output of 300 kW. The fuels - gasoline or ethanol and diesel - are mixed in such a way as to avoid the disadvantages associated with most HCCI processes. Since the use of ethanol also enhances combustion efficiency, it has a two-fold positive effect on the CO{sub 2} situation. With

  18. Compact high-speed MWIR spectrometer applied to monitor CO2 exhaust dynamics from a turbojet engine (United States)

    Linares-Herrero, R.; Vergara, G.; Gutiérrez Álvarez, R.; Fernández Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano Ramírez, A.; Montojo, M. T.; Archilla, V.; Jiménez, A.; Mercader, D.; González, A.; Entero, A.


    Dfgfdg Due to international environmental regulations, aircraft turbojet manufacturers are required to analyze the gases exhausted during engine operation (CO, CO2, NOx, particles, unburned hydrocarbons (aka UHC), among others).Standard procedures, which involve sampling the gases from the exhaust plume and the analysis of the emissions, are usually complex and expensive, making a real need for techniques that allow a more frequent and reliable emissions measurements, and a desire to move from the traditional gas sampling-based methods to real time and non-intrusive gas exhaust analysis, usually spectroscopic. It is expected that the development of more precise and faster optical methods will provide better solutions in terms of performance/cost ratio. In this work the analysis of high-speed infrared emission spectroscopy measurements of plume exhaust are presented. The data was collected during the test trials of commercial engines carried out at Turbojet Testing Center-INTA. The results demonstrate the reliability of the technique for studying and monitoring the dynamics of the exhausted CO2 by the observation of the infrared emission of hot gases. A compact (no moving parts), high-speed, uncooled MWIR spectrometer was used for the data collection. This device is capable to register more than 5000 spectra per second in the infrared band ranging between 3.0 and 4.6 microns. Each spectrum is comprised by 128 spectral subbands with aband width of 60 nm. The spectrometer operated in a passive stand-off mode and the results from the measurements provided information of both the dynamics and the concentration of the CO2 during engine operation.

  19. SOCRATES simulation of the emission at wavelength 6300 A generated by the interaction between the atmosphere and the Space Shuttle exhaust (United States)

    Setayesh, A.; Tautz, M. F.


    The SOCRATES contamination-interaction code has been used to simulate the reactions between the space shuttle exhaust and the atmosphere at an altitude of 320 km. The investigation carries out the simulations for regions extending to 15 km from spacecraft. These simulations calculate the radiation from O(D1) - O(P3) photons as function of time for orientations of engine firing into the ram, perpendicular, and into the wake of the shuttle motion. The IRMA plotting program has been used to depict in color the time development of the shuttle plume.

  20. Constraints on emissions of carbon monoxide, methane, and a suite of hydrocarbons in the Colorado Front Range using observations of 14CO2

    Directory of Open Access Journals (Sweden)

    P. P. Tans


    Full Text Available Atmospheric radiocarbon (14CO represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14CO in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS affords in atmospheric 14CO analysis has greatly increased the potential for using such measurements to evaluate bottom-up emissions inventories of fossil fuel CO2 (CO2ff, as well as those for other co-emitted species. Here we use observations of 14CO2 and a series of hydrocarbons and combustion tracers from discrete air samples collected between June 2009 and September 2010 at the National Oceanic and Atmospheric Administration Boulder Atmospheric Observatory (BAO; Lat: 40.050° N, Lon: 105.004° W to derive emission ratios of each species to CO2ff. From these emission ratios, we estimate emissions of these species by using the Vulcan CO2ff high resolution data product as a reference. The species considered in this analysis are carbon monoxide (CO, methane (CH4, acetylene (C2H2, benzene (C6H6, and C3–C5 alkanes. Comparisons of top-down emissions estimates are made to existing inventories of these species for Denver and adjacent counties, as well as to previous efforts to estimate emissions from atmospheric observations over the same area. We find that CO is overestimated in the 2008 National Emissions Inventory (NEI, 2008 by a factor of ~2. A close evaluation of the inventory suggests that the ratio of CO emitted per unit fuel burned from on-road gasoline vehicles is likely over-estimated by a factor of 2.5. The results also suggest that while the oil and gas sector is the largest contributor to the CH4 signal in air arriving from the north and east, it is very likely that other sources, including agricultural sources, contribute to this signal and must be accounted for when attributing these signals to oil and gas industry activity from a top-down perspective. Our results are

  1. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.


    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  2. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, No. 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli 360, Taiwan (China); Chung, Hua-Yi [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China)


    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17–78.72 mg/g, 26,139.80–35,932.98 and 5735.22–13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26–83.70% and 16.30–29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82–797.76 ng/g) was approximately 6.92–25.08 times higher than that of the gaseous phase (26.27–36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO{sub 3}) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency. - Highlights: • PAHs emissions are influenced by mosquito coils containing various atomic H/C ratios. • The PAHs generated by burning mosquito coils mainly occur in the gaseous phase. • Total TEQ emission factors of PAHs mainly consisted of the particulate phase (> 87%). • The BaP and BaA accounted for 71.13–77.28% of the total TEQ emission factors. • Special PAH ratios were regarded as characteristic ratios for burning mosquito coil.

  3. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype Chrysler Volare, 225 CID (3.7-liter) automobile (United States)

    Walter, R. A.


    The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of HC, CO, NOx and particulates respectively.

  4. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype fiat 131TC 2.4 liter automobile (United States)

    Quayle, S. S.


    The results obtained from fuel economy and emission tests conducted on a prototype Fiat 131 turbocharged diesel vehicle are presented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a United States number 2 diesel and a European diesel fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that turbocharging accompanied by complementary modifications results in small but substantial improvements in regulated emissions, fuel economy, and performance. Notably, particulate levels were reduced by 30 percent.

  5. Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats (United States)

    Ballesteros, R.; Monedero, E.; Guillén-Flores, J.


    Biodiesel from animal fats appears as an alternative for conventional diesel in automotive consumption. Animal fats are classified into three categories, although only one of them can be used for biodiesel production, according to regulation. Due to its novelty, researchers testing animal-fat biodiesel on diesel engines focus only on regulated emissions. In this paper, the experiments carried out analyze carbonyl compounds emissions, due to its highly atmospheric reactivity, to complete the characterization of the total emissions in this kind of biofuel. Two fuels, a reference petro-diesel and a pure animal-fat biodiesel, were tested in a 4-cylinder, direct injection, diesel engine Nissan Euro 5 M1D-Bk. Samples were collected in 4 different operating modes and 3 points along the exhaust line. The analyses of samples were made in a high performance liquid chromatography, following the method recommended by the CARB to analyze air quality. Results show, on the one hand, a significant rise in carbonyl emissions, almost three times at the mode with highest hydrocarbon emissions, when biodiesel is used. On the other hand, on average, a reduction of 90% of carbonyl emissions when exhaust gases go through the different post-treatment systems installed. Despite this reduction, specific reactivity does not decrease substantially.

  6. Receptor Model Source Apportionment of Nonmethane Hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    V. Mugica


    Full Text Available With the purpose of estimating the source contributions of nonmethane hydrocarbons (NMHC to the atmosphere at three different sites in the Mexico City Metropolitan Area, 92 ambient air samples were measured from February 23 to March 22 of 1997. Light- and heavy-duty vehicular profiles were determined to differentiate the NMHC contribution of diesel and gasoline to the atmosphere. Food cooking source profiles were also determined for chemical mass balance receptor model application. Initial source contribution estimates were carried out to determine the adequate combination of source profiles and fitting species. Ambient samples of NMHC were apportioned to motor vehicle exhaust, gasoline vapor, handling and distribution of liquefied petroleum gas (LP gas, asphalt operations, painting operations, landfills, and food cooking. Both gasoline and diesel motor vehicle exhaust were the major NMHC contributors for all sites and times, with a percentage of up to 75%. The average motor vehicle exhaust contributions increased during the day. In contrast, LP gas contribution was higher during the morning than in the afternoon. Apportionment for the most abundant individual NMHC showed that the vehicular source is the major contributor to acetylene, ethylene, pentanes, n-hexane, toluene, and xylenes, while handling and distribution of LP gas was the major source contributor to propane and butanes. Comparison between CMB estimates of NMHC and the emission inventory showed a good agreement for vehicles, handling and distribution of LP gas, and painting operations; nevertheless, emissions from diesel exhaust and asphalt operations showed differences, and the results suggest that these emissions could be underestimated.

  7. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte


    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  8. 基于排放和模糊神经网络模型的柴油机故障诊断方法%Study on Fault Diagnosis of Diesel Engine Based on Exhaust Emission and Fuzzy Network

    Institute of Scientific and Technical Information of China (English)

    李国璋; 罗亮; 滕飞; 高阳


    根据排放检测数据规律,定义并提取特征参数,建立了规则与模糊神经网络有机结合的柴油机故障诊断模型及其对应的特征知识库,确立了模型的"可塑性"学习路线,并以单缸失火故障为例,进行了模型诊断实例研究.结果表明:运用该方法进行柴油机的故障诊断,结果准确,识别速度快,诊断效率高.%In this paper, a new method of fault diagnosis for diesel engine based on the exhaust emission is proposed. The parameters are defined from the emission measured data by the analysis of the emission. And the diagnosis model which is made up of the rule and the fuzzy network is built. Then the characteristic database and the plasticity principle are confirmed. Through the experimentation of fault diagnosis, we can conclude that this method of fault diagnosis is accurately, efficient and valuable.

  9. Polycyclic Aromatic Hydrocarbon Emission in Spitzer/IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength (United States)

    Stock, D. J.; Peeters, E.


    We decompose the observed 7.7 μm polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer/IRS-SL instrument. In order to fit the 7.7 μm PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μm) is linearly related to the UV-field intensity (log G 0). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μm spectral profiles.

  10. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. (United States)

    Shen, Guofeng; Tao, Shu; Wei, Siye; Chen, Yuanchen; Zhang, Yanyan; Shen, Huizhong; Huang, Ye; Zhu, Dan; Yuan, Chenyi; Wang, Haochen; Wang, Yafei; Pei, Lijun; Liao, Yilan; Duan, Yonghong; Wang, Bin; Wang, Rong; Lv, Yan; Li, Wei; Wang, Xilong; Zheng, Xiaoying


    Air pollutants from residential solid fuel combustion are attracting growing public concern. Field measured emission factors (EFs) of various air pollutants for solid fuels are close to the reality and urgently needed for better emission estimations. In this study, emission factors of particulate matter (PM), organic carbon (OC), elemental carbon (EC), and various polycyclic aromatic hydrocarbons (PAHs) from residential combustions of coal briquette, coal cake, and wood were measured in rural Heshun County, China. The measured EFs of PM, OC, and EC were 8.1-8.5, 2.2-3.6, 0.91-1.6 g/kg for the wood burnt in a simple metal stove, 0.54-0.64, 0.13-0.14, 0.040-0.0041 g/kg for the briquette burned in an improved stove with a chimney, and 3.2-8.5, 0.38-0.58, 0.022-0.052 g/kg for the homemade coal cake combusted in a brick stove with a flue, respectively. EFs of 28 parent PAHs, 4 oxygenated PAHs, and 9 nitro-PAHs were 182-297, 7.8-10, 0.14-0.55 mg/kg for the wood, 14-16, 1.7-2.6, 0.64-0.83 mg/kg for the briquette, and 168-223, 4.7-9.5, 0.16-2.4 mg/kg for the coal cake, respectively. Emissions from the wood and coal cake combustions were much higher than those for the coal briquette, especially true for high molecular weight PAHs. Most EFs measured in the field were higher than those measured in stove combustions under laboratory conditions.

  11. Emissions of particulate matter and associated polycyclic aromatic hydrocarbons from agricultural diesel engine fueled with degummed,deacidified mixed crude palm oil blends

    Institute of Scientific and Technical Information of China (English)

    Khamphe Phoungthong; Surajit Tekasakul; Perapong Tekasakul; Gumpon Prateepchaikul; Naret Jindapetch; Masami Furuuchi; Mitsuhiko Hata


    Mixed crude palm oil (MCPO),the mixture of palm fiber oil and palm kernel oil,has become of great interest as a renewable energy source.It can be easily extracted from whole dried palm fruits.In the present work,the degummed,deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage.The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler.The 50% cut-off aerodynamic diameters for the first three stages were 10,2.5 and 1 μm,while the last stage collected all particles smaller than 1 μm.Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography.The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 μm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings),especially pyrene.The mass median diameter,PM and total PAH concentrations decreased when increasing the palm oil content,but increased when the running hours of the engine were increased.In addition,Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges.As the palm oil was increased,the BaPeq decreased gradually.Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.

  12. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization; Avgasemissioner fraan laetta fordon drivna med olika drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Ahlvik, P.; Brandberg, Aa. [Ecotraffic RandD AB, Stockholm (Sweden)


    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO{sub x} and SO{sub x} emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future.

  13. In-situ studies on volatile jet exhaust particle emissions - impacts of fuel sulfur content and environmental conditions on nuclei-mode aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Brock, C.A. [Denver Univ., CO (United States). Dept. of Engineering


    In-situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the DLR ATTAS research jet (RR M45H M501 engines) and a B737-300 aircraft (CFM56-3B1 engines). Measurements were made 0.15-20 seconds after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56 or 118 mg kg{sup -1}. Particle size distributions of from 3 to 60 nm diameter were determined using CN-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60 mg kg{sup -1}, reaching minimum values of about 2 x 10{sup 17} kg{sup -1} and 2 x 10{sup 16} kg{sup -1} for particles >3 nm and >5 nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60 mg kg{sup -1}. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4 x 10{sup 14} kg{sup -1}) than from the older RR M45H M501 engines (1.8 x 10{sup 15} kg{sup -1}). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors 2-10 depending on particle size.

  14. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J


    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  15. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J


    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  16. Hyperventilation and exhaustion syndrome


    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta


    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed ...

  17. Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Madsen, Ulla; Breum, N. O.; Nielsen, Peter V.

    Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation of the capt......Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation...

  18. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef


    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  19. Exhaustion from prolonged gambling

    Institute of Scientific and Technical Information of China (English)

    Fatimah Lateef


    Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities.Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion.Recently, three patients were seen at theDepartment ofEmergencyMedicine, presenting with exhaustion from prolonged involvement in gambling activities.The cases serve to highlight some of the physical consequences of prolonged gambling.

  20. Environmental dependence of polycyclic aromatic hydrocarbon emission at z~0.8. Investigation by observing the RX J0152.7-1357 with AKARI

    CERN Document Server

    Murata, Kazumi; Tanaka, Masayuki; Matsuhara, Hideo; Kodama, Tadayuki


    We study the environmental dependence of the strength of polycyclic aromatic hydrocarbon (PAH) emission by AKARI observations of RX J0152.7-1357, a galaxy cluster at z=0.84. PAH emission reflects the physical conditions of galaxies and dominates 8 um luminosity (L8), which can directly be measured with the L15 band of AKARI. L8 to infrared luminosity (LIR) ratio is used as a tracer of the PAH strength. Both photometric and spectroscopic redshifts are applied to identify the cluster members. The L15-band-detected galaxies tend to reside in the outskirt of the cluster and have optically green colour, R-z'~ 1.2. We find no clear difference of the L8/LIR behaviour of galaxies in field and cluster environment. The L8/LIR of cluster galaxies decreases with specific-star-formation rate divided by that of main-sequence galaxies, and with LIR, consistent with the results for field galaxies. The relation between L8/LIR and LIR is between those at z=0 and z=2 in the literature. Our data also shows that starburst galaxie...

  1. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities. (United States)

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan


    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper investigates the effect of using gasoline-ethanol (GE blends on performance and exhaust emission of a four stroke 150 cc single cylinder air cooled spark ignition (SI engine, without any modifications. Experiments were conducted at part load and different engine speeds ranging from 3000 to 5000 rpm, without and with catalytic converter. Ethanol content was varied from 5 percentage to 20 percentage by volume and four different blends (E5, E10, E15 and E20 were tested. Fuel consumption, engine speed, air fuel ratio, exhaust gas temperature and exhaust emissions were measured during each experiment. Brake thermal efficiency (ηb,th, volumetric efficiency (ηvol, brake specific fuel consumption (BSFC and excess air factor were calculated for each test run. Brake specific fuel consumption, volumetric efficiency and excess air factor increased with ethanol percentage in the blend. Carbon monoxide (CO, hydrocarbon (HC and oxides of nitrogen (NOx emissions decreased with blends.

  3. Emission of polycyclic aromatic hydrocarbons, toxicity, and mutagenicity from domestic cooking using sawdust briquettes, wood, and kerosene. (United States)

    Kim, OanhNguyenThi; Nghiem, Le Hoang; Phyu, Yin Latt


    Smoke samples, in both gas and particulate matter (PM) phases, of the three domestic stoves were collected using U.S. EPA modified method 5 and were analyzed for 17 PAH (HPLC-UV), acute toxicity (Microtox test), and mutagenicity (Amestest). The gas phase of smoke contributed > or = 95% of 17 PAH, > or = 96% of toxicity, and > or = 60% of mutagenicity. The highest emission factor of 17 PAH was from sawdust briquettes (260 mg/kg), but the highest emission of 11 genotoxic PAH was from kerosene (28 mg/kg). PM samples of kerosene smoke were not toxic. The total toxicity emission factor was the highest from sawdust, followed by kerosene and wood fuel. Smoke samples from the kerosene stove were not mutagenic. TA98 indicated the presence of both direct and indirect mutagenic activities in PM samples of sawdust and wood fuel but only direct mutagenic activities in the gas phase. TA100 detected only direct mutagenic activities in both PM and gas-phase samples. The higher mutagenicity emission factor was from wood fuel, 12 x 10(6) revertants/kg (TA100-S9) and 3.5 x 10(6) (TA98-S9), and lower from sawdust, 2.9 x 10(6) (TA100-S9) and 2.8 x 10(6) (TA98-S9). The low burning rate and high efficiency of a kerosene stove have resulted in the lowest PAH, toxicity, and mutagenicity emissions from daily cooking activities. The bioassays produced toxicity and mutagenicity results in correspondence with the PAH content of samples. The tests could be used for a quick assessment of potential health risks.

  4. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust (United States)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.


    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  5. Attributing risk burden of PM2.5-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, south China (United States)

    Yu, Qingqing; Gao, Bo; Li, Guanghui; Zhang, Yanli; He, Quanfu; Deng, Wei; Huang, Zhonghui; Ding, Xiang; Hu, Qihou; Huang, Zuzhao; Wang, Yujun; Bi, Xinhui; Wang, Xinming


    Polycyclic aromatic hydrocarbons (PAHs) have attracted an increasing concern in China's megacities. However, rare information is available on the spatial and seasonal variations of inhalation cancer risk (ICR) due to PAH exposure and their relations to specific sources. In this study, year-round PM2.5 samples were collected from 2013 to 2014 by high-volume samplers at four sites (one urban, two rural and one roadside station) in Guangzhou in the highly industrialized and densely populated Pearl River Delta (PRD) region and analyzed for 26 polycyclic aromatic hydrocarbons (PAHs) together with molecular tracers including levoglucosan, hopanes and elemental carbon. Higher molecular weight PAHs (5-ring or above) accounted for 64.3-87.5% of total PAHs. Estimated annual averages of benzo(a)pyrene-equivalent carcinogenic potency (BaPeq) were 1.37, 2.31 and 1.56 ng/m3 at urban SZ, rural JL and rural WQS, respectively, much higher than that at the roadside station YJ in an urban street canyon. ICR of PAHs in wintertime reached 2.2 × 10-4, nearly 3 times that in summer; and cancer risk of PAHs was surprisingly higher at the rural site than at other sites. Source contributions by positive matrix factorization (PMF) in the aid of molecular tracers revealed that overall coal combustion and biomass burning altogether contributed 73.8% of total PAHs and 85.2% of BaPeq, and particularly in winter biomass burning became the most significant source of total PAHs and BaPeq (51.8% and 52.5%), followed by coal combustion (32.0% and 39.1%) and vehicle emission (16.2% and 8.4%). The findings of this work suggest that even in China's megacities like Guangzhou, limiting biomass burning may benefit PAHs pollution control and cancer risk reduction.

  6. The contribution of evaporative emissions from gasoline vehicles to the volatile organic compound inventory in Mexico City. (United States)

    Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C


    The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.

  7. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel. (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang


    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  8. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due


    This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...

  9. Particulate Emissions Hazards Associated with Fueling Heat Engines

    Directory of Open Access Journals (Sweden)

    Robert C. Hendricks


    Full Text Available All hydrocarbon- (HC- fueled heat engine exhaust (tailpipe emissions (<10 to 140 nm contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft and other HC-fueled power systems. CO2 emissions are tracked and, when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  10. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel (United States)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.


    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  11. Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons (United States)

    Miller, Christopher Chan; Jacob, Daniel J.; González Abad, Gonzalo; Chance, Kelly


    The Pearl River delta (PRD) is a densely populated hub of industrial activity located in southern China. OMI (Ozone Monitoring Instrument) satellite observations reveal a large hotspot of glyoxal (CHOCHO) over the PRD that is almost twice as large as any other in Asia. Formaldehyde (HCHO) and NO2 observed by OMI are also high in the PRD but no more than in other urban/industrial areas of China. The CHOCHO hotspot over the PRD can be explained by industrial paint and solvent emissions of aromatic volatile organic compounds (VOCs), with toluene being a dominant contributor. By contrast, HCHO in the PRD originates mostly from VOCs emitted by combustion (principally vehicles). By applying a plume transport model to wind-segregated OMI data, we show that the CHOCHO and HCHO enhancements over the PRD observed by OMI are consistent with current VOC emission inventories. Prior work using CHOCHO retrievals from the SCIAMACHY satellite instrument suggested that emission inventories for aromatic VOCs in the PRD were too low by a factor of 10-20; we attribute this result in part to bias in the SCIAMACHY data and in part to underestimated CHOCHO yields from oxidation of aromatics. Our work points to the importance of better understanding CHOCHO yields from the oxidation of aromatics in order to interpret space-based CHOCHO observations in polluted environments.

  12. A parametric study on the emissions from an HCCI alternative combustion engine resulting from the auto-ignition of primary reference fuels

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)


    The homogeneous charge compression ignition is an alternative combustion technology that can reduce automobile pollution, provided that the exhaust emission can be controlled. A parametric study can be useful in order to gain more understanding in the emission reduction possibilities via this new combustion technology. For this purpose, the inlet temperature, the equivalence ratio and the compression ratio are changed, respectively, from 30 to 70{sup o}C, 0.28 to 0.41 and 6 to 14. Also the diluting, thermal and chemical effects of exhaust gas recirculation were studied. The emission of CO, CO{sub 2}, O{sub 2} and hydrocarbons has been measured using primary reference fuels. It appears that an increase in the inlet temperature, the EGR temperature, the equivalence ratio and the compression ratio results into a decrease of the emissions of CO and the hydrocarbons of up to 75%. The emission of CO{sub 2} increased, however, by 50%. The chemical parameters showed more complicated effects, resulting into a decrease or increase of the emissions, depending on whether the overall reactivity increased or not. If the reactivity increased, generally, the emissions of CO and hydrocarbons increased, while that of CO{sub 2} increased. The increase of CO{sub 2} emissions could be compensated by altering the compression ratio and the EGR parameters, making it possible to control the emission of the HCCI engine. (author)

  13. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.; Shoffner, B.


    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

  14. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? (United States)

    Stavrakou, T.; Müller, J.-F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Mazière, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; Coheur, P.-F.; Guenther, A.


    The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the adjoint model technique in the IMAGESv2 global CTM (chemical transport model) on a monthly basis and at the model resolution. Given the different local overpass times of GOME-2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cycle of HCHO columns is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon maxima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening maxima over fire scenes, and midday minima in isoprene-rich regions. The agreement between simulated and ground-based columns is generally better in summer (with a clear afternoon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043). The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly polluted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inventory (24.6 vs. 25.5 TgVOC yr-1 in the a priori) with, however, pronounced increases in the northeast of China and reductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr-1), in particular over the northeast

  15. Infrared spectroradiometer for rocket exhaust analysis (United States)

    Herget, W. F.


    Infrared spectroradiometer measures high-resolution spectral absorption, emission, temperature, and concentration of chemical species in radically symmetric zones of the exhaust plumes of large rocket engines undergoing static firing tests. Measurements are made along predetermined lines of sight through the plume.

  16. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?

    Directory of Open Access Journals (Sweden)

    T. Stavrakou


    Full Text Available The vertical columns of formaldehyde (HCHO retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2 on Metop-A and the Ozone Monitoring Instrument (OMI on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the adjoint model technique in the IMAGESv2 global CTM (chemistry-transport model on a monthly basis and at the model resolution. Given the different local overpass times of GOME-2 (09:30 LT and OMI (13:30 LT, the simulated diurnal cycle of HCHO columns is investigated and evaluated against ground-based optical measurements at 7 sites in Europe, China and Africa. The modelled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon maxima at remote locations (oceans and in regions dominated by anthropogenic emissions, late afternoon or evening maxima over fire scenes, and midday minima in isoprene-rich regions. The agreement between simulated and ground-based columns is found to be generally better in summer (with a clear afternoon maximum at mid-latitude sites than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126 than in the ground-based measurements (1.043. The anthropogenic VOC (volatile organic compound sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly polluted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inventory (24.6 vs. 25.5 in the a priori with, however, pronounced increases in the Northeast China and reductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC, in particular over the Northeast, likely

  17. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?

    Energy Technology Data Exchange (ETDEWEB)

    Stavrakou, T. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); Muller, J. F. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); Bauwens, M. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); De Smedt, I. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); Van Roozendael, M. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); De Maziere, M. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); Vigouroux, C. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); Hendrick, F. [Belgium Inst. for Space Aeronomy, Brussels (Belgium); George, M. [UPMC Univ., Paris (France); Clerbaux, C. [UPMC Univ., Paris (France); Free University of Brussels (Germany); Coheur, P-F [Free University of Brussels (Germany); Guenther, Alex B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the ad-joint model technique in the IMAGESv2 global CTM (chem-ical transport model) on a monthly basis and at the model res-olution. Given the different local overpass times of GOME- 2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cy-cle of HCHO columns is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon max-ima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening max-ima over fire scenes, and midday minima in isoprene-rich re-gions. The agreement between simulated and ground-based columns is generally better in summer (with a clear after-noon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043).The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly pol-luted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inven-tory (24.6 vs. 25.5 TgVOC yr-1 in the a priori) with, how-ever, pronounced increases in the northeast of China and re-ductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr-1), in

  18. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    Energy Technology Data Exchange (ETDEWEB)

    William E. Wallace


    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  19. Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World

    Directory of Open Access Journals (Sweden)

    Mahdi Fasihi


    Full Text Available Concerns about climate change and increasing emission costs are drivers for new sources of fuels for Europe. Sustainable hydrocarbons can be produced synthetically by power-to-gas (PtG and power-to-liquids (PtL facilities, for sectors with low direct electrification such as aviation, heavy transportation and chemical industry. Hybrid PV–Wind power plants can harvest high solar and wind potentials of the Maghreb region to power these systems. This paper calculates the cost of these fuels for Europe, and presents a respective business case for the Maghreb region. Calculations are hourly resolved to find the least cost combination of technologies in a 0.45° × 0.45° spatial resolution. Results show that, for 7% weighted average cost of capital (WACC, renewable energy based synthetic natural gas (RE-SNG and RE-diesel can be produced in 2030 for a minimum cost of 76 €/MWhHHV (0.78 €/m3SNG and 88 €/MWhHHV (0.85 €/L, respectively. While in 2040, these production costs can drop to 66 €/MWhHHV (0.68 €/m3SNG and 83 €/MWhHHV (0.80 €/L, respectively. Considering access to a WACC of 5% in a de-risking project, oxygen sales and CO2 emissions costs, RE-diesel can reach fuel-parity at crude oil prices of 101 and 83 USD/bbl in 2030 and 2040, respectively. Thus, RE-synthetic fuels could be produced to answer fuel demand and remove environmental concerns in Europe at an affordable cost.

  20. Comparison of the Emission of Aromatic Hydrocarbons from Moulding Sands with Furfural Resin with the Low Content of Furfuryl Alcohol and Different Activators

    Directory of Open Access Journals (Sweden)

    Żymankowska-Kumon S.


    Full Text Available No-bake process refers to the use of chemical binders to bond the moulding sand. Sand is moved to the mould fill station in preparation for filling of the mould. A mixer is used to blend the sand with the chemical binder and activator. As the sand exits the mixer, the binder begins the chemical process of hardening. This paper presents the results of decomposition of the moulding sands with modified urea-furfuryl resin (with the low content of furfuryl alcohol below 25 % and different activators: organic and inorganic on a quartz matrix, under semi-industrial conditions. Investigations of the gases emission in the test foundry plant were executed according to the method extended in the Faculty of Foundry Engineering (AGH University of Science and Technology. Article presents the results of the emitted chosen aromatic hydrocarbons and loss on ignition compared with the different activators used to harden this resin. On the bases of the data, it is possible to determine the content of the emitted dangerous substances from the moulding sand according to the content of loss on ignition.

  1. Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon-attached rotating disks. Simultaneous determination of polycyclic aromatic hydrocarbons in the presence of interferences. (United States)

    Cañas, Alejandro; Richter, Pablo; Escandar, Graciela M


    This work presents a green and very simple approach which enables the accurate and simultaneous determination of benzo[a]pyrene, dibenz[a,h]anthracene, benz[a]anthracene, and chrysene, concerned and potentially carcinogenic heavy-polycyclic aromatic hydrocarbons (PAHs) in interfering samples. The compounds are extracted from water samples onto a device composed of a small rotating Teflon disk, with a nylon membrane attached to one of its surfaces. After extraction, the nylon membrane containing the concentrated analytes is separated from the Teflon disk, and fluorescence excitation-emission matrices are directly measured on the nylon surface, and processed by applying parallel factor analysis (PARAFAC), without the necessity of a desorption step. Under optimum conditions and for a sample volume of 25 mL, the PAHs extraction was carried out in 20 min. Detection limits based on the IUPAC recommended criterion and relative errors of prediction were in the ranges 20-100 ng L(-1) and 5-7%, respectively. Thanks to the combination of the ability of nylon to strongly retain PAHs, the easy rotating disk extraction approach, and the selectivity of second-order calibration, which greatly simplifies sample treatment avoiding the use of toxic solvents, the developed method follows most green analytical chemistry principles.

  2. Class separation of lipids and polycyclic aromatic hydrocarbons in normal phase high performance liquid chromatography - a prospect for analysis of aromatics in edible vegetable oils and biodiesel exhaust particulates. (United States)

    Olsson, Petter; Sadiktsis, Ioannis; Holmbäck, Jan; Westerholm, Roger


    The retention characteristics of the major lipid components in biodiesels and edible oils as well as representative polycyclic aromatic compounds (PAHs) have been investigated on five different normal phase HPLC stationary phases, in order to optimize class separation for an automatized online HPLC cleanup of PAHs prior GC-MS analysis. By stepwise comparison of different hexane/MTBE compositions as mobile phases on cyano-, phenyl-, pentabromobenzyl-, nitrophenyl- and amino-modified silica columns, the capacity and selectivity factors for each analyte and column could be calculated. It was concluded that the most suitable column for backflush isolation of PAHs in biodiesel and edible oil matrices was the pentabromobenzyl-modified silica (PBB). A previously described online HPLC-GC-MS system using the PBB column was then evaluated by qualitative and quantitative analysis of a biodiesel exhaust particulate extract and a vegetable oil reference material. The GC-MS full scan analysis of the biodiesel particulate extract showed that the lipids had been removed from the sample and a fraction containing PAHs and oxygenated derivatives thereof had been isolated. Quantified mass fractions of PAHs of the reference material BCR-458 agreed well for most of the certified PAH mass fractions in the spiked coconut oil reference material.

  3. The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine (United States)

    Piperel, A.; Montagne, X.; Dagaut, P.


    Nowadays, in diesel engines, it is typical to recycle exhaust gases (EGR) in order to decrease pollutant emissions. However, few studies report the precisely measured composition of the recycled gases. Indeed, in order to know precisely the composition of the EGR gases, they have to be sampled hot and not diluted, in contrast to the usual practice. Thus, a new system to collect such samples was developed. With this new trapping system, it is possible to measure the concentrations of NOx, CO, CO2, O2, hydrocarbons (HCs) in the range C1-C9, aldehydes, ketones and PAHs. The trapping system and the analytical protocol used are described in this paper.

  4. Effects of Postinjection Application with Late Partially Premixed Combustion on Power Production and Diesel Exhaust Gas Conditioning

    Directory of Open Access Journals (Sweden)

    Marko Jeftić


    Full Text Available The effects of postinjection with late partially premixed charge compression ignition (PCCI were investigated with respect to diesel exhaust gas conditioning and potential power production. Initial tests comparing postinjection application with PCCI to that with conventional diesel high temperature combustion (HTC indicated the existence of similar trends in terms of carbon monoxide (CO, total unburned hydrocarbon (THC, oxides of nitrogen (NOx, and smoke emissions. However, postinjection in PCCI cycles exhibited lower NOx and smoke but higher CO and THC emissions. With PCCI operation, the use of postinjection showed much weaker ability for raising the exhaust gas temperature compared to HTC. Additional PCCI investigations generally showed increasing CO and THC, relatively constant NOx, and decreasing smoke emissions, as the postinjection was shifted further from top dead center (TDC. Decreasing the overall air-to-fuel ratio resulted in increased hydrogen content levels but at the cost of increased smoke, THC and CO emissions. The power production capabilities of early postinjection, combined with PCCI, were investigated and the results showed potential for early postinjection power production.

  5. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due


    studies for final analysis and interpretation. Twelve studies could be included in the data synthesis. Results: We found clear evidence that the prospect of exhaustion of benefits results in a significantly increased incentive for finding work. Discussion: The theoretical suggestion that the prospect......This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...... of exhaustion of benefits results in an increased incentive for finding work has been confirmed empirically by measures from seven different European countries, the United States, and Canada. The results are robust in the sense that sensitivity analyses evidenced no appreciable changes in the results. We found...

  6. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications. (United States)


    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer specifications....317-79 Hydrocarbon analyzer specifications. (a) Hydrocarbon measurements are to be made with a heated... measures hydrocarbon emissions on a dry basis is permitted for gasoline-fueled testing; Provided,...

  7. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan


    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  8. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant. (United States)

    Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati


    Fugitive emissions of PM10 (particles blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo