WorldWideScience

Sample records for hydrocarbon degradation products

  1. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Cherrier, J.

    2005-01-01

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO 2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO 2 was used as the indicator of hydrocarbon degradation and (delta) 13 C analysis of the resultant CO 2 was used to evaluate the source of the respired CO 2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time

  2. Degradation of volatile hydrocarbons from steam-classified solid waste by a mixture of aromatic hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Leahy, Joseph G; Tracy, Karen D; Eley, Michael H

    2003-03-01

    Steam classification is a process for treatment of solid waste that allows recovery of volatile organic compounds from the waste via steam condensate and off-gases. A mixed culture of aromatic hydrocarbon-degrading bacteria was used to degrade the contaminants in the condensate, which contained approx. 60 hydrocarbons, of which 38 were degraded within 4 d. Many of the hydrocarbons, including styrene, 1,2,4-trimethylbenzene, naphthalene, ethylbenzene, m-/p-xylene, chloroform, 1,3-dichloropropene, were completely or nearly completely degraded within one day, while trichloroethylene and 1,2,3-trichloropropane were degraded more slowly.

  3. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  4. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  5. In vitro degradation of dicyclopentadiene by microbial consortia isolated from hydrocarbon-contaminated soil

    International Nuclear Information System (INIS)

    Stehmeier, L.G.; Voordouw, G.

    1996-01-01

    The degradation of dicyclopentadiene (DCPD), an extremely odoriferous by-product of the production of hydrocarbon feed stocks in petrochemical plants, was discussed. A laboratory study was described in which DCPD was degraded to carbon dioxide and oxygenated intermediates were established. More than 100 isolated organisms and cultures were screened for DCPD degradation using BIOLOG TM MT plates incubated in an atmosphere containing the test hydrocarbon. No single colony isolate readily mineralized DCPD, but mixed cultures produced 14 CO 2 when incubated with [ 14 C]DCPD. For bioremediation purposes, the objective was to remove odor. In the presence of a hydrocarbon degradation medium, the complete degradation to CO 2 was achieved in less than 6 months. 15 refs., 3 tabs., 4 figs

  6. BioDegradation of Refined Petroleum Hydrocarbons in Soil | Obire ...

    African Journals Online (AJOL)

    Carbon-dioxide production and hydrocarbon degradation of refined petroleum hydrocarbon in soils treated with 5% gasoline, kerosene and diesel oil were investigated. Soil for study was bulked from around a car park in Port Harcourt. Soil samples were collected at weekly intervals for four weeks and subsequently at ...

  7. Using microorganisms to aid in hydrocarbon degradation

    International Nuclear Information System (INIS)

    Black, W.; Zamora, J.

    1993-01-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO 2 evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans

  8. Microbial consortia involved in the anaerobic degradation of hydrocarbons.

    Science.gov (United States)

    Zwolinski; Harris, R F; Hickey, W J

    2000-01-01

    In this review, we examine the energetics of well-characterized biodegradation pathways and explore the possibilities for these to support growth of multiple organisms interacting in consortia. The relevant phenotypic and/or phylogenetic characteristics of isolates and consortia mediating hydrocarbon degradation coupled with different terminal electron-accepting processes (TEAP) are also reviewed. While the information on metabolic pathways has been gained from the analysis of individual isolates, the energetic framework presented here demonstrates that microbial consortia could be readily postulated for hydrocarbon degradation coupled to any TEAP. Several specialized reactions occur within these pathways, and the organisms mediating these are likely to play a key role in defining the hydrocarbon degradation characteristics of the community under a given TEAP. Comparing these processes within and between TEAPs reveals biological unity in that divergent phylotypes display similar degradation mechanisms and biological diversity in that hydrocarbon-degraders closely related as phylotypes differ in the type and variety of hydrocarbon degradation pathways they possess. Analysis of microcosms and of field samples suggests that we have only begun to reveal the diversity of organisms mediating anaerobic hydrocarbon degradation. Advancements in the understanding of how hydrocarbon-degrading communities function will be significantly affected by the extent to which organisms mediating specialized reactions can be identified, and tools developed to allow their study in situ.

  9. Degradation of petroleum hydrocarbons in a laboratory aquifer column

    International Nuclear Information System (INIS)

    Billowits, M.; Whyte, L.; Greer, C.; Ramsay, J.

    1998-01-01

    One of the primary mechanisms for eliminating hydrocarbon pollutants from the environment is degradation of hydrocarbons by indigenous microorganisms. This report describes a study in which samples from a petroleum polluted shallow aquifer in the Yukon were used which contained a hundred times greater concentration of psychrotropic bacteria than mesophilic bacteria. Results showed a maximum degradation of 47 per cent of the total petroleum hydrocarbon in columns which simulated the aquifer conditions and to which nutrients were added. It was concluded that although in this case bioaugmentation of the columns with a psychrotropic hydrocarbon-degrading consortium increased microbial numbers, total petroleum hydrocarbon degradation was not much greater than could be achieved by remediation with nutrients alone

  10. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan

    Directory of Open Access Journals (Sweden)

    J. Felden

    2013-05-01

    Full Text Available The Amon mud volcano (MV, located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbon-vented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport.

  11. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  12. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  13. Degradation of tetraethyllead during the degradation of leaded gasoline hydrocarbons in soil

    International Nuclear Information System (INIS)

    Mulroy, P.T.; Ou, L.T.

    1998-01-01

    For over 50 years, leaded gasoline was the only fuel for automobiles, and tetraethyllead (TEL) was the major octane number enhancer used in leaded gasoline. Ample information is available on the fate and remediation of gasoline hydrocarbons in contaminated subsoils and groundwater. However, little is known regarding the fate of TEL in leaded gasoline-contaminated subsoils and groundwater. In soil not contaminated with gasoline, TEL was rapidly degraded and completely disappeared in 14 d. In gasoline-contaminated soil, TEL degradation was slower; after 77 d, 4 to 17% of the applied TEL still remained in the contaminated soil. Disappearance of total petroleum hydrocarbons (TPH) was initially rapid but slowed appreciably after 7 to 14 d. As a result, after 77 d, 33 to 51% of the applied gasoline still remained in soil. The retardation of TEL degradation in leaded gasoline-contaminated soil is due to the presence of gasoline hydrocarbons. As long as gasoline hydrocarbons remain in soil, TEL may also remain in soil, most likely in the gasoline hydrocarbon phase

  14. Hydrocarbon-degrading bacteria isolation and surfactant influence ...

    African Journals Online (AJOL)

    Hydrocarbons are substantially insoluble in water, often remaining partitioned in the non-aqueous phase liquid (NAPL). However, there had been little or no attempts to advance the bioavailability of hydrocarbons through the use of surfactants. This study was conducted based on the need to isolate hydrocarbon degrading ...

  15. Method of removing deterioration product in hydrocarbon type solvent

    International Nuclear Information System (INIS)

    Ito, Yoshifumi; Takashina, Toru; Murasawa, Kenji.

    1988-01-01

    Purpose: To remarkably reduce radioactive wastes by bringing adsorbents comprising titanium oxide and/or zirconium oxide into contact with hydrocarbon type solvents. Method: In a nuclear fuel re-processing step, an appropriate processing is applied to extraction solvents suffering from radioactive degradation, to separate the hydrocarbon solvents and store them in a solvent tank. Then, titanium oxide and/or zirconium oxide adsorbents are continuously mixed and agitated therewith to adsorb degradation products on the adsorbents. Then, they are introduced with adsorbent separators to recover purified hydrocarbon type solvents. Meanwhile, the separated adsorbents are discharged from pipeways. This enables to regenerate the hydrocarbon type solvents for reuse, as well as remarkably reduce the radioactive wastes. (Takahashi, M.)

  16. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    OpenAIRE

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BS) are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop c...

  17. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.

    Science.gov (United States)

    Mnif, S; Chamkha, M; Sayadi, S

    2009-09-01

    To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field. Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l(-1) NaCl and at 37 degrees C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC-MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100. A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation. The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.

  18. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  19. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Directory of Open Access Journals (Sweden)

    Eleftheria eAntoniou

    2015-04-01

    Full Text Available Biosurfactants (BS are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on biosurfactant production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FT-IR. Results indicate that biosurfactant production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil implies that the BS producing microbes generate no more than the required amount of biosurfactants that enables biodegradation of the crude oil. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of crude oil has emerged as a promising substrate for BS production (by marine BS producers with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  20. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  1. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields

    International Nuclear Information System (INIS)

    Lazar, I.; Dobrota, S.; Voicu, A.; Stefanescu, M.; Sandulescu, L.; Petrisor, I.G.

    1999-01-01

    During oil production and processing activities, significant quantities of oily sludge are produced. The sludge represents not only an environmental pollution source but also occupies big spaces in storage tanks. Romania, an experienced European oil-producing and processing country, is faced with environmental problems generated by oily sludge accumulations. Many such accumulations are to be submitted to bioremediation processes based on the hydrocarbon degradation activity of naturally occurring, selectively isolated bacteria. In this paper the results concerning a laboratory screening of several natural bacterial consortia and laboratory tests to establish the performance in degradation of hydrocarbons contained in oily sludges from Otesti oil field area, are presented. As a result of the laboratory screening, we selected six natural bacterial consortia (BCSl-I 1 to BCSl-I 6 ) with high ability in degradation of hydrocarbons from paraffinic and non-paraffinic asphaltic oils (between 25.53%-64.30% for non-paraffinic asphaltic oil and between 50.25%-72.97% for paraffinic oil). The laboratory tests proved that microbial degradation of hydrocarbons contained in oily sludge from Otesti oil field area varied from 16.75% to 95.85% in moving conditions (Erlenmeyers of 750 ml on rotary shaker at 200 rpm) and from 16.85% to 51.85% in static conditions (Petri dishes Oe 10 cm or vessels of 500 ml)

  2. Radiolytic degradation of chlorinated hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-Zheng; Yamamoto, Takeshi [Fukui Univ., Faculty of Engineering, Dept. of Materials Science and Engineering, Fukui (Japan); Hatashita, Masanori [The Wakasa Wan Energy Research Center, Research Dept., Tsuruga, Fukui (Japan)

    2002-11-01

    Radiolytic degradation of chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloroethylene) in water was carried out. Water solutions of the chlorinated hydrocarbons with different concentrations were irradiated with {gamma} rays. Concentrations of methane, ethane, CO, CO{sub 2}, H{sub 2}, and O{sub 2} after the irradiation were determined by gas chromatography. Concentration of chloride ion in the irradiated sample was determined by ion chromatography. Experimental results show that radiolytic degradation of the chlorinated hydrocarbon increased with the radiation dose. Methane, ethane, CO{sub 2}, H{sub 2}, and Cl{sup -} concentrations increased with the radiation dose and the sample concentration. On the other hand, O{sub 2} concentration decreased with the radiation dose and the sample concentration. When sample concentration was high, dissolved oxygen might be not enough for converting most of the C atoms in the sample into CO{sub 2}. This resulted in a low decomposition ratio. Addition of H{sub 2}O{sub 2} as an oxygen resource could increase the decomposition ratio greatly. Furthermore, gas chromatography-mass spectroscopy was applied to identify some intermediates of the radiolytic dehalogenation. Radiolytic degradation mechanisms are also discussed. (author)

  3. Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans.

    Science.gov (United States)

    Reunamo, Anna; Riemann, Lasse; Leskinen, Piia; Jørgensen, Kirsten S

    2013-07-15

    The natural petroleum hydrocarbon degrading capacity of the Archipelago Sea water in S-W Finland was studied in a microcosm experiment. Pristine and previously oil exposed sites were examined. Bacterial community fingerprinting was performed using terminal restriction fragment length polymorphism (T-RFLP) and samples from selected microcosms were sequenced. The abundance of PAH degradation genes was measured by quantitative PCR. Bacterial communities in diesel exposed microcosms diverged from control microcosms during the experiment. Gram positive PAH degradation genes dominated at both sites in situ, whereas gram negative PAH degrading genes became enriched in diesel microcosms. The dominant bacterial groups after a 14 days of diesel exposure were different depending on the sampling site, belonging to the class Actinobacteria (32%) at a pristine site and Betaproteobacteria (52%) at a previously oil exposed site. The hydrocarbon degrading bacteria in the Baltic Sea differ from those in the oceans, where most hydrocarbon degraders belong to Gammaproteobacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m -1 , with the critical micelle concentration (CMC) of 56 mg L -1 . FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  5. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  6. Microbial Hydrocarbon and ToxicPollutant Degradation Method

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Dietrich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Janabi, Mustafa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Neil, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-08-16

    The goal of this project is to determine optimum conditions for bacterial oxidation of hydrocarbons and long-chain alkanes that are representative of petroleum contamination of the environment. Polycyclic Aromatic Hydrocarbons (PAHs) are of concern because of their toxicity, low volatility, and resistance to microbial degradation, especially under anaerobic conditions. The uniqueness of our approach is to use carbon-11 in lieu of the traditional use of carbon-14.

  7. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    Science.gov (United States)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    The genus Marinobacter is amongst the most ubiquitous in the global oceans and strains have been isolated from a wide variety of marine environments, including offshore oil-well heads, coastal thermal springs, Antarctic sea water, saline soils and associations with diatoms and dinoflagellates. Many strains have been recognized to be important hydrocarbon degraders in various marine habitats presenting sometimes extreme pH or salinity conditions. Analysis of the genome of M. aquaeolei revealed enormous adaptation versatility with an assortment of strategies for carbon and energy acquisition, sensation, and defense. In an effort to elucidate the ecological and biogeochemical significance of the Marinobacters, seven Marinobacter strains from diverse environments were included in a comparative genomics study. Genomes were screened for metabolic and adaptation potential to elucidate the strategies responsible for the omnipresence of the Marinobacter genus and their remedial action potential in hydrocarbon-polluted waters. The core genome predominantly encodes for key genes involved in hydrocarbon degradation, biofilm-relevant processes, including utilization of external DNA, halotolerance, as well as defense mechanisms against heavy metals, antibiotics, and toxins. All Marinobacter strains were observed to degrade a wide spectrum of hydrocarbon species, including aliphatic, polycyclic aromatic as well as acyclic isoprenoid compounds. Various genes predicted to facilitate hydrocarbon degradation, e.g. alkane 1-monooxygenase, appear to have originated from lateral gene transfer as they are located on gene clusters of 10-20% lower GC-content compared to genome averages and are flanked by transposases. Top ortholog hits are found in other hydrocarbon degrading organisms, e.g. Alcanivorax borkumensis. Strategies for hydrocarbon uptake encoded by various Marinobacter strains include cell surface hydrophobicity adaptation via capsular polysaccharide biosynthesis and attachment

  8. Screening and Optimization of Bio surfactant Production by the Hydrocarbon-Degrading Bacteria

    International Nuclear Information System (INIS)

    Ainon Hamzah; Noramiza Sabturani; Shahidan Radiman

    2013-01-01

    Bio surfactants are amphiphilic compounds produced by microorganisms as secondary metabolite. The unique properties of bio surfactants make them possible to replace or to be added to synthetic surfactants which are mainly used in food, cosmetics and pharmaceutical industries and in environmental applications. In this study twenty hydrocarbon-degrading bacteria were screened for bio surfactant production. All of the bacterial isolates were grown in mineral salt medium (MSM) with addition of 1 % (v/v) Tapis crude oil as carbon source. The presence of bio surfactant was determined by the drop-collapse test, microplate analysis, oil spreading technique, emulsification index (%EI24) and surface tension measurement. Only one isolate, Pseudomonas aeruginosa UKMP14T, was found to be positive for all the qualitative tests and reducing the surface tension of the medium to 49.5 dynes/ with emulsification index of 25.29 %. This isolate produced bio surfactant optimally at pH 9.0 and incubation temperature of 37 degree Celsius. Furthermore, P. aeruginosa UKMP14T when grown in MSM with addition of 1 % (v/v) glycerol and 1.3 g/ L ammonium sulphate with C/N ratio 14:1 produced bio surfactant with percentage of surface tension reduction at 55 % or 30.6 dynes/ cm with %EI24 of 43 %. This percentage of surface tension reduction represents an increasing reduction in surface tension of medium by 39 % over the value before optimization. This study showed that P. aeruginosa UKMP14T has the ability to biodegrade hydrocarbon and concurrently produce bio surfactant. (author)

  9. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Selection of bacteria with hydrocarbon degrading capacity isolated from Colombian Caribbean sediments

    International Nuclear Information System (INIS)

    Narvaez Florez, Silvia; Gomez, Martha L; Martinez Maria M

    2008-01-01

    Thirty one bacterial isolations in minimal salts supplemented medium with hydrocarbons (ACPM or crude oil) as sole carbon source were isolated from sediment samples from the Colombian Caribbean. Bacterial strains underwent selection tests in different concentrations of hydrocarbons; 11 tolerant crude oil and ACPM strains in a range of 1-8%v/v were chosen. A mixed bacterial culture was created and assessed its ability to degrade hydrocarbons in a laboratory-scale test, with a concentration of 2% v/v of ACPM over a period of 21 days. Measurements of biomass in Colony Forming Units (CFU)/mL were used to develop the growth curve of the mixed culture. Hydrocarbons remotion was measured by mass chromatography. The mixed culture was able to degrade the 68.6% of aliphatic hydrocarbons in preference of long chain n- alkenes (C12- C31), reaching a maximum growth of 3.13 x 10 9 UFC / mL. Degradation of aromatic hydrocarbons was not evidenced under the observation time. Nine of the eleven strains were identified using the biochemical systems BBL and API 50 CHB/E; they belonged to the genus Klebsiella, Chromobacterium, Flavimonas, Enterobacter,Pseudomonas, and Bacillus. The evaluated strains have enzymatic potential to degrade hydrocarbons and it is necessary to characterize them at molecular level in order to develop and effective consortium for field application

  11. Isolation and Characterization of Hydrocarbon-Degrading Bacteria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    June 2017. Vol. 21 (4) 641-645. Full-text Available Online at www.ajol.info and ... ABSTRACT: The isolation of hydrocarbon-degrading bacteria in topsoil and subsoil samples of ... This process whereby microorganisms break down ..... Page 5 ...

  12. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    Science.gov (United States)

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site. Copyright © 2016. Published by Elsevier Editora Ltda.

  13. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  14. Calculating in situ degradation rates of hydrocarbon compounds in deep waters of the Gulf of Mexico.

    Science.gov (United States)

    Thessen, Anne E; North, Elizabeth W

    2017-09-15

    Biodegradation is an important process for hydrocarbon weathering that influences its fate and transport, yet little is known about in situ biodegradation rates of specific hydrocarbon compounds in the deep ocean. Using data collected in the Gulf of Mexico below 700m during and after the Deepwater Horizon oil spill, we calculated first-order degradation rate constants for 49 hydrocarbons and inferred degradation rate constants for an additional 5 data-deficient hydrocarbons. Resulting calculated (not inferred) half-lives of the hydrocarbons ranged from 0.4 to 36.5days. The fastest degrading hydrocarbons were toluene (k=-1.716), methylcyclohexane (k=-1.538), benzene (k=-1.333), and C1-naphthalene (k=-1.305). The slowest degrading hydrocarbons were the large straight-chain alkanes, C-26 through C-33 (k=-0.0494 through k=-0.007). Ratios of C-18 to phytane supported the hypothesis that the primary means of degradation in the subsurface was microbial biodegradation. These degradation rate constants can be used to improve models describing the fate and transport of hydrocarbons in the event of an accidental deep ocean oil spill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Exploration of hydrocarbon degrading bacteria on soils contaminated by crude oil from South Sumatera

    Directory of Open Access Journals (Sweden)

    A. Napoleon

    2014-07-01

    Full Text Available The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3 sites of contaminated soil and treated using SBS medium were Bacillus cereus, Pseudomonas aeruginosa, Klebsiella pnumoniae, Streptococcus beta hemolisa, Proteus mirabilis, Staphylococcus epidermis and Acinotobacter calcoaceticus. Isolates that survived on 300 ppm of hydrocarbon concentration were Bacillus cereus, Pseudomonas aeruginosa and Acinetobacter cakciaceticus Selected isolates posses the ability to degrade hydrocarbon by breaking hydrocarbon substance as the energy source to support isolates existence up to 1,67 TPH level. Based on results accomplish by this research, we urge for further research involving the capacity of isolates to degrade wide variety of hydrocarbon substance and more to develop the potential of these bacteria for bioremediation.

  16. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  17. Individually and Synergistic Degradation of Hydrocarbons by Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Amirarsalan Kavyanifard

    2016-02-01

    Full Text Available Background: Increasing worldwide contamination with hydrocarbons has urged environmental remediation using biological agents such as bacteria. Our goal here was to study the phylogenetic relationship of two crude oil degrader bacteria and investigation of their ability to degrade hydrocarbons. Materials and Methods: Phylogenetic relationship of isolates was determined using morphological and biochemical characteristics and 16S rDNA gene sequencing. Optimum conditions of each isolate for crude oil degradation were investigated using one factor in time method. The rate of crude oil degradation by individual and consortium bacteria was assayed via Gas chromatography–mass spectrometry (GC-MS analysis. Biosurfactant production was measured by Du Noüy ring method using Krüss-K6 tensiometer. Results: The isolates were identified as Dietzia cinnamea KA1 and Dietzia cinnamea AP and clustered separately, while both are closely related to each other and with other isolates of Dietzia cinnamea. The optimal conditions for D. cinnamea KA1 were 35°C, pH9.0, 510 mM NaCl, and minimal requirement of 46.5 mM NH4Cl and 2.10 mM NaH2PO4. In the case of D. cinnamea AP, the values were 30°C, pH8.0, 170 mM NaCl, and minimal requirement of 55.8 mM NH4Cl and 2.10 mM NaH2PO4, respectively. Gas chromatography – Mass Spectroscopy (GC-MS analysis showed that both isolates were able to utilize various crude oil compounds, but D. cinnamea KA1 was more efficient individually and consortium of isolates was the most. The isolates were able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil and optimization of MSM conditions lead to increase in biosurfactant production. Conclusion: To the best of our knowledge this is the first report of synergistic relationship between two strains of D. cinnamea in biodegradation of crude oil components, including poisonous and carcinogenic compound in a short time.

  18. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Distribution and activity of petroleum hydrocarbon degrading bacteria in the North Sea and Baltic Sea

    International Nuclear Information System (INIS)

    Bruns, K.; Dahlmann, G.; Gunkel, W.

    1993-01-01

    Data were collected in 1988 and 1989 on the distribution and activity of petroleum hydrocarbon degrading bacteria in the North Sea and Baltic Sea. Crude oil degrading bacteria and the number of bacteria which in particular degrade naphthalene were quantified using a modified dilution method (MPN). Crude oil degrading bacteria were present in all of about 100 water samples, with as many as 10 3 ml -1 in some samples. Numbers of naphthalene degrading bacteria were at least tenfold lower. There is obviously a greater connection between this bacteria group and petroleum hydrocarbon (PHC) contamination than between the more nonspecific group of crude oil degrading bacteria and PHC contamination. Data from the North Sea show an extremely high abundance of hydrocarbon degrading bacteria, even in winter, while in the southern Baltic Sea low numbers of bacteria were found and slower crude oil degradation was observed. (orig.)

  20. Microbial hydrocarbon degradation - bioremediation of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R M [Louisville Univ., KY (United States). Dept. of Biology

    1991-01-01

    Bioremediation has become a major method employed in restoration of oil-polluted environments that makes use of natural microbial biodegradative activities. Bioremediation of petroleum pollutants overcomes the factors limiting rates of microbial hydrocarbon biodegradation. Often this involves using the enzymatic capabilities of the indigenous hydrocarbon-degrading microbial populations and modifying environmental factors, particularly concentrations of molecular oxygen, fixed forms of nitrogen and phosphate to achieve enhanced rates of hydrocarbon biodegradation. Biodegradation of oily sludges and bioremediation of oil-contaminated sites has been achieved by oxygen addition-e.g. by tilling soils in landfarming and by adding hydrogen peroxide or pumping oxygen into oiled aquifers along with addition of nitrogen- and phosphorous-containing fertilizers. The success of seeding oil spills with microbial preparations is ambiguous. Successful bioremediation of a major marine oil spill has been achieved based upon addition of nitrogen and phosphorus fertilizers. (author).

  1. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  2. Hydrocarbon Degradation In Poultry Droppings And Cassava Peels ...

    African Journals Online (AJOL)

    This greenhouse study was aimed at determining the potentials of poultry droppings (PD) and cassava peels (CP) for nutrient-enhanced biodegradation of petroleum hydrocarbon (THC) in a well drained Typic Paleustults using the THC levels and degradation duration as remediation indices. The performance of the organic ...

  3. Aromatic hydrocarbon degradation in hydrogen peroxide- and nitrate-amended microcosms

    International Nuclear Information System (INIS)

    Christian, B.J.; Pugh, L.B.; Clarke, B.H.

    1995-01-01

    Fifty microcosms were constructed using aquifer materials from a former coal gasification site and divided into four groups: poisoned control, nutrient-free control, hydrogen peroxide-amended, and nitrate-amended microcosms. Each microcosm contained site soil and groundwater in a 1.2-L glass media bottle. When depleted, hydrogen peroxide and sodium nitrate were injected into the microcosms. Microcosms were periodically sacrificed for analysis of polycyclic aromatic hydrocarbons (PAHs); monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes [BTEX]); total petroleum hydrocarbons (TPH); and heterotrophic plate counts (HPCs). BTEX and two- and three-ringed PAHs were degraded in microcosms receiving electron-acceptor additions compared to poisoned controls. Four-, five-, and six-ringed PAHs were not significantly degraded during this study. Except in poisoned controls, significant amounts of dissolved oxygen (DO) or nitrate were utilized, and microbial populations increased by 3 to 5 orders of magnitude compared to site soils used to assemble the microcosms (i.e., baseline samples)

  4. Isolation and application of hydrocarbon degradation of indigenous microbial from oil contaminated soil

    International Nuclear Information System (INIS)

    Dadang Sudrajat; Nana Mulyana; Tri Retno DL

    2015-01-01

    The aims of this research are to obtain indigenous potential microbes from bacterial and fungal groups which have capable of degrading hydrocarbon from crude oil contaminated soil. The research carried out were isolation, selection, and identification potential microbial isolates capable of degrading hydrocarbon from oil contaminated soil located at Cepu East Java. The isolates were tested for their growth and ability to degrades crude oil. Each isolate was inoculated unto minimum mineral salt medium (MSM) contained 1% crude oil. Viability and stability test of selected isolates were carried out on irradiated compost carrier materials contained 5% crude oil. The fours series microbial s consortium consists of microbial consortium I, II, III, and IV were tested for the in vitro biodegradability of hydrocarbon. The results shows there sixty two (62) isolates are obtained, among them 42 bacteria and 20 molds. From 42 bacterial isolates, only 8 strains were potent hydrocarbon degraders. Three of these isolates are identified Bacillus cereus (BMC2), Bacillus sp (BMC4), and Pseudomonas sp (BMC6). Whereas from 20 fungal isolates, only 4 strains were potent hydrocarbon degraders. Two of these isolates are identified Aspergillus fumigatus (FMC2) and Aspergillus niger (FMC6). All isolates show good growth in mineral salt medium contained crude oil with decrease in pH. The ability of decrease of TPH content by the bacterial and fungal isolates were 54, 61, 67, 74, and 78% respectively at day 30. The viability and stability of microbial isolates show considerable good viability on irradiated compost carrier materials after 14 days storage. From the fours series microbial consortium, the highest TPH degradation rates is found in microbial consortium III (BMC6, BMC2, and FMC6) with 89,1% in 5 weeks. (author)

  5. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  6. Degradation of Total Petroleum Hydrocarbon in Phytoremediation Using Terrestrial Plants

    Directory of Open Access Journals (Sweden)

    Mushrifah Idris

    2014-06-01

    Full Text Available This study focused on the total petroleum hydrocarbon (TPH degradation in phytoremediation of spiked diesel in sand. The diesel was added to the sand that was planted with terrestrial plants. Four selected terrestrial plants used were Paspalum vaginatum Sw, Paspalums crobiculatum L. varbispicatum Hack, Eragrotis atrovirens (Desf. Trin. ex Steud and Cayratia trifolia (L. Domin since all the plants could survive at a hydrocarbon petroleum contaminated site in Malaysia. The samplings were carried out on Day 0, 7, 14, 28, 42 and 72. The analysis of the TPH was conducted by extracting the spiked sand using ultrasonic extraction. The determination of the TPH concentration in the sand was performed using GC-FID. The degradation of TPH depends on the plant species and time of exposure. The highest percentage degradation by P. vaginatum, P. scrobiculatum, E. atrovirens and C. trifolia were 91.9, 74.0, 68.9 and 62.9%, respectively. In conclusion, the ability to degrade TPH by plants were P. vaginatum > P. scrobiculatum > E. atrovirens> C. trifolia.

  7. Microbial Degradation of Polycyclic Aromatic Hydrocarbons and Characterization of Bacteria

    Science.gov (United States)

    Tikilili, P. V.; Chirwa, E. M. N.

    2010-01-01

    Biodegradation of polycyclic aromatic hydrocarbons was studied. Naphthalene was used as a model compound to represent these compounds. Low initial concentrations of naphthalene in a range of 30-60 mg/L were completely degraded after incubation for 15 hrs by consortia from a landfill soil while consortia from minewater took more that 29 hrs to reach complete degradation.

  8. Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica.

    Science.gov (United States)

    Sampaio, Dayanna Souza; Almeida, Juliana Rodrigues Barboza; de Jesus, Hugo E; Rosado, Alexandre S; Seldin, Lucy; Jurelevicius, Diogo

    2017-11-01

    Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.

  9. Bioremediation Potential of Native Hydrocarbons Degrading Bacteria in Crude Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mariana MARINESCU

    2017-05-01

    Full Text Available Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.

  10. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil

    International Nuclear Information System (INIS)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K.; Davenport, Russell J.; Head, Ian M.; Werner, David

    2013-01-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Highlights: ► The effect of 10% ethanol or 20% biodiesel on the biodegradability of volatile petroleum hydrocarbons in soil was investigated. ► Competition for scarce inorganic nutrients between biofuel and VPH degraders slowed monoaromatic hydrocarbon degradation. ► Biofuel effects were transitional. ► Each fuel selected for a distinct predominant bacterial community. ► All bacterial communities were dominated by Pseudomonas spp. - Blending of petroleum with ethanol or biodiesel changes the fuel degrading soil bacterial community structure, but the long-term effects on fuel biodegradability are minor.

  11. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  12. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  13. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water

    International Nuclear Information System (INIS)

    Mousa, Ibrahim E.

    2016-01-01

    The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1 min and the energy consumption was 32.6 mA/cm 2 . However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20 L/h. Pseudo steady state was achieved after 30 min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. - Highlights: • The hybrid electrolytic biological cell was used for degradation of oilfield produced water. • Decomposition of Total Petroleum Hydrocarbon with or without the biofilter. • High saline water with the high chloride and sulfate ions content treatment. • The removal of electrochemical by-products is a phase change technique that requires the maintenance the biofilm on the filter media, which is sensitive and a complex operation. • Biofilter is efficient for the degradation of PW bye products, the critical drawback to their utility in full-scale operations is high TDS water content and detention time of treatment.

  14. Degradation of hydrocarbons in soil samples analyzed within accepted analytical holding times

    International Nuclear Information System (INIS)

    Jackson, J.; Thomey, N.; Dietlein, L.F.

    1992-01-01

    Samples which are collected in conjunction with subsurface investigations at leaking petroleum storage tank sites and petroleum refineries are routinely analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX), and total petroleum hydrocarbons (TPH). Water samples are preserved by the addition of hydrochloric acid and maintained at four degrees centigrade prior to analysis. This is done to prevent bacterial degradation of hydrocarbons. Chemical preservation is not presently performed on soil samples. Instead, the samples are cooled and maintained at four degrees centigrade. This study was done to measure the degree of degradation of hydrocarbons in soil samples which are analyzed within accepted holding times. Soil samples were collected and representative subsamples were prepared from the initial sample. Subsamples were analyzed in triplicate for BTEX and TPH throughout the length of the approved holding times to measure the extent of sample constituent degradation prior to analysis. Findings imply that for sandy soils, BTEX and TPH concentrations can be highly dependent upon the length of time which elapses between sample collection and analysis

  15. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    Science.gov (United States)

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  16. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-01-01

    The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  17. Occurrence of hydrocarbon degrading bacteria in soil in Kukawa, Borno State

    Directory of Open Access Journals (Sweden)

    IA Allamin

    2014-05-01

    Full Text Available Soil samples were collected from five sites covering petroleum exploration station in Kukawa, Kukawa Local Government Area of Borno State, Nigeria between October, 2012 and February, 2013 at two different depths (0-10cm and 10-20cm to enumerate and identify hydrocarbon degrading bacteria in the soil. Total aerobic heterotrophic bacteria (TAHB were enumerated on Nutrient agar (NA, and Hydrocarbon utilizing bacteria (HUB enumerated on Oil agar (OA. The bacterial isolates were identified using morphological and biochemical tests. It was observed that the microorganisms (TAHB, and HUB were more densely populated at 10cm depth. (TAHB: 5.3×108 - 11.4×108cfu/g, and HUB: 2.4×105 - 5.3×105 cfu/g, than at 20 cm depth (TAHB: 3.0×108 - 5.7×108 cfu/g, and HUB: 2.1×105 - 4.8×105 cfu/g. The HUB was identified as species of Bacillus, Pseudomonas, Klebsiella, Lactobacillus, Micrococcus, Corynebacterium, and Actinomyces. Bacillus, and Pseudomonas species were more constantly isolated than other isolates and they constitute 100% of total bacterial isolates. The potential of hydrocarbon utilizing bacteria isolated to degrade hydrocarbon was studied. Nineteen (19 bacterial species was screened, Bacillus subtilis, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, Micrococcus leteus,and Lactobacillus casei, utilized and degrade crude oil at considerably high rates after 21 days of incubation. The degradation efficiency was confirmed by GC-MS analysis, which indicated that the bacterial isolates utilized most of the crude oil components particularly straight chain alkanes and cycloalkanes DOI: http://dx.doi.org/10.3126/ije.v3i2.10503 International Journal of the Environment Vol.3(2 2014: 36-47

  18. Hydrocarbon-degrading Capability of Bacteria isolated from a Maize ...

    African Journals Online (AJOL)

    Hydrocarbon-degrading Capability of Bacteria isolated from a Maize-Planted, Kerosene-contaminated Ilorin Alfisol. ... also revealed that some bacteria survive and even thrive in kerosene contaminated soil and hence have the potential to be used in biodegradation and/or bioremediation of oil contaminated soils and water.

  19. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  20. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  1. Apparent Contradiction: Psychrotolerant Bacteria from Hydrocarbon-Contaminated Arctic Tundra Soils That Degrade Diterpenoids Synthesized by Trees

    Science.gov (United States)

    Yu, Zhongtang; Stewart, Gordon R.; Mohn, William W.

    2000-01-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

  2. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-02-01

    Prokaryotes are the main actors in biogeochemical cycles that are fundamental in global nutrient cycling. The characterization of microbial communities and isolates can enhance the comprehension of such cycles. Potentially novel biochemical processes can be discovered in particular environments with unique characteristics. The Red Sea can be considered as a unique natural laboratory due to its peculiar hydrology and physical features including temperature, salinity and water circulation. Moreover the Red Sea is subjected to hydrocarbon pollution by both anthropogenic and natural sources that select hydrocarbon degrading prokaryotes. Due to its unique features the Red Sea has the potential to host uncharacterized novel microorganisms with hydrocarbondegrading pathways. The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  3. Enhanced degradation activity by endophytic bacteria of plants growing in hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, L.; Germida, J.J. [Saskatchewan Univ., Saskatoon, SK (Canada); Greer, C.W. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2006-07-01

    The feasibility of using phytoremediation for cleaning soils contaminated with petroleum hydrocarbons was discussed. Petroleum hydrocarbons are problematic because of their toxicity, mobility and persistence in the environment. Appropriate clean-up methods are needed, given that 60 per cent of Canada's contaminated sites contain these compounds. Phytoremediation is an in situ biotechnology in which plants are used to facilitate contaminant removal. The approach relies on a synergistic relationship between plants and their root-associated microbial communities. Previous studies on phytoremediation have focussed on rhizosphere communities. However, it is believed that endophytic microbes may also play a vital role in organic contaminant degradation. This study investigated the structural and functional dynamics of both rhizosphere and endophytic microbial communities of plants from a phytoremediation field site in south-eastern Saskatchewan. The former flare pit contains up to 10,000 ppm of F3 to F4 hydrocarbon fractions. Root samples were collected from tall wheatgrass, wild rye, saltmeadow grass, perennial ryegrass, and alfalfa. Culture-based and culture-independent methods were used to evaluate the microbial communities associated with these roots. Most probable number assays showed that the rhizosphere communities contained more n-hexadecane, diesel fuel, and PAH degraders. However, mineralization assays with 14C labelled n-hexadecane, naphthalene, and phenanthrene showed that endophytic communities had more degradation activities per standardized initial degrader populations. Total community DNA samples taken from bulk, rhizosphere, and endophytic samples, were analyzed by denaturing gradient gel electrophoresis. It was shown that specific bacteria increased in endophytic communities compared to rhizosphere communities. It was suggested plants may possibly recruit specific bacteria in response to hydrocarbon contamination, thereby increasing degradation

  4. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10

    Directory of Open Access Journals (Sweden)

    Tri Handayani Kurniati

    2016-12-01

    Full Text Available Pyrene degradation and biosurfactant activity by a new strain identified as Gordonia cholesterolivorans AMP 10 were studied. The strain grew well and produced effective biosurfactants in the presence of glucose, sucrose, and crude oil. The biosurfactants production was detected by the decreased surface tension of the medium and emulsification activity.  Analysis of microbial growth parameters showed that AMP10 grew best at 50 µg mL-1 pyrene concentration, leading to 96 % degradation of pyrene within 7 days. The result of nested PCR analysis revealed that this isolate possessed the nahAc gene which encodes dioxygenase enzyme for initial degradation of Polycyclic Aromatic Hydrocarbon (PAH. Observation of both tensio-active and emulsifying activities indicated that biosurfactants which produced by AMP 10 when grown on glucose could lower the surface tension of medium from 71.3 mN/m to 24.7 mN/m and formed a stable emulsion in used lubricant oil with an emulsification index (E24 of 74%. According to the results, it is suggested that the bacterial isolates G. cholesterolivorans AMP10 are suitable candidates for bioremediation of PAH-contaminated environments.How to CiteKurniati, T. H.,  Rusmana, I. Suryani, A. & Mubarik, N. R. (2016. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10. Biosaintifika: Journal of Biology & Biology Education, 8(3, 336-343. 

  5. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    Science.gov (United States)

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  6. Exploration of Hydrocarbon Degrading Bacteria on Soils Contaminated by Crude Oil From South Sumatera

    OpenAIRE

    Napoleon, A; Probowati, D S

    2014-01-01

    The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3) sites of contaminated soil and treated using SB...

  7. Degradation of Total Petroleum Hydrocarbon and BTEX Compounds in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Lorri

    2002-04-01

    Petroleum Environmental Technologies, LLC entered into a Cooperative Research and Development agreement with the Rocky Mountain Oilfield Testing Center to an in-situ pit treatment demonstration and produced water treatment demonstration. The purpose of the test is to demonstrate the degradation of petroleum hydrocarbon compounds in soil and aqueous matrices where ECOSAFE is applied to enhance the degradation of these contaminants.

  8. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process.

    Science.gov (United States)

    Vieira, Gabriela A L; Magrini, Mariana Juventina; Bonugli-Santos, Rafaella C; Rodrigues, Marili V N; Sette, Lara D

    2018-05-03

    Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL -1 ) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology. Copyright © 2018. Published by Elsevier Editora Ltda.

  9. Use of biolog methodology for optimizing the degradation of hydrocarbons by bacterial consortia.

    Science.gov (United States)

    Ambrosoli, R; Bardi, L; Minati, J L; Belviso, S; Ricci, R; Marzona, M

    2003-01-01

    Biolog methodology was used for the preliminary screening of different cultural conditions in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of hydrocarbons. Two microbial consortia were tested for their activity on 2 hydrocarbons (nonadecane and eicosane) in presence of the following cultural coadjuvants: vegetal oil, beta-cyclodextrine, sodium acetate, mineral solution. Tests were conducted in Biolog MT plates, where only the redox indicator of microbial growth (tetrazolium violet) and no carbon sources are provided. The microwells were filled with various combinations of hydrocarbons, microbial inoculum and coadjuvants. Blanks were prepared with the same combinations but without hydrocarbons. The results obtained show the suitability of the methodology developed to identify the most active consortium and the conditions for its best degradation performance. The efficacy of Biolog methodology (Biolog Inc., USA) for the characterization of microbial communities on the basis of the metabolic profiles obtained on specific carbon sources in the microwells of Elisa-type plates, is widely acknowledged (Garland, 1997; Pietikäinen et al., 2000; Dauber and Wolters, 2000). Due to its aptitude to simultaneously evaluate multiple microbial responses and directly organize the results, it can be adapted to meet specific study purposes (Gamo and Shji, 1999). In the present research Biolog methodology was fitted for the preliminary screening of different cultural conditions, in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of aliphatic hydrocarbons, in view of their utilization for the bioremediation of polluted sites.

  10. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  11. Hydrocarbon Degradation and Sulfate Reduction in a Coastal Marsh of North Florida

    Science.gov (United States)

    Hsieh, Y.; Bugna, G. C.; Robinson, L.

    2001-05-01

    Hydrocarbon contamination of coastal waters has been an environmental concern for sometime. Coastal wetlands, which are rich in organic matter and microbial activities, have been considered natural systems that could degrade hydrocarbon in contaminated coastal waters. This study was initiated to investigate the potential of hydrocarbon degradation in a coastal salt marsh of North Florida with special reference to sulfate reduction. Freshly collected surface marsh sediments (0-20 cm) were incubated in a laboratory at ambient temperature (23.2° C) with the treatments of: 1) Control (i.e., no treatment), 2) +(crude) oil, 3) +NO3-1+oil, and 4) +MoO4-2+oil. Carbon dioxide evolution from the incubation was collected and analyzed for the total amount and the 13C signature. The NO3-1 and MoO4-2 treatments were intended to block the sulfate reduction activity. The results show that the indigenous organic matter and the crude oil have distinct δ 13C values of -19.8 and -27.6 \\permil, respectively, relative to PDB. Evolved CO2 concentrations and δ 13C values also indicate that microbial populations can adapt to the presence of anthropogenic hydrocarbons. Blocking of sulfate reducers by MoO4-2 addition started to reduce the carbon dioxide evolution rates after a 4-d incubation. After a 48-d incubation, the carbon dioxide evolution of the MoO4-2-treated samples was reduced to only 23 % of the non-MoO4-2-treated samples, indicating the increased significant role of sulfate reducers in digesting older soil organic matter and the hydrocarbons. T-tests also indicated that in NO3-1 treatment, δ 13C values significantly depleted (p=0.1) while CO2 concentration remained relatively constant. These indicate that while denitrifiers played a role in the degradation, the microbial population is predominantly composed of sulfate reducers. Salt marshes would be a much more significant source of CH4 if SO4-2 is suppressed. All MoO4-2-treated samples produced significant amount of methane

  12. Isolation and identification of aromatic hydrocarbon degrading yeasts present in gasoline tanks of urbans vehicles

    Directory of Open Access Journals (Sweden)

    Nathalia Catalina Delgadillo-Ordoñez

    2017-07-01

    Full Text Available Yeast isolates were obtained from fuel tanks of vehicles in order to assess their potential use in the degradation of aromatic hydrocarbons. Growth assays were performed in minimum mineral medium using different aromatic hydrocarbons (benzene, toluene, naphthalene, phenanthrene, and pyrene as the sole carbon source. Isolates that showed growth in any of the tested polycyclic aromatic hydrocarbons were identified by Sanger sequencing of the ITS1 and ITS2 rDNA molecular markers. A total of 16 yeasts strains were isolated, and three showed remarkable growth in media with aromatic hydrocarbons as the sole carbon source. These strains belong to the genus Rhodotorula, and correspond to the species Rhodotorula calyptogenae (99,8% identity and Rhodotorula dairenensis (99,8% identity.  These strains grew in benzene, toluene, naphthalene, phenanthrene and pyrene. This study demonstrates for the first time that yeasts of the genus Rhodotorula inhabit pipelines and fuel tanks of vehicles and that remove   aromatic hydrocarbons that are environmental pollutants. Our results suggest that these yeasts are potential candidates for aromatic hydrocarbon degradation as part of bioremediation strategies.

  13. Microbial degradation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Volkering, F.; Breure, A.M.; Andel, J.G. van

    1992-01-01

    Polycyclic aromatic hydrocarbons (PAH) are hazardous compounds originating from oil, tar, creosote, or from incomplete combustion of fossil fuels. Application of biotechnological techniques for remediation of polluted soils from PAH demonstrated that the high molecular compounds are degraded very slowly, and that the residual concentration of PAH often is too high to permit application of the treated soil. Investigations were started to establish process parameters for optimal biodegradation of PAH. The aim is to achieve a relation between the physical properties of PAH and the biodegradation kinetics in different matrices, in order to identify applicability of biotechnological cleanup methods for waste streams and polluted soil. (orig.) [de

  14. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)

    NARCIS (Netherlands)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the

  15. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP

    Science.gov (United States)

    Gutierrez, Tony; Singleton, David R; Berry, David; Yang, Tingting; Aitken, Michael D; Teske, Andreas

    2013-01-01

    The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil. PMID:23788333

  16. Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas.

    Science.gov (United States)

    McMahon, Peter B; Barlow, Jeannie R B; Engle, Mark A; Belitz, Kenneth; Ging, Patricia B; Hunt, Andrew G; Jurgens, Bryant C; Kharaka, Yousif K; Tollett, Roland W; Kresse, Timothy M

    2017-06-20

    Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO 2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.

  17. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  18. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Production of hydrocarbons, especially ethylene

    Energy Technology Data Exchange (ETDEWEB)

    1952-01-17

    The invention has for its object a process for the production of gaseous nonsaturated hydrocarbons, particularly ethylene and aromatic hydrocarbons, by starting with hydrocarbon oils entirely of paraffinic nature or their fractions, which consists in putting the separated products in contact with solid inert material especially with porous nonmetallic inert material or of heavy metals or their alloys, maybe in a finely divided state or in the form, of pieces or chips, at a temperature above 500/sup 0/C, or better between 600 and 700/sup 0/C at a velocity per hour of 0.6 to 3.0, and preferably 0.75 to 1.5 parts per volume of products per each part of space volume of catalyst.

  20. Biosurfactant production by hydrocarbon-degrading Brevibacterium and Vibrio isolates from the sea pen Pteroeides spinosum (Ellis, 1764).

    Science.gov (United States)

    Graziano, Marco; Rizzo, Carmen; Michaud, Luigi; Porporato, Erika Maria Diletta; De Domenico, Emilio; Spanò, Nunziacarla; Lo Giudice, Angelina

    2016-09-01

    Among filter-feeders, pennatulids are the most complex and polymorphic members of the cnidarian class Anthozoa. They display a wide distribution throughout all the oceans, constituting a significant component of the sessile megafauna from intertidal to abyssal depths. In this study, a total of 118 bacterial isolates from enrichment cultures, carried out with homogenates of the sea pen Pteroeides spinosum (Ellis, 1764), were screened for hydrocarbon utilization by using the 2,6-dichlorophenol indophenol assay. Among them, 83 hydrocarbon-oxidizing isolates were analyzed for biosurfactant production by standard screening tests (i.e., emulsifying activity, E24 detection, surface tension measurement, microplate assay). The 16S rRNA gene sequencing revealed the affiliation of the most promising isolates to the genera Brevibacterium and Vibrio. Biosurfactant production resulted strongly affected by salinity and temperature conditions, and occurred in the presence of diesel oil and/or crude oil, whereas no production was observed when isolates were grown on tetradecane. The strains resulted able to create stable emulsions, thus suggesting the production of biosurfactants. Further analyses revealed a glycolipidic nature of the biosurfactant extracted from Vibrio sp. PBN295, a genus that has been only recently reported as biosurfactant producer. Results suggest that pennatulids could represent a novel source for the isolation of hydrocarbon-oxidizing bacteria with potential in biosurfactant production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  2. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  3. Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification.

    Science.gov (United States)

    Eroglu, Ela; Okada, Shigeru; Melis, Anastasios

    2011-08-01

    Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications.

  4. A test of plant-aided petroleum hydrocarbon degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hosler, K R [Water Technology International Corp., Burlington, ON (Canada); Drake, E N [Exxon Research Engineering Co., Annandale, NJ (United States)

    1999-12-31

    A research program was established to develop environmental restoration technologies which apply to contaminated industrial sites. The program involved two separate but related parts. Part One involved a multi-year field study, Part Two a greenhouse potted plant study. This paper presents the results of the greenhouse-based phytoremediation experiment which assessed the potential impacts of three treatment factors on the degradation of total petroleum hydrocarbons (TPH) in contaminated soils for use in those cases where the use of plants for restoring contaminated environments might be a simple and cost-effective clean-up alternative. This study showed that biologically-aided contaminant degradation can be enhanced by various treatments such as adding nutrients in the form of inorganic fertilizers, adding oxygen or modifying soil conditions. The study also showed that contaminant degradation can be enhanced in the rhizosphere of various plant species and that remediation of some contaminants can be achieved by exploiting the unique symbiotic relationship between some fungal species and plant roots. 22 refs., 3 tabs., 1 fig.

  5. A test of plant-aided petroleum hydrocarbon degradation

    International Nuclear Information System (INIS)

    Hosler, K.R.; Drake, E.N.

    1998-01-01

    A research program was established to develop environmental restoration technologies which apply to contaminated industrial sites. The program involved two separate but related parts. Part One involved a multi-year field study, Part Two a greenhouse potted plant study. This paper presents the results of the greenhouse-based phytoremediation experiment which assessed the potential impacts of three treatment factors on the degradation of total petroleum hydrocarbons (TPH) in contaminated soils for use in those cases where the use of plants for restoring contaminated environments might be a simple and cost-effective clean-up alternative. This study showed that biologically-aided contaminant degradation can be enhanced by various treatments such as adding nutrients in the form of inorganic fertilizers, adding oxygen or modifying soil conditions. The study also showed that contaminant degradation can be enhanced in the rhizosphere of various plant species and that remediation of some contaminants can be achieved by exploiting the unique symbiotic relationship between some fungal species and plant roots. 22 refs., 3 tabs., 1 fig

  6. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  7. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  8. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  9. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    Science.gov (United States)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  10. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    International Nuclear Information System (INIS)

    Christova, N.; Tuleva, B.; Nikolova-Damyanova, B.

    2004-01-01

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l -1 ). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  11. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site.

    Science.gov (United States)

    Pawlik, Małgorzata; Cania, Barbara; Thijs, Sofie; Vangronsveld, Jaco; Piotrowska-Seget, Zofia

    2017-08-01

    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.

  12. Isolation of microorganisms with capability to degrade polycyclic aromatic hydrocarbons (PATH )

    International Nuclear Information System (INIS)

    Vargas, M.C; Ramirez, N.E; Rueda, S.M; Sanchez, F.N

    1996-01-01

    This paper summarizes a work conducted on the isolation of microorganisms of contaminated sediments with a high percentage of hydrocarbons aromatic polynuclear (Polynuclear Aromatic Hydrocarbons, PAHS) The methodology involved two selection systems called fast route and slow route in which exposure periods and contaminant concentrations are the key determinants. The microorganisms isolated through the slow route system are more likely to be successful in degrading high molecular weight PAH'S. The six strains obtained through the fast route system were able to grow on low molecular weight PAH's showing preference towards the first four compounds of the sixteen demanded by the EPA (Environmental Protection Agency)

  13. Variability of Biological Degradation of Phenolic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 phenolic hydrocarbons (phenol, o-cresol, o-nitrophenol, p-nitrophenol, 2,6-dichlorophenol, 2,4-dichlorophenol, 4,6-o-dichlorocresol) and 1 aromatic hydrocarbon (nitrobenzene) was studied for 149 days in replicate laboratory batch microcosms with sediment...... and groundwater from 8 localities representing a 15 m × 30 m section of an aerobic aquifer. Three patterns of variation were found: (1) phenol, o-cresol and in most cases p-nitrophenol showed very fast degradation with no or only short lag phases and with very little variation among localities; (2) 2...

  14. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  15. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10.

    Science.gov (United States)

    Barone, Roberto; de Biasi, Margherita-Gabriella; Piccialli, Vincenzo; de Napoli, Lorenzo; Oliviero, Giorgia; Borbone, Nicola; Piccialli, Gennaro

    2016-10-01

    The ability of the water-soluble protein extracts from Zea mais L. cv. PR32-B10 to degrade some representative polycyclic aromatic hydrocarbons (PAHs), has been evaluated. Surface sterilized seeds of corn (Zea mais L. Pioneer cv. PR32-B10) were hydroponically cultivated in a growth chamber under no-stressful conditions. The water-soluble protein extracts isolated from maize tissues showed peroxidase, polyphenol oxidase and catalase activities. Incubation of the extracts with naphthalene, fluorene, phenanthrene and pyrene, led to formation of oxidized and/or degradation products. GC-MS and TLC monitoring of the processes showed that naphthalene, phenanthrene, fluorene and pyrene underwent 100%, 78%, 92% and 65% oxidative degradation, respectively, after 120 min. The chemical structure of the degradation products were determined by (1)H NMR and ESI-MS spectrometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

    Science.gov (United States)

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-05-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

  17. Identification and Characterisation of Major Hydrocarbons in ...

    African Journals Online (AJOL)

    Identification and Characterisation of Major Hydrocarbons in Thermally Degraded Low Density Polyethylene Films. ... There were alkanes, alkenes, halogenated alkanes, and very few aromatics in the liquid product and, the hydrocarbons were observed to range between C10 - C27. The FTIR and GC-MS results show the ...

  18. Effect of concentration gradients on biodegradation in bench-scale sand columns with HYDRUS modeling of hydrocarbon transport and degradation.

    Science.gov (United States)

    Horel, Agota; Schiewer, Silke; Misra, Debasmita

    2015-09-01

    The present research investigated to what extent results obtained in small microcosm experiments can be extrapolated to larger settings with non-uniform concentrations. Microbial hydrocarbon degradation in sandy sediments was compared for column experiments versus homogenized microcosms with varying concentrations of diesel, Syntroleum, and fish biodiesel as contaminants. Syntroleum and fish biodiesel had higher degradation rates than diesel fuel. Microcosms showed significantly higher overall hydrocarbon mineralization percentages (p transport and degradation of the investigated fuels in vadose zone conditions similar to those in laboratory column experiments. The numerical model was used to evaluate the impact of different degradation rate constants from microcosm versus column experiments.

  19. Draft Genome Sequence of Advenella kashmirensis Strain W13003, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhou, Lisha; Wu, Liang; An, Wei; Zhao, Lin

    2014-01-01

    Advenella kashmirensis strain W13003 is a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated marine sediments. Here, we report the 4.8-Mb draft genome sequence of this strain, which will provide insights into the diversity of A. kashmirensis and the mechanism of PAH degradation in the marine environment. PMID:24482505

  20. Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments.

    Science.gov (United States)

    Piedad Díaz, M; Grigson, S J; Peppiatt, C J; Burgess, J G

    2000-11-01

    Two novel and versatile bacterial consortia were developed for the biodegradation of hydrocarbons. They were isolated from crude oil from the Cormorant Field in the North Sea (MPD-7) and from sediment associated with mangrove roots (MPD-M). The bacterial consortia were able to degrade both aliphatic and aromatic hydrocarbons in crude oils very effectively in seawater (35 g/L NaCl) and synthetic media containing 0 to 100 g/L NaCl (1.7 M). Salinities over twice that of normal seawater decreased the biodegradation rates. However, even at the highest salinity biodegradation was significant. Ratios of nC17 to pristane and nC18 to phytane were significantly lowered across the range of salinity. The lowest values were at 0 and 20 g/L (0.34 M). Phytane was degraded in preference to pristane. The degradation of these compounds was constant over the salinity range, with evidence of a slight increase for consortium MPD-M with increasing salinity. In general, the consortium isolated from mangrove root sediments was more efficient in metabolizing North Sea crude oil than the consortium isolated from Cormorant crude oil. The 5 strains that comprise MPD-M have been tentatively identified as species of the genera Marinobacter, Bacillus, and Erwinia. This is the first report of hydrocarbon-degrading consortia isolated from crude oil and mangrove sediments that are capable of treating oily wastes over such a wide range of salinity.

  1. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  2. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Luellemann, A.; Huettermann, A.; Majcherczyk, A. [Goettingen Univ. (Germany). Inst. fuer Forstbotanik

    2000-07-01

    Ectomycorrhizal fungi belonging to 16 species (27 strains) were tested for their ability to degrade polycyclic aromatic hydrocarbons (PAHs): Phenanthrene, chrysene, pyrene and benzo[a]pyrene. Cultivated on a complex liquid medium, most of the fungi tested were able to metabolise these compounds. Approximately 50% of the benzo[a]pyrene was removed by strains of Amanita excelsa, Leccinum versipelle, Suillus grevillei, S. luteus, and S. variegatus during a 4-week incubation period. The same amount of phenanthrene was also metabolised by A. muscaria, Paxillus involutus, and S. grevillei. The degradation of the other two PAHs was, for the most part, less effective. Only S. grevillei was able to remove 50% of the pyrene, whereas Boletus edulis and A. muscaria removed 35% of the chrysene. (orig.)

  3. Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders.

    Science.gov (United States)

    Hu, Ping; Dubinsky, Eric A; Probst, Alexander J; Wang, Jian; Sieber, Christian M K; Tom, Lauren M; Gardinali, Piero R; Banfield, Jillian F; Atlas, Ronald M; Andersen, Gary L

    2017-07-11

    The Deepwater Horizon (DWH) accident released an estimated 4.1 million barrels of oil and 10 10 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capabilities of the different populations that controlled degradation rates of crude oil components are poorly understood. We experimentally reproduced dispersed plumes of fine oil droplets in Gulf of Mexico seawater and successfully replicated the enrichment and succession of the principal oil-degrading bacteria observed during the DWH event. We recovered near-complete genomes, whose phylogeny matched those of the principal biodegrading taxa observed in the field, including the DWH Oceanospirillales (now identified as a Bermanella species), multiple species of Colwellia , Cycloclasticus , and other members of Gammaproteobacteria, Flavobacteria, and Rhodobacteria. Metabolic pathway analysis, combined with hydrocarbon compositional analysis and species abundance data, revealed substrate specialization that explained the successional pattern of oil-degrading bacteria. The fastest-growing bacteria used short-chain alkanes. The analyses also uncovered potential cooperative and competitive relationships, even among close relatives. We conclude that patterns of microbial succession following deep ocean hydrocarbon blowouts are predictable and primarily driven by the availability of liquid petroleum hydrocarbons rather than natural gases.

  4. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  5. Cultivation-dependent and cultivation-independent characterisation of hydrocarbon-degrading bacteria in Guaymas Basin sediments

    Directory of Open Access Journals (Sweden)

    Tony eGutierrez

    2015-07-01

    Full Text Available Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP, a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [13C]phenanthrene. The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from phenanthrene enrichments were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled phenanthrene and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity, and used this strain to provide direct evidence of phenanthrene degradation and mineralization. In addition, we isolated Halomonas, Thalassospira and Lutibacterium spp. with demonstrable phenanthrene-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea.

  6. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  7. Degradation of hydrocarbons in arctic areas

    International Nuclear Information System (INIS)

    Hundahl Pedersen, M.; Grau-Hansen, B.; Watson Nielsen, T.; Jensen, L.

    1999-12-01

    The scope of this project is to examine the natural degradation of a hydrocarbon contamination by investigating a specific location. The investigated location is a former airfield at Marraq situated on the west coast of Greenland, approx. 90 km south of Nuuk. In Autumn 1942 the US Air force established a diversion airfield called 'Teague Airfield' - under the military code name Bluie West-4. However, the location was abandoned in 1948 and accordingly all facilities and equipment were left behind, among these were a large amount of oil barrels, which mainly contained gas oil. In relation to the present investigation a number of disposal sites were found each containing approx. 50-600 oil barrels of 200 litres each. Through the years these barrels have corroded causing a heavy gas oil contamination several places on the site. This contamination is estimated to have taken place for approx. 40-50 years ago. The contamination is of such a severe character that a heavy smell of oil can be determined on site. Furthermore, vegetation mortality was observed around the barrels in connection to disposal sites situated in places covered by plants. Marraq is a peninsula consisting of coarse fluviatile deposits. The geology is relatively homogeneous without permafrost, which combined with a range of local defined contaminations, provide a unique possibility to assess the controlling environmental factors of natural degradation of oil contamination in the Arctic. A conservative estimate of the complete amount of gas oil which has contaminated the location is estimated to approx. 120,000 litres or more. The investigation showed that the extent of the oil degradation was different at the individual deposit sites. Roughly estimated the contamination is degraded on the order of 15 to twice the original oil amount. Assumable the contamination has been degraded due to the weathering process (evaporation and wash-out) and microbial degradation. Complex processes are involved depending

  8. Application of Fenton's reagent as a pretreatment step in biological degradation of polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Kelley, R.L.; Gauger, W.K.; Srivastava, V.J.

    1991-01-01

    Fenton's reagent (H 2 O 2 and Fe ++ ) has been used for chemical oxidation of numerous organic compounds in water treatment schemes. In this study, the Institute of Gas Technology (IGT) applied Fenton's treatment to polynuclear aromatic hydrocarbons (PAHs) and PAH-contaminated soils. Fenton's treatment was very reactive with PAHs, causing rapid modification of the parental compounds to oxidized products and complete degradation to CO 2 . This treatment was more effective on chemically reactive PAHs, such as benzo(a)pyrene and phenanthrene. Important parameters and conditions for Fenton's treatment of PAHs in solution and soil matrices have been identified. As much as 99% of the PAHs on soil matrices can be removed by treatment with Fenton's reagent

  9. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    Science.gov (United States)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  10. Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons.

    Science.gov (United States)

    Manilla-Pérez, Efraín; Lange, Alvin Brian; Hetzler, Stephan; Steinbüchel, Alexander

    2010-05-01

    Petroleum (or crude oil) is a complex mixture of hydrocarbons. Annually, millions of tons of crude petroleum oil enter the marine environment from either natural or anthropogenic sources. Hydrocarbon-degrading bacteria (HDB) are able to assimilate and metabolize hydrocarbons present in petroleum. Crude oil pollution constitutes a temporary condition of carbon excess coupled to a limited availability of nitrogen that prompts marine oil-degrading bacteria to accumulate storage compounds. Storage lipid compounds such as polyhydroxyalkanoates (PHAs), triacylglycerols (TAGs), or wax esters (WEs) constitute the main accumulated lipophilic substances by bacteria under such unbalanced growth conditions. The importance of these compounds as end-products or precursors to produce interesting biotechnologically relevant chemicals has already been recognized. In this review, we analyze the occurrence and accumulation of lipid storage in marine hydrocarbonoclastic bacteria. We further discuss briefly the production and export of lipophilic compounds by bacteria belonging to the Alcanivorax genus, which became a model strain of an unusual group of obligate hydrocarbonoclastic bacteria (OHCB) and discuss the possibility to produce neutral lipids using A. borkumensis SK2.

  11. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation.

    Science.gov (United States)

    Oliveira, Jorge S; Araújo, Wydemberg J; Figueiredo, Ricardo M; Silva-Portela, Rita C B; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; Minnicelli, Carolina; Carlos, Aline Cardoso; de Vasconcelos, Ana Tereza Ribeiro; Freitas, Ana Teresa; Agnez-Lima, Lucymara F

    2017-07-27

    Bacterial and Archaeal communities have a complex, symbiotic role in crude oil bioremediation. Their biosurfactants and degradation enzymes have been in the spotlight, mainly due to the awareness of ecosystem pollution caused by crude oil accidents and their use. Initially, the scientific community studied the role of individual microbial species by characterizing and optimizing their biosurfactant and oil degradation genes, studying their individual distribution. However, with the advances in genomics, in particular with the use of New-Generation-Sequencing and Metagenomics, it is now possible to have a macro view of the complex pathways related to the symbiotic degradation of hydrocarbons and surfactant production. It is now possible, although more challenging, to obtain the DNA information of an entire microbial community before automatically characterizing it. By characterizing and understanding the interconnected role of microorganisms and the role of degradation and biosurfactant genes in an ecosystem, it becomes possible to develop new biotechnological approaches for bioremediation use. This paper analyzes 46 different metagenome samples, spanning 20 biomes from different geographies obtained from different research projects. A metagenomics bioinformatics pipeline, focused on the biodegradation and biosurfactant-production pathways, genes and organisms, was applied. Our main results show that: (1) surfactation and degradation are correlated events, and therefore should be studied together; (2) terrestrial biomes present more degradation genes, especially cyclic compounds, and less surfactation genes, when compared to water biomes; and (3) latitude has a significant influence on the diversity of genes involved in biodegradation and biosurfactant production. This suggests that microbiomes found near the equator are richer in genes that have a role in these processes and thus have a higher biotechnological potential. In this work we have focused on the

  12. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.

    Science.gov (United States)

    Bori, Jaume; Vallès, Bettina; Ortega, Lina; Riva, Maria Carme

    2016-09-01

    In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg(-1), i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L(-1) before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.

  13. Candidates for the development of consortia capable of petroleum hydrocarbon degradation in marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    David, J.; Gupta, R.; Mohandass, C.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    Bacteria and yeasts from different niches of the tropical Indian waters were screened for their hydrocarbon degrading potential using 1% w/v in artificial seawater over a period of 6 days. About 20% of the 75 bacterial and 24% of the 27 yeast...

  14. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam.

    Science.gov (United States)

    Ueno, Ryohei; Wada, Shun; Urano, Naoto

    2008-01-01

    This study reports on the stability of the cells of a heterotrophic green micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam (PUF) cubes during degradation of mixed hydrocarbon substrate, which was composed of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), in 5 successive cycles of repeated batch cultivation at 30 degrees C. Both RND16 cells and mixed hydrocarbon substrate components had been entrapped in PUF cubes through cultivation. PUF-immobilized RND16 degraded n-alkanes almost completely, whereas the strain hardly degraded PAHs in PUFs, rather they accumulated in the matrices. It is noteworthy that this result is strikingly different from that of the free-living cell culture, where RND16 reduced concentrations of both n-alkanes and PAHs. However, PAHs accumulation in the PUFs did not impair the performance of the immobilized alga to utilize n-alkanes. These results suggest that the PUFs harboring RND16 cells could be used repeatedly for selective retrieval of PAHs from oil-polluted waters after preferential biodegradation of n-alkanes by algae.

  15. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Rocha, F.J.; Olmos-Soto, J. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, San Diego, CA (United States). Departamento de Biotecnologia Marina; Rosano-Hernandez, M.A.; Muriel-Garcia, M. [Instituto Mexicano del Petroleo, CD Carmen Camp (Mexico). Zona Marina/Tecnologia Ambiental

    2005-01-01

    Of more than 20 bacteria isolated from a tropical soil using minimal medium supplemented with hydrocarbons, 11 grew well on diesel as sole carbon source, and another 11 grew in the presence of polynuclear aromatic hydrocarbons (PAHs). Ten isolates were identified phenotypically as Pseudomonas sp. and eight as Bacillus sp. Gene sequences representing the catabolic genes (alkM, todM, ndoM, and xylM) and 16S rRNA gene sequences characteristic for Pseudomona and Bacillus were amplified by PCR, using DNA recovered from the supernatant of hydrocarbon-contaminated soil suspensions. Based on their rapid growth characteristics in the presence of hydrocarbons and the formation of PCR products for the catabolic genes alkM and ndoM six isolates were selected for biodegradation assays. After 30 days a mixed culture of two isolates achieved close to 70% hydrocarbon removal and apparent mineralization of 16% of the hydrocarbons present in the soil. Biodegradation rates varied from 275 to 387 mg hydrocarbon kg{sup -1} day{sup -1}. Several bacterial isolates obtained in this study have catabolic capabilities for the biodegradation of alkanes and aromatic hydrocarbons including PAHs. (author)

  16. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  17. Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Full Length Research Paper. Polycyclic aromatic ... production of paper, feeds, chemicals and fuels there is ... microbes with the production of lignin-modifying enzymes ... enable white rot fungi to degrade a variety of toxic.

  18. Evolution of Hydrocarbon-Degrading Microbial Communities in the Aftermath of the Deepwater Horizon Oil Well Blowout in the Gulf of Mexico

    Science.gov (United States)

    Andersen, G.; Dubinsky, E. A.; Chakraborty, R.; Hollibaugh, J. T.; Hazen, T. C.

    2012-12-01

    The Deepwater Horizon oil spill created large plumes of dispersed oil and gas that remained deep in the water column and stimulated growth of several deep-sea bacteria that can degrade hydrocarbons at cold temperatures. We tracked microbial community composition before, during and after the 83-day spill to determine relationships between microbial dynamics, and hydrocarbon and dissolved-oxygen concentrations. Dominant bacteria in plumes shifted drastically over time and were dependent on the concentration of hydrocarbons, and the relative quantities of insoluble and soluble oil fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest concentrations of oil and relatively more n-alkanes suspended in the plume as small oil droplets. These conditions resulted in near complete dominance by alkane-degrading Oceanospirillales, Pseudomonas and Shewanella. Six-weeks into the spill overall hydrocarbon concentrations in the plume decreased and were almost entirely composed of BTEX after management actions reduced emissions into the water column. These conditions corresponded with the emergence of Colwellia, Pseudoalteromonas, Cycloclasticus and Halomonas that are capable of degrading aromatic compounds. After the well was contained dominant plume bacteria disappeared within two weeks after the spill and transitioned to an entirely different set of bacteria dominated by Flavobacteria, Methylophaga, Alteromonas and Rhodobacteraceae that were found in anomalous oxygen depressions throughout August and are prominent degraders of both high molecular weight organic matter as well as hydrocarbons. Bio-Sep beads amended with volatile hydrocarbons from MC-252 oil were used from August through September to create hydrocarbon-amended traps for attracting oil-degrading microbes in situ. Traps were placed at multiple depths on a drilling rig about 600-m from the original MC-252 oil spill site. Microbes were isolated on media using MC-252 oil as the sole

  19. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  20. Study and isolation of aerobic hydrocarbon-degrading bacteria from Cuban shorelines

    OpenAIRE

    Barrios-San Martín, Yaima; Acosta, Silvia; Sánchez, Ayixon; Toledo, Antonio; González, Francisca; García, Regla M

    2012-01-01

    The isolation of aerobic marine bacteria able to degrade hydrocarbons represents a promising alternative for the decontamination of oceanic and coastal environments. In the present work, twelve water and sediment samples from the Felton coastline in the Province of Holguín were collected and screened with Bushnell-Haas medium supplemented with light crude oil or with seawater supplemented with yeast extract and crude oil as a carbon source, obtaining twenty seven and six bacterial isolates re...

  1. Kinetics of Chlorinated Hydrocarbon Degradation by Methylosinus trichosporium OB3b and Toxicity of Trichloroethylene

    NARCIS (Netherlands)

    Oldenhuis, Roelof; Oedzes, Johannes Y.; Waarde, Jacob J. van der; Janssen, Dick B.

    The kinetics of the degradation of trichloroethylene (TCE) and seven other chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b were studied. All experiments were performed with cells grown under copper stress and thus expressing soluble methane monooxygenase. Compounds that were

  2. Mineral oil and synthetic hydrocarbons in cosmetic lip products.

    Science.gov (United States)

    Niederer, M; Stebler, T; Grob, K

    2016-04-01

    Lipsticks and lip care products may contain saturated hydrocarbons which either stem from mineral oil saturated hydrocarbons (MOSH) or are synthetic, that is polyolefin oligomeric saturated hydrocarbons (POSH). Some of these hydrocarbons are strongly accumulated and form granulomas in human tissues, which prompted Cosmetics Europe (former Colipa) to issue a recommendation for their use in lip care and oral products. From 2012 to 2014, MOSH+POSH were determined in 175 cosmetic lip products taken from the Swiss market in order to estimate their contribution to human exposure. Mineral oil saturated hydrocarbons and POSH were extracted and analysed by GC with FID. Areas were integrated as a total as well as by mass ranges with cuts at n-C25 and n-C34 to characterize the molecular mass distribution. About 68% of the products contained at least 5% MOSH+POSH (total concentration). For regular users, these products would be major contributors to their MOSH+POSH exposure. About 31% of the products contained more than 32% MOSH+POSH. Their regular usage would amount in an estimated MOSH+POSH exposure exceeding the highest estimated dietary exposure. The majority of the products contained hydrocarbons with a molecular mass range which was not in line with the recommendations of Cosmetics Europe. Taking into account that material applied to the lips largely ends up being ingested, MOSH and POSH levels should be reduced in the majority of cosmetic lip products. As the extensive evaluation of the data available on MOSH (EFSA J., 10, 2012, 2704) did not enable the specification of limits considered as safe, the present level of dietary exposure and its evaluation as 'of potential concern' provide the relevant bench mark, which means that lip products should contain clearly less than 5% MOSH+POSH. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Degradation and utilization of polycyclic aromatic hydrocarbons by indigenous soil bacteria

    International Nuclear Information System (INIS)

    Stetzenbach, L.D.A.

    1986-01-01

    The persistence of industrially derived polycyclic aromatic hydrocarbons in the subsurface may be significantly affected by the metabolism of soil bacteria. This study was conducted to determine the ability of indigenous soil bacteria to decrease the concentration of four polycyclic aromatic hydrocarbons (naphthalene, fluorene, anthracene, and pyrene) and to utilize the compounds as a substrate for growth. Soil cores from petroleum contaminated and noncontaminated sites contained 10 5 -10 7 viable microorganisms per gram dryweight of soil. Gram negative rod-shaped bacteria predominated. Decreases in the concentration of the four polycyclic aromatic hydrocarbons were observed during incubation with bacterial isolates in aqueous suspension by the use of high performance liquid chromatography. Corresponding increases in bacterial numbers indicated utilization of the compounds as a carbon source. Soil samples from the contaminated sites contained greater numbers of bacteria utilizing anthracene and pyrene than soil samples from uncontaminated sites. Degradation rates of the four polycyclic aromatic hydrocarbons were related to the compound, its concentration, and the bacterium. Biodegradation of pyrene was positively correlated with the presence of oxygen. Pyrene was biodegraded by an Acinetobacter sp. under aerobic conditions but not under anaerobic or microaerophilic conditions. Studies with radiolabeled 14 C-anthracene demonstrated utilization of the labeled carbon as a source of carbon by viable bacterial cells in aqueous suspension. Incorporation of 14 C into cellular biomass however was not observed during incubation of 14 C-anthracene in soil

  4. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico coastal microbial communities after the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Anthony D. Kappell

    2014-05-01

    Full Text Available The Deepwater Horizon (DWH blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including PAHs, were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are primed for PAH

  5. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  6. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  7. Radiation-induced volatile hydrocarbon production in platelets

    International Nuclear Information System (INIS)

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets

  8. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    Science.gov (United States)

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  9. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Shi, Yulan; Liebner, Susanne; Jin, Huijun; Perfumo, Amedea

    2016-01-01

    Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies. PMID:27886221

  10. Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rodgers-Vieira, Elyse A; Zhang, Zhenfa; Adrion, Alden C; Gold, Avram; Aitken, Michael D

    2015-06-01

    Quinones and other oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are toxic and/or genotoxic compounds observed to be cocontaminants at PAH-contaminated sites, but their formation and fate in contaminated environmental systems have not been well studied. Anthracene-9,10-dione (anthraquinone) has been found in most PAH-contaminated soils and sediments that have been analyzed for oxy-PAHs. However, little is known about the biodegradation of oxy-PAHs, and no bacterial isolates have been described that are capable of growing on or degrading anthraquinone. PAH-degrading Mycobacterium spp. are the only organisms that have been investigated to date for metabolism of a PAH quinone, 4,5-pyrenequinone. We utilized DNA-based stable-isotope probing (SIP) with [U-(13)C]anthraquinone to identify bacteria associated with anthraquinone degradation in PAH-contaminated soil from a former manufactured-gas plant site both before and after treatment in a laboratory-scale bioreactor. SIP with [U-(13)C]anthracene was also performed to assess whether bacteria capable of growing on anthracene are the same as those identified to grow on anthraquinone. Organisms closely related to Sphingomonas were the most predominant among the organisms associated with anthraquinone degradation in bioreactor-treated soil, while organisms in the genus Phenylobacterium comprised the majority of anthraquinone degraders in the untreated soil. Bacteria associated with anthracene degradation differed from those responsible for anthraquinone degradation. These results suggest that Sphingomonas and Phenylobacterium species are associated with anthraquinone degradation and that anthracene-degrading organisms may not possess mechanisms to grow on anthraquinone. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia.

    Science.gov (United States)

    Gomes, Newton C M; Flocco, Cecilia G; Costa, Rodrigo; Junca, Howard; Vilchez, Ramiro; Pieper, Dietmar H; Krögerrecklenfort, Ellen; Paranhos, Rodolfo; Mendonça-Hagler, Leda C S; Smalla, Kornelia

    2010-11-01

    In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  13. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  14. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    Science.gov (United States)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three types of plants. Additionally, a solution of artificial root exudates (AREs) as prepared. Exudates were digested using soil bacteria to create metabolized exudates. Raw and metabolized exudates were characterized for dissolved organic carbon, specific UV absorbance

  15. Qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian; Zhang Xianye; Hu Jingxin; Ye Guoan

    2004-01-01

    This paper reports the qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine. These analyses were performed on the gas chromatograph, in which porous layer open tubular column coated with aluminum oxide and flame-ionization detector are used. For the doses between 10 and 1000 kGy, the light hydrocarbons produced by radiation degradation of N,N-dimethyl hydroxylamine are methane, ethane, ethene, propane, propene and n-butane. When the concentration of N,N-dimethyl hydroxylamine is 0.2 mol/L, the volume fraction of methane is (9.996-247.5) x 10 -6 , the volume fraction of ethane, propane and n-butane is lower and that of ethene and propene is much lower. With the increase of dose the volume fraction of methane is increased but the volume fraction of ethane, ethene, propane, propene and n-butane is not obviously changed. (authors)

  16. Study on radiation degradation of hydroxylamine derivatives. Pt.2: The qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-diethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian

    2004-01-01

    The qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N,N-diethyl hydroxylamine are reported. These analyses are performed on the gas chromatography in which a porous layer open tubular column coated with aluminum oxide and a flame-ionization detector are used. When the doses are between 10 and 1000 kGy, the main hydrocarbons produced by radiation degradation of N,N-diethyl hydroxylamine are methane, ethane, ethene, propane and n-butane. The volume fraction of methane, ethane, n-butane and propane are increased with the increase of dose. The volume fraction of ethene is also increased with the increase of dose at first, however, when the absorbed dose is higher than 500 kGy. The volume fraction of ethene is decreased with the increase of dose

  17. Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulosimicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia.

    Science.gov (United States)

    Nkem, Bruno Martins; Halimoon, Normala; Yusoff, Fatimah Md; Johari, Wan Lufti Wan; Zakaria, Mohamad Pauzi; Medipally, Srikanth Reddy; Kannan, Narayanan

    2016-06-15

    In this study, we isolated two indigenous hydrocarbon-degrading bacteria from tarball found in Rhu Sepuluh beach, Terengganu, Malaysia. These bacteria were identified based on their physiological characteristic and 16S rRNA gene sequence analysis, and they showed 99% similarity with Cellulosimicrobium cellulans DSM 43879 and Acinetobacter baumannii ATCC 19606 respectively. Their hydrocarbon-degrading capabilities were tested using diesel-oil as sole carbon source. Results analysed using GC-MS, showed diesel-oil alkanes were degraded an average 64.4% by C. cellulans and 58.1% by A. baumannii with medium optical density reaching 0.967 (C. cellulans) and 1.515 (A. baumannii) in minimal salt media at 32°C for 10days. Individual diesel-oil alkanes were degraded between 10%-95.4% by C. cellulans and 0.2%-95.9% by A. baumannii. Both strains utilized diesel-oil for growth. The study suggests both strains are part of indigenous hydrocarbon-degrading bacteria in tarball with potential for bioremediation of oil-polluted marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Microbial degradation of petroleum hydrocarbons in estuarine sediment of Tama River in Tokyo urban area

    International Nuclear Information System (INIS)

    Yamane, Akiko; Hosomi, Masaaki; Murakami, Akihiko; Sakakibara, Koji

    1997-01-01

    Aerobic and anaerobic biodegradation rates of petroleum hydrocarbons, i.e., hexadecane (HEX), phenanthrene (PHE), and anthracene (ANT), were determined in estuarine sediment of the Tama River in urban Tokyo, followed by estimating their respective degradation potential. While in a sediment slurry, the aerobic biodegradation rates of these petroleum hydrocarbons ranged from 40 to 70 μg.g -1 dry sediment:day -1 . The anaerobic biodegradation rate of HEX was found to be 5 -8 μg.g -1 dry sediment.day -1 , whereas that of PHE and ANT could not be detected following a 2-month incubation. Aerobic degradation of HEX was not affected by coexistence with either PHE or ANT, nor by the salinity level. The number of HEX-, PHE-, or ANT-utilizing bacteria ranged from 5 - 10% of the total number of aerobic heterotrophic bacteria. We calculated their biodegradation potentials using the biomass of naturally existing petroleum hydrocarbon utilizing bacteria present in the sampled sediment, with results for HEX, PHE, and ANT being 1.0 -3.5, 4.2 x 10 -2 , and 1.2 x 10 -2 -9.4 x 10 -1 μg.g -1 dry sediment day -1 , respectively. In the aerobic tidal sediment of the Tama River, the purification potentials of HEX, PHE, and ANT were assessed to be approximately equal to their accumulation potentials occurring at the normal water level. (Author)

  19. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  20. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    Directory of Open Access Journals (Sweden)

    Andrade Luiza L

    2012-08-01

    Full Text Available Abstract Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil, which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm being greater than in both deeper sediment layers (15–20 and 35–40 cm, which were similar to each other.

  1. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    Science.gov (United States)

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.

  3. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  4. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    Science.gov (United States)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  5. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System

    Directory of Open Access Journals (Sweden)

    Tina Treude

    2017-04-01

    Full Text Available The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38 decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30 was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  6. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System.

    Science.gov (United States)

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ 13 C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO 4 2- m -2 day -1 in untreated cores to 5.7 mmol SO 4 2- m -2 day -1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2-C6 n -alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n -alkanes (C10-C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  7. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela); Synthesis and Biotics Div., Indian Oil Corp., Research and Development Center, Haryana (India); Leon, V.; Materano, A.D.S.; Ilzins, O.A.; Galindo-Castro, I.; Fuenmayor, S.L. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela)

    2006-03-15

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm{sup -1} to 35.4 dN cm{sup -1} and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons. (orig.)

  8. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    Science.gov (United States)

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  9. Occurrence of Hydrocarbon Degrading Genes in the Soils of the Republic of Tatarstan (Russia)

    Science.gov (United States)

    Biktasheva, L. R.; Shalyamova, R. P.; Guseva, U. A.; Galitskaya, P. Yu

    2018-01-01

    Oil pollution is one of the most serious environmental problems nowadays. The ability of soils for self-restoration is important, when choosing the strategy of pollution control. This ability depends on the pull of microbes able to decompose hydrocarbons that were present in the nonpolluted soil prior to pollution. In this study, the occurrence of alkane degrading genes in the soils of the Republic of Tatarstan being one of the oil processing regions in Russia, was investigated. It was found that alkane degrading genes belonging to group I were present in 20 of the 25 soil samples, and their abundances ranged between 0.01 and 0.07%. Alkane degrading genes belonging to group II were not detected in the samples investigated, and those belonging to group III were present in all the samples, and their abundances ranged between 0.06 and 7.25%. No correlation between the alkane degrading gene copy numbers and pH and organic carbon content in soils was revealed.

  10. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  11. Microbial degradation of crude oil in marine environments tested in a flask experiment

    International Nuclear Information System (INIS)

    Aldrett, Salvador; Bonner, James S.; Mills, Marc A.; Autenrieth, Robin L.; Stephens, Frank L.

    1997-01-01

    Thirteen different bioremediation products were evaluated for their effectiveness in biodegrading petroleum hydrocarbons. All 13 products tested in this experiment were listed on the NCP product schedule. Of these 13 products, 12 were bioaugmentation agents and one was a biostimulation agent. All the products were tested for toxicity levels initially, using standardized protocols. The products were sampled and analyzed three times over a 28-day period for most-probable number (MPN) of hydrocarbon degraders and total petroleum hydrocarbon as separate fractions. A subsample was analyzed for MPN, and the rest of the sample was extracted and fractionated in total saturated petroleum hydrocarbons (TsPH) and total aromatic petroleum hydrocarbons (TarPH). This experiment revealed that the petroleum hydrocarbons were biodegraded to an extent significantly greater than that achieved by the naturally occurring microorganisms. (author)

  12. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes

    International Nuclear Information System (INIS)

    Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguez, M.S.

    2006-01-01

    In this laboratory-scale study, we examined the potential of chitin and chitosan flakes obtained from shrimp wastes as carrier material for a hydrocarbon-degrading bacterial strain. Flakes decontamination, immobilization conditions and the survival of the immobilized bacterial strain under different storage temperatures were evaluated. The potential of immobilized hydrocarbon-degrading bacterial strain for crude oil polluted seawater bioremediation was tested in seawater microcosms. In terms of removal percentage of crude oil after 15 days, the microcosms treated with the immobilized inoculants proved to be the most successful. The inoculants formulated with chitin and chitosan as carrier materials improved the survival and the activity of the immobilized strain. It is important to emphasize that the inoculants formulated with chitin showed the best performance during storage and seawater bioremediation. (author)

  13. A method of refining aromatic hydrocarbons from coal chemical production

    Energy Technology Data Exchange (ETDEWEB)

    Zieborak, K.; Koprowski, A.; Ratajczak, W.

    1979-10-01

    A method is disclosed for refining aromatic hydrocarbons of coal chemical production by contact of liquid aromatic hydrocarbons and their mixtures with a strongly acid macroporous sulfocationite in the H-form at atmospheric pressure and high temperature. The method is distinguished in that the aromatic hydrocarbons and their mixtures, from which alkali compounds have already been removed, are supplied for refinement with the sulfocationite with simultaneous addition of olefin derivatives of aromatic hydrocarbons, followed by separation of pure hydrocarbons by rectification. Styrene or alpha-methylstyrene is used as the olefin derivatives of the aromatic hydrocarbons. The method is performed in several stages with addition of olefin derivatives of aromatic hydrocarbons at each stage.

  14. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains.

    Science.gov (United States)

    Syutsubo, K; Kishira, H; Harayama, S

    2001-06-01

    The genus Alcanivorax comprises diverse hydrocarbon-degrading marine bacteria. Novel 16S rRNA-targeted oligonucleotide DNA probes (ALV735 and ALV735-b) were developed to quantify two subgroups of the Alcanivorax/Fundibacter group by fluorescence in situ hybridization (FISH), and the conditions for the single-mismatch discrimination of the probes were optimized. The specificity of the probes was improved further using a singly mismatched oligonucleotide as a competitor. The growth of Alcanivorax cells in crude oil-contaminated sea water under the biostimulation condition was investigated by FISH with the probe ALV735, which targeted the main cluster of the Alcanivorax/Fundibacter group. The size of the Alcanivorax population increased with increasing incubation time and accounted for 91% of the 4',6-diamidino-2-phenylindole (DAPI) count after incubation for 2 weeks. The probes developed in this study are useful for detecting Alcanivorax populations in petroleum hydrocarbon-degrading microbial consortia.

  15. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. May 2006

    International Nuclear Information System (INIS)

    2006-05-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands of research permits; list of demands under instruction), seismic survey activity, production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  16. Electron microscopy of hydrocarbon production in parthenium argentatum (guayule)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas E. [Univ. of California, Berkeley, CA (United States)

    1977-11-01

    The electron microscope was used to study the biological processes involved in hydrocarbon production. The little desert shrub Guayule (Parthenium argentatum) was selected for study. This shrub can produce hydrocarbons (rubber) in concentrations up to 1/4 of its dry weight. It grows on semi-arid land and has been extensively studied. The potential of Guayule is described in detail. Results of an investigation into the morphology of Guayule at the electron microscope level are given. Experiments, which would allow the biosynthesis of hydrocarbon in Guayule to be followed, were designed. In order to do this, knowledge of the biochemistry of rubber formation was used to select a tracer, mevalonic acid. Mevalonic acid is the precursor of all the terpenoids, a large class of hydrocarbons which includes rubber. It was found that when high enough concentrations of mevalonic acid are administered to seedling Guayule plants, build-ups of metabolized products are found within the chloroplasts of the seedlings. Also, tritium labeled mevalonic acid was used as a precursor, and its metabolic progress was followed by using the technique of electron microscope autoradiography. The results of these experiments also implicated chloroplasts of the Guayule plant in hydrocarbon production. The final task was the development of a system to produce three-dimensional stereo reconstructions of organelles suspected of involvement in hydrocarbon biosynthesis in Guayule. The techniques are designed to reconstruct an object from serial sections of that object. The techniques use stereo imaging both to abstract information for computer processing, and also in the computer produced reconstruction.

  17. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  18. Bioremediation: Technology for treating hydrocarbon-contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Towprayoon, S.; Kuntrangwattana, S. [King Mongkut`s Institute of Technology, Bangkok (Thailand)

    1996-12-31

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradable microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.

  19. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  20. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    International Nuclear Information System (INIS)

    Sanches, S.; Leitao, C.; Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Crespo, M.T. Barreto; Pereira, V.J.

    2011-01-01

    Highlights: → Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. → Real water matrices with different compositions were tested. → Photolysis kinetic parameters and by-product formation are described. → The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm 2 , anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  1. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments

    International Nuclear Information System (INIS)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-01-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments. - Highlights: ► Bioremediation performance was investigated on hydrocarbon contaminated sediments. ► Major changes in bacterial diversity and assemblage composition were observed. ► Temperature exerted the major effect on bacterial assemblages. ► High bacterial diversity increased significantly biodegradation performance. ► This should be considered for sediment remediation by bio-treatments. - Bioremediation strategies which can sustain high levels of bacterial diversity may significantly increase the biodegradation of hydrocarbons in contaminated marine sediments.

  2. Manufacture of aromatic hydrocarbons from coal hydrogenation products

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Maloletnev; M.A. Gyul' malieva [Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-08-15

    The manufacture of aromatic hydrocarbons from coal distillates was experimentally studied. A flow chart for the production of benzene, ethylbenzene, toluene, and xylenes was designed, which comprised the hydrogen treatment of the total wide-cut (or preliminarily dephenolized) fraction with FBP 425{sup o}C; fractional distillation of the hydrotreated products into IBP-60, 60-180, 180-300, and 300-425{sup o}C fractions; the hydro-cracking of middle fractions for increasing the yield of gasoline fractions whenever necessary; the catalytic reform of the fractions with bp up to 180{sup o}C; and the extraction of aromatic hydrocarbons.

  3. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. February 2006

    International Nuclear Information System (INIS)

    2006-02-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands and allocations of research permits), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  4. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  5. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  6. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.

    Science.gov (United States)

    Al Kharusi, Samiha; Abed, Raeid M M; Dobretsov, Sergey

    2016-03-01

    The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  8. Gas chromatography-mass spectrometry and high-performance liquid chromatographic analyses of thermal degradation products of common plastics

    OpenAIRE

    Pacakova, V.; Leclercq, P.A.

    1991-01-01

    The thermo-oxidation of five commonly used materials, namely low-density polyethylene, retarded polyethylene, paper with a polyethylene foil, a milk package and filled polypropylene, was studied. Capillary gas chromatography and gas chromatography-mass spectrometry were used to analyze the volatile degradation products, while high-performance liquid chromatography was employed to measure polycyclic aromatic hydrocarbons. The results are discussed from the point of view of toxicity of the prod...

  9. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    Science.gov (United States)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  10. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. September 2006

    International Nuclear Information System (INIS)

    2006-09-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands of research permits; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  11. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. April 2006

    International Nuclear Information System (INIS)

    2006-04-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands of research permit, allocations of concession), geophysical survey activity, drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  12. Succession of Hydrocarbon Degradation and Microbial Diversity during a Simulated Petroleum Seepage in Caspian Sea Sediments

    Science.gov (United States)

    Mishra, S.; Stagars, M.; Wefers, P.; Schmidt, M.; Knittel, K.; Krueger, M.; Leifer, I.; Treude, T.

    2016-02-01

    Microbial degradation of petroleum was investigated in intact sediment cores of Caspian Sea during a simulated petroleum seepage using a sediment-oil-flow-through (SOFT) system. Over the course of the SOFT experiment (190 days), distinct redox zones established and evolved in the sediment core. Methanogenesis and sulfate reduction were identified to be important processes in the anaerobic degradation of hydrocarbons. C1 to C6 n-alkanes were completely exhausted in the sulfate-reducing zone and some higher alkanes decreased during the upward migration of petroleum. A diversity of sulfate-reducing bacteria was identified by 16s rRNA phylogenetic studies, some of which are associated with marine seeps and petroleum degradation. The δ13C signal of produced methane decreased from -33.7‰ to -49.5‰ indicating crude oil degradation by methanogenesis, which was supported by enrichment culturing of methanogens with petroleum hydrocarbons and presence of methanogenic archaea. The SOFT system is, to the best of our knowledge, the first system that simulates an oil-seep like condition and enables live monitoring of biogeochemical changes within a sediment core during petroleum seepage. During our presentation we will compare the Caspian Sea data with other sediments we studied using the SOFT system from sites such as Santa Barbara (Pacific Ocean), the North Alex Mud Volcano (Mediterranean Sea) and the Eckernfoerde Bay (Baltic Sea). This research was funded by the Deutsche Forschungsgemeinschaft (SPP 1319) and DEA Deutsche Erdoel AG. Further support came from the Helmholtz and Max Planck Gesellschaft.

  13. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Lacroix, E. J. M.; Reimer, K. J. [Royal Military College, Dept. of Chemistry and Chemical Engineering, Kingston, On (Canada); Yu, Z.; Mohn, W. W. [British Columbia Univ., Dept. of Microbiology and Immunology, Vancouver, BC (Canada); Eriksson, M. [Royal Inst. of Technology, Dept. of Biotechnology, Stockholm (Sweden)

    2001-12-01

    Oil spills are fairly common in polar tundra regions, including remote locations, and are a threat to the relatively fragile ecosystem. Remediation must be done economically and with minimum additional damage. Bioremediation is considered to be the appropriate technology, although its application in polar tundra regions is not well documented. Most studies of hydrocarbon remediation in polar regions have concerned marine oil spills, while a few studies have demonstrated on-site polar tundra soil remediation. A few of these demonstrated the presence of psychrotolerant hydrocarbon-degrading bacteria in polar tundra soils. Because fuels are complex mixtures of hydrocarbons, microbial consortia rather than pure cultures may be the most effective agents in degrading fuels. Despite their potential advantages for bioaugmentation applications, consortia are difficult to characterize and monitor. Molecular methods based on DNA analysis partially address these difficulties. One such approach is to randomly clone rRNA gene (rDNA) fragments and to sequence as a set of clones. The relative abundance of individual sequences in the clone library is related to the relative abundance of the corresponding organism in the community. In this study a psychrotolerant, fuel-degrading consortium was enriched with Arctic tundra soil. The enrichment substrate for the consortium was Jet A-1 fuel, which is very similar to Arctic diesel fuel, a common contaminant in the region. The objectives of the study were to (1) characterize thr consortium by DNA- and culture-based methods, (2) develop quantitative polymerase chain reaction assays for populations of predominant consortium members, and (3) determine the dynamics of those populations during incubation of the consortium. Result showed that is possible to quantitatively monitor members of a microbial consortium, with potential application for bioremediation of Arctic tundra soil. The relative abundance of consortium members was found to vary

  14. Hydrocarbon phytoremediation in the family Fabaceae--a review.

    Science.gov (United States)

    Hall, Jessica; Soole, Kathleen; Bentham, Richard

    2011-04-01

    Currently, studies often focus on the use of Poaceae species (grasses) for phytoremediation of hydrocarbon-contaminated soils. Research into the use of Fabaceae species (legumes) to remediate hydrocarbons in soils has been conducted, but these plants are commonly overlooked due to slower recorded rates of degradation compared with many grass species. Evidence in the literature suggests that in some cases Fabaceae species may increase total degradation of hydrocarbons and stimulate degradative capacity of the soil microbial community, particularly for contaminants which are normally more recalcitrant to degradation. As many recalcitrant hydrocarbons have negative impacts on human and ecosystem health, development of remediation options is crucial. Reconsideration of Fabaceae species for removal of such contaminants may lead to environmentally and economically sustainable technologies for remediation of contaminated sites.

  15. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating chlorinated hydrocarbon degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.M.; Brey, J.; Fliermans, C.B. [Westinghouse Savannah River, Aiken, SC (United States). Environmental Biotechnology Section; Scott, D.; Lanclos, K. [Medical Coll. of Georgia, Augusta, GA (United States)

    1997-06-01

    Immunological procedures were developed to enumerate chlorinated hydrocarbon degrading bacteria. Polyclonal antibodies (Pabs) were produced by immunizing New Zealand white rabbits against 18 contaminant-degrading bacteria. These included methanotrophic and chlorobenzene (CB) degrading species. An enzyme-linked immunosorbent assay (ELISA) was used to test for specificity and sensitivity of the Pabs. Direct fluorescent antibodies (DFAs) were developed with these Pabs against select methanotrophic bacteria isolated from a trichloroethylene (TCE) contaminated landfill at the Savannah River Site (SRS) and cultures from the American Type Culture Collection (ATCC). Analysis of cross reactivity testing data showed some of the Pabs to be group specific while others were species specific. The threshold of sensitivity for the ELISA is 105 bacteria cells/ml. The DFA can detect as few as one bacterium per ml after concentration. Results from the DFA and ELISA techniques for enumeration of methanotrophic bacteria in groundwater were higher but not significantly different (P < 0.05) compared to indirect microbiological techniques such as MPN. These methods provide useful information on in situ community structure and function for bioremediation applications within 1--4 hours of sampling.

  16. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation.

    Science.gov (United States)

    Brakstad, Odd G; Bonaunet, Kristin

    2006-02-01

    In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 degrees C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C(10)-C(36) n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5 degrees C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0 degree C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0 degree C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5 degrees C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures < or =5 degrees C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing

  17. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. June 2006

    International Nuclear Information System (INIS)

    2006-06-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  18. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation.

    Science.gov (United States)

    Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp

    2017-10-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Long-term Behavior of Hydrocarbon Production Curves

    Science.gov (United States)

    Lovell, A.; Karra, S.; O'Malley, D.; Viswanathan, H. S.; Srinivasan, G.

    2017-12-01

    Recovering hydrocarbons (such as natural gas) from naturally-occurring formations with low permeability has had a huge impact on the energy sector, however, recovery rates are low due to poor understanding of recovery and transport mechanisms [1]. The physical mechanisms that control the production of hydrocarbon are only partially understood. Calculations have shown that the short-term behavior in the peak of the production curve is understood to come from the free hydrocarbons in the fracture networks, but the long-term behavior of these curves is often underpredicted [2]. This behavior is thought to be due to small scale processes - such as matrix diffusion, desorption, and connectivity in the damage region around the large fracture network. In this work, we explore some of these small-scale processes using discrete fracture networks (DFN) and the toolkit dfnWorks [3], the matrix diffusion, size of the damage region, and distribution of free gas between the fracture networks and rock matrix. Individual and combined parameter spaces are explored, and comparisons of the resulting production curves are made to experimental site data from the Haynesville formation [4]. We find that matrix diffusion significantly controls the shape of the tail of the production curve, while the distribution of free gas impacts the relative magnitude of the peak to the tail. The height of the damage region has no effect on the shape of the tail. Understanding the constrains of the parameter space based on site data is the first step in rigorously quantifying the uncertainties coming from these types of systems, which can in turn optimize and improve hydrocarbon recovery. [1] C. McGlade, et. al., (2013) Methods of estimating shale gas resources - comparison, evaluation, and implications, Energy, 59, 116-125 [2] S. Karra, et. al., (2015) Effect of advective flow in fractures and matrix diffusion on natural gas production, Water Resources Research, 51(10), 8646-8657 [3] J.D. Hyman, et

  20. Effect in laboratory of addition of inorganic fertilizers made in degradation of hydrocarbon on contaminated soil by oil

    International Nuclear Information System (INIS)

    Pardo Castro, Jenny Liliana; Perdomo Rojas, Maria Carolina; Benavides Lopez de Mesa, Joaquin L

    2004-01-01

    At present one of the most important environmental problems is contamination of soil ecosystem by hydrocarbon spilling mainly of oil and its derivates, which occurs when oil is explored or transported. Furthermore in Colombia it occurs due to violent assaults made by men outside of law against petroleum infrastructure. To solve this problem there are treatment methods to recover contaminated soil as Land farming technique, adding organic nutrients. In this research this technique was evaluated in vitro, through a design of six experimental units (EU) which contained contaminated soil with crude oil; three EU were treated with Triple 15 inorganic fertilizer and the other three were taken as biotic control. Land farming effectiveness was determined by pH analysis, humidity percent, temperature, count of total heterotrophic microorganisms, and probable number of I degrades microorganisms, nutrients and total hydrocarbons for a four month experimental period At the d of that period, in Land farming treatment with nutrients added was achieved a high remotion percentage TPH up to 91 %, getting final TPH concentration of 2028 ppm comparing biotic control in which the remotion percentage achieved up to 65% and a TPH final concentration was 8049 ppm thus, it could demonstrate that nutrient addition optimizes the degrading hydrocarbon process in soil

  1. Surfactant-enhanced recovery of dissolved hydrocarbons at petroleum production facilities

    International Nuclear Information System (INIS)

    Freeman, J.T.; Mayes, M.; Wassmuth, F.; Taylor, K.; Rae, W.; Kuipers, F.

    1997-01-01

    The feasibility and cost effectiveness of surfactant-enhanced pumping to reduce source concentrations of petroleum hydrocarbons from contaminated soils was discussed. Light non-aqueous phase liquids (LNAPL) hydrocarbons are present beneath many petroleum production processing facilities in western Canada. Complete removal of LNAPLs from geologic materials is difficult and expensive. Treatment technologies include costly ex-situ methods such as excavation and in-situ methods such as physical extraction by soil venting and pumping, bioremediation, and combination methods such as bioventing, bioslurping or air sparging. Surfactant-aided pumping can reduce source hydrocarbon concentrations when used in conjunction with traditional pump and treat, or deep well injection. This study involved the selection of an appropriate surfactant from a wide variety of commercially available products. A site contaminated by hydrocarbons in Turner Valley, Alberta, was used for field scale testing. One of the major problems was quantifying the increase in the dissolved hydrocarbon concentrations in the recovered water once a surfactant was added. From the 30 surfactants screened in a series of washing and oil solubilization tests, two surfactants, Brij 97 and Tween 80, were selected for further evaluation. Increased hydrocarbon recovery was observed within 10 days of the introduction of the first surfactant. 2 refs., 7 figs

  2. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    Science.gov (United States)

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  3. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials

    International Nuclear Information System (INIS)

    Yang, Y.; Zhang, N.; Xue, M.; Lu, S.T.; Tao, S.

    2011-01-01

    The microbial activity in soils was a critical factor governing the degradation of organic micro-pollutants. The present study was conducted to analyze the effects of soil organic matter on the development of degradation potentials for polycyclic aromatic hydrocarbons (PAHs). Most of the degradation kinetics for PAHs by the indigenous microorganisms developed in soils can be fitted with the Logistic growth models. The microbial activities were relatively lower in the soils with the lowest and highest organic matter content, which were likely due to the nutrition limit and PAH sequestration. The microbial activities developed in humic acid (HA) were much higher than those developed in humin, which was demonstrated to be able to sequester organic pollutants stronger. The results suggested that the nutrition support and sequestration were the two major mechanisms, that soil organic matter influenced the development of microbial PAHs degradation potentials. - Research highlights: → PAH degradation kinetics obey Logistic model. → Degradation potentials depend on soil organic carbon content. → Humin inhibits the development of PAH degradation activity. → Nutrition support and sequestration regulate microbial degradation capacity. - Soil organic matter regulated PAH degradation potentials through nutrition support and sequestration.

  4. Wireless sensing on surface hydrocarbon production systems

    International Nuclear Information System (INIS)

    Kane, D; McStay, D; Mulholland, J; Costello, L

    2009-01-01

    The use of wireless sensor networks for monitoring and optimising the performance of surface hydrocarbon production systems is reported. Wireless sensor networks are shown to be able to produce comprehensively instrumented XTs and other equipment that generate the data required by Intelligent Oilfield systems. The information produced by such systems information can be used for real-time operational control, production optimization and troubleshooting.

  5. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands and allocations of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins); underground storage facilities (allocation and extension of concessions). (J.S.)

  6. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...

  7. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  8. Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Hinchee, R.E.

    1991-01-01

    Spilled or leaked nonhalogenated petroleum hydrocarbons in the soil can generally be metabolized by indigenous, aerobic bacteria. In situ biological degradation of hydrocarbons may be accelerated by supplying inorganic nutrients and/or oxygen. Approaches to monitoring and verifying enhanced in situ biodegradation have included measurements of changes over time in the (a) concentration of hydrocarbons, (b) temperature, (c) number of hydrocarbon-degrading microorganisms, (d) ratio of fast-degrading hydrocarbons (e.g., pristanes or phytanes), and (e) metabolic intermediates. Measurements of oxygen consumption over time and elevated carbon dioxide concentrations in soil gas also have been used as indicators of hydrocarbon degradation. An alternative approach that may help substantiate biodegradation is to measure stable carbon isotope ratios in soil gas CO 2 . Stable carbon isotope ratio analysis is inexpensive and commercially available at many laboratories. Carbon dioxide produced by hydrocarbon degradation may be distinguished from that produced by other processes based on the carbon isotopic compositions characteristic of the source material and/or fractionation accompanying microbial metabolism. Here the authors demonstrate the applicability of the stable isotope technique for monitoring enhanced. aerobic biodegradation of hydrocarbons using data from three locations in the United States

  9. Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities.

    Science.gov (United States)

    Towell, Marcie G; Bellarby, Jessica; Paton, Graeme I; Coulon, Frédéric; Pollard, Simon J T; Semple, Kirk T

    2011-02-01

    This study investigated the microbial degradation of (14)C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise (14)C-target hydrocarbons was appreciable; ≥ 16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of (14)C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon (14)C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. A review of case histories of induced seismicity caused by hydrocarbon production and storage

    International Nuclear Information System (INIS)

    Vadillo Fernández, L.; Fernández Naranjo, F.J.; Rodríguez Gómez, V.; López Gutiérrez, J.

    2017-01-01

    In this article we review the stress-strain relationships that take place in the crust during some of the main hydrocarbon production and storage processes: gas extraction; water injection in wells to stimulate the extraction of oil (EOR); unconventional hydrocarbon production by hydraulic fracturing (fracking); disposal of wastewater (saline water) from the extraction of conventional and unconventional hydrocarbons such as saline water return (flowback) of hydraulic fracturing, both with TDS higher than 40000 mg/L. In addition, the type of faults that are more likely to slip and the induced seismicity related to the production and extraction of hydrocarbons are analysed. [es

  11. Degradation of tetraethyllead in leaded gasoline contaminated and uncontaminated soils

    International Nuclear Information System (INIS)

    Ou, L.; Jing, W.; Thomas, J.; Mulroy, P.

    1995-01-01

    For over 50 years, since its introduction in 1923 by General Motors, tetraethyllead (TEL) was the major antiknock agent used in leaded gasoline. Since the middle of 1970, use of leaded gasoline in automobiles was gradually phased out. The main objective of this study is to determine the degradation rates and metabolites of TEL in gasoline contaminated and uncontaminated soils. TEL in uncontaminated soils disappeared rapidly. Ionic triethyllead (TREL) was the major organolead metabolite in these soils, with ionic diethyllead (DEL) being the minor product. Nonsterile soils, but not autoclaved soils, had limited capacity to mineralize 14 C-TEL to 14 CO 2 , H 2 0, and Pb 2+ . Unlike TEL in uncontaminated soils, petroleum hydrocarbons protected TEL in leaded gasoline contaminated soils from being degraded. Both disappearance and mineralization rates of TEL in leaded gasoline contaminated soils decreased with the increase in gasoline concentration. It appears that TEL in leaded gasoline contaminated soils is relatively stable until the level of petroleum hydrocarbons falls below a critical value. TEL is then rapidly degraded. Hydrocarbon degrading microorganisms may be involved, to some extent, in the degradation of TEL

  12. Biodegradation testing of hydrophobic chemicals in mixtures at low concentrations – covering the chemical space of petroleum hydrocarbons

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Mayer, Philipp

    Petroleum products are complex mixtures of varying composition containing thousands of hydrocarbons each with their own physicochemical properties and degradation kinetics. One approach for risk assessment of these products is therefore to group the hydrocarbons by carbon number and chemical class...... i.e. hydrocarbon blocks. However, the biodegradation kinetic data varies in quantity and quality for the different hydrocarbon blocks, hampering the characterization of their fate properties. In this study, biodegradation kinetics of a large number of hydrocarbons aiming to cover the chemical space...... of petroleum hydrocarbons, were therefore determined at ng/L to µg/L concentrations in surface water, seawater and activated sludge filtrate. Two hydrocarbon mixtures were prepared, comprising a total of 53 chemicals including paraffins, naphthenics and aromatic hydrocarbons from C8 to C20. Passive dosing from...

  13. Ecodynamics of oil-degrading bacteria and significance of marine mixed populations in the degradation of petroleum compounds

    International Nuclear Information System (INIS)

    Venkateswaran, Kasthuri; Tanaka, Hiroki; Komukai, Shyoko

    1993-01-01

    Ecological studies, screening of hydrocarbon-degrading bacteria, and studies of the potentials of various single and mixed bacterial populations in the utilization of petroleum compounds were carried out to understand the microbial hydrocarbon degradation process in marine ecosystems. Populations of hydrocarbon utilizers were larger in coastal regions than in pelagic environments. Ecological observations indicated that oil-degrading bacteria were ubiquitously distributed in both temperate and tropical environments, irrespective of oil-polluted and unpolluted ecosystem. Bacteria were grown with n-tet-radecane, pristane, propylbenzene, phenanthrene, and crude oil as the sole carbon source; and substrate specificities of the purified strains were characterized. Based on the assimilation characteristics of the isolated strains, an artificial mixed-culture system was constructed. Biodegradation of crude oil by the natural mixed population was found to be higher than by the artificial mixed population. However, when some of the substrate-specific degraders were artificially mixed with natural microflora, the degradation of hard-to-degrade aromatic hydrocarbon fractions of crude oil was enhanced

  14. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...... with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers...... of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation...

  15. Oil characterisation: assessment of composition, risks, degradation and remediation potential of total petroleum hydrocarbons in soil

    International Nuclear Information System (INIS)

    Lookman, R.; Vanermen, G.; Van De Weghe, H.; Gemoets, J.; Van der Sterren, G.; Alphenaar, A.

    2005-01-01

    Several methods are available for the characterization of petroleum hydrocarbons. The TPHCWG (Total Petroleum Hydrocarbon Criteria Working Group) developed a method based on a silica column separation of aromatics and aliphatics and a GC-FID subdivision into equivalent-carbon fractions (EC) ('TPH-method'). This method was mainly developed for assessing human risks of oil compounds. Within NOBIS (Dutch Research program Biological In-situ Remediation), another method was developed based upon an equilibrium-experiment of the oil-polluted soil with water (column recirculation), which was further developed by TTE ('TTE-method'). This method uses measured water solubilities of individual oil components and GC-retention times yielding a subdivision of the hydrocarbons into compound classes that are relevant for assessing the remediation potential of the specific oil pollution. In this paper we present results of a research project in which we developed a new method, the 'OK-method' that combines these two procedures and allows a complete characterisation of the oil in terms of composition, (human) risks, volatility, solubility, plume behaviour (migration velocities of the soluble components) and aerobic degradation potential. (authors)

  16. Studies on hydrocarbon degradation by the bacterial isolate ...

    African Journals Online (AJOL)

    The hydrocarbon utilizing capability of Stenotrophomonas rhizophila (PM-1), isolated from oil contaminated soil composts from Western Ghats region of Karnataka was analyzed. In the bioremediation experiment, ONGC heavy crude oil and poly aromatic hydrocarbons (PAHs) utilization by the bacterial isolate was studied.

  17. Improvement of Pure Poly aromatic Hydrocarbon Degrading Bacteria Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-Daem, G.A.N.A.; Tarrad, M.M.

    2013-01-01

    The main goal of this study is to obtain a potent polycyclic aromatic hydrocarbons (PAHs) biodegrading bacteria to be used for bio augmentation purpose which is considered a promising strategy for the cleanup of contaminated sites. Among 10 selected potent PAHs degrading bacteria isolated from Suez Gulf water (after enrichments on phenanthrene as a sole source of carbon and energy). Isolate HD20 was selected due to its fast and remarkable abilities to breakdown phenanthrene . In a trial to improve the biodegradation potentials of the most potent isolate (Had) identified as Stenotrophomonas maltophilia, low doses of gamma irradiation were used to activate the organism. To determine the radiation response of S. maltophilia, 24 hours culture was exposed in saline solution in a triplicate glass vials separately to increasing doses of gamma irradiation, 0.25, 0.5, 1.0, 1.5, 2.0 and 2.5 kGy. The dose response curve revealed the linear death of bacterial cells with increasing irradiation dose, The D10 value of S. maltophilia was found to be 0.3 kGy. For PAHs biodegradation enhancement, the organism was irradiated at low doses of gamma irradiation, 0.2, 0.4, 0.5, 0.6 and 0.7 kGy. The grown colonies exhibited a morphological differences from the non irradiated Stenotrophomonas maltophilia on Tryptone-glucose-yeast extract (TGY) plates. All of them showed a creamy rough appearance and a loss of the known yellow colour of the original isolate. The single selected irradiated colonies as well as the whole irradiated mixture of cells irradiated at different doses were tested separately in fertilized marine microcosms containing 200 ppm of phenanthrene as a model of PAH and the degradation rates of polyaromatic hydrocarbons were monitored by the determination of the residual phenanthrene up to one week . The biodegradation potentials of irradiated and non irradiated S. maltophilia was compared with that of the natural Suez Gulf microbial communities. The irradiated culture of S

  18. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  19. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  20. Biotransformation of monoaromatic hydrocarbons under anoxic conditions

    International Nuclear Information System (INIS)

    Ball, H.A.; Reinhard, M.; McCarty, P.L.

    1991-01-01

    Aromatic hydrocarbons contained in gasoline are environmental pollutants of particular concern since they are relatively soluble in water, many are toxic, and some are confirmed carcinogens, (e.g., benzene). Although most gasoline constituents are readily degraded in aerobic surface water systems, the groundwater environment associated with hydrocarbon spills is typically anaerobic, thus precluding aerobic degradation pathways. In the absence of oxygen, degradation of gasoline components can take place only with the utilization of alternate electron acceptors such as nitrate, sulfate, carbon dioxide, and possibly ferric iron or other metal oxides. Benzene, toluene, and xylene isomers were completely degraded by aquifer- or sewage sludge-derived microorganisms under dentrifying and methanogenic conditions. Recently, a pure culture was found to degrade toluene and m-xylene nitrate or nitrous oxide as an electron acceptor. This paper presents initial results of ongoing study to develop and characterize microbial consortia capable of transforming aromatic hydrocarbons under nitrate-reducing conditions, and understand the effect of environmental factors on the biotransformation processes

  1. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  2. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  3. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Autothermal reforming of liquid hydrocarbons for H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Palm, C.; Montel, S.; Cremer, P.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany). Inst. for Materials and Processes in Energy Systems IWV-3: Process Engineering

    2001-07-01

    The process of autothermal reforming of hydrocarbons can be used for the production of hydrogen within a fuel cell system. The application of three precious metal catalysts for the autothermal reforming of alkane mixtures with boiling ranges between 235 and 325 C was examined. The experiments were carried out at n(O{sub 2})/n(C) = 0.40, n(H{sub 2}O)/n(C) = 2.20, a catalyst bed temperature between 730 and 570 C and a hydrocarbon feed of 30 g/h. The catalysts yielded different hydrocarbon conversions, which can be explained by differences in the activity for the steam reforming reaction. The most active catalyst was also successfully utilized in the conversion of 400 g/h hydrocarbon feed. (orig.)

  5. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  6. Method for production of unsaturated gaseous hydrocarbons, particularly ethylene, and of aromatic hydrocarbons, adapted as motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1952-10-24

    A method is described for the production of unsaturated gaseous hydrocarbons, in particular of ethylene, and of aromatic hydrocarbons from hydrocarbon oils or from fractions of the same, characterized by the fact that the raw materials are brought into contact with porous, inert substances in the form of fine distribution or of pieces at a temperature of above 500 and in particular from 600 to about 700/sup 0/C and with a traversing speed of from 0.3 up to about 3.0 volumetric parts, preferably up to 1.5 volumetric parts of raw material per volumetric part of the chamber and per hour.

  7. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media.

    Science.gov (United States)

    Wu, Manli; Chen, Liming; Tian, Yongqiang; Ding, Yi; Dick, Warren A

    2013-07-01

    A consortium composed of many different bacterial species is required to efficiently degrade polycyclic aromatic hydrocarbons (PAH) in oil-contaminated soil. We obtained six PAH-degrading microbial consortia from three oil-contaminated soils using two different isolation culture media. Denaturing gradient gel electrophoresis (DGGE) and sequence analyses of amplified 16s rRNA genes confirmed the bacterial community was greatly affected by both the culture medium and the soil from which the consortia were enriched. Three bacterial consortia enriched using malt yeast extract (MYE) medium showed higher degradation rates of PAHs than consortia enriched using Luria broth (LB) medium. Consortia obtained from a soil and then added back to that same soil was more effective in degrading PAHs than adding, to the same soil, consortia isolated from other, unrelated soils. This suggests that inoculum used for bioremediation should be from the same, or very similar nearby soils, as the soil that is actually being bioremediated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13 C/ 12 C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  9. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    Science.gov (United States)

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bacterial diversity exploration in hydrocarbon polluted soil: metabolic potential and degrader community evolution revealed by isotope labeling

    International Nuclear Information System (INIS)

    Martin, F.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13 C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13 C were then identified by 16 S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaproteobacteries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating di-oxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to di-oxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences

  11. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    Science.gov (United States)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  12. Determination of impurities and degradation products from veterinary medicinal products by HPLC method

    Directory of Open Access Journals (Sweden)

    Elena Gabriela Oltean

    2014-06-01

    Full Text Available The organic or inorganic impurities in the veterinary medicinal product can derive from starting materials, manufacturing process, incomplete purification, inappropriate storage. The acceptable levels of impurities in pharmaceuticals are estimated by comparison with standard solutions, according to the appropriate monographs. Forced degradation studies determine the stability of the method of dosage for the active compounds and for the entire finished product under excessive accelerated degradation conditions. They also provide information on degradation pathways and selectivity of analytical methods applied. The information provided by the degradation studies on the active compound and finished pharmaceutical product should demonstrate the specificity of the analytical method regarding impurities. Forced degradation studies should demonstrate that the impurities and degradation products generated do not interfere with the active compound. The current forced degradation methods consist of acid hydrolysis, basic hydrolysis, oxidation, exposure of the medicinal product to temperature and light. HPLC methods are an integral analytical instrument for the analysis of the medicinal product. The HPLC method should be able to separate, detect and quantify various specific degradation products that can appear after manufacture or storage of the medicinal product, as well as new elements appearing after synthesis. FDA and ICH guidelines recommend the enclosure of the results, including the chromatograms specific to the forced degradation-subjected medicinal product, in the documentation for marketing authorization. Using HPLC methods in forced degradation studies on medicinal products provides relevant information on the method of determination for the formulation of the medicinal product, synthesis product, packaging methods and storage.

  13. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Espinola, Fernando J.; Dionisi, Hebe M.; Borglin, Sharon; Brislawn, Colin J.; Jansson, Janet K.; Mac Cormack, Walter P.; Carroll, Jolynn; Sjoling, Sara; Lozada , Mariana

    2018-01-02

    In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon’s index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers of both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.

  14. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs: a review

    Directory of Open Access Journals (Sweden)

    Debajyoti Ghosal

    2016-08-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed towards removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of

  15. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

    Science.gov (United States)

    Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main

  16. Indigenous production of biosurfactant and degradation of crude oil

    Directory of Open Access Journals (Sweden)

    Hamid Rashedi

    2015-04-01

    Full Text Available The present study investigated the isolation and identification of biosurfactant producing bacteria from Iranian oil wells. The biosurfactant production of bacteria isolates was evaluated and confirmed using hemolysis and emulsification tests. The biodegradation of crude oil was studied using GC and HPLC analysis. A total of 45 strains have been isolated. These strains showed less than a 40 mN m-1 reduction in surface tension. The effects of different pH (4.2-9.2, salinity concentrations (1%-15%, and temperatures (25-50 in biosurfactant production of isolated strains were evaluated. One of the strains (Bacillus sp. NO.4 showed a high salt tolerance and a successful production of biosurfactant in a vast pH range. Its maximum biomass production (about 3.1 g L-1 dry weight was achieved after 60 hours of growth. The surface tension of the culture broth dropped rapidly after inoculation and reached its lowest value (36 mN m-1 during the exponential phase after about 36-48 hours of growth. The study of the GC graphs showed that higher aliphatic reduction occurred in fractions with C14 to C24 hydrocarbons. The depicted results of the HPLC graphs indicated a 100% degradation of chrysene and fluorine. In this study, we demonstrated the useful capacities of the isolates in removing oil pollutants and their application in MEOR in vitro.

  17. Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China

    International Nuclear Information System (INIS)

    Deng, Mao-Cheng; Li, Jing; Liang, Fu-Rui; Yi, Meisheng; Xu, Xiao-Ming; Yuan, Jian-Ping; Peng, Juan; Wu, Chou-Fei; Wang, Jiang-Hai

    2014-01-01

    Graphical abstract: Morphological properties of the colonies and cells of strain HZ01. (A) Colonies of strain HZ01 on the LB solid plate; (B) Gram-negative bacterium of strain HZ01 (20 × 100); (C) Scanning electron microscopy (SEM) photograph of strain HZ01 (×15,000); and (D) Transmission electronic microscopy (TEM) photograph of strain HZ01 (×5000). - Highlights: • A novel petroleum degrading bacterium HZ01 was obtained from the crude oil-contaminated seawater. • Strain HZ01 had been identified as Achromobacter sp. • Strain HZ01 could degrade the evaporated diesel oil with the degradability of 96.6%. • Strain HZ01 could effectively degrade anthracene, phenanthrene and pyrence. • Strain HZ01 may be employed to remove hydrocarbon contaminants. - Abstract: Microorganisms play an important role in the biodegradation of petroleum contaminants, which have attracted great concern due to their persistent toxicity and difficult biodegradation. In this paper, a novel hydrocarbon-degrading bacterium HZ01 was isolated from the crude oil-contaminated seawater at the Daya Bay, South China Sea, and identified as Achromobacter sp. Under the conditions of pH 7.0, NaCl 3% (w/v), temperature 28 °C and rotary speed 150 rpm, its degradability of the total n-alkanes reached up to 96.6% after 10 days of incubation for the evaporated diesel oil. Furthermore, Achromobacter sp. HZ01 could effectively utilize polycyclic aromatic hydrocarbons (PAHs) as its sole carbon source, and could remove anthracene, phenanthrene and pyrence about 29.8%, 50.6% and 38.4% respectively after 30 days of incubation. Therefore, Achromobacter sp. HZ01 may employed as an excellent degrader to develop one cost-effective and eco-friendly method for the bioremediation of marine environments polluted by crude oil

  18. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Oil characterisation: assessment of composition, risks, degradation and remediation potential of total petroleum hydrocarbons in soil

    Energy Technology Data Exchange (ETDEWEB)

    Lookman, R.; Vanermen, G.; Van De Weghe, H.; Gemoets, J. [Vito, Mol (Belgium); Van der Sterren, G.; Alphenaar, A. [TTE, Deventer (Netherlands)

    2005-07-01

    Several methods are available for the characterization of petroleum hydrocarbons. The TPHCWG (Total Petroleum Hydrocarbon Criteria Working Group) developed a method based on a silica column separation of aromatics and aliphatics and a GC-FID subdivision into equivalent-carbon fractions (EC) ('TPH-method'). This method was mainly developed for assessing human risks of oil compounds. Within NOBIS (Dutch Research program Biological In-situ Remediation), another method was developed based upon an equilibrium-experiment of the oil-polluted soil with water (column recirculation), which was further developed by TTE ('TTE-method'). This method uses measured water solubilities of individual oil components and GC-retention times yielding a subdivision of the hydrocarbons into compound classes that are relevant for assessing the remediation potential of the specific oil pollution. In this paper we present results of a research project in which we developed a new method, the 'OK-method' that combines these two procedures and allows a complete characterisation of the oil in terms of composition, (human) risks, volatility, solubility, plume behaviour (migration velocities of the soluble components) and aerobic degradation potential. (authors)

  20. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    International Nuclear Information System (INIS)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H.; Ren, Zhiyong Jason

    2014-01-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m 2 . The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures

  1. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  2. Comparison of Paraffin and Diesel Oil as Cultivation Medium Supplements for Preparing a Hydrocarbon-Degrading Bacterial Biomass

    Directory of Open Access Journals (Sweden)

    Dokukins Eduards

    2016-05-01

    Full Text Available The effect of liquid paraffin and diesel oil as nutrient amendments for hydrocarbon-degrading bacteria was compared. Different parameters were analyzed - optical density of bacterial suspension, oxygen consumption by biomass, morphology of bacteria, etc. In some experiments the paraffin was more preferable for microorganisms, but in other tests the results for both substances were similar. The influence of the comparable substances strongly depends on cultivation conditions.

  3. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  4. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    Science.gov (United States)

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.

    2013-01-01

    Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon

  5. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor.

    Science.gov (United States)

    Jeswani, Hansa; Mukherji, Suparna

    2012-05-01

    The degradation of phenolics, heterocyclics and polynuclear aromatic hydrocarbons (PAHs) in a synthetic biomass gasifier wastewater with average COD of 1388 mg/L was studied in a three stage rotating biological contactor (RBC) using the pyrene degrader, Exiguobacterium aurantiacum and activated sludge consortia (1:3 v/v). As the organic loading rate (OLR) was varied from 3.3 to 14 g/m(2)/d, the COD removal ranged from 63.3% to 92.6%. Complete removal of all the constituents was observed at the lowest OLR of 3.3g/m(2)/d. At 24h hydraulic retention time (HRT) and OLR of 6.6g/m(2)/d complete removal of pyridine, quinoline and benzene and 85-96% removal of phenol, naphthalene, phenanthrene, fluoranthene and pyrene was observed. E. aurantiacum was found to be the dominant bacteria in the biofilm. Clark's model provided good fits to data for all the three stages of the RBC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Safety barriers to prevent release of hydrocarbons during production of oil and gas

    OpenAIRE

    Sklet, Snorre; Hauge, Stein

    2004-01-01

    This report documents a set of scenarios related to release of hydrocarbons during production on oil and gas platforms. For each release scenario, initiating events, barrier functions aimed to prevent loss of containment, and barrier systems that realize these barrier functions are identified and described. Safety barriers to prevent release of hydrocarbons during production of oil and gas

  7. ACCUMULATION OF POLY-B-HYDROXYBUTYRATE IN A METHANE- ENRICHED, HALOGENATED, HYDROCARBON-DEGRADING SOIL COLUMN: IMPLICATIONS FOR MICROBIAL COMMUNITY STRUCTURE AND NUTRITIONAL STATUS

    Science.gov (United States)

    The prokarotic, endogenous storage polymer poly--hydroxybutyrate (PHB) accumulated in soil from a methane-enriched, halogenated hydrocarbon-degrading soil column. Based on phospholipid ester-linked fatty acid (PLFA) profiles, this mocrocosm has been previously reported to be sign...

  8. Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil.

    Science.gov (United States)

    Covino, Stefano; D'Annibale, Alessandro; Stazi, Silvia Rita; Cajthaml, Tomas; Čvančarová, Monika; Stella, Tatiana; Petruccioli, Maurizio

    2015-02-01

    The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediation

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2016-01-01

    A highly oil-polluted soil from Krasnoe in North-West Russia was used to investigate the degradation of organic pollutants during electrodialytic remediation. Removal efficiencies were up to 70 % for total hydrocarbons (THC) and up to 65 % for polyaromatic hydrocarbons (PAH). Relatively more...... of the lighter PAH compounds and THC fractions were degraded. A principal component analysis (PCA) revealed a difference in the distribution of PAH compounds after the remediation. The observed clustering of experiments in the PCA scores plot was assessed to be related to the stirring rate. Multivariate analysis...... of the experimental settings and final concentrations in the 12 experiments revealed that the stirring rate of the soil suspension was by far the most important parameter for the remediation for both THC and PAH. Light was the second most important variable for PAH and seems to influence degradation. The experimental...

  10. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M.; Ortega-Calvo, J.J.

    2005-01-01

    Aliphatic, aromatic and polycyclic aromatic oil hydrocarbons are structurally complicated man-caused pollutants that are constantly brought into biosphere. Oil production in Russia, so as all over the world, is connected with pollution of biotopes, ecosystems and agro-landscapes. Presently large funds are allocated either for oil leak prevention or for discharged oil gathering. At the same time, in spite of large necessity in technologies for efficient reconstruction of soil bio-productivity, reliable regional systems of their remediation in situ have not been developed yet. One such method is rhizosphere remediation, a biotechnology, based on the functioning of plant-microbial complexes. Little is known about bioavailability in phyto-remediation systems. Specific bioavailability-promoting mechanisms, operating in soil with hydrocarbon-degrading populations, may be responsible for increased rates of pollutant transformation (increased bacterial adherence to the pollutants, production of bio-surfactants by bacteria or by plants, possible role of chemotaxis). In the course of work collection of 42 chemo-tactically active bio-surfactant producing strain-degraders of petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) was created. Two representative strains were selected for detailed chemotaxis studies with PAHs (naphthalene, phenanthrene, anthracene, and pyrene), bacterial lipopolysaccharide and root exudates from seven different plants. These strains are produce the bio-surfactants (rhamno-lipid). The chemotactic response was quantified with a capillary and densitometric chemotaxis assay. Surface tension of cultural liquid was measured after cultivation of strains in the presence of hexadecane or phenanthrene with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. Total petroleum Hydrocarbons (TPH) in soil were analyzed by infra-red spectroscopy method. PAHs

  11. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    Aliphatic, aromatic and polycyclic aromatic oil hydrocarbons are structurally complicated man-caused pollutants that are constantly brought into biosphere. Oil production in Russia, so as all over the world, is connected with pollution of biotopes, ecosystems and agro-landscapes. Presently large funds are allocated either for oil leak prevention or for discharged oil gathering. At the same time, in spite of large necessity in technologies for efficient reconstruction of soil bio-productivity, reliable regional systems of their remediation in situ have not been developed yet. One such method is rhizosphere remediation, a biotechnology, based on the functioning of plant-microbial complexes. Little is known about bioavailability in phyto-remediation systems. Specific bioavailability-promoting mechanisms, operating in soil with hydrocarbon-degrading populations, may be responsible for increased rates of pollutant transformation (increased bacterial adherence to the pollutants, production of bio-surfactants by bacteria or by plants, possible role of chemotaxis). In the course of work collection of 42 chemo-tactically active bio-surfactant producing strain-degraders of petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) was created. Two representative strains were selected for detailed chemotaxis studies with PAHs (naphthalene, phenanthrene, anthracene, and pyrene), bacterial lipopolysaccharide and root exudates from seven different plants. These strains are produce the bio-surfactants (rhamno-lipid). The chemotactic response was quantified with a capillary and densitometric chemotaxis assay. Surface tension of cultural liquid was measured after cultivation of strains in the presence of hexadecane or phenanthrene with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. Total petroleum Hydrocarbons (TPH) in soil were analyzed by infra-red spectroscopy method. PAHs

  12. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria

    International Nuclear Information System (INIS)

    Chaerun, S. Khodijah; Tazaki, Kazue; Asada, Ryuji; Kogure, Kazuhiro

    2004-01-01

    Five years after the 1997 Nakhodka oil spill in the Sea of Japan, seven bacterial strains capable of utilizing the heavy oil spilled from the Nakhodka Russian oil tanker were isolated from three coastal areas (namely Katano Seashore of Fukui Prefecture, Osawa and Atake seashores of Ishikawa Prefecture) and the Nakhodka Russian oil tanker after a 5-year bioremediation process. All bacterial strains isolated could utilize long-chain-length alkanes efficiently, but not aromatic, and all of them were able to grow well on heavy oil. Using 16S rDNA sequencing, most of the strains were affiliated to Pseudomonas aeruginosa. Comparing between the year 1997 (at the beginning of bioremediation process) and the year 2001 (after 5 years of bioremediation), there was no significant change in morphology and size of hydrocarbon-degrading bacteria during the 5-year bioremediation. Scanning and transmission electron microscopic observations revealed that a large number of hydrocarbon- degrading bacteria still existed in the sites consisting of a variety of morphological forms of bacteria, such as coccus (Streptococcus and Staphylococcus) and bacillus (Streptobacillus). On the application of bioremediation processes on the laboratory-scale, laboratory microcosm experiments (containing seawater, beach sand, and heavy oil) under aerobic condition by two different treatments (i.e., placed inside the building and outside the building) were established for bioremediation of heavy oil to investigate the significance of the role of hydrocarbon-degrading bacteria on them. There was no significant bacterial activity differentiation in the two treatments, and removal of heavy oil by hydrocarbon degrading bacteria in the outside building was slightly greater than that in the inside building. The values of pH, Eh, EC, and dissolved oxygen (DO) in two treatments indicated that the bioremediation process took place under aerobic conditions (DO: 1-6 mg/l; Eh: 12-300 mV) and neutral

  13. Hydrogen degradation of the 26H2MF alloy steel in H2SO4 and hydrocarbon environments

    International Nuclear Information System (INIS)

    Zielinski, A.; Swieczko-Zurek, B.; Michaliak, P.

    2004-01-01

    The Polish 26H2M alloy steel has been subjected to different heat treatment resulting in different microstructure and fracture appearance. The slow strain rate tests have been made on smooth round specimens in diluted sulphuric acid, boiler fuel and used mineral machine oil. The 26H2MF steel has become relatively immune in neutral boiler fuel and mineral oil and been heavily suffered from hydrogen degradation in acidic environment. The results demonstrate that the 26H2MF steel is highly susceptible to hydrogen degradation but in absence of stress raisers the increased hydrogen absorption in hydrocarbons can cause only small loss of its plasticity. (author) >>>

  14. Culture-dependent characterization of hydrocarbon utilizing bacteria ...

    African Journals Online (AJOL)

    EARNEST

    Hydrocarbons interact with the environment and micro- organisms determining the .... it is pertinent to study the community dynamics of hydrocarbon degrading bacteria ... Chikere CB (2013). Application of molecular microbiology techniques in.

  15. A novel zeolite process for clean end use of hydrocarbon products

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, K M [Neste Oy, Porvoo (Finland). Technology Centre

    1997-12-31

    In recent years zeolites such as ZSM-5 have attracted considerable interest for the catalysis of a wide range of hydrocarbon transformations. A novel process developed by Neste converts light olefins to higher molecular weight hydrocarbon products. A wide range of high quality diesel, solvents and lube oils can be produced by the new NESKO process. Hydrotreated products have excellent properties; negligible sulphur or nitrogen compounds, very low aromatic content and pour point lower than -50 deg C. Proprietary technology is used in this olefin oligomerization process. (author) (7 refs.)

  16. A novel zeolite process for clean end use of hydrocarbon products

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, K.M. [Neste Oy, Porvoo (Finland). Technology Centre

    1996-12-31

    In recent years zeolites such as ZSM-5 have attracted considerable interest for the catalysis of a wide range of hydrocarbon transformations. A novel process developed by Neste converts light olefins to higher molecular weight hydrocarbon products. A wide range of high quality diesel, solvents and lube oils can be produced by the new NESKO process. Hydrotreated products have excellent properties; negligible sulphur or nitrogen compounds, very low aromatic content and pour point lower than -50 deg C. Proprietary technology is used in this olefin oligomerization process. (author) (7 refs.)

  17. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  18. Catalysts for the production of hydrocarbons from carbon monoxide and water

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  19. Microbial degradation of polycyclic aromatic hydrocarbons (PAHs). Pt. 1

    International Nuclear Information System (INIS)

    Eichler, B.; Bryniok, D.; Vorbeck, C.; Lutz, M.; Ackermann, B.; Freier-Schroeder, D.; Knackmuss, H.J.

    1992-01-01

    Productive degradation of the higher molecular PAHs benz(a)anthracene (four rings), benzo(a)pyrene and benzo(k)fluoranthene (five rings) through pure bacterial cultures is demonstrated in this paper for the first time. Consequently, a degradation potential for lower and higher molecular polycyclic aromatics up to five rings exists both in the ground of the fromer coking site and in the ground of the former gas works of Stuttgart. Further samples from contaminated soils, coking waste water and sediments showed similar results. This suggests that the bacterial flora present in the soil itself can be successfully used to clean up contaminated ground. (orig.) [de

  20. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  1. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - January 2008 no.13

    International Nuclear Information System (INIS)

    2008-01-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  2. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - December 2007 no.12

    International Nuclear Information System (INIS)

    2007-01-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  3. Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation.

    Science.gov (United States)

    Escobar-Alvarado, L F; Vaca-Mier, M; López, R; Rojas-Valencia, M N

    2018-02-01

    Used lubricant oils and metals can be common soil pollutants in abandoned sites. When soil is contaminated with various hazardous wastes, the efficiency of biological treatments could be affected. The purpose of this work was to investigate the effect of combining phytoremediation and composting on the efficiency of hydrocarbon degradation and lead solubility in a soil contaminated with 31,823 mg/kg of total petroleum hydrocarbon (TPH) from used motor oil and 8260 mg/kg of lead. Mexican cactus (Opuntia ficus indica) and yard trimmings were added in the composting process, and lucerne (Medicago sativa) was used in the phytoremediation process. After a 9 week composting process, only 13% of the initial TPH concentration was removed. The following 20 week phytoremediation process removed 48% of TPH. The highest TPH degradation percentage (66%), was observed in the experiment with phytoremediation only. This work demonstrates sustainable technologies, such as biological treatments, represent low-cost options for remediation; however, they are not frequently used because they require long periods of time for success.

  4. Research of the degradation products of chitosan's angiogenic function

    International Nuclear Information System (INIS)

    Wang Jianyun; Chen Yuanwei; Ding Yulong; Shi Guoqi; Wan Changxiu

    2008-01-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent

  5. Contribution to the study of the degradation of the solvent used in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Goasmat, F.

    1984-01-01

    The degradation of a mixed solvent (tributylphosphate - hydrocarbons) in a fuel reprocessing plant (UP 2 at La Hague, France) is studied in this thesis. Laboratory studies on degradation mechanisms, decomposition products and regeneration processes are reviewed in a bibliographic synthesis. Solvent degradation is investigated on a real solvent from a reprocessing plant. Influence of degradation on solvent performance is shown and regeneration processes should be improved. Many regeneration processes are tested on solvent from the plant and results are discussed. Separation and analysis of degradation products show the polyfunctional structure of compounds formed [fr

  6. Irradiation of Oil / Water Biphasic Systems: the Importance of Interfacial Surface Area on the Production of Hydrogen and Other Deleterious Products

    International Nuclear Information System (INIS)

    Causey, Patrick-W.; Stuart, Craig-R.

    2012-09-01

    Occasionally, organic materials, such as lubricating oils, can enter irradiated aqueous reactor systems. This can upset the chemistry control of the reactor, resulting in elevated hydrogen gas concentrations, changes in system pH and the formation of unwanted degradation products. Most available information on the radiation chemistry of oil is extrapolated from irradiations of neat simple hydrocarbons like hexane; there is little information available as to the radiolytic breakdown of larger hydrocarbons in the presence of water. In the absence of water, the general radiation effects on hydrocarbons can be divided into fragmentation and polymerizations reactions. Some factors that can influence the degradation of hydrocarbons include the extent of hydrocarbon branching, the degree of bond-saturation, and the presence of scavenging molecules and dissolved gases. The mechanism of water radiolysis is well understood and tools are available to simulate such radiation chemistry. Additionally, irradiations of aqueous systems containing trace quantities of soluble organic species and ion exchange resins have also been studied. However, at least initially, oils that enter irradiated aqueous systems are essentially insoluble in water. This leads to a non-homogeneous system where radiation energy is deposited in both water and organic phases, each of which will have distinct irradiation behaviours. In addition to the irradiation effects in the aqueous and organic phases, the effects of irradiation on the chemistry at the interface between the phases and the rate of production of soluble hydrocarbon fragments from the degradation of the oil are unknown. A program was initiated to examine the radiation chemistry effects on aqueous systems contaminated with insoluble hydrocarbon-based oils. A unique vessel has been designed and fabricated for the irradiation of hydrocarbon-water mixtures in a Gammacell 60 Co γ-irradiator. The design allows for variation of the hydrocarbon

  7. Production of hydrogen via conversion of hydrocarbons using a microwave plasma

    International Nuclear Information System (INIS)

    Jasinski, Mariusz; Dors, Miroslaw; Nowakowska, Helena; Mizeraczyk, Jerzy; Nichipor, Gerietta V

    2011-01-01

    In this paper, results of hydrogen production from hydrocarbons in an atmospheric pressure microwave plasma are presented. As sources of hydrogen, both methane CH 4 and tetrafluoroethane C 2 H 2 F 4 were tested. A new waveguide-based nozzleless cylinder-type microwave plasma source was used to convert hydrocarbons into hydrogen. The processed gaseous hydrocarbons were introduced into the plasma by four gas ducts which formed a swirl flow in the plasma reactor. The absorbed microwave power was up to 5 kW. The gas flow rate was up to 212 L min -1 . The hydrogen mass yield rate and the corresponding energetic hydrogen mass yield were up to 866 g[H 2 ] h -1 and 577 g [H 2 ] kWh -1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

  8. Influence of radiolytic degradation products from organic phase

    International Nuclear Information System (INIS)

    Azevedo, H.L.P. de.

    1980-01-01

    The influence of primary and secondary degradation products from TBP - dodecane on zirconium extraction is studied. The presence of radiolytical degradation at organic phase, in systems of initial concentration of HNO 3 1 and 4M, and absorbed γ radiation doses from 0,5 to 4,5 Wh/l, lead to an increase of zirconium extraction, being the HDBP the main product of degradation responsable by this effect. The influence of secondary degradation products is significative in systems of HNO 3 1M initial concentration. The formation of precipitator in extractions of Zr in HNO 3 1M with irradiated TBP-dodecane was observed. (M.C.K.) [pt

  9. Abundance and activity of oil-degrading and indigenous bacteria in sediment microcosms

    International Nuclear Information System (INIS)

    Araujo, R.; Molina, M.; Bachoon, D.

    1995-01-01

    The responses of bacterial community composition and degradation crude oil to applications of bioremediation products and plant detrital material were investigated in wetlands microcosms. The microcosms were constructed of sieved sediments and operated as tidal marshes. Products included nutrients, organisms, surfactants and combinations thereof; dried ground Spartina was the source of detrital material. Plate count and most probable-number techniques were used to enumerate microbial populations and GC/MS analysis of indicator petroleum hydrocarbons was used to assess oil degradation. Microbial communities were characterized by whole-genome hybridization and specific probes for bacterial groups, including Pseudomonas, Streptomycetes, Vibrio, and sulfate-reducing bacteria. Although the total microbial numbers were similar in all bioremediation treatments, the numbers of oil degraders increased two to three log units in the fertilizer and microbial-degrader-enriched treatments. Oil-degraders comprised the largest fraction of the total population in the treatment amended with microbial degraders, apparently at the expense of indigenous bacteria, as indicated by specific probes. Oil-degraders were also detected in the subsurface in all treatments except the controls. The extent of oil degradation was not consistent with bacterial numbers; only nutrient additions resulted in significantly enhanced degradation of oil. After 1 month of microcosm operation, oil-degraders had increased at least two orders of magnitude in sediment surface layers when oil was added alone or with Spartina detritus, although total bacterial numbers and the number of oil-degraders decreased to near initial levels by 2 months. The peak coincides with bacterial utilization of the alkane fraction of petroleum hydrocarbons

  10. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - May 2007. No 5

    International Nuclear Information System (INIS)

    2007-01-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins), underground storage facilities (demands of concession extension). (J.S.)

  11. Vitamin C degradation products and pathways in the human lens.

    Science.gov (United States)

    Nemet, Ina; Monnier, Vincent M

    2011-10-28

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.

  12. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  13. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  14. [Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the Middle Atlantic Ridge].

    Science.gov (United States)

    Cui, Zhisong; Shao, Zongze

    2009-07-01

    In order to identify the predominant strains of polycyclic aromatic hydrocarbon (PAH)-degrading consortia harboring in sea water and surface sediment collected from deep sea of the Middle Atlantic Ridge. We employed enrichment method and spread-plate method to isolate cultivable bacteria and PAHs degraders from deep sea samples. Phylogenetic analysis was conducted by 16S rRNA gene sequencing of the bacteria. Then we analyzed the dominant bacteria in the PAHs-degrading consortia by denaturing gradient gel electrophoresis (DGGE) combined with DNA sequencing. Altogether 16 cultivable bacteria were obtained, including one PAHs degrader Novosphingobium sp. 4D. Phylogenetic analysis showed that strains closely related to Alcanivorax dieselolei NO1A (5/16) and Tistrella mobilis TISTR 1108T (5/16) constituted two biggest groups among the cultivable bacteria. DGGE analysis showed that strain 4L (also 4M and 4N, Alcanivorax dieselolei NO1A, 99.21%), 4D (Novosphingobium pentaromativorans US6-1(T), 97.07%) and 4B (also 4E, 4H and 4K, Tistrella mobilis TISTR 1108T, > 99%) dominated the consortium MC2D. While in consortium MC3CO, the predominant strains were strain 5C (also 5H, Alcanivorax dieselolei NO1A, > 99%), uncultivable strain represented by band 5-8 (Novosphingobium aromaticivorans DSM 12444T, 99.41%), 5J (Tistrella mobilis TISTR 1108T, 99.52%) and 5F (also 5G, Thalassospira lucentensis DSM 14000T, degrading consortia in sea water and surface sediment of Middle Atlantic Ridge deep sea, with Novosphingobium spp. as their main PAHs degraders.

  15. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  16. Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil.

    Science.gov (United States)

    Maletić, Snežana P; Dalmacija, Božo D; Rončević, Srđan D; Agbaba, Jasmina R; Perović, Svetlana D Ugarčina

    2011-01-01

    The objective of this research was to investigate the impact of the hydrocarbon type and concentration, as well as the total effect of the natural weathering process to hydrocarbon biodegradability in sandy soil and the environment. In this experiment, sandy soil was separately contaminated with 0.5%, 1.0%, 2.0% and 3.5% of diesel and crude oils. Oil contaminated soil was taken from the Oil Refinery dumping sites after 9 years of weathering, and its concentration was adjusted to the above-mentioned levels. The biodegradation process was monitored by measuring CO(2), evolution rate, hydrocarbon degradation rate and dehydrogenase activity. The favourable concentration ranges for the soil contaminated with diesel oil were 1.0%, with concentrations at about 2.0% causing slightly adverse effects to CO(2) production which was overcome after 2 weeks, and with 3.5% diesel oil causing significant toxicity. For soil contaminated with crude oil, 2.0% was found to be optimum for effective biodegradation, with 3.5% crude oil also causing adverse effects to CO(2) production, although less so than the same concentration of diesel oil. No adverse effect was obtained for any concentration of the weathered oil, as after the weathering process, the remaining contaminants in the soil were mostly poorly degradable constituents like asphaltenes, resins etc. It has been proposed that such residual material from oil degradation is analogous to, and can even be regarded as, humic material. Due to its inert characteristics, insolubility and similarity to humic materials it is unlikely to be environmentally hazardous.

  17. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta

    2015-12-10

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  18. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta; Mapelli, Francesca; Chouaia, Bessem; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2015-01-01

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  19. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Characterization of Petroleum Hydrocarbon Decomposing Fungi Isolated from Mangrove Rhizosphere

    Directory of Open Access Journals (Sweden)

    Nuni Gofar

    2011-01-01

    Full Text Available The research was done to obtain the isolates of soil borne fungi isolated from mangrove rhizosphere which were capable of degrading petroleum hydrocarbon compounds. The soil samples were collected from South Sumatra mangrove forest which was contaminated by petroleum. The isolates obtained were selected based on their ability to survive, to grow and to degrade polycyclic aromatic hydrocarbons in medium containing petroleum residue. There were 3 isolates of soil borne hydrocarbonoclastic fungi which were able to degrade petroleum in vitro. The 3 isolates were identified as Aspergillus fumigates, A. parasiticus, and Chrysonilia sitophila. C. sitophila was the best isolate to decrease total petroleum hydrocarbon (TPH from medium containing 5-20% petroleum residue.

  1. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.

    Science.gov (United States)

    Płaza, Grazyna A; Jangid, Kamlesh; Lukasik, Krystyna; Nałecz-Jawecki, Grzegorz; Berry, Christopher J; Brigmon, Robin L

    2008-10-01

    The aim of the study was to investigate petroleum waste remediation and toxicity reduction by five bacterial strains: Ralstonia picketti SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (I'-1a), Bacillus sp. (T-1), and Bacillus sp. (T'-1), previously isolated from petroleum-contaminated soils. Petroleum hydrocarbons were significantly degraded (91%) by the mixed bacterial cultures in 30 days (reaching up to 29% in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3-fold after 30 days. This work shows the influence of bacteria on hydrocarbon degradation and associated toxicity, and its dependence on the specific microorganisms present. The ability of these mixed cultures to degrade hydrocarbons and reduce toxicity makes them candidates for environmental restoration applications at other hydrocarbon-contaminated environments.

  2. Use of residual hydrocarbons treated by Thermal Plasma (recovery of energy by-products)

    International Nuclear Information System (INIS)

    Carreno B, J.A.; Pacheco S, J.O.; Ramos F, F.; Cruz A, A.; Duran G, M.

    2001-01-01

    The emergence of new technologies is getting greater importance for the control of pollution. One of them is the destruction of hazardous wastes treated by thermal plasma, which is of special interest for the efficient treatment of the hazardous wastes since the heat generated by thermal plasma is able to destroy the molecular bonds generating solids and gaseous products which do not represent danger for the human being and the environment. The thermal plasma is the suitable technology for treating a wide range of hazardous wastes, including the residual hydrocarbons from the refinement process of petroleum, plasma exceeds the barrier of 3000 Centigrade. The efficiency of the degradation of residues is greater than 99.99%. Toxic emissions are not generated to environment as SO 2 , NO x and CO 2 neither dioxins and furans by being a pyrolysis process. The use of hydrogen as fuel does not generate pollution to environment. (Author)

  3. TYPES OF FI SCAL REGIME IN HYDROCARBON EXPLORATION AND PRODUCTION

    Directory of Open Access Journals (Sweden)

    Daria Karasalihović-Sedlar

    2017-01-01

    Full Text Available The choice of the right fi scal regime represents the main object of the energy policy concerning hydrocarbon exploration and production for the state government. For the operator and service companies it represents the terms and conditions for practical conducting of the process in whole. This paper analyse aspects of agreements used in the petroleum indus-try. Elements of agreement, regardless of regime, have been described together with their advantages and disadvantages. Due to the fact that the fi scal regime has to be chosen to attract companies willing to invest in exploration and produc-tion, it represents a relevant part of the business strategy and also a base for the decision making process during start up. It has to minimize the risk for the both parties involved and maximize the state’s share during the exploitation phase. For the companies, it has to be attractive enough to balance risks during the exploration phase with profi ts gained during the exploitation phase. The aim of this paper is to show the existing fi scal systems in the petroleum industry and to analyze the process for concluding a contract regarding the exploration and production of hydrocarbons. An overview of diff er-ent business practices in the oil and gas industry with a detailed breakdown of the contract terms between the parties involved have been described in the paper. The aim of this paper is to show the diff erent possibilities of fi nancial regimes which could help during the negotiation process for conducting hydrocarbon exploration and production for everyone involved.

  4. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  5. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  6. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  7. Sinalbin degradation products in mild yellow mustard paste

    Directory of Open Access Journals (Sweden)

    Paunović Dragana

    2012-01-01

    Full Text Available Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenylacetonitrile. The most abundant sinalbin degradation product in yellow mustard paste was 4-(hydroxymethylphenol. Other compounds identified in this sample were: 4-methyl phenol, 4-ethyl phenol, 4-(2-hydroxyethylphenol and 2-(4-hydroxyphenyl ethanoic acid.

  8. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fibrinogen/fibrin degradation products assay. 864.7320 Section 864.7320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7320 Fibrinogen/fibrin degradation products assay. (a) Identification. A fibrinogen/fibrin degradation...

  9. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media

    International Nuclear Information System (INIS)

    Wu, Manli; Chen, Liming; Tian, Yongqiang; Ding, Yi; Dick, Warren A.

    2013-01-01

    A consortium composed of many different bacterial species is required to efficiently degrade polycyclic aromatic hydrocarbons (PAH) in oil-contaminated soil. We obtained six PAH-degrading microbial consortia from three oil-contaminated soils using two different isolation culture media. Denaturing gradient gel electrophoresis (DGGE) and sequence analyses of amplified 16s rRNA genes confirmed the bacterial community was greatly affected by both the culture medium and the soil from which the consortia were enriched. Three bacterial consortia enriched using malt yeast extract (MYE) medium showed higher degradation rates of PAHs than consortia enriched using Luria broth (LB) medium. Consortia obtained from a soil and then added back to that same soil was more effective in degrading PAHs than adding, to the same soil, consortia isolated from other, unrelated soils. This suggests that inoculum used for bioremediation should be from the same, or very similar nearby soils, as the soil that is actually being bioremediated. -- Highlights: •Six PAH-degrading microbial consortia were isolated from three oil-contaminated soils. •The bacterial community by 16s rRNA genes was affected by culture media and source soil. •Inoculum should be from the same or similar soil as the soil being bioremediated. -- Bioremediation of oil-contaminated soils was most effective when using inoculum of microbial consortia from the same or similar soil as the soil being bioremediated

  10. Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, E.S.; Obuekwe, C. [Kuwait University (Kuwait). Department of Biological Sciences, Microbiology Program

    2005-07-01

    Analyses of soil samples revealed that the level of lead (total or bioavailable) was three-fold greater in crude oil contaminated than in uncontaminated Kuwaiti soils. Investigation of the possible inhibitory effect of lead on hydrocarbon degradation by the soil microbiota showed that the number of hydrocarbon-degrading bacteria decreased with increased levels of lead nitrate added to soil samples, whether oil polluted or not. At 1.0 mg lead nitrate g{sup -1} dry soil, the number of degraders of hexadecane, naphthalene and crude oil declined by 14%, 23% and 53%, respectively. In a similar manner, the degradation and mineralization of different hydrocarbons decreased with increased lead content in cultures, although the decreases were not significantly different (P>0.05). The dehydrogenase activities of soil samples containing hydrocarbons as substrates also declined with an increase in the lead content of soil samples. (author)

  11. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  12. Modelling the behaviour of organic degradation products

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.; Greenfield, B.F.

    1989-03-01

    Results are presented from recent studies at Harwell which show that the degradation products which are formed when certain organic waste materials are exposed to the alkaline conditions typical of a cementitious environment, can enhance the solubility of plutonium, even at pH values as high as 12, by significant factors. Characterisation of the degradation products has been undertaken but the solubility enhancement does not appear to be related to the concentration of any of the major organic species that have been identified in the solutions. While it has not been possible to identify by analysis the organic ligand responsible for the increased solubility of plutonium, the behaviour of D-Saccharic acid does approach the behaviour of the degradation products. The PHREEQE code has been used to simulate the solubility of plutonium in the presence of D-Saccharic acid and other model degradation products, in order to explain the solubility enhancement. The extrapolation of the experimental conditions to the repository is the major objective, but in this work the ability of a model to predict the behaviour of plutonium over a range of experimental conditions has been tested. (author)

  13. Production of hydrogen via conversion of hydrocarbons using a microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Dors, Miroslaw; Nowakowska, Helena; Mizeraczyk, Jerzy [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Nichipor, Gerietta V, E-mail: mj@imp.gda.pl [Joint Institute of Power and Nuclear Research, Academy of Sciences of Belarus, Minsk, Sosny 220109 (Belarus)

    2011-05-18

    In this paper, results of hydrogen production from hydrocarbons in an atmospheric pressure microwave plasma are presented. As sources of hydrogen, both methane CH{sub 4} and tetrafluoroethane C{sub 2}H{sub 2}F{sub 4} were tested. A new waveguide-based nozzleless cylinder-type microwave plasma source was used to convert hydrocarbons into hydrogen. The processed gaseous hydrocarbons were introduced into the plasma by four gas ducts which formed a swirl flow in the plasma reactor. The absorbed microwave power was up to 5 kW. The gas flow rate was up to 212 L min{sup -1}. The hydrogen mass yield rate and the corresponding energetic hydrogen mass yield were up to 866 g[H{sub 2}] h{sup -1} and 577 g [H{sub 2}] kWh{sup -1} of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

  14. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil.

    Directory of Open Access Journals (Sweden)

    Muhammad Arslan

    Full Text Available Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.

  15. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  16. Production of aromatics from di- and polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Taylor; Blank, Brian; Jones, Casey; Woods, Elizabeth; Cortright, Randy

    2017-07-04

    Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Ni.sub.nSn.sub.m alloy and a crystalline alumina support.

  17. Relating BTEX degradation to the biogeochemistry of an anaerobic aquifer

    International Nuclear Information System (INIS)

    Toze, S.G.; Power, T.R.; Davis, G.B.

    1995-01-01

    Trends in chemical and microbiological parameters in a petroleum hydrocarbon plume within anaerobic groundwater have been studied. Previously, microbial degradation of the hydrocarbon compounds had been substantiated by the use of deuterated hydrocarbons to determine natural (intrinsic) degradation rates within the contaminant plume. Here, sulfate concentration decreases, Eh decreases, and hydrogen sulfide and bicarbonate concentration increases are shown to be associated with the contaminant plume. These trends indicate microbial degradation of the benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by sulfate-reducing bacteria. Stoichiometry indicates that other consortia of bacteria play a role in the degradation of the hydrocarbons. Total microbial cell numbers were higher within the plume than in the uncontaminated groundwater. There is, however, no direct correlation between total microbial cell numbers, and BTEX, sulfate, bicarbonate, and hydrogen sulfide concentrations within the plume

  18. Growth and biosurfactant synthesis by Nigerian hydrocarbon-degrading estuarine bacteria

    Directory of Open Access Journals (Sweden)

    Sunday A Adebusoye

    2008-12-01

    Full Text Available The ability of microorganisms to degrade petroleum hydrocarbons is important for finding an environmentally-friendly method to restoring contaminated environmental matrices. Screening of hydrocarbon-utilizing and biosurfactant-producing abilities of organisms from an estuarine ecosystem in Nigeria, Africa, resulted in the isolation of five microbial strains identified as Corynebacterium sp. DDv1, Flavobacterium sp. DDv2, Micrococcus roseus DDv3, Pseudomonas aeruginosa DDv4 and Saccharomyces cerevisae DDv5. These isolates grew readily on several hydrocarbons including hexadecane, dodecane, crude oil and petroleum fractions. Axenic cultures of the organisms utilized diesel oil (1.0 % v/v with generation times that ranged significantly (t-test, P La capacidad de los microorganismos para degradar hidrocarburos del petróleo es de gran importancia para hallar un método aceptable y ambientalmente amigable para la restauración de terrenos ambientalmente contaminados. Al investigar las capacidades de los organismos de un ecosistema de estuario que utilizan hidrocarburos y producen biosurfactantes, se produjo como resultado el aislamiento de cinco cepas microbianas identificadas como Corynebacterium sp. DDv1, Flavobacterium sp. DDv2, Micrococcus roseus DDv3, Pseudomonas aeruginosa y DDv4 Saccharomyces cerevisiae DDv5. Estas cepas crecieron fácilmente en varios hidrocarburos incluyendo hexadecanos, dodecanos, petróleo crudo y fracciones de petróleo. Los cultivos axénicos de organismos utilizaron diesel (1.0% v/v con períodos por generación con ámbitos significativos (t-test, P <0.05 de entre 3.25 y 3.88 días, con la consiguiente producción de bio-surfactantes. La cinética del crecimiento indica que la síntesis de bio-surfactante se produjo principalmente durante la fase de crecimiento exponencial, lo que sugiere que las moléculas bioactivas son metabolitos primarios. Las cepas DDv1 y DDv4 fueron evidentemente las más metab

  19. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Yin; Wang Xiaowei [Sun Yat-Sen Univ., Guangzhou (China). State Key Lab. of Biocontrol; Futian-CityU Mangrove Research and Development Centre, Shenzhen (China). Futian National Nature Reserve; Luan Tiangang; Lan Chongyu [Sun Yat-Sen Univ., Guangzhou (China). State Key Lab. of Biocontrol; Tam, N.F.Y. [Futian-CityU Mangrove Research and Development Centre, Shenzhen (China). Futian National Nature Reserve; City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    2007-05-15

    The influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated when Sphingomonas sp. strain PheB4 isolated from surface mangrove sediments was grown in either phenanthrene-containing mineral salts medium (PMSM) or nutrient broth (NB). The NB-grown culture exhibited a more rapid cometabolic degradation of single and mixed non-growth substrate PAHs compared to the PMSM-grown culture. The concentrations of PAH metabolites were also lower in NB-grown culture than in PMSM-grown culture, suggesting that NB-grown culture removed metabolites at a faster rate, particularly, for metabolites produced from cometabolic degradation of a binary mixture of PAHs. Cometabolic pathways of single PAH (anthracene, fluorene, or fluoranthene) in NB-grown culture showed similarity to that in PMSM-grown culture. However, cometabolic pathways of mixed PAHs were more diverse in NB-grown culture than that in PMSM-grown culture. These results indicated that nutrient rich medium was effective in enhancing cometabolic degradation of mixed PAHs concomitant with a rapid removal of metabolites, which could be useful for the bioremediation of mixed PAHs contaminated sites using Sphingomonas sp. strain PheB4. (orig.)

  20. Vitamin C Degradation Products and Pathways in the Human Lens*

    OpenAIRE

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation ...

  1. Petroleum-hydrocarbons biodegradation by Pseudomonas strains ...

    African Journals Online (AJOL)

    The capability of these isolates to degrade petroleum was performed by measuring the optical density, colony forming unit counts (CFU/ml) and concentration of total petroleum hydrocarbons (TPH). Degradation of Isomerate by these isolates was analyzed by gas chromatography with flame ionization detector (FID). Results ...

  2. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  3. Liquid chromatography and liquid chromatography-mass spectrometry analysis of donepezil degradation products

    Directory of Open Access Journals (Sweden)

    Mladenović Aleksandar R.

    2015-01-01

    Full Text Available This study describes the investigation of degradation products of donepezil (DP using stability indicating RP-HPLC method for determination of donepezil, which is a centrally acting reversible acetylcholinesterase inhibitor. In order to investigate the stability of drug and formed degradation products, a forced degradation study of drug sample and finished product under different forced degradation conditions has been conducted. Donepezil hydrochloride and donepezil tablets were subjected to stress degradation conditions recommended by International Conference on Harmonization (ICH. Donepezil hydrochloride solutions were subjected to acid and alkali hydrolysis, chemical oxidation and thermal degradation. Significant degradation was observed under alkali hydrolysis and oxidative degradation conditions. Additional degradation products were observed under the conditions of oxidative degradation. The degradation products observed during forced degradation studies were monitored using the high performance liquid chromatography (HPLC method developed. The parent method was modified in order to obtain LC-MS compatible method which was used to identify the degradation products from forced degradation samples using high resolution mass spectrometry. The mass spectrum provided the precise mass from which derived molecular formula of drug substance and degradation products formed and proved the specificity of the method unambiguously. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  4. Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae)

    International Nuclear Information System (INIS)

    April, T. M.; Abbott, S. P.; Foght, J. M.; Currah, R. S.

    1998-01-01

    Four strains of Pseudallescheria boydii were isolated from oil-soaked soils in British Columbia and Alberta and compared with strains from cattle dung and raw sewage. Variations in morphology, colony appearance, colony diameter and temperature tolerance were found among the strains. Three of the strains isolated from oil-contaminated soils and the strain from sewage were tested for their ability to utilize hydrocarbons as the sole carbon source. Gas chromatographic analysis of the residual oil revealed that the strains isolated from the oil-contaminated soil degraded the linear aliphatics. The strain derived from sewage utilized volatile n-alkenes (ethane, propane, butane) but did not utilize the liquid saturate compounds. Since certain strains of Pseudallescheria boydii are known to be pathogenic, cautious handling of these fungi was recommended. However, under properly controlled conditions, selected non-pathogenic strains of the fungi may be used as an integral and effective part of intrinsic bioremediation processes. 39 refs., 3 tabs., 7 figs

  5. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  6. Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams.

    Science.gov (United States)

    Vecitis, Chad D; Wang, Yajuan; Cheng, Jie; Park, Hyunwoong; Mader, Brian T; Hoffmann, Michael R

    2010-01-01

    Aqueous film-forming foams (AFFFs) are fire extinguishing agents developed by the Navy to quickly and effectively combat fires occurring close to explosive materials and are utilized today at car races, airports, oil refineries, and military locations. Fluorochemical (FC) surfactants represent 1-5% of the AFFF composition, which impart properties such as high spreadability, negligible fuel diffusion, and thermal stability to the foam. FC's are oxidatively recalcitrant, persistent in the environment, and have been detected in groundwater at AFFF training sites. Ultrasonic irradiation of aqueous FCs has been reported to degrade and subsequently mineralize the FC surfactants perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS). Here we present results of the sonochemical degradation of aqueous dilutions of FC-600, a mixture of hydrocarbon (HC) and fluorochemical components including cosolvents, anionic hydrocarbon surfactants, fluorinated amphiphilic surfactants, anionic fluorinated surfactants, and thickeners such as starch. The primary FC surfactant in FC-600, PFOS, was sonolytically degraded over a range of FC-600 aqueous dilutions, 65 ppb or = 1, indicating that bubble-water interfacial pyrolytic cleavage of the C-S bond in PFOS is the initial degradation step, in agreement with previous studies done in Milli-Q water. Sonochemical fluoride production is significantly below quantitative expectations, delta[F-]/delta[PFOS] 4 vs 17, suggesting that in the AFFF matrix, PFOS' fluorochemical tail is not completely degraded, whereas Milli-Q studies yielded quantitative F- production. Measurements of time-dependent methylene blue active substances and total organic carbon indicate that the other FC-600 components were also sonolytically decomposed.

  7. Occurrence and growth potentials of hydrocarbon degrading ...

    African Journals Online (AJOL)

    The surface of leaf samples from ten tropical plants, Anthocleista, Sarcophrynium, Canna, Colocassia, Musa, Cola, Citrus, Mangifera, Terminalia and Annona were cultured for the estimation of total heterotrophic and hydrocarbon utilizing bacteria. The total heterotrophic bacteria ranged from 0.75 x 107 to 0.98 x 107 ...

  8. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    Science.gov (United States)

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  10. Investigating bioremediation of petroleum hydrocarbons through landfarming using apparent electrical conductivity measurements

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Seuntjens, Piet

    2015-04-01

    Bioremediation of soil contaminated with petroleum hydrocarbons through landfarming has been widely applied commercially at large scale. Biodegradation is one of the dominant pollutant removal mechanisms involved in landfarming, but strongly depends on the environmental conditions (e.g. presence of oxygen, moisture content). Conventionally the biodegradation process is monitored by the installation of field monitoring equipment and repeated sample collection and analysis. Because the presence of petroleum hydrocarbons and their degradation products can affect the electrical properties of the soil, proximal soil sensors such as electromagnetic induction (EMI) sensors may provide an alternative to investigate the biodegradation process of these contaminants. We investigated the relation between the EMI-based apparent electrical conductivity (ECa) of a landfarm soil and the presence and degradation status of petroleum hydrocarbons. The 3 ha study area was located in an oil refinery complex contaminated with petroleum hydrocarbons, mainly composed of diesel. At the site, a landfarm was constructed in 1999. The most recent survey of the petroleum hydrocarbon concentrations was conducted between 2011 and 2013. The sampling locations were defined by a grid with a 10 m by 10 m cell size and on each location a sample was taken from four successive soil layers with a thickness of 0.5 m each. Because the survey was carried out in phases using different georeferencing methods, the final dataset suffered from uncertainty in the coordinates of the sampling locations. In September 2013 the landfarm was surveyed for ECa with a multi-receiver electromagnetic induction sensor (DUALEM-21S) using motorized conveyance. The horizontal measurement resolution was 1 m by 0.25 m. On each measurement location the sensor recorded four ECa values representative of measurement depths of 0.5 m, 1.0 m, 1.6 m and 3.2 m. After the basic processing, the ECa measurements were filtered to remove

  11. Method of degrading pollutants in soil

    Science.gov (United States)

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  12. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  14. Deep Sequencing of Myxilla (Ectyomyxilla) methanophila, an Epibiotic Sponge on Cold-Seep Tubeworms, Reveals Methylotrophic, Thiotrophic, and Putative Hydrocarbon-Degrading Microbial Associations

    KAUST Repository

    Arellano, Shawn M.

    2012-10-11

    The encrusting sponge Myxilla (Ectyomyxilla) methanophila (Poecilosclerida: Myxillidae) is an epibiont on vestimentiferan tubeworms at hydrocarbon seeps on the upper Louisiana slope of the Gulf of Mexico. It has long been suggested that this sponge harbors methylotrophic bacteria due to its low δ13C value and high methanol dehydrogenase activity, yet the full community of microbial associations in M. methanophila remained uncharacterized. In this study, we sequenced 16S rRNA genes representing the microbial community in M. methanophila collected from two hydrocarbon-seep sites (GC234 and Bush Hill) using both Sanger sequencing and next-generation 454 pyrosequencing technologies. Additionally, we compared the microbial community in M. methanophila to that of the biofilm collected from the associated tubeworm. Our results revealed that the microbial diversity in the sponges from both sites was low but the community structure was largely similar, showing a high proportion of methylotrophic bacteria of the genus Methylohalomonas and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria of the genera Cycloclasticus and Neptunomonas. Furthermore, the sponge microbial clone library revealed the dominance of thioautotrophic gammaproteobacterial symbionts in M. methanophila. In contrast, the biofilm communities on the tubeworms were more diverse and dominated by the chemoorganotrophic Moritella at GC234 and methylotrophic Methylomonas and Methylohalomonas at Bush Hill. Overall, our study provides evidence to support previous suggestion that M. methanophila harbors methylotrophic symbionts and also reveals the association of PAH-degrading and thioautotrophic microbes in the sponge. © 2012 Springer Science+Business Media New York.

  15. Deep sequencing of Myxilla (Ectyomyxilla) methanophila, an epibiotic sponge on cold-seep tubeworms, reveals methylotrophic, thiotrophic, and putative hydrocarbon-degrading microbial associations.

    Science.gov (United States)

    Arellano, Shawn M; Lee, On On; Lafi, Feras F; Yang, Jiangke; Wang, Yong; Young, Craig M; Qian, Pei-Yuan

    2013-02-01

    The encrusting sponge Myxilla (Ectyomyxilla) methanophila (Poecilosclerida: Myxillidae) is an epibiont on vestimentiferan tubeworms at hydrocarbon seeps on the upper Louisiana slope of the Gulf of Mexico. It has long been suggested that this sponge harbors methylotrophic bacteria due to its low δ(13)C value and high methanol dehydrogenase activity, yet the full community of microbial associations in M. methanophila remained uncharacterized. In this study, we sequenced 16S rRNA genes representing the microbial community in M. methanophila collected from two hydrocarbon-seep sites (GC234 and Bush Hill) using both Sanger sequencing and next-generation 454 pyrosequencing technologies. Additionally, we compared the microbial community in M. methanophila to that of the biofilm collected from the associated tubeworm. Our results revealed that the microbial diversity in the sponges from both sites was low but the community structure was largely similar, showing a high proportion of methylotrophic bacteria of the genus Methylohalomonas and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria of the genera Cycloclasticus and Neptunomonas. Furthermore, the sponge microbial clone library revealed the dominance of thioautotrophic gammaproteobacterial symbionts in M. methanophila. In contrast, the biofilm communities on the tubeworms were more diverse and dominated by the chemoorganotrophic Moritella at GC234 and methylotrophic Methylomonas and Methylohalomonas at Bush Hill. Overall, our study provides evidence to support previous suggestion that M. methanophila harbors methylotrophic symbionts and also reveals the association of PAH-degrading and thioautotrophic microbes in the sponge.

  16. Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikolaj; Szczepaniak, Zuzanna

    2016-01-01

    It is not known whether diesel-degrading bacterial communities are structurally and functionally robust when exposed to different hydrocarbon types. Here, we exposed a diesel-degrading consortium to model either alkanes, cycloalkanes or aromatic hydrocarbons as carbon sources to study its...... structural resistance. The structural resistance was low, with changes in relative abundances of up to four orders of magnitude, depending on hydrocarbon type and bacterial taxon. This low resistance is explained by the presence of hydrocarbon-degrading specialists in the consortium and differences in growth...... kinetics on individual hydrocarbons. However, despite this low resistance, structural and functional resilience were high, as verified by re-exposing the hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short exposure time, insufficient for permanent changes...

  17. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton.

    Science.gov (United States)

    Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes.

  18. Oxidative degradation of toluene and limonene in air by pulsed corona technology

    International Nuclear Information System (INIS)

    Hoeben, W F L M; Beckers, F J C M; Pemen, A J M; Van Heesch, E J M; Kling, W L

    2012-01-01

    The oxidative degradation of two volatile organic compounds, i.e. toluene (fossil fuel based VOC) and limonene (biogenic VOC), has been studied. A hybrid pulsed power corona reactor with adjustable energy density has been utilized for degradation of ppm level target compounds in large air flows. The observed oxidation product range features an energy density-dependent spectrum of oxygen-functional hydrocarbons, which has been qualitatively discussed on the basis of literature studies. Typically, observed stable oxidation products for both target compounds are the biocompatible carboxylic acids acetic and formic acid. Measured degradation G-values are 23 nmol J -1 at 74% conversion of 70 ppm toluene and 181 nmol J -1 at 81% conversion of 10 ppm limonene. (paper)

  19. Sinalbin degradation products in mild yellow mustard paste

    OpenAIRE

    Paunović, Dragana; Šolević-Knudsen, Tatjana; Krivokapić, Mirjana; Zlatković, Branislav; Antić, Mališa

    2012-01-01

    Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS) technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenyl)acetonitrile. The most a...

  20. The microbial degradation of polycyclic aromatic hydrocarbons in soils and sediments. Der mikrobielle Abbau polyzyklischer aromatischer Kohlenwasserstoffe (PAK) in Boeden und Sedimenten: Mineralisierung, Metabolitenbildung und Entstehung gebundener Rueckstaende

    Energy Technology Data Exchange (ETDEWEB)

    Mahro, B; Kaestner, M [Technische Univ. Hamburg-Harburg (Germany). Arbeitsbereich Biotechnologie 2

    1993-02-01

    The microbial degradation of polycylic aromatic hydrocarbons in soils and sediments: mineralization, metabolite excretion and the formation of bound residues microorganisms degrade polycyclic aromatic hydrocarbons (PAH) via three different metabolic pathways: mineralization, cometabolic oxidation or an unspecific triggering of radical reactions. As a result of these microbial transformation processes PAH may be converted to CO[sub 2] and biomass or partially oxidized metabolites. The possible fate of these presumed metabolites in the soil matrix is analyzed. It is pointed out that the formation of humus bound residues, stimulated by microbial exoenzyme activities, may contribute to significant extent to the disappearance of PAHs in soils and sediments. The relevance of this fact for the biological remediation of contaminated soils is discussed. (orig.).

  1. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  2. Isolation of four hydrocarbon effluent-degrading Bacillaceae species ...

    African Journals Online (AJOL)

    percentage decreases in total hydrocarbon concentration within 18 days: 98% with Bacillus licheniformis STK08, 87% with Geobacillus stearothermophilus STM04, 80% with Lysinibacillus sphaericus STZ75 and 72% with Bacillus firmus STS84.

  3. Method of degrading pollutants in soil

    Science.gov (United States)

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  4. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    Evangelia C.Vouvoudi; Aristea T.Rousi; Dimitris S.Achilias

    2017-01-01

    Modern societies strongly support the recycling practices over simple waste accumulation due to environmental harm caused.In the framework of sustainable recycling of plastics from WEEE,pyrolysis is proposed here as a means of obtaining secondary value-added products.The aim of this study was to investigate the thermal degradation and the products obtained after pyrolysis of specific polymers found in the plastic part of WEEE,using thermogravimetric analysis and a pyrolizer equipped with a GC/MS.Polymers studied include ABS,HIPS,PC and a blend having a composition similar to that appearing in WEEE.It was found that,PC shows greater heat endurance compared to the other polymers,whereas ABS depolymerizes in three-steps.The existence of several polymers in the blend results in synergistic effects which decrease the onset and final temperature of degradation.Moreover,the fragmentation occurred in the pyrolyzer,at certain temperatures,resulted in a great variety of compounds,depending on the polymer type,such as monomers,aromatic products,phenolic compounds and hydrocarbons.The main conclusion from this investigation is that pyrolysis could be an effective method for the sustainable recycling of the plastic part of WEEE resulting in a mixture of chemicals with varying composition but being excellent to be used as fuel retrieved from secondary recycling sources.

  5. Hydrocarbon Degradation Potentials of Bacteria Isolated from Spent ...

    African Journals Online (AJOL)

    ADOWIE PERE

    chemical nature of the compounds within the petroleum mixture and ... are toxic, mutagenic, and carcinogenic (Clemente et al., 2001). ... Hydrocarbon utilizing bacteria in the soil sample ... paper (Whatman No.1) saturated with sterile spent oil.

  6. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  7. Stimulation of diesel degradation and biosurfactant production by aminoglycosides in a novel oil-degrading bacterium Pseudomonas luteola PRO23

    Directory of Open Access Journals (Sweden)

    Atanasković Iva M.

    2016-01-01

    Full Text Available Bioremediation is promising technology for dealing with oil hydrocarbons contamination. In this research growth kinetics and oil biodegradation efficiency of Pseudomonas luteola PRO23, isolated from crude oil-contaminated soil samples, were investigated under different concentrations (5, 10 and 20 g/L of light and heavy crude oil. More efficient biodegradation and more rapid adaptation and cell growth were obtained in conditions with light oil. The 5 to 10 g/L upgrade of light oil concentration stimulated the microbial growth and the biodegradation efficiency. Further upgrade of light oil concentration and the upgrade of heavy oil concentration both inhibited the microbial growth, as well as biodegradation process. Aminoglycosides stimulated biosurfactant production in P. luteola in the range of sub-inhibitory concentrations (0.3125, 0.625 μg/mL. Aminoglycosides also induced biofilm formation. The production of biosurfactants was the most intense during lag phase and continues until stationary phase. Aminoglycosides also induced changes in P. luteola growth kinetics. In the presence of aminoglycosides this strain degraded 82% of diesel for 96 h. These results indicated that Pseudomonas luteola PRO23 potentially can be used in bioremediation of crude oil-contaminated environments and that aminoglycosides could stimulate this process. [Projekat Ministarstva nauke Republike Srbije, br. TR31080

  8. Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf

    International Nuclear Information System (INIS)

    Al Hasan, R.H.; Sorkhoh, N.A.; Al Bader, D.; Radwan, S.S.

    1994-01-01

    Several pieces of evidence indicate that Microcoleus chthonoplastes and Phormidium corium, the predominant cyanobacteria in microbial mats on crude oil polluting the Arabian Gulf coasts, contribute to oil degradation by consuming individual n-alkanes. Both cyanobacteria grew phototrophically better in the presence of crude oil or individual n-alkanes than in their absence, indicating that hydrocarbons may have been utilized. This result was true when growth was measured in terms of dry biomass, as well as in terms of the content of biliprotein, the accessory pigment characteristic of cyanobacteria. The phototrophic biomass production by P. corium was directly proportional to the concentration of n-nonadecane (C 19 ) in the medium. The chlorophyll to carotene ratio of hydrocarbon-grown cyanobacteria did not decrease compared to the ratio in the absence of hydrocarbons, indicating that on hydrocarbons the organisms were not stressed. Comparing the fatty acid patterns of total lipids from hydrocarbon-grown cyanobacteria to those of the same organisms grown without hydrocarbons confirms that n-alkanes were taken up and oxidized to fatty acids by both cyanobacteria. (orig.)

  9. Potential sources of hydrocarbons and their microbial degradation in sediments from the deep geothermal Lusi site, Indonesia

    Science.gov (United States)

    Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin

    2017-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  10. Bureau of hydrocarbons exploration-production (BEPH) - Monthly information bulletin. December 2006; Bureau exploration-production des hydrocarbures. Bulletin mensuel d'information. Decembre 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands and allocations of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins); underground storage facilities (allocation and extension of concessions). (J.S.)

  11. The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Marietou, Angeliki; Chastain, Roger; Beulig, Felix; Scoma, Alberto; Hazen, Terry C; Bartlett, Douglas H

    2018-01-01

    The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium , a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter , previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments.

  12. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques

    Directory of Open Access Journals (Sweden)

    Dheeraj Kaushik

    2015-10-01

    Full Text Available Forced degradation study on doxorubicin (DOX was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH guidelines Q1(R2. It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I–O-IV in oxidative condition, and to single product (A-I in acid hydrolytic condition. These products were resolved on a C8 (150 mm×4.6 mm, 5 µm column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5, acetonitrile and methanol (65:15:20, v/v/v. Liquid chromatography–photodiode array (LC–PDA technique was used to ascertain the purity of the products noted in LC–UV chromatogram. For their characterization, a six stage mass fragmentation (MS6 pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography–time of flight mass spectrometry (LC–MS–TOF on degraded drug solutions. Based on it, O-I–O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed. Keywords: Doxorubicin, TOF, Forced degradation, Liquid chromatography, Degradation product, Mass fragmentation pattern

  13. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  14. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin.

    Science.gov (United States)

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-07-01

    Polyaromatic hydrocarbons (PAHs) are organic pollutants mostly derived from the processing and combustion of fossil fuels and cause human health hazards. In the present study a marine biosurfactant producing strain of Bacillus circulans was used to increase the bioavailability and consequent degradation of a model polyaromatic hydrocarbon, anthracene. Although the organism could not utilize anthracene as the sole carbon source, it showed better growth and biosurfactant production in an anthracene supplemented glycerol mineral salts medium (AGlyMSM) compared to a normal glycerol mineral salts medium (GlyMSM). The biosurfactant product showed high degree of emulsification of various hydrocarbons. Analysis by gas chromatography (GC), high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) showed that the biosurfactant could effectively entrap and solubilize PAH. Thin layer chromatographic analysis showed that anthracene was utilized as a carbon substrate for the production of biosurfactant. Thus organic pollutant anthracene was metabolized and converted to biosurfactants facilitating its own bioremediation.

  15. Bacterial degradation of naphtha and its influence on corrosion

    International Nuclear Information System (INIS)

    Rajasekar, A.; Maruthamuthu, S.; Muthukumar, N.; Mohanan, S.; Subramanian, P.; Palaniswamy, N.

    2005-01-01

    The degradation problem of naphtha arises since hydrocarbon acts as an excellent food source for a wide variety of microorganisms. Microbial activity leads to unacceptable level of turbidity, corrosion of pipeline and souring of stored product. In the present study, biodegradation of naphtha in the storage tank and its influence on corrosion was studied. The corrosion studies were carried out by gravimetric method. Uniform corrosion was observed from the weight loss coupons in naphtha (0.024 mm/yr) whereas in presence of naphtha with water, blisters (1.2052 mm/yr) were noticed. The naphtha degradation by microbes was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). IR study reveals the formation of primary alcohol during degradation process. It was found that microbes degrade (CH 2 -CH 2 ) n to R-CH 3 . Iron bacteria, manganese oxidizing bacteria, acid producers, and heterotrophic bacteria were enumerated and identified in the pipeline. SRB could not be noticed. Since water stratifies in the pipeline, the naphtha-degraded product may adsorb on pipeline, which would enhance the rate of microbial corrosion. On the basis of degradation and corrosion data, a hypothesis for microbial corrosion has been proposed

  16. [Oil degradation by basidiomycetes in soil and peat at low temperatures].

    Science.gov (United States)

    Kulikova, N A; Klein, O I; Pivchenko, D V; Landesman, E O; Pozdnyakova, N N; Turkovskaya, O V; Zaichik, B Ts; Ruzhitskii, A O; Koroleva, O V

    2016-01-01

    A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.

  17. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    Science.gov (United States)

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    Science.gov (United States)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  19. MICROORGANISMS’ SURFACE ACTIVE SUBSTANCES ROLE IN HYDROCARBONS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Оlga Vasylchenko

    2012-09-01

    Full Text Available  Existing data and publications regarding oil, hydrocarbon biodegradation, metabolism, and bioremediation were analyzed. Search of hydrocarbon degrading bacteria which are producers of biosurfactants was provided, types of microbial surfactants and their physiological role were analyzed and ordered. The study of factors affecting the surface active properties of producers’ cultures was done.

  20. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures

    International Nuclear Information System (INIS)

    Boonchan, S.; Britz, M.L.; Stanley, G.A.

    2000-01-01

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO 2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization, and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula

  1. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    Science.gov (United States)

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  2. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil

    Directory of Open Access Journals (Sweden)

    Sabina Viramontes-Ramos

    2010-10-01

    Full Text Available Petroleum-derived hydrocarbons are among the most persistent soil contaminants, and some hydrocarbon-degrading microorganisms can produce biosurfactants to increase bioavailability and degradation. The aim of this work was to identify biosurfactant-producing bacterial strains isolated from hydrocarbon-contaminated sites, and to evaluate their biosurfactant properties. The drop-collapse method and minimal agar added with a layer of combustoleo were used for screening, and positive strains were grown in liquid medium, and surface tension and emulsification index were determined in cell-free supernantant and cell suspension. A total of 324 bacterial strains were tested, and 17 were positive for the drop-collapse and hydrocarbon-layer agar methods. Most of the strains were Pseudomonas, except for three strains (Acinetobacter, Bacillus, Rhodococcus. Surface tension was similar in cell-free and cell suspension measurements, with values in the range of 58 to 26 (mN/m, and all formed stable emulsions with motor oil (76-93% E24. Considering the variety of molecular structures among microbial biosurfactants, they have different chemical properties that can be exploited commercially, for applications as diverse as bioremediation or degradable detergents.

  3. Comparison of analytical methods used to measure petroleum hydrocarbons in soils and their application to bioremediation studies

    International Nuclear Information System (INIS)

    Douglas, G.S.; Wong, W.M.; Rigatti, M.J.; McMillen, S.J.

    1995-01-01

    Chemical measurements provide a means to evaluate crude oil and refined product bioremediation effectiveness in field and laboratory studies. These measurements are used to determine the net decrease in product or target compound concentrations in complex soil systems. The analytical methods used to evaluate these constituents will have a direct impact on the ability of the investigator to; (1) detect losses due to biodegradation, (2) understand the processes responsible for the hydrocarbon degradation and, (3) determine the rates of hydrocarbon degradation. This understanding is critical for the testing and design of bioremediation programs. While standard EPA methods are useful for measuring a wide variety of industrial and agrochemicals, they were not designed for the detection and accurate measurement of petroleum compounds. The chemical data generated with these standard methods are usually of limited utility because they lack the chemical specificity required to evaluate hydrocarbon compositional changes in the oil contamination required to evaluate biodegradation. The applications and limitations of standard EPA methodologies (EPA Methods 418.1, 8270, and modified 8015) will be evaluated and compared to several new analytical methods currently being used by the petroleum industry (e.g., gross compositional analysis, TLC-FID analysis, and enhanced EPA Method 8270) to evaluate bioremediation effectiveness in soils

  4. Polycyclic aromatic hydrocarbons in Saccoglossus kowalewskyi (Agassiz)

    Science.gov (United States)

    Carey, D. A.; Farrington, J. W.

    1989-08-01

    Hydrocarbon extracts were analyzed from Saccoglossus kowalewskyi, a deposit-feeding enteropneust worm, and from surface sediments from Cape Cod, MA. Worms were held in experimental aquaria in sieved sediments and flowing seawater for four months and then fed sediments mixed with creosote, lampblack or clean sediment for two weeks as analogues of sediments containing degraded oil and pyrogenic compounds. Worms from all treatments contained polyaromatic hydrocarbons (PAHs) in amounts and composition that indicate that the worms were contaminated with weathered No. 2 fuel oil before our experimental treatment and that the contamination persisted for four months in clean conditions. The contamination was not detected in the clean sediments used in the experiment. The worms accumulated steroid transformation products in greater abundance than the odd chain n-alkanes that dominated the sediment extractions. This may indicate selective assimilation of algal detritus and microbial products over salt marsh detritus. Worms, actively feeding during the experiment, contained 1-3 × 10 -6 g g -1 dry weight of unknown brominated compounds which were not detected in the sediments. These compounds are similar to bromopyrroles found elsewhere in enteropneusts, polychaetes and bacteria and may cause substantial interference in analyses for some industrial pollutants.

  5. Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities.

    Science.gov (United States)

    Daghio, Matteo; Espinoza Tofalos, Anna; Leoni, Barbara; Cristiani, Pierangela; Papacchini, Maddalena; Jalilnejad, Elham; Bestetti, Giuseppina; Franzetti, Andrea

    2018-01-05

    BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m 2 with a maximum peak at 480mA/m 2 ) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days -1 , 0.34±0.09days -1 and 0.16±0.02days -1 , respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  7. Effects of organic degradation products on the sorption of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH [proportional to] 11) and at the edge of the zone of migration of the alkaline plume (pH [proportional to] 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.).

  8. Biodegradation of hydrocarbon remnants by biological activators in the presence of INIPOL EAP 22

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. R.; Luengo, M. C.; Socias, S.; Perez, F.; Laseca, D. [Universidad de las Islas Baleares, Palma de Mallorca (Spain); Perez-Navarro, A.; Morales, N. [Universidad Alfonso X El Sabio, Madrid (Spain)

    1997-10-01

    Degradation of highly weathered hydrocarbon mixtures resulting from an accidental spill in an oil refinery was studied, using BIOLEN IG 30 as the degradation agent microorganism, and INIPOL EAP 22 as the biodegradation accelerator. Results show that BIOLEN IG 30 is able to degrade highly weathered hydrocarbons at 20 degrees C, in the presence of INIPOL EAP 22. BIOLEN IG 30 is also able to degrade the total ionic and anionic dispersants in FINASOL OSR 51 (a dispersant), even in the absence of a biodegradation accelerator. 10 refs., 7 tabs., 3 figs.

  9. Biodegradation of hydrocarbon remnants by biological activators in the presence of INIPOL EAP 22

    International Nuclear Information System (INIS)

    Bergueiro, J. R.; Luengo, M. C.; Socias, S.; Perez, F.; Laseca, D.; Perez-Navarro, A.; Morales, N.

    1997-01-01

    Degradation of highly weathered hydrocarbon mixtures resulting from an accidental spill in an oil refinery was studied, using BIOLEN IG 30 as the degradation agent microorganism, and INIPOL EAP 22 as the biodegradation accelerator. Results show that BIOLEN IG 30 is able to degrade highly weathered hydrocarbons at 20 degrees C, in the presence of INIPOL EAP 22. BIOLEN IG 30 is also able to degrade the total ionic and anionic dispersants in FINASOL OSR 51 (a dispersant), even in the absence of a biodegradation accelerator. 10 refs., 7 tabs., 3 figs

  10. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  11. BioTiger{sup TM} : a natural microbial product for enhanced hydrocarbon recovery from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Berry, C.J.; Milliken, C.E.; Jones, W. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    This presentation discussed the feasibility of using BioTiger{sup TM} technology to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery processes was initially developed and used by the United States Department of Energy for bioremediation of soils contaminated with oil, but it may also be used to optimize bitumen separation. BioTiger was described as being a unique microbial consortia that has resulted from nearly a decade of extensive microbiology screening and characterization of samples collected from an old waste lagoon. The technology offers rapid and complete degradation of aliphatic and aromatic hydrocarbons and produces new surfactants. It is tolerant of both chemical and metal toxicity and has good activity at high temperatures at extreme pH levels. A flotation test protocol with oil sands from Fort McMurray, Alberta was used for the BioTiger evaluation. A comparison of hot water extraction/flotation test of the oil sands performed with BioTiger showed a 50 per cent improvement in separation as measured by gravimetric analysis. BioTiger is well suited for enhanced hydrocarbon recovery from oil sands because it performs well at high temperatures. 8 figs.

  12. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  13. Core degradation and fission product release

    International Nuclear Information System (INIS)

    Wright, R.W.; Hagen, S.J.L.

    1992-01-01

    Experiments on core degradation and melt progression in severe LWR accidents have provided reasonable understanding of the principal processes involved in the early phase of melt progression that extends through core degradation and metallic material melting and relocation. A general but not a quantitative understanding of late phase melt progression that involves ceramic material melting and relocation has also been obtained, primarily from the TMI-2 core examination. A summary is given of the current state of knowledge on core degradation and melt progression obtained from these integral experiments and of the principal remaining significant uncertainties. A summary is also given of the principal results on in-vessel fission product release obtained from these experiments. (author). 8 refs, 5 figs, 3 tabs

  14. Production of low molecular weight hydrocarbons by volcanic eruptions on early Mars.

    Science.gov (United States)

    Segura, Antígona; Navarro-González, Rafael

    2005-10-01

    Methane and other larger hydrocarbons have been proposed as possible greenhouse gases on early Mars. In this work we explore if volcanic processes may have been a source for such molecules based on theoretical and experimental considerations. Geologic evidence and numerical simulations indicate that explosive volcanism was widely distributed throughout Mars. Volcanic lightning is typically produced in such explosive volcanism. Therefore this geologic setting was studied to determine if lightning could be a source for hydrocarbons in volcanic plumes. Volcanic lightning was simulated by focusing a high-energy infrared laser beam inside of a Pyrex reactor that contained the proposed volcanic gas mixture composed of 64% CH(4), 24% H(2), 10% H(2)O and 2% N(2), according to an accretion model and the nitrogen content measured in Martian meteorites. The analysis of products was performed by gas chromatography coupled to infrared and mass spectroscopy. Eleven hydrocarbons were identified among the products, of which acetylene (C(2)H(2)) was the most abundant. A thermochemical model was used to determine which hydrocarbons could arise only from volcanic heat. In this case, acetylene and ethylene are formed at magmatic temperatures. Our results indicate that explosive volcanism may have injected into the atmosphere of early Mars approximately 6 x 10(12) g yr(-1) of acetylene, and approximately 2 x 10(12) g yr(-1) of 1,3-butadiyne, both produced by volcanic lightning, approximately 5 x 10(11) g yr(-1) of ethylene produced by volcanic heat, and 10(13) g yr(-1) of methane.

  15. Fate of petroleum hydrocarbons and toxic organics in Louisiana coastal environments

    International Nuclear Information System (INIS)

    DeLaune, R.D.; Gambrell, R.P.; Pardue, J.H.; Patrick, W.H. Jr.

    1991-01-01

    Numerous potentially toxic compounds are entering Louisiana's inshore and nearshore coastal environments. To a large degree there is insufficient information for predicting the fate and effect of these materials in aquatic environments. Studies documenting the impact of petroleum hydrocarbons entering Louisiana coastal wetlands are summarized. Also included are research findings on factors affecting the persistence of petroleum hydrocarbons and other toxic organics (pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D), creosote, etc.) in sediment-water systems. Sediment pH and redox conditions have been found to play an important role in the microbial degradation of toxic organics. Most of the hydrocarbons investigated degrade more rapidly under high redox (aerobic) conditions although there are exceptions (e.g., 1,1,1-trichloro-2,2-bis(4-chlorophenyl)(DDT) and polychlorobiphenyls (PCBs)). Some of these compounds, due to their slow degradation in anaerobic sediment, may persist in the system for decades

  16. Solo Mycoremediation Impacted by Waste Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Franklin Santos Freire

    2015-06-01

    Full Text Available Oil and its derivatives are the principal means of energy generation for vehicles that transport raw materials and goods produced in developed and developing regions accentuating the risk of accidents by spills in stockpiling, transport, use or discarding. The contamination by total hydrocarbons suggests the elevated propension to mutations and to the formation of carcinogenic tumors, as a consequence of the exposure to human contamination by these products. This work had as aims: a To investigate, in a laboratorial scale, the degrading capacity of autochthonous microbiota in the presence of differing concentrations of hydrocarbons (0%, 2,5%, 5% e 7,5%; b To isolate fungi tolerant to the contaminant; c To quantify and analyze the biodegradation capacity of soil through the microbial biomass and metabolic quotient; and d To set, in laboratory, ideal conditions of biodegradation of the xenobiotic compound. Some parameters of microbial activity have been evaluated, such as: biological (Carbon of microbial biomass, CO2 , qCO2 emission, and fungi growth, chemical (pH, electrical conductivity –EC –, analysis of fertility and total hydrocarbons and physical (physical composition of the soil for analysis and comparisons. The obtained results suggest that the adding of 5% of waste oil in the ground provided ideal condition for the biodegradation of he   contaminant in the environment. From the evaluated parameters, the emission of CO2 and microbial C were considered more indicative of changes in soil microbial activity subject to the addition of hydrocarbons, confirming the possibility of microremediation use.

  17. Studies on degradation of chlorinated aromatic hydrocarbon by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... chlorobenzene to study the kinetics of degradation of chlorobenzene. The rate of decomposition of ... hydraulic fluids, biocides, herbicides, plastics, degree- ..... degradation by bacteria isolated from contaminated groundwater.

  18. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.

    Science.gov (United States)

    Li, Jian; Nemes, Peter; Guo, Ji

    2018-04-01

    There is widespread interest in using absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), as components in the design and manufacture of new-generation drug eluting stents (DES). PLGA undergoes hydrolysis to progressively degrade through intermediate chemical entities to simple organic acids that are ultimately absorbed by the human body. Understanding the composition and structure of these intermediate degradation products is critical not only to elucidate polymer degradation pathways accurately, but also to assess the safety and performance of absorbable cardiovascular implants. However, analytical approaches to determining the intermediate degradation products have yet to be established and evaluated in a standard or regulatory setting. Hence, we developed a methodology using electrospray ionization mass spectrometry to qualitatively and quantitatively describe intermediate degradation products generated in vitro from two PLGA formulations commonly used in DES. Furthermore, we assessed the temporal evolution of these degradation products using time-lapse experiments. Our data demonstrated that PLGA degradation products via heterogeneous cleavage of ester bonds are modulated by multiple intrinsic and environmental factors, including polymer chemical composition, degradants solubility in water, and polymer synthesis process. We anticipate the methodologies and outcomes presented in this work will elevate the mechanistic understanding of comprehensive degradation profiles of absorbable polymeric devices, and facilitate the design and regulation of cardiovascular implants by supporting the assessments of the associated biological response to degradation products. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1129-1137, 2018. © 2017 Wiley Periodicals, Inc.

  19. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Partila, A.M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  20. Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment

    Czech Academy of Sciences Publication Activity Database

    Wald, J.; Hroudová, Miluše; Jansa, Jan; Vrchotová, B.; Macek, T.; Uhlík, O.

    2015-01-01

    Roč. 6, č. 1268 (2015) ISSN 1664-302X Institutional support: RVO:68378050 ; RVO:61388971 Keywords : biodegradation * polyaromatic hydrocarbons * stable isotope probing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.165, year: 2015

  1. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects.

    Science.gov (United States)

    Mikolasch, Annett; Reinhard, Anne; Alimbetova, Anna; Omirbekova, Anel; Pasler, Lisa; Schumann, Peter; Kabisch, Johannes; Mukasheva, Togzhan; Schauer, Frieder

    2016-11-01

    Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  3. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    Science.gov (United States)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  5. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, M. [Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Technical University of Lodz, 90-924 Lodz, Wolczanska 213 (Poland)

    2010-10-15

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel-like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, ''gasoline'' fraction of the liquid hydrocarbons mixture (C{sub 4}-C{sub 10}) made over 50% of the liquid product. It may by used for fuel production or electricity generation. (author)

  6. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    International Nuclear Information System (INIS)

    Stelmachowski, M.

    2010-01-01

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 deg. C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, 'gasoline' fraction of the liquid hydrocarbons mixture (C 4 -C 10 ) made over 50% of the liquid product. It may by used for fuel production or electricity generation.

  7. Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident

    International Nuclear Information System (INIS)

    Barney, G.S.; Cooper, T.D.

    1995-01-01

    The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion

  8. In-Vitro gas production technique as for feed evaluation: volume of gas production and feed degradability

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2007-01-01

    In-vitro gas production technique can be used to predict feed quality. The effect of molasses supplementation as a source of degradable carbohydrate to protein source red clover silage has been done using this technique. Data showed there were positive correlation between total volume gas produced and feed degradability (r = 0.96), between total volume gas produced and microbial biomass (r = 0,96). Dry matter degradability, dry matter degraded, microbial biomass production and efficiency of nitrogen utilization, highly significant (P<0,01) increased due to increasing of degradable carbohydrate. The addition of 0.3 g molasses gave the best result whereas the addition of 0.15 g and 0.225 g have better effect than 0.0625 g molasses addition and red clover only. This result suggested that In-vitro production technique can be used as tool for feed evaluation. (author)

  9. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Koji [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Milliken, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brigmon, Robin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation

  10. Report: More Information Is Needed On Toxaphene Degradation Products

    Science.gov (United States)

    Report #2006-P-00007, Dec 16, 2005. Toxaphene in the environment changes, or degrades. The degradation products are different from the original toxaphene in chemical composition and how they appear to testing instruments, so they could go unreported.

  11. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    International Nuclear Information System (INIS)

    Chavan, Anal; Mukherji, Suparna

    2008-01-01

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m 2 d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries

  12. One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts.

    Science.gov (United States)

    Wen, Cun; Barrow, Elizabeth; Hattrick-Simpers, Jason; Lauterbach, Jochen

    2014-02-21

    In this study, we demonstrate the production of long-chain hydrocarbons (C8+) from 2-methylfuran (2MF) and butanal in a single step reactive process by utilizing a bi-functional catalyst with both acid and metallic sites. Our approach utilizes a solid acid for the hydroalkylation function and as a support as well as a transition metal as hydrodeoxygenation catalyst. A series of solid acids was screened, among which MCM-41 demonstrated the best combination of activity and stability. Platinum nanoparticles were then incorporated into the MCM-41. The Pt/MCM-41 catalyst showed 96% yield for C8+ hydrocarbons and the catalytic performance was stable over four reaction cycles of 20 hour each. The reaction pathways for the production of long-chain hydrocarbons is probed with a combination of infrared spectroscopy and steady-state reaction experiments. It is proposed that 2MF and butanal go through hydroalkylation first on the acid site followed by hydrodeoxygenation to produce the hydrocarbon fuels.

  13. Gamma radiolytic degradation of 4-chlorophenol determination of degraded products with HPLC and GC-MS

    International Nuclear Information System (INIS)

    Butt, S.B.; Masood, M.N.

    2007-01-01

    Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process that has been thought to be one of the promising treatments to deal with this problem. This radiolytic study was carried out in methanolic 4-CP (4-chlorophenol) samples. Among several factors effecting radiolytic degradation of 4-CP, dose and concentration are important that were evaluated under atmospheric conditions. A degradation yield (G -value) for 4- CP of 0.38 and 1.35 was achieved in 20 and 100 mg/dm/sup 3/ solution. It was observed that degradation yield decreases with increasing 4-CP concentration. Gamma radiolysis produce free radicals in solvent which further react with 4-CP molecules to generate different products. The identification of degradation products was proposed using HPLC and GC-MS. (author)

  14. Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii.

    Science.gov (United States)

    Seo, Jong-Su; Keum, Young-Soo; Harada, Renee M; Li, Qing X

    2007-07-11

    Nineteen bacterial strains were isolated from petroleum-contaminated soil in Hilo, HI, and characterized by two different spray-plated methods, turbidity test in liquid medium, and 16S rRNA gene sequence analysis. Analysis of the soil showed 13 polycyclic aromatic hydrocarbons (PAHs) in a range from 0.6 to 30 mg/kg of dry weight each and 12 PAH metabolites. Five distinct bacterial strains (C3, C4, P1-1, JS14, and JS19b1) selected from preliminary plating and turbidity tests were further tested for PAH degradation through single PAH degradation assay. Strains C3, C4, and P1-1 degraded phenanthrene (40 mg/L) completely during 7 days of incubation. Strain JS14 degraded fluoranthene (40 mg/L) completely during 10 days of incubation. Strain JS19b1 degraded 100% of phenanthrene (40 mg/L) in 7 days, 77% of fluorene (40 mg/L) in 14 days, 97% of fluoranthene (40 mg/L) in 10 days, and 100% of pyrene (40 mg/L) in 14 days. Turbidity tests showed that strains P1-1, JS14, and JS19b1 utilized several organophosphorus pesticides as growth substrate. P1-1 can degrade carbofenothion, chlorfenvinphos, diazinon, fonofos, and pirimiphos-methyl. JS14 can transform chlorfenvinphos and diazinon. JS19b1 can break down diazinon, pirimiphos-methyl, and temephos.

  15. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.

    Science.gov (United States)

    Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2015-01-01

    The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.

  16. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives.

    Science.gov (United States)

    Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol

    2013-04-01

    A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

  17. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.

    Science.gov (United States)

    Palmroth, Marja R T; Koskinen, Perttu E P; Kaksonen, Anna H; Münster, Uwe; Pichtel, John; Puhakka, Jaakko A

    2007-12-01

    In the current study, the microbial ecology of weathered hydrocarbon and heavy metal contaminated soil undergoing phytoremediation was studied. The relationship of functional diversity, measured as carbon source utilisation in Biolog plates and extracellular enzymatic activities, and genetic diversity of bacteria was evaluated. Denaturing gradient gel electrophoresis was used for community analyses at the species level. Bulk soil and rhizosphere soil from pine and poplar plantations were analysed separately to determine if the plant rhizosphere impacted hydrocarbon degradation. Prevailing microbial communities in the field site were both genetically and metabolically diverse. Furthermore, both tree rhizosphere and fertilisation affected the compositions of these communities and increased activities of extracellular aminopeptidases. In addition, the abundance of alkane hydroxylase and naphthalene dioxygenase genes in the communities was low, but the prevalence of these genes was increased by the addition of bioavailable hydrocarbons. Tree rhizosphere communities had greater hydrocarbon degradation potential than those of bulk soil. Hydrocarbon utilising communities were dominated generally by the species Ralstonia eutropha and bacteria belonging to the genus Burkholderia. Despite the presence of viable hydrocarbon-degrading microbiota, decomposition of hydrocarbons from weathered hydrocarbon contaminated soil over four years, regardless of the presence of vegetation, was low in unfertilised soil. Compost addition enhanced the removal of hydrocarbons.

  18. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments

    DEFF Research Database (Denmark)

    Fowler, Jane; Toth, Courtney R. A.; Gieg, Lisa M.

    2016-01-01

    , but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon......The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge......-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates...

  19. Linear equations on thermal degradation products of wood chips in alkaline glycerol

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Wood chips of 0.3 and 2 mm depth from poplar and spruce wood samples, respectively, were degraded by using glycerol as a solvent and alkaline glycerol with and without Na 2 CO 3 and NaOH catalysts at different degradation temperatures: 440, 450, 460, 470, 480, 490 and 500 K. By products from the degradation processes of the ligno celluloses include lignin degradation products. Lignin and its degradation products have fuel values. The total degradation degree and cellulose degradation of the wood chips were determined to find the relationship, if any, between the yields of total degradation degree (YTD) and degradation temperature (T). There is a good linear relationship between YTD or the yields of cellulose degradation (YCD) and T (K). For the wood samples, the regression equations from NaOH (10%) catalytic runs for 0.3 mm x 15 mm x 15 mm chip size are: For poplar wood: (YTD=0.7250T-267.507) (YCD=0.1736T-71.707) For spruce wood: (YTD=0.2650T-105.979) (YCD=0.0707T-27.507) For Eqs., the square of the correlation coefficient (r 2 ) were 0.9841, 0.9496, 0.9839 and 0.9447, respectively

  20. Identification of Degradation Products of Lincomycin and Iopromide by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Cha, Yongbyoung; Ham, Hyunsun; Myung, Seungwoon

    2013-01-01

    Lincomycin and Iopromide are major species among the Pharmaceuticals and Personal Care Products (PPCPs) from four major rivers in Korea. The structure characterization of six lincomycin's and two iopromide's degradation products formed under the irradiation of electron beam was performed, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of the degradation products, which is fortified with lincomycin, were performed at the dose of 10 kGy. The separation of its degradation products and lincomycin was carried by C18 column (2.1 Χ 100 mm, 3.5 μm), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of degradation products of lincomycin and iopromide were proposed by interpretation of mass spectra and chromatograms by LC/MS/MS, and also the mass fragmentation pathways of mass spectra in tandem mass spectrometry were proposed. The experiments of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in aqueous environment were performed, and higher dose of electron beam and lower concentration was observed the increased degradation efficiency

  1. Studies on the production of hydrocarbon mixtures from waste methyl ethyl ketone

    International Nuclear Information System (INIS)

    Kokitkar, P.B.; Roth, O.B.; Debelak, K.A.

    1992-01-01

    Large quantities of waste solvents are generated annually around the world in a large number of diverse industries, the paints and plastics industry being the largest consumer. The management of these waste solvents is becoming more and more difficult due to stricter environmental regulations by the EPA. The paint and allied products industry is expected to shift its solvent use from aliphatics and aromatics to oxygenated solvents to meet emissions and disposal standards. Many researchers have studied the dehydration reactions of oxygenated solvents to produce dehydration. However, most researchers have obtained only low molecular weight compounds (C 3 - C 4 hydrocarbons) from C 1 - C 4 alcohols and ketones. The kinetics of this class of reactions are not available in the open literature. The objective of this paper is to investigate the thermodynamic feasibility of this class of reactions and to compare the hydrocarbon products obtained using methylethyl ketone with regular unleaded gasoline

  2. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  3. Three Essays in the Public Economics of Offshore Hydrocarbon Investment and Production

    Science.gov (United States)

    Kearney, Owen P.

    Offshore sources, in both shallow and deep waters, are increasingly important contributors to global oil and natural gas production. As both resource owner and taxing authority, national governments play an important role in the production of these offshore hydrocarbons. How the policy choices of these governments affect firm behavior, however, is not necessarily well understood. This dissertation contributes to our knowledge of how public policy influences offshore hydrocarbon investment and production. In the first essay, I estimate the investment responses of hydrocarbon producers to the suspension of the royalty, a type of production tax levied on production from federal lands. I find that the potential for a royalty payments waiver: (1) increases the probability that an individual tract is acquired by an average of 193% (a mean increase of 5.6 percentage points); (2) decreases the probability that a lease is ever drilled during its observed lease term by an average of 14.5% (a mean decrease of 1.3 percentage points); and (3) increases the expected number of explored leases by 150%. The introduction of DWRRA also increases the average winning bid per lease by 60%. These estimates quantify the magnitudes of the discouraging effects of production taxation on oil and natural gas investment. In the second essay, I quantify the implied value of information spillovers in oil and natural gas exploration using an event study design. I find that 25 trading days after a discovery, firms that own leases adjacent to the discovery lease (but not the discovery lease, itself) realize an average abnormal return translating to 315 million in market capitalization. This effect is quantitatively large compared to costs for drilling an exploratory well. In the final essay, I measure how oil price affects water injection, a method for prolonging the productive lifetime of oil fields. I find that a 1 rise in price increases the water injected into the well's reservoir by

  4. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  5. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  6. Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M. [Institute of Biology of Romanian Academy, Bucharest (Romania)] [and others

    1995-12-31

    In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

  7. Enhanced biodegradation of polyaromatic hydrocarbons in manufactured gas plant wastes

    International Nuclear Information System (INIS)

    Gauger, W.K.; Srivastava, V.J.; Hayes, T.D.; Linz, D.G.

    1991-01-01

    Scientists at the Institute of Gas Technology (IGT) have focused on enhancing destruction of polyaromatic hydrocarbons (PAHs) present as pollutants in manufactured gas plant (MGP) soils. The factor that bears the most restrictive influence on successful biological PAH degradation is low pollutant transfer from soil into an aqueous environment where biotreatment processes can take place. Physical and chemical enhancements were used in conjunction with biological processes. Physical enhancements overcame the mass transfer problem and made possible the biological destruction of aromatic hydrocarbons. One- to three-ring aromatic hydrocarbons were readily biodegraded in liquid, soil slurry, and - to a lesser degree - composted soil systems. Four- to six-ring PAHs remained persistent but were effectively destroyed when chemical co-treatments were used. Combined biological/chemical/physical processes are currently being tested to achieve the most extensive PAH degradation possible for MGP soils

  8. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  9. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    Science.gov (United States)

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions.

  10. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  11. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - March 2008; Bulletin d'information du BEPH. Mars 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  12. Isolation and characterization of an n-hexadecane degrading Acinetobacter baumannii KSS1060 from a petrochemical wastewater treatment plant

    International Nuclear Information System (INIS)

    Shiri, Z.; Kermanshahi, R. K.; Soudi, M. R.; Farajzadeh, D.

    2015-01-01

    Hydrocarbons are widespread in the environment, but because of the massive utilization of petroleum products, they are nowadays strongly involved in environmental pollution. Bioremediation is the obliging technology for the treatment of hydrocarbon-contaminated sites. Therefore, to investigate the potential of petrochemical hydrocarbon (HC)-degrading indigenous microorganisms in wastewater samples collected from Fajr petrochemical wastewater treatment plants, a strain of Acinetobacter baumannii was isolated from this hydrocarbon-contaminated wastewater and examined for its ability to utilize hexadecane. This strain was capable to grow on n-hexadecane as the sole source of carbon and energy. The ability of the isolate to degrade n-hexadecane was assessed by growth assays and gas chromatography/mass spectrometry analysis. Using GC analysis, it was shown that the strain KSS1060 was able to degrade 62 % of n-hexadecane within 6 days, which mostly (51.6 %) occurred within the first 24 h. Identification of this hexadecane-degrader bacterium was carried out using 16S rDNA sequence analysis. Additionally, characterization of chemical composition of wastewater samples by the use of gas chromatography/mass spectrometry analysis indicated the presence of Hexanal, Benzene methanol, Indanol, 1,2-benzenedicarboxylic acid diethyl ester, diisobutyl phthalate, and Phenol,4,4′-(1-methylethylidene) in the major constituents of wastewater. In conclusion, this study can focus on more cost-efficient applications of native bacterial strains for the large-scale biodegradation of wastewater samples from petrochemical plant in industry, where it causes disturbing problems due to its harmful effects on different organisms and human beings.

  13. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  14. Varying Conditions for Hexanoic Acid Degradation with BioTigerTM

    International Nuclear Information System (INIS)

    Foreman, Koji; Milliken, Charles; Brigmon, Robin

    2016-01-01

    BioTiger TM (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe's vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of

  15. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments

    KAUST Repository

    Barbato, Marta

    2016-02-02

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities\\' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities\\' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments.

  16. Organic pollutants in the coastal environment off San Diego, California. 2: Petrogenic and biogenic sources of aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    Tran, K.; Yu, C.C.; Zeng, E.Y.

    1997-01-01

    The results from the measurements of aliphatic hydrocarbons suggest that hydrocarbons suggest that hydrocarbons in the Point Loma Wastewater Treatment Plant (PLWTP) effluents are mainly petroleum derived; those in the Tijuana River runoff have largely originated from terrestrial plants with visible petroleum contamination; and those in the sea surface microlayer, sediment traps, and sediments at various coastal locations off San Diego have mostly resulted from biogenic contributions with enhanced microbial products in the summer season. Rainfall in the winter season appeared to amplify the inputs from terrestrial higher plants to the coastal areas. The PLWTP discharged approximately 3.85 metric tons of n-alkanes (C 10 -C 35 ) in 1994, well below the level (136 metric tons) estimated in 1979. The input of aliphatic hydrocarbons from the Tijuana River was about 0.101 metric tons in 1994. Diffusion, solubilization, evaporation, and microbial degradation seemed partially responsible for the difference in the concentrations and compositions of aliphatic hydrocarbons in different sample media, although the relative importance of each mechanism cannot be readily discerned from the available data. The results from analyses of aliphatic hydrocarbon compositional indices are generally consistent with those of polycyclic aromatic hydrocarbons

  17. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S.

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  18. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Science.gov (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  19. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  20. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  1. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Zulfa Al Disi

    2017-01-01

    Full Text Available Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16 to longer chain n-alkanes (n-C21–n-C25 and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  2. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    Science.gov (United States)

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  3. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  4. Enhanced biodegradation of polyaromatic hydrocarbons in manufactured gas plant wastes

    International Nuclear Information System (INIS)

    Gauger, W.K.; Srivastava, V.J.; Hayes, T.D.; Linz, D.G.

    1990-01-01

    Scientists at the Institute of Gas Technology (IGT) have focused on enhancing destruction of polyaromatic hydrocarbons (PAHs) present as pollutants in manufactured gas plant (MGP) soils. The factor that bears the most restrictive influence on successful biological PAH degradation is low pollutant transfer from soil into an aqueous environment where biotreatment processes can take place. Physical and chemical enhancements were used in conjunction with biological processes. Physical enhancements overcame the mass transfer problem and made possible the biological destruction of aromatic hydrocarbons. One- to three-ring aromatic hydrocarbons were readily biodegraded in liquid, soil slurry, and -- to a lesser degree -- composted soil systems. Four- to six-ring PAHs remained persistent but were effectively destroyed when chemical co-treatments were used. Combined biological/chemical/physical processes are currently being tested to achieve the most extensive PAH degradation possible for MGP soils. 8 refs., 9 figs., 2 tabs

  5. In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer

    DEFF Research Database (Denmark)

    Nielsen, P.H.; Bjerg, P.L.; Nielsen, P.

    1996-01-01

    In situ microcosms (ISM) and laboratory batch microcosms (LBM) were used for determination of the first-order degradation rate constants of benzene, toluene, o-xylene, nitrobenzene, naphthalene, biphenyl, o- and p-dichlorobenzene, 1,1,1 -trichloroethane, tetrachlorometane, trichloroethene......, tetrachloroethene, phenol, o-cresol, 2,4- and 2,6-dichlorophenol, 4,6-o-dichlorocresol, and o- and p-nitrophenol in an aerobic aquifer, All aromatic hydrocarbons were degraded in ISM and LBM experiments. The phenolic hydrocarbons were ail degraded in ISM experiments, but some failed to degrade in LBM experiments....... Chlorinated aliphatic hydrocarbons were degraded neither in ISM nor LBM experiments. Degradation rate constants were determined by a model accounting for kinetic sorption (bicontinuum model), lag phases, and first-order degradation. With a few exceptions, lag phases were less than 2 weeks in both ISM and LBM...

  6. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Liangcai Lin

    Full Text Available Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52 gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10, extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures. Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes.

  7. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  8. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joe; Beck, Angus James

    2006-01-01

    In-vessel composting of polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated over 98 days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a 3-factor factorial design with three temperatures (T, 38 deg. C, 55 deg. C and 70 deg. C), four soil to green waste ratios (S:GW, 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC, 40%, 60% and 80%). PAH losses followed first order kinetics reaching 0.015 day -1 at optimal operational conditions. A factor analysis of the 18 different operational conditions under investigation indicated that the optimal operational conditions for degradation of PAHs occurred at MC 60%, S:GW 0.8:1 and T 38 deg. C. Thus, it is recommended to maintain operational conditions during in-vessel composting of PAH-solid waste close to these values. - Maximum degradation of PAHs in an aged coal tar contaminated soil can be achieved using optimal operational conditions during composting

  9. A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns

    International Nuclear Information System (INIS)

    Yuan, Tao; Bae, Suk Joo; Zhu, Xiaoyan

    2016-01-01

    Motivated by the two-phase degradation phenomena observed in light displays (e.g., plasma display panels (PDPs), organic light emitting diodes (OLEDs)), this study proposes a new degradation-based burn-in testing plan for display products exhibiting two-phase degradation patterns. The primary focus of the burn-in test in this study is to eliminate the initial rapid degradation phase, while the major purpose of traditional burn-in tests is to detect and eliminate early failures from weak units. A hierarchical Bayesian bi-exponential model is used to capture two-phase degradation patterns of the burn-in population. Mission reliability and total cost are introduced as planning criteria. The proposed burn-in approach accounts for unit-to-unit variability within the burn-in population, and uncertainty concerning the model parameters, mainly in the hierarchical Bayesian framework. Available pre-burn-in data is conveniently incorporated into the burn-in decision-making procedure. A practical example of PDP degradation data is used to illustrate the proposed methodology. The proposed method is compared to other approaches such as the maximum likelihood method or the change-point regression. - Highlights: • We propose a degradation-based burn-in test for products with two-phase degradation. • Mission reliability and total cost are used as planning criteria. • The proposed burn-in approach is built within the hierarchical Bayesian framework. • A practical example was used to illustrate the proposed methodology.

  10. Possible Appearance of Degradation Products of Paraquat in Crops

    Energy Technology Data Exchange (ETDEWEB)

    Slade, P. [Imperial Chemical Industries LTD., Jealott' s Hill Research Station, Bracknell, Berks. (United Kingdom)

    1966-05-15

    Chemical analysis has established that residue levels of paraquat in crops harvested after use of the chemical are at such a low level as to constitute no hazard to the consuming public. (Paraquat dichloride is 1,1'-dimethyl-4,4'-bipyridylium dichloride). There remained the possibility that toxic metabolites or other conversion products of paraquat might appear in crops. This paper is concerned with attempts to evaluate this possibility, and demonstrates that no hazard arises from the formation of degradation products. It has been shown, using paraquat labelled with {sup 14}C in the methyl groups and in the pyridine nuclei, that the chemical is not metabolically degraded in plants. However, photochemical degradation of paraquat can occur on the surface of leaves in sunlight. In vitro experiments involving ultra-violet irradiation of aqueous solutions of {sup 14}C-paraquat have shown that 4-carboxy-1-methylpyridinium chloride and methylamine hydrochloride are the only products formed in significant amount in the photochemical degradation. Paper chromatography and isotope dilution have shown that these products are formed on leaves of plants treated with {sup 14}C-paraquat (mostly after the plants are dead). Whole plant radioautography has established that 4-carboxy-1-{sup 14}C methylpyridinium chloride is not translocated at all from the dead leaves on which it is formed and certainly this compound will not appear in harvested crops. This has been confirmed in an experiment in which {sup 14}C-paraquat was used to desiccate the tops of potato plants before harvesting the tubers. All the radioactivity subsequently found in the tubers could be accounted for as paraquat (level 0.08 ppm). There was no evidence for the presence of significant amounts of other radioactive compounds in the tubers, even though chromatography of extracts of the desiccated plants showed that photochemical degradation products were formed on the leaves: these were not translocated into the

  11. Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments.

    Science.gov (United States)

    Zhao, Song; Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Wang, Chuanyi

    2017-10-01

    Photochemical behavior of various polycyclic aromatic hydrocarbons (PAHs) on Fe 3+ -modified montmorillonite was explored to determine their potential kinetics, pathways, and mechanism under visible light. Depending on the type of PAH molecules, the transformation rate follows the order of benzo[a]pyrene ≈ anthracene > benzo[a]anthracene > phenanthrene. Quantum simulation results confirm the crucial role of "cation-π" interaction between Fe 3+ and PAHs on their transformation kinetics. Primary intermediates, including quinones, ring-opening products and benzene derivatives, were identified by gas chromatography-mass spectrometer (GC-MS), and the possible photodegradation pathway of benzo[a]pyrene was proposed. Meanwhile, radical intermediates, such as reactive oxygen species (ROS) and free organic radicals, were detected by electron paramagnetic resonance (EPR) technique. The photolysis of selected PAHs, such as anthracene and benzo[a]pyrene, on clay surface firstly occurs by electron transfer from PAHs to Fe 3+ -montmorillonite, followed by degradation involving photo-induced ROS such as ·OH and ·O 2 - . To investigate the acute toxicity of photolysis products, the Microtox ® toxicity test was performed during the photodegradation processes of various PAHs. As a result, the photo-irradiation initially induces increased toxicity by generating reactive intermediates, such as free organic radicals, and then the toxicity gradually decreases with increasing of reaction time. Overall, the present study provides useful information to understand the fate and photo-transformation of PAHs in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The sources, fate, and toxicity of chemical warfare agent degradation products.

    Science.gov (United States)

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  13. Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions

    Energy Technology Data Exchange (ETDEWEB)

    Potter, C.L.; Glaser, J.A.; Chang, L.W.; Meier, J.R.; Dosani, M.A.; Herrmann, R.F. [US Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1999-05-15

    Polycyclic aromatic hydrocarbons are a concern at many sites, including wood-treating facilities and manufactured gas plants. This research sought to evaluate the relationship between aerobic biomass development and removal of 19 individual PAHs and toxicity from field soil during the composting process in in-vessel reactors located at the US Environmental Protection Agency (EPA) Test & Evaluation (T & E) Facility in Cincinnati, OH. Five compost amendment conditions were formulated from different nutrients or amendments to the reactor mixtures. Operating parameters of interest included aeration, moisture dynamics, and heat production. Toxicity tests were conducted to evaluate the effect of composting on soil toxicity. Seed germination and root elongation tests were evaluated in lettuce and oats, and genotoxicity (mitotic abberations) testing was performed on Allium cepa (onion). Composting of PAH contaminated soil decreased toxicity to earthworms and oat roots but had no significant effect on lettuce root toxicity. Untreated soil evoked genotoxicity in the Allium assay. After composting, no significant genotoxicity was observed in Reilly soil. 35 refs., 5 figs., 7 tabs.

  14. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  15. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  16. Biodegradation of gasoline in environment: from total assessment to the case of recalcitrant hydrocarbons; Biodegradabilite de l'essence dans l'environnement: de l'evaluation globale au cas des hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Solano-Serena, F.

    1999-11-26

    Because of their massive utilisation, hydrocarbons are major pollutants of soils and aquifers. Biodegradation is a key aspect of the fate of pollutants in the environment. Such knowledge, concerns in particular the intrinsic biodegradability of the products and the distribution in the environment of competent degradative microflora. In this study, a methodology has been developed to assess the aerobic biodegradability of gasoline. It is based on the direct gas chromatographic analysis of all hydrocarbons, after incubation in optimal conditions, of gasoline fractions and of model mixtures. The results demonstrated first the quasi-total biodegradability of gasoline ({>=} 94%). Concerning the distribution in the environment of degradative capacities, even microflora from non polluted sites exhibited a high performance (total degradation rates at least 85%) but were limited concerning the degradation of trimethyl-alkanes, such as 2,2,4-trimethyl-pentane (iso-octane) and 2,3,4-trimethyl-pentane, and of cyclohexane. Samples of polluted sites exhibited more extensive degradative capacities with total degradation in half of the cases studied. Cyclohexane was always degraded by mutualism and/or co-metabolism. Trimethyl-alkanes with quaternary carbons such as iso-octane and/or alkyl groups on consecutive carbons were degraded by co-metabolism but could also support growth of specialized strains. A strain of Mycobacterium austroafricanum (strain IFP 2173) growing on iso-octane was isolated from a gasoline polluted sample. This strain exhibited the capacity to co-metabolize various hydrocarbons (cyclic and branched alkanes, aromatics) and in particular cyclohexane. M austroafricanum lFP 2173 was also able to use a large spectrum of hydrocarbons (n- and iso-alkanes, aromatics) as sole carbon and energy source. (author)

  17. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    Science.gov (United States)

    In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...

  18. Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions

    Science.gov (United States)

    Kim, C.; Ko, K.; Son, J.; Kim, J.

    2008-12-01

    One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the

  19. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    Science.gov (United States)

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Steady-state and transient hydrocarbon production in graphite by low energy impact of atomic and molecular deuterium projectiles

    International Nuclear Information System (INIS)

    Zhang, H.; Meyer, F.W.

    2009-01-01

    We report measurements of steady-state yields of methyl, methane and heavier hydrocarbons for deuterium atomic and molecular ions incident on ATJ graphite, HOPG, and a-C:D thin films in the energy range 10-200 eV/D. The yields were determined using a QMS technique in conjunction with calibrated hydrocarbon leaks. We have also studied transient hydrocarbon production and hydrogen (deuterium) re-emission for 80 and 150 eV/D D + , D 2 + , and D 3 + projectiles incident on ATJ graphite surfaces pre-loaded to steady state by 20 eV/D beams of the corresponding species. Immediately after starting the higher-energy beams, transient hydrocarbon and D 2 re-emission yields significantly larger than steady-state values were observed, which exponentially decayed as a function of beam fluence. The initial yield values were related to the starting hydrocarbon and deuterium densities in the prepared sample, while the exponential decay constants provided information on the hydrocarbon kinetic release and hydrogen (deuterium) detrapping cross-sections.

  1. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers

    Science.gov (United States)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.

  2. Photocatalytic oxidation of polycyclic aromatic hydrocarbons: Intermediates identification and toxicity testing

    International Nuclear Information System (INIS)

    Woo, O.T.; Chung, W.K.; Wong, K.H.; Chow, Alex T.; Wong, P.K.

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic pollutants and their low water solubility limits their degradation in aqueous solution. The presence of water-miscible solvent such as acetone can increase the water solubility of PAHs, however acetone will also affect the degradation of PAH. In this study the effects of acetone on the photocatalytic degradation efficiency and pathways of 5 selected PAHs, namely naphthalene (2 rings), acenaphthylene (3 rings), phenanthrene (3 rings), anthracene (3 rings) and benzo[a]anthracene (4 rings) were investigated. The Microtox toxicity test was used to determine whether the PCO system can completely detoxify the parental PAHs and its intermediates. The addition of 16% acetone can greatly alter the degradation pathway of naphthalene and anthracene. Based on intermediates identified from degradation of the 5 PAHs, the location of parental PAHs attacked by reactive free radicals can be correlated with the localization energies of different positions of the compound. For toxicity analysis, irradiation by UV light was found to induce acute toxicity by generating intermediates/degradation products from PAHs and possibly acetone. Lastly, all PAHs (10 mg l -1 ) can be completely detoxified by titanium dioxide (100 mg l -1 ) within 24 h under UVA irradiation (3.9 mW cm -2 ).

  3. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria.

    Science.gov (United States)

    Baoune, Hafida; Ould El Hadj-Khelil, Aminata; Pucci, Graciela; Sineli, Pedro; Loucif, Lotfi; Polti, Marta Alejandra

    2018-01-01

    Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C 6 -C 30 ), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  5. Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products

    Science.gov (United States)

    Zhou, Kefu; Xie, Xiao-Dan; Chang, Chang-Tang

    2017-09-01

    Ti-doped MCM-41 with different Si/Ti molar ratios was prepared at room temperature to degrade tetracycline antibiotics in aqueous solution. The Ti was doped into the skeleton structure of MCM-41. The photocatalytic activity of Ti-doped MCM-41 was investigated. The optimal catalyst had Si/Ti molar ratio of 25 and over 99% removal of oxytetracycline in 150 min, and the removal could maintain 98% after 5 reuses. Ions and soluble organic matters in natural water affected the degradation reaction when Ti-doped MCM-41 was used to treat simulated wastewater of chicken farms. The degradation products of oxytetracycline, tetracycline and chlortetracycline were detected by Escherichia coli DH5α and HPLC-MS/MS. No intermediate product with higher toxicity was detected.

  6. Interaction between Carbon Nanotubes and Aromatic Hydrocarbon-degrading Microbes and its Effect on Carbon Nanotubes Transformation

    Science.gov (United States)

    You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.

    2015-12-01

    Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.

  7. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in

  8. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - Annual status 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This special issue of the BEPH newsletter presents the main results of the hydrocarbons research and production activity in France during the year 2007: evolution of the mining domain (demands, allocations and extension of research permits and concessions, demands under instruction, evolution of permits surfaces), investments in seismic surveys and drilling activity (new drillings, completed drillings); investments in fields exploitation; production by field and by operator (crude oil, commercialized gas). (J.S.)

  9. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge.

    Science.gov (United States)

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-08-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.

  10. Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: A new strategy for wealth from waste.

    Science.gov (United States)

    Venkateswar Reddy, M; Mawatari, Yasuteru; Yajima, Yuka; Seki, Chigusa; Hoshino, Tamotsu; Chang, Young-Cheol

    2015-09-01

    In the present study five different types of alkylphenols, each of the two different types of mono and poly-aromatic hydrocarbons were selected for degradation, and conversion into poly-3-hydroxybutyrate (PHB) using the Bacillus sp. CYR1. Strain CYR1 showed growth with various toxic organic compounds. Degradation pattern of all the organic compounds at 100 mg/l concentration with or without addition of tween-80 were analyzed using high pressure liquid chromatography (HPLC). Strain CYR1 showed good removal of compounds in the presence of tween-80 within 3 days, but it took 6 days without addition of tween-80. Strain CYR1 showed highest PHB production with phenol (51 ± 5%), naphthalene (42 ± 4%), 4-chlorophenol (32 ± 3%) and 4-nonylphenol (29 ± 3%). The functional groups, structure, and thermal properties of the produced PHB were analyzed. These results denoted that the strain Bacillus sp. CYR1 can be used for conversion of different toxic compounds persistent in wastewaters into useable biological polyesters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Phytoremediation of hydrocarbon-contaminated soil using plants adapted to western Canadian climate

    International Nuclear Information System (INIS)

    Robson, D.B.

    2003-01-01

    Phytoremediation relies on the use of plants for in-situ treatment of hydrocarbon contaminated soils. It is based on relationships between plants, microorganisms and the environment. The advantages of the process are its low cost and minimal soil disturbance. Phytoremediation has not been widely implemented in Canada because only a few native or non-native plant species have been tested for hydrocarbon tolerance or degradation ability. More studies are needed to fully understand why some plants are more tolerant of hydrocarbons than others, and whether tolerant species increase hydrocarbon degradation. In this study, several field and growth chamber experiments were conducted to examine hydrocarbon tolerance in plants. Hydrocarbon contaminated field plots had higher soil pH, carbon to nitrogen ratio and bare ground, lower total nitrogen, available phosphorous and litter cover. The mean diversity at the uncontaminated sites was 0.52. It was 0.45 at the contaminated sites. Mean species similarity between contaminated and uncontaminated sites was 31.1 per cent and cover similarity was 22.2 per cent. The common plants in the contaminated field included kochia, wild barley, salt grass, bluegrass, and wheatgrass. The plants that formed most plant cover on contaminated plots were non-mycorrhizal, self-pollinating, and large seeded. The species with the highest survival after 5 weeks in hydrocarbon contaminated soils included one native and 4 non-native grasses, 2 native and 3 non-native legumes and 2 native forbs. All plants (with the exception of Indian breadroot) grown in hydrocarbon contaminated potting soil had lower total biomass and lower growth rates compared to the control

  12. Phytoremediation of hydrocarbon-contaminated soil using plants adapted to western Canadian climate

    Energy Technology Data Exchange (ETDEWEB)

    Robson, D.B.

    2003-07-01

    Phytoremediation relies on the use of plants for in-situ treatment of hydrocarbon contaminated soils. It is based on relationships between plants, microorganisms and the environment. The advantages of the process are its low cost and minimal soil disturbance. Phytoremediation has not been widely implemented in Canada because only a few native or non-native plant species have been tested for hydrocarbon tolerance or degradation ability. More studies are needed to fully understand why some plants are more tolerant of hydrocarbons than others, and whether tolerant species increase hydrocarbon degradation. In this study, several field and growth chamber experiments were conducted to examine hydrocarbon tolerance in plants. Hydrocarbon contaminated field plots had higher soil pH, carbon to nitrogen ratio and bare ground, lower total nitrogen, available phosphorous and litter cover. The mean diversity at the uncontaminated sites was 0.52. It was 0.45 at the contaminated sites. Mean species similarity between contaminated and uncontaminated sites was 31.1 per cent and cover similarity was 22.2 per cent. The common plants in the contaminated field included kochia, wild barley, salt grass, bluegrass, and wheatgrass. The plants that formed most plant cover on contaminated plots were non-mycorrhizal, self-pollinating, and large seeded. The species with the highest survival after 5 weeks in hydrocarbon contaminated soils included one native and 4 non-native grasses, 2 native and 3 non-native legumes and 2 native forbs. All plants (with the exception of Indian breadroot) grown in hydrocarbon contaminated potting soil had lower total biomass and lower growth rates compared to the control.

  13. Microbial degradation of total petroleum hydrocarbons in crude oil: a field-scale study at the low-land rainforest of Ecuador.

    Science.gov (United States)

    Maddela, Naga Raju; Scalvenzi, Laura; Venkateswarlu, Kadiyala

    2017-10-01

    A field-level feasibility study was conducted to determine total petroleum hydrocarbon (TPH)-degrading potential of two bacterial strains, Bacillus thuringiensis B3 and B. cereus B6, and two fungi, Geomyces pannorum HR and Geomyces sp. strain HV, all soil isolates obtained from an oil field located in north-east region of Ecuador. Crude oil-treated soil samples contained in wooden boxes received a mixture of all the four microorganisms and were incubated for 90 days in an open low-land area of Amazon rainforest. The percent removal of TPHs in soil samples that received the mixed microbial inoculum was 87.45, indicating the great potential of the soil isolates in field-scale removal of crude oil. The TPHs-degrading efficiency was verified by determining the toxicity of residues, remained in soil after biodegradation, toward viability of Artemia salina or seed germination and plant growth of cowpea. Our results clearly suggest that the selected soil isolates of bacteria and fungi could be effectively used for large-scale bioremediation of sites contaminated with crude oil.

  14. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study.

    Science.gov (United States)

    Mukherjee, Ashis K; Bordoloi, Naba K

    2011-03-01

    Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium. Bacterial consortium consisting of Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains were seeded to 20% (v/w) petroleum oil-contaminated soil, and bioremediation experiment was carried out for 180 days under laboratory condition. The kinetics of hydrocarbon degradation was analyzed using biochemical and gas chromatographic (GC) techniques. The ecotoxicity of the elutriates obtained from petroleum oil-contaminated soil before and post-treatment with microbial consortium was tested on germination and growth of Bengal gram (Cicer aretinum) and green gram (Phaseolus mungo) seeds. Bacterial consortium showed a significant reduction in total petroleum hydrocarbon level in contaminated soil (76% degradation) as compared to the control soil (3.6% degradation) 180 days post-inoculation. The GC analysis confirmed that bacterial consortium was more effective in degrading the alkane fraction compared to aromatic fraction of crude petroleum oil hydrocarbons in soil. The nitrogen, sulfur, and oxygen compounds fraction was least degraded. The reclaimed soil supported the germination and growth of crop plants (C. aretinum and P. mungo). In contrast, seeds could not be germinated in petroleum oil-contaminated soil. The present study reinforces the application of bacterial consortium rather than individual bacterium for the effective bioremediation and reclamation of soil contaminated with petroleum oil.

  15. Formation of hydrocarbons in irradiated Brazilian beans: gas chromatographic analysis to detect radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Hartmann, M.; Ammon, J.; Delincee, H.

    1997-01-01

    Radiation processing of beans, which are a major source of dietary protein in Brazil, is a valuable alternative to chemical fumigation to combat postharvest losses due to insect infestation. To ensure free consumer choice, irradiated food will be labeled as such, and to enforce labeling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In two varieties of Brazilian beans, Carioca and Macacar beans, the radiolytic formation of hydrocarbons formed after alpha and beta cleavage, with regard to the carbonyl group in triglycerides, have been studied. Using gas chromatographic analysis of these radiolytic hydrocarbons, different yields per precursor fatty acid are observed for the two types of beans. However, the typical degradation pattern allows the identification of the irradiation treatment in both bean varieties, even after 6 months of storage

  16. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  17. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  18. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    Science.gov (United States)

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  19. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  20. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  1. AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS

    Science.gov (United States)

    Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...

  2. CFG-7-P3 : potential of aggregate-associated biodegradation of high-molecular-weight hydrocarbon fractions in crude-oil contaminated soils from a northern Canadian site

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.; Snelgrove, J.; Akbari, A.; Ghoshal, S. [McGill Univ., Montreal, PQ (Canada). Dept. of Civil Engineering and Applied Mechanics

    2010-07-01

    Soil aggregation can limit aerobic hydrocarbon biodegradation rates due to the slower intra-pore diffusion of nutrients, oxygen and hydrocarbons. This study investigated the influence of soil aggregation at a pilot-scale biopile of crude oil-contaminated soil shipped from a site in the Northwest Territories. Attempts were made to stimulate indigenous microbial activity of the hydrocarbon-degrading bacteria through soil aeration and nutrient amendments in a tank maintained at 15 degrees C. Results showed that nutrient amendment significantly enhanced aggregation. After 60 days, approximately 50 per cent of the initial total hydrocarbon productivity (TPH) was reduced in both the treated and untreated biopile. However, a TPH analysis of soil aggregate levels showed that the biodegradation of high weight hydrocarbon fractions in macroaggregates was more significantly reduced in the nutrient-amended soils. Results suggested that the soil particles in the macroaggregates were more loosely clustered, and may have supported enhanced hydrocarbon biodegradation.

  3. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  4. Degradation products of irradiated haloperidol: implications for the development of an implantible delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Booker, J

    1988-01-01

    Haloperidol was chosen as a model compound to determine whether the degradation products created by sterilizing dose of gamma radiation would contaminate an implantible delivery device and be hazardous to the health of the person using it. Acrolein, chlorobenzene, and several other products were identified among the degradation products. They were quantitated and evaluated as being potentially dangerous. It is recommended that the development protocol for a radiation-sterilized, implantible drug include the identification and evaluation of the degradation products.

  5. Degradation products of irradiated haloperidol: implications for the development of an implantible delivery system

    International Nuclear Information System (INIS)

    Booker, J.

    1988-01-01

    Haloperidol was chosen as a model compound to determine whether the degradation products created by sterilizing dose of gamma radiation would contaminate an implantible delivery device and be hazardous to the health of the person using it. Acrolein, chlorobenzene, and several other products were identified among the degradation products. They were quantitated and evaluated as being potentially dangerous. It is recommended that the development protocol for a radiation-sterilized, implantible drug include the identification and evaluation of the degradation products. (author)

  6. Isotopic and geochemical tools to assess the feasibility of methanogenesis as a way to enhance hydrocarbon recovery in oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Morris, B.E.L.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M.; Yao, Jun [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Sicence and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany). Fachbereich Geochemie

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a thermophilic reservoir in Dagang, China using isotopic analyzes, chemical fingerprinting and molecular and biological methods. Our first results, which were already published, demonstrated that anaerobic oil degradation concomitant with methane production was occurring. The reservoir was highly methanogenic and the oil exhibited varying degrees of degradation between different parts of the reservoir, although it was mainly highly weathered, and nearly devoid of nalkanes, alkylbenzenes, alkyltoluenes, and light PAHs. In addition, the isotopic data from reservoir oil, water and gas was used to elucidate the origin of the methane. The average {delta}{sup 13}C for methane was around -47 permille and CO{sub 2} was highly enriched in {sup 13}C. The bulk isotopic discrimination ({Delta}{delta}{sup 13}C) between methane and CO{sub 2} was between 32 and 65 permille, in accordance with previously reported results for methane formation during hydrocarbon degradation. Subsequent microcosm experiments revealed that autochthonous microbiota are capable of degrading oil under methanogenic conditions and of producing methane and/or CO{sub 2} from {sup 13}C-labelled n-hexadecane, 2-methylnaphthalene or toluene ({delta}{sup 13}C values up to 550 permille). These results demonstrate that methanogenesis is linked to aliphatic and aromatic hydrocarbon degradation. Further experiments will elucidate the activation mechanisms for the different compounds. (orig.)

  7. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    Science.gov (United States)

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-02

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  8. Degradation of Hydrocarbons by Members of the Genus Candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica

    Science.gov (United States)

    Klug, M. J.; Markovetz, A. J.

    1967-01-01

    Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked. PMID:6025303

  9. TBP degradation products. Separation and gas-chromatographic determination

    International Nuclear Information System (INIS)

    Kuada, T.A.; Alem, C.M.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A de.

    1991-11-01

    A separation method for di butylphosphate, mono butylphosphate and phosphoric acid as degradation products in organic and aqueous streams of the process containing variable amounts of actinides and fission products is described. The products were separated by extraction and after methylation the final determination was carried out by gas chromatography. TPP was used as internal standard and 5 to 500 mg/L concentration range was determined with 1 to 10% deviation depending on the concentration of organo phosphates. (author)

  10. Formation of undesired by-products in deNO{sub x} catalysis by hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, Frank; Koeppel, Rene A; Baiker, Alfons [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1995-11-20

    The catalytic performance of Cu/ZSM-5 and {gamma}-alumina in the selective catalytic reduction of nitrogen oxides by alkenes in excess oxygen and the formation of potentially harmful by-products such as hydrogen cyanide, cyanic acid, ammonia, nitrous oxide and carbon monoxide have been studied by means of FT-IR-gas phase analysis. Over Cu/ZSM-5 the reduction activity was strongly influenced by the type of hydrocarbon, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-alumina NO{sub 2} was reduced more efficiently than NO with both reductants. Water addition strongly suppressed the catalytic activity of {gamma}-alumina. Regarding the formation of undesired by-products, substantial amounts of carbon monoxide were observed in all experiments, independently of the feed composition. The type of catalyst, the use of either NO or NO{sub 2}, the alkene used as a reductant and water strongly influenced the formation of other by-products. With alumina ethene showed a lower tendency to form HCN as compared to propene and water addition further suppressed by-product formation. This contrasts the findings with Cu/ZSM-5, where HCN production was not significantly altered by the presence of water. On this catalyst HNCO was found additionally for dry feeds, whereas ammonia appeared in the presence of water in the same temperature range. Under special feed gas compositions further by-products, formaldehyde and hydrocarbons, were found over Cu/ZSM-5, whereas none of these compounds were observed over {gamma}-alumina

  11. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  12. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  13. Remediation of petroleum hydrocarbons by inoculation with laboratory-cultured microorganisms

    International Nuclear Information System (INIS)

    Maxwell, C.R.; Baqai, H.A.

    1995-01-01

    An unauthorized release of gasoline from an underground storage tank (UST) impacted the soil and groundwater beneath a maintenance and fueling capacity. The property owner attempted to remediate the site by inoculating wells screened within the unsaturated and saturated zones with laboratory-cultured microorganisms. The inoculation was a one-time event. No nutrients were added to the subsurface. Air was injected into all inoculation wells during the project to promote aerobic microbial activity. At the first groundwater sampling event after inoculation, concentrations of petroleum hydrocarbon constituents increased inoculation wells. Measurements of dissolved oxygen in the groundwater appeared to indicate that oxygen consumption, and thus hydrocarbon degradation, was not occurring. Visual and olfactory evidence of the groundwater indicated evidence of decaying organic matter. After approximately 1 year and a thorough purging of the inoculation wells, decaying matter disappeared and dissolved oxygen and hydrocarbon concentrations generally returned to preproject levels. Further contaminant reduction did not occur, indicating temporary degradation of water quality as a result of the project and unsuccessful remediation

  14. Assessment of organochlorine hydrocarbons transformation in contaminated agricultural products and foodstuffs under gamma-radiation

    Science.gov (United States)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    The problem of an estimation of organochlorinated pollutants transformation (particularly organochlorinated pesticides (OCP) and polychlorinated biphenyls (PCB)) under gamma-irradiation has become important in connection with radiation technologies application in the food industry. According to earlier researches, small doses of OCP lead to serious damages of an organism, comparable with damages from high doses. Among radiolysis products of OCP in model solutions various substances on a structure have been found out. Though of trace concentration of each of them, in sum with the initial pesticides residue they make up significant of mass contamination (as shown earlier up to 90% from initial OCP). In this work fish samples (bream) containing OCPs (15.20 ng/g of hexachlorocyclohexane isomers and 87.10 ng/g of DDT and its metabolites), as well as PCB (18.51 ng/g) were studied. The minced fish was irradiated at dose of 10 kGy with dose rate of 1.35 Gy/sec. Then, by methods of gas-liquid chromatography (GLC) and gas chromatography-mass spectrometry (GC-MS), it was found that the OCPs degradation varied from 3 up to 61% and the PCB degradation - 24-52%. Significant complication of chemical composition was shown comparing to the primary biological sample contamination. As a result of fish irradiation, secondary pollution appeared that included residues of primary organochlorine hydrocarbons and their radiation-induced metabolites. Among the investigated OCPs the most stable proved to be alfa-hexachlorocyclohexane (alfa-HCH), the least stable - DDT which corresponds to the previous findings about the radiation stability of OCPs in model solutions. Mass spectra of the irradiated samples of minced bream showed the presence of radiation metabolites of OCPs, that had also been found at irradiation of model solutions of 2,2-di(4-chlorophenyl)-1-chlorethylene (DDMU), DDD and 1a, 2e, 3e, 4e, 5e-pentahlorcyclohexane. There was revealed a decomposition product formed during the

  15. Assessment of organochlorine hydrocarbons transformation in contaminated agricultural products and foodstuffs under gamma-radiation

    International Nuclear Information System (INIS)

    Mel’nikova, T V; Polyakova, L P; Oudalova, A A

    2017-01-01

    The problem of an estimation of organochlorinated pollutants transformation (particularly organochlorinated pesticides (OCP) and polychlorinated biphenyls (PCB)) under gamma-irradiation has become important in connection with radiation technologies application in the food industry. According to earlier researches, small doses of OCP lead to serious damages of an organism, comparable with damages from high doses. Among radiolysis products of OCP in model solutions various substances on a structure have been found out. Though of trace concentration of each of them, in sum with the initial pesticides residue they make up significant of mass contamination (as shown earlier up to 90% from initial OCP). In this work fish samples (bream) containing OCPs (15.20 ng/g of hexachlorocyclohexane isomers and 87.10 ng/g of DDT and its metabolites), as well as PCB (18.51 ng/g) were studied. The minced fish was irradiated at dose of 10 kGy with dose rate of 1.35 Gy/sec. Then, by methods of gas-liquid chromatography (GLC) and gas chromatography-mass spectrometry (GC-MS), it was found that the OCPs degradation varied from 3 up to 61% and the PCB degradation – 24-52%. Significant complication of chemical composition was shown comparing to the primary biological sample contamination. As a result of fish irradiation, secondary pollution appeared that included residues of primary organochlorine hydrocarbons and their radiation-induced metabolites. Among the investigated OCPs the most stable proved to be alfa-hexachlorocyclohexane (alfa-HCH), the least stable – DDT which corresponds to the previous findings about the radiation stability of OCPs in model solutions. Mass spectra of the irradiated samples of minced bream showed the presence of radiation metabolites of OCPs, that had also been found at irradiation of model solutions of 2,2-di(4-chlorophenyl)-1-chlorethylene (DDMU), DDD and 1a, 2e, 3e, 4e, 5e-pentahlorcyclohexane. There was revealed a decomposition product formed during

  16. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments

    Science.gov (United States)

    Saxena, Rituja; Dhakan, Darshan B.; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K.

    2017-01-01

    Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together

  17. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    Science.gov (United States)

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  18. Production of a New Emulsifier Material for the Formation Heavy Hydrocarbon/Water Emulsion

    Directory of Open Access Journals (Sweden)

    Afshin Farahbakhsh

    2011-04-01

    Full Text Available Emulsifiers are a unique class of compounds that have proved to have a variety of potential applications in formation of hydrocarbon in water emulsion, in enhancement of oil recovery and in the reduction of heavy oil viscosity. In this paper, a bio emulsifier was synthesized by a strain of Bacillus licheniformis and was separated by an autoclave and centrifugal process; the purification of bio emulsifier and the increase quality of product was done by adding sulfuric acid (H2SO4 (98% to the solution and centrifuging this compound again. This bio emulsifier has the property of emulsification to a wide range of heavy hydrocarbon to form a stable hydrocarbon-water emulsion. This bio emulsifier could reduce Iranian Nuroze high viscosity oil of about 10000 cP down to 250 cP. This means about 97% decreases in the viscosity. The emulsion stable this condition for 48 hr and the viscosity slowly increases to 4000cp until 192 hr. The stability of the oil in water emulsion during 48hr allows the heavy oil to be transported practically over lengthy distances or remain stable for long periods of time prior to utilization.

  19. Degradation product characterization of therapeutic oligonucleotides using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Elzahar, N M; Magdy, N; El-Kosasy, Amira M; Bartlett, Michael G

    2018-05-01

    Synthetic antisense phosphorothioate oligonucleotides (PS) have undergone rapid development as novel therapeutic agents. The increasing significance of this class of drugs requires significant investment in the development of quality control methods. The determination of the many degradation pathways of such complex molecules presents a significant challenge. However, an understanding of the potential impurities that may arise is necessary to continue to advance these powerful new therapeutics. In this study, four different antisense oligonucleotides representing several generations of oligonucleotide therapeutic agents were evaluated under various stress conditions (pH, thermal, and oxidative stress) using ion-pairing reversed-phase liquid chromatography tandem mass spectrometry (IP-RPLC-MS/MS) to provide in-depth characterization and identification of the degradation products. The oligonucleotide samples were stressed under different pH values at 45 and 90 °C. The main degradation products were observed to be losses of nucleotide moieties from the 3'- and 5'-terminus, depurination, formation of terminal phosphorothioates, and production of ribose, ribophosphorothioates (Rp), and phosphoribophosphorothioates (pRp). Moreover, the effects of different concentrations of hydrogen peroxide were studied resulting in primarily extensive desulfurization and subsequent oxidation of the phosphorothioate linkage to produce the corresponding phosphodiester. The reaction kinetics for the degradation of the oligonucleotides under the different stress conditions were studied and were found to follow pseudo-first-order kinetics. Differences in rates exist even for oligonucleotides of similar length but consisting of different sequences. Graphical abstract Identification of degradation products across several generations of oligonucleotide therapeutics using LC-MS.

  20. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  1. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  2. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.

    Science.gov (United States)

    Witkiewicz, Zygfryd; Neffe, Slawomir; Sliwka, Ewa; Quagliano, Javier

    2018-09-03

    Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.

  3. Process for conversion of lignin to reformulated hydrocarbon gasoline

    Science.gov (United States)

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  4. Identification and in vitro cytotoxicity of ochratoxin A degradation products formed during coffee roasting.

    Science.gov (United States)

    Cramer, Benedikt; Königs, Maika; Humpf, Hans-Ulrich

    2008-07-23

    The mycotoxin ochratoxin A is degraded by up to 90% during coffee roasting. In order to investigate this degradation, model heating experiments with ochratoxin A were carried out, and the reaction products were analyzed by HPLC-DAD and HPLC-MS/MS. Two ochratoxin A degradation products were identified, and their structure and absolute configuration were determined. As degradation reactions, the isomerization to 14-(R)-ochratoxin A and the decarboxylation to 14-decarboxy-ochratoxin A were identified. Subsequently, an analytical method for the determination of these compounds in roasted coffee was developed. Quantification was carried out by HPLC-MS/MS and the use of stable isotope dilution analysis. By using this method for the analysis of 15 coffee samples from the German market, it could be shown that, during coffee roasting, the ochratoxin A diastereomer 14-(R)-ochratoxin A was formed in amounts of up to 25.6% relative to ochratoxin A. The decarboxylation product was formed only in traces. For toxicity evaluations, first preliminary cell culture assays were performed with the two new substances. Both degradation products exhibited higher IC50 values and caused apoptotic effects with higher concentrations than ochratoxin A in cultured human kidney epithelial cells. Thus, these cell culture data suggest that the degradation products are less cytotoxic than ochratoxin A.

  5. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

    DEFF Research Database (Denmark)

    Souissi, Yasmine; Bouchonnet, Stéphane; Bourcier, Sophie

    2013-01-01

    The widespread occurrence of chlorinated herbicides and their degradation products in the aquatic environment raises health and environmental concerns. As a consequence pesticides, and to a lesser degree their degradation products, are monitored by authorities both in surface waters and drinking...... waters. In this study the formation of degradation products from ultraviolet (UV) treatment of the three chloroacetamide herbicides acetochlor, alachlor and metolachlor and their biological effects were investigated. UV treatment is mainly used for disinfection in water and wastewater treatments. First...

  6. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    Science.gov (United States)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a

  7. Development and application of techniques for monitoring the bioremediation of petroleum hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Greer, C.; Hawar, J.; Samson, R.

    1994-01-01

    A series of tests was designed to examine bioremediation potential in soil and to monitor performance during the treatment operation. Physical and chemical characterization of the soil provides information on the types of organics, their concentrations, and whether interfering materials are present. Microbiological assessment involves culturing of bacterial populations in the soil and examination of the colonies to determine which have the genetic potential to degrade the soil contaminants. Catabolic gene probes are used to survey viable bacteria from petroleum hydrocarbon contaminated soils. Such soils consistently demonstrate the presence of bacteria possessing the genetic capability to degrade simple straight-chain alkanes and aromatics. Mineralization and respirometric studies are indicators of the biological activity in the soil, and can be directed at microbial activity towards specific substrates. Gene probe monitoring of a petroleum hydrocarbon contaminated soil during biopile treatment demonstrated that hydrocarbon-degrading bacterial numbers and activity were temperature dependent. The results showed that the activity of the indigenous bacteria as measured by hexadecane mineralization also correlated with the disappearance of the oil and grease. The application of this protocol has provided a useful means to screen contaminated soils for bacteria with desirable catabolic properties and to monitor pollutant-degrading bacteria during biotreatment. 15 refs., 10 figs

  8. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: beneficial reuse

    NARCIS (Netherlands)

    Harmsen, J.; Rulkens, W.H.; Sims, R.C.; Rijtema, P.E.; Zweers, A.J.

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described

  9. Degradation study of pesticides by direct photolysis - Structural characterization and potential toxicity of photo products

    International Nuclear Information System (INIS)

    Rifai, A.

    2013-01-01

    Pesticides belong to the large family of organic pollutants. In general, they are intended to fight against crop pests. Distribution of pesticides in nature creates pollution in DIFFERENT compartments of the biosphere (water, soil and air) and can induce acute toxic effects on human beings of the terrestrial and aquatic living biomass. It is now shown that some pesticides are endocrine disruptors and are particularly carcinogenic and mutagenic effects in humans. Pesticides can undergo various processes of transformation in the natural life cycle (biodegradation, volatilization, solar radiation ...) or following applied in the sectors of natural water purification and treatment stations sewage treatment. The presence of degradation products of pesticides in our environment is even more alarming that their structures and potential toxicities generally unknown. Molecules belonging to two families of pesticides were selected for this study: herbicides, represented by metolachlor, and fungicides represented by procymidone, pyrimethanil and boscalid. The first part of the thesis focused on the development of an analytical strategy to characterize the structures of compounds from degradation by photolysis of pesticides. The second part focused on estimating the toxicity of degradation products using a test database in silico. Identification of degradation products was achieved through two complementary analysis techniques: the gas chromatography coupled to a mass spectrometer ''multi-stage'' (GC-MSn) and liquid chromatography coupled to a tandem mass spectrometer (LC-MS/MS). The estimation of the toxicity of the degradation products was performed using the TEST program QSAR recently developed to try to predict the toxicity of molecules. The strategy of the structural elucidation of degradation products of pesticides studied is based on studying of the mechanisms of fragmentation of parent molecules of the degradation products. The molar mass of parent

  10. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1992-01-01

    of polymeric species by oxidative self-coupling of 5-ASA moieties. These results indicate that the degradation of 5-ASA follows the same mechanism as observed for the autooxidation of 4-aminophenol and 1,4-phenylenediamine. Some of the identified degradation products were found in 5-ASA......The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation...

  11. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.

    Science.gov (United States)

    Mounier, Julie; Camus, Arantxa; Mitteau, Isabelle; Vaysse, Pierre-Joseph; Goulas, Philippe; Grimaud, Régis; Sivadon, Pierre

    2014-12-01

    Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Identification of thermal degradation products of polymers by capillary gas chromatography

    NARCIS (Netherlands)

    Pacakova, V.; Borecka, M.; Leclercq, P.A.; Kaiser, R.E.

    1981-01-01

    Samples of polyethylene, polypropylene, polystyrene and five styrene copolymers were thermally degraded in a quartz tubular reactor at 5100e in an inert atmosphere. The degradation products were separated on-line on capillary coltmlS coated with squalane, OV-17 and SE-30 as stationary phases. The

  13. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.; Trent, G.L.; Brown, D.R.; Sublette, K.L.

    1995-01-01

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  14. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS.

    Science.gov (United States)

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A M; Vishwanath, K; Jadhav, R K

    2011-05-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itopride degraded in acid, alkali and oxidative stress conditions. The stability indicating method was developed and validated. The degradation pathway of the drug to products II-VIII is proposed.

  15. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.

    Science.gov (United States)

    Li, Xiaojun; Li, Peijun; Lin, Xin; Zhang, Chungui; Li, Qi; Gong, Zongqiang

    2008-01-15

    Microbial consortia isolated from aged oil-contaminated soil were used to degrade 16 polycyclic aromatic hydrocarbons (15.72 mgkg(-1)) in soil and slurry phases. The three microbial consortia (bacteria, fungi and bacteria-fungi complex) could degrade polycyclic aromatic hydrocarbons (PAHs), and the highest PAH removals were found in soil and slurry inoculated with fungi (50.1% and 55.4%, respectively). PAHs biodegradation in slurry was lower than in soil for bacteria and bacteria-fungi complex inoculation treatments. Degradation of three- to five-ring PAHs treated by consortia was observed in soil and slurry, and the highest degradation of individual PAHs (anthracene, fluoranthene, and benz(a)anthracene) appeared in soil (45.9-75.5%, 62-83.7% and 64.5-84.5%, respectively) and slurry (46.0-75.8%, 50.2-86.1% and 54.3-85.7%, respectively). Therefore, inoculation of microbial consortia (bacteria, fungi and bacteria-fungi complex) isolated from in situ contaminated soil to degrade PAHs could be considered as a successful method.

  16. Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments

    International Nuclear Information System (INIS)

    Bauer, J.E.; Capone, D.G.

    1985-01-01

    The degradation of the polynuclear aromatic hydrocarbons (PAHs) anthracene and naphthalene by the microbiota of intertidal sediments was investigated in laboratory studies. No mineralization of either PAH was observed in the absence of oxygen. Both rates and total amounts of PAH mineralization were strongly controlled by oxygen content and temperature of the incubations. Inorganic nitrogen and glucose amendments had minimal effects on PAH mineralization. The rates and total amounts of PAH mineralized were directly related to compound concentration, pre-exposure time, and concentration. Maximum mineralization was observed at the higher concentrations (5 to 100 μg/g [ppm]) of both PAHs. Optimal acclimation to anthracene and naphthalene (through pre-exposures to the compounds) occurred at the highest acclimation concentration (1,000 ppm). However, acclimation to a single concentration (100 ppm) resulted in initial relative mineralization rates over a range of re-exposure concentrations (1 to 1,000 ppm) being nearly identical. Maximum mineralization of both PAHs occurred after intermediate periods (1 to 2 weeks) of pre-exposure. The fraction of the total heterotrophic population capable of utilizing anthracene or naphthalene as sole carbon source was also greatest after 2 weeks

  17. Organochlorine Pesticides and Degradation Products in Soil around ...

    African Journals Online (AJOL)

    The levels and compositions of organochlorine pesticides and degradation products in soil samples collected from a former formulation plant in Morogoro municipality, Tanzania, were determined. Extraction was performed by pressurized fluid extraction using n-hexane:acetone (75:25) mixture. Clean-up of extracts was ...

  18. Evaluation of mineral oil saturated hydrocarbons (MOSH and mineral oil aromatic hydrocarbons (MOAH in pure mineral hydrocarbon-based cosmetics and cosmetic raw materials using 1H NMR spectroscopy [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Dirk W. Lachenmeier

    2017-08-01

    Full Text Available Mineral hydrocarbons consist of two fractions, mineral oil saturated hydrocarbons (MOSH and mineral oil aromatic hydrocarbons (MOAH. MOAH is a potential public health hazard because it may include carcinogenic polycyclic compounds. In the present study, 400 MHz nuclear magnetic resonance (NMR spectroscopy was introduced, in the context of official controls, to measure MOSH and MOAH in raw materials or pure mineral hydrocarbon final products (cosmetics and medicinal products. Quantitative determination (qNMR has been established using the ERETIC methodology (electronic reference to access in vivo concentrations based on the PULCON principle (pulse length based concentration determination. Various mineral hydrocarbons (e.g., white oils, paraffins or petroleum jelly were dissolved in deuterated chloroform. The ERETIC factor was established using a quantification reference sample containing ethylbenzene and tetrachloronitrobenzene. The following spectral regions were integrated: MOSH δ 3.0 – 0.2 ppm and MOAH δ 9.2 - 6.5, excluding solvent signals. Validation showed a sufficient precision of the method with a coefficient of variation <6% and a limit of detection <0.1 g/100 g. The applicability of the method was proven by analysing 27 authentic samples with MOSH and MOAH contents in the range of 90-109 g/100 g and 0.02-1.10 g/100 g, respectively. It is important to distinguish this new NMR-approach from the hyphenated liquid chromatography-gas chromatography methodology previously used to characterize MOSH/MOAH amounts in cosmetic products. For mineral hydrocarbon raw materials or pure mineral hydrocarbon-based cosmetic products, NMR delivers higher specificity without any sample preparation besides dilution. Our sample survey shows that previous methods may have overestimated the MOAH amount in mineral oil products and opens new paths to characterize this fraction. Therefore, the developed method can be applied for routine monitoring of consumer

  19. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    International Nuclear Information System (INIS)

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C.; Tuerk, Jochen

    2016-01-01

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO_2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  20. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Salma, Alaa [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Thoröe-Boveleth, Sven [University Hospital Aachen, Institute for Hygiene and Environmental Medicine, Pauwelsstraße 30, 52074 Aachen (Germany); Schmidt, Torsten C. [University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 5, 45141 Essen (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany); Tuerk, Jochen, E-mail: tuerk@iuta.de [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany)

    2016-08-05

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO{sub 2}/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  1. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  2. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    Rowell, M.J.; Ashworth, J.; Qureshi, A.A.

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  4. Bioremediation of petroleum hydrocarbons in soil environments

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J; Ashworth, J; Qureshi, A A

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs.

  5. Relationship between gas production and starch degradation in feed samples

    NARCIS (Netherlands)

    Chai, W.Z.; Gelder, van A.H.; Cone, J.W.

    2004-01-01

    An investigation was completed of the possibilities to estimate starch fermentation in rumen fluid using the gas production technique by incubating the total sample. Gas production from six starchy feed ingredients and eight maize silage samples were recorded and related to starch degradation

  6. Conversion of hydrocarbon oils into motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-09

    The abstract describes a process for producing lower boiling hydrocarbon motor fuels with a starting material of wide boiling range composed primarily of hydrocarbon oils boiling substantially above the boiling range of the desired product. Separate catalytic and pyrolytic conversion zones are simultaneously maintained in an interdependent relationship. Higher boiling constituents are separated from residual constituents by fractionation while desirable reaction conditions are maintained. All or at least a portion of the products from the catalytic and pyrolytic conversion zones are blended to yield the desired lower boiling hydrocarbons or motor fuels.

  7. Advances of naphthalene degradation in Pseudomonas putida ND6

    Science.gov (United States)

    Song, Fu; Shi, Yifei; Jia, Shiru; Tan, Zhilei; Zhao, Huabing

    2018-03-01

    Naphthalene is one of the most common and simple polycyclic aromatic hydrocarbons. Degradation of naphthalene has been greatly concerned due to its economic, free-pollution and its fine effect in Pseudomonas putida ND6. This review summarizes the development history of naphthalene degradation, the research progress of naphthalene degrading gene and naphthalene degradation pathway of Pseudomonas putida ND6, and the researching path of this strain. Although the study of naphthalene degradation is not consummate in Pseudomonas putida ND6, there is a potential capability for Pseudomonas putida ND6 to degrade the naphthalene in the further research.

  8. Hydrocarbons (aliphatic and aromatic) in the snow-ice cover in the Arctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.; Kluvitkin, A.A.

    2002-01-01

    This paper presented the concentration and composition of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in snow and ice-infested waters in the France-Victoria trough in the northern Barents Sea and in the Mendeleev ridge in the Amerasian basin of the Arctic Ocean. Extreme conditions such as low temperatures, ice sheets and the polar nights render the arctic environment susceptible to oil spills. Hydrocarbons found in these northern seas experience significant transformations. In order to determine the sources, pathways and transformations of the pollutants, it is necessary to know their origin. Hydrocarbon distributions is determined mostly by natural hydrobiological and geochemical conditions. The regularity of migration is determined by natural factors such as formation and circulation of air and ice drift. There is evidence suggesting that the hydrocarbons come from pyrogenic sources. It was noted that hydrocarbons could be degraded even at low temperatures. 17 refs., 1 tab

  9. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  10. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  11. Caprock Integrity during Hydrocarbon Production and CO2 Injection in the Goldeneye Reservoir

    Science.gov (United States)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert

    2016-04-01

    Carbon Capture and Storage (CCS) is a key technology for addressing climate change and maintaining security of energy supplies, while potentially offering important economic benefits. UK offshore, depleted hydrocarbon reservoirs have the potential capacity to store significant quantities of carbon dioxide, produced during power generation from fossil fuels. The Goldeneye depleted gas condensate field, located offshore in the UK North Sea at a depth of ~ 2600 m, is a candidate for the storage of at least 10 million tons of CO2. In this research, a fully coupled, full-scale model (50×20×8 km), based on the Goldeneye reservoir, is built and used for hydro-carbon production and CO2 injection simulations. The model accounts for fluid flow, heat transfer, and deformation of the fractured reservoir. Flow through fractures is defined as two-dimensional laminar flow within the three-dimensional poroelastic medium. The local thermal non-equilibrium between injected CO2 and host reservoir has been considered with convective (conduction and advection) heat transfer. The numerical model has been developed using standard finite element method with Galerkin spatial discretisation, and finite difference temporal discretisation. The geomechanical model has been implemented into the object-oriented Imperial College Geomechanics Toolkit, in close interaction with the Complex Systems Modelling Platform (CSMP), and validated with several benchmark examples. Fifteen major faults are mapped from the Goldeneye field into the model. Modal stress intensity factors, for the three modes of fracture opening during hydrocarbon production and CO2 injection phases, are computed at the tips of the faults by computing the I-Integral over a virtual disk. Contact stresses -normal and shear- on the fault surfaces are iteratively computed using a gap-based augmented Lagrangian-Uzawa method. Results show fault activation during the production phase that may affect the fault's hydraulic conductivity

  12. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    International Nuclear Information System (INIS)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J.; Morel, J.

    1999-01-01

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m -2 contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO 2 ) production was measured daily for 42 days and the carbon isotopic ratio of CO 2 (δ 13 CO 2 ) was used to determine the fraction of CO 2 derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter

  14. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Behzad [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Horel, Agota [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Beazley, Melanie J.; Sobecky, Patricia A. [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2013-01-15

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO{sub 2}) production was measured daily for 42 days and the carbon isotopic ratio of CO{sub 2} (δ{sup 13}CO{sub 2}) was used to determine the fraction of CO{sub 2} derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter.

  15. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    Science.gov (United States)

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  16. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media.

    Science.gov (United States)

    Pęziak, Daria; Piotrowska, Aleksandra; Marecik, Roman; Lisiecki, Piotr; Woźniak, Marta; Szulc, Alicja; Ławniczak, Łukasz; Chrzanowski, Łukasz

    2013-01-01

    The aim of our study was to investigate the effect of Triton X-100 on the biodegradation efficiency of hexadecane and phenanthrene carried out by two bacterial consortia. It was established that the tested consortia were not able to directly uptake compounds closed in micelles. It was observed that in micellar systems the nonionic synthetic surfactant was preferentially degraded (the degradation efficiency of Triton X-100 after 21 days was 70% of the initial concentration - 500 mg/l), followed by a lesser decomposition of hydrocarbon released from the micelles (30% for hexadecane and 20% for phenanthrene). However, when hydrocarbons were used as the sole carbon source, 70% of hexadecane and 30% of phenanthrene were degraded. The degradation of the surfactant did not contribute to notable shifts in bacterial community dynamics, as determined by Real-Time PCR. The obtained results suggest that if surfactant-supplementation is to be used as an integral part of a bioremediation process, then possible bioavailability decrease due to entrapment of the contaminant into surfactant micelles should also be taken into consideration, as this phenomenon may have a negative impact on the biodegradation efficiency. Surfactant-induced mobilization of otherwise recalcitrant hydrocarbons may contribute to the spreading of contaminants in the environment and prevent their biodegradation.

  17. Stress triggering of earthquakes and subsidence in the Louisiana coastal zone due to hydrocarbon production

    Science.gov (United States)

    Mallman, Ellen P.

    This thesis presents contributions towards better understanding of the interaction between earthquakes through elastic stress triggering and the role of hydrocarbon production on subsidence and land loss in southern Louisiana. The first issue addressed in this thesis is that of the role of static stress changes on earthquake triggering. The first study investigated whether observed changes in seismicity rate following the 1992 Landers, California and 1995 Kobe, Japan earthquakes are accurately predicted by elastic Coulomb stress transfer models. The analyses found that for all the tested DeltaCFS models wherever seismicity rate changes could be resolved the rate increased regardless of whether the DeltaCFS theoretically promoted or inhibited failure. The second study the common definition of a stress shadow was extended to independently test the stress shadow hypothesis using a global catalog of seismicity. The analyses indicated that while stress shadows are subtle, they are present in the global catalog. It also explains why "classical" stress shadows, similar to what was observed following the 1906 San Francisco earthquake are rarely observed for individual main shocks. The second issue addressed in this thesis is the role of hydrocarbon production on subsidence and land loss in the Louisiana Coastal Zone. The two studies in this thesis extend previous work by modeling the effect of oil and gas production in the region in two ways. First, multiple producing oil and gas fields and multiple epochs of leveling data are considered to provide constraints on predicted subsidence. Second, the role of compaction of the reservoir bounding shales on the regional subsidence signal is included. The results of the two studies on the role of hydrocarbon production on subsidence in the Louisiana Coastal Zone indicate that regional models of subsidence must include the effects of production-induced subsidence due to both sands and shales, but that this can not account for the

  18. Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants

    International Nuclear Information System (INIS)

    Morasch, B.; Hoehener, P.; Hunkeler, D.

    2007-01-01

    A microcosm study was conducted to investigate the degradation of mono- and polyaromatic hydrocarbons under in situ-like conditions using alluvial sediments from the site of a former cokery. Benzene, naphthalene, or acenaphthene were added to the sediments as 13 C-labeled substrates. Based on the evolution of 13 C-CO 2 determined by gas chromatography isotope-ratio mass spectrometry (GC-IRMS) it was possible to prove mineralization of the compound of interest in the presence of other unknown organic substances of the sediment material. This new approach was suitable to give evidence for the intrinsic biodegradation of benzene, naphthalene, and acenaphthene under oxic and also under anoxic conditions, due to the high sensitivity and reproducibility of 13 C/ 12 C stable isotope analysis. This semi-quantitative method can be used to screen for biodegradation of any slowly degrading, strongly sorbing compound in long-term experiments. - A method based on 13 C-labeled substrates was developed to determine the intrinsic biodegradation potential of aromatic pollutants under oxic and under anoxic conditions

  19. Production of synthetic hydrocarbon lube oil from highly waxy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Q; Ding, Z; Zheng, Sh; Wu, W

    1980-01-01

    A feasible way to utilize the low value soft wax is to convert it into synthetic hydrocarbon lube oil by thermal cracking/polymerization route. The first commercial plant for this purpose has been in normal operation since 1970. It has been proved to be economically sound. The antioxidant response of the product polymer oil can be distinctly improved by hydro-refining. It has been found that the vacuum gas oil from highly waxy crude with or without furfural refining can be used as cracking stock. If high viscosity index polymer oil is desired, it is better to use slack wax as the cracking stock.

  20. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    Science.gov (United States)

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Analysis of deltamethrin's degradation products by irradiation

    International Nuclear Information System (INIS)

    Wu Ling; Huang Min; Chen Chun; Lei Qing; Du Xiaoying; Xie Yan; Wang Yan; Gao Peng; He Jiang

    2012-01-01

    Deltamethrin were dissolved in ethanol and water; acetone and water; dimethylsulfoxide and water, irradiating these liquors by 60 Co-γ under the dose of 5∼50 kGy. The irradiation system were analyzed by GC/MS, result shows: there were some differences under different irradiation doses; the main degradation products are: α-cyano-3-phenoxy benzyl alcohol, 3-Phenoxybenzaldehyde, 3-Phenoxybenzacetonitrile and bromomethane. (authors)

  2. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis.

    Science.gov (United States)

    Michas, Antonios; Vestergaard, Gisle; Trautwein, Kathleen; Avramidis, Pavlos; Hatzinikolaou, Dimitris G; Vorgias, Constantinos E; Wilkes, Heinz; Rabus, Ralf; Schloter, Michael; Schöler, Anne

    2017-09-11

    Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.

  3. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures

    Science.gov (United States)

    Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.

    2011-12-01

    Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N

  5. High performance liquid chromatographic analysis of insulin degradation products from a cultured kidney cell line

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Frank, B.H.; Yagil, C.; Rabkin, R.

    1988-01-01

    The kidney is a major site for insulin removal and degradation, but the subcellular processes and enzymes involved have not been established. We have examined this process by analyzing insulin degradation products by HPLC. Monoiodoinsulin specifically labeled on either the A14 or B26 tyrosine residue was incubated with a cultured kidney epithelial cell line, and both intracellular and extracellular products were examined on HPLC. The products were then compared with products of known structure generated by hepatocytes and the enzyme insulin protease. Intracellular and extracellular products were different, suggesting two different degradative pathways, as previously shown in liver. The extracellular degradation products eluted from HPLC both before and after sulfitolysis similarly with hepatocyte products and products generated by insulin protease. The intracellular products also eluted identically with hepatocyte products. Based on comparisons with identified products, the kidney cell generates two fragments from the A chain of intact insulin, one with a cleavage at A13-A14 and the other at A14-A15. The B chain of intact insulin is cleaved in a number of different sites, resulting in peptides that elute identically with B chain peptides cleaved at B9-B10, B13-B14, B16-B17, B24-B25, and B25-B26. These similarities with hepatocytes and insulin protease suggest that liver and kidney have similar mechanisms for insulin degradation and that insulin protease or a very similar enzyme is involved in both tissues

  6. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  7. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Kane, Staci R; Chakicherla, Anu Y; Chain, Patrick S G; Schmidt, Radomir; Shin, Maria W; Legler, Tina C; Scow, Kate M; Larimer, Frank W; Lucas, Susan M; Richardson, Paul M; Hristova, Krassimira R

    2007-03-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  8. Method for upgrading diene-containing hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, L.E. Jr.; Holcomb, D.E.

    1984-05-22

    There is disclosed a method for upgrading of hydrocarbon mixtures, so as to reduce their content of gum precursors such as diolefins and pseudo-diolefins, and provide a resulting product mixture suitable for mild hydrogenation, for use as a motor fuel or as a feed stock to an extraction unit. The process comprises obtaining a hydrocarbon mixture containing about 60-90 wt. % of aromatic components, about 3-40 wt. % of dienes and pseudodienes, and monoolefins, and up to about 6 wt. % of relatively unreactive organic compounds, reacting this mixture with elemental sulfur in the approximate weight ratio of about 5-95 wt. % of the hydrocarbon mixture with about 95-5 wt. % of elemental sulfur, the reaction being carried out at a temperature in the range of 100/sup 0/-150/sup 0/ C. for about 10 minutes to 24 hours with good mixing, removing the unreacted materials by distillation and separating a sulfur-hydrocarbon reaction product to provide the upgraded hydrocarbon mixture.

  9. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Belen; Brey, J. Javier; Viera, Inmaculada G. [Hynergreen Technologies, S.A. Avda. de la Buhaira, 2. 41018 Sevilla (Spain); Gonzalez-Elipe, Agustin R.; Cotrino, Jose; Rico, Victor J. [Instituto de Ciencia de los Materiales de Sevilla (CSIC-University Sevilla), Avda. Americo Vespucio, 49, 41092 Sevilla (Spain)

    2007-06-10

    This work reports about the use of plasmas to obtain hydrogen by reforming of hydrocarbons or alcohols in mixtures with CO{sub 2} or H{sub 2}O. The plasma is activated in a dielectric barrier discharge (DBD) reactor working at atmospheric pressure and low temperatures (i.e., about 100 C). The reactor presents a great versatility in operation and a low manufacturing cost. Results are presented for the reforming of methane, methanol and ethanol. Methane transforms up to a 70% into CO and H{sub 2} without formation of any kind of superior hydrocarbon. For the two alcohols 100% conversion into the same products is found for flows much higher than in the case of methane. The work reports a description of the reactor and the operational conditions of the power supply enabling the ignition of the plasma and its steady state operation. (author)

  10. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest.

    Science.gov (United States)

    Maddela, N R; Masabanda, M; Leiva-Mora, M

    2015-01-01

    Isolating new diesel-oil-degrading microorganisms from crude-oil contaminated sites and evaluating their degradation capacities are vitally important in the remediation of oil-polluted environments and crude-oil exploitation. In this research, new hydrocarbon-degrading bacteria and fungi were isolated from the crude-oil contaminated soil of the oil-fields in the Amazon rainforest of north-east Ecuador by using a soil enrichment technique. Degradation analysis was tracked by gas chromatography and a flame ionization detector. Under laboratory conditions, maximum degradability of the total n-alkanes reached up to 77.34 and 62.62 removal ratios after 30 days of incubation for the evaporated diesel oil by fungi (isolate-1) and bacteria (isolate-1), respectively. The 16S/18S rDNA sequence analysis indicated that the microorganisms were most closely (99-100%) related to Bacillus cereus (isolate-1), Bacillus thuringiensis (isolate-2), Geomyces pannorum (isolate-1), and Geomyces sp. (isolate-2). Therefore, these strains enable the degradation of hydrocarbons as the sole carbon source, and these findings will benefit these strains in the remediation of oil-polluted environments and oil exploitation.

  11. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  12. Monitoring biodegradation of hydrocarbons by stable isotope fractionation

    Science.gov (United States)

    Dorer, Conrad; Fischer, Anko; Herrmann, Steffi; Richnow, Hans-Hermann; Vogt, Carsten

    2010-05-01

    In the last decade, several studies have demonstrated that stable isotope tools are highly applicable for monitoring anaerobic biodegradation processes. An important methodological approach is to characterize distinct degradation pathways with respect to the specific mechanism of C-H-bond cleavage and to quantify the extent of biodegradation by compound specific isotope analysis (CSIA). Here, enrichment factors (ɛbulk) needed for a CSIA field site approach must be determined in laboratory reference experiments. Recent research results from different laboratories have shown that single ɛbulk values for similar degradation pathways can be highly variable; thus, the use of two-dimensional compound specific isotope analysis (2D-CSIA) has been encouraged for characterizing biodegradation pathways more precisely. 2D-CSIA for hydrocarbons can be expressed by the slope of the linear regression for hydrogen versus carbon discrimination known as lambda ≈ ɛHbulk/ɛCbulk. We determined the carbon and hydrogen isotope fractionation for the biodegradation of benzene, toluene and xylenes by various reference cultures. Specific enzymatic reactions initiating different biodegradation pathways could be distinguished by 2D-CSIA. For the aerobic di- and monohydroxylation of the benzene ring, lambda values always lower than 9 were observed. Enrichment cultures degrading benzene anaerobically produced significant different values: lambda values between 8-19 were oberved for nitrate-reducing consortia, whereas sulfate-reducing and methanogenic consortia showed always lambda values greater than 20 [1,2]. The observed variations suggest that (i) aerobic benzene biodegradation can be distinguished from anaerobic biodegradation, and (ii) that more than a single mechanism seems to exist for the activation of benzene under anoxic conditions. lambda values for anaerobic toluene degradation initiated by the enzyme benzylsuccinate synthase (BSS) ranged from 4 to 41, tested with strains using

  13. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    International Nuclear Information System (INIS)

    Bijlsma, Lubertus; Boix, Clara; Niessen, Wilfried M.A.; Ibáñez, María; Sancho, Juan V.; Hernández, Félix

    2013-01-01

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  14. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Bijlsma, Lubertus; Boix, Clara [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Niessen, Wilfried M.A. [hyphen MassSpec, Leiden (Netherlands); Ibáñez, María; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Hernández, Félix, E-mail: felix.hernandez@uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain)

    2013-01-15

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  15. Influence of inocula with prior hydrocarbon exposure on biodegradation rates of diesel, synthetic diesel, and fish-biodiesel in soil.

    Science.gov (United States)

    Horel, Agota; Schiewer, Silke

    2014-08-01

    To achieve effective bioremediation within short warm seasons of cold climates, microbial adaptation periods to the contaminant should be brief. The current study investigated growth phases for soil spiked with diesel, Syntroleum, or fish biodiesel, using microbial inocula adapted to the specific substrates. For modeling hydrocarbon degradation, multi-phase first order kinetics was assumed, comparing linear regression with nonlinear parameter optimization of rate constants and phase durations. Lag phase periods of 5 to >28d were followed by short and intense exponential growth phases with high rate constants (e.g. from kFish=0.0013±0.0002 to kSyntr=0.015±0.001d(-1)). Hydrocarbon mineralization was highest for Syntroleum contamination, where up to three times higher cumulative CO2 production was achieved than for diesel fuel, with fish biodiesel showing initially the slowest degradation. The amount of hydrocarbons recovered from the soil by GC-MS decreased in the order fish biodiesel>diesel>Syntroleum. During initial weeks, biodegradation was higher for microbial inocula adapted to a specific fuel type, whereby the main effect of the inoculum was to shorten the lag phase duration; however, the inoculum's importance diminished after daily respiration peaked. In conclusion, addition of an inoculum to increase biodegradation rates was not necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Occurrence, characterization and analysis of vinyl chloride as a degradation product of chloro ethenes from waste sites. Vorkommen, Beurteilung und Analytik von Vinylchlorid als Abbauprodukt chlorierter Ethene in Altlasten

    Energy Technology Data Exchange (ETDEWEB)

    Koester, M. (Harress Geotechnik GmbH, Harburg (Germany, F.R.))

    1989-12-01

    Reductive dehalogenation reactions occuring within the central part of contaminated areas may result in the formation of vinyl chloride as a product of chlorinated hydrocarbon degradation. This degradation takes place in an anaerobic environment, and proceeds from tetrachloroethene through trichloroethene and dichloroethene (cis, trans) to vinyl chloride. The analysis of vinyl chloride from gas and water samples is performed by means of capillary gas chromatography, using a flame ionization detector (FID). It could be shown from the analysis of some 200 samples from various tetrachloroethene and trichloroethene waste sites, that high dichloroethene concentrations were correlated with elevated vinyl chloride concentrations. The ratio between dichloroethene and vinyl chloride although depending on the chemical and physical properties of the subsoil, is roughly 10:1. Since vinyl chloride is known to be carcinogenic, action levels and clean-up standards are accordingly low, resulting in new requirement for remedial activities. (orig.).

  17. Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L.

    NARCIS (Netherlands)

    Noorman, N; Den Otter, CJ

    The production of cuticular hydrocarbons by both males and females of Musca domestica L. under very wet conditions (90% relative humidity) compared to the production at 50 and 20% relative humidity is delayed up to at least 3 days after emergence from the pupae. Eight days after emergence, however,

  18. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.

    Science.gov (United States)

    Lavtižar, Vesna; van Gestel, Cornelis A M; Dolenc, Darko; Trebše, Polonca

    2014-01-01

    This study aimed at assessing the photodegradation of the insecticide chlorantraniliprole (CAP) in deionized water and in tap water amended with humic acids and nitrate. Photolysis was carried out under simulated solar or UV-A light. CAP (39 μM) photodegradation was slightly faster in tap water than in deionized water with half lives of 4.1 and 5.1 days, respectively. Photodegradation rate of CAP was hardly affected by humic acids (up to 100 mg L(-1)) and nitrate. Photodegradation pattern was different in slightly acidic (pH=6.1) deionized water compared to basic (pH=8.0) tap water. Four main degradation products have been isolated and characterized spectroscopically, and crystal structure was recorded for the first two photodegradation products. CAP also degraded in the dark controls, but only at basic pH (23% loss at pH 8.0 in tap water after 6 days), resulting in the formation of one single degradation product. Our study shows that the degradation of chlorantraniliprole in water is a combination of chemical and photochemical reactions, which are highly dependent on the pH of the solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  20. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.