WorldWideScience

Sample records for hydrocarbon combustion chemistry

  1. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  2. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  3. Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets

    Science.gov (United States)

    2017-08-23

    NUMBER (Include area code) 23 August 2017 Briefing Charts 01 August 2017 - 31 August 2017 Study of Combustion Characteristics of Hydrocarbon...Douglas Talley N/A 1 Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets DISTRIBUTION STATEMENT A. Approved for public release...Angeles ϯAir Force Research Laboratory, Aerospace Systems Directorate, Combustion Devices Group, Edwards AFB, CA ONR/ARO/AFOSR Meeting, 23 Aug., 2017

  4. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  5. George A. Olah, Carbocation and Hydrocarbon Chemistry

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis George A. Olah, Carbocation and Hydrocarbon Chemistry George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids

  6. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  7. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  8. Quantitative laser diagnostic and modeling study of C2 and CH chemistry in combustion.

    Science.gov (United States)

    Köhler, Markus; Brockhinke, Andreas; Braun-Unkhoff, Marina; Kohse-Höinghaus, Katharina

    2010-04-15

    Quantitative concentration measurements of CH and C(2) have been performed in laminar, premixed, flat flames of propene and cyclopentene with varying stoichiometry. A combination of cavity ring-down (CRD) spectroscopy and laser-induced fluorescence (LIF) was used to enable sensitive detection of these species with high spatial resolution. Previously, CH and C(2) chemistry had been studied, predominantly in methane flames, to understand potential correlations of their formation and consumption. For flames of larger hydrocarbon fuels, however, quantitative information on these small intermediates is scarce, especially under fuel-rich conditions. Also, the combustion chemistry of C(2) in particular has not been studied in detail, and although it has often been observed, its role in potential build-up reactions of higher hydrocarbon species is not well understood. The quantitative measurements performed here are the first to detect both species with good spatial resolution and high sensitivity in the same experiment in flames of C(3) and C(5) fuels. The experimental profiles were compared with results of combustion modeling to reveal details of the formation and consumption of these important combustion molecules, and the investigation was devoted to assist the further understanding of the role of C(2) and of its potential chemical interdependences with CH and other small radicals.

  9. Chemistry and radiation in oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2011-01-01

    In order to investigate the role of combustion chemistry and radiation heat transfer in oxy-fuel combustion modeling, a computational fluid dynamics (CFD) modeling study has been performed for two different oxy-fuel furnaces. One is a lab-scale 0.8MW oxy-natural gas flame furnace whose detailed in....... Among the key issues in combustion modeling, e.g., mixing, radiation and chemistry, this paper derives useful guidelines on radiation and chemistry implementation for reliable CFD analyses of oxy-fuel combustion, particularly for industrial applications....

  10. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    flames," Physics of Fluids , vol. 7, no. 6, pp. 1447-54, 1995. [8] K. Lyons, " Toward an understanding of the stabilization mechanisms of lifted...Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control This report summarizes the research accomplished in the project...34Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control". The main areas of activity are: a) electrostatic flame and flow

  11. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  12. Fundamental and semi-global kinetic mechanisms for hydrocarbon combustion. Final report, March 1977-October 1980

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, F L; Glassman, I; Brezinsky, K

    1981-03-01

    Over the past three and one half years, substantial research efforts of the Princeton Fuels Research Group have been directed towards the development of simplified mechanisms which would accurately describe the oxidation of hydrocarbons fuels. The objectives of this combustion research included the study of semi-empirical modeling (that is an overall description) of the chemical kinetic mechanisms of simple hydrocarbon fuels. Such fuels include the alkanes: ethane, propane, butane, hexane and octane as well as the critically important alkenes: ethene, propene and butene. As an extension to this work, the study of the detailed radical species characteristics of combustion systems was initiated as another major aspect of the program, with emphasis on the role of the OH and HO/sub 2/ radicals. Finally, the studies of important alternative fuel problems linked the program to longer range approaches to the energy supply question. Studies of alternative fuels composed the major elements of this area of the program. The efforts on methanol research were completed, and while the aromatics aspects of the DOE work have been a direct extension of efforts supported by the Air Force Office of Scientific Research, they represented a significant part of the overall research effort. The emphasis in the proposed program is to provide further fundamental understanding of the oxidation of hydrocarbon fuels which will be useful in guiding engineering approaches. Although the scope of program ranges from the fundamentals of chemical kinetics to that of alternative fuel combustion, the objective in mind is to provide insight and guidance to the understanding of practical combustion environments. The key to our approach has been our understanding of the fundamental combustion chemistry and its relation to the important practical combustion problems which exist in implementing energy efficient, alternate fuels technologies.

  13. Combustion chemistry. Activities in the CHEC research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K; Johnsson, J E; Glarborg, P; Frandsen, F; Jensen, A; Oestberg, M [Technical Univ. of Denmark, Dept. of Chemical Engineering, Lyngby (Denmark)

    1996-12-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This paper describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control Research Programme). (au) 173 refs.

  14. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States); Westmoreland, Phillip R. [Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany)

    2009-04-15

    Flame-sampling molecular-beam mass spectrometry of premixed, laminar, low-pressure flat flames has been demonstrated to be an efficient tool to study combustion chemistry. In this technique, flame gases are sampled through a small opening in a quartz probe, and after formation of a molecular beam, all flame species are separated using mass spectrometry. The present review focuses on critical aspects of the experimental approach including probe sampling effects, different ionization processes, and mass separation procedures. The capability for isomer-resolved flame species measurements, achievable by employing tunable vacuum-ultraviolet radiation for single-photon ionization, has greatly benefited flame-sampling molecular-beam mass spectrometry. This review also offers an overview of recent combustion chemistry studies of flames fueled by hydrocarbons and oxygenates. The identity of a variety of intermediates in hydrocarbon flames, including resonantly stabilized radicals and closed-shell intermediates, is described, thus establishing a more detailed understanding of the fundamentals of molecular-weight growth processes. Finally, molecular-beam mass-spectrometric studies of reaction paths in flames of alcohols, ethers, and esters, which have been performed to support the development and validation of kinetic models for bio-derived alternative fuels, are reviewed. (author)

  15. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  16. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  17. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  18. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  19. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  20. Hybrid energy converter based on swirling combustion chambers: the hydrocarbon feeding analysis

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2017-05-01

    Full Text Available This manuscript reports the latest investigations about a miniaturized hybrid energy power source, compatible with thermal/electrical conversion, by a thermo-photovoltaic cell, and potentially useful for civil and space applications. The converter is a thermally-conductive emitting parallelepiped element and the basic idea is to heat up its emitting surfaces by means of combustion, occurred in swirling chambers, integrated inside the device, and/or by the sun, which may work simultaneously or alternatively to the combustion. The current upgrades consist in examining whether the device might fulfill specific design constraints, adopting hydrocarbons-feeding. Previous papers, published by the author, demonstrate the hydrogen-feeding effectiveness. The project’s constraints are: 1 emitting surface dimensions fixed to 30 × 30 mm, 2 surface peak temperature T > 1000 K and the relative ∆T < 100 K (during the combustion mode, 3 the highest possible delivered power to the ambient, and 4 thermal efficiency greater than 20% when works with solar energy. To this end, a 5 connected swirling chambers configuration (3 mm of diameter, with 500 W of injected chemical power, stoichiometric conditions and detailed chemistry, has been adopted. Reactive numerical simulations show that the stiff methane chemical structure obliges to increase the operating pressure, up to 10 atm, and to add hydrogen, to the methane fuel injection, in order to obtain stable combustion and efficient energy conversion.

  1. Reduced combustion mechanism for C1-C4 hydrocarbons and its application in computational fluid dynamics flare modeling.

    Science.gov (United States)

    Damodara, Vijaya; Chen, Daniel H; Lou, Helen H; Rasel, Kader M A; Richmond, Peyton; Wang, Anan; Li, Xianchang

    2017-05-01

    Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO 2 ) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C 4 hydrocarbons and soot precursor species (C 2 H 2 , C 2 H 4 , C 6 H 6 ). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. A reduced combustion mechanism containing 50 C 1 -C 4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.

  2. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  3. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    Science.gov (United States)

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  4. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  5. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  6. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  7. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Kilpinen, P [Aabo Akademi, Turku (Finland)

    1997-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  8. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  9. DFT studies of hydrocarbon combustion on metal surfaces.

    Science.gov (United States)

    Arya, Mina; Mirzaei, Ali Akbar; Davarpanah, Abdol Mahmood; Barakati, Seyed Masoud; Atashi, Hossein; Mohsenzadeh, Abas; Bolton, Kim

    2018-02-02

    Catalytic combustion of hydrocarbons is an important technology to produce energy. Compared to conventional flame combustion, the catalyst enables this process to operate at lower temperatures; hence, reducing the energy required for efficient combustion. The reaction and activation energies of direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces were investigated using density functional theory (DFT). The data obtained for the Ag, Au, Al, Cu, Rh, Pt, and Pd surfaces were used to investigate the validity of the Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) relations for this reaction on these surfaces. These relations were found to be valid (R 2  = 0.94 for the BEP correlation and R 2  = 1.0 for the TSS correlation) and were therefore used to estimate the energetics of the combustion reaction on Ni, Co, and Fe surfaces. It was found that the estimated transition state and activation energies (E TS  = -69.70 eV and E a  = 1.20 eV for Ni, E TS  = -87.93 eV and E a  = 1.08 eV for Co and E TS  = -92.45 eV and E a  = 0.83 eV for Fe) are in agreement with those obtained by DFT calculations (E TS  = -69.98 eV and E a  = 1.23 eV for Ni, E TS  = -87.88 eV and E a  = 1.08 eV for Co and E TS  = -92.57 eV and E a  = 0.79 eV for Fe). Therefore, these relations can be used to predict energetics of this reaction on these surfaces without doing the time consuming transition state calculations. Also, the calculations show that the activation barrier for CH dissociation decreases in the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe.

  10. Modelling of turbulent hydrocarbon combustion. Test of different reactor concepts for describing the interactions between turbulence and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C; Kremer, H [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P; Hupa, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1998-12-31

    The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated

  11. Modelling of turbulent hydrocarbon combustion. Test of different reactor concepts for describing the interactions between turbulence and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-12-31

    The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated

  12. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped

  13. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  14. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  15. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas; Park, Sungwoo; Hansen, Nils; Sarathy, Mani

    2014-01-01

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model's capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  16. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas

    2014-06-14

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model\\'s capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  17. Empirically Estimated Heats of Combustion of Oxygenated Hydrocarbon Bio-type Oils

    Directory of Open Access Journals (Sweden)

    Dmitry A. Ponomarev

    2015-04-01

    Full Text Available An empirical method is proposed by which the heats of combustion of oxygenated hydrocarbon oils, typically found from wood pyrolysis, may be calculated additively from empirically predicted heats of combustion of individual compounds. The predicted values are in turn based on four types of energetically inequivalent carbon and four types of energetically inequivalent hydrogen atomic energy values. A method is also given to estimate the condensation heats of oil mixtures based on the presence of four types of intermolecular forces. Agreement between predicted and experimental values of combustion heats for a typical mixture of known compounds was ± 2% and < 1% for a freshly prepared mixture of known compounds.

  18. Ash chemistry and behavior in advanced co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Skrifvars, B J [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The purpose of this LIEKKI 2 project is to report results achieved within the EU/JOULE/OPTEB project to the Finnish combustion research community through the LIEKKI program. The purpose of the EU/JOULE/OPTEB project is to find prediction methods for evaluating ash behavior, such as slagging, fouling and corrosion propensity, in full scale combustion systems through chemical or mineralogical analyses, intelligent laboratory tests and chemistry calculations. The project focuses on coals, coal mixtures and coal biomass mixtures fired in advanced combustion systems, such as fluidized bed boilers, pulverized fuel boilers with critical steam values etc. The project will make use of (1) advanced multi-component combustion equilibrium calculations, (2) ash sintering tendency laboratory tests and (3) chemical evaluations of slagging, fouling and corrosion measurements in full scale units. (orig.)

  19. Modeling nitrogen chemistry in combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    the accuracy of engineering calculations and thereby the potential of primary measures for NOx control. In this review our current understanding of the mechanisms that are responsible for combustion-generated nitrogen-containing air pollutants is discussed. The thermochemistry of the relevant nitrogen...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  20. Explosion-induced combustion of hydrocarbon clouds in a chamber

    International Nuclear Information System (INIS)

    Neuwald, P; Reichenbach, H; Kuhl, A L

    2001-01-01

    The interaction of the detonation of a solid HE-charge with a non-premixed cloud of hydro-carbon fuel in a chamber was studied in laboratory experiments. Soap bubbles filled with a flammable gas were subjected to the blast wave created by the detonation of PETN-charges (0.2 g < mass < 0.5 g). The dynamics of the combustion system were investigated by means of high-speed photography and measurement of the quasi-static chamber pressure

  1. Nitrogen chemistry in combustion and gasification - mechanisms and modeling

    International Nuclear Information System (INIS)

    Kilpinen, P.; Hupa, M.

    1998-01-01

    The objective of this work has been to increase the understanding of the complex details of gaseous emission formation in energy production techniques based on combustion and/or gasification. The aim has also been to improve the accuracy of mathematical furnace models when they are used for predicting emissions. The main emphasis has been on nitrogen oxides (NO x , N 2 O). The work supports development of cleaner and more efficient combustion technology. The main emphasis has been on combustion systems that are based on fluidized bed technology including both atmospheric and pressurized conditions (BFBC, CFBC, PFBC/G). The work has consisted of advanced theoretical modeling and of experiments in laboratory devices that have partly been made in collaboration with other LIEKKI projects. Two principal modeling tools have been used: detailed homogeneous chemical kinetic modeling and computational fluid dynamic simulation. In this report, the most important results of the following selected items will be presented: (1) Extension of a detailed kinetic nitrogen and hydrocarbon oxidation mechanism into elevated pressure, and parametric studies on: effect of pressure on fuel-nitrogen oxidation under PFBC conditions, effect of pressure on selective non-catalytic NO x reduction under PFBC conditions, effect of different oxidizers on hot-gas cleaning of ammonia by means of selective oxidation in gasification gas. (2) Extension of the above mechanism to include chlorine reactions at atmospheric pressure, and parametric studies on: effect of HCl on CO burn-out in FBC combustion of waste. (3) Development of more accurate emission prediction models: incorporation of more accurate submodels on hydrocarbon oxidation into CFD furnace models, and evaluation of different concepts describing the interaction between turbulence and chemical reaction, development of a mechanistic detailed 1.5-dimensional emission model for circulating fluidized bed combustors. (orig.) 14 refs

  2. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    Science.gov (United States)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  3. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    Science.gov (United States)

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  4. Ab initio quantum chemistry for combustion

    International Nuclear Information System (INIS)

    Page, M.; Lengsfield, B.H.

    1991-01-01

    Advances in theoretical and computational methods, coupled with the rapid development of powerful and inexpensive computers, fuel the current rapid development in computational quantum chemistry (QC). Nowhere is this more evident than in the areas of QC most relevant to combustion: the description of bond breaking and rate phenomena. although the development of faster computers with larger memories has had a major impact on the scope of problems that can be addressed with QC, the development of new theoretical techniques and capabilities is responsible for adding new dimensions in QC and has paved the way for the unification of QC electronic structure calculations with statistical and dynamical models of chemical reactions. These advances will be stressed in this chapter. This paper describes past accomplishments selectively to set the stage for discussion of ideas or techniques that we believe will have significant impact on combustion research. Thus, the focus of the chapter is as much on the future as it is on the past

  5. Computationally efficient implementation of combustion chemistry in parallel PDF calculations

    International Nuclear Information System (INIS)

    Lu Liuyan; Lantz, Steven R.; Ren Zhuyin; Pope, Stephen B.

    2009-01-01

    In parallel calculations of combustion processes with realistic chemistry, the serial in situ adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Modelling, 1 (1997) 41-63; L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation, Journal of Computational Physics 228 (2009) 361-386] substantially speeds up the chemistry calculations on each processor. To improve the parallel efficiency of large ensembles of such calculations in parallel computations, in this work, the ISAT algorithm is extended to the multi-processor environment, with the aim of minimizing the wall clock time required for the whole ensemble. Parallel ISAT strategies are developed by combining the existing serial ISAT algorithm with different distribution strategies, namely purely local processing (PLP), uniformly random distribution (URAN), and preferential distribution (PREF). The distribution strategies enable the queued load redistribution of chemistry calculations among processors using message passing. They are implemented in the software x2f m pi, which is a Fortran 95 library for facilitating many parallel evaluations of a general vector function. The relative performance of the parallel ISAT strategies is investigated in different computational regimes via the PDF calculations of multiple partially stirred reactors burning methane/air mixtures. The results show that the performance of ISAT with a fixed distribution strategy strongly depends on certain computational regimes, based on how much memory is available and how much overlap exists between tabulated information on different processors. No one fixed strategy consistently achieves good performance in all the regimes. Therefore, an adaptive distribution strategy, which blends PLP, URAN and PREF, is devised and implemented. It yields consistently good performance in all regimes. In the adaptive parallel

  6. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    , heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulverized coal combustion in O2/CO2 and air, covering the effects of fuel, mixing conditions, temperature......In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, stoichiometry, and inlet NO level. In general, the model provides a satisfactory description of NO formation in air and oxy-fuel combustion of coal, but under some conditions, it underestimates the impact on NO of replacing N2 with CO2. According to the model, differences in the NO yield between the oxy...

  7. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  8. Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures

    Science.gov (United States)

    2016-07-26

    1. Introduction Fundamental knowledge of mechanisms of autoignition of condensed hydrocarbon fuels at elevated pressures is essential for accurate...particular JP-8) and surrogates of jet-fuels in laminar non-uniform flows at elevated pressures upto 2.5 MPa. Experimental and kinetic modeling studies...AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Combustion, Jet Fuels, JP-8, Elevated

  9. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  10. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part I: Furan.

    Science.gov (United States)

    Liu, Dong; Togbé, Casimir; Tran, Luc-Sy; Felsmann, Daniel; Oßwald, Patrick; Nau, Patrick; Koppmann, Julia; Lackner, Alexander; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2014-03-01

    Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has - to the best of our knowledge - not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ=1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part II), and 2,5-dimethylfuran (in Part III). A refined sub-mechanism for furan combustion, based on the work of Tian et al. [Combustion and Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the

  11. The effects of polycyclic aromatic hydrocarbons on the chemistry of photodissociation regions

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM

    1998-01-01

    We have investigated the effects of including polycylic aromatic hydrocarbons (PAHs) on the abundance of neutral atoms and molecules for two typical photodissociation regions (PDRs): a high-density case (the Orion complex) and a low-density case. PAHs provide a large surface area for chemistry

  12. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Stephen J.; Timmons, Adam [General Motors R and D Center, MC 480-102-000, Warren, MI 48090-9055 (United States); Pitz, William J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2009-09-05

    Under abusive conditions Li-ion cells can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical and combustion properties of these gases that determine whether they ignite and how energetically they burn. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. We also show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this contrast is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak heat release rate of an analogous propane flame. Interestingly, peak temperatures differ by only 25%. We argue that heat release rate is a more useful parameter than temperature when evaluating the likelihood that a flame in one cell will ignite a neighboring cell. Our results suggest that thermochemical and combustion property factors might well be considered when choosing solvent mixtures when flammability is a concern. (author)

  13. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  14. A comprehensive combustion chemistry study of 2,5-dimethylhexane

    KAUST Repository

    Sarathy, Mani

    2014-06-01

    Iso-paraffinic molecular structures larger than seven carbon atoms in chain length are commonly found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, but little research has been done on their combustion behavior. Recent studies have focused on either mono-methylated alkanes and/or highly branched compounds (e.g., 2,2,4-trimethylpentane). In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for the oxidation of 2,5-dimethylhexane under a wide variety of temperature, pressure, and equivalence ratio conditions. This new dataset includes jet stirred reactor speciation, shock tube ignition delay, and rapid compression machine ignition delay, which builds upon recently published data for counterflow flame ignition, extinction, and speciation profiles. The low and high temperature oxidation of 2,5-dimethylhexane has been simulated with a comprehensive chemical kinetic model developed using established reaction rate rules. The agreement between the model and data is presented, along with suggestions for improving model predictions. The oxidation behavior of 2,5-dimethylhexane is compared with oxidation of other octane isomers to confirm the effects of branching on low and intermediate temperature fuel reactivity. The model is used to elucidate the structural features and reaction pathways responsible for inhibiting the reactivity of 2,5-dimethylhexane. © 2014 The Combustion Institute.

  15. A comprehensive combustion chemistry study of 2,5-dimethylhexane

    KAUST Repository

    Sarathy, Mani; Javed, Tamour; Karsenty, Florent; Heufer, Alexander; Wang, Weijing; Park, Sungwoo; Elwardani, Ahmed Elsaid; Farooq, Aamir; Westbrook, Charles K.; Pitz, William J.; Oehlschlaeger, Matthew A.; Dayma, Guillaume; Curran, Henry J.; Dagaut, P.

    2014-01-01

    Iso-paraffinic molecular structures larger than seven carbon atoms in chain length are commonly found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, but little research has been done on their combustion behavior. Recent studies have focused on either mono-methylated alkanes and/or highly branched compounds (e.g., 2,2,4-trimethylpentane). In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for the oxidation of 2,5-dimethylhexane under a wide variety of temperature, pressure, and equivalence ratio conditions. This new dataset includes jet stirred reactor speciation, shock tube ignition delay, and rapid compression machine ignition delay, which builds upon recently published data for counterflow flame ignition, extinction, and speciation profiles. The low and high temperature oxidation of 2,5-dimethylhexane has been simulated with a comprehensive chemical kinetic model developed using established reaction rate rules. The agreement between the model and data is presented, along with suggestions for improving model predictions. The oxidation behavior of 2,5-dimethylhexane is compared with oxidation of other octane isomers to confirm the effects of branching on low and intermediate temperature fuel reactivity. The model is used to elucidate the structural features and reaction pathways responsible for inhibiting the reactivity of 2,5-dimethylhexane. © 2014 The Combustion Institute.

  16. Fundamental mechanisms for conversion of volatiles in biomass and waste combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Hindiyarti, L.; Marshall, P.; Livbjerg, H.; Dagaut, P.; Jensen, Anker; Frandsen, Flemming

    2007-03-15

    This project deals with the volatile oxidation chemistry in biomass and waste fired systems, emphasizing reactions important for pollutants emissions (NO{sub x}, SO{sub 2}, HCl, aerosols). The project aims to extend existing models and databases with a number of chemical subsystems that are presently not well understood, but are particularly important in connection with combustion of biomass and waste. The project is divided into 3 tasks. Task 1: Conversion of chlorine, sulfur and alkali gas phase components in combustion of biomass. Task 2: Formation mechanisms for NO{sub x} in the freeboard of grate combustion of biomass. Task 3: Oxidation mechanisms for oxygenated hydrocarbons in the volatiles from pyrolysis of biomass. (au)

  17. Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • Models for the post flame reactions (CO and hydrocarbons) and heat release rate are proposed. • ‘Freezing’ effect of CO kinetics is captured but equilibrium CO concentrations are low. • Reactive–diffusive processes are modeled for hydrocarbons and the last stage of combustion is captured. - Abstract: Reduced fuel consumption, low pollutant emissions and adequate output performance are key features in the contemporary design of spark ignition engines. Zero-dimensional numerical simulation is an attractive alternative to engine experiments for the evaluation of various engine configurations. Both flame front reaction and post-flame processes contribute to the heat release rate. The contribution of this work is to highlight and model the role of post-flame reactions (CO and hydrocarbons) in the heat release rate. The modeling approach to CO kinetics used two reactions considered to be dominant and thus more suitable for the description of CO chemical mechanism. Equilibrium concentrations of all the species involved were calculated by a two-zone thermodynamic model. The computed characteristic time of CO kinetics was found to be of a similar order to the results of complex chemistry simulations. The proposed model captured the ‘freezing’ effect (reaction rate is almost zero) for temperatures lower than 1800 K and followed the trends of the measured values at exhaust. However, a consistent underestimation of CO levels at the exhaust was observed. The impact of the remaining CO on the combustion efficiency is considerable especially for rich mixtures. For a remaining 0.4% CO mass fraction, the impact on combustion inefficiency is 0.1%. Unburnt hydrocarbon, which have not reacted within the flame front before quenching, diffuse in the burnt gas and react. In this work, a global reaction rate models the kinetic behavior of hydrocarbon. The diffusion process was modeled by a relaxation equation applied on the calculated kinetic concentration

  18. A small porous-plug burner for studies of combustion chemistry and soot formation

    Science.gov (United States)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  19. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  20. Chemistry Impacts in Gasoline HCCI

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  1. The effect of the composition of hydrocarbon streams on physical properties and HCCI combustion performance

    Energy Technology Data Exchange (ETDEWEB)

    Gieleciak, R. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    Advanced combustion engines have been developed in tandem with evolving fuels and combustion strategies. Advanced analytical methods such as NMR and two dimensional gas chromatography (2D-GC) are also becoming both more powerful and easier to use. Statistical analysis can be used to link the very complex fuel analysis data sets from these methods to fuel chemistry, fuel properties and engine performance. This poster highlighted a study that applied an advanced statistical analysis technique to 2D-GC data for 17 oil sands derived fuels and correlated results to measured fuel chemical/physical properties, and then to HCCI engine performance. In the HCCI mode, ignition occurs by compression of the homogeneous fuel/air mixture. Advanced combustion strategies must satisfy the need for high efficiency, low emissions, and drivability. The 2D-GC was shown to be an emerging analytical technique which separates compounds in fuels to enable the identification of individual compounds and group compounds by chemistry and boiling points. The Q(2d)RPR technique allows correlations to be developed between the 2D-GC data and fuel chemical / physical properties and engine performance data. tabs., figs.

  2. Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines

    National Research Council Canada - National Science Library

    Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J

    2007-01-01

    .... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...

  3. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  4. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  5. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    International Nuclear Information System (INIS)

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-01-01

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves

  6. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.

    2016-12-30

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  7. Combustion Research Facility | A Department of Energy Office of Science

    Science.gov (United States)

    Collaborative Research Facility Back to Sandia National Laboratory Homepage Combustion Research Search the CRF Combustion Chemistry Flame Chemistry Research.Combustion_Chemistry.Flame_Chemistry Theory and Modeling Theory and Modeling Combustion Kinetics High Pressure Chemistry Chemistry of Autoignition

  8. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part I: Furan

    Science.gov (United States)

    Liu, Dong; Togbé, Casimir; Tran, Luc-Sy; Felsmann, Daniel; Oßwald, Patrick; Nau, Patrick; Koppmann, Julia; Lackner, Alexander; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2013-01-01

    Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has – to the best of our knowledge – not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ=1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part II), and 2,5-dimethylfuran (in Part III). A refined sub-mechanism for furan combustion, based on the work of Tian et al. [Combustion and Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the

  9. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  10. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  11. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  12. The effect of increase in humidity on the size and activity distributions of radon progeny laden aerosols from hydrocarbon combustion

    International Nuclear Information System (INIS)

    Khan, Atika; Phillips, C.R.

    1988-01-01

    The effects of a humidity increase on the distributions of aerosol size and activity for hydrocarbon combustion aerosols laden with radon progeny were determined. Pre-humidification aerosol conditions were 20 0 C and 35% RH. Post-humidification aerosol conditions were 37 0 C and 100% RH, intended to simulate conditions in the human respiratory tract. Using kerosene combustion aerosols, a growth factor of 1.3 ± 0.2 (standard deviation) was found for both the aerosol median diameter and the activity median diameter. (author)

  13. Isomer-specific combustion chemistry in allene and propyne flames

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Miller, James A. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Westmoreland, Phillip R. [Department of Chem. Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kasper, Tina [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Wang, Juan; Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States)

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  14. Improvement of lean combustion characteristics of heavy-hydrocarbon fuels with hydrogen addition; Suiso tenka ni yoru kokyu tanka suisokei nenryo no kihaku nensho no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y. [Saitama Institute of Technology, Saitama (Japan); Ishizuka, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1999-09-25

    The Lewis numbers of lean heavy-hydrocarbon fuels are larger than unity, and hence, their flames are prone to extinction in a shear flow, which occurs in a turbulent combustion. Here, propane is used as a representative fuel of heavy-hydrocarbon fuels because the Lewis number of lean propane/air mixtures is larger than unity, and an attempt to improve its combustion characteristics by hydrogen addition has been made. A tubular flame burner is used to evaluate its improvement, since a rotating, stretched vortex flow is established in the burner. The results show that with' hydrogen addition, the fuel concentration, the flame diameter and the flame temperature at extinction are reduced and its combustion characteristics are improved. However, it is found that the effective equivalence ration at extinction cannot become so small as that of lean methane/air mixture, which has a Lewis number less than unity. (author)

  15. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  16. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  17. Process for producing volatile hydrocarbons from hydrocarbonaceous solids

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-03

    In a process for producing volatile hydrocarbons from hydrocarbonaceous solids, a hydrocarbonaceus solid is passed in subdivided state and in the form of a bed downwardly through an externally unheated distilling retort wherein the evolution of volatiles from the bed is effected while solid material comprising combustible heavy residue is discharged from the lower portion of the bed and retort, combustibles are burned from the discharged solid material. The admixture resultant combustion gases with the vapours evolved in the retort is prevented, and a stream of hydrocarbon fluid is heated by indirect heat exchange with hot combustion gases produced by burning to a high temperature and is introduced into the distilling retort and direct contact with bed, supplying heat to the latter for effecting the evolution of volatiles from the hydrocarbonaceous solid. The improvement consists of subjecting the volatile distillation products evolved and removed from the bed to a fractionation and separating selected relatively light and heavy hydrocarbon fractions from the distillation products, withdrawing at least one of the selected fractions from the prcess as a product heating at least one other of the selected fractions to high temperature by the indirect heat exchange with hot combustion gases, and introducing the thus heated hydrocarbon fraction into direct contact with the bed.

  18. Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: combustion model formulation and implementation details

    OpenAIRE

    Li, Zhiyi; Ferrarotti, Marco; Cuoci, Alberto; Parente, Alessandro

    2018-01-01

    The present work focuses on the numerical simulation ofModerate or Intense Low oxygen Dilution combustion condition, using thePartially-Stirred Reactor model for turbulence-chemistry interactions.The Partially-Stirred Reactor model assumes that reactions are confinedin a specific region of the computational cell, whose mass fractiondepends both on the mixing and the chemical time scales. Therefore, theappropriate choice of mixing and chemical time scales becomes crucial toensure the accuracy ...

  19. Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels

    Directory of Open Access Journals (Sweden)

    Mazen A. Eldeeb

    2018-02-01

    Full Text Available There is growing interest in the use of furans, a class of alternative fuels derived from biomass, as transportation fuels. This paper reviews recent progress in the characterization of its combustion properties. It reviews their production processes, theoretical kinetic explorations and fundamental combustion properties. The theoretical efforts are focused on the mechanistic pathways for furan decomposition and oxidation, as well as the development of detailed chemical kinetic models. The experiments reviewed are mostly concerned with the temporal evolutions of homogeneous reactors and the propagation of laminar flames. The main thrust in homogeneous reactors is to determine global chemical time scales such as ignition delay times. Some studies have adopted a comparative approach to bring out reactivity differences. Chemical kinetic models with varying degrees of predictive success have been established. Experiments have revealed the relative behavior of their combustion. The growing body of literature in this area of combustion chemistry of alternative fuels shows a great potential for these fuels in terms of sustainable production and engine performance. However, these studies raise further questions regarding the chemical interactions of furans with other hydrocarbons. There are also open questions about the toxicity of the byproducts of combustion.

  20. Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation.

    Science.gov (United States)

    Llamas, Alberto; Al-Lal, Ana-María; García-Martínez, María-Jesús; Ortega, Marcelo F; Llamas, Juan F; Lapuerta, Magín; Canoira, Laureano

    2017-05-15

    Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. NATO Advanced Study Institute on Pollutants from Combustion Formation and Impact on Atmospheric Chemistry

    CERN Document Server

    2000-01-01

    This volume is based on the lectures presented at the NATO Advanced Study Institute: (ASI) «Pollutants Formation from Combustion. Formation Mechanisms and Impact on th th Atmospheric Chemistry» held in Maratea, Italy, from 13 to 26 september 1998. Preservation of the environment is of increasing concern in individual countries but also at continental or world scales. The structure of a NATO ASI which involve lecturers and participants of different nationalities was thought as especially well suited to address environmental issues. As combustion is known to substantially contribute to the damaging of the atmosphere, it was natural to concentrate the ASI program on reviewing the currently available knowledge of the formation mechanisms of the main pollutants liberated by combustion systems. In most situations, pollutants are present as trace components and their formation and removal is strongly conditioned by the chemical reactions initiated by fuel consumption. Therefore specific lectures were aimed at defi...

  2. New approaches for description of nitrogen chemistry in combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P.; Nordstroem, T. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The aim of the project is to assist in development of more efficient in-furnace control methods for nitrogen oxide emission from energy conversion technologies based on combustion and/or gasification. Main emphasis in put on technologies such as fluidized bed combustion (CFBC, BFBC) and combined cycle processes (PFBC, IGCC). The project consists of two parts: (a) detailed kinetic elementary reaction modelling and (b) prediction of NO{sub x} emission from full scale combustors. The following topics have been studied during 1996: (a) Detailed kinetic modelling Effect of HCl on CO burn-out under FBC freeboard conditions. Effect of pressure on the Thermal DeNO{sub x} process under PFBC conditions. Mechanism of NH{sub 3} destruction to N{sub 2} by selective oxidation (SO): -the importance of formation of NO{sub 2} from NO and O{sub 2} at low temperatures. (b) Prediction of NO{sub x} emission from full scale combustors Prediction of NO{sub x} emission from BFBC freeboard: a case study using flow tubes and detailed chemistry. The work has been made partly in collaboration with VTT Energy (projects 213 and 214) and Tampere University of Technology (project 210). (orig.)

  3. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  4. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Douberly, Gary Elliott [Univ. of Georgia, Athens, GA (United States)

    2017-11-16

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systems important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.

  5. MOLECULAR DIAGNOSTIC RATIOS TO ASSESS THE APPORTIONMENT OF PETROLEUM HYDROCARBONS CONTAMINANTION IN MARINE SEDIMENT

    Directory of Open Access Journals (Sweden)

    Agung Dhamar Syakti

    2016-11-01

    Full Text Available As maritime fulcrum nation, in Indonesia, marine environmental analytical chemistry field is still under developed. So that why, this review paper aims to provide basic understanding of the use some molecular diagnostic indices using n-alkanes indexes and polycyclic aromatic hydrocarbons (PAHs diagnostic ratios to estimate the source of apportionment of the hydrocarbons contamination and origin. The n-alkane chromatograms were then used to characterize the predominance of petrogenic or biogenic either terrestrial or aquatic. Furthermore, characterization allowed to discriminate riverine versus marine input. The occurrence of a broad unresolved complex mixture can be an evidence of biodegraded petroleum residues. For aromatic compounds, the prevalence of petrogenic, pyrolitic, and combustion-derived can be easily plotted by using isomers ratio calculation. This paper thus provides useful information on the hydrocarbon contamination origin, especially in marine sediments. Further researches should be undertaken in order to validate the use of molecular diagnostic ratio with isotopic approach.

  6. Rate of hexabromocyclododecane decomposition and production of brominated polycyclic aromatic hydrocarbons during combustion in a pilot-scale incinerator.

    Science.gov (United States)

    Miyake, Yuichi; Tokumura, Masahiro; Wang, Qi; Amagai, Takashi; Horii, Yuichi

    2017-11-01

    Here, we examined the incineration of extruded polystyrene containing hexabromocyclododecane (HBCD) in a pilot-scale incinerator under various combustion temperatures (800-950°C) and flue gas residence times (2-8sec). Rates of HBCD decomposition ranged from 99.996% (800°C, 2sec) to 99.9999% (950°C, 8sec); the decomposition of HBCD, except during the initial stage of combustion (flue gas residence timepolycyclic aromatic hydrocarbons (BrPAHs) were detected as unintentional by-products. Of the 11 BrPAHs detected, 2-bromoanthracene and 1-bromopyrene were detected at the highest concentrations. The mutagenic and carcinogenic BrPAHs 1,5-dibromoanthracene and 1-bromopyrene were most frequently detected in the flue gases analyzed. The total concentration of BrPAHs exponentially increased (range, 87.8-2,040,000ng/m 3 ) with increasing flue gas residence time. Results from a qualitative analysis using gas chromatography/high-resolution mass spectrometry suggest that bromofluorene and bromopyrene (or fluoranthene) congeners were also produced during the combustion. Copyright © 2017. Published by Elsevier B.V.

  7. NOx reduction and NO2 emission characteristics in rich-lean combustion of hydrogen

    OpenAIRE

    Shudo, Toshio; Omori, Kento; Hiyama, Osamu

    2008-01-01

    Hydrogen is a clean alternative to conventional hydrocarbon fuels, but it is very important to reduce the nitrogen oxides (NOx) emissions generated by hydrogen combustion. The rich-lean combustion or staged combustion is known to reduce NOx emissions from continuous combustion burners such as gas turbines and boilers, and NOx reduction effects have been demonstrated for hydrocarbon fuels. The authors applied rich-lean combustion to a hydrogen gas turbine and showed its NOx reduction effect in...

  8. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  9. Collections for terminology in chemistry

    International Nuclear Information System (INIS)

    1974-08-01

    This book describes terminology in chemistry, which is divided into seven chapters. The contents of this book are element name, names of an inorganic compound such as ion and radical and polyacid, an organic compound on general principle and names, general terminology 1 and 2, unit and description method on summary, unit and the symbol for unit, number and pH, Korean mark for people's name in chemistry, names of JUPAC organic compound of summary, hydrocarbons, fused polycyclic hydrocarbons, bridged hydrocarbons, cyclic hydrocarbons with side chains, terpenes hydrocarbons, fundamental heterocyclic systems and heterocyclic spiro compounds.

  10. Research in Supercritical Fuel Properties and Combustion Modeling

    Science.gov (United States)

    2015-09-18

    identified reactions needing further study and C-2 and C-3 species to add to the mechanism . 15. SUBJECT TERMS Supercritical fluids , Brillouin scattering...kinetics mechanism for combustion of hydrocarbon fuels containing up to 2 carbon atoms, including uncertainties. • We identified key reactions and...safety. The chemical mechanisms for combustion of all of these fuels share the same set of elementary reactions of smaller-fragment hydrocarbons , and

  11. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  12. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  13. Combustion and utilization of low calorific value gases (LCVG)

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, Puneet; Ray, Anjan

    2010-09-15

    Combustion becomes increasingly difficult / inefficient / impossible with decrease in hydrocarbon content / calorific value of gas with available technologies. Through analysis it was postulated that Low Calorific Value Gas would be combustible with Oxygen in existing burner equipment with minor changes, and experimentally tested in the laboratory. The broad conclusion is that LCVG (with 8% or more Hydrocarbon content) could be combusted as efficiently as a normal High CV natural gas. This creates opportunity to translate significant promise and potential of LCVG from a variety of un-conventional sources globally into reliable long term energy resources.

  14. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem

    2016-07-23

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition effects on premixed flame chemistry is important. In this study, the combustion chemistry of low-pressure, burner-stabilized, premixed flames of two gasoline fuels was investigated under stoichiometric conditions. Flame speciation was conducted using vacuum-ultraviolet synchrotron photoionization time-of-flight molecular beam mass spectroscopy. Stable end-products, intermediate hydrocarbons, and free radicals were detected and quantified. In addition, several isomeric species in the reaction pool were distinguished and quantified with the help of the highly tunable synchrotron radiation. A comparison between the products of both flames is presented and the major differences are highlighted. Premixed flame numerical simulations were conducted using surrogate fuel kinetic models for each flame. Furthermore, a new approach was developed to elucidate the main discrepancies between experimental measurements and the numerical predictions by comparing quantities of interest. © 2016.

  15. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  16. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    Science.gov (United States)

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  17. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  18. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  19. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  20. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)

    1993-12-01

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  1. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  2. Carrier-doped aromatic hydrocarbons: a new platform in condensed matter chemistry and physics.

    Science.gov (United States)

    Heguri, Satoshi; Tanigaki, Katsumi

    2018-02-27

    High-quality bulk samples of the first four polyacenes, which are naphthalene, anthracene, tetracene, and pentacene, doped with alkali metal in 1 : 1 and 1 : 2 stoichiometries were prepared and their fundamental properties were systematically studied. A new systematic understanding on the electronic states of electron-doped polyacenes sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth and the Peierls instability was provided. The carrier-doped typical aromatic hydrocarbons showed a large variety of properties as well as charge transfer complexes and metal-doped fullerides. We open a new avenue for organometallic and inorganic chemistry.

  3. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  4. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  5. Optimizing Performance of Combustion Chemistry Solvers on Intel's Many Integrated Core (MIC) Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grout, Ray W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-09

    This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved here through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.

  6. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  7. A high-pressure plug flow reactor for combustion chemistry investigations

    Science.gov (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.

    2017-10-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  8. A high-pressure plug flow reactor for combustion chemistry investigations

    International Nuclear Information System (INIS)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J

    2017-01-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations. (paper)

  9. The role of chlorine and additives of PVC-plastic in combustion

    International Nuclear Information System (INIS)

    Mattila, H.

    1991-01-01

    The PVC differs from other common plastics due to the chlorine content. As the PVC is combusted, the chlorine is released mainly as hydrogen chloride. The content of chlorinated hydrocarbons is small, but these can also contain polychlorinated dibenzofuranes and dibenzodioxines, which are extremely poisonous. The aim of this study was to find out, what is the portion of PVC combustion in total emission of chlorinated hydrocarbons. Additionally, the amounts chlorine coming into combustion process with ordinary fuels have been estimated, and they are compared with the amounts of PVC. The chloride content of municipal wastes vary in between 0.4-0.9 %. The portion of plastics is about 30 % of the total, and the rest being from paper, food , wood and garden wastes an textiles. Both organic and inorganic chlorine form gaseous hydrogen chlorid in combustion processes. HCl can then react with oxygen and produce caseous chlorine. This can react with unreacted carbon of the smoke and produce different kinds of chlorinated hydrocarbons. The portion of PVC of the chlorine going into combustion in Finland has been estimated to be about 1-2 %. Combustion tests were made using coal and bark and plastic waste as additional fuel. It was noticed that addition of plastic decreased the amount of polyaromatic hydrocarbons in the smoke. Chlorinated dioxins and furans occurred a little less in the gases of combustion of plastic mixtures not containing PVC than in reference tests, but they increased when PVC containing plastic mixture was combusted, but more chlorinated dioxins and furans were absorbed into fly ash, so the emissions remained almost the same

  10. The internal combustion engine; a simple solution for pollution from petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Johnson, G.A.

    1992-01-01

    The internal combustion (IC) engine is an indirect cause of groundwater and soil contamination from petroleum hydrocarbons. Leaking underground storage tank systems that are used to store and distribute fuel for automobiles are a major cause of environmental degradation. That same IC engine which has indirectly caused the pollution is an excellent tool for cleaning up environmental contamination from petroleum releases. An extremely flexible clean-up system using an IC engine was designed, constructed and operated to recover free product, treat contaminated soil and remediate groundwater pollution. The treatment system uses the IC engine for vapor extraction, groundwater pumping, spray aeration and incineration. The IC engine is an excellent incinerator. The petroleum vapors are burned in the IC engine with a supplemental propane fuel. The engine drives a power-takeoff unit and provides energy for an air compressor, water pump, electrical generation and other accessories. Using waste to energy methods multiple techniques are being used in combination with different treatment technologies to optimize the remediation. As the remediation progresses the treatment system can be modified to use additional techniques. Another benefit that is directly associated with the IC engine is the presence of excess heat which is helpful in northern climates. The excess heat has many uses including spray aeration and enhanced biological remediation. The IC engine has several limitations and requires an understanding of the physical and chemical properties of the contamination. As with all environmental remediation, a proper understanding of the Hydrogeological System is critical. When properly applied the IC engine has many advantages over other methods of remediation for petroleum hydrocarbons

  11. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [University of Georgia, Department of Chemistry and Center for Computational Quantum Chemistry; Schaefer, Henry F. [University of Georgia, Center for Computational Quantum Chemistry

    2018-04-08

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O2. Numerous ROO and QOOH intermediates in these R + O2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts

  12. First principles modeling of hydrocarbons conversion in non-equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deminsky, M.A.; Strelkova, M.I.; Durov, S.G.; Jivotov, V.K.; Rusanov, V.D.; Potapkin, B.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    Theoretical justification of catalytic activity of non-equilibrium plasma in hydrocarbons conversion process is presented in this paper. The detailed model of highest hydrocarbons conversion includes the gas-phase reactions, chemistry of the growth of polycyclic aromatic hydrocarbons (PAHs), precursor of soot particles formation, neutral, charged clusters and soot particle formation, ion-molecular gas-phase and heterogeneous chemistry. The results of theoretical analysis are compared with experimental results. (authors)

  13. Premixed flame chemistry of a gasoline primary reference fuel surrogate

    KAUST Repository

    Selim, Hatem; Mohamed, Samah; Hansen, Nils; Sarathy, Mani

    2017-01-01

    Investigating the combustion chemistry of gasoline surrogate fuels promises to improve detailed reaction mechanisms used for simulating their combustion. In this work, the combustion chemistry of one of the simplest, but most frequently used

  14. Combustion aerosols: factors governing their size and composition and implications to human health

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. [University of Utah, Salt Lake City, UT (USA). Dept. of Chemical and Fuels Engineering

    2000-09-01

    Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 {mu}m (PM{sub 2.5}) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-temperature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research. 464 refs., 22 figs., 10 tabs.

  15. Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models

    International Nuclear Information System (INIS)

    Hawkes, Evatt R; Sankaran, Ramanan; Sutherland, James C; Chen, Jacqueline H

    2005-01-01

    The advancement of our basic understanding of turbulent combustion processes and the development of physics-based predictive tools for design and optimization of the next generation of combustion devices are strategic areas of research for the development of a secure, environmentally sound energy infrastructure. In direct numerical simulation (DNS) approaches, all scales of the reacting flow problem are resolved. However, because of the magnitude of this task, DNS of practical high Reynolds number turbulent hydrocarbon flames is out of reach of even terascale computing. For the foreseeable future, the approach to this complex multi-scale problem is to employ distinct but synergistic approaches to tackle smaller sub-ranges of the complete problem, which then require models for the small scale interactions. With full access to the spatially and temporally resolved fields, DNS can play a major role in the development of these models and in the development of fundamental understanding of the micro-physics of turbulence-chemistry interactions. Two examples, from simulations performed at terascale Office of Science computing facilities, are presented to illustrate the role of DNS in delivering new insights to advance the predictive capability of models. Results are presented from new three-dimensional DNS with detailed chemistry of turbulent non-premixed jet flames, revealing the differences between mixing of passive and reacting scalars, and determining an optimal lower dimensional representation of the full thermochemical state space

  16. A detailed kinetic mechanism including methanol and nitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels

    Energy Technology Data Exchange (ETDEWEB)

    Coda Zabetta, Edgardo; Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FI-20500 Turku (Finland)

    2008-01-15

    A detailed chemical kinetic mechanism for the simulation of the gas-phase combustion and pyrolysis of biomass-derived fuels was compiled by assembling selected reaction subsets from existing mechanisms (parents). The mechanism, here referred to as ''AaA,'' includes reaction subsets for the oxidation of hydrogen (H{sub 2}), carbon monoxide (CO), light hydrocarbons (C{sub 1} and C{sub 2}), and methanol (CH{sub 3}OH). The mechanism also takes into account reaction subsets of nitrogen pollutants, including the reactions relevant to staged combustion, reburning, and selective noncatalytic reduction (SNCR). The AaA mechanism was validated against suitable experimental data from the literature. Overall, the AaA mechanism gave more accurate predictions than three other mechanisms of reference, although the reference mechanisms performed better occasionally. The predictions from AaA were also found to be consistent with the predictions of its parent mechanisms within most of their range of validity, thus transferring the validity of the parents to the inheriting mechanism (AaA). In parametric studies the AaA mechanism predicted that the effect of methanol on combustion and pollutants is often similar to that of light hydrocarbons, but it also showed that there are important exceptions, thus suggesting that methanol should be taken into account when simulating biomass combustion. To our knowledge, the AaA mechanism is currently the only mechanism that accounts for the chemistry of methanol and nitrogen relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. (author)

  17. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.

    2015-05-09

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  18. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.; KC, Utsav; Varghese, P.L.; Barlow, R.S.

    2015-01-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  19. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    Science.gov (United States)

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of the methyl substitution on the combustion of two methylheptane isomers: Flame chemistry using vacuum-ultraviolet (VUV) photoionization mass spectrometry

    KAUST Repository

    Selim, Hatem

    2015-04-16

    Alkanes with one or more methyl substitutions are commonly found in liquid transportation fuels, so a fundamental investigation of their combustion chemistry is warranted. In the present work, stoichiometric low-pressure (20 Torr) burner-stabilized flat flames of 2-methylheptane and 3-methylheptane were investigated. Flame species were measured via time-of-flight molecular-beam mass spectrometry, with vacuum-ultraviolet (VUV) synchrotron radiation as the ionization source. Mole fractions of major end-products and intermediate species (e.g., alkanes, alkenes, alkynes, aldehydes, and dienes) were quantified axially above the burner surface. Mole fractions of several free radicals were also measured (e.g., CH3, HCO, C2H3, C3H3, and C3H5). Isomers of different species were identified within the reaction pool by an energy scan between 8 and 12 eV at a distance of 2.5 mm away from the burner surface. The role of methyl substitution location on the alkane chain was determined via comparisons of similar species trends obtained from both flames. The results revealed that the change in CH3 position imposed major differences on the combustion of both fuels. Comparison with numerical simulations was performed for kinetic model testing. The results provide a comprehensive set of data about the combustion of both flames, which can enhance the erudition of both fuels combustion chemistry and also improve their chemical kinetic reaction mechanisms. © 2015 American Chemical Society.

  1. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    Science.gov (United States)

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-05

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  2. THE ROLE OF NITROGEN IN TITAN’S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Department of Space Research, Southwest Research Institute, San Antonio, TX 78228 (United States); Westlake, J. H. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [Fund Kis, F-92160 Antony (France)

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N({sup 4}S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH{sub 3}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}, despite the lower CH{sub 4} photodissociation rates compared with solar maximum conditions, is explained by the role of N({sup 4}S). N({sup 4}S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH{sub 3}. When in higher abundance during solar maximum at lower altitudes, N({sup 4}S) increases the importance of bimolecular CH{sub 3} + N({sup 4}S) reactions producing HCN and H{sub 2}CN. The subsequent remarkable CH{sub 3} loss and decrease in the CH{sub 3} abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  3. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes

    International Nuclear Information System (INIS)

    Frenklach, M.; Feigelson, E.D.

    1989-01-01

    Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants. 87 refs

  5. Evaluating possible industrial applications of combustible shales and shale ash wastes

    Directory of Open Access Journals (Sweden)

    Н. К. Кондрашева

    2016-08-01

    Full Text Available Today energy consumption is constantly growing while explored reserves of easily accessible oil are depleting, which is a reason why most countries tend to diversify their energy mix, develop non-hydrocarbon energy sources and use domestic types of fuel, including the low grade ones. Thereby interest is raised to such a source of hydrocarbons as combustible shales. Combustible shales appear to be one of the highest-potential types of organic raw materials, which may offset and in future even substitute oil products and gas. The paper is investigating behavior and structure of combustible shales during heat treatment in order to identify their possible industrial applications. A synchronous thermal analysis has been held, chemical composition of combustible shales’ mineral fraction and optimal conditions for shale fines briquetting have been determined.

  6. CO2 capture by chemical looping combustion

    International Nuclear Information System (INIS)

    Forero, Carmen R; Adanez, Juan; Gayan, Pilar; Garcia L, Francisco; Abad, Alberto

    2010-01-01

    NiO and CuO based oxygen carriers (OCs) supported on Al 2 O 3 prepared by impregnation were selected for its evaluation in a continuous pilot plant of 500 Wth of two interconnected fluidized beds, where both methane and syngas were used as fuel gas. In addition, the effect of possible impurities in the fuel gas such as sulphur compounds and other hydrocarbons in the combustion efficiency of the process and the behaviour of the OCs were studied. Based on these results, it can be concluded that both OCs are suitable for a chemical looping combustion (CLC) process with methane, syngas and methane with impurities such as light hydrocarbons or sulphur.

  7. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  8. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  9. Environmental hazards from natural hydrocarbons seepage: Integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species

    International Nuclear Information System (INIS)

    Benedetti, Maura; Gorbi, Stefania; Fattorini, Daniele; D'Errico, Giuseppe; Piva, Francesco; Pacitti, Davide; Regoli, Francesco

    2014-01-01

    Potential effects of natural emissions of hydrocarbons in the marine environment have been poorly investigated. In this study, a multidisciplinary weight of evidence (WOE) study was carried out on a shallow seepage, integrating sediment chemistry with bioavailability and onset of subcellular responses (biomarkers) in caged eels and mussels. Results from different lines of evidence (LOEs) were elaborated within a quantitative WOE model which, based on logical flowcharts, provide synthetic indices of hazard for each LOE, before their integration in a quantitative risk assessment. Evaluations of different LOEs were not always in accordance and their overall elaboration summarized as Moderate the risk in the seepage area. This study provided first evidence of biological effects in organisms exposed to natural hydrocarbon emissions, confirming the limit of chemical characterization as stand-alone criteria for environmental quality assessment and the utility of multidisciplinary investigations to determine the good environmental status as required by Environmental Directives. -- Highlights: • Hazards from natural seepage were evaluated through a multidisciplinary WOE study. • Caged eels and mussels were chosen as bioindicator organisms. • Evaluations obtained from various LOEs were not always in accordance. • Biological effects of natural hydrocarbons release were demonstrated. • WOE approach could discriminate different levels of hazard in low impacted conditions. -- A multidisciplinary WOE study in a shallow coastal seepage summarized a Moderate level of risk based on integration of sediment chemistry with biological effects in caged organisms

  10. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  11. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    Science.gov (United States)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  12. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.

    Science.gov (United States)

    Mozia, Sylwia; Kułagowska, Aleksandra; Morawski, Antoni W

    2014-11-26

    A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air) was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of "green energy" production.

  13. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  14. Numerical simulation of turbulent combustion: Scientific challenges

    Science.gov (United States)

    Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan

    2014-08-01

    Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.

  15. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer.

    Science.gov (United States)

    Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan

    2018-02-19

    This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and

  16. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  17. Global climate change due to the hydrocarbon industry

    International Nuclear Information System (INIS)

    Almasi, M.; Racz, L.

    1999-01-01

    An overview is presented on the industry's response to the agreements of the Rio de Janeiro (1992) and Kyoto (1987) conventions on climate change, and to other international agreements. The announcements by large petroleum companies on the changes introduced according to the international commitments in order to fight climatic impacts of hydrocarbon fuels. The problems and foreseeable future of the Hungarian hydrocarbon industry with environmental protection are discussed. Finally, emission abatement and control possibilities of hydrocarbon combustion are considered. (R.P.)

  18. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  19. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    and reduction by homogeneous and heterogeneous reactions. The data for the estimation of kinetics of the heterogeneous reactions were measured by one of the partners in the project for char and bed material sampled from a pressurized FBC pilot plant burning Kiveton Park coal. Experimental data from the pilot...... plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed......, the gas interchange coefficient, the bubble size and the bubble rise velocity. The most important combustion parameters were the rate of CO and CH4 combustion and the fraction of CO produced from char combustion. By using a rate of production analysis, the important reactions in the NO model were...

  20. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  1. Combustion tests with different pellet qualities

    International Nuclear Information System (INIS)

    Bachs, A.; Dahlstroem, J.E.; Persson, Henrik; Tullin, C.

    1999-05-01

    Eight different pellet qualities with the diameters 6, 8 and 10 mm, from eight different producers has been tested in three pellet burners and two pellet stoves. The objective was to investigate how different diameter affect the emissions of CO, OGC and NO x . Previous experience has indicated that the pellet diameter could have significant importance for the combustion. This was not verified in the study. It showed contradictory that the diameter has a minor effect on the combustion result. The study shows that different combustion equipment give different emission. For e g hydrocarbon emissions the difference is a factor 2.2 between the 'best' and the 'worst' equipment fired on full load. The difference increases to 2.7 with lower load. The choice of fuel has a big importance for the quality of the combustion. For hydrocarbons the emissions could in an extreme situation differ with a factor 25 between 'best' and 'worst' fuel. More normally the difference is about a factor of five. Nitrogen oxide emissions are to a major part related to the nitrogen contents in the fuel. The difference between the 'best' and 'worst' fuel is in the range of a factor two. Tests with the same fuel in different equipment gives a variation of 20-30%. The combustion result depends on both the pellet quality and the equipment and there is no fuel that is good in all equipment. The big variation in combustion results shows that there is a big indifference between fuels used for small scale heating Project report from the program: Small scale combustion of biofuels. 2 refs, 15 figs, 5 tabs

  2. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  3. Tabulated Combustion Model Development For Non-Premixed Flames

    Science.gov (United States)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  4. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  5. Numerical modeling for flame dynamics and combustion processes in a two-sectional porous burner with a detailed chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Jun; Kim, Yong Mo [Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    A two-dimensional model with the detailed chemistry and variable transport properties has been applied to numerically investigate the combustion processes and flame dynamics in the bilayer porous burner. To account for the velocity transition and diffusion influenced by solid matrix, porosity terms are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. The detailed chemistry is based on GRI 2.11. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous media in terms of the precise flame structure, pollutant formation, and stabilization characteristics. In this bilayer porous burner, the heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix. This heat transfer process through the solid matrix substantially influences the flame structure and stabilization characteristics in the porous media. The predicted results are compared with experimental data in terms of temperature for gaseous mixture and solid matrix, CO and NO emission level. Based on numerical results, a precise comparison has been made for the freely propagating premixed flames and the premixed flames with a porous media for various inlet velocities.

  6. The reduction of air pollution by improved combustion

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, S.W. [Pennsylvania Univ., Chemical Engineering Dept., Philadelphia, PA (United States)

    1997-12-31

    The contributions of combustion to air pollution and possible remedies are discussed. Control and reduction of air pollution from combustion is more feasible than from other sources because of its discrete localization. The gaseous products of combustion inevitably include H{sub 2}O and CO{sub 2}, NO and/or NO{sub 2} and may include N{sub 2}O, SO{sub 2}, SO{sub 3} and unburned and partially burned hydrocarbons. Soot, ash and other dispersed solids may also be present, but are not considered herein. Unburned and partially burned hydrocarbons are prima facie evidence of poor mechanics of combustion and should not be tolerated. On the other hand, NO{sub x}, SO{sub 2} and SO{sub 3} are unavoidable if the fuel contains nitrogen and sulfur. The best remedy in this latter case is to remove these species from the fuel. Otherwise their products of combustion must be removed by absorption, adsorption or reaction. NO{sub x} from the fixation of N{sub 2} in the air and CO may be minimized by advanced techniques of combustion. One such method is described in some detail. If CO{sub 2} must be removed this can be accomplished by absorption, adsorption or reaction, but precooling is necessary and the quantity is an order of magnitude greater than that of any of the other pollutants. (Author)

  7. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  8. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion

    1989-01-01

    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  9. Large eddy simulation of spray and combustion characteristics with realistic chemistry and high-order numerical scheme under diesel engine-like conditions

    International Nuclear Information System (INIS)

    Zhou, Lei; Luo, Kai Hong; Qin, Wenjin; Jia, Ming; Shuai, Shi Jin

    2015-01-01

    Highlights: • MUSCL differencing scheme in LES method is used to investigate liquid fuel spray and combustion process. • Using MUSCL can accurately capture the gas phase velocity distribution and liquid spray features. • Detailed chemistry mechanism with a parallel algorithm was used to calculate combustion process. • Increasing oxygen concentration can decrease ignition delay time and flame LOL. - Abstract: The accuracy of large eddy simulation (LES) for turbulent combustion depends on suitably implemented numerical schemes and chemical mechanisms. In the original KIVA3V code, finite difference schemes such as QSOU (Quasi-second-order upwind) and PDC (Partial Donor Cell Differencing) cannot achieve good results or even computational stability when using coarse grids due to large numerical diffusion. In this paper, the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme is implemented into KIVA3V-LES code to calculate the convective term. In the meantime, Lu’s n-heptane reduced 58-species mechanisms (Lu, 2011) is used to calculate chemistry with a parallel algorithm. Finally, improved models for spray injection are also employed. With these improvements, the KIVA3V-LES code is renamed as KIVALES-CP (Chemistry with Parallel algorithm) in this study. The resulting code was used to study the gas–liquid two phase jet and combustion under various diesel engine-like conditions in a constant volume vessel. The results show that using the MUSCL scheme can accurately capture the spray shape and fuel vapor penetration using even a coarse grid, in comparison with the Sandia experimental data. Similarly good results are obtained for three single-component fuels, i-Octane (C8H18), n-Dodecanese (C12H26), and n-Hexadecane (C16H34) with very different physical properties. Meanwhile the improved methodology is able to accurately predict ignition delay and flame lift-off length (LOL) under different oxygen concentrations from 10% to 21

  10. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  11. Combustion engine. [for air pollution control

    Science.gov (United States)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  12. Impact of finite rate chemistry on the hydrodynamic stability of shear flows in turbulent lean premixed combustion

    Science.gov (United States)

    Dagan, Yuval; Ghoniem, Ahmed

    2017-11-01

    Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.

  13. Process of distilling heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1929-12-03

    This invention has for its object the distillation of heavy liquid hydrocarbons for the purpose of obtaining lighter hydrocarbons stable and immediately salable for fuels in combustion motors. The process is distinguished by the fact that the heavy hydrocarbon is distilled by means of heating to a temperature in keeping with the nature of the material to be treated up to 350/sup 0/C under pressure or without pressure the distillation being carried out on catalysts containing successively nickel, copper, and iron (3 parts of nickel, 1 part of copper, and 1 part of iron), the vapors produced by this distillation being exposed in turn to the action of catalysts of the same nature and in the same proportion.

  14. Combustion energy frontier research center (CEFRC) final report (August 1, 2009 – July 31, 2016)

    Energy Technology Data Exchange (ETDEWEB)

    Law, Chung [Princeton Univ., NJ (United States)

    2017-05-05

    -design rapid compression ignition instruments; and 4) develop a suite of validated petascale high-fidelity simulation and modeling capabilities to understand and predict chemistry-turbulence-radiation coupling for new fuels in new regimes, including the high pressure, low-temperature combustion in advanced engine and turbine designs, and 5) establish a knowledge highway between researchers and engineers in academia, national laboratories, and industry to facilitate the dissemination and exchange of knowledge on national and international levels, and enrich the talent pool and capabilities of the next generation of combustion scientists and engineers. The technical activities of the CEFRC were conducted through three Disciplinary Working Groups – Chemistry Theory, Experiment and Mechanism, and Reacting Flows, which coordinated the Center’s research on the development of combustion chemistry of Foundation Fuels (C0–C4 hydrocarbons), Alcohols, and Biodiesel through three corresponding Mechanism Thrust Groups. Such a two-dimensional coordinated and tightly interwoven research structure has been proven to be highly effective in assuring the interplay between the developments of the fundamentals of combustion science and the utilization of the various categories of fuels. The Center has accomplished the above goals over the five year period (August 1, 2009 – July 31, 2014) with appropriated funding, followed by two additional no-cost-extension (NCE) years. The research results are documented in 230 journal publications, with six legacy review papers on the study of combustion chemistry using shock tubes, flow reactors, rapid compression machines, and flames, on uncertainty quantification, and on theoretical reaction dynamics and chemical modeling of combustion. A robust outreach program complemented these PI-led research activities, consisting of: 1) a roving post-doc program comprised of a corps of Center-appointed, co- or multi-sponsored post-doctoral fellows with rotating

  15. Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

    KAUST Repository

    Karsenty, Florent; Sarathy, Mani; Togbé , Casimir; Westbrook, Charles K.; Dayma, Guillaume; Dagaut, P.; Mehl, Marco; Pitz, William J.

    2012-01-01

    Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane

  16. Modeling of Plasma Assisted Combustion

    Science.gov (United States)

    Akashi, Haruaki

    2012-10-01

    Recently, many experimental study of plasma-assisted combustion has been done. However, numerous complex reactions in combustion of hydrocarbons are preventing from theoritical study for clarifying inside the plasma-assisted combustion, and the effect of plasma-assist is still not understood. Shinohara and Sasaki [1,2] have reported that the shortening of flame length by irradiating microwave without increase of gas temperature. And they also reported that the same phenomena would occur when applying dielectric barrier discharges to the flame using simple hydrocarbon, methane. It is suggested that these phenomena may result by the electron heating. To clarify this phenomena, electron behavior under microwave and DBD was examined. For the first step of DBD plasma-assisted combustion simulation, electron Monte Carlo simulation in methane, oxygen and argon mixture gas(0.05:0.14:0.81) [2] has been done. Electron swarm parameters are sampled and electron energy distribution function (EEDF)s are also determined. In the combustion, gas temperature is higher(>1700K), so reduced electric field E/N becomes relatively high(>10V/cm/Torr). The electrons are accelerated to around 14 eV. This result agree with the optical emission from argon obtained by the experiment of reference [2]. Dissociation frequency of methane and oxygens are obtained in high. This might be one of the effect of plasma-assist. And it is suggested that the electrons should be high enough to dissociate methane, but plasma is not needed.[4pt] [1] K. Shinohara et al, J. Phys. D:Appl. Phys., 42, 182008 (1-7) (2009).[0pt] [2] K. Sasaki, 64th Annual Gaseous Electronic Conference, 56, 15 CT3.00001(2011).

  17. Role of soot in the transport of chlorine in hydrocarbon-air diffusion flames

    International Nuclear Information System (INIS)

    Venkatesh, S.; Saito, K.; Stencel, J.M.; Majidi, V.; Owens, M.

    1991-01-01

    Soot is an inevitable product of incomplete combustion in many practical combustion systems such as automobiles, incinerators and furnaces. Recent studies on chlorinated hydrocarbon combustion have shown that soot and other praticulates (eg. fly ash) play an important role in secondary reactions leading to the formation of chlorine substituted polyaromatic hydrocarbons (PAHs). In order to attain very high destruction efficiencies the fundamental chemical and physical processes that are associated with combustion, and post-combustion cleanup must be well understood. In order to understand the effect of chlorine on the soot formed in a combustion system, fundamental studies using a coflow laminar hydrocarbon-air diffusion flame have been carried out. Phenomenological studies have revealed the effect of chlorine on the visible structure of the flame. Soot inception activation energies were estimated for methane, ethane and ethylene diffusion flames for the case of with and without chlorine addition. No significant difference in the activation energy was estimated for either case. The effect of chlorine on the soot escape rate of an acetylene diffusion flame was estimated. The soot formed in these diffusion flames was analyzed for chlorine using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and by laser induced plasma spectroscopy (LIPS). REsults from these techniques indicate the presence of chlorine in the soot formed. In this paper a chemical scheme to explain the chlorine found in the soot is proposed based on known theories of soot formation

  18. Infrared monitoring of combustion

    International Nuclear Information System (INIS)

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  19. Aliphatic hydrocarbon and polycyclic aromatic hydrocarbon geochemistry of twelve major rivers in the Northwest Territories

    International Nuclear Information System (INIS)

    Backus, S.; Swyripa, M.; Peddle, J.; Jeffries, D.S.

    1995-01-01

    Suspended sediment and water samples collected from twelve major rivers in the Northwest Territories were analyzed for aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) to assess the sources and transport of hydrocarbons entering the Arctic Ocean. Three stations on the Mackenzie River and one station near the mouth of eleven other northern rivers were selected for sampling. Samples were collected on the Mackenzie River on four occasions to characterize spring, summer and fall flow conditions and once on the remaining eleven rivers during high flow conditions. The Mackenzie River is distinctively different then the other eleven rivers. Naturally occurring hydrocarbons predominate in the river. These hydrocarbons include biogenic alkanes, diagenic PAHs, petrogenic alkanes, and PAHs from oil seeps and/or bitumens. Anthropogenic inputs of PAHs are low as indicated by low concentrations of combustion PAHs. Alkyl PAH distributions indicate that a significant component of the lower molecular weight PAH fraction is petrogenic. The majority of the high molecular weight PAHs, together with the petrogenic PAHs have a principal source in the Mackenzie River

  20. GOM Deepwater Horizon Oil Spill: A Time Series Analysis of Variations in Spilled Hydrocarbons

    Science.gov (United States)

    Palomo, C. M.; Yan, B.

    2013-12-01

    An estimated amount of 210 million gallons of crude oil was released into the Gulf of Mexico (GOM) from April 20th to July 15th 2010 during the Deepwater Horizon oil rig explosion. The spill caused a tremendous financial, ecological, environmental and health impact and continues to affect the GOM today. Variations in hydrocarbons including alkanes, hopanes and poly-cyclic aromatic hydrocarbons (PAHs) can be analyzed to better understand the oil spill and assist in oil source identification. Twenty-one sediment samples*, two tar ball samples and one surface water oil sample were obtained from distinct locations in the GOM and within varying time frames from May to December 2010. Each sample was extracted through the ASE 200 solvent extractor, concentrated down under nitrogen gas, purified through an alumina column, concentrated down again with nitrogen gas and analyzed via GC X GC-TOF MS. Forty-one different hydrocarbons were quantified in each sample. Various hydrocarbon 'fingerprints,' such as parental :alkylate PAH ratios, high molecular weight PAHs: low molecular weight alkane ratios, and carbon preference index were calculated. The initial objective of this project was to identify the relative hydrocarbon contributions of petrogenic sources and combustion sources. Based on the calculated ratios, it is evident that the sediment core taken in October of 2010 was greatly affected by combustion sources. Following the first month of the spill, oil in the gulf was burned in attempts to contain the spill. Combustion related sources have quicker sedimentation rates, and hydrocarbons from a combustion source essentially move into deeper depths quicker than those from a petrogenic source, as was observed in analyses of the October 2010 sediment. *Of the twenty-one sediment samples prepared, nine were quantified for this project.

  1. Experimental validation of large-eddy simulation for swirling methane-air non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H.; Xu, C.S. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    Large-eddy simulation of swirling methane-air non-premixed combustion was carried out using a Smagorinsky-Lilly subgrid scale stress model and a presumed-PDF fast-chemistry combustion model. The LES statistical results are validated by PIV, temperature and species concentration measurements made by the present authors. The results indicate that in the present case the presumed-PDF fast-chemistry combustion model is a fairish one. The instantaneous vorticity and temperature maps show clearly the development and the interaction between coherent structures and combustion.

  2. The sixth international congress on toxic combustion byproducts. Technical program and abstract book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Topics of this proceedings volume are: technical approaches - waste treatment; general toxicology of combustion byproducts; reaction mechanisms (e.g. formation and decomposition of hydrocarbons and chlorinated hydrocarbons, nitrogen oxides); thermal treatment - reactionas at low temperatures; heterogeneous reactions - heterogeneous systems. (SR)

  3. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  4. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2013-03-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography/mass spectrometry (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion (with δ13CPAH = −28.7 to −26.6‰ from others origins of particulate matter (like vehicular exhaust using isotopic measurements but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach to source tracking.

  5. Combustion of alternative fuels in vortex trapped combustor

    International Nuclear Information System (INIS)

    Ghenai, Chaouki; Zbeeb, Khaled; Janajreh, Isam

    2013-01-01

    Highlights: ► We model the combustion of alternative fuels in trapped vortex combustor (TVC). ► We test syngas and hydrogen/hydrocarbon mixture fuels. ► We examine the change in combustion performance and emissions of TVC combustor. ► Increasing the hydrogen content of the fuel will increase the temperature and NO x emissions. ► A high combustor efficiency is obtained for fuels with different compositions and LHV. - Abstract: Trapped vortex combustor represents an efficient and compact combustor for flame stability. Combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel–air stream. Computational Fluid Dynamics analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthetic gas (syngas). The flame temperature, the flow field, and species concentrations inside the Vortex Trapped Combustor were obtained. The results show that hydrogen enriched hydrocarbon fuels combustion will result in more energy, higher temperature (14% increase when methane is replaced with hydrogen fuels) and NO x emissions, and lower CO 2 emissions (50% decrease when methane is replaced with methane/hydrogen mixture with 75% hydrogen fraction). The NO x emission increases when the fraction of hydrogen increases for methane/hydrogen fuel mixture. The results also show that the flame for methane combustion fuel is located in the primary vortex region but it is shifted to the secondary vortex region for hydrogen combustion.

  6. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  7. Progress on resonance ionization detection of combustion radicals

    International Nuclear Information System (INIS)

    Cool, T.A.

    1994-01-01

    Selective laser ionization techniques are used in our laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames. The progress made on the following three separate experiments during the past year is briefly described in this report. Flame Radical Concentration Measurements with VUV Spectroscopy; observation of hyperfine quantum beats in cyanogen; and the spectroscopy of the ClCO radical

  8. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  9. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  10. Evaluation of reduced chemical kinetic mechanisms used for modeling mild combustion for natural gas

    Directory of Open Access Journals (Sweden)

    Hamdi Mohamed

    2009-01-01

    Full Text Available A numerical and parametric study was performed to evaluate the potential of reduced chemistry mechanisms to model natural gas chemistry including NOx chemistry under mild combustion mode. Two reduced mechanisms, 5-step and 9-step, were tested against the GRI-Mech3.0 by comparing key species, such as NOx, CO2 and CO, and gas temperature predictions in idealized reactors codes under mild combustion conditions. It is thus concluded that the 9-step mechanism appears to be a promising reduced mechanism that can be used in multi-dimensional codes for modeling mild combustion of natural gas.

  11. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Dragos D. Isvoranu

    2003-01-01

    Full Text Available This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has been used to investigate the flow and combustion in a one-stage turbine combustor.

  12. Flame Dynamics and Chemistry in LRE Combustion Instability

    Science.gov (United States)

    2016-12-22

    negative temperature coefficient phenomenon and engine knock. In this work, the coupling of cool flame chemistry and convective– diffusive transport...note, practical engine conditions are highly turbulent, and the autoignition phenomenon depends on both chemistry and turbulent mixing. For example...negative temperature coefficient (NTC) phenomenon and engine knock. In this work, the coupling of cool flame chemistry and convective–diffusive

  13. Large-eddy simulation of swirling pulverized-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X.; Xu, C.S. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    A Eulerian-Lagrangian large-eddy simulation (LES) with a Smagorinsky-Lilly sub-grid scale stress model, presumed-PDF fast chemistry and EBU gas combustion models, particle devolatilization and particle combustion models are used to study the turbulence and flame structures of swirling pulverized-coal combustion. The LES statistical results are validated by the measurement results. The instantaneous LES results show that the coherent structures for pulverized coal combustion is stronger than that for swirling gas combustion. The particles are concentrated in the periphery of the coherent structures. The flame is located at the high vorticity and high particle concentration zone.

  14. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  15. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  16. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  17. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  18. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  19. Estimated contribution from wood combustion to air pollution in Hamar, Lillehammer and Gjoevik

    International Nuclear Information System (INIS)

    Schjoldager, J.

    1996-07-01

    The report analyses the level of air pollution from wood combustion in urban areas in Norway. From the analysis of potassium and soot in samples from January 1992, there were large uncertainties in the estimation of particle contributions from the combustion. Concentration estimates of formaldehyde from wood combustion were comparable to measurements, while estimated PAH (Polycyclic Aromatic Hydrocarbons) concentrations were lower than measurements. 18 refs., 1 fig., 6 tabs

  20. Correlation between air flow rate and pollutant concentrations during two-stage oak log combustion in a 25 KW residential boiler

    Directory of Open Access Journals (Sweden)

    Juszczak Marek

    2016-09-01

    Full Text Available It can be expected that there is a considerable correlation between combustion air flow rate and the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas. The influence of temperature and oxygen concentration in the combustion zone on the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas, for high and low combustion air flow, was analysed. Oxygen concentration for which the concentration of carbon monoxide is the lowest was determined, as well as the mutual relation between carbon monoxide and nitrogen oxide concentration.

  1. ''Combustion Always Produces Carbon Dioxide and Water'': A Discussion of University Chemistry Students' Use of Rules in Place of Principles

    Science.gov (United States)

    Robertson, Amy D.; Shaffer, Peter S.

    2014-01-01

    On the basis of responses to written questions administered to more than one thousand introductory chemistry students, we claim that students often rotely apply memorized combustion rules instead of reasoning based on explanatory models for what happens at the molecular level during chemical reactions. In particular, many students argue that…

  2. Combustion's impact on the global atmosphere

    International Nuclear Information System (INIS)

    Prather, M.J.; Logan, J.A.

    1994-01-01

    The combustion of a hydrocarbon fuel removes molecular oxygen (O 2 ) from the atmosphere and releases equivalent amounts of water (H 2 ) and carbon dioxide (CO 2 ), almost always with trace amounts of numerous other compounds including hydrocarbon (CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 6 H 6 , CH 3 CHO, etc.), carbon monoxide (CO), nitrogen oxides (NO, N 2 O) and reduced nitrogen (NH 3 and HCN), sulfur gases (SO 2 , OCS, CS 2 ), halocarbons (CH 3 Al and CH 3 Br), and particles. A review of the atmospheric budgets of these gases shows that burning of fossil fuels and recent biomass has led to global alterations in the composition of the atmosphere. Combustion is clearly responsible for most of the enhanced greenhouse forcing to date (through CO 2 , tropospheric O 3 , soot) and also some counteracting effects (through SO 2 ). It has had minimal impact on stratospheric O 3 (through CH 3 Cl, CH 3 Br, CH 4 ), but has likely changed the tropospheric oxidant levels (through CO, NO x , NMHC), at least over the northern hemisphere. Most of the important greenhouse gases and tropospheric oxidant gases have significant natural sources, which are not well defined today and may be changing; and thus, quantifying the role of combustion is difficult. 113 refs

  3. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  4. Modelling of plume chemistry of high flying aircraft with H2 combustion engines

    International Nuclear Information System (INIS)

    Weibring, G.; Zellner, R.

    1993-01-01

    Emissions from hydrogen fueled aircraft engines include large concentrations of radicals such as NO, OH, O and H. We describe the result of modelling studies in which the evolution of the radical chemistry in an expanding and cooling plume for three different mixing velocities is evaluated. The simulations were made for hydrogen combustion engines at an altitude of 26 km. For the fastest mixing conditions, the radical concentrations decrease only because of dilution with the ambient air, since the time for chemical reaction is too short. With lower mixing velocities, however, larger chemical conversions were determined. For the slowest mixing conditions the unburned hydrogen is converted into water. As a consequence the radicals O and OH increase considerably around 1400 K. The only exception being NO, for which no chemical change during the expansion is found. The concentrations of the reservoir molecules like H 2 O 2 , N 2 O 5 or HNO 3 have been calculated to remain relatively small. (orig.)

  5. Study of PAH emission from the solid fuels combustion in residential furnaces

    International Nuclear Information System (INIS)

    Kakareka, Sergey V.; Kukharchyk, Tamara I.; Khomich, Valery S.

    2005-01-01

    The procedure for and results of a test study of polycyclic aromatic hydrocarbon (PAH) emission from a few types of solid fuels combustion in residential furnaces of various designs typical for Belarus are discussed. Greatest levels of PAH emission were detected from domestic wastes and wood waste combustion. Lowest levels of PAH emission are from peat briquette combustion. It was found that PAH concentration in off-gases from firewood combustion also varies significantly depending on the type of wood: the highest values of PAH are typical for waste gases from birch firewood combustion in comparison with pine firewood combustion. Draft PAH emission factors are proposed with intended application for emission inventory of such installations

  6. Emissions from small scale biomass combustion - Research needs

    International Nuclear Information System (INIS)

    Gustavsson, L.; Karlsson, M.L.; Larfeldt, J.; Leckner, B.

    1994-01-01

    Earlier investigations have shown that small scale biomass combustion leads to unacceptable emissions in the air. The most important problem is high levels of unburnt hydrocarbons. This report analyzes which are the most important reasons to these emissions and which research efforts that are necessary to increase the knowledge about the combustion processes, thereby promoting the development of environmentally feasible equipment. The following factors are defined as most crucial to emission levels: size of combustion chamber, air excess ratio, means of combustion air supply, mixing between air and fuel, transient events, and fuel quality. It is concluded that both basic and research within the area is needed. More specific, research in the form of systematic analysis of best available technology, reactor experiments, compilation of knowledge about relevant basic combustion processes, mathematical modelling as well as development of measurement techniques are called for. 15 refs, 11 figs, 1 tab

  7. Emulsified fuels. Its use in stationary sources; Combustibles emulsionados. Su utilizacion en fuentes estacionarias

    Energy Technology Data Exchange (ETDEWEB)

    Campos Morales, Gilberto; Magdaleno Molina, Moises; Vargas Y, Victor M; Gavira D, A [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1993-12-31

    Basic aspects are set forth of the heavy hydrocarbon fuels, the principles, preparation and particularities of the combustion with emulsions, that currently represent one option, either by themselves or in combination with other technologies to utilize heavy hydrocarbons, obtaining advantages in the reduction of polluting emissions, particulate matter and NOx, which allow continuing operating the operation within the limits established by the technical ecological standards. [Espanol] Se exponen aspectos basicos de los combustibles de hidrocarburos pesados (HC), los principios, preparacion y particularidades de la combustion con emulsiones, que actualmente representan una alternativa por si solos o en combinacion con otras tecnologias para utilizar hidrocarburos pesados, obteniendose ventajas en la reduccion de emisiones de contaminantes de particulas y NOx, lo cual permite continuar operando dentro de los limites que establecen las normas tecnicas ecologicas.

  8. Emulsified fuels. Its use in stationary sources; Combustibles emulsionados. Su utilizacion en fuentes estacionarias

    Energy Technology Data Exchange (ETDEWEB)

    Campos Morales, Gilberto; Magdaleno Molina, Moises; Vargas Y, Victor M.; Gavira D, A. [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1992-12-31

    Basic aspects are set forth of the heavy hydrocarbon fuels, the principles, preparation and particularities of the combustion with emulsions, that currently represent one option, either by themselves or in combination with other technologies to utilize heavy hydrocarbons, obtaining advantages in the reduction of polluting emissions, particulate matter and NOx, which allow continuing operating the operation within the limits established by the technical ecological standards. [Espanol] Se exponen aspectos basicos de los combustibles de hidrocarburos pesados (HC), los principios, preparacion y particularidades de la combustion con emulsiones, que actualmente representan una alternativa por si solos o en combinacion con otras tecnologias para utilizar hidrocarburos pesados, obteniendose ventajas en la reduccion de emisiones de contaminantes de particulas y NOx, lo cual permite continuar operando dentro de los limites que establecen las normas tecnicas ecologicas.

  9. Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.; Willems, F.; Somers, B.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  10. Towards control-oriented modeling of natural gas-diesel RCCI combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.S.G.; Willems, F.P.T.; Somers, L.M.T.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  11. VOC emissions from residential combustion of Southern and mid-European woods

    Science.gov (United States)

    Evtyugina, Margarita; Alves, Célia; Calvo, Ana; Nunes, Teresa; Tarelho, Luís; Duarte, Márcio; Prozil, Sónia O.; Evtuguin, Dmitry V.; Pio, Casimiro

    2014-02-01

    Emissions of trace gases (carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC)), and volatile organic compounds (VOCs) from combustion of European beech, Pyrenean oak and black poplar in a domestic woodstove and fireplace were studied. These woods are widely used as biofuel in residential combustion in Southern and mid-European countries. VOCs in the flue gases were collected in Tedlar bags, concentrated in sorbent tubes and analysed by thermal desorption-gas chromatography-flame ionisation detection (GC-FID). CO2 emissions ranged from 1415 ± 136 to 1879 ± 29 g kg-1 (dry basis). The highest emission factors for CO and THC, 115.8 ± 11.7 and 95.6 24.7 ± 6.3 g kg-1 (dry basis), respectively, were obtained during the combustion of black poplar in the fireplace. European beech presented the lowest CO and THC emission factors for both burning appliances. Significant differences in emissions of VOCs were observed among wood species burnt and combustion devices. In general the highest emission factors were obtained from the combustion of Pyrenean oak in the woodstove. Among the VOCs identified, benzene and related compounds were always the most abundant group, followed by oxygenated compounds and aliphatic hydrocarbons. The amount and the composition of emitted VOCs were strongly affected by the wood composition, the type of burning device and operating conditions. Emission data obtained in this work are useful for modelling the impact of residential wood combustion on air quality and tropospheric ozone formation.

  12. A thermodynamic analysis of the environmental indicators of natural gas combustion processes

    Science.gov (United States)

    Elsukov, V. K.

    2010-07-01

    Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.

  13. Control of harmful hydrocarbon species in the exhaust of modern advanced GDI engines

    Science.gov (United States)

    Hasan, A. O.; Abu-jrai, A.; Turner, D.; Tsolakis, A.; Xu, H. M.; Golunski, S. E.; Herreros, J. M.

    2016-03-01

    A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C5-C11, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NOx with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NOx control. The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.

  14. POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATION LEVELS IN COLLECTED SAMPLES FROM VICINITY OF A HIGHWAY

    Directory of Open Access Journals (Sweden)

    S. V. Samimi ، R. Akbari Rad ، F. Ghanizadeh

    2009-01-01

    Full Text Available Tehran as the biggest city of Iran with a population of more than 10 millions has potentially high pollutant exposures of gas oil and gasoline combustion from vehicles that are commuting in the highways every day. The vehicle exhausts contain polycyclic aromatic hydrocarbons, which are produced by incomplete combustion and can be directly deposited in the environment. In the present study, the presence of polycyclic aromatic hydrocarbons contamination in the collected samples of a western highway in Tehran was investigated. The studied location was a busy highway in Tehran. High performance liquid chromatography equipped with florescence detector was used for determination of polycyclic aromatic hydrocarbons concentrations in the studied samples. Total concentration of the ten studied polycyclic aromatic hydrocarbons compounds ranged from 11107 to 24342 ng/g dry weight in the dust samples and increased from 164 to 2886 ng/g dry weight in the soil samples taken from 300 m and middle of the highway, respectively. Also the average of Σ PAHs was 1759 ng/L in the water samples of pools in parks near the highway. The obtained results indicated that polycyclic aromatic hydrocarbons contamination levels were very high in the vicinity of the highway.

  15. The Effects of Sooting and Radiation on Droplet Combustion

    Science.gov (United States)

    Lee, Kyeong-Ook; Manzello, Samuel L.; Choi, Mun Young

    1997-01-01

    The burning of liquid hydrocarbon fuels accounts for a significant portion of global energy production. With predicted future increases in demand and limited reserves of hydrocarbon fuel, it is important to maximize the efficiency of all processes that involve conversion of fuel. With the exception of unwanted fires, most applications involve introduction of liquid fuels into an oxidizing environment in the form of sprays which are comprised of groups of individual droplets. Therefore, tremendous benefits can result from a better understanding of spray combustion processes. Yet, theoretical developments and experimental measurements of spray combustion remains a daunting task due to the complex coupling of a turbulent, two-phase flow with phase change and chemical reactions. However, it is recognized that individual droplet behavior (including ignition, evaporation and combustion) is a necessary component for laying the foundation for a better understanding of spray processes. Droplet combustion is also an ideal problem for gaining a better understanding of non-premixed flames. Under the idealized situation producing spherically-symmetric flames (produced under conditions of reduced natural and forced convection), it represents the simplest geometry in which to formulate and solve the governing equations of mass, species and heat transfer for a chemically reacting two phase flow with phase change. The importance of this topic has promoted extensive theoretical investigations for more than 40 years.

  16. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  17. Sources of hydrocarbons in urban road dust: Identification, quantification and prediction.

    Science.gov (United States)

    Mummullage, Sandya; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2016-09-01

    Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chemistry and combustion of fit-for-purpose biofuels.

    Science.gov (United States)

    Rothamer, David A; Donohue, Timothy J

    2013-06-01

    From the inception of internal combustion engines, biologically derived fuels (biofuels) have played a role. Nicolaus Otto ran a predecessor to today's spark-ignition engine with an ethanol fuel blend in 1860. At the 1900 Paris world's fair, Rudolf Diesel ran his engine on peanut oil. Over 100 years of petroleum production has led to consistency and reliability of engines that demand standardized fuels. New biofuels can displace petroleum-based fuels and produce positive impacts on the environment, the economy, and the use of local energy sources. This review discusses the combustion, performance and other requirements of biofuels that will impact their near-term and long-term ability to replace petroleum fuels in transportation applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  20. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran.

    Science.gov (United States)

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2014-03-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed.

  1. Hydro-carbon liquid for use in motors

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-03-15

    A process for the manufacture of liquid hydro-carbon mixtures suitable as a fuel for internal-combustion engines is disclosed, which consists in dissolving a suitable quantity of shale oil, which has been purified with sulfuric acid, in petroleum spirit, then purifying the solution with sulfuric acid and subsequently with oxalic acid or other suitable decolorizing agent.

  2. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  3. Kinetics of in situ combustion. SUPRI TR 91

    Energy Technology Data Exchange (ETDEWEB)

    Mamora, D.D.; Ramey, H.J. Jr.; Brigham, W.E.; Castanier, L.M.

    1993-07-01

    Oxidation kinetic experiments with various crude oil types show two reaction peaks at about 250{degree}C (482{degree}F) and 400{degree}C (725{degree}F). These experiments lead to the conclusion that the fuel during high temperature oxidation is an oxygenated hydrocarbon. A new oxidation reaction model has been developed which includes two partially-overlapping reactions: namely, low-temperature oxidation followed by high-temperature oxidation. For the fuel oxidation reaction, the new model includes the effects of sand grain size and the atomic hydrogen-carbon (H/C) and oxygen-carbon (O/C) ratios of the fuel. Results based on the new model are in good agreement with the experimental data. Methods have been developed to calculate the atomic H/C and O/C ratios. These methods consider the oxygen in the oxygenated fuel, and enable a direct comparison of the atomic H/C ratios obtained from kinetic and combustion tube experiments. The finding that the fuel in kinetic tube experiments is an oxygenated hydrocarbon indicates that oxidation reactions are different in kinetic and combustion tube experiments. A new experimental technique or method of analysis will be required to obtain kinetic parameters for oxidation reactions encountered in combustion tube experiments and field operations.

  4. Example Problems in LES Combustion

    Science.gov (United States)

    2016-09-26

    Lesieur, M., Turbulence in Fluids , 2nd Revised Ed., Fluid Mechanics and Its Applications, Vol. 1, Kluwer Academic Publishers, Boston, Massachusetts, 1990...34, Journal of Fluid Mechanics , Vol. 238, 1992, pp. 155-185. 5. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, Computational...reaction mechanisms for the oxidation of hydrocarbon fuels in flames", Combustion Science and Technology, Vol. 27, 1981, pp. 31-43. 14. Spalding, D.B

  5. Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor

    Science.gov (United States)

    Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik

    2017-11-01

    Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.

  6. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen

    2009-02-02

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  7. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories

    2012-08-13

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  8. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  9. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    Science.gov (United States)

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  10. Consequences of unburned hydrocarbons on microstreamer dynamics and chemistry during plasma remediation of NO sub x using dielectric barrier discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas, and dielectric barrier discharges (DBDs) in particular, are being investigated for their use in the remediation of nitrogen oxides (NO sub x) from automotive exhausts. In their normal mode of operation, DBDs consist of a large density of short-lived filamentary microdischarges. Localized energy deposition results in spatially nonuniform gas temperatures and species densities which initiate advective and diffusive transport. Diesel exhausts, one of the major sources of NO sub x , typically contain unburned hydrocarbons (UHCs) which significantly influence the NO sub x chemistry during plasma remediation. In this paper, we discuss results from a computational investigation of the consequences of UHC chemistry on radial transport dynamics and remediation of NO sub x. In the presence of UHCs, radicals such as O and OH are dominantly consumed in the microstreamer region and their transport to larger radii is reduced. As a result, the conversion of NO to NO sub 2 is mainly restricted t...

  11. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-07-01

    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  12. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    Science.gov (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV

    2009-07-14

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  13. Misconceptions of Concepts in Chemistry among Senior Secondary ...

    African Journals Online (AJOL)

    This study examined the misconceptions by chemistry teachers of senior secondary three (SSIII) in Cross River State, Nigeria. Concepts investigated were hydrocarbons, alkanols, alkanoic acids, pollution, classification and nomenclature of carbon compounds, natural products, chemistry in industry, extraction of metals, fats ...

  14. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China.

    Science.gov (United States)

    Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong

    2010-07-01

    Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.

  15. Effect of hydrocarbons on plasma treatment of NOx

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Pitz, W.J.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Lean burn gasoline engine exhausts contain a significant amount of hydrocarbons in the form of propene. Diesel engine exhausts contain little gaseous hydrocarbon; however, they contain a significant amount of liquid-phase hydrocarbons (known as the volatile organic fraction) in the particulates. The objective of this paper is to examine the fate of NO{sub x} when an exhaust gas mixture that contains hydrocarbons is subjected to a plasma. The authors will show that the hydrocarbons promote the oxidation of NO to NO{sub 2}, but not the reduction of NO to N{sub 2}. The oxidation of NO to NO{sub 2} is strongly coupled with the hydrocarbon oxidation chemistry. This result suggests that gas-phase reactions in the plasma alone cannot lead to the chemical reduction of NO{sub x}. Any reduction of NO{sub x} to N{sub 2} can only be accomplished through heterogeneous reactions of NO{sub 2} with surfaces or particulates.

  16. Detailed modeling of size distribution functions and hydrogen content in combustion-formed particles

    Energy Technology Data Exchange (ETDEWEB)

    Sirignano, Mariano; D' Anna, Andrea [Dipartimento di Ingegneria Chimica, Universita di Napoli ' ' Federico II' ' , Napoli (Italy); Kent, John [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney (Australia)

    2010-06-15

    A kinetic modeling approach is proposed to delve into the nature and chemistry of combustion-produced particles. A sectional method is used for the first time on this purpose. It is based on modeling of gas-to-particle transitions by sections containing 125 lumped species with C numbers ranging from 24 to 4 x 10{sup 8} and H/C ratio ranging from 0 to 1. This allows not only the mass evolution of particles, but also their hydrogen content to be followed. The model is tested in an atmospheric pressure premixed flat flame of ethylene/oxygen with C/O = 0.8 and cold gas flow velocity of 4 cm/s. Comparison of modeled results with experimental data is satisfying in terms of species concentrations and H/C ratio of the particles. Analysis of model results in comparison with the experimental data has shown that it is possible to distinguish different precursors of particles moving from the exit of the burner into the post-oxidation region of the flame. At particle inception, i.e. just downstream from the flame front, gas-phase PAHs are responsible for particle nucleation and oligomers of aromatic hydrocarbons and small pericondensed hydrocarbons are predominantly present. Then the dehydrogenation process takes place and soot formation starts; in this zone large pericondensed and stacked structures are produced. Further up soot maturation generally linked with dehydrogenation is present, but still a few particles with higher H/C and with low coagulation efficiency are produced and remain present along the flame. The model, in accordance with experimental structural soot analysis, shows that in soot particles condensed structures typical of clusters of large pericondensed hydrocarbons are present whereas high-molecular mass condensed species mainly comprise oligomers of small aromatic compounds of clusters of small pericondensed hydrocarbons. (author)

  17. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner

    Directory of Open Access Journals (Sweden)

    Yik Siang Pang

    2018-01-01

    Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec

  18. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    KAUST Repository

    Bohon, Myles

    2015-06-01

    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde. The subsequent

  19. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.

    Science.gov (United States)

    Ruwe, Lena; Moshammer, Kai; Hansen, Nils; Kohse-Höinghaus, Katharina

    2018-04-25

    In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

  20. Advanced Integrated Fuel/Combustion Systems

    Science.gov (United States)

    2004-01-01

    ineffective in the T63, even at concentrations up to 40 times the recommended value. Additive companies were informed about the performance of their...M. (1996): NASA RP- 1385. • Toepke, S. (1999): Boeing Company , Personal Correspondence. • Ulrich, G.D. (1971): Comb. Sci. Tech., Vol. 4, pp. 47-58...temperature (K) THC = total hydrocarbons UNICORN = UNsteady Ignition and COmbustion with ReactioNs V = reactor volume (mL) WSR = well-stirred reactor

  1. Combustion optimization and HCCI modeling for ultra low emission

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.

  2. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    Science.gov (United States)

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of

  3. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  4. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  5. Emissions of polycyclic aromatic hydrocarbons from the combustion of crude oil on water

    International Nuclear Information System (INIS)

    Benner, B.A. Jr.; Bryner, N. P.; Wise, S.A.; Mulholland, G.W.; Evans, D.D.; Fingas, M.F.; Li, K.

    1991-01-01

    A study was conducted to examine some of the factors necessary to assess the environmental impact of an in-situ burn of an oil spill on water. These factors include the fraction of an oil layer which can be burned, the quantity of smoke emitted, and the concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) in the smoke, crude oil, and burn residue. Alberta sweet mixed blend crude in 1, 3, 5, 10, and 30 mm layers on water was burned in the laboratory and smoke samples were collected at elevated and ambient temperatures and analyzed by two independent laboratories. While burning the crude oil produced less total PAHs than was in the original crude, the concentrations of PAHs with 5 or more rings were 10-20 times greater in the smoke than in the oil. The organic carbon fraction of the smoke was in the 14-21% range. As the fuel layer thickness was increased from 2 to 10 mm, the smoke yield increased from 0.035 g smoke/g fuel and the percentage of oil residue decreased from 46% to 17%. By consuming much of the oil spill and reducing the amount of PAHs in the water, and by dispersing the combustion products over a larger area, in-situ burning can mitigate the local environmental impact of an oil spill. There appears to be a range of situations, such as in Arctic ice fields, where in-situ burning might be the most viable cleanup method. 25 refs., 6 figs., 6 tabs

  6. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  7. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  8. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  9. Plasma Assisted Combustion Mechanism for Small Hydrocarbons

    Science.gov (United States)

    2015-01-01

    fast ionization wave. Combust.  Theory Modeling, 2001. V.5 pp.97‐129.  N.A.Popov. Effect of a  Pulsed  High‐Current  Discharge  on Hydrogen–Air  Mixtures... Discharge Tube Mono- chro- mator PM Pressure Gauge Electric Gauge Physics of Nonequilibrium  Systems Laboratory Hexane Oxidation by  Pulsed  Nanosecond...Pathways: C2H4‐air  Where PAC Experimental Data is Available Avalanche  to Streamer Transition in Uniform  Electric Field (air, 1 bar, 300 K, 1 cm

  10. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  11. Bacterial and human cell mutagenicity study of some C[sub 18]H[sub 10] cyclopenta-fused polycyclic aromatic hydrocarbons associated with fossil fuels combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, A.L.; Longwell, J.P.; Marr, J.A.; Monchamp, P.A.; Thilly, W.G. (Massachusetts Institute of Technology, Cambridge (United States)); Mulder, P.P.Y.; Boere, B.B.; Cornelisse, J.; Lugtenburg, J. (Univ. of Leiden (Netherlands))

    1993-06-01

    A number of isomeric C[sub 18]H[sub 10] polycyclic aromatic hydrocarbons (PAHs), thought to be primarily cyclopenta-fused PAHs, are produced during the combustion and pyrolysis of fossil fuels. To determine the importance of their contributions to the total mutagenic activity of combustion and pyrolysis samples in which they are found, we characterized reference quantities of four C[sub 18]H[sub 10] CP-PAHs: benzol [ghi] fluoranthene (BF), cyclopenta [cd] pyrene (CPP), cyclopent [hi] acephenanthrylene (CPAP), and cyclopent [hi] acaenthrylene (CPAA). Synthesis of CPAA and CPAP is described. The availability of reference samples of these isomers also proved to be an essential aid in the identification of the C[sub 18]H[sub 10] species often found in combustion and pyrolysis samples. Chemical analysis of selected combustion and pyrolysis samples showed that CPP was generally the most abundant C[sub 18]H[sub 10] isomer, followed by CPAP and BF. CPAA was detected only in pyrolysis products from pure PAHs. We tested the four C[sub 18]H[sub 10] PAHs for mutagenicity in a forward mutation assay using S. typhimurium. CPP, BF, and CPAA were roughly twice as mutagenic as benzo[a]pyrene (BaP), whereas CPAP was only slightly active. These PAHs were also tested for mutagenic activity in human cells. In this assay, CPP and CPAA were strongly mutagenic but less active than BaP, whereas CPAP and BF were inactive at the dose levels tested. Also, the bacterial and human cell mutagenicity of CPAA and CPAP were compared with the mutagenicity of their monocyclopenta-fused analogs, aceanthrylene and acephenanthrylene. Although the mutagenicities of CPAP and acephenanthrylene are similar, the mutagenic activity of CPAA is an order of magnitude greater than that of aceanthrylene.

  12. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  13. Radiative heat transfer in turbulent combustion systems theory and applications

    CERN Document Server

    Modest, Michael F

    2016-01-01

    This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

  14. Technological aspects of the radiation chemistry

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2006-01-01

    Main technological aspects of the radiation chemistry are reviewed: network formation in polymers and caoutchouc, production of the sterile hydrogels, sterilisation of the expendable medical equipment and the environmental protection technologies (e.g. purification of the combustion gases from the sulfur oxides). Achievements of the are reviewed Institute of Nuclear Chemistry and Technology, Warsaw (Poland) in these fields are presented

  15. Molecular Tracers of Saturated and Polycyclic Aromatic Hydrocarbon Inputs into Central Park Lake, New York City

    Science.gov (United States)

    YAN, BEIZHAN; ABRAJANO, TEOFILO A.; BOPP, RICHARD F.; CHAKY, DAMON A.; BENEDICT, LUCILLE A.; CHILLRUD, STEVEN N.

    2011-01-01

    Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides 210Pb and 137Cs were used to assign approximate dates to each individual section in the core. The dating profile based on 210Pb matches very well with the time constraints provided by 137Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R [the ratio of unresolved complex mixture (UCM) to saturated hydrocarbons in the aliphatic fraction] and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP [1,7/(1,7 + 2,6)-DMP], retene to retene plus chrysene [Ret/(Ret + Chy)], and fluoranthene to fluoranthene plus pyrene [Fl/(Fl + Py)] provide additional source discrimination throughout the core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both Fl/(Fl + Py) and 1,7/(1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s. PMID:16201624

  16. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  17. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  18. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  19. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part II: 2-Methylfuran

    Science.gov (United States)

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2013-01-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed. PMID:24518895

  20. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    Science.gov (United States)

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  1. Nitrogen Chemistry During Burnout in Fuel-Staged Combustion

    DEFF Research Database (Denmark)

    Kristensen, Per Gravers; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    A parametric study involving flow reactor experiments and chemical kinetic modeling is presented for the burnout zone in fuel-staging (reburning). The results provide guidelines for optimizing the reburn process and provide a test basis for verifying kinetic models for nitrogen chemistry at tempe......A parametric study involving flow reactor experiments and chemical kinetic modeling is presented for the burnout zone in fuel-staging (reburning). The results provide guidelines for optimizing the reburn process and provide a test basis for verifying kinetic models for nitrogen chemistry...

  2. Smog chamber study on the evolution of fume from residential coal combustion.

    Science.gov (United States)

    Geng, Chunmei; Wang, Kun; Wang, Wei; Chen, Jianhua; Liu, Xiaoyu; Liu, Hongjie

    2012-01-01

    Domestic coal stoves are widely used in countryside and greenbelt residents in China for heating and cooking, and emit considerable pollutants to the atmosphere because of no treatment of their exhaust, which can result in deteriorating local air quality. In this study, a dynamic smog chamber was used to investigate the real-time emissions of gaseous and particulate pollutants during the combustion process and a static smog chamber was used to investigate the fume evolution under simulate light irradiation. The real-time emissions revealed that the total hydrocarbon (THC) and CO increased sharply after ignition, and then quickly decreased, indicating volatilization of hydrocarbons with low molecular weight and incomplete combustion at the beginning stage of combustion made great contribution to these pollutants. There was evident shoulder peak around 10 min combustion for both THC and CO, revealing the emissions from vitrinite combustion. Additionally, another broad emission peak of CO after 30 min was also observed, which was ascribed to the incomplete combustion of the inertinite. Compared with THC and CO, there was only one emission peak for NOx, SO2 and particular matters at the beginning stage of combustion. The fume evolution with static chamber simulation indicated that evident consumption of SO2 and NOx as well as new particle formation were observed. The consumption rates for SO2 and NOx were about 3.44% hr(-1) and 3.68% hr(-1), the new particle formation of nuclei particles grew at a rate of 16.03 nm/hr during the first reaction hour, and the increase of the diameter of accumulation mode particles was evident. The addition of isoprene to the diluted mixture of the fume could promote 03 and secondary particle formation.

  3. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  4. Ammonia chemistry in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Glarborg, Peter

    2009-01-01

    The oxidation of NH3 during oxy-fuel combustion of methane, i.e., at high [CO2], has been studied in a flow reactor. The experiments covered stoichiometries ranging from fuel rich to very fuel lean and temperatures from 973 to 1773 K. The results have been interpreted in terms of an updated detai...

  5. New approaches for description of nitrogen chemistry in combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P.; Brink, A.; Norstroem, T. [Aabo Akademi, Turku (Finland)

    1996-12-01

    The aim of the project is to develop novel models for a more accurate description of nitrogen oxide emissions from combustion processes and to increase the understanding of the complex details of homogeneous nitrogen reactions in combustion and gasification. The topics dealt with during 1995 include: (1) effect of Cl on CO oxidation and nitrogen reactions, (2) effect of pressure on NO reduction by SNCR (in co-operation with the project 204), (3) NH{sub 3} conversion to N{sub 2} in gasification gases by selective oxidation (in cooperation with the project 203). In addition, a literature review of the models suggested for the interaction between turbulence and a chemical gas-phase reaction has been made. A commercial CFD code, FLUENT, has also been taken into use. (author)

  6. Microjet burners for molecular-beam sources and combustion studies

    Science.gov (United States)

    Groeger, Wolfgang; Fenn, John B.

    1988-09-01

    A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.

  7. The ignition and burning behaviour of sodium metal in air

    International Nuclear Information System (INIS)

    Newman, R.N.

    1983-01-01

    The ignition and combustion of sodium, both in terms of the fundamental chemistry and also with reference to its use as the heat transfer fluid of a fast breeder reactor are reviewed. The combustion chemistry and the scientific mechanisms of possible fire extinguishants are compared with the burning of hydrocarbon fluids. Quantitative data produced by various agencies in the world in their pursuit of commercial fast reactor technology is provided. Both practical and theoretical studies have been carried out, some on a large scale, mainly in the field of spray fires and pool fires. Vapour combustion, passive and active fire extinction and possible corrosion damage to structures are discussed. (U.K.)

  8. Combustion-derived substances in deep basins of Puget Sound: Historical inputs from fossil fuel and biomass combustion

    International Nuclear Information System (INIS)

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E.; Brandenberger, Jill M.; Wade, Terry L.; Crecelius, Eric

    2011-01-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions. - Research highlights: → We reconstructed the historical inputs of GBC and char-BC in Puget Sound, WA, USA. → Temporal trend of GBC was linked to human activities (urbanization, fuel usage). → Temporal trend of char-BC was more likely driven by regional climate oscillations. → Historical trends of combustion byproducts show the geographical heterogeneities. - Temporal trend of GBC was directly linked to human activities, while the input of char-BC in Puget Sound was more likely driven by regional climate oscillations.

  9. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  10. Self-Organizing Maps for Fast LES Combustion Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tremendous advances have been made in the development of large and accurate detailed reaction chemistry models for hydrocarbon fuels. Comparable progress has also...

  11. Joint project final report, Task II: Sulfur chemistry, Task III: Nitrogen Chemistry[Straw fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Weigang, L.; Arendt Jensen, P.; Degn Jensen, A.; Dam-Johansen, K.

    2001-09-01

    It is the aim of the project to promote the use of biomass in the production of power and heat in Denmark as well as enhancing the technology base of the Danish industry within this area. The project involves, the following task areas: 1) Deposit Build-up; 2) Sulfur Chemistry; 3) Nitrogen Chemistry; and 4) Furnace Modeling. The present report covers the activities in task 2 and 3, which are carried out at Department of Chemical Engineering, DTU. Task 2: Sulfur chemistry: The lab-scale results show that the amount of sulfur released into the gas-phase increases at high temperatures. Other process parameters such as oxygen concentration have less impact. Little sulfur is apparently released during char oxidation. The experiments show that about 40% of the sulfur is released during pyrolysis at 400 {sup d}eg{sup .}C. At combustion conditions it was found that about 50% of the sulfur is released at 500{sup d}eg.{sup C}; above this temperature an almost linear correlation is found beteen sulfur release and combustion temperature up to 80-85% release at 950{sup d}eg.{sup C}. The experiments are in agreement with results from full scale straw fired grate boilers, indicating that only a small amount of fuel-sulfur is fixed in the bottom ash under typical operating conditions. The results are important in order to understand the varying emission levels observed in full-scala systems and provide guidelines for low SO{sub 2} operation. Task 3: Nitrogen chemistry: In the nitgrogen chemistry submodel volatile-N is released as NH{sub 3} and N{sub 2}. The ammonia can react further to N{sub 2} or NO. Char nitrogen is oxidized to NO, and the char bed acts as a catalyst for the reduction of NO to N{sub 2}. Predictions with the bed-model including the NO submodel indicate that when all volatile nitrogen is converted to NH{sub 3}, the concentrations og NH{sub 3} are significantly overpredicted. This means that either the NH{sub 3} reaction rates are underpredicted or that a smaller

  12. Investigation of the ignition of liquid hydrocarbon fuels with nanoadditives

    Science.gov (United States)

    Bakulin, V. N.; Velikodnyi, V. Yu.; Levin, Yu. K.; Popov, V. V.

    2017-12-01

    During our experimental studies we showed a high efficiency of the influence of nanoparticle additives on the stability of the ignition of hydrocarbon fuels and the stabilization of their combustion in a highfrequency high-voltage discharge. We detected the effects of a jet deceleration, an increase in the volume of the combustible mixture, and a reduction in the inflammation delay time. These effects have been estimated quantitatively by digitally processing the video frames of the ignition of a bubbled kerosene jet with 0.5% graphene nanoparticle additives and without these additives. This effect has been explained by the influence of electrodynamic processes.

  13. Turbulent Combustion Modeling Advances, New Trends and Perspectives

    CERN Document Server

    Echekki, Tarek

    2011-01-01

    Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...

  14. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    Science.gov (United States)

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  15. Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior

    Science.gov (United States)

    2015-09-01

    to thousands of hydrocarbon (HC) species. Such a large number of species in high fidelity Computational Fluid Dynamics (CFD) with detailed chemistry...Violi University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI 48109 Corresponding author: Angela Violi (avioli@umich.edu...UNCLASSIFIED 1 Introduction Typical hydrocarbon fuels used in internal combustion engines, such as gasoline, diesel, or jet fuel, are composed of hundreds

  16. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  17. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.; Sarathy, Mani

    2013-01-01

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical

  18. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  19. Hydrogen or Soot?: Partial Oxidation of High-boiling Hydrocarbon Wastes

    Czech Academy of Sciences Publication Activity Database

    Lederer, J.; Hanika, Jiří; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2015-01-01

    Roč. 29, č. 1 (2015), s. 5-11 ISSN 0352-9568 Institutional support: RVO:67985858 Keywords : partial oxidation * waste * hydrocarbon Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.675, year: 2015

  20. Bioaccumulation of hydrocarbons derived from terrestrial and anthropogenic sources in the Asian clam, Potamocorbula amurensis, in San Francisco Bay estuary

    Science.gov (United States)

    Pereira, Wilfred E.; Hostettler, Frances D.; Rapp, John B.

    1992-01-01

    An assessment was made in Suisun Bay, California, of the distributions of hydrocarbons in estuarine bed and suspended sediments and in the recently introduced asian clam, Potamocorbula amurensis. Sediments and clams were contaminated with hydrocarbons derived from petrogenic and pyrogenic sources. Distributions of alkanes and of hopane and sterane biomarkers in sediments and clams were similar, indicating that petroleum hydrocarbons associated with sediments are bioavailable to Potamocorbula amurensis. Polycyclic aromatic hydrocarbons in the sediments and clams were derived mainly from combustion sources. Potamocorbula amurensis is therefore a useful bioindicator of hydrocarbon contamination, and may be used as a biomonitor of hydrocarbon pollution in San Francisco Bay.

  1. Experimental and Detailed Numerical Studies of Fundamental Flame Properties of Gaseous and Liquid Fuels

    National Research Council Canada - National Science Library

    Egolfopoulos, Fokion N

    2006-01-01

    .... The experimental data are important for a number of reasons. First, they constitute a basis for partially validating the combustion chemistry of a large number of fuels ranging from hydrogen to gaseous and liquid hydrocarbons and alcohols...

  2. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  3. Safety analysis of the 700-horsepower combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  4. Effects of moisture release and radiation properties in pulverized fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    and impacts via a computational fluid dynamics (CFD) study of a 609 MWe pulverized coal-fired utility boiler. Overall speaking, it is suggested to add the free moisture in the fuel to the primary air stream while lump the bound moisture with volatiles in PF combustion modelling, although different methods.......g., oxy-fuel or air–fuel), account for the variations in CO2 and H2O concentrations in a flame, and include the impacts of other participating gases (e.g., CO and hydrocarbons) needs to be derived for combustion CFD community....

  5. Combustion characteristics of the mustard methyl esters

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Vasilev, I.P.

    2011-01-01

    Mustard Methyl Esters (further bio diesel) and regular diesel fuel were tested in direct injection diesel engine. Analysis of experimental data was supported by an analysis of fuel injection and combustion characteristics. Engine fuelled with bio diesel had increased brake specific fuel consumption, reduced nitrogen oxides emission and smoke opacity, moderate increase in carbon monoxide emission with essentially unchanged unburned hydrocarbons emission. Increase in fuel consumption was attributed to lesser heating value of bio diesel and partially to decreased fuel conversion efficiency. Analysis of combustion characteristics revealed earlier start of injection and shorter ignition delay period of bio diesel. Resulting decrease in maximum rate of heat release and cylinder pressure was the most probable reason for reduced emission of nitrogen oxides. Analysis of combustion characteristics also showed that cetane index determined by ASTM Method D976 is not a proper measure of ignition quality of bio diesel. Conclusion was made on applicability of mustard oil as a source for commercial production of bio diesel in Pakistan. Potentialities of on improving combustion and emissions characteristics of diesel engine by reformulating bio diesel were discussed. (author)

  6. An experimental and modeling study of n-octanol combustion

    KAUST Repository

    Cai, Liming

    2015-01-01

    This study presents the first investigation on the combustion chemistry of n-octanol, a long chain alcohol. Ignition delay times were determined experimentally in a high-pressure shock tube, and stable species concentration profiles were obtained in a jet stirred reactor for a range of initial conditions. A detailed kinetic model was developed to describe the oxidation of n-octanol at both low and high temperatures, and the model shows good agreement with the present dataset. The fuel\\'s combustion characteristics are compared to those of n-alkanes and to short chain alcohols to illustrate the effects of the hydroxyl moiety and the carbon chain length on important combustion properties. Finally, the results are discussed in detail. © 2014 The Combustion Institute.

  7. Transformations of aromatic hydrocarbons over zeolites

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Žilková, Naděžda; Čejka, Jiří

    2008-01-01

    Roč. 34, 5-7 (2008), s. 439-454 ISSN 0922-6168 R&D Projects: GA ČR GA203/05/0197; GA AV ČR 1QS400400560; GA AV ČR KJB4040402 Institutional research plan: CEZ:AV0Z40400503 Keywords : aromatic hydrocarbons * zeolites * alkylation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.514, year: 2008

  8. Nanocarbons Made by Soft Chemistry

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    2002-01-01

    Roč. 386, - (2002), s. 167-172 ISSN 1058-725X R&D Projects: GA ČR GA203/99/1015 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon nanotubes * fullerenes * perfluorinated hydrocarbons Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.457, year: 2002

  9. Theoretical study of reaction dynamics in radiation chemistry

    International Nuclear Information System (INIS)

    Tachiya, Masanori

    2008-01-01

    The period from late 1950's to early 1970's was golden age of radiation chemistry. During this period the hydrated electron was discovered, various new phenomena were found in ionic processes in liquid hydrocarbons, and the trapped electron and electron tunneling were discovered in organic glasses. In those days radiation chemistry was a vast treasure-house of theoretical problems. We could find not only problems special to radiation chemistry but also many problems interesting as general physical chemistry. In this review I explain how some theoretical problems discovered in the field of radiation chemistry have evolved into those of general physical chemistry, with special emphasis on my own work. (author)

  10. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  11. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  12. LIEKKI 2 - Combustion technology is environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Finland has wide experience in applications of various combustion technologies and fuels and in supplying energy to industry and municipalities. Furthermore, combustion hardware and equipment are amongst our most important export products. Above all, fluidized bed boilers, recovery boilers for pulp mills and heavy diesel engines and diesel power plants have achieved excellent success in the world markets. Exports of these products alone have amounted to several billions of Finnish marks of annual sales in recent years. Within modern combustion technology, the objective is to control flue gas emissions as far as possible in the process itself, thus doing away with the need for the separate scrubbing of flue gases. To accomplish this it has been necessary to conduct a large amount of research on the details of the chemistry of combustion emissions and the flows in furnaces and engine cylinders. A host of completely new products are being developed for the combustion technology field. The LIEKKI programme has been particularly interested in so-called combined-cycle processes based on pressurized fluidized bed technology

  13. Nestmate recognition in social insects and the role of hydrocarbons

    DEFF Research Database (Denmark)

    van Zweden, Jelle Stijn; D'Ettorre, Patrizia

    2010-01-01

    A unique and critical analysis of the wealth of research conducted on the biology, biochemistry and chemical ecology of the rapidly growing field of insect cuticular hydrocarbons. Authored by leading experts in their respective fields, the twenty chapters show the complexity that has been...... discovered in the nature and role of hydrocarbons in entomology. Covers, in great depth, aspects of chemistry (structures, qualitative and quantitative analysis), biochemistry (biosynthesis, molecular biology, genetics, evolution), physiology, taxonomy, and ecology. Clearly presents to the reader the array...... of data, ideas, insights and historical disagreements that have been accumulated during the past half century. An emphasis is placed on the role of insect hydrocarbons in chemical communication, especially among the social insects. Includes the first review on the chemical synthesis of insect hydrocarbons...

  14. Vibrational Structure in Magnetic Circular Dichroism Spectra of Polycyclic Aromatic Hydrocarbons

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Chalupský, Jakub; Štěpánek, P.; Kříž, Jan; Bouř, Petr

    2017-01-01

    Roč. 121, č. 47 (2017), s. 9064-9073 ISSN 1089-5639 R&D Projects: GA ČR GA15-19143S; GA ČR(CZ) GA16-05935S; GA ČR(CZ) GA16-00270S Institutional support: RVO:61388963 Keywords : magnetic circular dichroism * polycyclic aromatic hydrocarbons * DFT Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  15. An experimental and modeling study of n-octanol combustion

    KAUST Repository

    Cai, Liming; Uygun, Yasar; Togbé , Casimir; Pitsch, Heinz G.; Olivier, Herbert; Dagaut, P.; Sarathy, Mani

    2015-01-01

    This study presents the first investigation on the combustion chemistry of n-octanol, a long chain alcohol. Ignition delay times were determined experimentally in a high-pressure shock tube, and stable species concentration profiles were obtained

  16. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M. [Borealis Polymers Oy, Porvoo (Finland)

    1997-10-01

    The current project focuses on eventual changes in ash characteristics during co-combustion of refuse derived fuel with coal, peat, wood or bark, which could lead to slagging, fouling and corrosion in the boiler. Ashes were produced at fluidised bed (FB) combustion conditions in the 15 kW reactor at VTT Energy, Jyvaeskylae, the fly ash captured by the cyclone was further analysed by XRF at Outokumpu Geotechnical Laboratory, Outokumpu. The sintering behaviour of these ashes was investigated using a test procedure developed at the Combustion Chemistry Research Group at Aabo Akademi University. The current extended programme includes a Danish refuse-derived fuel (RDF), co-combusted with bark/coal (5 tests) and wood/coal (2 tests), a RF from Jyvaskyla (2 tests with peat/coal) and de-inking sludges co- combusted at full-scale with wood waste or paper mill sludge (4 ashes provided by IVO Power). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 deg C, significant changes in sintering are seen with pellets treated at 1000 deg C. Ash from 100 % RDF combustion does not sinter, 25 % RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Contrary to the earlier hypothesis a 25 % coal addition seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows, that (again), in general, an increased level of alkali chlorides and sulphates gives increased sintering. Finally, some results on sintering tendency measurements on ashes from full-scale CFB co-combustion of deinking sludge with wood waste and paper mill sludge are given. This shows that these ashes show very little, if any, sintering tendency, which can be explained from ash chemistry

  17. Dioxins and polyvinylchloride in combustion and fires.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Jiang, Xuguang; Li, Xiaodong

    2015-07-01

    This review on polyvinylchloride (PVC) and dioxins collects, collates, and compares data from selected sources on the formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs), or in brief dioxins, in combustion and fires. In professional spheres, the incineration of PVC as part of municipal solid waste is seldom seen as a problem, since deep flue gas cleaning is required anyhow. Conversely, with its high content of chlorine, PVC is frequently branded as a major chlorine donor and spitefully leads to substantial formation of dioxins during poorly controlled or uncontrolled combustion and open fires. Numerous still ill-documented and diverse factors of influence may affect the formation of dioxins during combustion: on the one hand PVC-compounds represent an array of materials with widely different formulations; on the other hand these may all be exposed to fires of different nature and consequences. Hence, attention should be paid to PVC with respect to the ignition and development of fires, as well as attenuating the emission of objectionable compounds, such as carbon monoxide, hydrogen chloride, polycyclic aromatic hydrocarbons, and dioxins. This review summarises available dioxin emissions data, gathers experimental and simulation studies of fires and combustion tests involving PVC, and identifies and analyses the effects of several local factors of influence, affecting the formation of dioxins during PVC combustion. © The Author(s) 2015.

  18. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.; Vanteru, Mahendra Reddy; Ruan, S.; Doan, N. A K; Roberts, William L.; Swaminathan, N.

    2016-01-01

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used

  19. Study of the chemistry of sulfur- and nitrogen oxides at fluidized bed combustion. Final report

    International Nuclear Information System (INIS)

    Lindqvist, O.

    1995-01-01

    Research has been carried out concerning chemistry of nitrogen and sulfur oxides, with relevance to fluidized bed combustion. Studies of the heterogeneous decomposition reactions of NO and N 2 O molecules have also been carried out. The effect of O 2 on the heterogeneous reactions has been investigated and the results indicate that NO can deteriorate only in the reducing zones of a FBC. The formation of NO and N 2 O as well as the question of what parameters affect this formation have been studied in a series of combustion experiments. In addition, it has also been demonstrated that the volatiles and the char are about equally important for the NO and N 2 O formation. Quantum chemical calculations have been used to study the surface processes of the nitrogen oxides. Investigations of the desulfurization reactions at high percentages of CO 2 with special regard to the PFBC technique have been made. In addition, the same reaction has been studied with e.g. spectroscopic methods at normal CO 2 percentages, but with varying amounts of O 2 and CO. CaSO 3 has been demonstrated to be an intermediary and CaS as being one of the products. An important part of the project activities is the analytical work which primarily supports the full scale experiments on the 12 MW th CTH FBC boiler. As a link between the CTH boiler and our analytical laboratory, a chemical engineer also has been employed. In this activity is also included the development of sampling and analytical methods, e.g. NH 3 and HCN sampling in the combustor. Time has also been allocated to measuring corrosive alkali metals (Na and K) in flue gases from a PFBC plant. 29 refs, 4 figs, 1 tab

  20. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  1. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.; Elbaz, Ayman M.; Zayed, M. F.

    2014-01-01

    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry

  2. Formation of Liquid Products at the Filtration Combustion of Solid Fuels

    Directory of Open Access Journals (Sweden)

    E. A. Salgansky

    2016-01-01

    Full Text Available Yields of liquid and gaseous products of the filtration combustion of cellulose, wood, peat, coal, and rubber have been investigated. Experiments have shown that the gasification of solid fuels in the regime with superadiabatic heating yields liquid hydrocarbons with quantity and quality, which are close to those produced using other methods, for example, by pyrolysis. But in this case no additional energy supply is needed to carry out the gasification process. The low calorific combustible gas, which forms in this process, contains a substantial quantity of carbon monoxide and hydrogen, which are components of syngas.

  3. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  4. Premixed flame chemistry of a gasoline primary reference fuel surrogate

    KAUST Repository

    Selim, Hatem

    2017-03-10

    Investigating the combustion chemistry of gasoline surrogate fuels promises to improve detailed reaction mechanisms used for simulating their combustion. In this work, the combustion chemistry of one of the simplest, but most frequently used gasoline surrogates – primary reference fuel 84 (PRF 84, 84 vol% iso-octane and 16 vol% n-heptane), has been examined in a stoichiometric premixed laminar flame. Time-of-flight mass spectrometry coupled with a vacuum ultraviolet (VUV) synchrotron light source for species photoionization was used. Reactants, major end-products, stable intermediates, free radicals, and isomeric species were detected and quantified. Numerical simulations were conducted using a detailed chemical kinetic model with the most recently available high temperature sub-mechanisms for iso-octane and heptane, built on the top of an updated pentane isomers model and AramcoMech 2.0 (C0C4) base chemistry. A detailed interpretation of the major differences between the mechanistic pathways of both fuel components is given. A comparison between the experimental and numerical results is depicted and rate of production and sensitivity analyses are shown for the species with considerable disagreement between the experimental and numerical findings.

  5. Possibilities of utilizing zeolites for the reduction of toxical noxious gases of combustion engines

    Directory of Open Access Journals (Sweden)

    Pandová Iveta

    2001-12-01

    Full Text Available Combustion engines produce exhalations that contribute by 50% to the contamination of the environment. The subject of this work is the research of zeolites´ as the adsorbent of toxical gases. The decisive influence on the adsorbing power has the capacity of porous in unit of volume of the sorbent and dimensions of canals. The active component of zeolite from the deposit Bystré is mineral clinoptilolite. Recently, there is an increased interest to utilize zeolites in the partial reduction of NOx, CO and hydrocarbons in the combustion products. The catalysts used to detoxication of exhalation combustion engines are less effective during periods of relatively low temperature operation, such as the initial cold-start period of engine operation. Some European, American and Japones patents are directed to the use of a zeolite catalyst for the reduction of hydrocarbons, CO and NOx. The noble metals and acid zeolites are used as a catalyst of noxious components. The adsorbent material, which may be a zeolite is part treatment system in order to adsorb gaseous pollutants during of cold start period of engine operation.

  6. Modeling of air toxics from hydrocarbon pool fires

    International Nuclear Information System (INIS)

    Harvey, K.A.; Aydil, M.L.; Barone, J.B.

    1996-01-01

    While there is guidance for estimating the radiation hazards of fires (ARCHIE), there is little guidance on modeling the dispersion of hazardous materials from fires. The objective of this paper is to provide a review of the methodology used for modeling the impacts of liquid hydrocarbon pool fires. The required input variables for modeling of hydrocarbon pool fires include emission strength, emission duration, and dispersion characteristics. Methods for predicting the products of combustion including the use of literature values, test data, and thermodynamic equilibrium calculations are discussed. The use of energy balances coupled to radiative heat transfer calculations are presented as a method for determining flame temperature. Fire modeling literature is reviewed in order to determine other source release variables such as mass burn rate and duration and flame geometry

  7. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  8. Innovation Developments of Coal Chemistry Science in L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine

    Directory of Open Access Journals (Sweden)

    Shendrik, T.G.

    2015-11-01

    Full Text Available The article presents short historical review and innovation developments of Coal Chemistry Department of L.M. Litvinenko Institute, NAS of Ukraine connected with coal mine exploitation problems, search for decisions toward prevention of spontaneous combustion, dust control in mines, establishing structural chemical features of coal with different genesis and stages of metamorphism with the aim to develop new methods of their modification and rational use. The methods of obtaining inexpensive sorbents from Ukrainian raw materials (including carbon containing waste are proposed. The problems of modern coal chemistry science in IPOCC of NAS of Ukraine are outlined.

  9. Presidential Green Chemistry Challenge: 2014 Small Business Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2014 award winner, Amyris, engineered yeast to make a chemical called farnesene, which is a building block hydrocarbon that can be converted into a renewable, drop-in replacement for petroleum diesel.

  10. Co-combustion of agricultural wastes in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Huseyin Topal; Aysel T. Atimtay [Gazi University, Ankara (Turkey). Dept. of Mechanical Engineering

    2005-07-01

    In this study a circulating fluidized bed combustion (CFBC) of 125 mm inside diameter and 1800 mm height was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry, and sunflower stems produced as a waste from the edible oil industry with a lignite coal. Lignite coal is a coal most widely used in Turkey. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NOx and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. By changing the operating parameters the variation of emissions of various pollutants were studied. During combustion tests, it was observed that the volatile matter from agro-wastes quickly volatilizes and mostly burn in the riser. The temperature profiles along the bed and the rise also confirmed this phenomenon. It was found that as the volatile matter content of agro-waste increases, the combustion efficiency increases and the combustion takes place more in the upper region of the riser. These results suggest that agro-wastes are potential fuels that can be utilized for clean energy production by using CFBC in countries where agricultural activities are heavy. 3 refs., 4 figs., 5 tabs.

  11. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Froelund, K.

    1997-11-01

    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  12. Partial Oxidation of High-Boiling Hydrocarbon Mixtures in the Pilot Unit

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1701-1706 ISSN 0366-6352 Institutional support: RVO:67985858 Keywords : partial oxidation * high-boiling hydrocarbons * pilot plant Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.468, year: 2014

  13. Fundamental characterization of alternate fuel effects in continuous combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Blazowski, W.S.; Edelman, R.B.; Harsha, P.T.

    1978-09-11

    The overall objective of this contract is to assist in the development of fuel-flexible combustion systems for gas turbines as well as Rankine and Stirling cycle engines. The primary emphasis of the program is on liquid hydrocarbons produced from non-petroleum resouces. Fuel-flexible combustion systems will provide for more rapid transition of these alternate fuels into important future energy utilization centers (especially utility power generation with the combined cycle gas turbine). The specific technical objectives of the program are to develop an improved understanding of relationships between alternate fuel properties and continuous combustion system effects, and to provide analytical modeling/correlation capabilities to be used as design aids for development of fuel-tolerant combustion systems. Efforts this past year have been to evaluate experimental procedures for studying alternate fuel combustion effects and to determine current analytical capabilities for prediction of these effects. Jet Stirred Combustor studies during this period have produced new insights into soot formation in strongly backmixed systems and have provided much information for comparison with analytical predictions. The analytical effort included new applications of quasi-global modeling techniques as well as comparison of prediction with the experimental results generated.

  14. Effect of Non-Stationary Combustion Phases on Emission Factors of Selected Pollutants and PCDD/F from Domestic Combustion

    Czech Academy of Sciences Publication Activity Database

    Šyc, Michal; Horák, J.; Krpec, K.; Hopan, F.; Ocelka, T.; Stáňa, M.

    LVI, č. 2 (2010), s. 183-187 ISSN 1210-0471 R&D Projects: GA MŽP(CZ) SP/1A2/116/07; GA MŠk 2B08048 Institutional research plan: CEZ:AV0Z40720504 Keywords : combustion * emission factors * pollutants Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://transactions.fs.vsb.cz/2010-2/1798.pdf

  15. H2-O2 supercritical combustion modeling using a CFD code

    Directory of Open Access Journals (Sweden)

    Benarous Abdallah

    2009-01-01

    Full Text Available The characteristics of propellant injection, mixing, and combustion have a profound effect on liquid rocket engine performance. The necessity of raising rocket engines performance requires a combustion chamber operation often in a supercritical regime. A supercritical combustion model based on a one-phase multi-components approach is developed and tested on a non-premixed H2-O2 flame configuration. A two equations turbulence model is used for describing the jet dynamics where a limited Pope correction is added to account for the oxidant spreading rate. Transport properties of the mixture are calculated using extended high pressure forms of the mixing rules. An equilibrium chemistry scheme is adopted in this combustion case, with both algebraic and stochastic expressions for the chemistry/turbulence coupling. The model was incorporated into a computational fluid dynamics commercial code (Fluent 6.2.16. The validity of the present model was investigated by comparing predictions of temperature, species mass fractions, recirculation zones and visible flame length to the experimental data measured on the Mascotte test rig. The results were confronted also with advanced code simulations. It appears that the agreement between the results was fairly good in the chamber regions situated downstream the near injection zone.

  16. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  17. Identification of prenatal toxic components of complex PAH mixtures derived from fossil fuel combustion employing rodent embryo culture systems

    International Nuclear Information System (INIS)

    Irvin, T.R.; Akgerman, A.

    1991-01-01

    Many adverse health effects caused by combustion-generated toxins have been recognized for some time. Acute pulmonary toxicity among urban populations has been repeatedly recorded during periods of high smoke, soot, and organo-particulate pollution. The combustion of coals and petroleum-derived fuels results in emission of particulate and organic vapor-phase components to the atmosphere. Isolation of these particle-absorbed compounds and subsequent toxicological testing has further indicated the importance of chronic, low-level exposure to airborne combustion-generated toxins in the etiology of many forms of human cancer; particulate phases of these emissions have been found to contain polycyclic aromatic hydrocarbons and heterocyclic organic compounds, absorbed onto the particle matrix, which possess potent carcinogenic and mutagenic properties. In this paper, the authors define a postimplantation rat embryo culture system constructed to identify prenatal toxic components of complex polycyclic aromatic hydrocarbon soots. Employing this culture system, we also describe its application to identify prenatal toxic components of diesel soot particulates

  18. Source determination of polynuclear aromatic hydrocarbons in water ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... Department of Chemistry, Delta State University, Abraka, Delta State, Nigeria. Phone: +234 ... tous in nature as evidenced by their detection in sedi- ments, soils, air ... sions of non-combustion derived matter including inad- vertent oil ... composition of the 2, 3 - ring, low molecular weight PAHs in water of ...

  19. Turbulence-combustion interaction in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Bencherif Mohamed

    2014-01-01

    Full Text Available The experimental measures of chemical species and turbulence intensity during the closed part of the engine combustion cycle are today unattainable exactly. This paper deals with numerical investigations of an experimental direct injection Diesel engine and a commercial turbocharged heavy duty direct injection one. Simulations are carried out with the kiva3v2 code using the RNG (k-ε model. A reduced mechanism for n-heptane was adopted for predicting auto-ignition and combustion processes. From the calibrated code based on experimental in-cylinder pressures, the study focuses on the turbulence parameters and combustion species evolution in the attempt to improve understanding of turbulence-chemistry interaction during the engine cycle. The turbulent kinetic energy and its dissipation rate are taken as representative parameters of turbulence. The results indicate that chemistry reactions of fuel oxidation during the auto-ignition delay improve the turbulence levels. The peak position of turbulent kinetic energy coincides systematically with the auto-ignition timing. This position seems to be governed by the viscous effects generated by the high pressure level reached at the auto-ignition timing. The hot regime flame decreases rapidly the turbulence intensity successively by the viscous effects during the fast premixed combustion and heat transfer during other periods. It is showed that instable species such as CO are due to deficiency of local mixture preparation during the strong decrease of turbulence energy. Also, an attempt to build an innovative relationship between self-ignition and maximum turbulence level is proposed. This work justifies the suggestion to determine otherwise the self-ignition timing.

  20. Gasdynamic Model of Turbulent Combustion in TNT Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2010-01-08

    A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.

  1. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    International Nuclear Information System (INIS)

    Hayes, R.E.; Wanke, S.E.

    2008-01-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs

  2. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.E.; Wanke, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs.

  3. Research in radiation chemistry

    International Nuclear Information System (INIS)

    Silverman, J.

    1974-01-01

    In the survey the author discusses phenomena which are unique to radiation chemistry, as well as those in which radiation chemistry research plays a principal role. Works in this field such as spur phenomena and effects of scavengers in the radiolysis of water and liquid alkane, intraspur effects in styrene and polymerization of styrene at high dose rates are presented. The problem of the missing hydrogen atoms in irradiated alkanes needs answer and sensitization of crosslinking reactions may involve some unique aspects of radiation chemistry. Pairwise trapping of radicals in irradiated n-hydrocarbons have been observed in ESP-spectra. A well defined spectrum of radical pairs when the crystals of n-eicosane is irradiated and observed at 77 deg K. The nature of the spectrum, its changes with temperature and the effect of LET is discussed in the paper. (M.S.)

  4. Emissions of organic hazardous air pollutants during Chinese coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yan, R.; Zhu, H.J.; Zheng, C.G.; Xu, M.H. [Environmental Technology Institute, Singapore (Singapore). Innovative Center

    2002-05-01

    The emissions of organic hazardous air pollutants (HAPs) during the combustion of several typical Chinese coals were investigated. First, the distribution of four types of HAP, i.e., aliphatics, cyclic hydrocarbons, monoaromatic compounds and PAHs, in the CH{sub 2}C{sub l2} extracts of six Chinese coals were studied and the influences of the extractive times and coal varieties were also evaluated. Second, the partitioning of these HAPs in the flue gas during coal combustion in a small-scale reactor were investigated, depending on oven temperatures (500, 600, 700, 800, 900{sup o}C) and coal varieties. The behaviors of HAP in the combustion flue gas were compared with those in the CH{sub 2}, Cl{sub 2}, extracts. Finally, combustion was conducted at given conditions in two laboratory-scale reactors: a fluidized bed and a fixed bed. Two coals (Shengmu bituminous coal and Xunhuan anthracite coal) and one coke were considered. The HAP partitioning both in flue gases and in ashes were evaluated and compared between the two combustors.

  5. Hydrocarbon conversion with cracking catalyst having co-combustion promoters lanthanum and iron

    International Nuclear Information System (INIS)

    Csicsery, S.M.

    1979-01-01

    A composition useful in hydrocarbon conversion processes such as catalytic cracking comprises 0.05 to 10 weight percent lanthanum associated with a refractory support. The composition may also include 0.02 to 10 weight percent iron. The refractory support is a zeolitic crystalline aluminosilicate

  6. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  7. A comparison of the C{sub 2}-C{sub 9} hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, B M; Marnane, I S [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2002-07-01

    Hourly roadside hydrocarbon concentrations were measured over a six-week period at a heavily trafficked junction in Dublin city centre. Samples of ten typical leaded and unleaded petrol fuels used in Irish vehicles were also collected and their hydrocarbon compositions determined. The measured ambient hydrocarbon concentrations are presented, as are the properties of each of the analysed fuels. Comparison of the ambient hydrocarbon concentrations and the fuel hydrocarbon composition reveals a strong correlation for most hydrocarbons, except those compounds that were wholly combustion derived (i.e. not present in the fuel). Different characteristics were noted for aromatics, alkanes and alkenes. The comparison of roadside ambient air and fuel hydrocarbon content agrees well with other studies that have compared fuel content and exhaust composition. The relative impacts of exhaust and evaporative emissions on roadside hydrocarbon concentrations are apparent. (Author)

  8. Turbulence-chemistry interactions in reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  9. The Spontaneous Combustion of Railway Ties and Asphalt Shingles

    Science.gov (United States)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  10. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T.; Kaynak, Burcak [Department of Environmental Engineering, Middle East Technical University, Ankara 06531 (Turkey)

    2008-02-15

    In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub X} and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. For co-combustion of apricot and peach fruit stones with a lignite coal, various ratios of biomass to coal ranging from 0 to 100 wt.% were tested. For the peach stone co-combustion tests, efficiencies are about 98% and for the apricot stone co-combustion tests, efficiencies ranged between 94.7% and 96.9% for 25%, 50% and 75% of apricot stone in the fuel mixture. The results of this study have shown that as the biomass ratio in the fuel mixture increases, the combustion takes place at the upper regions of the main column. This causes higher temperatures in the freeboard than the bed. Also the CO and hydrocarbon (C{sub m}H{sub n}) emissions increase as the biomass percentage increases in the fuel mixture. This causes decrease in the combustion efficiency. These results suggest that peach and apricot stones are potential fuels that can be utilized for clean energy production in small-scale fruit juice industries by using BFBC. The percentage of peach stones or apricot stones in the fuel mixture is suggested to be below 50 wt.% in order to obtain the emission limits of EU. During the design of the BFBC, one has to be careful about the volatile matter (VM) content of the biomass. For the complete combustion of the VM, longer freeboard or secondary air addition should be

  11. Natural gas reburning technology for NOx reduction from MSW combustion systems

    International Nuclear Information System (INIS)

    Penterson, C.A.; Abbasi, H.; Khinkis, M.J.; Wakamura, Y.; Linz, D.G.

    1990-01-01

    A technology for reducing emissions from municipal solid waste combustion systems through advanced combustion techniques is being developed. Pilot testing of natural gas reburning was first performed in the Institute of Gas Technology's pilot-scale furnace under conditions simulating the firing of 1.7 x 10 6 Btu/hr (0.5 MWth) of MSW. Pilot testing then continued in Riley Stoker Corporation's 3 x 10 6 Btu/hr (0.88 MWth), 7 ton/day, pilot-scale MSW combustor using actual MSW in both test series, injection of up to 15% (HHV basis) natural gas reduced NO, by 50--70% while maintaining or improving combustion efficiency as measured by CO and hydrocarbon emissions and temperature stability. This paper will review the test results and discuss the status of the full-scale field demonstration testing that is planned for 1990

  12. Prediction of Combustion Instability with Detailed Chemical Kinetics

    Science.gov (United States)

    2014-12-01

    of combustion instability. The mechanisms used for methane oxidation are the GRI 1.2 set that comprises of 32 chemical species and 177 reactions. All...with a single step global reaction and the GRI -1.2 kinetics mechanism which contains 177 reactions. The paper is organized as follows, Section II...flame speeds10. GRI -1.2 is a more complete set of hydrocarbon reactions consisting of 177 reactions involving 32 species and was optimized for natural

  13. Ignition behavior of aviation fuels and some hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, F.

    1975-01-01

    Air relighting of jet engines is an important contribution to the operation safety of aircraft engines. Reignition is influenced by fuel properties in addition to the engine design. A survey is presented on the problems, considering the specific fuel properties. Investigations were made on the ignition behavior of aviation fuels and hydrocarbons in a simplified model combustion chamber. Air inlet conditions were 200 to 800 mbar and 300 to 500 K. Correlation between physical and chemical properties and ignitability is discussed.

  14. Subfilter Scale Modelling for Large Eddy Simulation of Lean Hydrogen-Enriched Turbulent Premixed Combustion

    NARCIS (Netherlands)

    Hernandez Perez, F.E.

    2011-01-01

    Hydrogen (H2) enrichment of hydrocarbon fuels in lean premixed systems is desirable since it can lead to a progressive reduction in greenhouse-gas emissions, while paving the way towards pure hydrogen combustion. In recent decades, large-eddy simulation (LES) has emerged as a promising tool to

  15. Preparation of red phosphor (Y, Gd)BO3:Eu by soft chemistry methods

    International Nuclear Information System (INIS)

    Cui Xiangzhong; Zhuang Weidong; Yu Zhijian; Xia Tian; Huang Xiaowei; Li Hongwei

    2008-01-01

    The three soft chemistry methods were employed to prepare the red phosphor (Y, Gd)BO 3 :Eu, such as coprecipitation-combustion method, salt assisted combustion method and emulsion method. The main factors affecting particle size, particle distribution and luminescent properties of the product were investigated in detail, and as a result, the preparation processes were optimized. The phosphors were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM) and vacuum ultraviolet (VUV) spectra. Results reveal that phosphors with different morphology, small particle size and high luminescence intensity could be obtained by soft chemistry methods. The difference between the luminescence properties of phosphors in this work and commercial rare earth borate phosphor is discussed. The phosphor with grain shape and high luminescence intensity could be prepared by coprecipitation-combustion method, nanophosphor could be prepared by salt assisted combustion method, and spherical phosphor with a narrow size distribution could be obtained by using emulsion method

  16. Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds.

    Science.gov (United States)

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-01-01

    Experiments were conducted in a thermogravimetric analyzer to investigate thermal behavior of different organic calcium compounds (OCCs) and its blended fuels with three kinds of biomass. The effectiveness of synthesized method for OCC was assessed by the pyrolysis test. Effect of the mole ratio of calcium to sulfur on co-combustion characteristics was studied. Results indicated that preparation method of modified calcium acetate (MCA) had high precision and accuracy. Co-combustion characteristic of OCCs blended with biomass was controlled by OCCs' additive amount and the content of volatile matter which is mainly composed of small hydrocarbon molecules. Combustion performance indexes for peanut shell and wheat straw impregnated by OCCs were improved, however, an inverse trend was found for rice husk because of lower additive amount of OCCs. The blended fuel show higher combustion performance indexes compared with combustion of individual biomass, and these indexes decrease with increases of Ca/S ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Combustion of poultry litter in a fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; D. Boavida; J. Seabra Barros; I. Cabrita; J. Leahy; B. Kelleher; M. Leahy [DEECA-INETI, Lisbon (Portugal)

    2003-04-01

    Combustion studies of poultry litter alone or mixed with peat by 50% on weight basis were undertaken in an atmospheric bubbling fluidised bed. Because of high moisture content of poultry litter, there was some uncertainty whether the combustion could be sustained on 100% poultry litter and as peat is very available in Ireland, its presence was considered to help to improve the combustion. However, the results showed that, as long as the moisture content of poultry litter was kept below 25%, the combustion did not need the addition of peat. The main parameters that were investigated are (i) moisture content, (ii) air staging, and (iii) variations in excess air levels along the freeboard. The main conclusions of the results are (i) combustion was influenced very much by the conditions of the fuel supply, (ii) the steady fuel supply was strongly dependent on the moisture content of the poultry litter, (iii) temperature appeared to be still very influential in reducing the levels of unburned carbon and hydrocarbons released from residues, (iv) the air staging in the freeboard improved combustion efficiency by enhancing the combustion of volatiles released from residues in the riser and (vi) NOx emissions were influenced by air staging in the freeboard. Particles collected from the bed and the two cyclones were analysed to determine the levels of heavy metals and the leachability tests were carried out with ashes collected to verify whether or not they could safely be used in agricultural lands. 8 refs., 1 fig., 8 tabs.

  18. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil.

    Science.gov (United States)

    Medeiros, Patricia Matheus; Bícego, Márcia Caruso; Castelao, Renato Menezes; Del Rosso, Clarissa; Fillmann, Gilberto; Zamboni, Ademilson Josemar

    2005-01-01

    The Patos Lagoon Estuary, southern Brazil, is an area of environmental interest not only because of tourism, but also because of the presence of the second major port of Brazil, with the related industrial and shipping activities. Thus, potential hydrocarbon pollution was examined in this study. Sediment samples were collected at 10 sites in the estuary, extracted, and analyzed by GC-FID and GC-MS for composition and concentration of the following organic geochemical markers: normal and isoprenoid alkanes, petroleum biomarkers, linear alkylbenzenes (LABs), and polycyclic aromatic hydrocarbons (PAHs). The total concentrations varied from 1.1 to 129.6 microg g(-1) for aliphatic hydrocarbons, from 17.8 to 4510.6 ng g(-1) for petroleum biomarkers, from 3.2 to 1601.9 ng g(-1) for LABs, and from 37.7 to 11,779.9 ng g(-1) for PAHs. Natural hydrocarbons were mainly derived from planktonic inputs due to a usual development of blooms in the estuary. Terrestrial plant wax compounds prevailed at sites located far from Rio Grande City and subject to stronger currents. Anthropogenic hydrocarbons are related to combustion/pyrolysis processes of fossil fuel, release of unburned oil products and domestic/industrial waste outfalls. Anthropogenic hydrocarbon inputs were more apparent at sites associated with industrial discharges (petroleum distributor and refinery), shipping activities (dry docking), and sewage outfalls (sewage). The overall concentrations of anthropogenic hydrocarbons revealed moderate to high hydrocarbon pollution in the study area.

  19. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  20. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M T; Kaario, O T [VTT Energy, Espoo (Finland)

    1998-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  1. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  2. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.; Chen, Bingjie; Han, Jie; Selim, Hatem; Belhi, Memdouh; Karakaya, Yasin; Kasper, Tina; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2016-01-01

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  3. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.

    2016-06-15

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  4. Analysis and control of harmful emissions from combustion processes

    OpenAIRE

    Jafari, Ahmad

    2000-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The harmful effects of air pollutants on human beings and environment have been the major reason for efforts in sampling, analysis and control of their sources. The major pollutants emitted to atmosphere from stationary combustion processes are nitrogen oxides, inorganic acids, carbon dioxide, carbon monoxide, hydrocarbon and soot. In the current work two methods are developed for sampl...

  5. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  6. Plasma chemistry and organic synthesis

    Science.gov (United States)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  7. The environmental assessment of the wood combustion

    International Nuclear Information System (INIS)

    Dinca, Cristian; Badea, Adrian; Apostol, Tiberiu

    2007-01-01

    In this paper, the authors analysed the emissions from residential boilers burning wood logs, bark pellets, wood briquettes and wood pellets. Three boilers, selected with respect to age, design, connection to heat storage tank, and type of biofuel, were included in the study. The emissions captured comprised carbon monoxide (CO), carbon dioxide (CO 2 ), oxygen (O 2 ), total organic carbons (TOC), nitrogen oxides (NO x ), polycyclic aromatic hydrocarbons (PAC) and 33 volatile organic compounds (VOC). We have used the Life Cycle Inventory method in order to identify the main stressors generated by the wood combustion stage. In this purpose, we have analysed one type of old boiler, one type of modern boiler and a multi-fuel boiler, which can burn wood logs, bark pellets, wood briquettes and wood pellets. In this article, we selected only the wood combustion stage because it is the most important according to the emissions produced. (authors)

  8. Prediction of Non-Equilibrium Kinetics of Fuel-Rich Kerosene/LOX Combustion in Gas Generator

    International Nuclear Information System (INIS)

    Yu, Jung Min; Lee, Chang Jin

    2007-01-01

    Gas generator is the device to produce high enthalpy gases needed to drive turbo-pump system in liquid rocket engine. And, the combustion temperature in gas generator should be controlled below around 1,000K to avoid any possible thermal damages to turbine blade by using either fuel rich combustion or oxidizer rich combustion. Thus, nonequilibrium chemical reaction dominates in fuel-rich combustion of gas generator. Meanwhile, kerosene is a compounded fuel with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel rich kerosene/LOX combustion with detailed kinetics developed by Dagaut using PSR (Perfectly Stirred Reactor) assumption. In Dagaut's surrogate model for kerosene, chemical kinetics of kerosene consists of 1,592 reaction steps with 207 chemical species. Also, droplet evaporation time is taken into account in the PSR calculation by changing the residence time of droplet in the gas generator. Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux. The results could provide very reliable and accurate numbers in the prediction of combustion gas temperature,species fraction and material properties

  9. Microemulsions in the Preparation of Highly Active Combustion Catalysts

    Czech Academy of Sciences Publication Activity Database

    Rymeš, Jan; Ehret, G.; Hilaire, L.; Boutonnet, M.; Jirátová, Květa

    2002-01-01

    Roč. 75, 1-4 (2002), s. 297-303 ISSN 0920-5861 R&D Projects: GA ČR GA106/02/0523 Institutional research plan: CEZ:AV0Z4072921 Keywords : microemulsion s * catalytic combustion * VOC Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.146, year: 2002

  10. Studies of combustion kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  11. Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling

    Science.gov (United States)

    Omidvarborna, Hamid

    Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO 2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of

  12. Aromatic hydrocarbon concentrations in sediments of Placentia Bay, Newfoundland

    International Nuclear Information System (INIS)

    Kiceniuk, J.W.

    1992-01-01

    A study was conducted to examine the potential for contamination of recent sediments with polycyclic aromatic hydrocarbons due to tanker and refinery activity in Placentia Bay, Newfoundland, an area without large local anthropogenic sources of aromatics. Sediment samples were taken from the vicinity of the Come By Chance refinery, Woody Island, Wild Cove, and Port Royal Arm, all in the north end of the bay. The samples were extracted by two methods, dichloromethane extraction of dried sediment for determination of total aromatic hydrocarbon content and hexane extraction of wet sediment for estimation of the bioavailability of hydrocarbons and determination of more volatile compounds. Class analysis of aromatic hydrocarbons was conducted on a NH 2 column with detection at 255 nm. Total concentrations of di-tricyclic aromatics were highest at the Woody Island site (0.6 μg/g). The sediments from the Come By Chance site, Wild Cove, and Port Royal Arm sediments contained 0.3, 0.1, and 0.2 μg/g respectively. The hexane extracts from Come By Chance were lowest in di-tricyclic aromatics (0.007 μg/g), with the other sites being equal in concentration (0.01 μg/g). It is evident from the study that aromatic hydrocarbon concentrations in Placentia Bay are elevated in some parts of the bay in the absence of local combustion sources, and that the most likely source is petroleum. 12 refs., 5 figs., 2 tabs

  13. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    Science.gov (United States)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  14. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  15. Pt Combustion Catalysts Prepared from W/O Microemulsions

    Czech Academy of Sciences Publication Activity Database

    Rymeš, Jan; Ehret, G.; Hilaire, L.; Jirátová, Květa

    2002-01-01

    Roč. 143, - (2002), s. 121-129 ISSN 0167-2991. [International Symposium Scientific Bases for the Preparation of Heterogeneous Catalysts /8./. Louvain-la-Neuve, 09.09.2002-12.09.2002] R&D Projects: GA AV ČR IAA4072904 Keywords : combustion catalysts * microemulsion s Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.468, year: 2002

  16. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  17. Combustion of Liquid Bio-Fuels in an Internal Circulating Fluidized Bed

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Kalisz, S.; Baxter, D.; Svoboda, Karel

    2008-01-01

    Roč. 143, 1-3 (2008), s. 172-179 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40720504 Keywords : internal circulating fluidized bed * liquid fuel * combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2008

  18. Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning.

    Science.gov (United States)

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wei, Wen; Wang, Xilong; Liu, Wenxing; Wang, Xuejun; Masse Simonich, Staci L y

    2012-06-05

    Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.

  19. Moss as bio-indicators of human exposure to polycyclic aromatic hydrocarbons in Portland, OR

    Science.gov (United States)

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Vicente J. Monleon

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular disease, and fetal growth impairment. PAHs are emitted by combustion of organic matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal tissues over time. Compared to criteria...

  20. Chemistry and photophysics of polycyclic aromatic hydrocarbons in the interstellar medium

    NARCIS (Netherlands)

    Boschman, Leon

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium, and it is thought that they are a key factor in the formation of molecular hydrogen at high gas and dust grain temperatures. We have explored how PAHs can contribute to the formation of H2 by taking a small PAH

  1. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    Energy Technology Data Exchange (ETDEWEB)

    Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

    1980-10-01

    In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

  2. Microbial degradation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Volkering, F.; Breure, A.M.; Andel, J.G. van

    1992-01-01

    Polycyclic aromatic hydrocarbons (PAH) are hazardous compounds originating from oil, tar, creosote, or from incomplete combustion of fossil fuels. Application of biotechnological techniques for remediation of polluted soils from PAH demonstrated that the high molecular compounds are degraded very slowly, and that the residual concentration of PAH often is too high to permit application of the treated soil. Investigations were started to establish process parameters for optimal biodegradation of PAH. The aim is to achieve a relation between the physical properties of PAH and the biodegradation kinetics in different matrices, in order to identify applicability of biotechnological cleanup methods for waste streams and polluted soil. (orig.) [de

  3. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall.

    Science.gov (United States)

    Zhang, Wei; Zhang, Shucai; Wan, Chao; Yue, Dapan; Ye, Youbin; Wang, Xuejun

    2008-06-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.

  4. Polycyclic hydrocarbons - occurrence and determination

    International Nuclear Information System (INIS)

    Drzewicz, P.

    2007-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a special group of atmospheric contaminants included in the persistent toxic substances (PTS) and also in the volatile organic compounds (VOC) groups. PAHs are present in the atmosphere and their origin can be due to anthropogenic activities. The main source of emission of PAH is the combustion of fossil fuels. Their specific characteristics, high volatility, mutagenic and carcinogenic power, easily transportable for long distances with the wind, make them important contaminants despite of the fact that they are present at very low concentrations. The report provides a review of main analytical methods applied in the determination of PAH in air. Special attention was devoted to heterocyclic PAH which contain one or more heteroatom (sulphur, oxygen, nitrogen) in the multiple-fused ring. The presence of heterocyclic PAH requires very complex, laborious and long lasting sample separation methods before analysis. In some cases, application of different temperature programs in gas chromatography allows to determine PAH and heterocyclic PAH in gaseous samples without sample pretreatment. Gas chromatography methods for the determination of PAH and heterocyclic PAH in the gas from combustion of light heating oil has been optimized. (author) [pl

  5. Modelling NOx-formation for application in a biomass combustion furnace

    NARCIS (Netherlands)

    Kuijk, van H.A.J.A.; Bastiaans, R.J.M.; Oijen, van J.A.; Goey, de L.P.H.

    2005-01-01

    To optimize the design for biomass combustion furnaces for NOx-emission reduction, numerical models can be used. In these models, the Eddy Dissipation Concept and the PDF-flamelet approach can be applied to describe the interaction between the chemistry and the turbulence. As a first step in

  6. Influence of turbulence-chemistry interaction for n-heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation

    Science.gov (United States)

    Bolla, Michele; Farrace, Daniele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2014-03-01

    The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.

  7. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    Science.gov (United States)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well

  8. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    Directory of Open Access Journals (Sweden)

    Olek Malgorzata

    2013-01-01

    Full Text Available Abstract Background The process of thermal decomposition of dichloromethane (DCM and chlorobenzene (MCB during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.

  9. Model studies in hydrocarbon oxidation. Progress report, April 1--November 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, G.

    1993-12-31

    The research performed during the period 1 April--31 November 1993 has centered on an investigation of the chemistry of molecular terminal oxo complexes. In the long term, it is hoped that this research will provide results that are relevant to systems concerned with hydrocarbon oxidation. The authors have also carried studies of transition metal complexes that contain terminal sulfido, selenido and tellurido ligands, since a knowledge of the chemistry of the heavier congeners of this group will help provide a more complete understanding of the chemistry of transition metal oxo complexes. Furthermore, the chemistry of the metal sulfido derivatives will be directly related to hydrodesulfurization, an extremely important industrial process, for which transition metal-sulfido derivatives, e.g. MoS{sub 2}, are active catalysts.

  10. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Lucero Konopa; James A. Mulholland; Matthew J. Realff; Paul M. Lemieux [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering

    2008-08-15

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particleboard combustion, consistent with its higher nitrogen content. S{sub 2} emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet. 13 refs., 5 figs., 1 tab.

  11. Ignition and combustion characteristics of metallized propellants

    Science.gov (United States)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts

  12. Interaction between combustion and turbulence in modelling of emissions

    International Nuclear Information System (INIS)

    Oksanen, A.; Maeki-Mantila, E.

    1995-01-01

    The aim of the work is to study the combustion models which are taking into account the coupling between gas phase chemistry and turbulence in the modelling of emissions, especially of nitric oxide, when temperature and species concentrating are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion are the probability density function (pdf) and the other models which are taking into consideration the effect of turbulence on the chemical reactions in flames. Such other models to use in the modelling are many e.g. Eddy Dissipation Model (EDM), Eddy Dissipation Concept (EDC), Eddy Dissipation Kinetic model (EDK), Eddy Break Up model (EBU), kinetic models and the combinations of those ones, respectively. Besides these models the effect of the different turbulence models on the formation of emissions will be also studied. Same kind of modelling has been done also by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the name of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.). Combustion measurements are also tried to do if only the practical conditions take it possible. (author)

  13. Apparatus for utilizing liquid hydrocarbons such as shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, M

    1868-02-29

    The hydrocarbon liquids such as petroleum, shale oil, naphtha, cresol, coal tar, or other mineral, animal or vegetable oil are placed in a heater or special generator analogous to ordinary generators for vapors and to which the name vaporizer has been given in the description. This vaporizer is furnished with all kinds of safety devices, such as valves, manometer, float indicating the level, standard stopcock, etc., and is heated by the combustion of the vapors produced by it.

  14. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Partila, A.M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  15. Use of nuclear magnetic resonance of hydrogen in the characterization of saturated hydrocarbonic chains

    International Nuclear Information System (INIS)

    Costa Neto, A.; Soares, V.L.P.; Costa Neto, C.

    1979-01-01

    Alkanes and cycloalkanes are characterized by a methyl-methylene-methine groups proportion, the percentual absorption in prefixed regions and the pattern of the spectrum of nuclear magnetic resonance of hydrogen. The GPI is calculated from the contribution of the areas corresponding to prefixed regions of the hydrogen magnetic resonance spectra (60 Mc). These regions are (for the saturated hydrocarbons): 0,5-1,05ppm (X), 1,05ppm (Y) and 1,50-2,00ppm (Z). The validity of the index was verified for the homologous series of linear hydrocarbons and methyl-, dimethyl-, ethyl-, cyclopentyl- and cyclohexyl-branched hydrocarbons. Its application to shale oil chemistry (xistoquimica) is discussed. (author) [pt

  16. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    Science.gov (United States)

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Cvačka, Josef; Jiroš, Pavel; Šobotník, Jan; Hanus, Robert; Svatoš, Aleš

    2006-01-01

    Roč. 32, č. 2 (2006), s. 409-434 ISSN 0098-0331 Institutional research plan: CEZ:AV0Z40550506 Keywords : lithium 2,5-dihydroxybenzoate * mass spectrometry * termites * cuticular hydrocarbons Subject RIV: CC - Organic Chemistry Impact factor: 1.896, year: 2006

  18. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  19. Cofiring of difficult fuels: The effect of Ca-based sorbents on the gas chemistry in fluidised bed combustion; Kalsiumpohjaisten lisaeaineiden vaikutus leijukerrospolton kaasukemiaan vaikeiden polttoaineiden sekapoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Partanen, J.; Fabritius, M.; Elo, T.; Virta, A.K. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    The objective of this project is to establish the effects of Ca-based sorbents on sulphur, halogen and alkaline chemistry in fluidised bed combustion of difficult fuels, and to find out any restrictions on the use of these sorbents. The aim is to acquire sufficient knowledge to ensure the operational reliability of power plants and to minimise the emissions and costs of flue gas cleaning. The results enable the owner to anticipate necessary changes associated with slagging, fouling and emission control in the existing power plants, when there are plans to increase the range of fuels used. (orig.)

  20. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent

    International Nuclear Information System (INIS)

    Rosas G, N.

    2008-01-01

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  1. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  2. Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2017-01-01

    Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast alterna...... HNCO is the major consumption path for HCN. Under lean conditions, HNC is shown to be less important than indicated by the early work by Lin and co-workers, but it acts to accelerate HCN oxidation and promotes the formation of HNCO.......Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast...

  3. Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation

    Science.gov (United States)

    Kireeva, N. A.; Novoselova, E. I.; Shamaeva, A. A.; Grigoriadi, A. S.

    2009-04-01

    It is shown that contamination of leached chernozems by combustion products of petroleum gas favors changes in the biological activity of the soil: the number of hydrocarbon-oxidizing bacteria and micromycetes has increased, as well as the activity of catalase and lipase and phytotoxicity. Bromopsis inermis Leys used as a phytoameliorant has accelerated the destruction of hydrocarbons in the rhizosphere. The benzpyrene concentration in plants on contaminated soils considerably exceeds its background concentration.

  4. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... on filters and a sorbent was used for collection of vapour phase aromatic compounds. The filters and sorbent were analysed for polycyclic aromatic hydrocarbons (PAH) formed during combustion. The measurements showed that there was no significant increase in particulate PAH emissions due to the tar compounds...

  5. Microbial contamination of stored hydrocarbon fuels and its control Contaminação microbiana de combustíveis hidrocarbonados e o seu controle

    Directory of Open Access Journals (Sweden)

    Christine C. Gaylarde

    1999-01-01

    Full Text Available The major microbial problem in the petroleum refining industry is contamination of stored products, which can lead to loss of product quality, formation of sludge and deterioration of pipework and storage tanks, both in the refinery and at the end-user. Three major classes of fuel are discussed in this article - gasoline, aviation kerosene and diesel, corresponding to increasingly heavy petroleum fractions. The fuel that presents the most serious microbiological problems is diesel. The many microorganisms that have been isolated from hydrocarbon fuel systems are listed. The conditions required for microbial growth and the methods used to monitor and to control this activity are discussed. The effects of various fuel additives, including biocides, are considered.O problema microbiano maior na indústria de refino de petróleo é a contaminação de produtos armazenados, que pode levar à perda da qualidade, à formação de borra e à deterioração de tubulações e tanques de estocagem, na refinaria e no usuário. São abordadas, neste artigo, três classes de combustível, gasolina, querosene de aviação e óleo diesel, correspondente à ordem crescente de peso no fracionamento de petróleo. O óleo diesel apresenta os problemas microbiológicos mais sérios. São relatados os diversos microrganismos isolados de sistemas de combustíveis hidrocarbonados. São apresentadas as condições necessárias para crescimento microbiano e os métodos utilizados para o monitoramento e controle desse crescimento. Os efeitos de diversos aditivos, inclusive biocidas, são discutidos

  6. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  7. Preliminary Work for Identifying and Tracking Combustion Reaction Pathways by Coherent Microwave Mapping of Photoelectrons

    Science.gov (United States)

    2016-06-24

    penetrate the ceramic heaters. The two features provide a new capability for the kinetic development since it provides more calibration dimensions...Program Manager: Dr. Chiping Li Energy and Combustion Sciences AFOSR by PI: Prof. Zhili Zhang University of Tennessee Knoxville June 13, 2016...diagnostic techniques for combustion kinetics chemistry development, with focus of initial breakups of fuel molecules. The goal is to in situ

  8. Polycyclic aromatic hydrocarbons and other organic compounds in ashes from biomass combustion

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Havelcová, Martina

    2012-01-01

    Roč. 9, č. 4 (2012), s. 481-490 ISSN 1214-9705 R&D Projects: GA MZe QI102A207 Institutional research plan: CEZ:AV0Z30460519 Keywords : biomass combustion * ash * PAHs Subject RIV: GD - Fertilization, Irrigation, Soil Processing Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_04/6.Straka_%20Havelcova.pdf

  9. Biodegradation of Phenol Adsorbed on Soil in the Presence of Polycyclic Aromatic Hydrocarbons.

    Czech Academy of Sciences Publication Activity Database

    Maléterová, Ywetta; Matějková, Martina; Demnerová, K.; Stiborová, H.; Kaštánek, František; Šolcová, Olga

    2016-01-01

    Roč. 3, č. 1 (2016), s. 87-98 ISSN 2397-2076 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 Keywords : polycyclic artomatic hydrocarbons * phenol * bioremediation * candida tropicalis * phanerochaete chrysosporium Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  10. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    This report covers work that has been carried out in the combustion chemistry group at the Dept. of Environmental Inorganic Chemistry, Chalmers, within the STEM project 12859-1, during the period 2000-07-01 to 2002-06-30. The work was comprised of the following parts: Sulphur chemistry under pressurised and atmospheric conditions; Gas/solid reactions related to sintering and fouling; Chemistry of volatile metals in combustion; Ash leaching properties; Theoretical modelling of the interactions between ions in a solution and mineral surfaces; Some related issues and co-operations with other departments. The work on sulphur chemistry has been a central issue in our group and it has now been finalised with a PhD thesis discussing some aspects of the sulphation of limestone under pressurised conditions. The influence of a number of parameters on the sulphation efficiency was investigated and compared with similar studies under atmospheric conditions. In a special study it was shown that the influence of alternating calcining - non-calcining conditions on the conversion was substantial. In addition, the oxidation of CaS and sulphided limestone was studied and a regeneration method for the sulphide sorbent was proposed. In the project part concerning gas - solid reactions that are relevant to sintering and fouling, the application of an on-line measurement technique for the study of alkali metal capture by kaolin or other sorbents is described. A new reactor set-up has been constructed and the initial results from this set up are promising. The chemistry of cadmium in combustion of MSW and biomass is the object of a PhD project. This work has been concentrated on the task of identifying Cd-compounds in fly ash samples. It has now come to a point where enough data has been collected to make it possible to give an indication about the Cd speciation in some ash types. In MSW ash particles, cadmium seem to occur mainly as chloride, oxide and sulphate. The work will continue

  11. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions.

    Science.gov (United States)

    Arenillas, Ana; Rubiera, Fernando; Pis, José J

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with an on line battery of analyzers. The TG-MS-FTIR system was also used to perform a specific study on NO heterogeneous reduction reactions using chars with different surface chemistry. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behavior in other combustion equipments (i.e., fluidized bed combustors). It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range (800 degrees C), a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor.

  12. Combustion Modeling with the G-Equation Modélisation de la combustion avec l'équation de G

    Directory of Open Access Journals (Sweden)

    Peters N.

    2006-12-01

    Full Text Available Numerical investigations concerning the turbulent flame front propagation in Gasoline Direct Injection (GDI engines were made by implementing a flamelet model in the CFD code Fire. The advantage of this combustion model is the decoupling of the chemistry from the turbulent flow. For this purpose the combustion chamber has to be divided into a burned and an unburned area, which is realized by transporting a scalar field (G-Equation. The reference value defines the present averaged flame position. The complete reaction kinetics is calculated interactively with the CFD code in a one dimensional Representative Interactive Flamelet (RIF code. This combustion model was verified by simulating a 2. 0 l-2 V gasoline engine with homogeneous combustion where a parameter study was conducted to check the flamelet model for plausibility. Finally, the potential of this combustion model was investigated by simulating a hypothetical 2. 0 1-4 V GDI engine. Une investigation numérique relative à la propagation des fronts de flammes turbulents dans les moteurs à essence à injection directe (GDI a été menée en implantant un modèle de flameletdans le code 3D Fire. L'avantage de ce modèle de combustion est de découpler la chimie de l'écoulement turbulent en divisant la chambre de combustion en deux zones : brûlée et imbrûlée, à l'aide d'une équation de transport d'un scalaire (équation de G. Une valeur de référence de ce scalaire définit la position moyenne de la flamme. Une chimie complète est calculée interactivement avec le calcul 3D à l'aide d'un code monodimensionnel RIF (Representative Interactive Flamelet. Le modèle de combustion a été validé sur la simulation d'un moteur 2 litres à 2 soupapes en combustion homogène pour vérifier la représentativité de l'approche flamelet . Puis, le potentiel du modèle de combustion a été étudié en simulant un moteur modèle 2 litres 4 soupapes GDI.

  13. Numerical simulation of pulverized coal combustion to reduce pollutants

    International Nuclear Information System (INIS)

    Mohammad Bagher Ayani; Behnam Rahmanian

    2010-01-01

    Full text: In this research, the numerical simulation of pollutant reduction and in a pulverized coal combustion at 2D combustion chamber have been studied. Finite volume method using structured grid arrangement was utilized for modeling the pulverized coal combustion. The pressure base algorithm and implicit solver has been employed to simulate non-premix combustion model. The air was diluted by some participative gaseous such as whose percentages varied from 0 % to 20 %. Participative gases and air were preheated by a high-temperature gas generator, and the preheated oxidizer temperature could achieve. The combustion simulation with the generalized finite rate chemistry model, referred to as the Magnussen model and the reacting flow with the mixture fraction PDF/ equilibrium chemistry model, referred to as the PDF model are studied. Quick scheme was adopted for the discretization of all convective terms of the advective transport equations. So, as a result of addition participative gases into oxidizer the rate of formation of pollutants as well as NO x suppressed. The addition only a few percent of halogen components can make some systems nonflammable. The effects of addition halogen components and non-reaction gaseous such as Helium and Argon are fuel dilution and its acts as catalysts in reducing the H atom concentration necessary for the chain branching reaction sequence. Moreover, they act like surface and they make the increment of surface ratio versus volume. Because of this, the number of radical conflicts and hence destruction them will be increase. Furthermore, the rate of formation of pollutants will be decreased if the halogen components and non-reaction gaseous injection will be increased. However, as a result of this research, in the case of injection in pulverized coal combustion the flame temperature is lower than Steam, Argon and Helium. So, the emission levels of carbon dioxide is significantly lower than other participative gases, but in this

  14. Explosive growth in African combustion emissions from 2005 to 2030

    International Nuclear Information System (INIS)

    Liousse, C; Rosset, R; Assamoi, E; Criqui, P; Granier, C

    2014-01-01

    Emissions of gases and particles from the combustion of fossil fuels and biofuels in Africa are expected to increase significantly in the near future due to the rapid growth of African cities and megacities. There is currently no regional emissions inventory that provides estimates of anthropogenic combustion for the African continent. This work provides a quantification of the evolution of African combustion emissions from 2005 to 2030, using a bottom-up method. This inventory predicts very large increases in black carbon, organic carbon, CO, NO x , SO 2 and non-methane hydrocarbon emissions if no emission regulations are implemented. This paper discusses the effectiveness of scenarios involving certain fuels, specific to Africa in each activity sector and each region (western, eastern, northern and southern Africa), to reduce the emissions. The estimated trends in African emissions are consistent with emissions provided by global inventories, but they display a larger range of values. African combustion emissions contributed significantly to global emissions in 2005. This contribution will increase more significantly by 2030: organic carbon emissions will for example make up 50% of the global emissions in 2030. Furthermore, we show that the magnitude of African anthropogenic emissions could be similar to African biomass burning emissions around 2030. (paper)

  15. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail

    2016-07-01

    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  16. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  17. A shock tube study of the reactions of the hydroxyl radical with combustion species

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, N.; Koffend, J.B. [The Aerospace Corporation, Los Angeles, CA (United States)

    1993-12-01

    To extend the semi-empirical techniques of Benson and coworkers, and to extend the database of reliable high temperature measurements of OH radicals with hydrocarbons and other fuels and their decomposition products, the authors undertook a research program with both experimental and computational tasks. The experimental goal was to design a procedure for measuring, at combustion temperatures, the reaction rate coefficients of OH radicals with fuels and other species of importance in combustion or propulsion systems. The computational effort was intended to refine the semi-empirical transition-state-theory procedures for extrapolating rate coefficients of reactions of OH with combustion species of interest, for predicting rate coefficients for species not studied in the laboratory, and to examine the ability of the theory to predict rate coefficients for different pathways in the case the reagent possessed more than one nonequivalent H atoms.

  18. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  19. Heat transfer and combustion in microgravity; Mujuryokuka deno netsukogaku

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-09-05

    Examples of thermal engineering under gravity free state are introduced. When making semiconductor crystals, the thermal conductivity of the molten substance becomes important but in a microgravity environment where the thermal convection is suppressed, this value can be accurately measured. Although there are many unknown points regarding the thermal conductive mechanism of thermal control equipment elements under microgravity, theoretical analysis is being advanced. It is anticipated that the verification of this theory using liquid droplets will be made. The conveying of boiling heat under microgravity is suppressed because the bubbles stick to the heat source. When a non-azeotropic composition is used, Marangoni convection occurs, and the conveying is promoted. Since there is no thermal convection in microgravity combustion, diffusion dominates. In order to make the phenomenon clear, the free-fall tower can be utilized. A liquid droplet flame will become a complete, integrated, spherical flame. Vaporization coefficient and combustion velocity which are impossible to measure on the ground can be measured. In the case of metal fires occuring in space, the movement of metal dominates the combustion. In microgravity, dust coal will float in a stationary state so the process of combustion can be observed. It is believed that the diffusion flame of hydrocarbons will be thicker than the flame on the ground. 11 refs., 4 figs.

  20. Influence on moisture and hydrocarbons on conversion rate of tritium in catalytic reactors of fusion-DEMO detritiation system

    International Nuclear Information System (INIS)

    Edao, Yuki; Sato, Katsumi; Iwai, Yasunori; Hayashi, Takumi

    2017-01-01

    Thoughtful consideration of abnormal events such as fire is required to design and qualify a detritiation system (DS) of a nuclear fusion facility. Since conversion of tritium to tritiated vapor over catalyst is the key process of the DS, it is indispensable to evaluate the effect of excess moisture and hydrocarbons produced by combustion of cables on tritium conversion rate considering fire events. We conducted demonstration tests on tritium conversion under the following representative conditions: (I) leakage of tritium, (II) leakage of tritium plus moisture, and (III) leakage of tritium plus hydrocarbons. Detritiation behavior in the simulated room was assessed, and the amount of catalyst to fulfill the requirement on tritium conversion rate was evaluated. The dominant parameters for detritiation are the concentration of hydrogen in air and catalyst temperature. The tritium in the simulated room was decreased for condition (I) following ventilation theory. An initial reduction in conversion rate was measured for condition (II). To recover the reduction smoothly, it is suggested to optimize the power of preheater. An increase in catalyst temperature by heat of reaction of hydrocarbon combustion was evaluated for condition (III). The heat balance of catalytic reactor is a point to be carefully investigated to avoid runaway of catalyst temperature. (author)

  1. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    Science.gov (United States)

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  2. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustors

    Science.gov (United States)

    Ryan, T. W., III; Harlowe, W. W.; Schwab, S.

    1992-01-01

    The work was based on adapting an apparatus and procedure developed at Southwest Research Institute for rating the ignition quality of fuels for diesel engines. Aluminum alkyls and various Lewis-base adducts of these materials, both neat and mixed 50/50 with pure JP-10 hydrocarbon, were injected into the combustion bomb using a high-pressure injection system. The bomb was pre-charged with air that was set at various initial temperatures and pressures for constant oxygen density. The ignition delay times were determined for the test materials at these different initial conditions. The data are presented in absolute terms as well as comparisons with the parent alkyls. The relative heats of reaction of the various test materials were estimated based on a computation of the heat release, using the pressure data recorded during combustion in the bomb. In addition, the global reaction rates for each material were compared at a selected tmperature and pressure.

  3. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2017-12-01

    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  4. In-cylinder Combustion and Soot Evolution in the Transition from Conventional CI mode to PPC

    KAUST Repository

    An, Yanzhao

    2018-01-09

    The present study intends to explore the in-cylinder combustion and evolution of soot emission during the transition from conventional compression ignition (CI) combustion to partially premixed combustion (PPC) at low load conditions. In-cylinder combustion images and engine-out emissions were measured in an optical engine fueled with low octane heavy naphtha fuel (RON = 50). Full cycle engine simulations were performed using a three-dimensional computational fluid dynamics code CONVERGETM, coupled with gas phase chemical kinetics, turbulence, and particulate size mimic soot model. The simulations were performed under low load conditions (IMEP ~ 2 to 3 bar) at an engine speed of 1200 rpm. The start of injection (SOI) was advanced from late (-10 CAD aTDC) to early fuel injection timings (-40 CAD aTDC) to realize the combustion transition from CI combustion to PPC. The simulation results of combustion and emission are compared with the experimental results at both CI and PPC combustion modes. The results of the study show a typical low-temperature stratified lean combustion at PPC mode, while high-temperature spray-driven combustion is evident at CI mode. The in-cylinder small intermediates species such as acetylene (C2H2), propargyl (C3H3), cyclopentadienyl (C5H5) and polycyclic aromatic hydrocarbons (PAHs) were significantly suppressed at PPC mode. Nucleation reaction of PAHs collision contributed to main soot mass production. The distribution of soot mass and particle number density was consistent with the distribution of high-temperature zones at CI and PPC combustion modes.

  5. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  6. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  7. Les méthodes thermiques de production des hydrocarbures. Chapitre 5 : Combustion "in situ". Pricipes et études de laboratoire Thermal Methods of Hydrocarbon Production. Chapter 5 : "In Situ" Combustion. Principles and Laboratory Research

    Directory of Open Access Journals (Sweden)

    Burger J.

    2006-11-01

    Full Text Available II existe plusieurs variantes de la combustion in situ, suivant le sens de déplacement du front de combustion, à co-courant ou à contre-courant, et suivant la nature des fluides injectés, air seul ou injection combinée d'air et d'eau. Les réactions de pyrolyse, d'oxydation et de combustion mises en jeu par ces techniques sont discutées, en particulier la cinétique des principaux mécanismes réactionnels, l'importance du dépôt de coke et l'exothermicité des réactions d'oxydation et de combustion. Les résultats d'essais de déplacement unidirectionnel du front de combustion dans des cellules de laboratoire sont présentés et discutés. Enfin on indique les conditions pratiques d'application des méthodes de combustion in situ sur champ. Possible variations of in situ combustion technique ore as follows : forward or reverse combustion depending on the relative directions of the air flow and the combustion front, dry combustion if air is the only fluid injected into the oil-bearing formation, or fixe/woter flooding if water is injected along with air. The chemical reactions of pyrolysis, oxidation and combustion involved in these processes are described. The kinetics of these reactions is discussed as well as fuel availability in forward combustion and the exothermicity of the oxidation and combustion reactions. The results obtained in the laboratory when a combustion front propagates in unidirectional adiabatic tells are described and discussed. This type of experimentation provides extensive information on the characteristics of the processes. Screening criteria for the practical application of in situ combustion techniques are presented.

  8. AFRL Combustion Science Branch Research Activities and Capabilities

    Science.gov (United States)

    2003-03-01

    a wide variety of partners that include other DoD organizations, NASA, DoE, . engine companies , universities, small businesses, and on-site...Dynamics with Chemistry (CFDC) code (Katta et aI., 1994) known as UNICORN (UNsteady Ignition and COmbustion with ReactioNs). UNICORN is a time- dependent...simulate a variety of dynamic flames (Roquemore and Katta, 1998). From its conception, the development of UNICORN has been strongly coupled with

  9. A Physics and Tabulated Chemistry Based Compression Ignition Combustion Model: from Chemistry Limited to Mixing Limited Combustion Modes Un modèle de combustion à allumage par compression basé sur la physique et la chimie tabulée : des modes de combustion contrôlés par la chimie jusqu’aux modes contrôlés par le mélange

    Directory of Open Access Journals (Sweden)

    Bordet N.

    2011-11-01

    Full Text Available This paper presents a new 0D phenomenological approach to predict the combustion process in multi injection Diesel engines operated under a large range of running conditions. The aim of this work is to develop a physical approach in order to improve the prediction of in-cylinder pressure and heat release. Main contributions of this study are the modeling of the premixed part of the Diesel combustion with a further extension of the model for multi-injection strategies. In the present model, the rate of heat release due to the combustion for the premixed phase is related to the mean reaction rate of fuel which is evaluated by an approach based on tabulated local reaction rate of fuel and on the determination of the Probability Density Function (PDF of the mixture fraction (Z, in order to take into consideration the local variations of the fuel-air ratio. The shape of the PDF is presumed as a standardized β-function. Mixture fraction fluctuations are described by using a transport equation for the variance of Z. The standard mixture fraction concept established in the case of diffusion flames is here adapted to premixed combustion to describe inhomogeneity of the fuel-air ratio in the control volume. The detailed chemistry is described using a tabulated database for reaction rates and cool flame ignition delay as a function of the progress variable c. The mixing-controlled combustion model is based on the calculation of a characteristic mixing frequency which is a function of the turbulence density, and on the evolution of the available fuel vapor mass in the control volume. The developed combustion model is one sub-model of a thermodynamic model based on the mathematical formulation of the conventional two-zone approach. In addition, an extended sub-model for multi injection is developed to take into account interactions between each spray by describing their impact on the mixture formation. Numerical results from simulations are compared with

  10. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    Science.gov (United States)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for

  11. Combustion of Dried Sewage Sludge in a Fluidized-Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Trnka, Otakar

    2005-01-01

    Roč. 44, č. 10 (2005), s. 3432-3441 ISSN 0888-5885 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized-bed combustion * dried sewage sludge * CO, NOx, and N2O emissions Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.504, year: 2005

  12. Laser fluorescent diagnostics of a plasma of combustion products with an alkali additive

    International Nuclear Information System (INIS)

    Mokhov, A.V.; Nefedov, A.P.

    1993-01-01

    Methods of laser fluorescent determination of sodium atom and hydroxyl molecule (impurity fire component) concentration are described. A method of wide-band detection is presented in detail. A monochromator, its transmission band allowing one to detect all rotational lines of hydroxyl electron-vibrational transition, is used as wide-bond filter. High efficiency of using the methods described in studying the combustion chemistry, kinetics of sodium atom compound production in combustion product plasma and pre-electrode processes is demonstrated. 95 refs., 12 figs., 4 tabs

  13. Effect of Alternative Fuels on SCR Chemistry

    OpenAIRE

    Faramarzi, Simin

    2012-01-01

    In the time line of world industrial age, the most important era begins in the late 18th century when the use of fossil fuels was growing intensively. This approach has continued and developed up to the 20th century. Besides, this trend has had side effects like polluting environment. Air pollution is one of the critical issues nowadays that stems from using hydrocarbon fuels. One type of the problematic compounds in polluting air is nitrogen oxides that can be produced in combustion process ...

  14. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    Science.gov (United States)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  15. Ablation in the slit in combustion

    Science.gov (United States)

    Tairova, A. A.; Belyakov, G. V.; Chervinchuk, S. Yu.

    2017-12-01

    The understanding of the patterns of the front of exothermic reaction propagation in permeable media is necessary for a correct description of both natural and technological processes. The study of mechanisms of combustion and filtration flow in the slit consists in determining the conditions of propagation of melting waves and evaporation in a cocurrent gas flow as well the associated mass loss of the surface material. This paper presents the heat flow effect on the hydrocarbon reservoir model. The poly methyl methacrylate with the boiling point Tboil = 200°C and sublimation heat ΔHsubl = 40.29 kJ/mol was chosen as the model of the hydrocarbon layer, which on heating becomes liquid and gaseous (ethers and methyl methacrylate pairs). Heated gas flows along the slit preliminary created. The flow was maintained by a pump. The gas burner was installed at the entrance to the slit. The heat flow was constant. The impulse of gas flow and the mass loss of the material from the surface of the gap were continuously measured with scales. The pressure in the flow was controlled by the manometer.

  16. CFD Modeling of Fuel Injection and Combustion in an HDDI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Rijk, E.

    2009-07-01

    Siebers concerning liquid length are 12% and 4.5%, respectively. Prediction by Star-CD of fuel penetration is very accurate and performs better compared to the used non-Lagrangian models. The next step in this study is the validation of the hypothesis that emissions of unburnt hydrocarbons (UHC) in engines operating in the Early Direct Injection (EDI) Premixed Charge Compression Ignition (PCCI) regime are mainly caused by the impingement of liquid fuel on the cylinder wall, called wall-wetting. Therefore a dynamic mesh is created in Star-CD, representing a compressing and expanding piston. Fuel is injected at different points in the engine cycle and the calculated amount of wall-wetting is compared with the associated measured amount of UHC emissions. From this comparison, it can be concluded that if conventional DI nozzles are used, wall-wetting is the primary cause for UHC emissions. Because other phenomena can be responsible for these emissions as well, further research is necessary to determine the exact contribution of these phenomena. After diesel spray formation is modeled accurately, the HDDI engine cycle is extended with modeling of combustion. To do so, the Flamelet Generated Manifold (FGM) method is applied. This is a detailed tabulated chemistry approach based on the flamelet concept, wherein both ignition and combustion are included. The manifold is preprocessed using igniting non-premixed flamelets. The species concentrations, density, temperature etc. are stored as function of four control variables in a 4D look-up table. To investigate the interaction between Star-CD and FGM, it is first applied to a constant volume combustion case. From this case, it appears that the interaction works properly and the fuel ignites at the same location as observed in the associated experiment. Ignition delay however proved to be short, due to the used reduced reaction mechanism and interpolation routine. Finally, the FGM approach is used to simulate combustion in an HDDI

  17. Hydrocarbon-soluble calcium hydride: a "worker-bee" in calcium chemistry.

    Science.gov (United States)

    Spielmann, Jan; Harder, Sjoerd

    2007-01-01

    The reactivity of the hydrocarbon-soluble calcium hydride complex [{CaH(dipp-nacnac)(thf)}(2)] (1; dipp-nacnac=CH{(CMe)(2,6-iPr(2)C(6)H(3)N)}(2)) with a large variety of substrates has been investigated. Addition of 1 to C=O and C=N functionalities gave easy access to calcium alkoxide and amide complexes. Similarly, reduction of the C[triple chemical bond]N bond in a cyanide or an isocyanide resulted in the first calcium aldimide complexes [Ca{N=C(H)R}(dipp-nacnac)] and [Ca{C(H)=NR}(dipp-nacnac)], respectively. Complexation of 1 with borane or alane Lewis acids gave the borates and alanates as contact ion pairs. In reaction with epoxides, nucleophilic ring-opening is observed as the major reaction. The high reactivity of hydrocarbon-soluble 1 with most functional groups contrasts strongly with that of insoluble CaH(2), which is essentially inert and is used as a common drying agent. Crystal structures of the following products are presented: [{Ca{OC(H)Ph(2)}(dipp-nacnac)}(2)], [{Ca{N=C(H)Ph}(dipp-nacnac)}(2)], [{Ca{C(H)=NC(Me)(2)CH(2)C(Me)(3)}(dipp-nacnac)}(2)], [{Ca{C(H)=NCy}(dipp-nacnac)}(2)], [Ca(dipp-nacnac)(thf)](+)[H(2)BC(8)H(14)](-) and [{Ca(OCy)(dipp-nacnac)}(2)]. The generally smooth and clean conversions of 1 with a variety of substrates and the stability of most intermediates against ligand exchange make 1 a valuable key precursor in the syntheses of a wide variety of beta-diketiminate calcium complexes.

  18. Cuticular Hydrocarbons of the South American Fruit Fly Anastrepha fraterculus: Variability with Sex and Age

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, Lucie; Svatoš, Aleš; Kroiss, J.; Kaltenpoth, M.; do Nascimento, R. R.; Hoskovec, Michal; Břízová, Radka; Kalinová, Blanka

    2012-01-01

    Roč. 38, č. 9 (2012), s. 1133-1142 ISSN 0098-0331 Institutional support: RVO:61388963 Keywords : Anastrepha fratercules species complex * cuticular hydrocarbons * sex-specific differences * age-dependent production Subject RIV: CC - Organic Chemistry Impact factor: 2.462, year: 2012

  19. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Larry L.

    2008-06-09

    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt

  20. Study of Catalysts and Electrocatalysts for NO{sub x} Removal in Combustion Gases ELECTRONOX Project Final Report; Estudio de Catalizadores y Electrocatalizadores para la Eliminacion de NO{sub x} en Gases de Combustion. Informe Final Proyecto ELECTRONOX

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Martinez, E; Marono Bujan, M; Sanchez-Hervas, J M

    2009-12-11

    The final aim of the ELECTRONOX project was to develop new methodologies and technologies for NO{sub x} removal. To fulfil this objective, studies of selective catalytic reduction of NO{sub x} with hydrocarbons, both conventional and with electrochemical promotion, have been undertaken at pilot plant level, using appropriate catalyst/electrocatalysts configurations and in conditions similar to those required in their possible practical application. None of the catalysts/electrocatalysts studied is active and stable enough, under realistic conditions, to consider its possible industrial application, because the value of NO{sub x} conversion achieved by selective catalytic reduction with hydrocarbons, both conventional and with electrochemical promotion, decreases in presence of the different inhibitors and poisons present in the combustion gas, while the promotional effect on the catalytic activity and selectivity is more pronounced. In addition, the catalysts/electrocatalysts suffer from different deactivation processes, such as: sulphur poisoning, carbon deposition and sintering. However, the developed electrochemical catalyst looks promising for NO{sub x} removal in combustion gases, because it can be promoted under realistic operating conditions. (Author) 23 refs.

  1. From fire whirls to blue whirls and combustion with reduced pollution

    Science.gov (United States)

    Xiao, Huahua; Gollner, Michael J.; Oran, Elaine S.

    2016-08-01

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.

  2. From fire whirls to blue whirls and combustion with reduced pollution.

    Science.gov (United States)

    Xiao, Huahua; Gollner, Michael J; Oran, Elaine S

    2016-08-23

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a "blue whirl." A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.

  3. Turbulent combustion modelization via a tabulation method of detailed kinetic chemistry coupled to Probability Density Function. Application to aeronautical engines; Modelisation de la combustion turbulente via une methode tabulation de la cinetique chimique detaillee couplee a des fonctions densites de probabilite. Application aux foyers aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Rullaud, M

    2004-06-01

    A new modelization of turbulent combustion is proposed with detailed chemistry and probability density functions (PDFs). The objective is to capture temperature and species concentrations, mainly the CO. The PCM-FTC model, Presumed Conditional Moment - Flame Tabulated Chemistry, is based on the tabulation of laminar premixed and diffusion flames to capture partial pre-mixing present in aeronautical engines. The presumed PDFs is introduced to predict averaged values. The tabulation method is based on the analysis of the chemical structure of laminar premixed and diffusion flames. Hypothesis are presented, tested and validated with Sandia experimental data jet flames. Then, the model is introduced in a turbulent flow simulation software. Three configurations are retained to quantify the level of prediction of this formulation: the D and F-Flames of Sandia and lifted jet flames of methane/air of Stanford. A good agreement is observed between experiments and simulations. The validity of this method is then demonstrated. (author)

  4. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall

    International Nuclear Information System (INIS)

    Zhang Wei; Zhang Shucai; Wan Chao; Yue Dapan; Ye Youbin; Wang Xuejun

    2008-01-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing. - Urban road runoff and road dust, canopy throughfall and rain were considered as a system for diagnostics of PAH sources

  5. Application of Pareto-efficient combustion modeling framework to large eddy simulations of turbulent reacting flows

    Science.gov (United States)

    Wu, Hao; Ihme, Matthias

    2017-11-01

    The modeling of turbulent combustion requires the consideration of different physico-chemical processes, involving a vast range of time and length scales as well as a large number of scalar quantities. To reduce the computational complexity, various combustion models are developed. Many of them can be abstracted using a lower-dimensional manifold representation. A key issue in using such lower-dimensional combustion models is the assessment as to whether a particular combustion model is adequate in representing a certain flame configuration. The Pareto-efficient combustion (PEC) modeling framework was developed to perform dynamic combustion model adaptation based on various existing manifold models. In this work, the PEC model is applied to a turbulent flame simulation, in which a computationally efficient flamelet-based combustion model is used in together with a high-fidelity finite-rate chemistry model. The combination of these two models achieves high accuracy in predicting pollutant species at a relatively low computational cost. The relevant numerical methods and parallelization techniques are also discussed in this work.

  6. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  7. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  8. Emissions from co-combustion of wood and household refuse

    International Nuclear Information System (INIS)

    Zhang, X.J.; Peterson, F.

    1996-01-01

    An investigation was carried out on the emissions produced in a 20 kW experimental boiler burning a combination of wood and household refuse. The wood content ranged form 10 to 50%. Direct sampling with Tenax adsorbent was used to cover a range of volatile organic compounds (VOCs). The measurements also included unburned hydrocarbons, carbon monoxide, carbon dioxide, oxygen and flue gas temperature. Combustion and emission parameters were recorded continuously with a multi-point data logger. VOCs were analyzed by gas chromatography and mass spectrometer (GC/MS). The main emphasis was placed on the effect of wood on VOC emissions. The results showed that as the wood content increased from 10 to 50%, there was a roughly linear increase in emissions of total VOCs. Carbon monoxide and unburned hydrocarbon emissions also increased. These results suggest that household refuse is a good substitute for wood as a boiler fuel, as it has a similar calorific value but fewer emissions. (Author)

  9. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  10. Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Bernardo; Novella, Ricardo; Garcia, Antonio; Gargar, Kevin [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia, ES, Campus de Vera, s/n, Edificio 6D. Camino de Vera s/n, 46022 Valencia (Spain)

    2010-02-15

    In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime. The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition. The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC (unburn-hydrocarbons) pollutant emissions. The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines. (author)

  11. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    Science.gov (United States)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  12. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Clifford E. Smith; Steven M. Cannon; Virgil Adumitroaie; David L. Black; Karl V. Meredith

    2005-01-01

    In this project, an advanced computational software tool was developed for the design of low emission combustion systems required for Vision 21 clean energy plants. Vision 21 combustion systems, such as combustors for gas turbines, combustors for indirect fired cycles, furnaces and sequestrian-ready combustion systems, will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. The simulation tool will greatly reduce the number of experimental tests; this is especially desirable for gas turbine combustor design since the cost of the high pressure testing is extremely costly. In addition, the software will stimulate new ideas, will provide the capability of assessing and adapting low-emission combustors to alternate fuels, and will greatly reduce the development time cycle of combustion systems. The revolutionary combustion simulation software is able to accurately simulate the highly transient nature of gaseous-fueled (e.g. natural gas, low BTU syngas, hydrogen, biogas etc.) turbulent combustion and assess innovative concepts needed for Vision 21 plants. In addition, the software is capable of analyzing liquid-fueled combustion systems since that capability was developed under a concurrent Air Force Small Business Innovative Research (SBIR) program. The complex physics of the reacting flow field are captured using 3D Large Eddy Simulation (LES) methods, in which large scale transient motion is resolved by time-accurate numerics, while the small scale motion is modeled using advanced subgrid turbulence and chemistry closures. In this way, LES combustion simulations can model many physical aspects that, until now, were impossible to predict with 3D steady-state Reynolds Averaged Navier-Stokes (RANS) analysis, i.e. very low NOx emissions, combustion instability (coupling of unsteady heat and acoustics), lean blowout, flashback, autoignition, etc. LES methods are becoming more and more practical by linking together tens

  13. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon

    KAUST Repository

    Kim, Daesang

    2015-07-01

    formation of charges during hydrocarbon combustion. © 2015 The Combustion Institute.

  14. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon

    KAUST Repository

    Kim, Daesang; Rizzi, Francesco; Cheng, Kwok Wah; Han, Jie; Bisetti, Fabrizio; Knio, Omar Mohamad

    2015-01-01

    formation of charges during hydrocarbon combustion. © 2015 The Combustion Institute.

  15. Behaviour of Inorganic Constituents of Municipal Sewage Sludge during Fluidized-Bed Combustion.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 61, 3 (2007) , s. 181-185 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : sewage sludge * heavy metals * fluidized-bed combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.367, year: 2007

  16. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-05

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.

  17. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  18. Opportunities for development of non-traditional hydrocarbon resources in the Timan-North Ural region, taking into account ecosystem services

    Directory of Open Access Journals (Sweden)

    I. G. Burtseva

    2017-12-01

    Full Text Available The authors formulate the definition of non-traditional resources from geological-genetic, technological and economic viewpoints. The authors present a detailed assessment of the resource potential of non-traditional hydrocarbon raw material in the Timan-Severouralsk region, including hydrocarbons in the deposits of the domanic type, methane of coal seams, liquid and gaseous hydrocarbons potentially extracted from black, brown coal and combustible shales. The authors also show the main directions of industrial use of coal and oil shales. The assessment of the resource potential of hydrocarbon raw materials in the deposits of the domanic type varies widely; the recoverable resources may amount to about 1 billion tons. Bituminous coals with a high volatile yield have the highest degree of conversion to liquid hydrocarbons, and brown and black coals of with a low degree of metamorphism usually serve for the production of combustible gas and primary resin. The paper describes the option of developing oil shale deposits as a possible investment project. The determined components and overall values of the economic effect from the implementation of the projects under consideration allow us to estimate that the payback period of investments does not exceed seven years. There is also a social effect: the creation of an additional 550 jobs in the operation of the quarry and about 700 jobs – in the enrichment and processing of oil shales. The estimated annual volume of output is 25–30 billion rubles, and the volume of tax revenues – up to 100 billion rubles. The authors evaluated ecosystem services in the territories of potential industrial development of coal and oil shale deposits; identified the beneficiaries of the benefits from the use of environmental services and the possibility of calculating payments.

  19. Insights into the chemistry of the Claus reaction furnace and waste heat boiler

    International Nuclear Information System (INIS)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    1997-01-01

    Methods to deal with the unwanted by-product of acid-gas combustion in the Claus reaction furnace were presented. The by-product, carbon disulfide (CS 2 ), is disturbing because if it is not converted to H 2 S in the first catalytic converter, it will appear as a sulfur emission in the tail gas of plants not using reductive clean-up technology. To address this issue, Claus catalysts have been designed specifically for CS 2 hydrolysis. Studies have been conducted to determine what type of hydrocarbons lead to CS 2 formation. It was concluded that all hydrocarbons result in CS 2 production, but that benzene is particularly difficult. Data for a wide range of acid gas compositions and contaminant hydrocarbons at different process conditions was presented. Methods to destroy CS 2 in the furnace were also identified

  20. Variability of total and mobile element contents in ash derived from biomass combustion

    Czech Academy of Sciences Publication Activity Database

    Száková, J.; Ochecová, P.; Hanzlíček, Tomáš; Perná, Ivana; Tlustoš, P.

    2013-01-01

    Roč. 67, č. 11 (2013), s. 1376-1385 ISSN 0366-6352 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : biomass combustion * fly ash * bottom ash * element contents Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.193, year: 2013

  1. Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah.

    Science.gov (United States)

    Lyman, Seth N; Watkins, Cody; Jones, Colleen P; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan

    2017-10-17

    We measured fluxes of methane, nonmethane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m -2 h -1 . Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6 × 10 -4 (1.6 × 10 -4 , 1.6 × 10 -3 )% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.

  2. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    Science.gov (United States)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  3. On the formulation and assessment of flamelet-generated manifolds applied to two-phase turbulent combustion

    Science.gov (United States)

    Bojko, Brian T.

    Accounting for the effects of finite rate chemistry in reacting flows is intractable when considering the number of species and reactions to be solved for during a large scale flow simulation. This is especially complicated when solid/liquid fuels are also considered. While modeling the reacting boundary layer with the use of finite-rate chemistry may allow for a highly accurate description of the coupling between the flame and fuel surface, it is not tractable in large scale simulations when considering detailed chemical kinetics. It is the goal of this research to investigate a Flamelet-Generated Manifold (FGM) method in order to reduce the finite rate chemistry to a lookup table cataloged by progress variables and queried during runtime. In this study, simplified unsteady 1D flames with mass blowing are considered for a solid biomass fuel where the FGM method is employed as a model reduction strategy for potential application to multidimensional calculations. Two types of FGM are considered. The first are a set of steady-state flames differentiated by their scalar dissipation rate. Results show the use of steady flames produce unacceptable errors compared to the finite-rate chemistry solution, with temperature errors in excess of 45%. To avoid these errors, a new methodology for developing an unsteady FGM (UFGM) is presented that accounts for unsteady diffusion effects and greatly reduces errors in temperature with differences that are under 10%. The FGM modeling is then extended to individual droplet combustion with the development of a Droplet Flamelet-Generated Manifold (DFGM) to account for the effects of finite-rate chemistry of individual droplets. A spherically symmetric droplet model is developed for methanol and aluminum. The inclusion of finite-rate chemistry allows the capturing of the transition from diffusion to kinetically controlled combustion as the droplet diameter decreases. The droplet model is then used to create a DFGM by successively

  4. My search for carbocations and their role in chemistry

    International Nuclear Information System (INIS)

    Olah, George Andrew

    1995-01-01

    Hydrocarbons are compounds of the elements carbon and hydrogen. They make up natural gas and oil thus is essential for our modern life. Burning of hydrocarbons is used to generate energy in our power plants and heat our homes. Derived gasoline and diesel oil propel our cars, trucks, and airplanes. Hydrocarbons are also the feedstock for practically every man-made material from plastic to pharmaceuticals. What nature is giving us needs, however, to be processed and modified. We will eventually also need to make hydrocarbons ourselves, as our natural resources are depleted. Many of the used processes are acid catalyzed involving chemical reactions proceeding through positive ion intermediates. Consequently, the knowledge of these intermediates and their chemistry is of substantial significance both as fundamental, as well as practical science. Carbocations are the positive ions of carbon compounds. It was in 1901 that Norris and Kehrman independently discovered that colorless triphenylmethyl alcohol gave deep yellow solutions in concentrated sulfuric acid. Triphenylmethyl chloride similarly formed orange complexes with aluminum and tin chlorides

  5. Kinetics in Gas Mixtures for Problem of Plasma Assisted Combustion

    Science.gov (United States)

    2010-05-01

    precautions: in the case of relatively low elec- tron density, as it is realized for N2 or for O2, non–zero background due to accumulation of residual electron...and Lave L B 2003 Evaluating automobile fuel/propulsion system technologies Progress in Energy and Combustion Science 29 (2003) 1--69 [11] Polak L S...43 79—110 [41] Janev R K and Reiter D 2004 Collision processes of C2,3Hy and C2,3H + y hydrocarbons with electrons and protons Phys. Plasmas 11 780—829

  6. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  7. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  8. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El

    2017-06-23

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  9. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El; Mehl, Marco; Pitz, William J.; Mohamed, Samah; Sarathy, Mani

    2017-01-01

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  10. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    International Nuclear Information System (INIS)

    Steven Cannon; Baifang Zuo; Virgil Adumitroaie; Keith McDaniel; Clifford Smith

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished

  11. Adsorption of polycyclic aromatic hydrocarbons at the air-water interface: Molecular dynamics simulations and experimental atmospheric observations

    Czech Academy of Sciences Publication Activity Database

    Vácha, Robert; Jungwirth, Pavel; Chen, J.; Valsaraj, K.

    2006-01-01

    Roč. 8, č. 38 (2006), s. 4461-4467 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LC512; GA MŠk(CZ) ME 644 Grant - others:NSF(US) CHE0431312; NSF(US) CHE0209719; NSF(US) ATM-0355291 Institutional research plan: CEZ:AV0Z40550506 Keywords : polycyclic aromatic hydrocarbons * water surface * molecular dynamics simulations * heterogeneous atmospheric chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2006

  12. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    Science.gov (United States)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural

  13. Optimization of pulverised coal combustion by means of CFD/CTA modeling

    Directory of Open Access Journals (Sweden)

    Filkoski Risto V.

    2006-01-01

    Full Text Available The objective of the work presented in this paper was to apply a method for handling two-phase reacting flow for prediction of pulverized coal combustion in large-scale boiler furnace and to assess the ability of the model to predict existing power plant data. The paper presents the principal steps and results of the numerical modeling of power boiler furnace with tangential disposition of the burners. The computational fluid dynamics/computational thermal analysis (CFD/CTA approach is utilized for creation of a three-dimensional model of the boiler furnace, including the platen superheater in the upper part of the furnace. Standard k-e model is employed for description of the turbulent flow. Coal combustion is modeled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Radiation heat transfer is computed by means of the simplified P-N model, based on the expansion of the radiation intensity into an orthogonal series of spherical harmonics. Some distinctive results regarding the examined boiler performance in capacity range between 65 and 95% are presented graphically. Comparing the simulation predictions and available site measurements concerning temperature, heat flux and combustion efficiency, a conclusion can be drawn that the model produces realistic insight into the furnace processes. Qualitative agreement indicates reasonability of the calculations and validates the employed sub-models. After the validation and verification of the model it was used to check the combustion efficiency as a function of coal dust sieve characteristics, as well as the impact of burners modification with introduction of over fire air ports to the appearance of incomplete combustion, including CO concentration, as well as to the NOx concentration. The described case and other experiences with CFD/CTA stress the advantages of numerical modeling and

  14. A comprehensive experimental and modeling study of 2-methylbutanol combustion

    KAUST Repository

    Park, Sungwoo

    2015-05-01

    2-Methylbutanol (2-methyl-1-butanol) is one of several next-generation biofuels that can be used as an alternative fuel or blending component for combustion engines. This paper presents new experimental data for 2-methylbutanol, including ignition delay times in a high-pressure shock tube and premixed laminar flame speeds in a constant volume combustion vessel. Shock tube ignition delay times were measured for 2-methylbutanol/air mixtures at three equivalence ratios, temperatures ranging from 750 to 1250. K, and at nominal pressures near 20 and 40. bar. Laminar flame speed data were obtained using the spherically propagating premixed flame configuration at pressures of 1, 2, and 5. bar. A detailed chemical kinetic model for 2-methylbutanol oxidation was developed including high- and low-temperature chemistry based on previous modeling studies on butanol and pentanol isomers. The proposed model was tested against new and existing experimental data at pressures of 1-40. atm, temperatures of 740-1636. K, equivalence ratios of 0.25-2.0. Reaction path and sensitivity analyses were conducted for identifying key reactions at various combustion conditions, and to obtain better understanding of the combustion characteristics of larger alcohols.

  15. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  16. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles

    Czech Academy of Sciences Publication Activity Database

    Múčka, V.; Buňata, M.; Čuba, V.; Silber, R.; Juha, Libor

    2015-01-01

    Roč. 112, Jul (2015), s. 108-116 ISSN 0969-806X R&D Projects: GA ČR GA13-28721S Institutional support: RVO:68378271 Keywords : chlorinated hydrocarbons * TCE * PCE * PCBs * dechlorination * gamma irradiation * modifiers * cell membrane permeability Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.207, year: 2015

  17. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters

    Czech Academy of Sciences Publication Activity Database

    Horká, Petra; Vrkoslav, Vladimír; Hanus, Robert; Pecková, K.; Cvačka, Josef

    2014-01-01

    Roč. 49, č. 7 (2014), s. 628-638 ISSN 1076-5174 R&D Projects: GA ČR GA203/09/0139 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * lipids * lithium attachment * MALDI matrix * waxes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.379, year: 2014

  18. Optimization of CeO2-ZrO2 mixed oxide catalysts for ethyl acetate combustion

    Czech Academy of Sciences Publication Activity Database

    Dimitrov, M.; Ivanova, R.; Štengl, Václav; Henych, Jiří; Kovacheva, D.; Tsoncheva, T.

    2015-01-01

    Roč. 47, č. 1 (2015), s. 323-329 ISSN 0324-1130 Institutional support: RVO:61388980 Keywords : nanosized CeO2-ZrO2 * mixed oxide phase * ethyl acetate combustion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.229, year: 2015

  19. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System

    Directory of Open Access Journals (Sweden)

    Rafał Ślefarski

    2018-02-01

    Full Text Available Application of a pre-combustion chamber (PCC ignition system is one of the methods to improve combustion stability and reduce toxic compounds emission, especially NOx. Using PCC allows the operation of the engine at lean combustion conditions or the utilization of low calorific gaseous fuels such as syngas or biogas. The paper presents the results of an experimental study of the combustion process in two stroke, large bore, stationary gas engine GMVH 12 equipped with two spark plugs (2-SP and a PCC ignition system. The experimental research has been performed during the normal operation of the engine in an industrial compression station. It was observed that application of PCC provides less cycle-to-cycle combustion variation (more than 10% and nitric oxide and carbon monoxide emissions decreased to 60% and 26% respectively. The total hydrocarbon (THC emission rate is 25% higher for the engine equipped with PCC, which results in roughly two percent engine efficiency decrease. Another important criterion of engine retrofitting was the PCC location in the engine head. The experimental results show that improvement of engine operating parameters was recorded only for a configuration with one port offset by 45° from the axis of the main chamber. The study of the ignition delay angle and equivalence ratio in PCC did not demonstrate explicit influence on engine performance.

  20. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  1. Process for gasification of heavy hydrocarbons or salvaged oil. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C

    1978-09-14

    The invention refers to the separation of solids which are carried over during evaporation of salvaged oil (oil recovered from used oil or fat). They are removed by exposing the oil vapour to an acceleration of 500 g to 20,000g in a hot gas cyclone. Subsequently the cleaned gas is converted to fission gas in a fission gas generator using an air-water gas mixture and is taken to the combustion equipment. By this process salvaged oil and heavy hydrocarbons can be used for burning in Diesel engines without previous refining.

  2. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Science.gov (United States)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  3. Optimal Bayesian Experimental Design for Combustion Kinetics

    KAUST Repository

    Huan, Xun

    2011-01-04

    Experimental diagnostics play an essential role in the development and refinement of chemical kinetic models, whether for the combustion of common complex hydrocarbons or of emerging alternative fuels. Questions of experimental design—e.g., which variables or species to interrogate, at what resolution and under what conditions—are extremely important in this context, particularly when experimental resources are limited. This paper attempts to answer such questions in a rigorous and systematic way. We propose a Bayesian framework for optimal experimental design with nonlinear simulation-based models. While the framework is broadly applicable, we use it to infer rate parameters in a combustion system with detailed kinetics. The framework introduces a utility function that reflects the expected information gain from a particular experiment. Straightforward evaluation (and maximization) of this utility function requires Monte Carlo sampling, which is infeasible with computationally intensive models. Instead, we construct a polynomial surrogate for the dependence of experimental observables on model parameters and design conditions, with the help of dimension-adaptive sparse quadrature. Results demonstrate the efficiency and accuracy of the surrogate, as well as the considerable effectiveness of the experimental design framework in choosing informative experimental conditions.

  4. Thermogravimetric and Kinetic Analysis of Raw and Torrefied Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Kopczyński Marcin

    2015-06-01

    Full Text Available The use of torrefied biomass as a substitute for untreated biomass may decrease some technological barriers that exist in biomass co-firing technologies e.g. low grindability, high moisture content, low energy density and hydrophilic nature of raw biomass. In this study the TG-MS-FTIR analysis and kinetic analysis of willow (Salix viminalis L. and samples torrefied at 200, 220, 240, 260, 280 and 300 °C (TSWE 200, 220, 240, 260, 280 and 300, were performed. The TG-DTG curves show that in the case of willow and torrefied samples TSWE 200, 220, 240 and 260 there are pyrolysis and combustion stages, while in the case of TSWE 280 and 300 samples the peak associated with the pyrolysis process is negligible, in contrast to the peak associated with the combustion process. Analysis of the TG-MS results shows m/z signals of 18, 28, 29 and 44, which probably represent H2O, CO and CO2. The gaseous products were generated in two distinct ranges of temperature. H2O, CO and CO2 were produced in the 500 K to 650 K range with maximum yields at approximately 600 K. In the second range of temperature, 650 K to 800 K, only CO2 was produced with maximum yields at approximately 710 K as a main product of combustion process. Analysis of the FTIR shows that the main gaseous products of the combustion process were H2O, CO2, CO and some organics including bonds: C=O (acids, aldehydes and ketones, C=C (alkenes, aromatics, C-O-C (ethers and C-OH. Lignin mainly contributes hydrocarbons (3000-2800 cm−1, while cellulose is the dominant origin of aldehydes (2860-2770 cm−1 and carboxylic acids (1790-1650 cm−1. Hydrocarbons, aldehydes, ketones and various acids were also generated from hemicellulose (1790-1650 cm−1. In the kinetic analysis, the two-steps first order model (F1F1 was assumed. Activation energy (Ea values for the first stage (pyrolysis increased with increasing torrefaction temperature from 93 to 133 kJ/mol, while for the second stage (combustion it

  5. TEM investigations of microstructures of combustion aerosols

    International Nuclear Information System (INIS)

    Marquardt, A.; Hackfort, H.; Borchardt, J.; Schober, T.; Friedrich, J.

    1992-12-01

    In the incineration of organic material, apart from a series of gaseous pollutants, particulate pollutants or combustion aerosols also arise. The latter frequently consist of particles with a solid core of carbon to which a large number of inorganic and organic compounds are attached. These primarily include the polycyclic aromatic hydrocarbons (PAH) and their nitro-derivatives (NPAH), whose mutagenic or carcinogenic effect is known. The invisible particle sizes in the nanometer range, whose retention in the incineration off-gas is not state of the art, are of increasing significance for man and environment. On the one hand, they are deposited almost completely in the human lung. On the other hand, due to their fine dispersity they have along residence time in the atmosphere where they participate in chemical reactions and climatically significant processes. Important insights about the formation process of combustion aerosols are to be expected from the imaging of their microstructures in the transmission electron microscope (TEM). The present contribution describes the development and application of a representative sampling procedure for aerosols from a partial flow of flue gas from a fluidized-bed furnace. The method developed consists of electrically charging aerosol particles in situ and subsequently selectively precipitating them onto a microscope slide in an electric field. TEM studies of aerosol microstructures on the microscope slides revealed that in the combustion of petrol and heating oil under different combustion conditions in principle the same particle structures result, whereas in the incineration of used lubricating oil quite different particle structures were found. Results from the literature on aerosol microstructures in exhaust gases from petrol and diesel engines demonstrate agreement with the results of this study in the basic structure of the particles. (orig.) [de

  6. Predictions of the product compositions for combustion or gasification of biomass and others hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Hendrick Maxil Zarate; Itai, Yuu; Nogueira, Manoel Fernandes Martins; Moraes, Sinfronio Brito; Rocha, Brigida Ramati Pereira da [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Faculdade de Engenharia Mecanica]. E-mails: hendrick@ufpa.br; yuuitai@ufpa.br; mfmn@ufpa.br; sbrito@ufpa.br; brigida@ufpa.br

    2008-07-01

    Processes involving combustion and gasification are object of study of many researchers. To simulate these processes in a detailed way, it is necessary to solve equations for chemical kinetics whose resolution many times is difficult due lack of information in the literature a simples way to bypass tis problem is due the chemical equilibrium. Prediction of the flu gases composition through chemical equilibrium is an important step in the mathematical modelling for gasification and combustion processes. Some free programs exists to solve problems that involve the chemical equilibrium, such as STANJAN, CEA, GASEQ, CANTERA and others.These programs have difficulty for cases involving fuel such as: biomass, vegetable oils, biodiesel, natural gas, etc., because they do not have database with the fuel composition and is hard to supply their HHV and their elementary analysis. In this work, using numeric methods, a program was developed to predict the gases composition on equilibrium after combustion and gasification processes with the for constant pressure or volume. In the program the chemical formula of the fuel is defined as C{sub x}H{sub y}O{sub z}N{sub w}S{sub v}A{sub u} that reacts with an gaseous oxidizer composed by O{sub 2}, N{sub 2}, Ar, He, CO{sub 2} e H{sub 2}O to have as final result the composition of the products CO{sub 2}, CO, H{sub 2}O, H{sub 2}, H, OH, O{sub 2}, O, N{sub 2}, NO, SO{sub 2}, CH{sub 4}, Ar, He, and ash. To verify the accuracy of the calculated values, it was compared with the program CEA (developed by NASA) and with experimental data obtained from literature. (author)

  7. The Chemistry of Extragalactic Carbon Stars

    Science.gov (United States)

    Woods, Paul; Walsh, C.; Cordiner, M. A.; Kemper, F.

    2013-01-01

    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations.

  8. Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires

    International Nuclear Information System (INIS)

    Olsen, K.B.; Wright, C.W.; Veverka, C.; Ball, J.C.; Stevens, R.

    1995-03-01

    Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 x 10 6 barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ''super'' plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed

  9. Blends of butanol and hydrotreated vegetable oils as drop-in replacement for diesel engines: Effects on combustion and emissions

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek-Lom, M.; Beránek, V.; Mikuška, Pavel; Křůmal, Kamil; Coufalík, Pavel; Sikorová, Jitka; Topinka, Jan

    2017-01-01

    Roč. 197, JUN (2017), s. 407-421 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA13-01438S Institutional support: RVO:68081715 ; RVO:68378041 Keywords : renewable diesel * engine * combustion Subject RIV: CB - Analytical Chemistry, Separation; DN - Health Impact of the Environment Quality (UEM-P) OBOR OECD: Analytical chemistry; Energy and fuels (UEM-P) Impact factor: 4.601, year: 2016

  10. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  11. Combustion waves and fronts in flows flames, shocks, detonations, ablation fronts and explosion of stars

    CERN Document Server

    Clavin, Paul

    2016-01-01

    Combustion is a fascinating phenomenon coupling complex chemistry to transport mechanisms and nonlinear fluid dynamics. This book provides an up-to-date and comprehensive presentation of the nonlinear dynamics of combustion waves and other non-equilibrium energetic systems. The major advances in this field have resulted from analytical studies of simplified models performed in close relation with carefully controlled laboratory experiments. The key to understanding the complex phenomena is a systematic reduction of the complexity of the basic equations. Focusing on this fundamental approach, the book is split into three parts. Part I provides physical insights for physics-oriented readers, Part II presents detailed technical analysis using perturbation methods for theoreticians, and Part III recalls the necessary background knowledge in physics, chemistry and fluid dynamics. This structure makes the content accessible to newcomers to the physics of unstable fronts in flows, whilst also offering advanced mater...

  12. Factors affecting elimination of polycyclic aromatic hydrocarbons from traditional smoked common carp meat

    Science.gov (United States)

    Babić, J.; Vidaković, S.; Škaljac, S.; Kartalović, B.; Ljubojević, D.; Ćirković, M.; Teodorović, V.

    2017-09-01

    Smoking techniques have been progressively improved and different procedures have been developed in different regions for treating fish. In these times, the technology is mainly used for enrichment of fish with specific taste and odour, to extend the shelf-life of these perishable products and appearance required widely on the market. A lot of chemical contaminants such as polycyclic aromatic hydrocarbons (PAHs) are formed during the combustion of fuel in the smoking process. PAHs are a group of compounds that have been the subject of great concern in the recent years due to their toxic, mutagenic and/or carcinogenic potentials to humans. These fact can have a significant impact on the acceptance of these products by consumers. In this review article, the objective is to describe factors affecting elimination of polycyclic aromatic hydrocarbons from traditional smoked common carp meat.

  13. Experimental study on the combustion characteristics of liquid fuel in the straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fei; Li, JunWei; Zhou, ZhaoQiu; Zhang, Xin; Wang, NingFei [Beijing Institute of Technology, Beijing (China). School of Aerospace Engineering

    2013-07-01

    This study investigates combustion characteristics of liquid hydrocarbon fuel (n-heptane, c7h16) under different operating conditions. In the paper we designed a burner consisting of a stainless steel capillary which is used to dump the fuel and a larger stainless steel tube (or quartz tube) used as a combustion chamber. The inner diameter (ID) of the capillary is 0.24 mm, the inner and external diameter of the larger tube is 4 and 6 mm, respectively. According to the experimental results, the combustion process reaches a stable status after about 100 s. Wall temperature distribution and combustion products are analyzed under conditions with different equivalence ratios, gas flow velocities and materials. As equivalence ratio (ER) whose range is in 0.56-1.08 increases, the wall temperature declines, and wall temperature gradient increases slightly. The range of gas flow velocity is in 0.6-1 m/s, the overall trend of wall temperature distribution is the second point from left boundary as a line, the wall temperature distribution of the four points in the right side increases with the flow velocity increasing, but the left point is rapidly declining. When the burner made of stainless steel, the wall temperature distribution varies slightly due to the larger thermal conductivity of stainless steel than that of quartz, which makes the heat transfer in stainless steel faster and the temperature distribution is more uniform. The thermodynamic calculation software is also used to study the compositions of combustion products. In a word, this structure of the burner shows poor combustion characteristics, we should change the structure and the experimental conditions to achieve better combustion characteristics in the future.

  14. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  15. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.

    Science.gov (United States)

    Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita

    2008-01-01

    This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.

  16. Catalytic reduction of emissions from small scale wood combustion. State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Silversand, F.A. [Katator AB, Lund (Sweden)

    1998-12-31

    Small-scale combustion of big-fuel often results in excessive emissions of volatile organic compounds (VOC), polyaromatic compounds (PAM) and carbon monoxide (CO). These compounds have a negative impact on human health and urban air quality. The predominant volatile organic compounds present in flue gases from big-fuel combustion are propylene, ethylene, butadiene, methanol, ethanol, methane, phenol and benzene. The poor combustion performance of some wood stoves has in certain cases led to legislation against small-scale combustion of big-fuel in urban areas. Catalytic cleaning is one very efficient way of decreasing the environmental impacts of big-fuel combustion. Several studies concerning catalytic purification of flue gases from big-fuel combustion have been presented over the years. Several problems must be addressed when designing a catalyst for this application: Clogging problems from deposition of ashes and particulates in the catalyst; Catalyst poisoning by sulphur, phosphorus, alkali metals etc.; Catalyst fouling due to deposition of ashes and particulates; Catalyst overheating at high flue-gas temperatures and Poor catalyst performance during start-up Most studies have been focused on monolith-type catalysts and- the conversion of CO, VOC and PAH typically is above 80 %. The observed problems are associated with increased pressure drop due to catalyst clogging and decreased catalyst performance due to fouling and poisoning. In most cases precious metals, preferably Pt. have been used as active combustion catalyst. Precious metals have a high activity for the combustion of CO and hydrocarbons and a fair stability against poisoning with compounds present in flue gases from big-fuel, e.g. sulphur and alkali metals. The majority of the studies on precious metals have been focused on Pt. Rh and Pd, which are especially active in catalytic combustion. Some metal oxides are used in catalytic combustion, especially at low temperatures (e.g. in VOC abatement

  17. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    International Nuclear Information System (INIS)

    George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished

  18. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  19. On mathematical modeling and numerical simulation of chemical kinetics in turbulent lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilleberg, Bjorn

    2011-07-01

    This thesis investigates turbulent reacting lean premixed flows with detailed treatment of the chemistry. First, the fundamental equations which govern laminar and turbulent reacting flows are presented. A perfectly stirred reactor numerical code is developed to investigate the role of unmixedness and chemical kinetics in driving combustion instabilities. This includes both global single-step and detailed chemical kinetic mechanisms. The single-step mechanisms predict to some degree a similar behavior as the detailed mechanisms. However, it is shown that simple mechanisms can by themselves introduce instabilities. Magnussens Eddy Dissipation Concept (EDC) for turbulent combustion is implemented in the open source CFD toolbox OpenFOAM R for treatment of both fast and detailed chemistry. RANS turbulence models account for the turbulent compressible flow. A database of pre-calculated chemical time scales, which contains the influence of chemical kinetics, is coupled to EDC with fast chemistry to account for local extinction in both diffusion and premixed flames. Results are compared to fast and detailed chemistry calculations. The inclusion of the database shows significantly better results than the fast chemistry calculations while having a comparably small computational cost. Numerical simulations of four piloted lean premixed jet flames falling into the 'well stirred reactor/broken reaction zones' regime, with strong finite-rate chemistry effects, are performed. Measured and predicted scalars compare well for the two jets with the lowest velocities. The two jets with the highest velocities experience extinction and reignition, and the simulations are able to capture the decrease and increase of the OH mass fractions, but the peak values are higher than in the experiments. Also numerical simulations of a lean premixed lifted jet flame with high sensitivity to turbulence modeling and chemical kinetics are performed. Limitations of the applied turbulence and

  20. A new adsorption isotherm for C5 hydrocarbons on metal–organic framework Cu3(BTC)2

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Kubů, Martin

    2015-01-01

    Roč. 21, 1-2 (2015), s. 99-105 ISSN 0929-5607 R&D Projects: GA ČR GA14-07101S Institutional support: RVO:61388955 Keywords : Cu3(BTC)2 * adsorption * C5 hydrocarbons Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2015

  1. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  2. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  3. Sources and distribution of aromatic hydrocarbons in a tropical marine protected area estuary under influence of sugarcane cultivation.

    Science.gov (United States)

    Arruda-Santos, Roxanny Helen de; Schettini, Carlos Augusto França; Yogui, Gilvan Takeshi; Maciel, Daniele Claudino; Zanardi-Lamardo, Eliete

    2018-05-15

    Goiana estuary is a well preserved marine protected area (MPA) located on the northeastern coast of Brazil. Despite its current state, human activities in the watershed represent a potential threat to long term local preservation. Dissolved/dispersed aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were investigated in water and sediments across the estuarine salt gradient. Concentration of aromatic hydrocarbons was low in all samples. According to results, aromatic hydrocarbons are associated to suspended particulate matter (SPM) carried to the estuary by river waters. An estuarine turbidity maximum (ETM) was identified in the upper estuary, indicating that both sediments and contaminants are trapped prior to an occasional export to the adjacent sea. PAHs distribution in sediments were associated with organic matter and mud content. Diagnostic ratios indicated pyrolytic processes as the main local source of PAHs that are probably associated with sugarcane burning and combustion engines. Low PAH concentrations probably do not cause adverse biological effects to the local biota although their presence indicate anthropogenic contamination and pressure on the Goiana estuary MPA. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  5. Direct numerical simulations of turbulent lean premixed combustion

    International Nuclear Information System (INIS)

    Sankaran, Ramanan; Hawkes, Evatt R; Chen, Jacqueline H; Lu Tianfeng; Law, Chung K

    2006-01-01

    In recent years, due to the advent of high-performance computers and advanced numerical algorithms, direct numerical simulation (DNS) of combustion has emerged as a valuable computational research tool, in concert with experimentation. The role of DNS in delivering new Scientific insight into turbulent combustion is illustrated using results from a recent 3D turbulent premixed flame simulation. To understand the influence of turbulence on the flame structure, a 3D fully-resolved DNS of a spatially-developing lean methane-air turbulent Bunsen flame was performed in the thin reaction zones regime. A reduced chemical model for methane-air chemistry consisting of 13 resolved species, 4 quasi-steady state species and 73 elementary reactions was developed specifically for the current simulation. The data is analyzed to study possible influences of turbulence on the flame thickness. The results show that the average flame thickness increases, in qualitative agreement with several experimental results

  6. Reduced chemical kinetic mechanisms for hydrocarbon fuels

    International Nuclear Information System (INIS)

    Montgomery, C.J.; Cremer, M.A.; Heap, M.P.; Chen, J-Y.; Westbrook, C.K.; Maurice, L.Q.

    1999-01-01

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, a variety of different reduced chemical kinetic mechanisms for ethylene and n-heptane have been generated. The reduced mechanisms have been compared to detailed chemistry calculations in simple homogeneous reactors and experiments. Reduced mechanisms for combustion of ethylene having as few as 10 species were found to give reasonable agreement with detailed chemistry over a range of stoichiometries and showed significant improvement over currently used global mechanisms. The performance of reduced mechanisms derived from a large detailed mechanism for n-heptane was compared to results from a reduced mechanism derived from a smaller semi-empirical mechanism. The semi-empirical mechanism was advantageous as a starting point for reduction for ignition delay, but not for PSR calculations. Reduced mechanisms with as few as 12 species gave excellent results for n-heptane/air PSR calculations but 16-25 or more species are needed to simulate n-heptane ignition delay

  7. Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, Lucie; Virgilio, M.; Tomčala, Aleš; Břízová, Radka; Ekesi, S.; Hoskovec, Michal; Kalinová, Blanka; do Nascimento, R. R.; De Meyer, M.

    2014-01-01

    Roč. 104, č. 5 (2014), s. 631-638 ISSN 0007-4853 Institutional support: RVO:61388963 Keywords : cryptic species complex * genus Ceratitis * cuticular hydrocarbons * polymorphic microsatellite loci * chemotaxonomy Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.910, year: 2014

  8. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    Combustion system development in power generation is discussed ranging from the pre-environmental era in which the objectives were complete combustion with a minimum of excess air and the capability of scale up to increased boiler unit performances, through the environmental era (1970-), in which reduction of combustion generated pollution was gaining increasing importance, to the present and near future in which a combination of clean combustion and high thermodynamic efficiency is considered to be necessary to satisfy demands for CO{sub 2} emissions mitigation. From the 1970's on, attention has increasingly turned towards emission control technologies for the reduction of oxides of nitrogen and sulfur, the so-called acid rain precursors. By a better understanding of the NO{sub x} formation and destruction mechanisms in flames, it has become possible to reduce significantly their emissions via combustion process modifications, e.g. by maintaining sequentially fuel-rich and fuel-lean combustion zones in a burner flame or in the combustion chamber, or by injecting a hydrocarbon rich fuel into the NO{sub x} bearing combustion products of a primary fuel such as coal. Sulfur capture in the combustion process proved to be more difficult because calcium sulfate, the reaction product of SO{sub 2} and additive lime, is unstable at the high temperature of pulverised coal combustion. It is possible to retain sulfur by the application of fluidised combustion in which coal burns at much reduced combustion temperatures. Fluidised bed combustion is, however, primarily intended for the utilisation of low grade, low volatile coals in smaller capacity units, which leaves the task of sulfur capture for the majority of coal fired boilers to flue gas desulfurisation. During the last decade, several new factors emerged which influenced the development of combustion for power generation. CO{sub 2} emission control is gaining increasing acceptance as a result of the international

  9. Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: Concentrations, composition, and associated risks to protected sea otters

    International Nuclear Information System (INIS)

    Harris, Kate A.; Yunker, Mark B.; Dangerfield, Neil; Ross, Peter S.

    2011-01-01

    Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills. - Highlights: → Sediment hydrocarbon signatures differed between remote and impacted coastal sites. → A natural background comprised terrestrial plant alkanes and petrogenic PAHs. → Impacted sites reflected a history of petrogenic and pyrogenic hydrocarbon inputs. → Hydrocarbons at some sites exceeded guidelines for the protection of aquatic life. → Protected sea otters may thus be at risk as they rely primarily on benthic prey. - Anthropogenically-derived hydrocarbons in coastal sediments in British Columbia may pose a risk to protected sea otters.

  10. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    Directory of Open Access Journals (Sweden)

    Alfredas Rimkus

    2016-09-01

    Full Text Available In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume gasoline mixtures and additionally supplied oxygen and hydrogen (HHO gas mixture (3.6 l/min in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during combustion phase and decreases effective specific fuel consumption. Buthanol addition decreases the rate of heat release, the combustion temperature and pressure are lower which have an influence on lower nitrous oxide (NOx emission in exhaust gases. Buthanol lowers hydrocarbon (HC formation, but it increases carbon monoxide (CO concentration and fuel consumption. Combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced buthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved when engine is working with optimal spark timing, as it would work on gasoline fuel.

  11. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  12. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  13. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  14. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    Science.gov (United States)

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comprehensive Mechanisms for Combustion Chemistry: An Experimental and Numerical Study with Emphasis on Applied Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, Frederick L.

    2009-04-10

    This project was an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work were conducted in large-diameter flow reactors, at 0.3 to 18 atm pressure, 500 to 1100 K temperature, and 10-2 to 2 seconds reaction time. Experiments were also conducted to determine reference laminar flame speeds using a premixed laminar stagnation flame experiment and particle image velocimetry, as well as pressurized bomb experiments. Flow reactor data for oxidation experiments include: (1)adiabatic/isothermal species time-histories of a reaction under fixed initial pressure, temperature, and composition; to determine the species present after a fixed reaction time, initial pressure; (2)species distributions with varying initial reaction temperature; (3)perturbations of a well-defined reaction systems (e.g. CO/H2/O2 or H2/O2)by the addition of small amounts of an additive species. Radical scavenging techniques are applied to determine unimolecular decomposition rates from pyrolysis experiments. Laminar flame speed measurements are determined as a function of equivalence ratio, dilution, and unburned gas temperature at 1 atm pressure. Hierarchical, comprehensive mechanistic construction methods were applied to develop detailed kinetic mechanisms which describe the measurements and literature kinetic data. Modeling using well-defined and validated mechanisms for the CO/H2/Oxidant systems and perturbations of oxidation experiments by small amounts of additives were also used to derive absolute reaction rates and to investigate the compatibility of published elementary kinetic and thermochemical information. Numerical tools were developed and applied to assess the importance of individual elementary reactions to the predictive performance of the

  16. Blends of butanol and hydrotreated vegetable oils as drop-in replacement for diesel engines: Effects on combustion and emissions

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek-Lom, M.; Beránek, V.; Mikuška, Pavel; Křůmal, Kamil; Coufalík, Pavel; Sikorová, Jitka; Topinka, Jan

    2017-01-01

    Roč. 197, JUN (2017), s. 407-421 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA13-01438S Institutional support: RVO:68081715 ; RVO:68378041 Keywords : renewable diesel * engine * combustion Subject RIV: CB - Analytical Chemistry, Separation; DN - Health Impact of the Environment Quality (UEM-P) OBOR OECD: Analytical chemistry; Energy and fuel s (UEM-P) Impact factor: 4.601, year: 2016

  17. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz

    2016-10-17

    Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.

  18. Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu

    2016-01-01

    To construct an effective method to analyze the combustion process of dual fuel engines at low loads, effects of combustion boundaries on the combustion process of an electronically controlled diesel natural gas dual-fuel engine at low loads were investigated. Three typical combustion modes, including h, m and n, appeared under different combustion boundaries. In addition, the time-sequenced characteristic and the heat release rate-imbalanced characteristic were found in the dual fuel engine combustion process. To quantify these characteristics, two quantitative indicators, including the TSC (time-sequenced coefficient) and the HBC (HRR-balanced coefficient) were defined. The results show that increasing TSC and HBC can decrease HC (hydrocarbon) emissions and improve the BTE (brake thermal efficiency) significantly. The engine with the n combustion mode can obtain the highest BTE and the lowest HC emissions, followed by m, and then h. However, the combustion process of the engine will deteriorate sharply if boundary conditions are not strictly controlled in the n combustion mode. Based on the n combustion mode, advancing the start of diesel injection significantly, using large EGR (exhaust gas recirculation) rate and appropriately intake throttling can effectively reduce HC emissions and improve the BTE of dual fuel engines at low loads with relatively high natural gas PES (percentage energy substitution). - Highlights: • We reported three typical combustion modes of a dual-fuel engine at low loads. • Time-sequenced characteristic was put forward and qualified. • HRR-imbalanced characteristic was put forward and qualified. • Three combustion modes appeared as equivalence ratio/diesel injection timing varied. • The engine performance varied significantly with different combustion mode.

  19. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  20. Combustion modeling including heat loss using flamelet generated manifolds: a validation study in OpenFOAM

    NARCIS (Netherlands)

    Ottino, G.M.; Fancello, A.; Falcone, M.; Bastiaans, R.J.M.; Goey, de L.P.H.

    In numerical combustion applications the Flamelet Generated Manifolds technique (FGM) is being used at an increasingly number of occasions. This technique is an approach to reduce the chemistry efficiently and accurately. In the present work FGM is coupled to an OpenFOAM-based CFD solver. The

  1. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin.

    Science.gov (United States)

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-07-01

    Polyaromatic hydrocarbons (PAHs) are organic pollutants mostly derived from the processing and combustion of fossil fuels and cause human health hazards. In the present study a marine biosurfactant producing strain of Bacillus circulans was used to increase the bioavailability and consequent degradation of a model polyaromatic hydrocarbon, anthracene. Although the organism could not utilize anthracene as the sole carbon source, it showed better growth and biosurfactant production in an anthracene supplemented glycerol mineral salts medium (AGlyMSM) compared to a normal glycerol mineral salts medium (GlyMSM). The biosurfactant product showed high degree of emulsification of various hydrocarbons. Analysis by gas chromatography (GC), high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) showed that the biosurfactant could effectively entrap and solubilize PAH. Thin layer chromatographic analysis showed that anthracene was utilized as a carbon substrate for the production of biosurfactant. Thus organic pollutant anthracene was metabolized and converted to biosurfactants facilitating its own bioremediation.

  2. Multiscale methods in turbulent combustion: strategies and computational challenges

    International Nuclear Information System (INIS)

    Echekki, Tarek

    2009-01-01

    A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

  3. Engine and method for operating an engine

    Science.gov (United States)

    Lauper, Jr., John Christian; Willi, Martin Leo [Dunlap, IL; Thirunavukarasu, Balamurugesh [Peoria, IL; Gong, Weidong [Dunlap, IL

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  4. On the TFNS Subgrid Models for Liquid-Fueled Turbulent Combustion

    Science.gov (United States)

    Liu, Nan-Suey; Wey, Thomas

    2014-01-01

    This paper describes the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models used to emulate the major processes occurring in the turbulence-chemistry interaction. These two subgrid models are termed as LEM-like model and EUPDF-like model (Eulerian probability density function), respectively. Two-phase turbulent combustion in a single-element lean-direct-injection (LDI) combustor is calculated by employing the TFNS/LEM-like approach as well as the TFNS/EUPDF-like approach. Results obtained from the TFNS approach employing these two different subgrid models are compared with each other, along with the experimental data, followed by more detailed comparison between the results of an updated calculation using the TFNS/LEM-like model and the experimental data.

  5. Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H_2, CH_4, and conventional diesel)

    International Nuclear Information System (INIS)

    Abu-Jrai, Ahmad M.; Al-Muhtaseb, Ala'a H.; Hasan, Ahmad O.

    2017-01-01

    In this study, the effect of tri fuel (ULSD, H_2, and CH_4) operation under real exhaust gas conditions with different gaseous fuel compositions on the combustion characteristics, engine emissions, and selective catalytic reduction (SCR) after treatment was examined at low, medium, and high engine loads. Pt/Al_2O_3-SCR reactor was used and operated at different exhaust gas temperatures. Results revealed that at low load, the two gaseous fuels (H_2 and CH_4) have the same trend on combustion proccess, where both reduce the in-cylinder pressure and rate of heat release. At the high engine load there was a considerable influence appeared as an increase of the premixed combustion phase and a significant decrease of the total combustion duration. In terms of emissions, it was observed that at high engine load, fuels with high CH_4 content tend to reduce NOx formation, whereas, fuels with high H_2 content tend to reduce PM formation, moreover, combustion of tri fuel with 50:50 fuel mixture resulted in lower BSFC compared to the other ratios and hence, the best engine efficiency. The hydrocarbon-SCR catalyst has shown satisfactory performance in NOx reduction under real diesel exhaust gas in a temperature window of 180–280 °C for all engine loads. - Highlights: • Effect of tri fuel (ULSD, H_2, CH_4) on combustion and engine emissions was examined. • Fuel with high CH_4 content (H50-M50 and H25-M75) tend to reduce NOx formation. • Fuel with high H_2 content (H75-M25 and H50-M50) tend to reduce PM formation. • Increasing the percentage of H_2 in the feed gas improved the NO_x reduction. • The hydrocarbon-SCR catalyst has shown satisfactory performance in NO_x reduction.

  6. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  7. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry

    International Nuclear Information System (INIS)

    Cool, Terrill A.; Nakajima, Koichi; Mostefaoui, Toufik A.; Qi, Fei; McIlroy, Andrew; Westmoreland, Phillip R.; Law, Matthew E.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2003-01-01

    We report the first use of synchrotron radiation, continuously tunable from 8 to 15 eV, for flame-sampling photoionization mass spectrometry (PIMS). Synchrotron radiation offers important advantages over the use of pulsed vacuum ultraviolet lasers for PIMS; these include superior signal-to-noise, soft ionization, and access to photon energies outside the limited tuning ranges of current VUV laser sources. Near-threshold photoionization efficiency measurements were used to determine the absolute concentrations of the allene and propyne isomers of C 3 H 4 in low-pressure laminar ethylene-oxygen and benzene-oxygen flames. Similar measurements of the isomeric composition of C 2 H 4 O species in a fuel-rich ethylene-oxygen flame revealed the presence of substantial concentrations of ethenol (vinyl alcohol) and acetaldehyde. Ethenol has not been previously detected in hydrocarbon flames. Absolute photoionization cross sections were measured for ethylene, allene, propyne, and acetaldehyde, using propene as a calibration standard. PIE curves are presented for several additional reaction intermediates prominent in hydrocarbon flames

  8. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D; Hoffman, T [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1996-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  9. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.

    2015-03-30

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  10. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.; Lucassen, A.; Hansen, N.; Sarathy, Mani

    2015-01-01

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  11. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions

    OpenAIRE

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin

    2013-01-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inven...

  12. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  13. Chemical Kinetics in Support of Syngas Turbine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, Frederick

    2007-07-31

    This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We

  14. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  15. Mixture preparation and combustion in an optically-accessible HCCI, diesel engine; La preparation du melange et de la combustion dans un moteur Diesel, HCCI a acces optique

    Energy Technology Data Exchange (ETDEWEB)

    Kashdan, J.; Bruneaux, G. [Institut Francais du Petrole, 92 - Rueil-Malmaison (France)

    2006-07-01

    Planar laser-induced fluorescence (LIF) imaging techniques have been applied in order to study the mixture preparation and combustion process in a single cylinder, optically-accessible homogeneous charge, compression ignition (HCCI) engine. In particular, the influence of piston bowl geometry on the in-cylinder mixture distribution and subsequent combustion process has been investigated. A new optically-accessible piston design enabled the application of LIF diagnostics directly within the combustion chamber bowl. Firstly, laser-induced exciplex fluorescence (LIEF) was exploited in order to characterise the in-cylinder fuel spray and vapour distribution. Subsequently a detailed study of the two-stage HCCI combustion process was conducted by a combination of direct chemiluminescence imaging, laser-induced fluorescence (LIF) of the intermediate species formaldehyde (CH{sub 2}O) which is present during the cool flame and LIF of the OH radical which is subsequently present in the reaction and burned gas zones at higher temperature. Finally, spectrometry measurements were performed with the objective of determining the origin of the emitting species of the chemiluminescence signal. The experiments were performed on a single cylinder optical engine equipped with a direct-injection, common rail injection system and narrow angle injector. The experimental results presented reveal the significant role of the combustion chamber geometry on the mixture preparation and combustion characteristics for late HCCI injection strategies particularly in such cases where liquid impingement is unavoidable. Planar LIF 355 imaging revealed the presence of the intermediate species formaldehyde allowing the temporal and spatial detection of auto-ignition precursors prior to the signal observed by chemiluminescence in the early stages of the cool flame. Formaldehyde was then rapidly consumed at the start of main combustion which was marked not only by the increase in the main heat release

  16. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  17. Airbreathing Propulsion Fuels and Energy Exploratory Research and Development (APFEERD) Sub Task: Review of Bulk Physical Properties of Synthesized Hydrocarbon:Kerosenes and Blends

    Science.gov (United States)

    2017-06-01

    Fuels and Energy Branch Turbine Engine Division Turbine Engine Division CHARLES W. STEVENS, Lead Engineer Turbine Engine Division Aerospace Systems...evaluation concludes, based on fundamental physical chemistry , that all hydrocarbon kerosenes that meet the minimum density requirement will have bulk...alternative jet fuels; renewable jet fuel; fuel physical properties; fuel chemistry ; fuel properties 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  18. Analysis of polynuclear aromatic hydrocarbons from coal fly ash

    International Nuclear Information System (INIS)

    Purushothama, S.; Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1998-01-01

    The objective of this work is to compare various extraction and quantification techniques for the determination of adsorbed polynuclear aromatic hydrocarbons (PAHs) on coal ash. Aliquots of a 'clean' fly ash from coal combustion doped with four PAHs have been extracted, using three solvents, three methods and three GC/MS programs. Factorial analysis shows solvent to extert the greatest primary effect: CH 2 Cl 2 > toluene much-gt o-xylene. Highest recoveries were obtained using the reflux slurry extraction procedure with CH 2 Cl 2 and a relatively fast (20 degree C/min) temperature ramp to 310 degree C. With both CH 2 Cl 2 and toluene solvents, ultrasonic assisted extraction affords the best repeatability

  19. Development of correlations for combustion modelling with supercritical surrogate jet fuels

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Dondapati

    2017-12-01

    Full Text Available Supercritical fluid technology finds its application in almost all engineering aspects in one or other way. Technology of clean jet fuel combustion is also seeing supercritical fluids as one of their contender in order to mitigate the challenges related to global warming and health issues occurred due to unwanted emissions which are found to be the by-products in conventional jet engine combustion. As jet fuel is a blend of hundred of hydrocarbons, thus estimation of chemical kinetics and emission characteristics while simulation become much complex. Advancement in supercritical jet fuel combustion technology demands reliable property statistics of jet fuel as a function temperature and pressure. Therefore, in the present work one jet fuel surrogate (n-dodecane which has been recognized as the constituent of real jet fuel is studied and thermophysical properties of each is evaluated in the supercritical regime. Correlation has been developed for two transport properties namely density and viscosity at the critical pressure and over a wide range of temperatures (TC + 100 K. Further, to endorse the reliability of the developed correlation, two arithmetical parameters have been evaluated which illustrates an outstanding agreement between the data obtained from online NIST Web-Book and the developed correlation.

  20. CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.