WorldWideScience

Sample records for hydriding combustion synthesis

  1. Facile Synthesis of Permethyl Yttrocene Hydride

    NARCIS (Netherlands)

    Haan, Klaas H. den; Teuben, Jan H.

    1984-01-01

    A convenient three step synthesis of (Cp*2YH)n (Cp* = C5Me5) is described starting with YCl3.3thf, in which Cp*2YCl.thf and Cp*2YCH(SiMe3)2 are intermediates, which could be isolated and characterized. The hydride is active in the activation of sp2 and sp3 C-H bonds as was demonstrated by the H-D

  2. Formation of alloys in Ti-V system in hydride cycle and synthesis of their hydrides in self-propagating high-temperature synthesis regime

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.G., E-mail: a.g.aleks_yan@mail.ru [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Dolukhanyan, S.K. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Shekhtman, V.Sh. [Institute of Solid State Physics, RAS, Chernogolovka, Moscow District 142432 (Russian Federation); Huot, J., E-mail: jacques_huot@uqtr.ca [Institut de recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres (Canada); Ter-Galstyan, O.P.; Mnatsakanyan, N.L. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia)

    2011-09-15

    Research highlights: > We synthesize Ti-V alloys by new 'hydride cycle' method. Structural characteristics of formed alloys we investigate by X-ray diffraction. > We show that the alloys contain mainly BCC crystal structure. > We investigate the interaction of the synthesized alloys with hydrogen in combustion regime. > We study the properties of hydrides by X-ray, DTA and DSC analyses. - Abstract: In the present work, the possibility of formation of titanium and vanadium based alloys of BCC structure using hydride cycle was investigated. The mechanism of formation of alloys in Ti-V system from the powders of hydrides TiH{sub 2} and VH{sub 0.9} (or of V) by compaction followed by dehydrogenation was studied. Then, the interaction of the synthesized alloys with hydrogen in combustion regime (self-propagating high-temperature synthesis, SHS) resulting in hydrides of these alloys was investigated. DTA and DSC analyses of some alloys and their hydrides were performed and their thermal characteristics were measured.

  3. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  4. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  5. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  6. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  7. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been ...

  8. Synthesis and Mechanism of Formation of Hydride-Sulfide Complexes of Iron.

    Science.gov (United States)

    Arnet, Nicholas A; McWilliams, Sean F; DeRosha, Daniel E; Mercado, Brandon Q; Holland, Patrick L

    2017-08-07

    Iron-sulfide complexes with hydride ligands provide an experimental precedent for spectroscopically detected hydride species on the iron-sulfur MoFe 7 S 9 C cofactor of nitrogenase. In this contribution, we expand upon our recent synthesis of the first iron sulfide hydride complex from an iron hydride and a sodium thiolate ( Arnet, N. A.; Dugan, T. R.; Menges, F. S.; Mercado, B. Q.; Brennessel, W. W.; Bill, E.; Johnson, M. A.; Holland, P. L., J. Am. Chem. Soc. 2015 , 137 , 13220 - 13223 ). First, we describe the isolation of an analogous iron sulfide hydride with a smaller diketiminate supporting ligand, which benefits from easier preparation of the hydride precursor and easier isolation of the product. Second, we describe mechanistic studies on the C-S bond cleavage through which the iron sulfide hydride product is formed. In a key experiment, use of cyclopropylmethanethiolate as the sulfur precursor leads to products from cyclopropane ring opening, implicating an alkyl radical as an intermediate. Combined with the results of isotopic labeling studies, the data are consistent with a mechanism in which homolytic C-S bond cleavage is followed by rebound of the alkyl radical to abstract a hydrogen atom from iron to give the observed alkane and iron-sulfide products.

  9. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides,

  10. Combustion Synthesis of Magnesium Aluminate

    Science.gov (United States)

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    In the system MgO-Al2O3, three compounds MgAl2O4, MgAl6O10 (also expressed as- Mg0.4Al2.4O4) and MgAl26O40 are well known. Importance of the first two is well established. Magnesium aluminate (MgAl2O4) spinel is a technologically important material due to its interesting thermal properties. The MgAl2O4 ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl2O4 is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl6O10 has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl2O4 and MgAl6O10 were formed in a single step, while MgAl26O40 was not formed by this procedure. Activation of MgAl6O10 by rare earth ions like Ce3+, Eu3+ and Tb3+ and ns2 ion Pb2+ could be achieved. Excitation bands for MgAl6O10 are at slightly shorter wavelengths compared to those reported for MgAl2O4.

  11. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas

    2017-09-01

    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  12. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  13. Combustion synthesis of cadmium sulphide nanomaterials for ...

    Indian Academy of Sciences (India)

    The observed enhanced photocatalytic activity of the CdS nanomaterials for the hydrogen production from water (2120 μmol/h) can be attributed to high crystallinity, low band gap and less exciton recombination due to the C and N doping. Keywords. Cadmium sulphide; combustion synthesis; anion doping; water splitting; ...

  14. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2012-01-01

    Full Text Available Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4, a complex metal hydride, and carbon aerogels (CAs, a light porous material connected by several spherical nanoparticles. The objectives of the present work have been to investigate the synthesis, characterization, and hydrogenation behavior of Pd-, Ti- or Fe-doped CAs, NaAlH4, and MgH2 nanocomposites. The diameters of Pd nanoparticles onto CA’s surface and BET surface area of CAs were 3–10 nm and 700–900 m2g−1, respectively. The H2 storage capacity of metal hydrides has been studied using high-pressure TGA microbalance and they were 4.0, 2.7, 2.1, and 1.2 wt% for MgH2-FeTi-CAs, MgH2-FeTi, CAs-Pd, and 8 mol% Ti-doped NaAlH4, respectively, at room temperature. Carbon aerogels with higher surface area and mesoporous structures facilitated hydrogen diffusion and adsorption, which accounted for its extraordinary hydrogen storage phenomenon. The hydrogen adsorption abilities of CAs notably increased after inclusion of metal hydrides by the “hydrogen spillover” mechanisms.

  15. One-step synthesis of fullerene hydride C(60)H2 via hydrolysis of acylated fullerenes.

    Science.gov (United States)

    Tzirakis, Manolis D; Alberti, Mariza N; Nye, Leanne C; Drewello, Thomas; Orfanopoulos, Michael

    2009-08-07

    The hitherto unexplored class of acylated fullerene compounds has been shown to be excellent C(60)H2 precursors. Upon a simple treatment with basic Al2O3, they are hydrolyzed quantitatively into C(60)H2. This key feature led to the development of a new, straightforward protocol for the selective synthesis of the simplest [60]fullerene hydride, C(60)H2. This protocol may offer an advantageous alternative to previously known methods for the synthesis of C(60)H2 allowing for a rapid access to C(60)H2 in good yield and high purity without tedious separating processes.

  16. Combustion Synthesis Technology Applied to In-situ Resource Utilization

    Science.gov (United States)

    2006-06-15

    only a solid reaction method but also a hydrothermal , plasma spray decomposition, sol-gel and combustion synthesis techniques. The long-duration...Functional materials, e.g. BaTiO3 , YBa2Cu3O7. Compared with conventional processes, main advantages of combustion synthesis are; The generation...REF: AOARD-05-4043 FINAL TECHNICAL REPORT Combustion Synthesis Technology Applied to In-situ Resource Utilization

  17. Synthesis of functional materials in combustion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V. D., E-mail: zhvd@ihim.uran.ru; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I. [Russian Academy of Sciences, Institute of Solid State Chemistry, Ural Branch (Russian Federation)

    2015-12-15

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.

  18. Synthesis of functional materials in combustion reactions

    Science.gov (United States)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-01

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  19. Production of nanocrystalline metal powders via combustion reaction synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  20. Combustion Synthesis of Energy Storage Materials

    Science.gov (United States)

    Eagle, W. Ethan; Wooldridge, Margaret

    2012-10-01

    Advancement in the understanding of state of charge and efficiency requires better coupling of battery level properties with the micro-structure of the constituents. The composition of the target synthesis material, lithium manganese oxide (Li Mn2O4, or LMO for short) is known to impact lithium ion battery properties. Following this motivation, our aim is to demonstrate control over the microstructure and compositional properties of LMO using parameters of the combustion synthesis environment. In this experiment, one or both solid phase precursors, lithium acetate-hydrate and manganse acetate-hydrate, were aerosolized and delivered to a hydrogen-oxygen Henken burner at atmospheric pressure. The characteristic time scales for reaction and flow control the synthesis process. Controlling reactant concentrations targets changes in nanoparticle composition and flow rate controls residence times and synthesis temperatures. To explore the effects of composition, first lithium oxide (Li2O) and manganese oxide (Mn2O2) powders are generated independently from the corresponding acetate precursors. Following that, several mixtures of lithium and manganese acetate precursor trials were conducted and the resulting material properties were investigated using TEM and XRD.

  1. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure

    Science.gov (United States)

    Ma, Yanbin; Duan, Defang; Shao, Ziji; Yu, Hongyu; Liu, Hanyu; Tian, Fubo; Huang, Xiaoli; Li, Da; Liu, Bingbing; Cui, Tian

    2017-10-01

    We predict a new ternary hydride MgSiH6 under high pressures, which is a metal with an ionic feature and takes on a simple cubic structure with space group P m -3 above 250 GPa. Our first-principles calculations show that the cubic MgSiH6 is a potential high-temperature superconductor with a superconducting transition temperature Tc of ˜63 K at 250 GPa. Further analysis suggests that phonon softening along mainly Γ -X and Γ -M directions induced by Fermi surface nesting plays a crucial role in the high-temperature superconductivity. Herein we propose the "triangle straight-line method" which provides a clear guide to determine the specific A + B → D type formation routes for ternary hydrides of the Mg-Si-H system and it effectively reveals two divergent paths to obtain MgSiH6 under high pressures: MgH2+SiH4→MgSiH6 and MgSi + 3 H2→MgSiH6 . This method might be applicable to all ternary compounds, which will be very significant for further experimental synthesis.

  2. High-pressure synthesis of Mg{sub 2}FeH{sub 6} complex hydride

    Energy Technology Data Exchange (ETDEWEB)

    Retuerto, M.; Sanchez-Benitez, J.; Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco E-28049 Madrid (Spain); Rodriguez-Canas, E. [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile)

    2010-08-15

    We have designed a new synthesis method for the ternary metal hydride Mg{sub 2}FeH{sub 6} based on the direct reaction of simple hydrides under high-pressure conditions. Well-crystallized samples were prepared in a piston-cylinder hydrostatic press at 2 GPa and temperatures around 750 C from mixtures of MgH{sub 2} and Fe enclosed in gold or platinum capsules. Seven different samples have been prepared under different conditions. X-ray powder diffraction analysis was used to identify and assess the purity of the samples, through Rietveld analyses of the crystal structure (K{sub 2}PtCl{sub 6}-type). Mg{sub 2}FeH{sub 6} shows a cubic symmetry with space group Fm-3m. SEM images show an average particle size of 1-2 {mu}m for Mg{sub 2}FeH{sub 6}; the microcrystals present well-grown faces and display a high homogeneity of shapes and sizes. Thermogravimetric analysis has been carried out to determine not only the hydrogen desorption temperature but also the hydrogen contents. (author)

  3. Solution combustion synthesis of oxide semiconductors

    Science.gov (United States)

    Thomas, Abegayl Lorenda Shara-Lynn

    The quest for stable and efficient photocatalytic materials beyond TiO2 and WO3 has over the years led to the development of new materials that possess varied interfacial energetics. This dissertation study focused on using for the first time a novel method, solution combustion synthesis (SCS), to prepare two distinct families of binary metal-based oxide semiconductor materials. Detailed studies on material characteristics and applications were carried out on tungsten- and niobium-based oxide semiconductors with varying principal metals. Initial emphasis was placed on the SCS of tungsten-based oxide semiconductors (ZnWO4, CuWO4, and Ag2WO4). The influence of different tungsten precursor's on the resultant product was of particular relevance to this study, with the most significant effects highlighted. Upon characterization, each sample's photocatalytic activity towards methyl orange dye degradation was studied, and benchmarked against their respective commercial oxide sample, obtained by solid-state ceramic synthesis. Detailed analysis highlighted the importance of the SCS process as a time- and energy-efficient method to produce crystalline nano-sized materials even without additional or excessive heat treatment. It was observed that using different tungstate precursors does influence the structural and morphological make-up of the resulting materials. The as-synthesized tungstate materials showed good photocatalytic performance for the degradation of methyl orange dye, while taking into account specific surface area and adsorbed dye amount on the surface of the material. Like the tungstate's, niobium-based oxide semiconductors CuNb 2O6 and ZnNb2O6 were the first to be synthesized via solution combustion synthesis. Particular attention was placed on the crystal structures formed while using an oxalate niobium precursor during the reaction process. X-ray patterns yielded a multiphase structure for the ZnNb2O6 and a single phase structure for CuNb 2O6

  4. Facile synthesis of Ba(1-x)K(x)Fe2As2 superconductors via hydride route.

    Science.gov (United States)

    Zaikina, Julia V; Batuk, Maria; Abakumov, Artem M; Navrotsky, Alexandra; Kauzlarich, Susan M

    2014-12-03

    We have developed a fast, easy, and scalable synthesis method for Ba(1-x)K(x)Fe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba(1-x)K(x)Fe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.

  5. The solution combustion synthesis of nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Stephanie C [Los Alamos National Laboratory

    2009-01-01

    Nanophosphors are defined as nano-sized (1-100mn), insulating, inorganic materials that emit light under particle or electromagnetic excitation. Their unique luminescence properties provide an excellent potential for applications in radiation detection and imaging. Herein, solution combustion synthesis (SCS) is presented as a method to prepare nanophosphor powders, while X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), photoluminescence excitation (PLE), and other techniques were used to characterize their structural and optical properties. The goal of this work is to synthesize bright, high-quality powders of nanophosphors, consolidate them into bulk materials and study their structural and optical properties using XRD, TEM, PL, and PLE. SCS is of interest because it is a robust, inexpensive, and facile technique, which yields a significant amount of a wide variety of oxide materials, in a short amount of time. Several practical nanophosphors were synthesized and investigated in this work, including simple oxides such as Y{sub 2}O{sub 3}:Bi, Y{sub 2}O{sub 3}:Tb, Y{sub 2}O{sub 3}:Eu and Gd{sub 2}O{sub 3}:Eu, complex oxides such as Gd{sub 2}SiO{sub 5}:Ce, Y{sub 2}SiO{sub 5}:Ce, Lu{sub 2}SiO{sub 5}:Ce, Zn{sub 2}SiO{sub 4}:Mn, and Y{sub 3}Al{sub 5}O{sub 12}:Ce. Results demonstrate that altering the processing parameters such as water content of the precursor solution, ignition temperature, fuel type and amount, and post-synthesis annealing can significantly improve light output, and that it is possible to optimize the luminescence output of oxyorthosilicates by reducing the amount of silica in the precursor mixture.

  6. Combustion and Plasma Synthesis of High-Temperature Materials

    Science.gov (United States)

    Munir, Z. A.; Holt, J. B.

    1997-04-01

    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  7. Synthesis and luminescence in sol–gel auto-combustion ...

    Indian Academy of Sciences (India)

    2017-11-14

    Nov 14, 2017 ... Abstract. Undoped and Eu-doped CaSnO3 nanopowders were prepared by a facile sol–gel auto-combustion method calcined at 800 ... were published, synthesis of CaSnO3 through a sol–gel auto- combustion method is ... parent solutions were poured into silica crucibles and allowed to gel in an oven at ...

  8. Combustion synthesis and characterization of nanocrystalline WO3.

    Science.gov (United States)

    Morales, Walter; Cason, Michael; Aina, Olawunmi; de Tacconi, Norma R; Rajeshwar, Krishnan

    2008-05-21

    The energy payback time associated with the semiconductor active material is an important parameter in a photovoltaic solar cell device. Thus lowering the energy requirements for the semiconductor synthesis step or making it more energy-efficient is critical toward making the overall device economics more competitive relative to other nonpolluting energy options. In this communication, combustion synthesis is demonstrated to be a versatile and energy-efficient method for preparing inorganic oxide semiconductors such as tungsten trioxide (WO3) for photovoltaic or photocatalytic solar energy conversion. The energy efficiency of combustion synthesis accrues from the fact that high process temperatures are self-sustained by the exothermicity of the combustion process, and the only external thermal energy input needed is for dehydration of the fuel/oxidizer precursor mixture and bringing it to ignition. Importantly, we show that, in this approach, it is also possible to tune the optical characteristics of the oxide semiconductor (i.e., shift its response toward the visible range of the electromagnetic spectrum) in situ by doping the host semiconductor during the formative stage itself. As a bonus, the resultant material shows enhanced surface properties such as markedly improved organic dye uptake relative to benchmark samples obtained from commercial sources. Finally, this synthesis approach requires only very simple equipment, a feature that it shares with other "mild" inorganic semiconductor synthesis routes such as sol-gel chemistry, chemical bath deposition, and electrodeposition. The present study constitutes the first use of combustion synthesis for preparing WO3 powder comprising nanosized particles.

  9. Sounding Solid Combustibles: Non-premixed Flame Sound Synthesis for Different Solid Combustibles.

    Science.gov (United States)

    Yin, Qiang; Liu, Shiguang

    2016-12-21

    With the rapidly growing VR industry, in recent years, more and more attention has been paid for fire sound synthesis. However, previous methods usually ignore the influences of the different solid combustibles, leading to unrealistic sounding results. This paper proposes SSC (sounding solid combustibles), which is a new recording-driven non-premixed flame sound synthesis framework accounting for different solid combustibles. SSC consists of three components: combustion noise, vortex noise and popping sounds. The popping sounds are the keys to distinguish the differences of solid combustibles. To improve the quality of fire sound, we extract the features of popping sounds from the real fire sound examples based on modified Empirical Mode Decomposition (EMD) method. Unlike previous methods, we take both direct combustion noise and vortex noise into account because the fire model is non-premixed flame. In our method, we also greatly resolve the synchronization problem during blending the three components of SSC. Due to the introduction of the popping sounds, it is easy to distinguish the fire sounds of different solid combustibles by our method, with great potential in practical applications such as games, VR system, etc. Various experiments and comparisons are presented to validate our method.

  10. Microwave assisted combustion synthesis of non-equilibrium intermetallic compounds.

    Science.gov (United States)

    Veronesi, Paolo; Rosa, Roberto; Colombini, Elena; Leonelli, Cristina; Poli, Giorgio; Casagrande, Angelo

    2010-01-01

    A simplified model of the microwave-assisted combustion synthesis of Ni and Al metal powders to form the NiAl intermetallic on titanium and steel substrates is presented. The simulation couples an electro-thermal model with a chemical model, accounting for local heat generation due to the highly exothermic nature of the reactions between the powders. Numerical results, validated by experimental values, show that the capability of microwaves to convey energy, and not heat, can be used to alter the temperature profiles during and after the combustion synthesis, leading to unique intermetallic microstructures. This phenomenon is ascribed to the extended existence of high temperature liquid intermetallic phases, which react with the metallic substrates at the interface. Moreover, microwave heating selectivity allows to maintain the bulk of the substrate metallic materials to a much lower temperature, compared to combustion synthesis in conventionally heated furnaces, thus reducing possible unwanted transformations like phase change or oxidation.

  11. Synthesis Gas from Pyrolysed Plastics for Combustion Engine

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2015-12-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120%. In terms of burning, synthesis gas has similar properties as natural gas. More significant changes are observed in even burning of fuel in consecutive cycles.

  12. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  13. Combustion synthesis and structural characterization of Li–Ti mixed ...

    Indian Academy of Sciences (India)

    saturation at an applied field of ±10 kOe and the loops are highly symmetric in nature. The cation distribution is known indirectly by using saturation magnetization values. Keywords. Li–Ti mixed ferrites; combustion synthesis; hysteresis. 1. Introduction. Lithium ferrites are low cost materials, which are gene- rally found useful ...

  14. Combustion synthesis of graphene and ultracapacitor performance

    Indian Academy of Sciences (India)

    Graphene sheets are synthesized by a simple method starting from graphitic oxide as a precursor. Reaction of graphitic oxide at 250 °C with a combustion mixture of urea and ammonium nitrate results in the formation of thin graphene sheets. Graphene formation is characterized by XRD, TGA, XPS and TEM. Graphene ...

  15. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    thesis as a preparation process to produce homogeneous, very fine crystalline, unagglomerated, multicomponent oxide ceramic powders without the intermediate decomposition and/or calcining steps has attracted a good deal of attention. (Kingsley and Patil 1988; Kingsley et al 1990). The combus- tion synthesis is based ...

  16. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    Abstract. The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution com- bustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of. LBPT material consists of two peaks at 204.54 and 251.21◦C. The optimum concentration was 0.005 ...

  17. Fast and efficient combustion synthesis route to produce novel nanocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowska, Agnieszka; Huczko, Andrzej [Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw (Poland); Dyjak, Slawomir [Institute of Chemistry, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland)

    2012-12-15

    We report the preliminary results on simple one-step chemical synthesis of exfoliated graphite and other carbon-related nanostructures via a novel combustion synthesis route. We found previously that different solid carbonates could be decomposed to elements upon reducing in solid phase by using a strong reducers and the produced carbon vapors instantly condense towards 1-D nanocarbons. Here such combustion processing is extended towards the direct heterogeneous, efficient, and autothermic high-pressure reduction of gaseous carbon oxides (CO{sub 2} and CO) to elements using the following reducers: Li, Mg, Ca, B, Ti, Zr, and Al. The solid products (layered graphite and nanocarbides) were chemically purified and characterized using XRD, SEM, and Raman spectroscopy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation.

    Science.gov (United States)

    Rajeshwar, Krishnan; de Tacconi, Norma R

    2009-07-01

    In this tutorial review, we summarize recent research on the solution combustion synthesis of oxide semiconductors for applications related to photovoltaic solar energy conversion, photoelectrochemical hydrogen generation, and heterogeneous photocatalytic remediation of environmental pollutants. First, the advantages of combustion synthesis relative to other strategies for preparing oxide semiconductors are discussed followed by a summary of process variants in combustion synthesis. The possibility of in situ chemical modification of the oxide during its formation in the combustion environment is addressed. Morphological and crystal structure aspects of the combustion-synthesized products are discussed followed by a summary of trends in their photocatalytic activity relative to benchmark samples prepared by other methods.

  19. High-pressure synthesis of Na{sub 1-x}Li{sub x}MgH{sub 3} perovskite hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Coronado, R., E-mail: rmartinez@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Sanchez-Benitez, J. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Dpto. Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Retuerto, M. [Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-808 (United States); Fernandez-Diaz, M.T. [Institut Laue Langevin, BP 156X, Grenoble F-38042 (France); Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain)

    2012-05-05

    Highlights: Black-Right-Pointing-Pointer New synthesis method for the ternary metal hydride perovskite system Na{sub 1-x}Li{sub x}MgH{sub 3}. Black-Right-Pointing-Pointer Direct reaction of simple hydrides under high-pressure and high-temperature conditions. Black-Right-Pointing-Pointer X-ray and Neutron Powder Diffraction analysis were used to identify the purity of the samples. Black-Right-Pointing-Pointer Perovskite hydride structure; more distorted and unstable as Li is introduced (smaller ionic size of Li{sup +}vs Na{sup +}). Black-Right-Pointing-Pointer Hydrogen desorption temperature much reduced respect to MgH{sub 2}; useful as hydrogen storage materials. - Abstract: Magnesium base alloys are very attractive for hydrogen storage due to their large hydrogen capacity, small weight and low-cost. We have designed a new synthesis method for the ternary metal hydride perovskite system Na{sub 1-x}Li{sub x}MgH{sub 3}, based on the direct reaction of simple hydrides under high-pressure and moderate-temperature conditions. Well-crystallized samples were obtained in a piston-cylinder hydrostatic press at moderate pressures of 2 GPa and temperatures around 750 Degree-Sign C from mixtures of MgH{sub 2}, NaH and LiH enclosed in gold capsules. X-ray and neutron powder diffraction analysis were used to identify the purity of the samples and provide an accurate description of the crystal structure features (GdFeO{sub 3} type). Na{sub 1-x}Li{sub x}MgH{sub 3} hydrides series (0 {<=} x {<=} 0.18) show an orthorhombic symmetry with space group Pnma (No. 62). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been carried out to determine the hydrogen desorption temperatures.

  20. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  1. Combustion synthesis of TiFe by utilizing magnesiothermic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, Masaya; Yasuda, Naoto; Zhu, Chunyu; Okinaka, Noriyuki; Akiyama, Tomohiro, E-mail: takiyama@eng.hokudai.ac.jp

    2015-02-15

    Highlights: • Melting of Mg triggered the combustion reaction of magnesiothermic reduction of TiO{sub 2}. • Highly pure TiFe could be produced under pressurized atmosphere. • This new combustion synthesis process could be used for mass production of TiFe. - Abstract: This paper describes a new method for producing TiFe hydrogen storage alloy through combustion synthesis by utilizing the magnesiothermic reduction reaction. The reaction mechanism and the effects of a gaseous atmosphere and pressure on the purity of TiFe products and their hydrogen storage properties were examined in this study. In the experiments, Fe, TiO{sub 2}, and Mg were used as raw materials and were mixed in a molar ratio of 1:1:4. The mixture was compacted and then heated in a normal or pressurized atmosphere of hydrogen and argon. Temperature changes with time were measured, and the obtained results indicated that the melting of magnesium triggered the reaction. X-ray diffraction analysis revealed that highly pure TiFe could be synthesized in a pressurized atmosphere, containing both hydrogen and argon. The products synthesized in such a pressurized atmosphere stored approximately 1.0 mass% hydrogen and indicated flat plateaus. The process proposed in this study showed the possibility of being a new attractive production method for TiFe hydrogen storage alloy.

  2. Glycine-nitrate combustion synthesis of oxide ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Pederson, L.R.; Maupin, G.D.; Bates, J.L.; Thomas, L.E.; Exarhos, G.J. (Pacific Northwest Lab., Richland, WA (United States))

    1990-09-01

    A new combustion synthesis method, the glycine-nitrate process, has been used to prepare oxide ceramic powders, including substituted chromite and manganite powders of high quality. A precursor was prepared by combining glycine with metal nitrates in their appropriate stoichiometric ratios in an aqueous solution. The precursor was heated to evaporate excess water, yielding a viscous liquid. Further heating to about 180[degrees]C caused the precursor liquid to autoignite. Combustion was rapid and self-sustaining, with flame temperatures ranging from 1100 to 1450[degrees]C. The chromite product was compositionally homogeneous with a specific surface area of 32 m[sup 2]/g, while the manganite product was composed of two distinct phases with a 23 m[sup 2]/g surface area after calcination. When compared to similar compositions made using the amorphous citrate process, glycine-nitrate-produced powders had greater compositional uniformity, lower residual carbon levels and smaller particle sizes.

  3. Combustion synthesis of one-dimensional nanocrystalline silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Soszynski, M.; Dabrowska, A.; Bystrzejewski, M.; Huczko, A. [Laboratory of Nanomaterials Physics and Chemistry, Department of Chemistry, Warsaw University, 1 Pasteur str., 02-093 Warsaw (Poland)

    2010-12-15

    Beta-SiC (cubic phase) nanowires (SiCNWs) have been grown spontaneously during the autothermal self-propagating high-temperature synthesis (SHS) from elemental silicon and poly(tetrafluoroethylene) (PTFE) powder mixtures in oxygen-enriched atmosphere. The combustion process was on-line monitored using high-speed photography in order to estimate the reaction processing time which was well below 1 s. From the emission spectroscopy the averaged combustion temperature was evaluated to be close to 2000 K. The products were characterized by wet chemical analysis, X-ray diffraction, scanning and transmission microscopy, and Raman spectroscopy. The raw products were processed by wet chemistry to obtain pure (above 90%) well-crystallized one-dimensional single crystals of SiCNWs. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Combustion synthesis of LaFeO3 sensing nanomaterial

    Science.gov (United States)

    Zaza, F.; Pallozzi, V.; Serra, E.; Pasquali, M.

    2015-06-01

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO3.

  5. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  6. A new combustion route to γ-Fe2O3 synthesis

    Indian Academy of Sciences (India)

    A new combustion route for the synthesis of -Fe2O3 is reported by employing purified -Fe2O3 as aprecursor in the present investigation. This synthesis which is similar to a self propagation combustion reaction, involves fewer steps, a shorter overall processing time, is a low energy reaction without the need of any ...

  7. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    OpenAIRE

    Pashchenko Dmitry

    2018-01-01

    A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also...

  8. Ultra-fine powders using glycine-nitrate combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Pederson, L.R.; Bates, J.L.; Maupin, G.D.

    1991-05-01

    Fabrication of advanced, multifunctional materials frequently requires the synthesis of complex, ultra-fine powders comprised of a single phase containing several elements (multicomponent) or of several phases that are intimately mixed on a micro-scale (composite). A new combustion synthesis method, the glycine/nitrate process (GNP), is particularly useful for synthesizing ultra-fine, multicomponent oxide powders. Examples discussed include La(Sr)CrO{sub 3} and La(Sr)FeO{sub 3} perovskites and a composite of three phases, NiO, NiFe{sub 2}O{sub 4}, and Cu metal. The GNP consists of two basic steps. First, metal nitrates and a low molecular weight amino acid are dissolved in water. Second, the solution is boiled until it thickens. This viscous liquid ignites and undergoes self-sustaining combustion, producing an ash composed of the oxide product. Most refractory oxides that are composed of a combination of metals having stable nitrates should be possible to synthesize using GNP. 15 refs., 8 figs.

  9. Boron Hydrides

    Science.gov (United States)

    1946-07-01

    hydroxide . The compound Is perfectly stable at room temperatures; at approximately 100 C it loses hydrogan slowly and turns from pure white to Gray...hydrides. of nrsc~nic, antirrorýy Ind bianmith ,nd tho alkyl hydrides of zr-c-nlc ,,rc kno%:.n. tho rl1:yl hydridin of etniinony ar~d bismuth have not yet... bismuth hydridv frtim bisnmth ý,hlorido felleod eithor because th.- roduction vnnt to the mot-U or boc.-usc the instability of the hydride- prcvcnt.od

  10. Synthesis of zeolite phases from combustion by-products

    Energy Technology Data Exchange (ETDEWEB)

    Pimraksa, K.; Chindaprasirt, P.; Setthaya, N. [Chiang Mai University, Chiang Mai (Thailand). Dept. of Industrial Chemistry

    2010-12-15

    Synthesis of zeolites from combustion by-products, including fly ash, bottom ash and rice husk ash, was studied. A molar ratio of SiO{sub 2}/Al2O{sub 3} of 1.5 was used for the syntheses. Refluxing and hydrothermal methods were also used for synthesis for comparison. The reaction temperatures of refluxing and hydrothermal methods were 100{sup o}C and 130{sup o}C, respectively. Sodalite, phillipsite-K, and zeolite P1 with analcime were obtained when fly ash, bottom ash and rice husk ash were used as starting materials, respectively. With rice husk ash as a starting material, zeolite P1 was produced. This result had advantages over previous studies as there was no prior activation required for the synthesis. The concentrations and types of alkaline used in the synthesis also determined the zeolite type. The different zeolites obtained from three systems were measured for specific surface area and pore size by using BET and Hg-porosimetry, respectively. Ammonium exchange capacities of the synthesised powders containing zeolites, sodalite, zeolite P1 and phillipsite-K were 38.5, 65.0 and 154.7 meq 100 g{sup 1}, respectively.

  11. Synthesis and characterization of amide-borohydrides: New complex light hydrides for potential hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Chater, Philip A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Anderson, Paul A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: p.a.anderson@bham.ac.uk; Prendergast, James W. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Walton, Allan; Mann, Vicky S.J.; Book, David [Department of Metallurgy and Materials, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Johnson, Simon R.; Edwards, Peter P. [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2007-10-31

    The reactions xLiNH{sub 2} + (1 - x)LiBH{sub 4} and xNaNH{sub 2} + (1 - x)NaBH{sub 4} have been investigated and new phases identified. The lithium amide-borohydride system is dominated by a body centred cubic compound of formula Li{sub 4}BH{sub 4}(NH{sub 2}){sub 3}. In the sodium system, a new hydride of approximate composition Na{sub 2}BH{sub 4}NH{sub 2} has been identified with a primitive cubic structure and lattice parameter a {approx} 4.7 A. The desorption of gases from the two amide-borohydrides on heating followed a similar pattern with the relative proportions of H{sub 2} and NH{sub 3} released depending critically on the experimental set-up: in the IGA, ammonia release occurred in two steps - beginning at 60 and 260 deg. C for Li{sub 4}BH{sub 4}(NH{sub 2}){sub 3} - the second of which was accompanied by hydrogen release; in the TPD system the main desorption product was hydrogen-again at 260 deg. C for Li{sub 4}BH{sub 4}(NH{sub 2}){sub 3} accompanied by around 5% ammonia. We hypothesize that the BH{sub 4}{sup -} anion can play a similar role to LiH in the LiNH{sub 2} + LiH system, where ammonia release is suppressed in favour of hydrogen. The reaction xLiNH{sub 2} + (1 - x)LiAlH{sub 4} did not result in the production of any new phases but TPD experiments show that hydrogen is released from the mixture 2LiNH{sub 2} + LiAlH{sub 4}, over a wide temperature range. We conclude that mixed complex hydrides may provide a means of tuning the dehydrogenation and rehydrogenation reactions to make viable storage systems.

  12. Synthesis and Reactivity of a Scandium Terminal Hydride: H2  Activation by a Scandium Terminal Imido Complex.

    Science.gov (United States)

    Han, Xianghao; Xiang, Li; Lamsfus, Carlos A; Mao, Weiqing; Lu, Erli; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng

    2017-10-20

    Dihydrogen is easily activated by a scandium terminal imido complex containing the weakly coordinated THF. The reaction proceeds through a 1,2-addition mechanism, which is distinct from the σ-bond metathesis mechanism reported to date for rare-earth metal-mediated H2 activation. This reaction yields a scandium terminal hydride, which is structurally well-characterized, being the first one to date. The reactivity of this hydride is reported with unsaturated substrates, further shedding light on the existence of the terminal hydride complex. Interestingly, the H2 activation can be reversible. DFT investigations further eludciate the mechanistic aspects of the reactivity of the scandium anilido-terminal hydride complex with PhNCS but also on the reversible H2 activation process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrophilic pyrazine-based phosphane ligands: synthesis and application in asymmetric hydride transfer and H2-hydrogenation of acetophenone

    NARCIS (Netherlands)

    Nikishkin, N.; Huskens, Jurriaan; Verboom, Willem

    2013-01-01

    Pyrazine-based hydrophilic phosphanes are useful ligands for the ruthenium- and rhodium-catalyzed hydrogenations of acetophenone under hydride transfer and dihydrogen conditions. The effect of alcohol additives on the catalytic, enantioselective aqueous hydrogenation of acetophenone is examined with

  14. Solution combustion synthesis of α-Al2O3 using urea

    OpenAIRE

    Zhuravlev, V. D.; Bamburov, V. G.; Beketov, A. R.; Perelyaeva, L. A.; BAKLANOVA I.V.; Sivtsova, O. V.; Vasil'ev, V. G.; Vladimirova, E. V.; Shevchenko, V.G.; Grigorov, I. G.

    2013-01-01

    The processes involved in the solution combustion synthesis of α-Al2O3 using urea as an organic fuel were investigated. The data describing the influence of the relative urea content on the characteristic features of the combustion process, the crystalline structure and the morphology of the aluminium oxide are presented herein. Our data demonstrate that the combustion of stable aluminium nitrate and urea complexes leads to the formation of α-alumina at temperatures of approximately 600-800 °...

  15. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  16. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    Science.gov (United States)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  17. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  18. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry

    2018-01-01

    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  19. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  20. Prospect of microgravitational combustion synthesis; Bisho juryoku nensho gosei no kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Odawara, O. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-03-20

    A combustion synthesis technique is a rapid efficient synthesis method of desired compounds by combustion reaction of metal powders without any external heating by furnace, and can achieve 2000-4000K at heating rates of 10{sup 3}- 10{sup 6}K/s. The technique of exothermic reaction systems possible to locally induce reactions can control propagation of spontaneous reactions and resultant formation of hot regions under a proper condition. The technique is thus applicable to microgravitational experiments as rapid hot material synthesis and heating techniques. In reaction systems unrelated to gas phase, the effect of the gravity on combustion process appears on heat transfer and melt movement toward ahead of combustion wave fronts. In reaction systems where hot gas phase components formed in combustion process dominate the propagation behavior of combustion wave fronts, transfer of gas phase is also one of the impact factors. In structuring process behind combustion wave fronts, such microgravitational effects as uniform distribution of products are expected, because of no natural convection and no separation caused by specific weight difference. 15 refs., 7 figs.

  1. Combustion Synthesis of Nanomaterials Using Various Flame Configurations

    KAUST Repository

    Ismail, Mohamed Anwar

    2016-02-01

    Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have been investigated; scale-up in laboratory synthesis and advanced nanoparticle synthesis. Concerning the scale-up issue, a novel curved wall-jet (CWJ) burner was designed for flame synthesis. This was achieved by injecting precursors of TiO2 through a central port into different flames zones that were stabilized by supplying fuel/air mixtures as an annular-inward jet over the curved wall. This provides a rapid mixing of precursors in the reaction zone with hot products. In order to increase the contact surface between the precursor and reactants as well as its residence time within the hot products, we proposed two different modifications. The CWJ burner was modified by adding a poppet valve on top of the central port to deliver the precursor tangentially into the recirculating flow upstream within the recirculation zone. Another modification was made by adopting double-slit curved wall-jet (DS-CWJ) configuration, one for the reacting mixture and the other for the precursor instead of the central port. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases were investigated. Ethylene (C2H4), propane (C3H8), and methane (CH4) were used with varying equivalence ratio and Reynolds number and titanium tetraisopropoxide (TTIP) was the precursor. Flow field and flame structure were quantified using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. TiO2 nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman Spectroscopy, and BET nitrogen adsorption for surface area analysis. The flow field quantified by PIV consisted of a wall-jet region leading to a recirculation zone, an

  2. The addition of organotin hydrides to isocyanates and isothiocyanates: synthesis and structure of some organotin-substituted amides

    NARCIS (Netherlands)

    Noltes, J.G.; Janssen, M.J.

    Organotin hydrides add across the carbon---nitrogen double bond of aryl isocyanates (tin---nitrogen bond formation) and hexyl isocyanate (tin---carbon bond formation) and across the carbon---sulfur double bond of phenyl isothiocyanate (tin---sulfur bond formation) to afford in excellent yield 1:1

  3. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials

    Science.gov (United States)

    Varma, A.; Pelekh, A.; Mukasyan, A.

    1999-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  4. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  5. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    Science.gov (United States)

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  6. Fabrication of Single-Phase NiTi by Combustion Synthesis of Mechanically Activated Powders

    Directory of Open Access Journals (Sweden)

    S. Mousavi Nasab

    2012-01-01

    Full Text Available Single-phase NiTi was fabricated through the thermal explosion mode of combustion synthesis of mechanically activated powders. Combustion and ignition temperatures of combustion synthesis were investigated in different milling times. In this process, equiatomic powder mixtures of nickel and titanium were activated by planetary ball mill and pressed into disk-shaped pellets then heated in a tube furnace, while temperature-time profile was recorded. X-ray diffraction analysis (XRD was performed on milled powders as well as synthesized samples. Scanning electron microscopy (SEM was also used to study the microstructural evolution during milling. The results showed that there was a threshold milling time to obtain single-phase NiTi. It was also seen that the ignition temperature and combustion temperature were reduced significantly by increasing milling time.

  7. Reproduction in laboratory of the morphology distribution and orientation of hydrides in different stages fuel cycle; Reproduccion en laboratorio de la morfologia, distribucion y orientacion de hidruros en distintas etapas del ciclo de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M. A.; Gomez, F. J.; Ruiz-Hervias, J.

    2013-07-01

    In this paper, the experimental techniques employed to reproduce in the laboratory the distribution, morphology and orientation of the hydrides during the different steps of the nuclear fuel cycle are reported. A cathodic charging technique was employed to produce ZIRLO cladding samples with an homogeneous distribution of hydrides and concentrations of 150, 250, 500, 1200 and 2000 ppm of hydrogen. The treatments developed to produce radial hydride reorientation, hydride blisters and a peripheral rim of hydrides are described.

  8. Synthesis of magnetically separable MnFe2O4 nanocrystals via salt-assisted solution combustion method and their utilization as dye adsorbent

    National Research Council Canada - National Science Library

    ZHONG, Xiaochao; YANG, Jun; CHEN, Yuanyuan; QIU, Xiaoyan; ZHANG, Yuanming

    2015-01-01

      MnFe2O4 nanocrystals with spinel structure were prepared by conventional solution combustion synthesis and salt-assisted solution combustion synthesis, respectively, and their adsorption capacities for Congo red (CR...

  9. Synthesis of magnetically separable MnFe2O4 nanocrystals via salt-assisted solution combustion method and their utilization as dye adsorbent

    National Research Council Canada - National Science Library

    ZHONG, Xiaochao; YANG, Jun; CHEN, Yuanyuan; QIU, Xiaoyan; ZHANG, Yuanming

    2015-01-01

    MnFe2O4 nanocrystals with spinel structure were prepared by conventional solution combustion synthesis and salt-assisted solution combustion synthesis, respectively, and their adsorption capacities for Congo red (CR...

  10. Corrosion resistance of neodymium and dysprosium hydrides

    Science.gov (United States)

    Karakchieva, Natalia; Lyamina, Galina; Knyazeva, Elena; Sachkov, Victor; Kurzina, Irina; Pichugina, Alina; Vladimirov, Alexander; Kazantseva, Ludmila; Sachkova, Anna

    2017-11-01

    This paper describes the methods of obtaining hydrides of rare earth elements such as dysprosium and neodymium. The properties and corrosion resistance of these elements are investigated. A synthesis method of monophasic dysprosium and neodymium dihydrides is presented. Synthesized dihydrides are agglomerates with an average size of 3-50 µm and are formed by crystalline grains of a nanometer size. BET specific surface area, morphology, elemental analyses and composition of samples have been studied. Corrosion stability in aqueous solutions of hydrochloric acid and sodium hydroxide were studied. It was determined that both hydrides undergo hydrolysis in acid and alkaline mediums. Neodymium hydride is more stable to corrosion than dysprosium hydride, which is proved by its longer exposure to aggressive medium to hydrides. The formation of insoluble /poorly soluble products of corrosion can make a significant contribution to the process of powder dissolution.

  11. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...

  12. Fast Reacting Nano Composite Energetic Materials: Synthesis and Combustion Characterization

    Science.gov (United States)

    2015-08-24

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 aluminum combustion; energetic materials; fluorine ; reaction kinetics; fluoropolymers; self...techniques will be examined to quantify combustion performance. All of this information will provide a basis for future research and applications involving... fluorine content in the acids and their structural differences contribute to difference in burn velocity. The mechanisms controlling reactivity will be

  13. Combustion synthesis and optical properties of ceria doped gadolinium-oxide nanopowder

    Science.gov (United States)

    Tamrakar, Raunak Kumar; Bisen, D. P.

    2013-06-01

    The Ceria doped Gadolinium (Gd2O3) nanopowder was synthesized by combustion synthesis by using urea as a fuel. The combustion synthesis method which is reported here is advantageous from the perspectives of small size of the nanoparticle. The structural and photoluminescence (PL) property of sample was studies. Gd2O3:Ce3+ nanoparticles exhibit green emission around 543 nm. The result of XRD show that synthesized sample has cubic structure. The average size of particle is found to be 45 nm. The surface morphology of the films is also presented.

  14. Synthesis and formation process of Al2CuHx: A new class of interstitial aluminum-based alloy hydride

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2013-09-01

    Full Text Available Aluminum-based alloy hydride Al2CuHx (x ∼ 1 is synthesized by hydrogenating Al2Cu alloy using high-temperature and high-pressure hydrogen atmosphere. Al8Cu square antiprisms in Al2Cu twist around the c axis of a tetragonal unit cell by hydrogenation. The twist enlarges the interstitial spaces for accommodating hydrogen atoms which align linearly parallel to the c axis in Al2CuHx. Thermodynamic stability of Al2CuHx results from the balance of stabilization by H 1s and Al 3sp hybridization and destabilization owing to the Fermi-level lifting upon hydrogenation. The crystal and electronic structures of Al2CuHx illustrate the formation of an interstitial hydride of aluminum-based alloy.

  15. Historical Perspective and Contribution of U.S. Researchers Into the Field of Self-Propagating High-Temperature Synthesis (SHS)/Combustion Synthesis (CS): Personal Reflections

    Science.gov (United States)

    2008-07-01

    simultaneous combustion synthesis and densification, (e) and (f) SEM images of single- walled carbon nanotubes reinforced nickel aluminide- alumina ...articles with nanosize grains. The starting powders were obtained by plasma, mechanical alloying, or sol - gel techniques. A very important modification...Mines and Technology where he has been continuing SHS-related work. His research has been focused on combustion synthesis of nanopowders and

  16. Self-propagating high-temperature synthesis (SHS) and microwave-assisted combustion synthesis (MACS) of the thallium superconducting phases

    Science.gov (United States)

    Bayya, S. S.; Snyder, R. L.

    1994-05-01

    This paper explores the speed of reaction as a parameter to minimizing thallium loss. Self-propagating high-temperature synthesis (SHS) and microwave-assisted combustion synthesis (MACS) were developed for the synthesis of Tl-2212 and Tl-2223 superconductors using Cu metal powder as a fuel. A kitchen microwave oven was used to carry out MACS reactions. The samples were reacted for few seconds and led to the formation of the superconducting phases. Further explorations and modifications in the processing could lead to the formation of single phases by MACS.

  17. Combustion based technique for synthesis and joining of refractory materials

    Science.gov (United States)

    White, Jeremiah David Edward

    Gasless combustion systems offer features that make them attractive tools for a variety of potential applications. Among them are rapid heating rates, high exothermicity, and high maximum temperatures. These characteristics were exploited to accomplish three separate concepts including the joining of refractory materials, synthesis of a pore-free composite, and the study of thermal explosion in mechanically activated powders. Honeywell Aerospace is a leading producer of carbon brakes for commercial aircraft. The manufacturing process involves chemical vapor infiltration (CVI) to form a carbon matrix around a carbon fiber preform. A major disadvantage of this approach is the time required to form a fully dense preform, which is on the order of 140 days. In addition, after the brakes are in service, they have to be discarded while there is a relatively thick amount of friction material still available. There is a profit motive for reusing these discs which are out of spec. One such example would be to perform a refurbishment by bonding a new thin C/C element onto a used "core" to produce a brake that meets performance specifications. Unfortunately, joining C/C composites is not a simple task, as carbon does not lend itself to welding, and other means (e.g. mechanical or adhesives) would not hold up to the harsh operational conditions. A novel apparatus was designed, built, and proven to join C/C using so-called reactive resistance welding (RRW). It is shown that a joint stronger than the original material can be achieved using moderate electrical current and mechanical force. Additionally, joining layers of similar thickness and microstructure were obtained with different reactive media, ranging from pellets of pressed powders (˜1-2 mm) to thin metal foils (˜25 micron). By modifying the schematic of the RRW apparatus, porous C/C was infiltrated with liquid silicon in order to form a new pore-free C/C-SiC composite. It is shown that using such a process, the silicon

  18. The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites

    Science.gov (United States)

    Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.

    1997-01-01

    Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different

  19. Synthesis of nanocrystals of long persisting phosphor by modified combustion technique

    Science.gov (United States)

    Chander, Harish; Haranath, D.; Shanker, Virendra; Sharma, Pooja

    2004-10-01

    Synthesis and characterization of nanocrystalline long persistent SrAl 2O 4:Eu 2+, Dy 3+ phosphor via a modified combustion process has been presented in this paper. In this synthesis process, a mixture of respective metal nitrates, flux and combustible agent (urea/camphor) were thermally treated with slight modification at 400-600°C for about 5 min. It resulted in low-density voluminous mass as compared to a sintered material by conventional solid-state method. The present work reports the changes made in the combustion process to achieve the homogenous incorporation of dopants and large-scale production of the nanophosphor in a short interval of time. The samples have been characterized for nanophase, structural and luminescent properties.

  20. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect

    Science.gov (United States)

    Khort, Alexander; Podbolotov, Kirill; Serrano-García, Raquel; Gun'ko, Yurii K.

    2017-09-01

    In this paper, we report a new modified one-step combustion synthesis technique for production of Ni metal nanoparticles. The main unique feature of our approach is the use of microwave assisted foam preparation. Also, the effect of different types of fuels (urea, citric acid, glycine and hexamethylenetetramine) on the combustion process and characteristics of resultant solid products were investigated. It is observed that the combination of microwave assisted foam preparation and using of hexamethylenetetramine as a fuel allows producing pure ferromagnetic Ni metal nanoparticles with enhanced coercivity (78 Oe) and high value of saturation magnetization (52 emu/g) by one-step solution combustion synthesis under normal air atmosphere without any post-reduction processing.

  1. Facile combustion synthesis of novel CaZrO 3: Eu 3, Gd 3 red ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 1. Facile combustion synthesis of novel CaZrO3:Eu3+, Gd3+ red phosphor and remarkably enhanced photoluminescence by Gd3+ doping. Qingqing Du Guangjun Zhou Shuo Zhang Xiao Jia Haifeng Zhou Zhongsen Yang. Volume 38 Issue 1 February 2015 ...

  2. Combustion synthesis and structural characterization of Li–Ti mixed ...

    Indian Academy of Sciences (India)

    0.02 ≤ ≤ 0.1), were prepared by combustion method at lower temperatures compared to the conventional high temperature sintering for the first time at low temperatures, using PEG which acts as a new fuel and oxidant. XRD patterns reveal ...

  3. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    A regression model has also been developed to correlate the input parameters, viz. batch size, diluents, fuel to oxidizer ratio and initial furnace temperature, with flame temperature of the solution combustion reaction. The adequacy of the developed model has been checked using analysis of variance technique.

  4. Synthesis and luminescence in sol–gel auto-combustion ...

    Indian Academy of Sciences (India)

    gel auto-combustion methodcalcined at 800 ∘ C for 1 h. The samples are found to be well-crystallized pure orthorhombic CaSnO 3 structure. Photoluminescence (PL) measurements indicated that the undoped sample exhibits a broad blue ...

  5. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    Science.gov (United States)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  6. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments

    OpenAIRE

    Jessica Gilabert; Maria Dolores Palacios; Vicente Sanz; Sergio Mestre

    2017-01-01

    The fuel effect on the synthesis of a ceramic pigment with a composition CoCr2−2ΨAl2ΨO4 (0 ≤ Ψ ≤ 1) by means of solution combustion synthesis process (SCS) has been studied. Three different fuels were selected to carry out the synthesis (urea, glycine and hexamethylentetramine (HMT)). Highly foamy pigments with very low density were obtained. Fd-3m spinel-type structure was obtained in all the experiments. Nevertheless, crystallinity and crystallite size of the spinels show significant differ...

  7. Changes in the composition of synthesis products upon transitioning from self-ignition to combustion

    Science.gov (United States)

    Seplyarskii, B. S.; Ivleva, T. P.; Grachev, V. V.; Merzhanov, A. G.

    2017-07-01

    Changes in the chemical composition of condensed products upon switching from synthesis in the self-ignition mode to combustion synthesis is studied by approximate analytical and numerical means for condensed substances that react via competing reaction pathways. It is shown that these different modes of synthesis produce different compositions of the reaction products. The conditions required for transitioning from one mode of combustion initiation (thermal explosion) to another (ignition) are determined. It is found that this transition can occur upon changing the temperature of a heater by just two characteristic intervals. A scaling procedure that allows the calculation results obtained at zero dimensionless temperature of the heater to be used to determine the effect its non-zero dimensionless temperature has on the ignition mode and the composition of the obtained products is proposed. Calculations show that materials with different distributions of the chemical composition along the sample can be obtained by deliberately changing the temperature of the heater.

  8. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    Science.gov (United States)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  9. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    Science.gov (United States)

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  10. Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor

    Science.gov (United States)

    Chu, Ai-min; Qin, Ming-li; Jia, Bao-rui; Lu, Hui-feng; Qu, Xuan-hui

    2013-01-01

    Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precursor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive), nitric acid (oxidizer), urea (fuel), and glucose (C source). Scanning electron microscopy (SEM) micrographs showed that the obtained precursor exhibited a uniform mixture of SiO2 + C composed of porous blocky particles up to ˜20 μm. The precursor was subsequently calcined under nitrogen at 1200-1550°C for 2 h. X-ray diffraction (XRD) analysis revealed that the initial reduction reaction started at about 1300°C, and the complete transition of SiO2 into Si3N4 was found at 1550°C. The Si3N4 powders, synthesized at 1550°C, exhibit a mixture phase of α- and β-Si3N4 and consist of mainly agglomerates of fine particles of 100-300 nm, needle-like crystals and whiskers with a diameter of about 100 nm and a length up to several micrometers, and a minor amount of irregular-shaped growths.

  11. Solution combustion synthesis and optimization of phosphors for plasma display panels

    Science.gov (United States)

    Ingle, J. T.; Sonekar, R. P.; Omanwar, S. K.; Wang, Yuhua; Zhao, Lei

    2014-06-01

    The optimization of primary phosphors required for display panels were carried out. Phosphors were synthesized by simple solution combustion technique. The synthesis is based on the exothermic reaction between the fuel (urea) and oxidizer (ammonium nitrate).The heat generated in the reaction is used for auto combustion of precursors. The crystal structures of the prepared samples were confirmed by powder XRD technique and particle morphology by FE-SEM. The Photoluminescence properties were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) radiations respectively. Prepared phosphors were found to have the best luminous performance with respect to intensity and color purity under 254 nm and 147 nm wavelength radiations.

  12. Glycine-Urea Combustion Synthesis for γ- LiAlO2

    Science.gov (United States)

    Wu, M. M.; Wen, Z. Y.; Fan, Z. Z.; Lin, Z. X.

    γ- LiAlO2, is a potential candidate for the use as ceramic separator in molten carbonate fuel cells. A combustion synthesis technique, the glycine-urea-nitrate process was described and investigated in this paper. A combination of the aqueous solution of glycine-urea and metal nitrates was employed as a precursor for the process. Gels were formed while the solutions were evaporated. Further heating caused the precursor to autoignite. The experimental results of phase analysis, particle morphology and particle size analysis indicated that pure γ- LiAlO2 with fine crystalline and high reactivity could be obtained by the combustion technique.

  13. Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders

    Science.gov (United States)

    Parnianfar, H.; Masoudpanah, S. M.; Alamolhoda, S.; Fathi, H.

    2017-06-01

    The solution combustion synthesis of porous magnetite (Fe3O4) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N2 adsorption-desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe3O4 powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe3O4 powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m2/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  14. Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets

    Directory of Open Access Journals (Sweden)

    M. Venkatesh

    2016-09-01

    Full Text Available Nickel ferrite nanoplatelets have been successfully synthesized by a simple microwave assisted combustion method using trisodium citrate as a fuel. The prepared sample was chemically and structurally characterized by different techniques and the magnetic behaviour was studied by field dependent magnetization measurement. The obtained results indicate that the prepared sample is phase pure nickel ferrite nanoplatelets having size in the range of 40–50 nm and it exhibits a soft ferromagnetic nature with saturation magnetization of 49 emu/g and coercivity of 167 G. Hence proposed method is a facile approach to obtain nickel ferrite nanoplatelets for broad spectrum of applications.

  15. Flash synthesis of Li2TiO3 powder by microwave-induced solution combustion

    Science.gov (United States)

    Zhou, Qilai; Tao, Liyao; Gao, Yue; Xue, Lihong; Yan, Youwei

    2014-12-01

    Nano-crystalline Li2TiO3 powder was prepared by a microwave-induced solution combustion synthesis (MSCS) route using urea as fuel. It is observed that combustion reaction, which did not occur by conventional heating, happened when microwave heating was induced. The as-synthesized Li2TiO3 powder exhibits a narrow size distribution. In MSCS, the total metal ion concentration (Cm) in the starting solution plays an important role. By changing Cm values in starting solution, SCS process including ignition time, combustion period and reaction rate can be controlled. The as-prepared powder could be sintered up to 92.6% of the theoretical density at 1223 K.

  16. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms...... of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps); how they are transported in models......; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions...

  17. The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

    Science.gov (United States)

    Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.

  18. Combustion Synthesis of Fe-Incorporated SnO2 Nanoparticles Using Organometallic Precursor Combination

    Directory of Open Access Journals (Sweden)

    Thomas K. Barkley

    2012-01-01

    Full Text Available Synthesis of nanomaterials within flames has been demonstrated as a highly scalable and versatile approach for obtaining a variety of nanoparticles with respect to their chemistry, composition, size, morphology, and dimensionality. Its applicability can be amplified by exploring new material systems and providing further control over the particle characteristics. This study focused on iron-incorporated SnO2 nanoparticles generated using an inverse coflow diffusion flame burner that supported a near-stoichiometric methane-air combustion. A liquid organometallic precursor solution of Sn(CH34 and Fe(CO5 was used to produce 11–14 nm nanocrystalline particles. Synthesized particles were analyzed using TEM, XRD, and XEDS to characterize for size and composition. A flame temperature field was obtained to map particle evolution within the flame. A range of conditions and parameters were studied to specifically generate targeted particles. The study augments related research towards increasing the production potential of combustion synthesis.

  19. Synthesis of copper hydride (CuH) from CuCO3·Cu(OH)2 - a path to electrically conductive thin films of Cu.

    Science.gov (United States)

    Lousada, Cláudio M; Fernandes, Ricardo M F; Tarakina, Nadezda V; Soroka, Inna L

    2017-05-23

    The most common synthesis methods for copper hydride (CuH) employ hard ligands that lead to the formation of considerable amounts of metallic Cu as side-product. Here we explore a synthesis method for CuH(s) through the reaction of CuCO3·Cu(OH)2(s) with hypophosphorous acid (H3PO2) in solution, via the formation of the intermediate Cu(H2PO2)2(aq) complex. The reaction products were characterized with XRD, FTIR and SEM at different reaction times, and the kinetics of the transformation of Cu(H2PO2)2(aq) to CuH(s) were followed with NMR and are discussed. We show that our synthesis method provides a simple way for obtaining large amounts of CuH(s) even when the synthesis is performed in air. Compared to the classic Würtz method, where CuSO4 is used as an initial source of Cu(2+), our synthesis produces CuH particles with less metallic Cu side-product. We attribute this to the fact that our reaction medium is free from the hard SO4(2-) ligand that can disproportionate Cu(i). We discuss a mechanism for the reaction based on the known reactivity of the reagents and intermediates involved. We explored the possibility of using CuH(s) for making electrically conductive films. Tests that employed water-dispersed CuH particles show that this compound can be reduced with H3PO2 leading to electrically conductive thin films of Cu. These films were made on regular office paper and were found to be Ohmic conductors even after several weeks of exposure to ambient conditions. The fact that the synthesis reported here produces large amounts of CuH particles in aqueous media, with very little impurities, and the fact that these can then be converted to a stable electrically conductive film can open up new applications for CuH such as for printing electrically conductive films or manufacturing surface coatings.

  20. Combustion synthesis of silicon carbide assisted by a magnesium plus polytetrafluoroethylene mixture

    Energy Technology Data Exchange (ETDEWEB)

    Ayral, R.M. [Institut Charles Gerhardt Montpellier, PMOF-UM2-CNRS Pl. E. Bataillon, 34095 Montpellier Cedex 5 (France); Rouessac, F., E-mail: florence.rouessac@univ-montp2.fr [Institut Charles Gerhardt Montpellier, PMOF-UM2-CNRS Pl. E. Bataillon, 34095 Montpellier Cedex 5 (France); Massoni, N. [CEA, DEN, DTCD, 30207 Bagnols-sur-Ceze (France)

    2009-11-15

    In this study, the use of SiC combustion synthesis for immobilization of {sup 14}C was considered. Due to the low exothermicity of the reaction between silicon and graphite, a highly exothermic mixture (magnesium and polytetrafluoroethylene) was used both as a chemical oven and activate additive in the mixture. With this configuration the reaction between graphite and silicon was initiated and propagated on the whole sample. The self-propagating high temperature synthesis samples were characterized by using scanning electron microscopy and X-ray diffraction.

  1. Novel silver-doped NiTiO3: auto-combustion synthesis ...

    African Journals Online (AJOL)

    Novel silver-doped NiTiO3: auto-combustion synthesis, characterization and photovoltaic measurements. ... To fabricate a FTO/TiO2/Ag-NiTiO3/Pt-FTO solar cell, Ag-NiTiO3 film was directly deposited on top of the TiO2 prepared by electrophoresis deposition method. Furthermore, solar cell result indicates that an ...

  2. Electrochemical hydrogen storage properties of Mg100−xNix produced by hydriding combustion synthesis and mechanical milling

    Directory of Open Access Journals (Sweden)

    Delong Zhu

    2017-02-01

    Full Text Available In this work, Mg-based hydrogen storage composites with an initial 100-x: x (x=25, 32.3, 50, 66.7 of Mg:Ni molar ratio were prepared by HCS+MM and their phase compositions and electrochemical performances were investigated in detail. The results show that the composites with desirable constituents can be achieved by adjusting the molar ratio of the starting materials in the HCS process. Particularly, the HCS product of Mg67.7Ni32.3 consists of the principal phase Mg2NiH4 and minor phase Mg2NiH0.3. The dominate phase varies from Mg2NiH0.3 and MgH2 for the Mg enriched sample (x32.3. The MM modification not only brings about grain refinement of the alloys, but also leads to phase transformation of part Mg2NiH4 to Mg2NiH0.3 in the Mg67.7Ni32.3 sample. Electrochemical tests indicate that each sample can reach its maximum discharge capacity at the first cycle. Mg67.7Ni32.3 displays the highest discharge capacity as well as a superior electrochemical kinetics owing to its excellent H atom diffusion ability and lower charge-transfer resistance. The Mg67.7Ni32.3 provides the most optimized Mg/Ni atomic ratio considering the comprehensive electrochemical properties of all samples.

  3. Fabrication of a Spherical Titanium Powder by Combined Combustion Synthesis and DC Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Choi S.H.

    2017-06-01

    Full Text Available Combustion synthesis is capable of producing many types of refractory and ceramic materials, as well as metals, with a relatively lower cost and shorter time frame than other solid state synthetic techniques. TiO2 with Mg as reductant were dry mixed and hand compacted into a 60 mm diameter mold and then combusted under an Ar atmosphere. Depending on the reaction parameters (Mg concentration 2 ≤ α ≤ 4, the thermocouples registered temperatures between 1160°C and 1710°C · 3 mol of Mg gave the optimum results with combustion temperature (Tc and combustion velocity (Uc values of 1372°C and 0.26 cm/s respectively. Furthermore, this ratio also had the lowest oxygen concentration in this study (0.8 wt%. After combustion, DC plasma treatment was carried out to spheroidize the Ti powder for use in 3D printing. The characterization of the final product was performed using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and N/O analysis.

  4. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    Energy Technology Data Exchange (ETDEWEB)

    Manjunath, K.; Ravishankar, T.N. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura Talluk (India); Kumar, Dhanith [Department of Chemistry, B.M.S. Instsitute of Technology, Yelahanka, Bangalore (India); Priyanka, K.P; Varghese, Thomas [Nanoscience Research Centre, Department of Physics, Nirmala College, Muvattupuzha, Kerala (India); Naika, H.Raja [Department of Studies and Research in Environmental Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Center for Advanced Materials, Tumkur University, Tumkur (India); Sharma, S.C. [Chattisgarh Swami Vivekananda Technical University, Bhilai (India); Dupont, J. [Institute of Chemistry, Laboratory of Molecular Catalysis, UFRGS, Porto Alegre (Brazil); Ramakrishnappa, T. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura Talluk (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Department of Chemistry, B.M.S. Instsitute of Technology, Yelahanka, Bangalore (India)

    2014-09-15

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterial and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.

  5. Immobilization of {sup 14}C from reactor graphite waste by use of combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bosc Rouessac, Florence; Marin-Ayral, Rose-Marie; Haidoux, Abel; Massoni, Nicolas [Institut Charles Gerhardt UMR 5253 UM II /CNRS / ENSCM- cc1504, Place Eugene Bataillon 34095 Montpellier Cedex 5 (France); Bart, Florence [CEA Marcoule, Nuclear Energy Division, DTCD/ SECM/LM2C, BP 17171 30200 Bagnols-sur-Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: Among radio elements potentially present in future nuclear systems, exits long-lived radionuclide {sup 14}C. Thanks to their very interesting physico-chemical properties and more precisely their corrosion resistance, carbides (Ti,Si,C) are potential candidates for the preparation of ceramic matrices for immobilization of {sup 14}C. Several methods of synthesizing silicon carbide exist but this study deals with the utilization of combustion synthesis or SHS (Self propagating High temperature synthesis). Indeed, its rapidity and its low cost make this technique an excellent tool in conditioning {sup 14}C. The synthesis of SiC from elements by the SHS process can not be realized under normal conditions due to a low adiabatic combustion temperature of SiC system. It is calculated as 1600-1700 K which considerably lacks the empirically established minimum of 1800 K for SHS reaction. Hence, an additional energy source needs to be introduced into the system. In this work, our aim is to find experimental conditions to allow and to control ignition and propagation of the combustion wave along the sample. The reaction between silicon, titanium and graphite is optimized using two different ignition systems, with several nature and size of the carbon powders. Materials are characterized by X-ray diffraction and scanning electron microscopy. (authors)

  6. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    feed pressure of >50 bar and a delivery pressure ≥ 875 bar of high purity H2 gas using the scheme shown in Figure 1. Progress to date includes the selection of two candidate metal hydrides for each compressor stage, supplier engagement and synthesis of small samples, and the beginning of in-depth characterization of their thermodynamics, kinetics, and hydrogen capacities for optimal performance with respect to energy requirements and efficiency. Additionally, bed design trade studies are underway and will be finalized in FY18. Subsequently, the prototype two-stage compressor will be fabricated, assembled and experimentally evaluated in FY19.

  7. Preparation of molybdenum borides by combustion synthesis involving solid-phase displacement reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, C.L. [Department of Mechanical and Automation Engineering, Da-Yeh University, 112 Shan-Jiau Rd., Da-Tsuen, Changhua 51505, Taiwan (China)], E-mail: clyeh@mail.dyu.edu.tw; Hsu, W.S. [Department of Mechanical and Automation Engineering, Da-Yeh University, 112 Shan-Jiau Rd., Da-Tsuen, Changhua 51505, Taiwan (China)

    2008-06-12

    Preparation of molybdenum borides of five different phases in the Mo-B binary system (including Mo{sub 2}B, MoB, MoB{sub 2}, Mo{sub 2}B{sub 5}, and MoB{sub 4}) was performed by self-propagating high-temperature synthesis (SHS) with two kinds of the reactant samples. When elemental powder compacts with an exact stoichiometry corresponding to the boride phase were employed, self-sustaining reaction was only achieved in the sample with Mo:B = 1:1 and nearly single-phase MoB was yielded. Therefore, the other four boride compounds were prepared from the reactant compacts composed of MoO{sub 3}, Mo, and B powders, within which the displacement reaction of MoO{sub 3} with boron was involved in combustion synthesis. Experimental evidence shows that the extent of displacement reaction in the overall reaction has a significant impact on sustainability of the synthesis reaction, combustion temperature, reaction front velocity, and composition of the end product. An increase in the solid-phase displacement reaction taking place during the SHS process contributes more heat flux to the synthesis reaction, thus resulting in the increase of combustion temperature and enhancement of the reaction front velocity. Based upon the XRD analysis, formation of Mo{sub 2}B, MoB{sub 2}, and Mo{sub 2}B{sub 5} as the dominant boride phase in the end product was successful through the SHS reaction with powder compacts under appropriate stoichiometries between MoO{sub 3}, Mo, and B. However, a poor conversion was observed in the synthesis of MoB{sub 4}. The powder compact prepared for the production of MoB{sub 4} yielded mostly Mo{sub 2}B{sub 5}.

  8. Gas-phase combustion synthesis of tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.L.; Torek, P.V.; Schrock, C.R.; Palmer, T.R.; Wooldridge, M.S. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Mechanical Engineering

    2002-07-01

    Nanocrystalline tin oxide particles were synthesized by injecting tetramethyl tin (Sn(CH{sub 3}){sub 4}) into the center of a multi-element diffusion burner. The particle size, size distribution and composition were characterized using transmission electron microscopy and X-ray diffraction analyses. High purity SnO{sub 2} nanoparticles were formed with no trace of Sn or SnO impurities. The experimental approach was demonstrated as a valuable means to study SnO{sub x} particle nucleation and growth phenomena under controlled synthesis conditions. (orig.)

  9. Combustion synthesis of copper catalysts for selective CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Nielson F.P.; Schmal, Martin [NUCAT/COPPE - UFRJ, Centro de Tecnologia, Bloco G, Sala 128, CEP 21945-970, Rio de Janeiro, RJ (Brazil); Souza, Mariana M.V.M. [NUCAT/COPPE - UFRJ, Centro de Tecnologia, Bloco G, Sala 128, CEP 21945-970, Rio de Janeiro, RJ (Brazil); Escola de Quimica - UFRJ, Centro de Tecnologia, Bloco E, Sala 206, CEP 21941-909, Rio de Janeiro, RJ (Brazil)

    2008-04-15

    Copper catalysts supported on ceria, zirconia and niobia were prepared by combustion method with urea, containing a CuO loading of 6 wt.%, and tested on selective oxidation of CO. The characterization of the samples by X-ray diffraction (XRD) presented the formation of solid solution on CuO-CeO{sub 2} catalyst and a change in crystalline structure of the support with copper insertion on ZrO{sub 2} and Nb{sub 2}O{sub 5} catalysts. The analysis of temperature-programmed reduction (TPR) revealed different interaction degrees of copper with the supports, with reduction peaks between 222 and 390 C. The temperature-programmed desorption of CO (TPD-CO) profiles showed formation of CO{sub 2} and H{sub 2} only for the ceria and zirconia catalysts. In relation to the catalytic tests, the CuO-CeO{sub 2} catalyst presented the best performance, with CO conversion of 95% at 150 C up to 45 h on stream, and CO{sub 2} selectivity of 55%. (author)

  10. Combustion synthesis of copper catalysts for selective CO oxidation

    Science.gov (United States)

    Ribeiro, Nielson F. P.; Souza, Mariana M. V. M.; Schmal, Martin

    Copper catalysts supported on ceria, zirconia and niobia were prepared by combustion method with urea, containing a CuO loading of 6 wt.%, and tested on selective oxidation of CO. The characterization of the samples by X-ray diffraction (XRD) presented the formation of solid solution on CuO-CeO 2 catalyst and a change in crystalline structure of the support with copper insertion on ZrO 2 and Nb 2O 5 catalysts. The analysis of temperature-programmed reduction (TPR) revealed different interaction degrees of copper with the supports, with reduction peaks between 222 and 390 °C. The temperature-programmed desorption of CO (TPD-CO) profiles showed formation of CO 2 and H 2 only for the ceria and zirconia catalysts. In relation to the catalytic tests, the CuO-CeO 2 catalyst presented the best performance, with CO conversion of 95% at 150 °C up to 45 h on stream, and CO 2 selectivity of 55%.

  11. Manufacturing of Porous Al-Cr Preforms for Composite Reinforcing Using Microwave Activated Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    Naplocha K.

    2014-10-01

    Full Text Available The combustion synthesis of porous skeletons (preforms of intermetallic Al–Cr compounds intended for metal matrix composite MMC reinforcing was developed. Mixture of Al and Cr powders with granularity of −10, −44, −74mm were cold isostatic pressed and next ignited and synthetized in a microwave reactor under argon atmosphere (microwave-activated combustion synthesis MACS. In order to ignite the synthesis, microwave energy was focused by a tuner on the specimen. The analysis of reaction temperature diagrams revealed that the synthesis proceeded through the following peritectic transformations: L(liquidus+Al7Cr→L+Al11Cr2→L+Al4Cr. Moreover, EDS and XRD examinations showed that the reaction proceeded between a solid Cr and a liquid Al to create a distinct envelope of Al9Cr4 on Cr particle which next extended and spreaded over the entire structure. The produced preforms with uniform structure and interconnected porosity were infiltrated with liquid Cu and Al alloy. The obtained composite materials exhibited high hardness, wear and distinct temperature oxidation resistance.

  12. Direct recovery of boiler residue by combustion synthesis.

    Science.gov (United States)

    Nourbaghaee, Homan; Ghaderi Hamidi, Ahmad; Pourabdoli, Mahdi

    2018-01-08

    Boiler residue (BR) of thermal power plants is one of the important secondary sources for vanadium production. In this research, the aluminothermic self-propagating high-temperature synthesis (SHS) was used for recovering the transition metals of BR for the first time. The effects of extra aluminum as reducing agent and flux to aluminum ratio (CaO/Al) were studied and the efficiency of recovery and presence of impurities were measured. Aluminothermic reduction of vanadium and other metals was carried out successfully by SHS without any foreign heat source. Vanadium, iron, and nickel principally were reduced and gone into metallic master alloy as SHS product. High levels of efficiency (>80%) were achieved and the results showed that SHS has a great potential to be an industrial process for BR recovery. SHS produced two useful products. Metallic master alloy and fused glass slag that is applicable for ceramic industries. SHS can also neutralize the environmental threats of BR by a one step process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis

    Directory of Open Access Journals (Sweden)

    Rajan Choudhary

    2015-06-01

    Full Text Available The present study focused on the synthesis of calcium magnesium silicate (akermanite, Ca2MgSi2O7 using eggshell biowaste (as calcium source, magnesium nitrate and tetraethyl orthosilicate (TEOS as starting materials. Sol–gel combustion method was adopted to obtain calcium magnesium silicate. Citric acid was used as a fuel (reducing agent and nitrate ions present in the metal nitrates acts as an oxidizing agent during combustion process. The characterization of synthesized calcium magnesium silicate was carried out by powder X-ray diffraction (XRD, Fourier transform infrared (FTIR and scanning electron microscopy (SEM techniques. Calcium magnesium silicate crystallite size was observed in nano regime which can effectively mimic natural bone apatite composition. In-vitro bioactivity was investigated by immersing calcium magnesium silicate pellet in simulated body fluid (SBF for three weeks. Results show effective deposition of crystallized hydroxyapatite (HAP layer on its surface and predicting its possibilities for applications in hard tissue regeneration.

  14. NaF-assisted combustion synthesis of MoSi2 nanoparticles and their densification behavior

    Science.gov (United States)

    Nersisyan, Hayk H.; Lee, Tae Hyuk; Ri, Vladislav; Lee, Jong Hyeon; Suh, Hoyoung; Kim, Jin-Gyu; Son, Hyeon Taek; Kim, Yong-Ho

    2017-03-01

    The exothermic reduction of oxides mixture (MoO3+2SiO2) by magnesium in NaF melt enables the synthesis of nanocrystalline MoSi2 powders in near-quantitative yields. The combustion wave with temperature of about 1000-1200 °C was recorded in highly diluted by NaF starting mixtures. The by-products of combustion reaction (NaF and MgO) were subsequently removed by leaching with acid and washing with water. The as-prepared MoSi2 nanopowder composed of spherical and dendritic shape particles was consolidated using the spark plasma sintering method at 1200-1500 °C and 50 MPa for 10 min. The result was dense compacts (98.6% theoretical density) possessing submicron grains and exhibiting hardness of 8.74-12.92 GPa.

  15. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    Science.gov (United States)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  16. Combustion synthesis of LaFeO{sub 3} sensing nanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Zaza, F., E-mail: fabio.zaza@enea.it; Serra, E. [ENEA-Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Pallozzi, V.; Pasquali, M. [Department of Basic and Applied Sciences for Engineering, La Sapienza University, Via A. Scarpa 14/16, 00161 Rome (Italy)

    2015-06-23

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO{sub 3}.

  17. Role of fuel/oxidizer ratio on the synthesis conditions of Cu–Al{sub 2}O{sub 3} nanocomposite prepared through solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, H., E-mail: h.nasiri85@yahoo.com [Department of Material Science and Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran, Islamic Republic of); Bahrami Motlagh, E.; Vahdati Khaki, J.; Zebarjad, S.M. [Department of Material Science and Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran, Islamic Republic of)

    2012-11-15

    Highlights: ► With increasing the fuel to oxidizer ratio synthesis products changed from CuO to Cu{sub 2}O. ► With increasing the fuel to oxidizer ratio the combustion temperature decreased. ► Maximum ratio that synthesis could occur was achieved. ► The stoichiometric ratio had the maximum combustion temperature. ► Solution with graphite had lower combustion temperature. -- Abstract: The role of fuel/oxidizer ratio in the synthesis conditions of Cu–Al{sub 2}O{sub 3} nanocomposite, which was prepared through solution combustion synthesis, method was investigated. For this purpose, copper and aluminum nitrates as well as urea were used as oxidizer and fuel, respectively. The fuel/oxidizer (F/O) ratios were selected from the range of 0.9–1.75. The products were analyzed using X-ray diffraction, SEM and TEM techniques. During the process the temperature was recorded as a function of time. The results showed that by increasing the F/O ratio up to the stoichiometric amount, the combustion temperature increases. Further increment of F/O ratio resulted in a decrease in the combustion temperature. Microscopic evaluations, using SEM and TEM, proved feasibility of the production of Cu–Al{sub 2}O{sub 3} through this method.

  18. Combustion synthesis of ceramic matrices for immobilization of {sup 14}C

    Energy Technology Data Exchange (ETDEWEB)

    Bosc-Rouessac, F. [Institut Charles Gerhardt, UMR 5253, Universite Montpellier II cc1504, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Marin-Ayral, R.M. [Institut Charles Gerhardt, UMR 5253, Universite Montpellier II cc1504, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France)], E-mail: rose-marie.ayral@univ-montp2.fr; Haidoux, A. [Institut Charles Gerhardt, UMR 5253, Universite Montpellier II cc1504, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Massoni, N.; Bart, F. [CEA Marcoule, Nuclear Energy Division, DTCD/SECM/LM2C, BP 17171, 30200 Bagnols-sur-Ceze Cedex (France)

    2008-10-20

    In this study, the use of combustion synthesis for immobilization of {sup 14}C was considered. Ceramic matrices have been prepared by this method using two different devices: one non-conventional with preheating of the samples and the other conventional device where ignition was produced thanks to tungsten filament. These two devices gave rise to different mechanisms of reactions involving different amounts of unreacted carbon graphite inside the matrix. The SHS samples were characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD)

  19. Specific Surface Area Increment of Alumina Nanoparticles Using Mineral Fuels in Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    F. Bustanafruz

    2012-03-01

    Full Text Available Ammonium carbonate and ammonium sulfate have been proposed and used as two new fuels for synthesizing gamma alumina nanoparticles. The prepared samples have been characterized by X-ray diffraction (XRD, 2 N  adsorption (BET and Transmission electron microscopy (TEM. A comparison has been made between the properties of the nanoparticles synthesized by these two fuels and other conventional fuels. These two mineral fuels showed to be suitable for replacing organic fuels in combustion synthesis because they reduce the size and increase specific surface area of alumina nanoparticles effectively.

  20. Microwave activated combustion synthesis of porous Al-Ti structures for composite reinforcing

    Energy Technology Data Exchange (ETDEWEB)

    Naplocha, Krzysztof, E-mail: krzysztof.naplocha@pwr.wroc.p [Institute of Production Engineering and Automation, Technical University of Wroclaw, ul. Lukasiewicza 5, 50-371 Wroclaw (Poland); Granat, Kazimierz [Institute of Production Engineering and Automation, Technical University of Wroclaw, ul. Lukasiewicza 5, 50-371 Wroclaw (Poland)

    2009-11-03

    A research on porous Al-Ti materials produced by combustion synthesis is presented. Some of the manufactured preforms could be infiltrated with liquid aluminium alloy to obtain locally reinforced castings. The synthesis progress was analysed, as well as a structure formation, its phase composition, homogeneity degree and type of porosity. Cylindrical green compacts were prepared of Al and Ti powders with various stoichiometric ratios. Synthesis was performed in a specially designed microwave reactor, by placing a compact in a waveguide, in intensely focused field. Temperatures recorded by a pyrometer showed that the synthesis propagation accelerated at the moment of Al{sub 3}Ti creation. The highest synthesis temperature was reached by the specimens containing 45-67% Al (all percentages atomic). Microscopic examinations revealed rounded grains, sometimes with cores of solid solution Ti(Al). The grains were basically composed of AlTi{sub 3} that changed to AlTi at the edge. The grain structure was similar in almost all kinds of the specimens, especially in those with higher Al content. Around those grains, envelopes of AlTi and Al{sub 2}Ti were formed. Chemical composition of the matrix was approximately equivalent to stoichiometric ratio of the initial powder mixture. XRD investigations confirmed multiphase structure of the obtained compacts and a slight effect of the Ti powder granularity. Some of the specimens revealed regular structure with interconnected porosity. Those materials containing 75, 67 and 55% Al were used for producing the aluminium alloy-based composites.

  1. Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution.

    Science.gov (United States)

    Liang, Hanwen; Ting, Ying Yue; Sun, Hongqi; Ang, Ha Ming; Tadé, Moses O; Wang, Shaobin

    2012-04-15

    Solution combustion using urea as a fuel was employed to synthesise Co oxide and Al(2)O(3)-, SiO(2)- and TiO(2)-supported Co oxide catalysts. The catalysts were characterised using several techniques such as N(2) adsorption/desorption, XRD, FTIR, UV-vis diffuse reflectance and SEM-EDX, and their catalytic activity was evaluated in phenol degradation in aqueous solution with sulphate radicals. Solution combustion is a simple and effective method in preparation of supported Co catalysts. Co(3)O(4) was the major Co crystal phase in the samples prepared via the combustion synthesis. Bulk Co(3)O(4) particles were not effective in reaction, but supported Co oxides showed higher activity than unsupported Co oxide. The supports influenced Co dispersion and catalytic activity. Co/TiO(2) exhibited the highest activity, but it deactivated much faster than other two supported catalysts. Co/SiO(2) showed a comparable activity to Co/Al(2)O(3) and the best stability among the three Al(2)O(3)-, SiO(2)- and TiO(2)-supported Co catalysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The effect of hydrostatic pressure on the combustion synthesis of Y 2O 3:Bi nanophosphor

    Science.gov (United States)

    Jacobsohn, L. G.; Tappan, B. C.; Tornga, S. C.; Blair, M. W.; Luther, E. P.; Mason, B. A.; Bennett, B. L.; Muenchausen, R. E.

    2010-03-01

    The effects of pressurized Ar environments during the solution combustion synthesis (SCS) of Y 2O 3:Bi nanophosphor were investigated. Three fuels were used urea, glycine and hexamethylenetetramine (HMT) and the nanopowders were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence, fluorescence lifetime, and thermoluminescence measurements. The dominant crystallographic phase was cubic, with crystallite size being insensitive to the hydrostatic pressure but increasing for fuels with higher heat of combustion. At least for nanopowders obtained using fuels with higher heats of combustion, higher Ar hydrostatic pressures lead to lower photoluminescence output. Fluorescence lifetime measurements on HMT-prepared samples yielded lifetimes of 330 and 900 ns for Bi 3+ ions in S 6 and C 2 sites, respectively, and no variation in these values was observed for hydrostatic pressures from 0.1 to 9.7 MPa. Shorter lifetime values than reported for conventional SCS are likely related to higher concentration of quenching defects. In agreement with these results, thermoluminescence measurements showed that higher concentrations of electronic traps are present in samples synthesized under higher pressures.

  3. The features of combustion synthesis of aluminum and carbon doped magnesium diboride

    Science.gov (United States)

    Potanin, A. Yu.; Kovalev, D. Yu.; Levashov, E. A.; Loginov, P. A.; Patsera, E. I.; Shvyndina, N. V.; Pervakov, K. S.; Vlasenko, V. A.; Gavrilkin, S. Yu.

    2017-10-01

    We report the results of synthesizing the MgB2-based material in the layerwise combustion and thermal explosion modes. For the initial temperature of 500 °C, the combustion temperatures in the layerwise combustion and thermal explosion modes are identical. The sample surface after the synthesis is coated with a friable white coating, up to 10 μm thick, consisting of whisker-like MgO crystals 1.5 μm long and 200 nm in diameter. It is possible to dope MgB2 with aluminum and carbon atoms. Time-resolved X-ray diffraction studies demonstrate that the (Mg,Al)B2 phase emerges without formation of any intermediate compounds. The absence of Al demonstrates that it is contained in MgB2. Aluminum and carbon doping of MgB2 alters the lattice parameters, while its structural type remains unchanged. Doping of MgB2 with carbon black is found to be a more effective method than graphite doping. Superconducting properties of the synthesized samples were studied.

  4. Y2O3:Bi nanophosphor: Solution combustion synthesis, structure, and luminescence

    Science.gov (United States)

    Jacobsohn, L. G.; Blair, M. W.; Tornga, S. C.; Brown, L. O.; Bennett, B. L.; Muenchausen, R. E.

    2008-12-01

    Photoluminescence (PL), radioluminescence (RL), and thermoluminescence (TL) investigation of Y2O3:Bi nanophosphors prepared by solution combustion synthesis using urea, glycine, and hexamethylenetetramine (HMT) as fuels was carried out. The as-prepared nanopowders have increasing crystallinity and average crystallite sizes for urea, glycine, and HMT, respectively. Luminescence is composed of two emission bands centered at 408 and 505 nm due to two nonequivalent Bi3+ sites with symmetry S6 and C2, respectively. The occupancy of these sites depends on the synthesis conditions, in agreement with theoretical predictions. Annealing at 1000 °C for 1 h improves PL and RL efficiency due to enhanced crystallinity of the nanopowders and activation of recombination centers (Bi3+ ions). No shift in the PL peak position was observed as a function of average crystallite size. The concentration quenching was experimentally determined to have a maximum emission of around 3 mol % of the dopant. TL spectra present several peaks between 50 and 300 °C, and the total TL signal is correlated with the heat of combustion of the fuel and thus crystallinity increases. Most likely, increases in RL and TL are also due to the increase in the concentration of recombination centers.

  5. Er:SrF{sub 2} luminescent powders prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rakov, Nikifor, E-mail: nkifor.gomez@univasf.edu.br [PG - Ciencia dos Materiais, Universidade Federal do Vale do Sao Francisco, 48902-300 Juazeiro, BA (Brazil); Guimaraes, R.B.; Franceschini, D.F.; Maciel, Glauco S. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346 Niteroi, RJ (Brazil)

    2012-08-15

    Combustion synthesis, a widely spread technique employed to produce low-cost high-yield oxide powders, was used to prepare fluoride powders for the first time. Surface morphology and structure of erbium (Er{sup 3+}) doped strontium fluoride (SrF{sub 2}) powders were investigated by scanning electronic microscopy, energy dispersive X-ray and X-ray powder diffraction. Samples were prepared with and without aluminum (Al) and we observed that the presence of Al helps the powder to crystallize in a pure SrF{sub 2} single cubic phase. Luminescence spectral analysis was also performed and we observed that among the samples investigated the Er{sup 3+}:SrF{sub 2} powder prepared with Al using glycine is the most efficient luminescence up-converter. The luminescence results concords with Raman data of the samples. -- Highlights: Black-Right-Pointing-Pointer Strontium fluoride powders are prepared by combustion synthesis for the first time. Black-Right-Pointing-Pointer Structural characterization and luminescence analysis of powders prepared using two different fuels: glycine and urea. Black-Right-Pointing-Pointer Analysis of the influence of aluminum on the powders structure and luminescence properties. Black-Right-Pointing-Pointer First time, to the best of our knowledge, that Raman spectroscopy is performed in SrF{sub 2} nanostructured material.

  6. Synthesis and properties of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride

    Energy Technology Data Exchange (ETDEWEB)

    Verbovytskyy, Yu. [Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova str., 79601 Lviv (Ukraine); Zhang, J.; Cuevas, F.; Paul-Boncour, V. [Institut de Chimie et des Materiaux de Paris Est, CMTR, UMR 7182, CNRS-UPEC, 2-8 rue H. Dunant, 94320 Thiais (France); Zavaliy, I., E-mail: zavaliy@ipm.lviv.ua [Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova str., 79601 Lviv (Ukraine)

    2015-10-05

    Graphical abstract: Crystal structure of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride. - Highlights: • Preparation of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride by reactive ball milling. • Crystal structure determination by X-ray powder diffraction. • Electrochemical studies of the ball milled MH/Ni electrodes. - Abstract: The Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride with a grain size of 16 nm was prepared by reactive ball milling. Its crystal structure was studied by X-ray powder diffraction. A tetragonal Mg{sub 2}CoH{sub 5} structure type was suggested for the obtained hydride. The decomposition temperature of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} phase was observed at 213 °C. Electrochemical measurements as negative electrode of Ni–MH battery were also performed. Significant improvements can be made by ball-milling the hydride with nickel powder.

  7. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    Science.gov (United States)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  8. Mixture of fuels for solution combustion synthesis of porous Fe{sub 3}O{sub 4} powders

    Energy Technology Data Exchange (ETDEWEB)

    Parnianfar, H.; Masoudpanah, S.M., E-mail: masoodpanah@iust.ac.ir; Alamolhoda, S.; Fathi, H.

    2017-06-15

    Highlights: • Mixture of glycine and urea fuels was applied for solution combustion synthesis of Fe3O4 powders. • The phase and crystallite size of the as-combusted powders depends on the fuel to oxidant ratio (ϕ). • The maximum density (0.033 cm{sup 3}/g) was observed for the as-combusted powders at ϕ = 1. • The highest Ms of 75.5 emu/g and the lowest Hc of 84 Oe were achieved at ϕ = 1. - Abstract: The solution combustion synthesis of porous magnetite (Fe{sub 3}O{sub 4}) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N{sub 2} adsorption–desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe{sub 3}O{sub 4} powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe{sub 3}O{sub 4} powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m{sup 2}/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  9. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  10. High yield combustion synthesis of nanomagnesia and its application for fluoride removal.

    Science.gov (United States)

    Maliyekkal, Shihabudheen M; Anshup; Antony, K R; Pradeep, T

    2010-04-15

    We describe a novel combustion synthesis for the preparation of Nanomagnesia (NM) and its application in water purification. The synthesis is based on the self-propagated combustion of the magnesium nitrate trapped in cellulose fibers. Various characterization studies confirmed that NM formed is crystalline with high phase purity, and the particle size varied in the range of 3-7nm. The fluoride scavenging potential of this material was tested as a function of pH, contact time and adsorbent dose. The result showed that fluoride adsorption by NM is highly favorable and the capacity does not vary in the pH range usually encountered in groundwater. The effects of various co-existing ions usually found in drinking water, on fluoride removal were also investigated. Phosphate was the greatest competitor for fluoride followed by bicarbonate. The presence of other ions studied did not affect the fluoride adsorption capacity of NM significantly. The adsorption kinetics followed pseudo-second-order equation and the equilibrium data are well predicted by Frendlich equation. Our experimental evidence shows that fluoride removal happened through isomorphic substitution of fluoride in brucite. A batch household defluoridation unit was developed using precipitation-sedimentation-filtration techniques, addressing the problems of high fluoride concentration as well as the problem of alkaline pH of the magnesia treated water. The method of synthesis reported here is advantageous from the perspectives of small size of the nanoparticle, cost-effective recovery of the material and improvement in the fluoride adsorption capacity. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Hydride heat pump

    Science.gov (United States)

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  12. Synthesis and crystal structure of the novel transition- metal substituted tin hydride H2Sn2[Mn(CO)5]4

    NARCIS (Netherlands)

    Bos, K.D.; Bulten, E.J.; Noltes, J.G.

    1975-01-01

    Dicyclopentadienyltin reacts with manganese pentacarbonyl hydride to give the first transition-metal substituted ditin dihydride, H[Mn(CO)5]2Sn---Sn- [Mn(CO)5]2H, the structure of which has been determined by X-ray analysis. The compound crystallizes in the monoclinic space group with four

  13. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  14. Photoelectroactivity of bismuth vanadate prepared by combustion synthesis: effect of different fuels and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, Renata; Serafim, Jessica A.; Lucilha, Adriana C.; Dall' Antonia, Luiz H., E-mail: luizh@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. Quimica. Lab. de Eletroquimica e Materiais; Silva, Marcelo R. [Universidade Estadual Paulista Julio de Mesquita Filho (CTI/UNESP), Bauru, SP (Brazil). Colegio Tecnico Industrial; Lepre, Luiz F.; Ando, Romulo A. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Lab. de Espectroscopia Molecular

    2014-04-15

    The bismuth vanadate (BiVO{sub 4}) is a semiconductor that has attracted much attention due to the photocatalytic efficiency in the visible light region. The objective of this work was to synthesize monoclinic BiVO{sub 4} by solution combustion synthesis, with different surfactants and fuels and apply it as photoelectrodes. The characterization by infrared spectroscopy and Raman spectroscopy showed that all samples showed characteristic bands of the monoclinic structure BiVO{sub 4}. The samples synthesized with glycine and glycine/Tween® 80 had V{sub 2}O{sub 5}. The film obtained from the alanine/ Tween® 80 showed highest photocurrent values, which may be related to smaller size particles (200 to 300 nm) observed by scanning electron microscopy images. The films obtained using alanine showed highest values of rate constant reaction and percentage discoloration of methylene blue. (author)

  15. Dextrose-templated microwave-assisted combustion synthesis of spongy metal oxides

    Science.gov (United States)

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2006-10-01

    We report microwave-assisted combustion synthesis of porous nanocrystalline titania and carbon coated titania using dextrose as a template and compare the product with that obtained using a conventional heating furnace. Out of three compositions, namely, 1:1, 1:3, and 1:5 (metal:dextrose), 1:3 favors formation of consistent porous structures. The samples were then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray analysis (EDX), x-ray diffraction (XRD) and x-ray mapping. This general and eco-friendly method uses a benign natural polymer, dextrose, to create spongy porous structures and can be extended to other transition metal oxides such as ZrO2, Al2O3 and SiO2.

  16. Combustion synthesis of nano-sized tungsten carbide powder and effects of sodium halides

    Science.gov (United States)

    Won, H. I.; Nersisyan, H. H.; Won, C. W.

    2010-02-01

    The synthesis of nano-size tungsten carbide powder has been investigated with a WO3 + Mg + C + carbonate system using alkali halides. The effects of different types of alkali halides on combustion temperature and tungsten carbide formation were discussed. Sodium fluoride had a notable effect on the particle size of the product and the degree of transformation from the initial mixture. A small amount of ammonium carbonate activated the carburization of tungsten carbide by the gas phase carbon transportation. X-ray diffraction data and particle analysis showed that the final product synthesized from a WO3-Mg-C-(NH4)2CO3-NaF system contains pure-phase tungsten carbide with a particle size of 50-100 nm.

  17. Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials

    Science.gov (United States)

    Rosa, Roberto; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; Leonelli, Cristina

    2012-05-01

    Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.

  18. Vacuum ultraviolet and visible spectra of ZnO:Eu{sup 3+} prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Bingming [National Synchrotron Radiation Research Centre, Hsinchu, Taiwan (China); Yu Lixin; Duan Changkui; Wang, Huaishan; Tanner, Peter A [Department of Biology and Chemistry, City University of Hong Kong, Kowloon (Hong Kong)], E-mail: bhtan@cityu.edu.hk

    2008-08-27

    Zinc oxide doped with 1 at.% Eu{sup 3+} has been prepared by combustion synthesis using several different reductants. Samples sintered at 800 deg. C were {approx}30 nm in size and Fourier transform IR spectra demonstrated that they were relatively free of contaminants. Ultraviolet and near-ultraviolet laser excited emission spectra showed that Eu{sup 3+} ions are disordered and not situated at discrete lattice sites in ZnO and consequently no evidence for energy transfer from the host to Eu{sup 3+} was found. Vacuum ultraviolet (VUV) excitation produced defect site emission in addition to near-band-edge emission but the intensity of the Eu{sup 3+} visible emission was very weak. Bands between 6.2 and 9.1 eV in the VUV excitation spectra have been assigned to electric dipole allowed transitions, 3d-4p.

  19. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    Science.gov (United States)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  20. Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis

    Directory of Open Access Journals (Sweden)

    H. Padma Kumar

    2015-03-01

    Full Text Available The optical properties of nanocrystalline HfO2 synthesized using a single-step auto-igniting combustion technique is reported. Nanocrystalline hafnium oxide having particle size of the order 10–15 nm were obtained in the present method. The nanopowder was characterized using X-ray diffraction, Fourier transform infrared and Fourier transform Raman spectroscopic studies. All these studies confirm that the phase formation is complete in the combustion synthesis and monoclinic phase [P21/c(14] of HfO2 is obtained without the presence of any impurities or additional phases. The powder morphology of the as-prepared sample was studied using transmission electron microscopy and the results were in good agreement with that of the X-ray diffraction studies. The optical constants such as refractive index, extinction coefficient, optical conductivity and the band gap were estimated from UV–vis spectroscopic techniques. The band gap of nanocrystalline HfO2 was found to be 5.1 eV and the sample shows a broad PL emission at 628 nm. It is concluded that the transitions between intermediate energy levels in the band gap are responsible for the interesting photoluminescent properties of nanocrystalline HfO2.

  1. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhang, Yao; Sun, Yue [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China)

    2014-09-30

    Highlights: • We report a synthesis of HA, Fap and Clap vio a modified solution combustion method. The nucleation of β-TCP was inhibited in the abundant-calcium system (Ca/P = 2.3>>1.67) in this study. F{sup −} brushed into the structure of HA and replace the position of OH{sup −} is easier than that of Cl{sup −}. - Abstract: Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH{sup −} in the HAP lattice were gradually substituted with the increase of F{sup −} and Cl{sup −} content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  2. Effect of Elemental Powder Size on Foaming Behavior of NiTi Alloy Made by Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    Naoyuki Kanetake

    2012-07-01

    Full Text Available Nickel titanium (NiTi foams were made by combustion synthesis of powders with the help of ZrH2 as foaming agent and TiB2 as endothermic agent. In this paper, we investigated the effect of elemental powder size on the foaming. The powder size of Ni and Ti affected the ignition temperature of the combustion reaction, cell morphology and microstructure of the foams. The cell morphology of the foams was also modified by the powder size of TiB2.

  3. Study of the reorienting of hydrides in pods of nuclear fuel in storage in dry conditions It has been reproduced in the laboratory reorientation of hydrides in pods; Estudio de la reorientacion de hidroduros en vainas de combustible nuclear en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Hervias, J.; Martin-Rengel, M. A.; Gomez, F. J.

    2012-07-01

    As a starting point, samples were taken at different concentrations of hydrogen, 150, 500 and 1200 ppm. Hydrogen therein was precipitated as hydrides homogeneously distributed in circumferential cross section of the cladding. These samples were subjected to thermomechanical processes representative of dry storage.

  4. Flash synthesis of Li{sub 2}TiO{sub 3} powder by microwave-induced solution combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qilai; Tao, Liyao; Gao, Yue; Xue, Lihong, E-mail: xuelh@mail.hust.edu.cn; Yan, Youwei

    2014-12-15

    Graphical abstract: - Highlights: • We synthesized Li{sub 2}TiO{sub 3} powder by microwave-induced solution combustion in one step. • The combustion reaction only happened by microwave heating. • Changing total metal ion concentration will influence combustion process. • The as-synthesized powder shows good sinterability. - Abstract: Nano-crystalline Li{sub 2}TiO{sub 3} powder was prepared by a microwave-induced solution combustion synthesis (MSCS) route using urea as fuel. It is observed that combustion reaction, which did not occur by conventional heating, happened when microwave heating was induced. The as-synthesized Li{sub 2}TiO{sub 3} powder exhibits a narrow size distribution. In MSCS, the total metal ion concentration (C{sub m}) in the starting solution plays an important role. By changing C{sub m} values in starting solution, SCS process including ignition time, combustion period and reaction rate can be controlled. The as-prepared powder could be sintered up to 92.6% of the theoretical density at 1223 K.

  5. Combustion Synthesis during Flame Spraying (“CAFSY” for the Production of Catalysts on Substrates

    Directory of Open Access Journals (Sweden)

    Galina Xanthopoulou

    2017-01-01

    Full Text Available Combustion-assisted flame spraying (“CAFSY” has been used to produce catalytically active nickel aluminide coatings on ceramic substrates. Their catalytic activity was studied in CO2 (dry reforming of methane, which is particularly significant for environmental protection as well as production of synthesis gas (CO + H2. By varying the CAFSY processing parameters, it is possible to obtain a range of Ni–Al alloys with various ratios of catalytically active phases on the substrate. The influence of the number of coating layers and the type of substrate on the final catalyst composition and on the catalytic activity of the CAFSY coatings was studied and is presented here. The morphology and microstructure of the composite coatings were determined by scanning electron microscopy (SEM with energy-dispersive X-ray spectroscopy (EDX elemental analysis, X-ray diffraction (XRD, and Brunauer–Emmett–Teller (BET specific area analysis. Catalytic tests for dry reforming of methane were carried out using crushed pellets from the coatings at temperatures of 750–900 °C, and gas chromatography showed that methane conversion approached 88% whereas that of carbon dioxide reached 100%. The H2/CO ratio in the synthesis gas produced by the reaction varied from about 0.7 to over 1.2, depending on the catalyst and substrate type and testing temperature.

  6. Combustion synthesis and thermoluminescence in YAlO{sub 3}:Dy{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Dhadade, I. H., E-mail: idhadade@yahoo.com; Moharil, S. V.; Dhoble, S. J.; Rahangdale, S. R. [Department of Physics, RTM Nagpur University, Nagpur, 440010 (India)

    2016-05-06

    In the Y{sub 2}O{sub 3}-Al{sub 2}O{sub 3} system, compounds Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet, YAG),YAlO{sub 3} (yttrium aluminum perovskite, YAP), and Y{sub 4}Al{sub 2}O{sub 9}(yttrium aluminate monoclinic, YAM) are well known. Though several soft chemical routes have been explored for synthesis of YAG, YAP and YAM, most of these methods are complex. Moreover, phase pure materials are not obtained in one step and prolonged annealing at temperatures around 1000°C is necessary. In this paper, one step combustion synthesis of the compound YAlO{sub 3}:Dy{sup 3+} is reported using a modified procedure and employing mixed (glycine + urea) fuel. Powder X-ray diffraction patterns confirm the pervoskite phase of YAlO{sub 3}. Thermoluminescence study shows linear response in wide dose range (0.2 – 1 KGy) suggest the possibility of the present phosphor in dosimeter application.

  7. Reactive melt infiltration of copper in Al–Cr preforms produced through combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Naplocha, Krzysztof, E-mail: krzysztof.naplocha@pwr.edu.pl; Granat, Kazimierz; Kaczmar, Jacek

    2014-11-15

    Highlights: • Determination of microstructure and phase transformation during combustion synthesis and reactive infiltration. • Squeeze casting of Cu inducing reactive infiltration of Al–Cr intermetallic porous preform. • Fabrication of unique composite material resisted to high temperature oxidation. - Abstract: Combustion synthesis of Al–Cr preforms used for infiltration and reinforcing of composite materials was developed. Compacts of powdered Al and Cr with stoichiometric ratio Al/Cr equal to 2/1 were synthesized in a microwave reactor furnished with a pyrometer for controlling phase transformations. Due to low enthalpy of the reaction, green compacts were preheated and ignition occurred together with partial melting of Al at the interface with Cr particles. The synthesis proceeded by peritectic transformations L + Al{sub 7}Cr → L + Al{sub 11}Cr{sub 2} → L + Al{sub 4}Cr, reaching maximum temperature of ca. 1000 °C. Porous structures including residual unprocessed Cr particles were soaked to homogenize them and to transform the phases into the stable intermetallic compound Al{sub 9}Cr{sub 4}. Reactive infiltration of the preforms with molten Cu proceeds along with interfacial diffusion of Al that, released from a preform, infiltrates into the matrix changing its composition to Cu{sub 9}Al{sub 4}(Cr). At the same time, the preform is decomposed and converted into a mixture of globular precipitates of Cr{sub 52}Al{sub 35}Cu{sub 13} embedded in the Cu{sub 47}Al{sub 41}Cr{sub 12} phase. The produced composite materials exhibit significant hardness and oxidation resistance at elevated temperatures. The protective layer is composed of oxides Al{sub 2}O{sub 3} and (AlCu){sub 2}O{sub 3} created at parabolic constant oxidation rate (k{sub p}) equal to 1.9 × 10{sup −6} g{sup 2} m{sup −4} s{sup −1}.

  8. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  9. Mechanically Activated Combustion Synthesis of MoSi2-Based Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shafirovich, Evgeny [Univ. of Texas, El Paso, TX (United States)

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of

  10. Bonding of xenon hydrides

    NARCIS (Netherlands)

    Perez-Peralta, N.; Juarez, R.; Cerpa, E.; Bickelhaupt, F.M.; Merino, G.

    2009-01-01

    We have computed the structure and stability of the xenon hydrides HXeY (with Y = F, Cl, Br, I, CCH, CN, NC) using relativistic density functional theory (DFT) at ZORA-BP86/TZ2P level. All model systems HXeY studied here are bound equilibrium structures, but they are also significantly destabilized

  11. Preparation of MoB and MoB-MoSi{sub 2} composites by combustion synthesis in SHS mode

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, C.L. [Department of Mechanical and Automation Engineering, Da-Yeh University, 112 Shan-Jiau Road, Da-Tsuen, Changhua 51505, Taiwan (China)]. E-mail: clyeh@mail.dyu.edu.tw; Hsu, W.S. [Department of Mechanical and Automation Engineering, Da-Yeh University, 112 Shan-Jiau Road, Da-Tsuen, Changhua 51505, Taiwan (China)

    2007-08-16

    Combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) was carried out in the Mo-B and Mo-B-Si systems for the preparation of molybdenum boride MoB and the composite of MoB-MoSi{sub 2} from elemental powder compacts. Under a preheating temperature above 150 deg. C , the reaction of Mo with boron in the sample compact of Mo:B = 1:1 is characterized by a planar combustion front propagating in a self-sustaining and steady manner. As the preheating temperature or sample compaction density increased, combustion temperature was found to increase and the propagation rate of the combustion front was correspondingly enhanced. Moreover, the XRD analysis provides evidence of yielding nearly single-phase {alpha}-MoB from the Mo-B sample at equiatomic stoichiometry. In the synthesis of MoB-MoSi{sub 2} composites, the starting stoichiometry of the Mo-B-Si powder compact was varied so as to produce the final composites containing 20-80 mol% MoB. It was also found the increase of flame-front velocity and combustion temperature with increasing MoB content formed in the composite. The composition analysis by XRD shows excellent conversion from the Mo-B-Si powder compact to the MoB-MoSi{sub 2} composite through the SHS reaction; that is, in addition to a small amount of Mo{sub 5}Si{sub 3}, the as-synthesized composite is composed entirely of MoB and MoSi{sub 2}.

  12. Combustion synthesized TiO{sub 2} for enhanced photocatalytic activity under the direct sunlight-optimization of titanylnitrate synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Daya Mani, A. [Department of Chemistry, IIT Hyderabad, Yeddumailaram 502 205 (India); Laporte, V. [Ecole Polytechnique Federale de Lausanne (EPFL), Interdisciplinary Centre for Electron Microscopy – Surface Analysis Facility, CH-Lausanne (Switzerland); Ghosal, P. [Defence Metallurgical Research Laboratory (DMRL), Kanchanbagh, Hyderabad 500 058 (India); Subrahmanyam, Ch., E-mail: csubbu@iith.ac.in [Department of Chemistry, IIT Hyderabad, Yeddumailaram 502 205 (India)

    2012-09-15

    Graphical abstract: Effect of oxidant on the combustion synthesis of TiO{sub 2} has been studied by preparing titanylnitrate in four different ways from Ti(IV) iso-propoxide. It is observed that oxidant preparation method has a significant effect on physico-chemical as well as photocatalytic properties of TiO{sub 2}. All the catalysts showed excellent photocatalytic activity than Degussa P-25 under direct sunlight for the degradation of a textile dye (methylene blue), without the need of external light sources, oxygen supply and reactor systems. Highlights: ► Optimized synthesis of titanylnitrate. ► Influence of titanylnitrate synthesis on the physico-chemical properties of TiO{sub 2} prepared by combustion synthesis. ► Development of highly efficient TiO{sub 2} photocatalysts those are active under the direct sunlight in open atmosphere. ► Degradation of the textile dye (methylene blue) under direct sunlight. -- Abstract: Optimized synthesis of Ti-precursor ‘titanylnitrate’ for one step combustion synthesis of N- and C-doped TiO{sub 2} catalysts were reported and characterized by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), diffused reflectance UV–vis spectroscopy, N{sub 2} adsorption and X-ray photoelectron spectroscopy (XPS). XRD confirmed the formation of TiO{sub 2} anatase and nano-crystallite size which was further confirmed by TEM. UV-DRS confirmed the decrease in the band gap to less than 3.0 eV, which was assigned due to the presence of C and N in the framework of TiO{sub 2} as confirmed by X-ray photoelectron spectroscopy. Degradation of methylene blue in aqueous solution under the direct sunlight was carried out and typical results indicated the better performance of the synthesized catalysts than Degussa P-25.

  13. Characteristics reproducibility of (Fe, Co)(Cr, Al)2O4 pigments obtained by solution combustion synthesis

    OpenAIRE

    Gilabert Albiol, Jessica; Palacios Tejero, María Dolores; Sanz Solana, Vicente; Mestre Beltrán, Sergio

    2016-01-01

    Synthesis reproducibility of mixed spinels Fe1−ΨCoΨCr2−2ΨAl2ΨO4 (0≤Ψ≤1), obtained by Solution Combustion Synthesis using urea as fuel, has been studied. Pigments with spinel structure Fd-3m have been obtained for all the compositional range analysed. Characteristics such as crystallinity, cell parameter, crystal size and specific surface area show a noticeable dependence with Ψ, but some of them present a low reproducibility, indicating a pronounced dependency with process conditions in each ...

  14. Phosphenium Hydride Reduction of [(cod)MX2] (M = Pd, Pt; X = Cl, Br): Snapshots on the Way to Phosphenium Metal(0) Halides and Synthesis of Metal Nanoparticles.

    Science.gov (United States)

    Nickolaus, Jan; Imbrich, Dominik A; Schlindwein, Simon H; Geyer, Adrian H; Nieger, Martin; Gudat, Dietrich

    2017-03-06

    The outcome of the reduction of [(cod)PtX2] (X = Cl, Br; cod = 1,5-cyclooctadiene) with N-heterocyclic phosphenium hydrides (R)NHP-H depends strongly on the steric demand of the N-aryl group R and the nature of X. Reaction of [(cod)PtCl2] with (Dipp)NHP-H featuring bulky N-Dipp groups produced an unprecedented monomeric phosphenium metal(0) halide [((Dipp)NHP)((Dipp)NHP-H)PtCl] stabilized by a single phosphine ligand. The phosphenium unit exhibits a pyramidal coordination geometry at the phosphorus atom and may according to DFT calculations be classified as a Z-type ligand. In contrast, reaction of [(cod)PtBr2] with the sterically less protected (Mes)NHP-H afforded a mixture of donor-ligand free oligonuclear complexes [{((Mes)NHP)PtBr}n] (n = 2, 3), which are structural analogues of known palladium complexes with μ2-bridging phosphenium units. All reductions studied proceed via spectroscopically detectable intermediates, several of which could be unambiguously identified by means of multinuclear ((1)H, (31)P, (195)Pt) NMR spectroscopy and computational studies. The experimental findings reveal that the phosphenium hydrides in these multistep processes adopt a dual function as ligands and hydride transfer reagents. The preference for the observed intricate pathways over seemingly simpler ligand exchange processes is presumably due to kinetic reasons. The attempt to exchange the bulky phosphine ligand in [((Dipp)NHP)((Dipp)NHP-H)PtCl] by Me3P resulted in an unexpected isomerization to a platinum(0) chlorophosphine complex via a formal chloride migration from platinum to phosphorus, which accentuates the electrophilic nature of the phosphenium ligand. Phosphenium metal(0) halides of platinum further show a surprising thermal stability, whereas the palladium complexes easily disintegrate upon gentle heating in dimethyl sulfoxide to yield metal nanoparticles, which were characterized by TEM and XRD studies.

  15. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.

    Science.gov (United States)

    Fan, Yun; Zhang, Fu-Shen; Zhu, Jianxin; Liu, Zhengang

    2008-05-01

    The solid by-product from power plant fueled with municipal solid waste and coal was used as a raw material to synthesize zeolite by fusion-hydrothermal process in order to effectively use this type of waste material. The effects of treatment conditions, including NaOH/ash ratio, operating temperature and hydrothermal reaction time, were investigated, and the product was applied to simulated wastewater treatment. The optimal conditions for zeolite X synthesis were: NaOH/ash ratio=1.2:1, fusion temperature=550 degrees C, crystallization time=6-10 h and crystallization temperature=90 degrees C. In the synthesis process, it was found that zeolite X tended to transform into zeolite HS when NaOH/ash ratio was 1.8 or higher, crystallization time was 14-18 h, operating temperature was 130 degrees C or higher. The CEC value, BET surface area and pore volume for the synthesized product at optimal conditions were 250 cmol kg(-1), 249 m(2) g(-1) and 0.46 cm(3) g(-1) respectively, higher than coal fly ash based zeolite. Furthermore, when applied to Zn(2+) contaminated wastewater treatment, the synthesized product presented larger adsorption capacity and bond energy than coal fly ash based zeolite, and the adsorption isotherm data could be well described by Langmuir and Freundlich isotherm models. These results demonstrated that the special type of co-combustion ash from power plant is suitable for synthesizing high quality zeolite, and the products are suitable for heavy metal removal from wastewater.

  16. Synthesis and characterization of X-ray nanophosphors using solution-combustion

    Science.gov (United States)

    Park, H. J.; Shin, J. W.; Oh, K. M.; Jeon, S. P.; Kim, S. H.; Lee, Y. K.; Nam, S. H.

    2011-12-01

    We investigated nanophosphor materials that exhibit high resolution and emission efficiency for use in X-ray medical imaging. Rare-earth phosphor material has long been used due to its high atomic number and emission efficiency, but these materials tend to exhibit lower resolution and emission efficiency when manufactured in bulk. In this study, we synthesized nanometer-scale phosphors of Gd2O3:Eu and Y2O3:Eu using the solution-combustion method, and we evaluated the dependence of the optical properties of these nanophosphors on europium concentration and synthesis atmosphere. The nanophosphors were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) spectroscopy. Characterization of the optical properties revealed that both Gd2O3:Eu and Y2O3:Eu exhibited peak emission intensity at 611 nm, which corresponded to that for commercial bulk phosphors. These results imply that manufacturing nanophosphors can achieve thin and compact displays that have enhanced performance, and that improvements in emission efficiency of nanophosphors could reduce the required patient dose for medical imaging.

  17. Thermoluminescence study of aluminium oxide doped germanium prepared by combustion synthesis method

    Directory of Open Access Journals (Sweden)

    Saharin Nurul Syazlin Binti

    2017-01-01

    Full Text Available The present paper reports the optimum concentration of germanium (Ge dopant in aluminium oxide (AhO3 samples prepared by combustion synthesis (CS method for thermoluminescence (TL studies. The samples were prepared at various Ge concentration i.e. 1 to 5% mol. The phase formation of un-doped and Ge-doped Al2O3 samples was determined using X-ray Diffraction (XRD. The sharp peaks present in the XRD pattern confirms the crystallinity of the samples. The samples were then exposed to 50 Gy Cobalt-60 sources (Gamma cell 220. TL glow curves were measured and recorded using a Harshaw Model 3500 TLD reader. Comparison of TL peaks were observed to obtain the best composition of Ge dopants. A simple glow curves TL peak at around 175̊C for all composition samples was observed. It was also found that the composition of aluminium oxide doped with 3.0% of germanium exhibits the highest thermoluminescence (TL intensity which is 349747.04 (a.u.

  18. Combustion synthesis of reactive nickel-aluminum particles as an innovative approach for thermal joining applications

    Science.gov (United States)

    Schreiber, S.; Theodossiadis, G. D.; Zaeh, M. F.

    2017-03-01

    Reactive systems, which are widely used in combustion synthesis, represent a promising solution for challenging joining tasks. They are able to undergo a self-sustaining, highly exothermic reaction when exposed to an external energy source. Reactive foils are the only systems that are currently commercially available. However, their industrial use is limited due to the brittle nature of the material and the restriction to planar geometries. Reactive particles represent a more flexible format, but are currently not commercially available. Therefore, a two-step electroless plating process has been developed to synthesize nickel-aluminum core-shell structures. These structures function as microreactors, which provide the energy for the thermal joining process. Ignition tests with electromagnetic waves were performed in order to investigate the overall reactivity. Energy input and particle size significantly influence the activation and the reaction behavior of the core-shell structures. Furthermore, a general approach to use reactive particles as a heat source in joining applications is proposed.

  19. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  20. Structural and spectroscopic analyses of europium doped yttrium oxyfluoride powders prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rakov, Nikifor [PG-Ciência dos Materiais, Universidade Federal do Vale do São Francisco, 48902-300 Juazeiro, BA (Brazil); Guimarães, R. B.; Maciel, Glauco S. [Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ (Brazil); Lozano B, W. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil)

    2013-07-28

    A facile widely spread technique employed to produce low-cost high-yield oxide powders, combustion synthesis, was used to prepare yttrium oxyfluoride crystalline ceramic powders. The structure of the powders was analyzed by X-ray powder diffraction and Rietveld refinement. Samples heat treated at 700 °C had a predominance of vernier orthorhombic Y{sub 6}O{sub 5}F{sub 8} phase, while samples heat treated at 800 °C crystallized in stoichiometric rhombohedral YOF phase. The samples were doped with luminescent europium trivalent ions (Eu{sup 3+}) in different concentrations (1–15 wt.%) and Judd-Ofelt theory was used to probe the distortion from the inversion symmetry of the local crystal field and the degree of covalency between the rare-earth ion and the surrounding ligands. The luminescence lifetime was measured and the luminescence quantum efficiency (LQE) was estimated. We observed that Eu{sup 3+}:Y{sub 6}O{sub 5}F{sub 8} samples presented higher LQE in spite of the larger local crystal field anisotropy found for Eu{sup 3+}:YOF samples.

  1. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  2. Aerosol Combustion Synthesis of Nanopowders and Processing to Functional Thin Films

    Science.gov (United States)

    Yi, Eongyu

    In this dissertation, the advantages of liquid-feed flame spray pyrolysis (LF-FSP) process in producing nanoparticles (NPs) as well as processing the produced NPs to ceramic/polymer nanocomposite films and high density polycrystalline ceramic films are demonstrated. The LF-FSP process aerosolizes alcohol solutions of metalloorganic precursors by oxygen and combusts them at > 1500 °C. The combustion products are rapidly quenched ( 10s of ms) to solutions. The high specific surface areas of NPs enable formulation of ceramic/polymer/interface(phase) ternary nanocomposites in which the interphase can be the determining factor of the final net properties. In ceramic processing, NPs show increased sinterability and provide access to small average grain sizes with fine control of microstructures, compared to when micron sized powders are used. Therefore, synthesis, processing, and characterization of NPs, NP derived nanocomposites and ceramic monoliths are of great interest. We first compare the LF-FSP to commercial FSP process by producing fumed silica. Combusting spirocyclic alkoxysilanes or Si(OEt)4 by LF-FSP process produced fumed silica very similar to SiCl4 derived products. Given LF-FSP approach does not require the containment constraints of the SiCl4 process and precursors are synthesized from rice hull ash, the reported approach represents a sustainable, green and potentially lower cost alternative. We then show the versatility of NPs in formulating flexible ceramic/polymer nanocomposites (BaTiO3/epoxy) with superior properties. Volume fractions of the BaTiO3 filler and composite film thicknesses were controlled to adjust the net dielectric constant and the capacitance. Measured net dielectric constants further deviated from theory, with increasing solids loadings, due to NP agglomeration. Wound nanocomposite capacitors showed ten times higher capacitance compared to the commercial counterpart. Following series of studies explore the use of flame made NPs in

  3. Hydride as a leaving group in the reaction of pinacolborane with halides under ambient Grignard and Barbier conditions. One-pot synthesis of alkyl, aryl, heteroaryl, vinyl, and allyl pinacolboronic esters.

    Science.gov (United States)

    Clary, Jacob W; Rettenmaier, Terry J; Snelling, Rachel; Bryks, Whitney; Banwell, Jesse; Wipke, W Todd; Singaram, Bakthan

    2011-12-02

    Grignard reagents (aliphatic, aromatic, heteroaromatic, vinyl, or allylic) react with 1 equiv of 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (pinacolborane, PinBH) at ambient temperature in tetrahydrofuran (THF) to afford the corresponding pinacolboronates. The initially formed dialkoxy alkylborohydride intermediate quickly eliminates hydridomagnesium bromide (HMgBr) and affords the product boronic ester in very good yield. Hydridomagnesium bromide (HMgBr) in turn disproportionates to a 1:1 mixture of magnesium hydride (MgH(2)) and magnesium bromide (MgBr(2)) on addition of pentane to the reaction mixture. DFT calculations (Gaussian09) at the B3LYP/6-31G(d) level of theory show that disproportionation of HMgBr to MgH(2) and MgBr(2) is viable in the coordinating ethereal solvents. This reaction also can be carried out under Barbier conditions, where the neat PinBH is added to the flask prior to the in situ formation of Grignard reagent from the corresponding organic halide and magnesium metal. Pinacolboronic ester synthesis under Barbier conditions does not give Wurtz coupling side products from reactive halides, such as benzylic and allylic halides. The reaction between PinBH and various Grignard reagents is an efficient, mild, and general method for the synthesis of pinacolboronates. © 2011 American Chemical Society

  4. Development of efficient, small particle size luminescent oxides using combustion synthesis

    Science.gov (United States)

    Shea, Lauren Elizabeth

    Luminescent materials (phosphors) find application in cathode-ray tubes (CRTs), medical and industrial equipment monitors, fluorescent lamps, xerography, and many types of flat panel displays. Many commercially available phosphors were optimized in the 1960s for high voltage (>10 kV) CRT applications. Recently, a great deal of emphasis has been placed on the development and improvement of phosphors for flat panel displays that operate at low voltages (<5 kV). In addition to high efficiency at low voltages, these displays demand high resolution phosphor screens which can only be realized using phosphors with smaller particle size (<3 mum). Conventional methods of preparing phosphors (e.g., high temperature solid-state reaction) cannot easily produce a homogeneous product with uniform, small particle size. In this work, a novel ceramic synthesis technique, combustion synthesis, was used for the first time to produce submicron-sized oxide phosphors more efficiently for use in flat panel displays. This technique exploits the exothermic redox reaction of metal nitrates (oxidizers) with an organic fuel (reducing agent). Typical fuels include urea (CHsb4Nsb2O), carbohydrazide (CHsb6Nsb4O), or glycine (Csb2Hsb5NOsb2). Resulting powders were well-crystallized, with a large surface area and small particle size. Phosphor powders were exposed to photoluminescence excitation by high energy (254 nm, E = 4.88 eV) and low energy photons (365 nm, E = 3.4 eV and 435 nm, E = 2.85 eV) and cathodoluminescence excitation by a low-voltage (100-1000 V) electron beam. Photoluminescence (PL) techniques resulted in the measurement of spectral energy distribution and relative intensities. Phosphor efficiencies in lumens per watt (lm/W) were obtained by low-voltage cathodoluminescence measurements. The effects of processing parameters such as type of fuel, fuel to oxidizer ratio, and heating rate were studied. The combustion process was optimized based on these processing parameters in order

  5. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    Science.gov (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  6. Direct Energy Supply to the Reaction Mixture during Microwave-Assisted Hydrothermal and Combustion Synthesis of Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Roberto Rosa

    2014-05-01

    Full Text Available The use of microwaves to perform inorganic synthesis allows the direct transfer of electromagnetic energy inside the reaction mixture, independently of the temperature manifested therein. The conversion of microwave (MW radiation into heat is useful in overcoming the activation energy barriers associated with chemical transformations, but the use of microwaves can be further extended to higher temperatures, thus creating unusual high-energy environments. In devising synthetic methodologies to engineered nanomaterials, hydrothermal synthesis and solution combustion synthesis can be used as reference systems to illustrate effects related to microwave irradiation. In the first case, energy is transferred to the entire reaction volume, causing a homogeneous temperature rise within a closed vessel in a few minutes, hence assuring uniform crystal growth at the nanometer scale. In the second case, strong exothermic combustion syntheses can benefit from the application of microwaves to convey energy to the reaction not only during the ignition step, but also while it is occurring and even after its completion. In both approaches, however, the direct interaction of microwaves with the reaction mixture can lead to practically gradient-less heating profiles, on the basis of which the main observed characteristics and properties of the aforementioned reactions and products can be explained.

  7. Controlled synthesis of LiNi0.5Mn1.5O4 cathode materials with superior electrochemical performance through urea-based solution combustion synthesis

    OpenAIRE

    Zhu, Chunyu; Han, Cheng-gong; Akiyama, Tomohiro

    2015-01-01

    High-voltage LiNi0.5Mn1.5O4 cathode materials were synthesized using urea-based solution combustion synthesis combined with a calcination treatment. The morphology and particle size distribution of the products were considerably dependent on the amount of urea fuel. The electrochemical characterization illustrated that the sample that was produced with a fuel ratio of phi = 0.5 had a homogenous particle size distribution of approximately 8 mu m, and showed the best cycling and rate performanc...

  8. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    Science.gov (United States)

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  10. Influence of double promotion on HDS catalysts prepared by urea-matrix combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Cortes, Sergio L. [Laboratorio de Cinetica y Catalisis, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Xiao, Tian-Cun; Lin, Tsung-Wu; Green, Malcolm L.H. [Wolfson Catalysis Centre, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2006-04-11

    The stringent environmental regulations in the US, Japan and Europe are requiring significant improvement in the quality of transportation fuels. A new strategy based on urea-matrix combustion method for the synthesis of alumina-supported molybdate-based mixed oxides (i.e., bimetallic and trimetallic oxides) has been applied. This permits to control the alumina-mixed oxide interaction and therefore the HDS catalytic behaviour. The oxidic and sulfurized states of the HDS catalysts were characterized by X-ray diffraction (XRD), laser Raman spectroscopy (LRS), temperature-programmed reduction (TPR) and high resolution transmission electron microscopy (HRTEM). Catalyst performance was evaluated using a tubular fixed-bed reactor and the hydrodesulfurization of thiophene under normal pressure as model reaction. It has been found that Ni-promoted alumina-supported MoO{sub 3} catalyst precursor presented a non well-ordered structure of Ni-Mo phase supported on alumina surface. However, when cobalt was added to Ni-Mo precursor the {beta}-isomorph stability was significantly improved and the formation of alumina-supported {beta}-Co{sub 0.5}Ni{sub 0.5}MoO{sub 4} was observed. The activation treatments markedly affect the catalyst structure and hence the HDS catalytic performance. The catalyst series pretreated in H{sub 2}S-H{sub 2} was 2-3 times more active than those C{sub 4}H{sub 4}S-H{sub 2}-pretreated catalysts and ca. 2-10 times more active than the pre-reduced samples. A significantly greater HDS activity of H{sub 2}S-H{sub 2}-pretreated Co{sub 0.5}Mg{sub 0.5}MoS{sub x}/{gamma}-Al{sub 2}O{sub 3} catalyst was observed, which is attributed to the fact that both promoters are into the same network interacting directly with the molybdenum. This feature hinders not only the segregation of cobalt sulfide, but also the formation of long MoS{sub 2} slabs. (author)

  11. Synthesis, Structure, and Reactivity of a Terminal Magnesium Hydride Compound with a Carbatrane Motif, [Tism(Pr(i)Benz)]MgH: A Multifunctional Catalyst for Hydrosilylation and Hydroboration.

    Science.gov (United States)

    Rauch, Michael; Ruccolo, Serge; Parkin, Gerard

    2017-09-27

    The tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl)]methyl ligand, [Tism(Pr(i)Benz)], has been employed to form the magnesium carbatrane compound, [Tism(Pr(i)Benz)]MgH, which possesses a terminal hydride ligand. Specifically, [Tism(Pr(i)Benz)]MgH is obtained via the reaction of [Tism(Pr(i)Benz)]MgMe with PhSiH3. The reactivity of [Tism(Pr(i)Benz)]MgMe and [Tism(Pr(i)Benz)]MgH allows access to a variety of other structurally characterized carbatrane derivatives, including [Tism(Pr(i)Benz)]MgX [X = F, Cl, Br, I, SH, N(H)Ph, CH(Me)Ph, O2CMe, S2CMe]. In addition, [Tism(Pr(i)Benz)]MgH is a catalyst for (i) hydrosilylation and hydroboration of styrene to afford the Markovnikov products, Ph(Me)C(H)SiH2Ph and Ph(Me)C(H)Bpin, and (ii) hydroboration of carbodiimides and pyridine to form N-boryl formamidines and N-boryl 1,4- and 1,2-dihydropyridines, respectively.

  12. Reproduction in Laboratory and characterization of Blister of Hydride of zirconium in nuclear fuel pods; Reproduccion en laboratorio y caracterizacion de Blisters de hidroduro de circonio en muestras de vaina de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rengel, M. A.; Ruiz-Hervias, J.; Munoz, P.

    2014-07-01

    This paper have replicated in laboratory blisters of different size in samples of pod of ZIRLO pre-hydrided evenly with 500 ppm of hydrogen. For these samples was used a technique of cathodic charging in basic medium. To produce the blister was heated up to about 350 degree centigrade in its outer surface sample. With the aim of producing a point cold on the surface of the sheath contacted the surface with a piece of aluminum water-cooled (cold finger). Was held a morphological characterization of the blisters by means of optical microscopy and found that the size of the produced blister is function of the contact time between fuel pod and cold finger. (Author)

  13. Combustion Synthesis of UHTC Composites from Ti–B4C Solid State Reaction with Addition of VIb Transition Metals

    Directory of Open Access Journals (Sweden)

    Chun-Liang Yeh

    2017-06-01

    Full Text Available UHTC composites were prepared by self-propagating high-temperature synthesis (SHS from the Ti–B4C reaction system with addition of Cr, Mo, and W. The starting sample composition was formulated as (3−xTi + B4C + xMe with x = 0.1–1.0 and Me = Cr, Mo, or W. For all samples conducted in this study, self-sustaining combustion was well established and propagated with a distinct reaction front. With no addition of Cr, Mo, or W, solid state combustion of the 3Ti + B4C sample featuring a combustion front temperature (Tc of 1766 °C and a combustion wave velocity (Vf of 16.5 mm/s was highly exothermic and produced an in situ composite of 2TiB2 + TiC. When Cr, Mo, or W was adopted to replace a portion of Ti, the reaction exothermicity was lowered, and hence, a significant decrease in Tc (from 1720 to 1390 °C and Vf (from 16.1 to 3.9 mm/s was observed. With addition of Cr, Mo, and W, the final products were CrB-, MoB-, and WB-added TiB2–TiC composites. The absence of CrB2, MoB2, and WB2 was attributed partly to the loss of boron from thermal decomposition of B4C and partly to lack of sufficient reaction time inherent to the SHS process.

  14. Beta-diketiminate-stabilized magnesium(I) dimers and magnesium(II) hydride complexes: synthesis, characterization, adduct formation, and reactivity studies.

    Science.gov (United States)

    Bonyhady, Simon J; Jones, Cameron; Nembenna, Sharanappa; Stasch, Andreas; Edwards, Alison J; McIntyre, Garry J

    2010-01-18

    general, the reactivity of the magnesium(I) dimers is inversely proportional to their steric bulk. The preparation and characterization of [((tBu)Nacnac)Mg(mu-H)(2)Mg((tBu)Nacnac)] has shown the compound to have different structural and physical properties to [((tBu)Nacnac)MgMg((tBu)Nacnac)]. Treatment of the former with DMAP has given [((tBu)Nacnac)Mg(H)(DMAP)], the X-ray crystal structure of which disclosed it to be the first structurally authenticated terminal magnesium hydride complex. Although attempts to prepare [((Mes)Nacnac)Mg(mu-H)(2)Mg((Mes)Nacnac)] were not successful, a neutron diffraction study of the corresponding magnesium(I) complex, [((Mes)Nacnac)MgMg((Mes)Nacnac)] confirmed that the compound is devoid of hydride ligands.

  15. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  16. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  17. Solution combustion synthesis and sintering behavior of porous MgAl2O4 powders

    OpenAIRE

    Bai J.H.; Liu J.C.

    2010-01-01

    Porous MgAl2O4 powders were synthesized with a solution combustion route using a mixture of glycine and urea with the glycine/urea molar ratio of 2/9 as fuel. For the comparison purpose, denser powders were also combustion synthesized using urea as fuel. The porous/denser structure, characteristics (e.g. crystallite size and specific surface areas) and sinterability of the two powders were investigated in detail. Experimental results disclosed that the as-prepared porous powders exhibit...

  18. Solution combustion synthesis and sintering behavior of porous MgAl2O4 powders

    Directory of Open Access Journals (Sweden)

    Bai J.H.

    2010-01-01

    Full Text Available Porous MgAl2O4 powders were synthesized with a solution combustion route using a mixture of glycine and urea with the glycine/urea molar ratio of 2/9 as fuel. For the comparison purpose, denser powders were also combustion synthesized using urea as fuel. The porous/denser structure, characteristics (e.g. crystallite size and specific surface areas and sinterability of the two powders were investigated in detail. Experimental results disclosed that the as-prepared porous powders exhibited a much lower degree of agglomeration, smaller average agglomerate particle size and larger surface areas and thus far higher sintering behavior than the denser powders.

  19. Solution-combustion synthesis of Bi1–xLnxO1⋅5 (Ln = Y and La–Yb ...

    Indian Academy of Sciences (India)

    Unknown

    339–345. © Indian Academy of Sciences. 339. Solution-combustion synthesis of Bi1–xLnxO1⋅5 (Ln = Y and La–Yb) ... The lattice parameter of cubic phase increases linearly with size of the lanthanide ion. The syn- thesized powders are ... These synthetic methods have an advantage over the solid state methods in terms of.

  20. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    Science.gov (United States)

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  1. Limitation of the environmental impact of ashes from combustion of sewage sludge by the synthesis of zeolites

    Directory of Open Access Journals (Sweden)

    Latosińska Jolanta

    2017-01-01

    Full Text Available The combustion of municipal sewage sludge allows for the recovery of renewable energy. However, it simultaneously causes the formation of ash which is not neutral for the environment. The study presents the research on the possibility of using sewage sludge ash as a raw material for the synthesis of zeolites. The synthesis of zeolites was performed with the use of an indirect fusion method and a direct hydrothermal method. The research on sewage sludge ash after zeolitization included the identification of crystalized phases, the observation of changes of ash particles surface and the measurement of cation exchange capacity (CEC. The research results proved that optimal conditions for the formation of zeolite Y were the synthesis with the indirect fusion method at the sewage sludge ash to hydroxy sodalite ratio of 1:1.8, the activation temperature of 60°C and the crystallization temperature of 90°C. Hydroxy sodalite was found in samples from both methods of zeolitization. However, in the case of direct hydrothermal method, particles of hydroxy sodalite structure were less numerous indicating a small conversion of sewage sludge ash to crystalline zeolite. CEC values comparable to commercial zeolites resulted from zeolitization with the indirect fusion method.

  2. SYNTHESIS AND ANALYSIS OF La o.9 MnO 3 BY COMBUSTION ...

    African Journals Online (AJOL)

    The Lao.9MnO3 has been synthesized from lanthanum acetylacetonate, manganese acetylacetonate and urea by combustion method at 800oC. The analysis of the synthesized Lao.9MnO3 show it to be a semi-conducting nanopolycrystalline material having orthorhombic geometry with unit-cell parameters: a = 5.50335Ao; ...

  3. Combustion synthesis and characterization of Ba2NdSbO6 ...

    Indian Academy of Sciences (India)

    Administrator

    conditions (Saberi et al 2008; Vivekanandhan et al 2008;. Yu et al 2008). But in the present work, we have synthe- sized phase pure Ba2NdSbO6 as nanoparticles through a combustion process using nitric acid as the oxidizer, citric acid as the complexing agent and ammonium hydroxide as fuel. *Author for correspondence ...

  4. Solution combustion synthesis of (La, K) FeO3 orthoferrite ceramics ...

    Indian Academy of Sciences (India)

    Administrator

    MS received 13 March 2009. Abstract. Polycrystalline La1–xKxFeO3 ceramic oxides were synthesized by a solution combustion process using glycine ... solid state (Smith and Norby 2006), sol–gel (Dai et al. 2006), co-precipitation (Pecchi et al 2008), hydrothermal. (Zheng et al 2000), polyol method (Maike et al 2007), etc.

  5. Combustion synthesis, characterization and Raman studies of ZnO nanopowders.

    Science.gov (United States)

    Reddy, A Jagannatha; Kokila, M K; Nagabhushana, H; Rao, J L; Shivakumara, C; Nagabhushana, B M; Chakradhar, R P S

    2011-10-15

    Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time weak bands observed in the range 750-1000 cm(-1) are due to small defects. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Combustion synthesis of nanocrystalline ceria (CeO{sub 2}) powders by a dry route

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, C.-C. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, Dashi, Taoyuan 335, Taiwan (China)]. E-mail: cchwang1@ccit.edu.tw; Huang, T.-H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, Dashi, Taoyuan 335, Taiwan (China); Tsai, J.-S. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, Dashi, Taoyuan 335, Taiwan (China); Lin, C.-S. [School of Defense Science, Chung Cheng Institute of Technology, NDU, Dashi, Taoyuan 335, Taiwan (China); Peng, C.-H. [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Lungtan, Taoyuan 325, Taiwan (China)

    2006-08-15

    In this study, ceria (CeO{sub 2}) powders were synthesized with 50 g per batch via a combustion technique using two kinds of starting materials-urea [(NH{sub 2}){sub 2}CO] (as a fuel) and ceric ammonium nitrate [Ce(NH{sub 4}){sub 2}(NO{sub 3}){sub 6}] (acting as both the source of cerium ion and an oxidizer). The starting materials were mixed thoroughly without adding water, and then ignited in the air at room temperature. It underwent a self-combustion process with a large amount of smoke, a voluminous loose product. The as-synthesized powders were characterized by X-ray diffraction (XRD) analysis, transmission electron microscope (TEM), scanning electron microscope (SEM), CHN elemental analyzer, surface area measurements, and sinterability. Experimental results revealed that the nanocrystalline CeO{sub 2} powders with low impurity content (<0.2 wt%) can be obtained after combustion. Specific surface area and primary crystallite particle size of the ceria powder were {approx}50 m{sup 2}/g and {approx}25 nm, respectively, through the stoichiometric fuel/oxidizer ratio reaction. The powder, when cold pressed and sintered in the air at 1250 deg. C for 1 h, was measured to attain the sintered density {approx}92% of theoretical density having submicron grain size. In addition, the thermal decomposition and combustion process of the reactant mixture were investigated using thermogravimetry (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS) techniques simultaneously. Based on the results of thermal analysis, a possible mechanism concerning the combustion reaction is proposed.

  7. Combustion Synthesis and Luminescence Behaviour of the Tb3+ Doped SrY2O4 Phosphor

    Science.gov (United States)

    Tamrakar, Raunak Kumar; Upadhyay, Kanchan

    2017-10-01

    Tb3+ doped SrY2O4 powder was prepared by the solution combustion synthesis method. The structure of the prepared phosphor was determined by using the powder x-ray diffraction technique and morphology by the field emission scanning electron microscopic technique. Under 254 nm ultra violet excitation, the phosphor gives an intense green emission around 543 nm. The other peaks were also present in blue and red regions, but the intensity is comparatively less. Study of the influence of Tb3+ concentration on emission spectra shows maximum intensity for blue and green emission at 2 mol.% of Tb3+ whereas the red emission at 620 nm quenched at 1 mol.%. Efficient green light emitting diodes (LEDs) were fabricated using Tb3+ doped phosphor based on near ultraviolet excited LED lights. Also, the prepared phosphor was useful for sensing applications, such as biological and chemical sensing. It is a promising candidate for applications in displays and optical devices.

  8. Combustion synthesis in the Ni-Al-Nb ternary system: A Time-Resolved X-ray Diffraction study

    Science.gov (United States)

    Sytschev, Alexander E.; Kovalev, Dmitry Yu.; Vrel, Dominique; Vadchenko, Sergey G.

    Combustion synthesis of intermetallics, using the thermal explosion mode, in the Ni-Al-Nb ternary system is presented, with a 40:40:20 atomic ratio. The kinetic pathway is determined using Time-Resolved X-ray Diffraction, with a time-step resolution of 1 s and demonstrated a first formation of the B2 NiAl structure followed by progressive dissolution of Nb to yield NiAlNb intermetallic Laves phase, representing 35 w% of the final product. SEM observations show a double dendritic (coarse and fine) microstructure, resulting from eutectic crystallization. Due to a high cooling rate, Nb dissolution is not complete at the surface, and yields slightly more complex microstructure, including the Ni2AlNb Geissler phase, the (Ni,Al)2Nb Laves phase, and (Ni, Al)7Nb6.

  9. Combustion Synthesis and Luminescence Behaviour of the Tb3+ Doped SrY2O4 Phosphor

    Science.gov (United States)

    Tamrakar, Raunak Kumar; Upadhyay, Kanchan

    2018-01-01

    Tb3+ doped SrY2O4 powder was prepared by the solution combustion synthesis method. The structure of the prepared phosphor was determined by using the powder x-ray diffraction technique and morphology by the field emission scanning electron microscopic technique. Under 254 nm ultra violet excitation, the phosphor gives an intense green emission around 543 nm. The other peaks were also present in blue and red regions, but the intensity is comparatively less. Study of the influence of Tb3+ concentration on emission spectra shows maximum intensity for blue and green emission at 2 mol.% of Tb3+ whereas the red emission at 620 nm quenched at 1 mol.%. Efficient green light emitting diodes (LEDs) were fabricated using Tb3+ doped phosphor based on near ultraviolet excited LED lights. Also, the prepared phosphor was useful for sensing applications, such as biological and chemical sensing. It is a promising candidate for applications in displays and optical devices.

  10. Luminescence properties of ZnMoO4:Eu3+:Y3+ materials synthesized by solution combustion synthesis method

    Science.gov (United States)

    Verma, Naveen; Mari, Bernabe; Singh, Krishan Chander; Jindal, Jitender; Mollar, Miguel; Yadav, Suprabha

    2016-04-01

    The Zn(1-x-y)MoO4:Eu3+(x): Y3+(y) (x = 1 mol% and y = 1 or 2 mol%) compounds were prepared by combustion synthesis method. The crystal structure of the samples was identified by X-ray diffraction (XRD). The photoluminescence properties were investigated and it is observed that the co-doping of Y3+ enhances the luminescence emission intensity of ZnMoO4:Eu3+ material. The Y3+ acts as a sensitizer in the ZnMoO4:Eu3+ lattice. The particle size is calculated from XRD data by using Scherer Equation. The particles has been found in the range of 30-40 nm.

  11. Synthesis of La{sup 3+} doped nanocrystalline ceria powder by urea-formaldehyde gel combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, M. [Central Glass and Ceramic Research Institute, Kolkata 700 032 (India); Bandyopadhyay, S., E-mail: sbando@cgcri.res.in [Central Glass and Ceramic Research Institute, Kolkata 700 032 (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Nano LC synthesized by gel combustion, using urea-formaldehyde fuel for first time. Black-Right-Pointing-Pointer Largely single crystals were produced in average range of 20-30 nm. Black-Right-Pointing-Pointer La{sup 3+} doping increases cell dimension linearly. Black-Right-Pointing-Pointer La{sup 3+} doping introduces ionic point defects but does not change electronic band gap. Black-Right-Pointing-Pointer Presence of Ce{sup 3+} indicates that this synthesis route produces reactive powders. -- Abstract: Nanocrystalline ceria powders doped with various concentrations of lanthanum oxide have been prepared following gel combustion route using for the first time urea-formaldehyde as fuel. The synthesized products were characterized by XRD, FESEM, TEM, PL and UV-vis spectroscopy. Peak positions of XRD were refined and the lattice parameters were obtained by applying Cohen's method. Unit cell parameter increases with concentration of La{sup 3+} ion and the variation is consistently linear. XRD calculations showed the dependence of crystallite size on dopant concentrations at lower level. TEM observation revealed unagglomerated particles to be single crystals in the average range of 20-30 nm. Band gap of the La{sup 3+} doped ceria materials does not change with doping. Spectroscopic experiments proved the existence of Ce{sup 3+} in the formed powder.

  12. Synthesis of Nanoscale Nd-Doped Ceria Via Urea-Formaldehyde Combustion Method

    Science.gov (United States)

    Biswas, M.; Bandyopadhyay, S.

    2013-11-01

    Nanocrystalline neodymium-doped ceria solid solutions with Nd3+ concentrations varying from 4 to 20 mol pct have been synthesized by gel combustion method, using urea-formaldehyde as fuel for Nd doping. The combustion reaction is explained through differential scanning calorimetry (DSC)-differential thermogravimetric analysis (TGA), whereas the synthesized materials are characterized through X-ray diffractometry (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The phase obtained from the exothermic reaction contains Nd-substituted CeO2. The deviation of the lattice parameter from Vegard's law and the decrease in crystallite size with dopant concentration has been explained. The as-synthesized particles are largely nanoporous single crystallites, existing in loosely held spherical-shaped agglomerates. The size of the agglomerates increases with increasing dopant content. High-resolution TEM (HRTEM) reveals the fact that the unit cells are strained.

  13. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Xuhui; Lu, Peng; Wang, Liguo; Zhang, Zhaoliang; Wang, Xiuju; Wang, Zhongpeng

    2015-01-01

    Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200-500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  14. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    2015-01-01

    Full Text Available Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200–500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  15. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  16. Nanoporous Silicon Combustion: Observation of Shock Wave and Flame Synthesis of Nanoparticle Silica.

    Science.gov (United States)

    Becker, Collin R; Gillen, Greg J; Staymates, Matthew E; Stoldt, Conrad R

    2015-11-18

    The persistent hydrogen termination present in nanoporous silicon (nPS) is unique compared to other forms of nanoscale silicon (Si) which typically readily form a silicon dioxide passivation layer. The hydrogen terminated surface combined with the extremely high surface area of nPS yields a material capable of powerful exothermic reactions when combined with strong oxidizers. Here, a galvanic etching mechanism is used to produce nPS both in bulk Si wafers as well as in patterned regions of Si wafers with microfabricated ignition wires. An explosive composite is generated by filling the pores with sodium perchlorate (NaClO4). Using high-speed video including Schlieren photography, a shock wave is observed to propagate through air at 1127 ± 116 m/s. Additionally, a fireball is observed above the region of nPS combustion which persists for nearly 3× as long when reacted in air compared to N2, indicating that highly reactive species are generated that can further combust with excess oxygen. Finally, reaction products from either nPS-NaClO4 composites or nPS alone combusted with only high pressure O2 (400 psig) gas as an oxidizer are captured in a calorimeter bomb. The products in both cases are similar and verified by transmission electron microscopy (TEM) to include nano- to micrometer scale SiOx particles. This work highlights the complex oxidation mechanism of nPS composites and demonstrates the ability to use a solid state reaction to create a secondary gas phase combustion.

  17. Influence of fuel ratios on auto combustion synthesis of barium ferrite ...

    Indian Academy of Sciences (India)

    Abstract. Single-domain barium ferrite nano particles have been synthesized with narrow particle-size distribution using an auto combustion technique. In this process, citric acid was used as a fuel. Ratios of cation to fuel were maintained variously at 1 : 1, 1 : 2 and 1 : 3. The pH was 7 in all cases. Of all three cases, a cation ...

  18. Dissimilar joining of nickel aluminide intermetallic compound with spheroidal graphite cast iron by using combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kimata, T.; Uenishi, K.; Kobayashi, K.F. [Dept. of Manufacture Science, Osaka Univ., Osaka (Japan); Ikenaga, A. [Dept. of Metallurgy and Material Science, Osaka Prefecture Univ., Osaka (Japan)

    2004-07-01

    Nickel aluminide based intermetallic compounds were combustion synthesized from a powder mixture of elemental Al, Ni, and Si and were simultaneously bonded with spheroidal graphite cast iron substrate (FCD). Addition of Si to the elemental mixture of Al and Ni was confirmed to be effective both to the densification of combustion synthesized intermetallic compounds and to the joining between compounds and FCD. When the composition of precursor was Ni-69at%Al-9at%Si (Al/Si is the ratio of the eutectic composition), Al{sub 3}Ni and Al{sub 6}Ni{sub 3}Si were mainly combustion synthesized. In the interface between compounds and FCD, reaction layers were formed to the thickness of 10 {mu}m and the constitutent phases were identified as Al{sub 7}Fe{sub 2}Si, FeAl{sub 3} respectively. In the four point bending test of the dissimilar joints prepared by heating at 973 K for 300 s, the brittle fracture did not occurred around the joint interface but mainly in the inside of nickel aluminide coating. The interface of reaction layers with 10 {mu}m were chemically well bonded. The sample with Ni-69at%Al-9at%Si coating exhibited highest bonding strength of about 56 MPa because of the smallest void ratio of the obtained compounds. (orig.)

  19. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Herberg, Julie L. (Lawrence Livermore National Laboratory, Livermore, CA); Highley, Aaron M.; Grossman, Jeffrey (MIT, Cambridge, MA); Wagner, Lucas (MIT, Cambridge, MA); Bhakta, Raghu; Peaslee, D. (University of Missouri, St. Louis, MO); Allendorf, Mark D.; Liu, X. (University of Missouri, St. Louis, MO); Behrens, Richard, Jr.; Majzoub, Eric H. (University of Missouri, St. Louis, MO)

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  20. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel.

    Science.gov (United States)

    Gopala Krishna, Prashanth; Paduvarahalli Ananthaswamy, Prashanth; Trivedi, Priyanka; Chaturvedi, Vinita; Bhangi Mutta, Nagabhushana; Sannaiah, Ananda; Erra, Amani; Yadavalli, Tejabhiram

    2017-06-01

    In this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.5μg/mL. In vitro cytotoxicity study performed with normal mammalian cells (L929, 3T3-L1) showed that ZnO nanoparticles are non-toxic with a Selectivity Index (SI) >10. Cytotoxicity performed on two human cancer cell lines DU-145 and Calu-6 indicated the anti-cancer activity of ZnO nanoparticles at varied concentrations. Results of blood hemolysis indicated the biocompatibility of ZnO nanoparticles. Furthermore, in vivo toxicity studies of ZnO nanoparticles conducted on Swiss albino mice (for 14days as per the OECD 423 guidelines) showed no evident toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    Science.gov (United States)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  2. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.; Singh, Shubra, E-mail: shubra6@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India); Gupta, Bhavana [Material Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-05-23

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  3. Solution combustion synthesis using Schiff-base aluminum complex without fuel and optical property investigations of alumina nanoparticles

    Science.gov (United States)

    Salehi, Mehdi; Arabsarhangi, Ehsan

    2015-05-01

    Synthesis of alumina nanomaterials via a solution combustion technique using Schiff base aluminum (III) complex at 820 and 950 °C for 4 h was performed successfully. The synthesis procedure was performed using the complex in the absence and presence of urea and glycine as fuel for comparison. The obtained data showed that the procedure without using fuel resulted in a better phase and morphology. To investigate the phase formation, powder X-ray diffraction technique was used. Also, SEM micrographs were used to investigate the morphology of the obtained materials. The optical properties of the obtained materials were studied by FTIR spectra. According to the PXRD data, it was found that with annealing at 950 °C, the phase formation of the obtained materials showed cubic crystal structure with cell parameter a = 3.14 Å for gamma phase. Also, by annealing at 820 °C using fuels for 4 h, the main phase was found to be in gamma.

  4. Effect of variable cerium concentration on photoluminescence behaviour in ZrO{sub 2} phosphor synthesized by combustion synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Vikas, E-mail: jsvikasdubey@gmail.com [Department of Physics, Bhilai Institute of Technology, Raipur, 493661 (India); Kaur, Jagjeet [Department of Physics, Govt. V.Y.T. PG. Auto. College, Durg (India)

    2016-05-06

    Present paper reports synthesis and characterization of trivalent cerium (Ce{sup 3+}) doped zirconium dioxide (ZrO{sub 2}) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO{sub 3}){sub 3} and Ce(NO{sub 3}){sub 3} and urea used as a fuel. All prepared phosphor with variable concentration of Ce{sup 3+} (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitation centred at 390nm. The excitation spectra with variable concentration of Ce{sup 3+} show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I’Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce{sup 3+} doped phosphor based on near ultraviolet (NUV) excited LED lights.

  5. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  6. Microwave-Assisted Combustion Synthesis of ZnO:Eu Nanoparticles: Effect of Fuel Types.

    Science.gov (United States)

    Rasouli, Sousan; Arabi, Amir-Masoud; Naeimi, Alireza; Hashemi, Seyed-Masoud

    2018-01-01

    Nanoparticles of Europium oxide doped with Zinc oxide were synthesized via microwave-assisted combustion method. Citric acid as a simultaneous fuel and chelating agent and glycine as a fuel and mixture of these fuels were sleeted. X-Ray diffraction patterns (XRD) indicated the formation of ZnO structure with a few amount of Eu 2 O 3 phase. Fourier transformation infra red (FTIR) spectra reveal the increase of ZnO 4 bonds with glycine content of fuels mixture. Scanning electron microscope (SEM) images showed the conversion of nanosphere to spongy-like structure with respect to change of fuel mixtures from citric to glycine. From transmission electron microscopy (TEM) nanoparticles of a mean size 30 nm are observed Green fluorescence emission of different samples was due to activation of self activated center of ZnO structure through transition of electron from Eu 3+ to V zn sites.

  7. New Synthesis of Ferrite-Silica Nanocomposites by a Sol-Gel Auto-Combustion

    Science.gov (United States)

    Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2004-06-01

    A sol-gel autocombustion method was used to synthesize nanometric metal-oxide powders, and was extended for the first time to prepare ferrite-silica nanocomposites. The gels obtained by mixing suitable amounts of citric acid, metal nitrates, ammonia (pure phases) and tetraethylortosilicate (nanocomposites) were converted directly to ferrite (either γ-Fe2O3 or CoFe2O4) or ferrite-silica composites through a rapid autocombustion reaction. The combustion involves a thermally induced autocatalytic oxidation-reduction reaction between the nitrate and the citrate ions. The sample characterization by X-ray diffraction, transmission electron microscopy and N2 physisorption measurements revealed nanosized pure phase powders and nanocomposites in which small spherical nanoparticles (mean size 3.5 and 5.0nm, respectively for the γ-Fe2O3and CoFe2O4) are homogeneously dispersed over a mesoporous silica matrix.

  8. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Danith; Chikkahanumantharayappa [Dept. of Physics, Vivekananda First grade College, Bangalore - 560055 (India); Yadav, L. S. Reddy; Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Dept of Chemistry, Siddaganga Institute of Technology, Tumkur, Karnataka-572103 (India); Lingaraju, K.; Naika, H. Raja [Dept. of Environmental Science, Tumkur University, Tumkur, Karnataka-572103 (India); Manjunath, K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Karnataka-562112 (India); Suresh, D. [Dept. of Chemistry, Tumkur University, Tumkur, Karnataka-572103 (India); Prasad, Daruka [Dept. of Physics, BMS Institute of Technology, Bangalore-560064 (India); Nagabhushana, H. [CNR Rao Center for Advanced Materials, Tumkur University, Tumkur, Karnataka-572103 (India); Sharma, S. C. [Chattisgarh Swami Vivekananda Technological University, Bhilai, Chattisgarh-490009 (India)

    2015-06-24

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  9. A novel rhombohedron-like nickel ferrite nanostructure: Microwave combustion synthesis, structural characterization and magnetic properties

    Directory of Open Access Journals (Sweden)

    G. Suresh Kumar

    2016-09-01

    Full Text Available Research on nickel ferrite nanostructures has drawn a great interest because of its inherent chemical, physical and electronic properties. In this study, we have synthesized rhombohedron – like nickel ferrite nanostructure by a rapid microwave assisted combustion method using ethylenediamminetetraacetic acid as a chelating agent. X-ray diffraction, Fourier transform infrared spectrometer, transmission electron microscope and energy dispersive X-ray microanalyser were used to characterize the prepared sample. The magnetic behaviour was analysed by means of field dependent magnetization measurement which indicates that the prepared sample exhibits a soft ferromagnetic nature with saturation magnetization of 63.034 emu/g. This technique can be a potential method to synthesize novel nickel ferrite nanostructure with improved magnetic properties.

  10. Synthesis of Beta-Al2O3 Solid Electrolytes by Glycine-nitrate Combustion

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-fei

    2016-08-01

    Full Text Available Beta-Al2O3 precursor powders were synthesized by glycine-nitrate combustion at a low temperature using metal nitrate and GNP as raw materials. The thermal decomposition mechanism of the gel and the formation process of beta-Al2O3 were investigated by XRD, TG/DSC, SEM, NMR and EIS. The results show that beta-Al2O3 precursor powder with the average size of 42.0nm can be obtained at 1150℃, 150℃ lower than the solid state reaction. The precursor powder has good forming and sintering performance. The sample is calcined at 1620℃, then the Al(Ⅳ and the Al(Ⅵ in the structure of the sample is around δ=45 and δ=-6, respectively. The relative density of the sample is 97.6%. The ionic conductivity at 350℃ is 0.046S·cm-1.

  11. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Science.gov (United States)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  12. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation.

    Science.gov (United States)

    Jodłowski, Przemysław J; Jędrzejczyk, Roman J; Chlebda, Damian K; Dziedzicka, Anna; Kuterasiński, Łukasz; Gancarczyk, Anna; Sitarz, Maciej

    2017-07-07

    The aim of this study was to obtain nanocrystalline mixed metal-oxide-ZrO₂ catalysts via a sonochemically-induced preparation method. The effect of a stabiliser's addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature.

  13. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)

    Przemysław J. Jodłowski

    2017-07-01

    Full Text Available The aim of this study was to obtain nanocrystalline mixed metal-oxide–ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser’s addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD, nitrogen adsorption, X-ray fluorescence (XRF, scanning electron microscopy (SEM equipped with energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature.

  14. Enhancement of Electrical Conductivity of LiFePO4 by Controlled Solution Combustion Synthesis

    Science.gov (United States)

    Rajoba, S. J.; Jadhav, L. D.; Patil, P. S.; Tyagi, D. K.; Varma, S.; Wani, B. N.

    2017-03-01

    LiFePO4 has been synthesized by a solution combustion method at different oxidant-to-fuel ratios. At stoichiometric oxidant-to-fuel ratio (1:2), Fe2O3 formed in addition to LiFePO4 during combustion. Hence, reducing atmosphere was generated by increasing the ratio from stoichiometric to 1:4 and 1:8, named as 1-LFP, 2-LFP, and 4-LFP, respectively. Furthermore, as-prepared powders were calcined in inert atmosphere to avoid oxidation of LiFePO4 to Fe2O3 and Li3PO4, as confirmed by x-ray diffraction (XRD) and thermogravimetric and differential thermal analyses. The calcined powders were characterized by XRD analysis, Raman spectroscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. X-ray photoelectron spectroscopy ascertained oxidation state of +2 and +5 for Fe and P, respectively. With increasing oxidant-to-fuel ratio, the binding energies of 2 p 3/2 and 2 p 1/2 levels of Fe shifted downwards and showed increased splitting. According to Raman spectroscopy results, the residual carbon is amorphous with sp 2 C-C bond. The conductivity of 1-LFP, 2-LFP, and 4-LFP measured at 313 K was 0.15 × 10-6 S/cm, 8.46 × 10-6 S/cm, and 1.21 × 10-3 S/cm, respectively. The enhanced conductivity of 4-LFP is due to presence of residual carbon and Fe2P.

  15. Synthesis of the metastable α-Al1.8Fe0.2O3 solid solution from precursors prepared by combustion

    OpenAIRE

    Cordier, Anne; Peigney, Alain; De Grave, Eddy; Flahaut, Emmanuel; Laurent, Christophe

    2006-01-01

    The aim of the paper is to synthesise α-Al1.8Fe0.2O3 solid solutions from precursors prepared by the nitrate/fuel combustion synthesis route, using either citric acid or urea, or a mixture of both as the fuel, and different fuel/nitrates ratios. In a first part, global reactions are proposed for each synthesis, which are useful to explain the differences in powder volume, morphology, crystallisation state and specific surface area reported in the second part of the study. In a third part, the...

  16. One step combustion synthesis and thermoluminescence in Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Dhadade, I. H., E-mail: idhadade@yahoo.com; Moharil, S. V.; Dhoble, S. J.; Rahangdale, S. R. [Department of Physics, RTM Nagpur University, Nagpur, 440010 (India)

    2016-05-06

    In the present paper one step combustion synthesis of compound Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} is reported using a modified procedure and employing mixed (Urea + Glycine) as fuel. Powder X-ray diffraction confirms the formation of said compound. Thermoluminescence study over the wide gamma exposure (1 KGy – 13 KGy) Suggests the possible use of the phosphor in dosimetric application.

  17. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions

  18. Solution Combustion Synthesis of CaZrO3 Using Mixed Fuel

    Science.gov (United States)

    Limsay, R. H.; Tayade, R. A.; Talwatkar, C. B.; Yawale, S. P.; Yawale, S. S.; Bhavsar, R. S.

    With the advent of nanotechnology, methods of synthesis have attained immense importance since it governs particle size of the materials. In this paper, we report synthesis of CaZrO3 by simple and energy efficient method that produced ultra fine powder having particle size in the nanometers. Synthesis of CaZrO3 was carried out using corresponding metal nitrates and mixed fuels i.e., glycine and urea at a temperature less than 500°C. The reaction was highly exothermic in nature. The product obtained was voluminous and foamy. The as synthesized CaZrO3 is crystalline in nature. It required no further heating. The compound was indexed using standard indexing procedure and the lattice constants matches completely with those reported in the literature. Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA) results shows that the material is highly stable internally during the whole range of temperature studied i.e., up to 1000°C. The powder density of the material was calculated to be 5.6393 g cm-1. BET surface area was found to be 11.505 m2/g. The particle size was calculated using density and BET surface area values. The particle size of the as synthesized CaZrO3 was found to be 92 nm. The product was further characterized using Scanning Electron Microscope and electrical conductivity.

  19. ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

  20. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  1. Synthesis of lithium silicates by the modified method of combustion. XRD and IR; Sintesis de silicatos de litio por el metodo modificado de combustion. DRX e IR

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.; Bulbulian, S. [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The combustion method is fixed in exothermic reactions for producing ceramic compounds. The precursor solutions are mixtures of metal nitrates and the fuels. This method was modified using non-oxidant compounds as lithium hydroxide and silicide acid and urea as fuel. The precursors were heated during 5 minutes at temperatures between 250 C and 550 C allowing so the mixture combustion. The obtained ceramics were characterized by X-ray diffraction and IR spectroscopy. The sample pollution with carbonates was evaluated and it was found that the presence of these diminish according as increase the calcination temperature. (Author)

  2. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs.

    Science.gov (United States)

    Branquinho, Rita; Salgueiro, Daniela; Santos, Lídia; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2014-11-26

    Solution processing has been recently considered as an option when trying to reduce the costs associated with deposition under vacuum. In this context, most of the research efforts have been centered in the development of the semiconductors processes nevertheless the development of the most suitable dielectrics for oxide based transistors is as relevant as the semiconductor layer itself. In this work we explore the solution combustion synthesis and report on a completely new and green route for the preparation of amorphous aluminum oxide thin films; introducing water as solvent. Optimized dielectric layers were obtained for a water based precursor solution with 0.1 M concentration and demonstrated high capacitance, 625 nF cm(-2) at 10 kHz, and a permittivity of 7.1. These thin films were successfully applied as gate dielectric in solution processed gallium-zinc-tin oxide (GZTO) thin film transistors (TFTs) yielding good electrical performance such as subthreshold slope of about 0.3 V dec(-1) and mobility above 1.3 cm2 V(-1) s(-1).

  3. Synthesis of alumina powder by the urea-glycine-nitrate combustion process: a mixed fuel approach to nanoscale metal oxides

    Science.gov (United States)

    Sharma, Amit; Rani, Amita; Singh, Ajay; Modi, O. P.; Gupta, Gaurav K.

    2014-03-01

    Main objective of present work is to study the efficiency of mixed fuel towards solution combustion synthesis of alumina powder, which otherwise prepared by single fuel and study of properties of final product with mixed fuel approach. Two different fuels, glycine and urea, along with aluminium nitrates have been used to prepare nanophase alumina powder. Different fuel to oxidizer ratios and different percentage combination of two fuels were used to prepare six samples. In all samples, nanoscale particle size obtained. Parameter which continuously changes the results of various characterisations is percentage combination of two fuels. In case where percentage of urea is higher than glycine reaction takes place with high exothermicity and hence crystallinity in product phase, whereas glycine promotes amorphous character. With mixed fuel approach, crystallinity can be enhanced easily, by calcinations of powder product at low temperature, because due to mixed urea and glycine, there is already some fraction of crystallinity observed. Overall mixed fuel approach has ability to produce nanophase alumina powder with wide range of particles size.

  4. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications.

    Science.gov (United States)

    Wagner, Darcy E; Eisenmann, Kathryn M; Nestor-Kalinoski, Andrea L; Bhaduri, Sarit B

    2013-09-01

    Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Synthesis of lithium silicates generators of tritium by a modified method of combustion; Sintesis de silicatos de litio generadores de tritio por un metodo modificado de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cruz G, D

    2003-07-01

    The ceramics of lithium have been proposed as generating materials of tritium through the following reaction: {sup 6} Li + {sup 1} n {yields} {sup 4} He + {sup 3} H . In previous works carried out by Pfeiffer and collaborators, the lithium silicates generators of tritium were prepared using the following methods: reactions of solid state, precipitation and sol-gel synthesis. Although those methods have advantages, it is required of heating at high temperatures (900 C during four hours) to be able to obtain the crystalline compounds. Those products found in these works were diverse crystallization forms of the lithium silicates and of SiO{sub 2}, such as, Li{sub 2}SiO{sub 3}, Li{sub 2}Si{sub 2}0{sub 5}, Li{sub 4}SiO{sub 4}, and quartz (SiO{sub 2}). The combustion method uses exothermic reactions to take place ceramic compounds. The precursor solutions are mixtures of the nitrate of metal oxidizer and the fuels (urea, glycine, carbohydrazide). However the reported method in the literature, it is not useful to prepare lithium silicates, for what was modified using non oxidizers compounds. The lithium hydroxide (LiOH) and the silicic acid (H{sub 2}SiO{sub 3}) they were the compounds non oxidizers used, and the urea (CH{sub 4}N{sub 2}O) it was the one fuel. They were carried out two series of experiments; inside the series 1 of experiments are varied the molar ratio of lithium hydroxide and urea (LiOH : H{sub 2}SiO{sub 3} = 1, 2 and 3, LiOH : CH{sub 4}N{sub 2}O = 1, 2, 3, 4 and 5) and the prepared mixtures were taken to one muffle previously preheated to a temperature of 450 C during 5 minutes. In the series 2 of experiments was studied the effect of the temperature and of the washed with distilled water in the prepared samples with the following molar ratios: LiOH : H{sub 2}SiO{sub 3} : CH{sub 4}N{sub 2}O = 1:1:3, 2:1:3, 3:1:3 and 3:1:6, those which were heated to temperatures from 450 C up to 750 C and were washed. The obtained samples were characterized by X

  6. Solution-combustion synthesis and photoluminescence properties of YBO3:Tb3+ phosphor powders

    Science.gov (United States)

    Onani, Martin O.; Okil, Joseph O.; Dejene, Francis B.

    2014-04-01

    YBO3:Tb3+ nanocrystalline phosphors were successfully deposited by a solution-combustion method, using rare-earth nitrates, urea and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence properties of the films were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results of SEM and XRD revealed that the powders were composed of spherical YBO3:Tb3+ nanocrystals with average grain size of between 50 and 100 nm. The electron diffraction spectroscopy (EDS) confirmed the presence of the Y, B, O, and C. The XRD measurements revealed YBO3:Tb3+ (JCPDS:83-1205) structure when annealed at 1000 °C for 2 h. The YBO3:Tb3+ powders exhibited emissions at 490, 545 and 585 nm, which were assigned to the 5D4-7F6, 5D4-7F5 and 5D4-7F4 transitions of Tb3+, respectively. Among them, the green emission at 545 nm (5D4-7F5) was dominant.

  7. Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Sobhani, Azam [Department of Chemistry, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317–51167, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-07-15

    The Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites have been successfully synthesized via a new sol–gel auto-combustion route. To prepare the nanocomposites, copper ferrite (CuFe{sub 2}O{sub 4}) and iron (II) oxide (Fe{sub 2}O{sub 3}) nanostructures were first prepared utilizing onion as a green reductant for the first time, and characterized by SEM, TEM, XRD, IR and VSM. Then chitosan was added into the nanostructures dispersed in water. Chitosan was used to functionalize and modify the nanostructures and also to improve surface properties. The nanocomposites were also characterized by several techniques including SEM, TEM, XRD, IR and VSM. The effects of amount of onion and chitosan on the morphology and particle size of nanocomposites were evaluated. - Highlights: • Fe{sub 2}O{sub 3}/CuFe{sub 2}O{sub 4}/chitosan nanocomposites were synthesized for the first time. • A simple, low-cost and friendly route was used to synthesize the nanocomposites. • Effects of amount of onion and chitosan were investigated.

  8. Thermoluminescence of Novel Zinc Oxide Nanophosphors Obtained by Glycine-Based Solution Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    V. R. Orante-Barrón

    2015-01-01

    Full Text Available High-dose thermoluminescence dosimetry properties of novel zinc oxide nanophosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ~500 nm and ~2 μm were obtained by annealing the synthesized ZnO at 900°C during 2 h in air. X-ray diffraction patterns indicate the presence of the ZnO hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of ZnO obtained after being exposed to beta radiation consists of two maxima: one located at ~149°C and another at ~308°C, the latter being the dosimetric component of the curve. The integrated TL fading displays an asymptotic behavior for times longer than 16 h between irradiation and the corresponding TL readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy. Such features place synthesized ZnO as a promising material for high-dose radiation dosimetry applications.

  9. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Velinov, N., E-mail: nikivelinov@ic.bas.bg; Petrova, T. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Tsoncheva, T.; Genova, I. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Koleva, K. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences (Bulgaria); Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria)

    2016-12-15

    Spinel ferrites with nominal composition Cu {sub 0.5}Mn {sub 0.5}Fe {sub 2}O{sub 4} and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe {sub 5}C{sub 2} were observed by the influence of the reaction medium.

  10. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping

    2010-03-15

    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern. (c) 2009 Elsevier B.V. All rights reserved.

  11. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Science.gov (United States)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-12-01

    Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.

  12. Facile Synthesis of Bisphosphonates

    National Research Council Canada - National Science Library

    KUNDA, Uma Maheswara Rao; HAMADA, Fumio

    2014-01-01

    Sodium hydride in polyethylene glycol has been used as a sustainable, non-volatile, and ecofriendly catalytic medium for the green synthesis of bisphosphonates with an alkyl/aryl/heterocyclic group...

  13. The renaissance of hydrides as energy materials

    Science.gov (United States)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2017-02-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  14. Use of hydrides in motor vehicles

    Science.gov (United States)

    Toepler, J.; Bernauer, O.; Buchner, H.

    1980-09-01

    Results of research on hydrogen driven vehicles and hydride storage tanks are presented, along with a detailed discussion of the operational possibilities of low temperature hydrides, such as TiFe-H2, and of high temperature hydrides, such as Mg2Ni-H4. Attention is given to their cyclization stability and thermal conductivity. Heat storage and heat recovery with the aid of hydrides are discussed, and a theoretical hydride storage capacity of a Mg-Ni-alloy is presented. It was concluded that all hydride tanks will be 10 to 20 times heavier than the conventional gasoline tank. The problems of tank weight and gasoline shortage can be solved by a combination hydrogen/gasoline fuel. Existing energy infrastructures must be utilized, as the setting up of a hydrogen infrastructure is, at the present time, both technically and economically unfeasible.

  15. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation.

    Science.gov (United States)

    Sun, Hongqi; Liang, Hanwen; Zhou, Guanliang; Wang, Shaobin

    2013-03-15

    Cobalt oxides (Co) and Al(2)O(3)-, SiO(2)-, and TiO(2)-supported cobalt oxide catalysts were prepared by an aqueous combustion method using urea and glycine as fuels. Their catalytic performance in activation of OXONE® for phenol degradation in aqueous solution was investigated. It was found that unsupported Co oxide and supported Co oxide presented different mechanisms in activation of OXONE® for phenol degradation. The supported Co catalysts presented higher activity in activation of OXONE® for phenol degradation due to higher dispersion of Co(3)O(4) on the supports and Co(II) coordination sites. The major oxidizing radicals were identified to be SO(4)(-) by competitive radical reactions. The Co oxides synthesized from urea or glycine showed a similar activity; however, the supported Co catalysts prepared by glycine fuel exhibited better activity than those prepared by urea. For Al(2)O(3)-, SiO(2)-, and TiO(2)-supported Co catalysts, Co/TiO(2) presented a higher activity in phenol degradation compared with Co/SiO(2) and Co/Al(2)O(3). But, Co/SiO(2) showed the best stability among the catalysts. Total organic carbon could be reduced by 80%, 72%, and 45% on Co/TiO(2), Co/SiO(2), and Co/Al(2)O(3), respectively, at 30 ppm phenol. Phenol degradation was found to follow the zero-order kinetics. The causes of deactivation were investigated, and the regeneration methods were proposed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  17. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill....... The higher stability is explained by a smaller volume expansion during charge. It is shown than sodium can substitute for calcium forming the compound Ca0.8Na0.2Ni5. The compound had CaCu5 structure and a capacity of 365 mAh/g but a poor electrochemical cycle life. The alloys Ca0.8Na0.2Ni4Mg0.5Cu0.5 and Ca...

  18. Lightweight hydrides for automotive storage of hydrogen

    Science.gov (United States)

    Rohy, D. A.; Nachman, J. F.; Argabright, T. A.

    The primary objectives of the considered investigations are related to the reduction of the dissociation temperature of lightweight materials, and the development of new lightweight hydrides containing little, if any, critical material. Attention is given to the characteristics of metal hydrides, the characteristics of a magnesium-base alloy which is to be employed in hydrogen storage systems for automobiles, aspects of alloy development, and the evaluation of magnesium hydride alloys with the aid of a hydride cycling rig. New information concerning the effect of cycling on magnesium alloys is discussed.

  19. Molecular early main group metal hydrides : synthetic challenge, structures and applications

    NARCIS (Netherlands)

    Harder, Sjoerd

    2012-01-01

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](infinity) and [MH2](infinity) salts

  20. Al2O3/ZrO2 (Y2O3) Prepared by Combustion Synthesis Under High Gravity

    Science.gov (United States)

    Zhang, Long; Zhao, Zhongmin; Song, Yigang; Wang, Weiguo; Liu, Hongbo

    By introducing ZrO2 (4Y) powder into the thermit, Al2O3/ZrO2 (4Y) composite ceramics of different composition and microstructures were prepared through combustion synthesis under high gravity, and the correlations of composition, microstructures and mechanical properties of composite ceramics were investigated. The results of XRD, SEM and EDS showed that Al2O3/33%ZrO2 (4Y) were composed of random-orientated rod-shaped colonies consisting of a triangular dispersion of orderly submicron-nanometer t-ZrO2 fibers, surrounded by inter-colony regions consisting of spherically-shaped micronmeter t-ZrO2 grains; meanwhile, Al2O3/45%ZrO2 (4Y) were comprised of spherically-shaped micron-meter t-ZrO2 grains. Similar to the international directionally solidified Al2O3/ZrO2 (Y2O3), the EDS results also indicated that there are no impurities, amorphous phases and grain boundaries but clean phase interfaces in two ceramic composites. Compared to the international directionally solidified Al2O3/ZrO2 (Y2O3), the increase in hardness and flexural strength of Al2O3/33%ZrO2 (4Y) in the experiment was due to small-size defect and high fracture toughness induced by compressive residual stress effect and transformation toughening mechanisms; meanwhile, high flexural strength of Al2O3/45%ZrO2 (4Y) was considered to be a result of the fine spherically-shaped t-ZrO2 grains separated from the melt under high gravity, and high fracture toughness induced by transformation toughening and micro-crack toughening mechanisms.

  1. Boosting Electrical Performance of High-κ Nanomultilayer Dielectrics and Electronic Devices by Combining Solution Combustion Synthesis and UV Irradiation.

    Science.gov (United States)

    Carlos, Emanuel; Branquinho, Rita; Kiazadeh, Asal; Martins, Jorge; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2017-11-22

    In the past decade, solution-based dielectric oxides have been widely studied in electronic applications enabling the use of low-cost processing technologies and device improvement. The most promising are the high-κ dielectrics, like aluminum (AlOx) and hafnium oxide (HfOx), that allow an easier trap filling in the semiconductor and the use of low operation voltage. However, in the case of HfOx, a high temperature usually is needed to induce a uniform and condensed film, which limits its applications in flexible electronics. This paper describes how to obtain HfOx dielectric thin films and the effect of their implementation in multilayer dielectrics (MLD) at low temperatures (150 °C) to apply in thin film transistors (TFTs) using the combination of solution combustion synthesis (SCS) and ultraviolet (UV) treatment. The single layers and multilayers did not show any trace of residual organics and exhibited a small surface roughness (2.7 MV·cm-1). The resulting TFTs presented a high performance at a low operation voltage (<3 V), with high saturation mobility (43.9 ± 1.1 cm2·V-1·s-1), a small subthreshold slope (0.066 ± 0.010 V·dec-1), current ratio of 1 × 106 and a good idle shelf life stability after 2 months. To our knowledge, the results achieved surpass the actual state-of-the-art. Finally, we demonstrated a low-voltage diode-connected inverter using MLD/IGZO TFTs working with a maximum gain of 1 at 2 V.

  2. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  3. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  4. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen...

  5. Erbium hydride thermal desorption : controlling kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  6. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...

  7. Influence of different fuel agents on the combustion synthesis of the nanostructured Li1.05Mn2O4 oxide

    OpenAIRE

    Amaral, F. A.; Guerra,R. F.; Santana, L. K.; Canobre,S. C.

    2014-01-01

    In this work nanostructured Li1.05Mn2O4 oxide was obtained by Solution Combustion Synthesis (SCS) using three different fuel agents in order to obtain a unique phase with a crystalline cubic structure belonging to the Fd3m spatial group. The phase of interest could be obtained, following the order: glycine (at 600 °C for 2 h) < urea (at 750 °C for 2 h) < maleic anhydride (at 750 °C for 4 h), with crystallite size in the range from 4.6 to 9.7 nm (nanometric character) and the unit cell paramet...

  8. Synthesis and characterization of nano ZnO and MgO powder by low temperature solution combustion method: studies concerning electrochemical and photocatalytic behavior

    OpenAIRE

    KUMARA K. N. SHRAVANA; NAGASWARUPA H.P.; MAHESH K. R. VISHNU; S.C. Prashantha; MYLARAPPA M.; SIDDESHWARA D.M.K.

    2016-01-01

    The objective of the research was mainly focused on the synthesis of ZnO and MgO nanoparticle by low temperature solution combustion method using Urea as fuel. The accurate size and morphology of the nanoparticles were studied from Transmission Electron Microscopy (TEM) to assess the structure of the ZnO and MgO particles. The phase composition of the Synthesized ZnO and MgO nanoparticles were confirmed from powder X-ray diffractometer (PXRD). The electrochemical impedance spectroscopy (EIS) ...

  9. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  10. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  11. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  12. Photoluminescence properties of rare-earth-doped (Er³⁺,Yb³⁺) Y₂O₃ nanophosphors by a combustion synthesis method.

    Science.gov (United States)

    Kaur, Manmeet; Bisen, D P; Brahme, N; Singh, Prabhjot; Sahu, I P

    2016-05-01

    In this work, we report the synthesis of Y2O3:Er(3+), Y2O3:Yb(3+) and Y2O3:Er(3+),Yb(3+) nanophosphors by the combustion synthesis method using urea as fuel. The doping agents were incorporated in the form of erbium nitrate and ytterbium nitrate. X-Ray diffraction (XRD) patterns revealed that the synthesized particles have a body-centered cubic structure with space group Ia-3. The photoluminescence (PL) properties were investigated after UV and infrared irradiation at room temperature. A strong characteristic emission of Er(3+) and Yb(3+) ions was identified, and the influence of doping concentration on the PL properties was systematically studied. Energy transfer from Yb(3+) to Er(3+) ions was observed in Y2O3 nanophosphors. The obtained result may be useful in potential applications such as bioimaging. Copyright © 2015 John Wiley & Sons, Ltd.

  13. High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    2014-01-01

    A rapid method for the synthesis of Ca3Co4O9+δpowder is introduced. The procedure is a modification of the conventional citric-nitrate sol–gelmethod where an auto-combustion process is initiated by a controlled thermal oxidation–reduction reaction. The resulting powders inherit theadvantages...... of a wet chemical synthesis, such as morphological and compositional homogeneity, and fine, well-defined particle sizes comingfrom the controlled nature of the auto-combustion. Optimized spark plasma sintering (SPS) processing conditions were determined and used tofabricate dense and highly c-axis oriented...

  14. A facile solution combustion synthesis of nanosized amorphous iron oxide incorporated in a carbon matrix for use as a high-performance lithium ion battery anode material

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chunyu, E-mail: chunyu6zhu@gmail.com; Saito, Genki; Akiyama, Tomohiro

    2015-06-05

    Highlights: • Iron oxide–carbon composite was fabricated by facile solution combustion synthesis. • Iron oxide nanoparticles of about 5 nm were uniformly embedded in dense carbon matrix. • The composite exhibited enhanced cyclability and rate capability. • A high capacity of 687 mA h g{sup −1} after 200 cycles at a current rate of 0.5 A g{sup −1} were obtained. - Abstract: An amorphous iron oxide–carbon composite has been fabricated through an effective, inexpensive, and scalable method employing solution combustion synthesis. Amorphous iron oxide nanoparticles with diameters of about 5 nm were synthesized and uniformly embedded in a dense carbon matrix. The synthesized composite exhibits enhanced cyclability and rate capability, showing a high reversible capacity of 687 mA h g{sup −1} after 200 discharge/charge cycles at a current rate of 0.5 A g{sup −1}, compared to the 400 mA h g{sup −1} observed for Fe{sub 2}O{sub 3} nanoparticles. This enhanced performance was retained despite more demanding conditions, delivering a high capacity of about 525 mA h g{sup −1} and a nearly perfect coulombic efficiency even after 400 cycles at 1 A g{sup −1}. The easy production and superior electrochemical properties of this composite suggest that it is a promising material for use as an anode material in high performance lithium ion batteries.

  15. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  16. Scalable Synthesis of Triple-Core-Shell Nanostructures of TiO2 @MnO2 @C for High Performance Supercapacitors Using Structure-Guided Combustion Waves.

    Science.gov (United States)

    Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon

    2018-01-22

    Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO2 @MnO2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO2 to TiO2 @C and TiO2 @MnO2 to TiO2 @MnO2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO2 shells in TiO2 @C and organic shells of TiO2 @MnO2 @C. The TiO2 @MnO2 @C-based electrodes exhibit a greater specific capacitance (488 F g-1 at 5 mV s-1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s-1 ), while the absence of MnO2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO2 shell, the nanostructures of the TiO2 @MnO2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  18. Synthesis of SrBi{sub 2}Ta{sub 2}O{sub 9} by combustion synthesis; Obtencao do SrBi{sub 2}Ta{sub 2}O{sub 9} utilizando a sintese por combustao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.F.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais. Lab. de Materiais Ceramicos; Sousa, V.C. [Universidade Federal do Rio Grande do Sul (LABIOMAT/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais. Lab. de Materiais de Biomateriais

    2009-07-01

    The combustion synthesis is a low cost technique for obtaining homogeneous nanostructured compounds with high purity. The ferroelectric memory devices have been widely studied by the electronics industry by presenting high-speed recording, read and rewrite. The PZT, in the form of thin films, is the ceramic materials most used for this purpose, but it presents ferroelectric fatigue. The SrBi{sub 2}Ta{sub 2}O{sub 9} has a high cycle enables the recording which is good applicability in the PZT. Therefore, this work aims to obtain the SrBi{sub 2}Ta{sub 2}O{sub 9} using the combustion synthesis and urea as a reducing agent. The characterization of the powder was realized used the technique of x-ray diffraction (XRD) to determine the phases present and to evaluate surface area by the BET method. The powder obtained after synthesis showed low crystallinity presenting just the BiOCl like the crystalline phase present, but heat treatment at 800 deg C for 2 hours was sufficient for the formation of SrBi{sub 2}Ta{sub 2}O{sub 9} . (author)

  19. Disposal of tritium-exposed metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, A.; Motyka, T.

    1991-12-31

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R&D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed.

  20. Microwave combustion synthesis of hexagonal prism shaped ZnO nanoparticles and effect of Cr on structural, optical and electrical properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yathisha, R.O. [Department of Chemistry, School of Chemical Sciences, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, Karnataka (India); Nayaka, Y. Arthoba, E-mail: drarthoba@yahoo.co.in [Department of Chemistry, School of Chemical Sciences, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, Karnataka (India); Vidyasagar, C.C. [Department of Chemistry, School of Basic Sciences, Ranichannamma University, Belgaum 591156, Karnataka (India)

    2016-09-15

    The synthesis and study of semiconducting nanostructure materials have become a considerable interdisciplinary area of research over the past few decades. The control of morphologies and effective doping by right dopant are the two tasks for the synthesis of semiconducting nanoparticles. The present work outlines the synthesis of ZnO and Cr-ZnO nanoparticles via microwave combustion method without using any fuel. The crystal morphology, optical and electrical properties were characterized by X-ray diffraction study (XRD), UV–Visible spectroscopy (UV–Vis), Scanning electron microscopy (SEM), Energy-dispersive analysis using X-rays (EDAX), Transmission electron microscopy (TEM) and Keithley source meter. The crystal size was determined from XRD, whose values were found to be decreased with increase in the concentration of Cr up to 2 wt% and further increase in the dopant concentration resulted the formation secondary phase (ZnCr{sub 2}O{sub 4}). Scanning electron micrographs shows the hexagonal prism structure of ZnO and Cr-ZnO nanoparticles. EDAX shows the existence of Cr ion in the Cr-ZnO. The optical properties and bandgap studies were undertaken by UV–Visible spectroscopy. I-V characterization study was performed to determine the electrical property of ZnO and Cr-ZnO films. - Highlights: • The prism shaped Zn{sub 1−x}Cr{sub x}O (0 ≤ x ≤ 0.15) was prepared by microwave combustion method. • Effect of Cr on the properties of ZnO was reported. • Change in crystal size was explained by lattice strain and Zener-Pinning effect. • The optical measurements shows up to 8 wt% of Cr doping had more efficient. • Compared to ZnO, Cr doped ZnO enhance the photo voltaic activity.

  1. Processing of hydroxyapatite obtained by combustion synthesis; Procesamiento de hidroxiapatita obtenida mediante síntesis por combustión

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.

    2017-11-01

    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [Spanish] Una de las razones principales de fracaso de los implantes son las fuerzas de estrés que aparecen en la interface material-tejido debido a las diferencias existentes entre sus propiedades mecánicas. Por esta razón, es necesario que el implante posea propiedades mecánicas similares a las del tejido circundante. La síntesis de hidroxiapatita por el método de combustión y su procesamiento se han estudiado con el objetivo de obtener cuerpos cerámicos completamente densificados y, consecuentemente, con propiedades mecánicas mejoradas. El método de combustión provee de polvos nanoestructurados que se caracterizan por una superficie específica elevada que facilita el siguiente proceso de sinterización. Además, este proceso de síntesis se ha realizado en medio acuoso y oxidante. El medio oxidante homogeniza e incrementa la energía liberada durante la

  2. Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction

    Energy Technology Data Exchange (ETDEWEB)

    Font, O., E-mail: ofont@ija.csic.es [Institute of Earth Sciences ' Jaume Almera' , (ICTJA-CSIC). Lluis Sole i Sabaris str, s/n, 08028 Barcelona, Spain and Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034- Barcelona (Spain); Moreno, N.; Diez, S.; Querol, X.; Lopez-Soler, A. [Institute of Earth Sciences ' Jaume Almera' , (ICTJA-CSIC). Lluis Sole i Sabaris str, s/n, 08028 Barcelona, Spain and Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034- Barcelona (Spain); Coca, P.; Garcia Pena, F. [ELCOGAS S.A., Carretera de Calzada a Puertollano km 27, 13500 Puertollano, Ciudad Real (Spain)

    2009-07-15

    Coal gasification (IGCC) and pulverised coal combustion (PCC) fly ashes (FAs), obtained from two power plants fed with the carboniferous bituminous coal from Puertollano (Spain), were characterised and used as raw materials for zeolite synthesis by direct conversion (DC) and by alkaline fusion (Fu), and SiO{sub 2} extraction (Si-Ex) at laboratory scale. The Puertollano FAs are characterised by a high SiO{sub 2} content (59%) with respect to EU coal FAs. High zeolite synthesis yields were obtained from both FAs by using conventional alkaline activation. However, the Si extraction yields were very different. The results of the zeolite synthesis from the Si-bearing extracts from both FAs demonstrated that high purity zeolites with high cation exchange capacity (CEC, between 4.3 and 5.3 meq/g) can be produced. The solid residue arising from Si-Ex is also a relatively high NaP1 zeolite product (CEC 2.4-2.7 meq/g) equivalent to the DC products. The zeolitic materials synthesised from both FAs by Fu showed an intermediate (between the high purity zeolites and the DC products) zeolite content with CEC values from 3.4 to 3.7 meq/g. Low leachable metal contents were obtained from high purity A and X zeolites and zeolite material synthesised by Fu for PCC FA.

  3. Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction.

    Science.gov (United States)

    Font, O; Moreno, N; Díez, S; Querol, X; López-Soler, A; Coca, P; Peña, F García

    2009-07-15

    Coal gasification (IGCC) and pulverised coal combustion (PCC) fly ashes (FAs), obtained from two power plants fed with the carboniferous bituminous coal from Puertollano (Spain), were characterised and used as raw materials for zeolite synthesis by direct conversion (DC) and by alkaline fusion (Fu), and SiO2 extraction (Si-Ex) at laboratory scale. The Puertollano FAs are characterised by a high SiO2 content (59%) with respect to EU coal FAs. High zeolite synthesis yields were obtained from both FAs by using conventional alkaline activation. However, the Si extraction yields were very different. The results of the zeolite synthesis from the Si-bearing extracts from both FAs demonstrated that high purity zeolites with high cation exchange capacity (CEC, between 4.3 and 5.3meq/g) can be produced. The solid residue arising from Si-Ex is also a relatively high NaP1 zeolite product (CEC 2.4-2.7 meq/g) equivalent to the DC products. The zeolitic materials synthesised from both FAs by Fu showed an intermediate (between the high purity zeolites and the DC products) zeolite content with CEC values from 3.4 to 3.7 meq/g. Low leachable metal contents were obtained from high purity A and X zeolites and zeolite material synthesised by Fu for PCC FA.

  4. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused...

  5. Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters.

    Science.gov (United States)

    Tang, Qing; Lee, Yongjin; Li, Dai-Ying; Choi, Woojun; Liu, C W; Lee, Dongil; Jiang, De-En

    2017-07-19

    Copper electrocatalysts can reduce CO2 to hydrocarbons at high overpotentials. However, a mechanistic understanding of CO2 reduction on nanostructured Cu catalysts has been lacking. Herein we show that the structurally precise ligand-protected Cu-hydride nanoclusters, such as Cu32H20L12 (L is a dithiophosphate ligand), offer unique selectivity for electrocatalytic CO2 reduction at low overpotentials. Our density functional theory (DFT) calculations predict that the presence of the negatively charged hydrides in the copper cluster plays a critical role in determining the selectivity of the reduction product, yielding HCOOH over CO with a lower overpotential. The HCOOH formation proceeds via the lattice-hydride mechanism: first, surface hydrides reduce CO2 to HCOOH product, and then the hydride vacancies are readily regenerated by the electrochemical proton reduction. DFT calculations further predict that hydrogen evolution is less competitive than HCOOH formation at the low overpotential. Confirming the predictions, electrochemical tests of CO2 reduction on the Cu32H20L12 cluster demonstrate that HCOOH is indeed the main product at low overpotential, while H2 production dominates at higher overpotential. The unique selectivity afforded by the lattice-hydride mechanism opens the door for further fundamental and applied studies of electrocatalytic CO2 reduction by copper-hydride nanoclusters and other metal nanoclusters that contain hydrides.

  6. Self-propagating combustion synthesis of Pb1–x Srx ZrO3 (0≤ x≤ 0 ...

    Indian Academy of Sciences (India)

    Lead strontium zirconate, Pb1–SrZrO3 (0 ≤ ≤ 0.20) ceramics, were prepared by novel glycine–nitrate self-propagating combustion technique. The crystal structure of the ceramics was investigated as a function of composition via X-ray diffraction (XRD). The XRD patterns obtained on these powders showed the ...

  7. Fast solution combustion synthesis of porous NaFeTi3O8 with superior sodium storage properties

    Science.gov (United States)

    Zhao, Jin-Bao; Li, Xue; Xiao, Qian

    2017-08-01

    In this work, NaFeTi3O8 with three-dimensional porous net-like sheet morphology is firstly prepared by a simple and effective solution combustion method. Encouragingly, when being assessed as an anode electrode for sodium ion batteries, the NaFeTi3O8 net-like sheet composite exhibits superior electrochemical properties. We also study the effect of the combustion fuel glycine. The results indicate that the NaFeTi3O8 composite tends to be porous with glycine as the combustion fuel, which displays more excellent long cyclic stability (discharge capacity of 91 mA h g-1 after 1000 cycles at the current density of 0.5 A g-1) and superior rate performance (84.4 mA h g-1 even at 1.6 A g-1) than that of NaFeTi3O8 without glycine as the combustion agent. The enhanced electrochemical properties could be ascribed to the unique porous morphology, which achieves better electrolyte infiltration and faster ion diffusion. [Figure not available: see fulltext.

  8. Fast solution combustion synthesis of porous NaFeTi3O8 with superior sodium storage properties

    Science.gov (United States)

    Zhao, Jin-Bao; Li, Xue; Xiao, Qian

    2018-01-01

    In this work, NaFeTi3O8 with three-dimensional porous net-like sheet morphology is firstly prepared by a simple and effective solution combustion method. Encouragingly, when being assessed as an anode electrode for sodium ion batteries, the NaFeTi3O8 net-like sheet composite exhibits superior electrochemical properties. We also study the effect of the combustion fuel glycine. The results indicate that the NaFeTi3O8 composite tends to be porous with glycine as the combustion fuel, which displays more excellent long cyclic stability (discharge capacity of 91 mA h g-1 after 1000 cycles at the current density of 0.5 A g-1) and superior rate performance (84.4 mA h g-1 even at 1.6 A g-1) than that of NaFeTi3O8 without glycine as the combustion agent. The enhanced electrochemical properties could be ascribed to the unique porous morphology, which achieves better electrolyte infiltration and faster ion diffusion. [Figure not available: see fulltext.

  9. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  10. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  11. Sintering evaluation of spinel MA nanostructured obtained via synthesis of combustion in solution; Avaliacao da sinterizacao de espinelio MA nanoestruturado obtido via combustao em solucao

    Energy Technology Data Exchange (ETDEWEB)

    Vitor, P.A.M.; Braganca, S.R.; Bergmann, C.P., E-mail: pedroaugusto89@hotmail.com [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2016-07-01

    Specimens were shaped from powders of spinel MA (MgAl2O4) obtained via synthesis combustion in solution (SCS) from the trio chemical precursor aluminum nitrate, magnesium nitrate and sucrose in water, and then sintered at different temperatures between 1350 and 1650 ° C. Were evaluated the physical properties (density, porosity, water absorption and linear shrinkage), mechanical (flexural 4 points), and the microstructures (SEM) as a function of sintering temperature. The densification increased with growing the value of the sintering temperature, wherein the temperature to 1650 ° C had the highest flexural strength and higher elastic modulus: 51.33 (± 6.83) and 26.16 MPa (± 5.06) GPa respectively. The study confirmed the microstructure of the densification of the particles, confirming the purity and nature of nanometric powders obtained via the SCS. (author)

  12. Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M; Chen, Jiajun; Conry, Thomas E.; Wang, Ruigang; Wilcox, James; Aumentado, Albert

    2009-12-14

    A combustion synthesis technique was used to prepare nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1,0.2)/carbon composites. Powders consisted of carbon-coated particles about 30 nm in diameter, which were partly agglomerated into larger secondary particles. The utilization of the active materials in lithium cells depended most strongly upon the post-treatment and the Mg content, and was not influenced by the amount of carbon. Best results were achieved with a hydrothermally treated LiMg0.2Mn0.8PO4/C composite, which exhibited close to 50percent utilization of the theoretical capacity at a C/2 discharge rate.

  13. The synthesis of BaMgAl10O17:Eu2+ nanopowder by a combustion method and its luminescent properties

    Science.gov (United States)

    Son Nguyen, Manh; Tuyen Ho, Van; Thuy Trang Pham, Nguyen

    2011-12-01

    Europium ion doped BaMgAl10O17 blue phosphor nanopowder has been fabricated by urea-nitrate solution combustion synthesis at 590 °C for 5 min. These phosphors were codoped with different europium ion concentrations (1-8 mol%). The experimental results of x-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence showed that the phosphors have a hexagonal single phase structure, the average particle size of the powders was about 50 nm and the emission spectra have a broad band with maximum intensity at wavelength λmax=455 nm due to transitions from the 4f65d1 to the 4f7 electronic configuration of Eu2+ ion. The maximum emission of phosphor corresponds to the europium concentration 7 mol%.

  14. Facile synthesis of highly active reduced graphene oxide-CuI catalyst through a simple combustion method for photocatalytic reduction of CO2 to methanol

    Science.gov (United States)

    Zhang, Wenjun; Li, Yingjie; Zhang, Xiaoxiong; Li, Cuiluo

    2017-09-01

    We report a facile combustion method synthesis of reduced graphene oxide/CuI composites as a photocatalyst, in which CuI nanoparticles were homogeneously distributed on the surface of reduced graphene oxide (rGO), showing a good visible light response. The rGO-supported and unsupported CuI hybrids were tested over the photocatalytic reduction of CO2 for methanol evolution in visible light. In the current study rGO-CuI composites have shown excellent yields (19.91 μmol g-cat-1). rGO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the CuI nanoparticles.

  15. Self-Propagating Combustion Triggered Synthesis of 3D Lamellar Graphene/BaFe12O19 Composite and Its Electromagnetic Wave Absorption Properties

    Science.gov (United States)

    Zhao, Tingkai; Ji, Xianglin; Jin, Wenbo; Yang, Wenbo; Peng, Xiarong; Duan, Shichang; Dang, Alei; Li, Hao; Li, Tiehu

    2017-01-01

    The synthesis of 3D lamellar graphene/BaFe12O19 composites was performed by oxidizing graphite and sequentially self-propagating combustion triggered process. The 3D lamellar graphene structures were formed due to the synergistic effect of the tremendous heat induced gasification as well as huge volume expansion. The 3D lamellar graphene/BaFe12O19 composites bearing 30 wt % graphene present the reflection loss peak at −27.23 dB as well as the frequency bandwidth at 2.28 GHz (graphene structures could consume the incident waves through multiple reflection and scattering within the layered structures, prolonging the propagation path of electromagnetic waves in the absorbers. PMID:28336889

  16. Combustion synthesis in the Ni–Al–Nb ternary system: A Time-Resolved X-ray Diffraction study

    Directory of Open Access Journals (Sweden)

    Alexander E. Sytschev

    Full Text Available Combustion synthesis of intermetallics, using the thermal explosion mode, in the Ni-Al-Nb ternary system is presented, with a 40:40:20 atomic ratio. The kinetic pathway is determined using Time-Resolved X-ray Diffraction, with a time-step resolution of 1 s and demonstrated a first formation of the B2 NiAl structure followed by progressive dissolution of Nb to yield NiAlNb intermetallic Laves phase, representing 35 w% of the final product. SEM observations show a double dendritic (coarse and fine microstructure, resulting from eutectic crystallization. Due to a high cooling rate, Nb dissolution is not complete at the surface, and yields slightly more complex microstructure, including the Ni2AlNb Geissler phase, the (Ni,Al2Nb Laves phase, and (Ni, Al7Nb6.

  17. Effect of pressure on the composition and superconducting T{sub c} value of NbN prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Buscaglia, V. [Consiglio Nazionale delle Ricerche, Genoa (Italy). Ist. di Chimica Fisica Applicata dei Materiali; Caracciolo, F.; Ferretti, M.; Minguzzi, M. [Dipt. di Chimica e Chimica Industriale, Genoa (Italy); Musenich, R. [Istituto Nazionale di Fisica Nucleare, Genoa (Italy)

    1998-02-20

    The synthesis of niobium nitride by combustion of packed niobium powder under nitrogen atmosphere was studied in the pressure range 3.5-700 bar without solid-phase dilution. Surface melting of niobium was only detected at 30 bar. The reaction products consist of {delta}-NbN above 100 bar and of {gamma}-Nb{sub 4}N{sub 3}+{delta}-NbN at lower pressures. The lattice parameter of {delta}-NbN vs. the applied pressure presents a maximum corresponding to the transition from a predominantly defective nitrogen sublattice (N/Nb<1) to a predominantly defective niobium sublattice (N/Nb>1). Bulk metal-nitride components were obtained using a `chemical oven` configuration and combining the high pressure with the high combustion temperatures of the niobium powder. Thick nitride films of {approx}50 {mu}m with a critical superconducting temperature up to 17.2 K were prepared. The films consist of a {delta}-NbN external layer, of a {gamma}-Nb{sub 4}N{sub 3} intermediate layer and of a {beta}-Nb{sub 2}N inner layer. (orig.) 25 refs.

  18. Combustion synthesis and luminescent properties of metal yttrium borates M3Y2 (BO3)4:Eu3+ (M = Ba, Sr) for PDPs applications

    Science.gov (United States)

    Ingle, J. T.; Sonekar, R. P.; Omanwar, S. K.; Wang, Yuhua; Zhao, Lei

    2014-07-01

    The polycrystalline powder samples of Eu3+ activated; mixed metal yttrium borate phosphors M3Y2(BO3)4 (M = Ba, Sr) with improved color purity of red emission for plasma display panels (PDPs) were prepared by solution combustion technique. The synthesis is based up on the exothermic reaction between the fuel (Urea) and oxidizer (Ammonium nitrate) .The heat generated in the reaction is utilized for auto combustion of ingredients. The formation of desired product and crystal structure was confirmed by powder XRD technique; while particle morphology was studied using FE-SEM. Samples under 254 and 147 nm excitation showed intense and pure red emission around 613 nm corresponding to the electric dipole 5D0 → 7F2 transition of Eu3+, CIE chromaticity coordinates of synthesized phosphors was found to be (x = 0.67, y = 0.32) close to National Television Standard Committee (NTSC) for red color; found suitable to employ in plasma display panels (PDPs) applications.

  19. OpenMP parallel computing of 2D TiC combustion synthesis process using an explicit finite-volume scheme

    Science.gov (United States)

    Aoufi, A.

    2017-05-01

    This paper analyzes from a numerical point of view the ignition and propagation of the combustion front during the exothermic TiC combustion synthesis of a material made of pressed titanium and carbide particles when thermophysical properties are either assumed constant or temperature and conversion rate dependent. A two-dimensional cylindrical geometry is considered. The heat supply is prescribed on one, two or three sides of the physical domain. A one-step kinetics is used to describe the reaction Ti+C→TiC in a solid phase and leads to the computation of the conversion rate. A coupling with a non-linear heat equation which takes into account the heat generated by the exothermic kinetics and the two allotropic phase-changes is considered. An explicit finite-volume discretization of the coupled system is constructed and analyzed. Time-step’s stability condition is given for a general expression of the thermo-physical characteristics. A discrete maximum principle is reported. Open MP API was used to parallelize the numerical software written in C. An average speedup of three was obtained on an intel quad-core processor i7-2600. The ignition time and the fraction of unreacted material are systematically computed and compared for several heat supply scenario.

  20. Sol-gel combustion synthesis, particle shape analysis and magnetic properties of hematite (α-Fe2O3) nanoparticles embedded in an amorphous silica matrix

    Science.gov (United States)

    Kopanja, Lazar; Milosevic, Irena; Panjan, Matjaz; Damnjanovic, Vesna; Tadic, Marin

    2016-01-01

    We report the synthesis and magnetic properties of hematite/amorphous silica nanostructures. Raman spectroscopy showed the formation of a hematite phase. A transmission electron microscopy (TEM) revealed spherically shaped hematite nanoparticles, well-dispersed in an amorphous silica matrix. In order to quantitatively describe morphological properties of nanoparticles, we use the circularity of shapes as a measure of how circular a shape is. Diameters of about 5 nm and a narrow size distribution of nanoparticles are observed. The obtained hematite nanoparticles exhibit superparamagnetic properties at room temperature (SPION). The sample does not display the Morin transition. The FC hysteresis loop at 5 K has shown an exchange bias effect. These results have been compared to those previously reported for α-Fe2O3/SiO2 nanosystems in the literature. These comparisons reveal that the sol-gel combustion method yields hematite nanoparticles with a higher magnetization and magnetic moment. These data indicate the existence of an additional factor that contributes to magnetization. We suggest that the increased magnetization is due to an increased number of the surface spins caused by the breaking of large numbers of exchange bonds between surface atoms (disordered structure). This leads to an increase in the magnetic moment per a hematite nanoparticle and an exchange bias effect. We have concluded that the combustion-related part of this synthesis method enhances surface effects, i.e. it promotes the breaking of bonds and surface disordered layers, which results in these magnetic properties. Such interesting structural and magnetic properties of hematite might be important in future practical applications and fundamental research.

  1. Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Zhenxing; Zhou, Ji; Li, Longtu; Zhang, Hongguo; Gui, Zhilun

    2000-01-01

    A nitrate-citrate gel was prepared from metal nitrates and citric acid by sol-gel process, in order to synthesize Ni{sub 0.25}Cu{sub 0.25}Zn{sub 0.50}Fe{sub 2}O{sub 4} ferrite. The thermal decomposition process was investigated by DTA-TG, IR and XRD techniques. The results revealed that the nitrate-citrate gel exhibits self-propagating combustion behavior. After combustion, the gel directly transformed into single-phase, nano-sized NiCuZn ferrite particles with spinel crystal structure. The synthesized powder can be densified at a temperature lower than 900 deg. C. The sintered body possesses fine-grained microstructure, good frequency stability and high-quality factor compared to the sample prepared by conventional ceramic route.

  2. Rapidly synthesis of nanocrystalline MgIn 2O 4 spinel using combustion and solid state chemistry

    Science.gov (United States)

    Surblé, Suzy; Gosset, Dominique; Dollé, Mickaël; Baldinozzi, Gianguido; Urvoy, Stéphane; Siméone, David

    2011-01-01

    Nanometric/submicronic powders of magnesium indate spinel MgIn 2O 4 were prepared with a two-steps process. First, nano-oxides of In 2O 3 and MgO were obtained by combustion of aqueous solutions of metal nitrates (as an oxidizer) and different fuels (glycine/urea/citric acid). Then, the as-prepared combustion ashes were converted into pure spinels after calcinations at elevated temperature. The as-prepared powders spinels have nanometric or submicronic grain size. This process allows preparing the MgIn 2O 4 spinel compound in 1 day whilst 10 days were necessary when the classical solid state chemistry is used. In this paper, we compare these two ways and study the effect of different reaction parameters, such as the nature of fuels or the fuel/oxidiser ratio. Crystallites sizes of the synthesized compounds were investigated by powder X-ray diffraction and Scanning Electron Microscopy.

  3. Investigating dominant characteristics of fires across the Amazon during 2005-2014 through satellite data synthesis of combustion signatures

    Science.gov (United States)

    Tang, W.; Arellano, A. F.

    2017-01-01

    Estimates of fire emissions remain uncertain due to limited constraints on the variations in fire characteristics. Here we demonstrate the utility of space-based observations of smoke constituents in addressing this limitation. We introduce a satellite-derived smoke index (SI) as an indicator of the dominant phase of large-scale fires. This index is calculated as the ratio of the geometric mean of observed fractional enhancements (due to fire) in carbon monoxide and aerosol optical depth to that of nitrogen dioxide. We assess the usefulness of this index on fires in the Amazon. We analyze the seasonal, regional, and interannual joint distribution of SI and fire radiative power (FRP) in relation to fire hotspots, land cover, Drought Severity Index, and deforestation rate estimates. We also compare this index with an analogous quantity derived from field data or emission inventories. Our results show that SI changes from low (more flaming) to high (more smoldering) during the course of a fire season, which is consistent with the changes in observed maximum FRPs from high to low. We also find that flaming combustion is more dominant in areas where deforestation fires dominate, while smoldering combustion has a larger influence during drought years when understory fires are more likely enhanced. Lastly, we find that the spatiotemporal variation in SI is inconsistent with current emission inventories. Although we recognize some limitations of this approach, our results point to the utility of SI as a proxy for overall combustion efficiency in the parameterization of fire emission models.

  4. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  5. Smoldering Combustion

    OpenAIRE

    Rein, G

    2016-01-01

    Smoldering combustion is the slow, low temperature, flameless burning of porous fuels and is the most persistent type of combustion phenomena. It is especially common in porous fuels which form a char on heating, like cellulosic insulation, polyurethane foam or peat. Smoldering combustion is among the leading causes of residential fires, and it is a source of safety concerns in industrial premises as well as in commercial and space flights. Smoldering is also the dominant combustion phenomena...

  6. Synthesis and spectroscopic characterization of nanoparticles of TiO2 doped with Pt produced via the self-combustion route

    Science.gov (United States)

    Lopera, A. A.; Chavarriaga, E. A.; Estupiñan, H. A.; Valencia, I. C.; Paucar, C.; Garcia, C. P.

    2016-05-01

    Titanium oxide (TiO2) is the most important semiconductor used in photocatalysis. For that reason, most recent scientific studies have focused on improving the absorbance of this material in the visible region. In this paper, we report on the production of nanopowders of TiO2 doped with platinum via the solution combustion synthesis method, using glycine as a fuel at concentrations of 0.3, 0.6, 0.9, and 1.2% w/w of Pt with respect to TiO2 (Pt / TiO2), in order to study the influence of the dopant content on the absorbance spectrum in the visible region. The structure of the samples was characterized using x-ray diffraction and Raman spectroscopy, which confirmed the production of a pure anatase phase. VIS diffuse reflectance spectroscopy confirmed that in the visible region the samples doped with Pt absorb within the range of 400 nm to 800 nm. Field emission scanning electron microscopy and transmission electron microscopy showed the formation of TiO2 nanoparticles with an average size of 13 nm and with spherical morphology. Colorimetry (Commission Internationale de l’Eclairage L *, a *, b *) confirmed photocatalytic activity for the degradation of rhodamine B using visible light. It was concluded that the route of synthesis and the Pt content play important roles in the absorbance spectrum and the activation energy of TiO2.

  7. Effect of multi-wall carbon nanotubes supported nano-nickel and TiF{sub 3} addition on hydrogen storage properties of magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei; Zhu, Yunfeng, E-mail: yfzhu@njtech.edu.cn; Zhang, Jiguang; Liu, Yana; Yang, Yang; Mao, Qifeng; Li, Liquan

    2016-06-05

    Multi-wall carbon nanotubes supported nano-nickel (Ni/MWCNTs) with superior catalytic effects was introduced to magnesium hydride by the process of hydriding combustion synthesis (HCS) and mechanical milling (MM). The effect of different Ni/MWCNTs contents (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%) on the hydrogenation and dehydrogenation properties of the composite was investigated systematically. It is revealed that Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best comprehensive hydrogen storage properties, which absorbs 5.68 wt.% hydrogen within 100 s at 373 K and releases 4.31 wt.% hydrogen within 1800 s at 523 K under initial hydrogen pressures of 3.0 and 0.005 MPa, respectively. The in situ formed nano-Mg{sub 2}Ni and MWCNTs have excellent catalytic effect on the hydrogenation and dehydrogenation performances of MgH{sub 2}. To further improve the hydrogen absorption/desorption properties, TiF{sub 3} was added to the Mg–Ni/MWCNTs system. The result shows that TiF{sub 3} addition has little influence on the thermodynamic performance, but affects greatly the kinetic properties. The Mg{sub 85}-(Ni/MWCNTs){sub 15}-TiF{sub 3} composite exhibits an appreciably enhanced hydrogen desorption performance at low temperature, and the hydrogen desorption capacity within 1800 s at 473 K for the TiF{sub 3}-added composite is approximately four times the capacity of Mg{sub 85}-(Ni/MWCNTs){sub 15} under the same condition. The catalytic effects during hydrogenation and dehydrogenation have been discussed in the study. - Highlights: • The nanosized Ni/MWCNTs catalyst was successfully prepared. • Ni/MWCNTs shows superior catalytic effect on H absorption/desorption of Mg. • Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best hydrogen storage properties. • Ni/MWCNTs coupling with TiF{sub 3} improves the hydriding/dehydriding properties largely.

  8. Nanocasted synthesis of the mesostructured LaCoO3 perovskite and its catalytic activity in methane combustion.

    Science.gov (United States)

    Wang, Yangang; Wang, Yanqin; Liu, Xiaohui; Guo, Yun; Guo, Yanglong; Lu, Guanzhong

    2009-02-01

    Extremely high surface area, mesostructured LaCoO3 perovskite has been synthesized by nanocasting from mesoporous cubic (Ia3d) vinyl silica. Thus-prepared material was characterized by XRD, TEM, and N2-sorption, and its catalytic property was also tested in methane combustion. The catalytic results demonstrated that thus-prepared mesostructured LaCoO3 perovskite had higher activity than the conventional bulk LaCoO3 perovskite prepared by citrate method. Further analysis showed that both the high surface area and the existence of high valent cobalt ions (Co4+, XPS analysis) were contributed to the high activity.

  9. Effect of the CeZrNd mixed oxide synthesis method in the catalytic combustion of soot

    OpenAIRE

    González Mira, Jorge; Rico Pérez, Verónica; Bueno López, Agustín

    2015-01-01

    Ce0.64Zr0.27Nd0.09Oδ mixed oxides have been prepared by three different methods (nitrates calcination, coprecipitation and microemulsion), characterized by N2 adsorption, XRD, H2-TPR, Raman spectroscopy and XPS, and tested for soot combustion in NOx/O2. The catalyst prepared by microemulsion method is the most active one, which is related to its high surface area (147 m2/g) and low crystallite size (6 nm), and the lowest activity was obtained with the catalyst prepared by coprecipitation (74 ...

  10. Synthesis of nanoparticles of Co xFe (3-x)O 4 by combustion reaction method

    Science.gov (United States)

    Franco, Adolfo; Celma de Oliveira Lima, Emília; Novak, Miguel A.; Wells, Paulo R.

    2007-01-01

    Nanocrystalline magnetic particles of Co xFe (3-x)O 4, with x ranging from 0.79 to 1.15, has been synthesised by combustion reaction method using iron nitrate Fe(NO 3) 3.9H 2O, cobalt nitrate Co(NO 3) 2·6H 2O, and urea CO(NH 2) 2 as fuel without template and subsequent heat treatment. The process is quite simple and inexpensive since it does not involve intermediate decomposition and/or calcining steps. The maximum reaction temperature ranged from 850 to 1010 °C and combustion lasted less then 30 s for all systems. X-ray diffraction patterns of all systems showed broad peaks consistent with cubic inverse spinel structure of CoFe 2O 4. The absence of extra reflections in the diffraction patterns of as-prepared materials ensures phase purity. The average crystallite sizes determined from the prominent (3 1 1) peak of the diffraction using Scherre's equation and TEM micrographs consisted of ca. 27 nm in spherical morphology. FTIR spectra of the as-prepared material showed traces of organic and metallic salts byproducts. However, when the same material was washed with deionised water the byproducts were rinsed off, resulting in pure materials. Magnetic properties such as saturation magnetisation, remanence magnetisation and coercivity field measured at room temperature were 48 emu/g, 15 emu/g and 900 Oe, respectively.

  11. Synthesis of highly ordered 30 nm NiFe2O4 particles by the microwave-combustion method

    Science.gov (United States)

    Mahmoud, M. H.; Elshahawy, A. M.; Makhlouf, Salah A.; Hamdeh, H. H.

    2014-11-01

    NiFe2O4 of 30 nm average size was synthesized by microwave combustion and subsequent solid state reaction at 1273 K. The materials were characterized by X-ray diffraction, TEM, vibrating sample magnetometery and Mössbauer spectroscopy. The microwave combustion produced materials were comprised chemically of ferrites and a smaller amount of hematite. The NiFe2O4 particles have the cubic spinel structure with crystallites of sizes less than 10 nm, and were found to have low magnetization, and essentially no hysteresis loop; characteristics of superparamagnetism. Upon annealing at temperatures 973 K and below, crystallite growth was accompanied by increase in both coercive field and magnetization. The coercive field was a maximum for the sample annealed at 973 K. On the other hand, crystallite growth at higher annealing temperatures yielded mainly ferrites and improvement in soft magnetic properties. Mössbauer and magnetization measurements indicate that the fine NiFe2O4 particles produced at the annealing temperature of 1273 K are in good chemical and magnetic order, excluding the spins arrangement at the surface of the particles which show spin glass-like behavior.

  12. Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy

    Directory of Open Access Journals (Sweden)

    MAJA JOVIC

    2009-01-01

    Full Text Available Sb2Co alloy in powdery form was synthesized via reduction with gaseous hydrogen of the oxide CoSb2O6, obtained by the citrate gel-combustion technique. The precursor was an aqueous solution of antimony nitrate, cobalt nitrate and citric acid. The precursor solution with mole ratio Co(II/Sb(V of 1:2 was gelatinized by evaporation of water. The gel was heated in air up to the temperature of self-ignition. The product of gel combustion was a mixture of oxides and it had to be additionally thermally treated in order to be converted to pure CoSb2O6. The reduction of CoSb2O6 by gaseous hydrogen yielded powdery Sb2Co as the sole phase. The process of oxide reduction to alloy was controlled by thermogravimetry, while X-ray diffractometry was used to control the phase compositions of both the oxides and alloys.

  13. Hydride formation on deformation twin in zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Seong [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Sung-Dae [Korea Institute of Material Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Yoon, Jonghun, E-mail: yooncsmd@gmail.com [Department of Mechanical Engineering, Hanyang University, 1271 Sa3-dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea, Republic of)

    2016-12-15

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  14. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC equ...

  15. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  16. Solution combustion synthesis: Effect of calcination and sintering temperature on structural, dielectric and ferroelectric properties of five layer Aurivillius oxides

    Science.gov (United States)

    Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish

    2017-09-01

    The effect of calcination temperature on phase formation and sintering temperature on structural, dielectric, electrical and ferroelectric properties of Ba2Bi4Ti5O18 (BBT), Pb2Bi4Ti5O18 (PBT) and Sr2Bi4Ti5O18 (SBT) ceramics prepared by solution combustion route using glycine as a fuel are investigated in this paper. Calcination temperature was optimized at 650 °C for BBT and 750 °C for SBT and PBT, at which these compounds showed pure phase formation. It was observed that density and grain size of the sintered pellets increases with increasing sintering temperature. The dielectric constant was found to be dependent on grain size and density. Transition temperature, activation energy and remnant polarization were found to increase with an increase in sintering temperature. Porosity and conductivity decreases with an increase in the sintering temperature. Thus improving the dielectric, electrical and ferroelectric properties of five layered Aurivillius oxides.

  17. Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique.

    Science.gov (United States)

    Pradhan, Gajendra Kumar; Martha, Satyabadi; Parida, K M

    2012-02-01

    A series of nanostructure zinc-iron mixed oxide photocatalysts have been fabricated by solution-combustion method using urea as the fuel, and nitrate salts of both iron and zinc as the metal source. Different characterization tools, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV-visible spectra (DRUV-vis), electron microscopy, and photoelectrochemical measurement were employed to establish the structural, electronic, and optical properties of the material. Electron microscopy confirmed the nanostructure of the photocatalyst. The synthesized photocatalysts were examined towards photodegradation of 4-chloro-2-nitro phenol (CNP), rhodamine 6G (R6G), and photocatalytic hydrogen production under visible light (λ ≥ 400 nm). The photocatalyst having zinc to iron ratio of 50:50 showed best photocatalytic activity among all the synthesized photocatalysts.

  18. Computational Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  19. Effect of the container in the synthesis of the combustion reaction of ZnAl{sub 2}O{sub 4}; Efeito do tipo de reciente na sintese por reacao de combustao do ZnAl{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D.A.R.; Cavalcanti, L.R.C.; Moura, A.L.S.; Rocha, M.L.; Neto, O.L.A.; Cabral, I.C.; Viana, K.M.S., E-mail: kalineviana@ect.ufrn.br [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2012-07-01

    In the present work is a study on the influence of the container in the synthesis of the combustion reaction ZnAl{sub 2}O{sub 4}. Products of combustion obtained for both synthesis routes, were broken and sieved in 325 mesh (44μm). The powders resulting from two types of synthesis were characterized by X-ray diffraction and scanning electron microscopy. By means of XRD analysis showed the formation of the main phase of zinc aluminate spinel (Z) as phase the mineral guanine in the two procedures synthesis. By means of SEM analysis showed that in the procedure used the crucible metal zinc aluminate is introduced in the form of smaller agglomerates. Therefore, the container used in the synthesis of combustion influences the microstructure of the material synthesized. (author)

  20. Study of hydration process on silica hydride surfaces by microcalorimetry and water adsorption.

    Science.gov (United States)

    Bocian, Szymon; Rychlicki, Gerhard; Matyska, Maria; Pesek, Joseph; Buszewski, Bogusław

    2014-02-15

    A series of hydrosilated stationary phases were compared with respect to their hydrophilic-hydrophobic properties. The stationary phases were also compared to the bare silica gel used for this synthesis. The investigations were done using microcalorimetric measurements of methanol and acetonitrile heats of immersion. Because these stationary phases are used in both the reversed-phase and aqueous normal phase modes of liquid chromatography, the excess isotherm of water from acetonitrile solution was measured. From the materials tested the highest polarity was exhibited by the silica hydride and the bare silica. The Diamond Hydride is less polar. The highest hydrophobicity is exhibited by the hydrosilated stationary phase which contains bonded octadecyl ligands. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The effects of heat treatment on the synthesis of nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles using the microwave assisted combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Karcıoğlu Karakaş, Zeynep, E-mail: kzeynep@atauni.edu.tr [Atatürk University, Faculty of Engineering, Department of Environmental Engineering, Erzurum (Turkey); Boncukcuoğlu, Recep [Atatürk University, Faculty of Engineering, Department of Environmental Engineering, Erzurum (Turkey); Karakaş, İbrahim Hakkı [Bayburt University, Faculty of Engineering, Department of Chemical Engineering, Bayburt (Turkey); Ertuğrul, Mehmet [Atatürk University, Faculty of Engineering, Department of Electric - Electronic Engineering, Erzurum (Turkey)

    2015-01-15

    NiFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave assisted combustion method based on metal nitrate salts and urea. To remain of organic matters and to stabilize the particles, samples were thermally treated at various temperatures from 300–800 °C. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The heat treated samples show the reflection planes of (111), (220), (222), (311), (400), (422), (511), and (440) which perfectly confirm to a cubic spinel phase of NiFe{sub 2}O{sub 4} and no secondary phases were detected in the XRD patterns of the samples. The crystallite sizes calculated using the Debye–Scherrer formula were found to increase with the heat treatment temperature, from about 4 nm at 300 °C–85 nm at 800 °C. EDX results verify that the compositional mass rations were relevant, as expected from the synthesis. The micrographs of SEM and TEM showed that all of the samples have nano-crystalline behavior and particles indication cubic shape. Magnetization measurements were obtained at room temperature by using a VSM, which demonstrated that the all of the samples synthesized with heat treatment exhibited ferromagnetic behaviors. - Highlights: • The only microwave effect is not enough in synthesis of NiFe{sub 2}O{sub 4} nanoparticles. • Nanoparticles were treated thermally for stabilization at various temperatures. • Crystallinity of the nanoparticles has become a more regular with heat treatment. • Average particle size of the nanoparticles increased with increasing temperature. • Magnetic properties of the nanoparticles improved with increasing temperature.

  2. Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes.

    Science.gov (United States)

    Stevenson, Steven; Thompson, M Corey; Coumbe, H Louie; Mackey, Mary A; Coumbe, Curtis E; Phillips, J Paige

    2007-12-26

    Goals are (1) to selectively synthesize metallic nitride fullerenes (MNFs) in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes. This new method is "Chemically Adjusting Plasma Temperature, Energy, and Reactivity" (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air, and combustion to "tune" the temperature, energy, and reactivity of the plasma environment. The extent of temperature, energy, and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a "competitive link" in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg of Sc3N@C80). The CAPTEAR process with Cu(NO3)2.2.5H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production.

  3. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  4. Influence of different fuel agents on the combustion synthesis of the nanostructured Li{sub 1.05}Mn{sub 2}O{sub 4} oxide

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Fabio A.; Guerra, R.F.; Santana, L.K.; Canobre, S.C., E-mail: fabioamaral@iqufu.ufu.br [Universidade Federal de Uberlandia (LAETE/UFU), MG (Brazil). Inst. de Quimica. Lab. de Armazenamento de Energia e Tratamento de Efluentes

    2014-08-15

    In this work nanostructured Li{sub 1.05}Mn{sub 2}O{sub 4} oxide was obtained by Solution Combustion Synthesis (SCS) using three different fuel agents in order to obtain a unique phase with a crystalline cubic structure belonging to the F{sub d3m} spatial group. The phase of interest could be obtained, following the order: glycine (at 600 °C for 2 h) ‹ urea (at 750 °C for 2 h) ‹ maleic anhydride (at 750 °C for 4 h), with crystallite size in the range from 4.6 to 9.7 nm (nanometric character) and the unit cell parameter of the calcined samples at 750 °C for 2 h were similar to the JCPDS 35-0782 with cubic structure (a = 8.247 Å). Charge and discharge tests from the samples obtained by glycine fuel (at 750 °C for 4 h) presented the highest experimental specific capacities of 115 mA h g{sup -1} and 92% of retention after 10 cycles. (author)

  5. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  6. Fabrication of Cu-riched W-Cu composites by combustion synthesis and melt-infiltration in ultrahigh-gravity field

    Science.gov (United States)

    Zhao, Pei; Guo, Shibin; Liu, Guanghua; Chen, Yixiang; Li, Jiangtao

    2013-10-01

    Unadulterated Cu-riched W-Cu composites of W27-Cu73, W34-Cu66, W40-Cu60, W49-Cu51 and W56-Cu44 have been prepared by a novel method called combustion synthesis and melt-infiltration in ultrahigh-gravity field, of which W27-Cu73 and W34-Cu66 showed good ductility and W40-Cu60, W49-Cu51 and W56-Cu44 were brittle. In this technique, Cu melt accompanied with a great amount of heat was produced by thermit reaction and infiltrated into W-Cu powder bed. When the powder bed was Cu-riched powder bed such as W50-Cu50 or W60-Cu40, Cu melt would go through the powder bed, reach the bottom of the graphite crucible and then form a heat dissipation channel. Thus the cooling rate was so fast that the product was mixed up with impurity. The problem can be solved by putting some W powders under W50-Cu50 or W60-Cu40 powder bed to prevent the formation of heat dissipation channel.

  7. Fabrication of Cu-riched W–Cu composites by combustion synthesis and melt-infiltration in ultrahigh-gravity field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Guo, Shibin; Liu, Guanghua; Chen, Yixiang [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jiangtao, E-mail: ljt0012@vip.sina.com [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-15

    Unadulterated Cu-riched W–Cu composites of W27–Cu73, W34–Cu66, W40–Cu60, W49–Cu51 and W56–Cu44 have been prepared by a novel method called combustion synthesis and melt-infiltration in ultrahigh-gravity field, of which W27–Cu73 and W34–Cu66 showed good ductility and W40–Cu60, W49–Cu51 and W56–Cu44 were brittle. In this technique, Cu melt accompanied with a great amount of heat was produced by thermit reaction and infiltrated into W–Cu powder bed. When the powder bed was Cu-riched powder bed such as W50–Cu50 or W60–Cu40, Cu melt would go through the powder bed, reach the bottom of the graphite crucible and then form a heat dissipation channel. Thus the cooling rate was so fast that the product was mixed up with impurity. The problem can be solved by putting some W powders under W50–Cu50 or W60–Cu40 powder bed to prevent the formation of heat dissipation channel.

  8. Combustion synthesis and characterization of Er3+-doped and Er3+, Yb3+-codoped YVO4 nanophosphors oriented for luminescent biolabeling applications

    Science.gov (United States)

    Nguyen, Vu; Tran, Thi Kim Chi; Van Nguyen, Duc

    2011-12-01

    YVO4:Er3+ and YVO4:Er3+, Yb3+ nanomaterials were prepared via combustion synthesis using urea as fuel and metal nitrates as precursor. The morphology and the structure of the prepared samples were characterized by x-ray diffraction, scanning electron microscopy and transmission electron microscopy. The average size of the prepared materials ranged from 20 to 30 nm in diameter. The effects of Er3+ and Yb3+ doping concentrations on structure and optical properties have been investigated. Optical properties of YVO4:Er3+ and YVO4:Er3+, Yb3+ nanoparticles were measured by photoluminescent excitation and emission spectroscopies. For the YVO4:Er3+ and YVO4:Er3+, Yb3+ samples, two strong green emissions centered at 524 and 552 nm are found, corresponding to the 2H11/2—4I15/2 and 4S11/2—4I15/2 transitions of Er3+ ions, respectively. Upconversion emission in the green region of the YVO4:Er3+ nanoparticles under 980 nm excitation was also investigated. Strong emission from these materials is promising for luminescent biolabeling applications.

  9. Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion

    Science.gov (United States)

    Park, Jung-Nam; Zhang, Peng; Hu, Yong-Sheng; McFarland, Eric W.

    2010-06-01

    A nanocomposite catalyst composed of ferromagnetic magnetite cores (15.5 ± 2.0 nm) and silica shells with a thickness of 4.5 ± 1.0 nm (Fe3O4@SiO2) was prepared by a two-step microemulsion-based synthesis. X-ray photoelectron spectroscopy and Raman spectroscopy after oxidation support the presence of a stable Fe3O4 core and a surface phase of γ-Fe2O3. The nanocomposite structure exhibited 100% conversion of CO in oxygen at a residence time of 0.1 s at 310 °C. When pre-oxidized, the Fe3O4@SiO2 catalyst is shown to be a suitable solid oxygen carrier for chemical looping combustion of methane at 700 °C. The nanocomposites retain their magnetism following the reaction which provides the potential for use of magnetic separation and capture in moving bed reactor applications. The core magnetite within the silica shell is resistant to sintering and a bulk phase transition to temperatures as high as 700 °C. These catalysts can be of use in applications of high temperature applications where catalyst recovery by magnetic separation may be required.

  10. Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity.

    Science.gov (United States)

    Chanu, T Inakhunbi; Muthukumar, Thangavelu; Manoharan, Periakaruppan T

    2014-11-21

    Nanocomposites of gold nanoparticles and semiconductor ZnO with wurtzite structure, made by solution combustion synthesis (SCS), as a function of the Zn/fuel ratio with polyethylene glycol (PEG) as fuel exhibit the presence of both nanoparticles and clusters. Atomic gold clusters present on the surface of ZnO nanorods which can be identified by XPS and SEM are easily monitored and characterized by positive ion MALDI experiments as mostly odd numbered clusters, Au3 to Au11 in decreasing amounts. Low concentrations of the fuel produce AuClO and nanoparticles (NPs), with no clusters. Au-ZnO nanocomposites at all [Au] exhibit single blue shifted plasmon absorption and corresponding photoluminescence (PL). Increasing particle size prefers surface plasmon resonance (SPR) scattering of metal that could lead to PL enhancement; however, available ZnO surface in the Au-ZnO composite becomes more important than the particle size of the composite with higher [Au]. The catalytic activity of these Au-ZnO nanocomposites tested on 4-nitrophenol clearly revealed the presence of an intermediate with both NPs and clusters playing different roles. An in vitro study of cytotoxicity on MCF-7 cell lines revealed that these gold nanostructures have turned out to be powerful nanoagents for destruction of cancer cells even with small amounts of gold particles/clusters. The nanorods of ZnO, known to be nontoxic to normal cells, play a lesser role in the anticancer activity of these Au-ZnO nanocomposites.

  11. Combustion synthesis technology for metal-ceramic composite production. Kinzoku-ceramics fukugotai seizo ni okeru nensho gosei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Odawara, O. (Tokyo Institute of Technology, Tokyo (Japan))

    1994-03-01

    This paper describes an outline of a centrifugal thermit method, which is to form ceramic layers inside a metallic tube by using centrifugal force and high temperature generated through spontaneous propagation of combustion reaction of powder. In the typical thermit reaction, Al powder and iron oxide react to each other to form Al2O3 and metal iron. In this reaction, heat as high as 836kJ/mol for Al2O3 is generated, and adiabatic temperature becomes more than 3500K. When this reaction is induced in the metallic tube that rotates at high speed, both reaction products and an internal surface of the metallic tube melt, so that a multiple-unit tube consisting of 3 layers (Al2O3 layer, generated metal layer, and metallic tube, in order from inside) can be obtained by the action of centrifugal force. The thermit reaction is characterized by its rapid propagation on the internal surface of the powder mixture, which becomes hollow due to centrifugal force, followed by its uniformly radial propagation in the tube. The multiple-unit tube is resistant to the thermal shock and the shock caused by external force, as it is characterized by the residual stress distribution after cooling. Therefore this tube can be applied as a transport tube for solid slurry and molten metal. 18 refs., 3 figs.

  12. Preparation of LiMn2O4 Graphene Hybrid Nanostructure by Combustion Synthesis and Their Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Dinesh Rangappa

    2014-10-01

    Full Text Available The LiMn2O4 graphene hybrid cathode material has been synthesized by spray drying combustion process. The spinel structure cubic phase LiMn2O4 graphene hybrid material was prepared by spray drying process at 120 ℃ and subsequent heat treatment at 700 ℃ for 1 hour. The result indicates that the spinel shaped LiMn2O4 particles wrapped with graphene sheets were formed with particle size in the range of 60-70 nm. The charge-discharge measurement indicates that the LiMn2O4 graphene hybrid material shows an improved discharge capacity of 139 mAh/g at 0.1C rate. The pristine LiMn2O4 nano crystals present only about 132 mAh/g discharge capacity. The LiMn2O4 graphene hybrid samples show good cyclic performance with only 13% of capacity fading in 30 cycles when compared to the pristine LiMn2O4 that shows 22% of capacity fading in 30 cycles. The capacity retention of the LiMn2O4 graphene hybrid samples is about 10% higher than the pristine cycle after 30 cycles.

  13. Filtration combustion: Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  14. Combustion synthesis and engineering nanoparticles for electronic, structural and superconductor applications. Final report, May 31, 1992--May 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stangle, G.C.; Schulze, W.A.; Amarakoon, V.R.W.

    1996-05-30

    Dense, nanocrystalline ceramic articles of doped ZrO{sub 2} (for use in solid electrolytes, oxygen sensors, electrode materials, thermal barrier coatings, etc.), BaTiO{sub 3} (for capacitor applications), and YBa{sub 2}Cu{sub 3}O{sub 7-x} (a high-temperature superconductor with uses, e.g., in magnetic flux trapping and high-speed capacitor applications) were prepared by the new nanofabrication process that has been developed in this research program. The process consists of two steps: synthesis of ceramic nanoparticles, and fabrication of dense ceramic articles that possess nanocrystalline features. The synthesis step is capable of producing 10-nanometer-diameter crystallites of doped ZrO{sub 2}, and of being scaled up to kilogram/hour production rates. The fabrication step produced dense, ultrafine-grained articles at significantly reduced sintering temperatures and times--representing a factor of 10-100 reduction in process energy requirements. The process has thus been shown to be technically feasible, while a preliminary engineering cost analysis of a pilot plant-scale version of the process indicates that it is both a cost- and an energy-efficient method of producing nanoparticles and nanocrystalline ceramics from those nanoparticles. One U.S. patent for this process has been allowed, and an additional five (continuation-in-part) applications have been filed. Technology transfer efforts have begun, through ongoing discussions with representatives from three manufacturing concerns.

  15. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  16. Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels.

    Science.gov (United States)

    Prashanth, G K; Prashanth, P A; Nagabhushana, B M; Ananda, S; Krishnaiah, G M; Nagendra, H G; Sathyananda, H M; Rajendra Singh, C; Yogisha, S; Anand, S; Tejabhiram, Y

    2017-07-18

    Recently, there has been an upsurge in the use of naturally available fuels for solution combustion synthesis (SCS) of nanoparticles. Although many reports suggest that these biofuels pose less harm to the environment, their strategic advantages and reliability for making NPs has not been discussed. In the present work, we try to address this issue using plant extracts as biofuels for the SCS of zinc oxide nanoparticles as a model system. In the present work, combustion synthesis of ZnO NPs using lactose and aqueous leaf extracts of Abutilon indicum, Melia azedarach, Indigofera tinctoria as biofuels has been carried out. A comparative analysis of the obtained powders has been conducted to understand the strategic advantages of using plant extracts over a chemical as combustion fuel for the synthesis of zinc oxide nanoparticles. The X-ray diffractograms of the samples revealed the presence of Wurtzite hexagonal structure with varying crystallite sizes. Morphological studies indicated that samples prepared using biofuels had smaller diameter than those prepared using lactose as fuel. Surface characteristics of the samples were measured by X-ray photoelectron spectroscopy. Qualitative phytochemical screening of aqueous leaf extracts revealed the presence of many phytochemicals in them, which might be responsible for combustion. Gas chromatography mass spectrum was carried out to detect the phytochemicals present in the aqueous extracts of the leaves. Further, anticancer evaluation carried out against DU-145 and Calu-6 cancer cells indicated higher anticancer activity of zinc oxide nanoparticles prepared using biofuels. The results of blood haemolysis revealed the biocompatibility of zinc oxide nanoparticles at lower concentrations. In conclusion, we propose that multiple other studies would be required in order to vindicate the potential advantages of using naturally available fuels in SCS.

  17. Numerical study of a magnesium hydride tank

    Science.gov (United States)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  18. Green Microwave-Assisted Combustion Synthesis of Zinc Oxide Nanoparticles with Citrullus colocynthis (L. Schrad: Characterization and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susan Azizi

    2017-02-01

    Full Text Available In this paper, a green microwave-assisted combustion approach to synthesize ZnO-NPs using zinc nitrate and Citrullus colocynthis (L. Schrad (fruit, seed and pulp extracts as bio-fuels is reported. The structure, optical, and colloidal properties of the synthesized ZnO-NP samples were studied. Results illustrate that the morphology and particle size of the ZnO samples are different and depend on the bio-fuel. The XRD results revealed that hexagonal wurtzite ZnO-NPs with mean particle size of 27–85 nm were produced by different bio-fuels. The optical band gap was increased from 3.25 to 3.40 eV with the decreasing of particle size. FTIR results showed some differences in the surface structures of the as-synthesized ZnO-NP samples. This led to differences in the zeta potential, hydrodynamic size, and more significantly, antioxidant activity through scavenging of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH free radicals. In in vitro cytotoxicity studies on 3T3 cells, a dose dependent toxicity with non-toxic effect of concentration below 0.26 mg/mL was shown for ZnO-NP samples. Furthermore, the as-synthesized ZnO-NPs inhibited the growth of medically significant pathogenic gram-positive (Bacillus subtilis and Methicillin-resistant Staphylococcus aurous and gram-negative (Peseudomonas aeruginosa and Escherichia coli bacteria. This study provides a simple, green and efficient approach to produce ZnO nanoparticles for various applications.

  19. Green Microwave-Assisted Combustion Synthesis of Zinc Oxide Nanoparticles with Citrullus colocynthis (L.) Schrad: Characterization and Biomedical Applications.

    Science.gov (United States)

    Azizi, Susan; Mohamad, Rosfarizan; Mahdavi Shahri, Mahnaz

    2017-02-16

    In this paper, a green microwave-assisted combustion approach to synthesize ZnO-NPs using zinc nitrate and Citrullus colocynthis (L.) Schrad (fruit, seed and pulp) extracts as bio-fuels is reported. The structure, optical, and colloidal properties of the synthesized ZnO-NP samples were studied. Results illustrate that the morphology and particle size of the ZnO samples are different and depend on the bio-fuel. The XRD results revealed that hexagonal wurtzite ZnO-NPs with mean particle size of 27-85 nm were produced by different bio-fuels. The optical band gap was increased from 3.25 to 3.40 eV with the decreasing of particle size. FTIR results showed some differences in the surface structures of the as-synthesized ZnO-NP samples. This led to differences in the zeta potential, hydrodynamic size, and more significantly, antioxidant activity through scavenging of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals. In in vitro cytotoxicity studies on 3T3 cells, a dose dependent toxicity with non-toxic effect of concentration below 0.26 mg/mL was shown for ZnO-NP samples. Furthermore, the as-synthesized ZnO-NPs inhibited the growth of medically significant pathogenic gram-positive (Bacillus subtilis and Methicillin-resistant Staphylococcus aurous) and gram-negative (Peseudomonas aeruginosa and Escherichia coli) bacteria. This study provides a simple, green and efficient approach to produce ZnO nanoparticles for various applications.

  20. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  1. Pressure influenced combustion synthesis of {gamma}- and {alpha}-Al{sub 2}O{sub 3} nanocrystalline powders

    Energy Technology Data Exchange (ETDEWEB)

    Ozuna, O [Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, BC, Mexico, CP 22800 (Mexico); Hirata, G A [Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, BC, Mexico, CP 22800 (Mexico); McKittrick, J [Department of Mechanical Aerospace Engineering and Materials Science and Engineering Program, University of California at San Diego, La Jolla, CA 92093-0411 (United States)

    2004-04-21

    Aluminium oxide nanocrystals have been prepared via a straightforward reaction, initiated at low temperatures (<300 deg. C), between aluminium nitrate and hydrazine. The initial pressure parameter is found to be responsible for the variations of the particle size (ranging from nanocrystalline to sub-microcrystalline) and for the resulting crystalline phase ({gamma}- or {alpha}-Al{sub 2}O{sub 3}) of these powders. The fibre-like morphology obtained for the as-synthesized {gamma}-Al{sub 2}O{sub 3} permits the synthesis of nanocrystalline {alpha}-Al{sub 2}O{sub 3} ({approx} 55 nm) even after a high temperature treatment at 1200 deg. C. The findings suggest a promising approach for controlling the size and crystal phase of the particles.

  2. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments; Efecto del combustible en la síntesis de pigmentos Co(Cr,Al)2O4 por combustión de una disolución

    Energy Technology Data Exchange (ETDEWEB)

    Gilabert, J.; Palacios, M.D.; Sanz, V.; Mestre, S.

    2017-11-01

    The fuel effect on the synthesis of a ceramic pigment with a composition CoCr2−2ΨAl2ΨO4 (0≤Ψ≤1) by means of solution combustion synthesis process (SCS) has been studied. Three different fuels were selected to carry out the synthesis (urea, glycine and hexamethylentetramine (HMT)). Highly foamy pigments with very low density were obtained. Fd-3m spinel-type structure was obtained in all the experiments. Nevertheless, crystallinity and crystallite size of the spinels show significant differences with composition and fuel. The use of glycine along with the chromium-richest composition favours ion rearrangement to obtain the most ordered structure. Lattice parameter does not seem to be affected by fuel, although it evolves with Ψ according to Vegard's law. Colouring power in a transparent glaze shows important variations with composition. On the other hand, fuel effect presents a rather low influence since practically the same shades are obtained. However, it exerts certain effect on luminosity (L*). [Spanish] Se ha estudiado el efecto del combustible en la síntesis de pigmentos cerámicos tipo CoCr2-2ΨAl2ΨO4 (0≤Ψ≤1), obtenidos mediante síntesis por combustión de una disolución. Se seleccionaron 3 tipos de combustible diferentes: urea, glicina y hexametilentetramina. Todos los pigmentos obtenidos presentaron una textura altamente esponjosa y con muy baja densidad. Las estructuras cristalinas desarrolladas en todos los casos fueron tipo espinela Fd-3m. Sin embargo, tanto la cristalinidad como el tamaño de cristalito presentaron diferencias significativas dependiendo de la composición y del combustible utilizado. El uso de glicina, junto con las composiciones más ricas en cromo, favorece la reorganización de los iones para obtener estructuras más ordenadas y con mayor cristalinidad. El parámetro de red no parece verse afectado por el combustible, aunque sí evoluciona con Ψ de acuerdo con la Ley de Vegard. El poder colorante desarrollado

  3. Thermally stimulated luminescence studies in combustion ...

    Indian Academy of Sciences (India)

    Synthesis of materials by combustion technique results in homogeneous and fine crystalline product. Further, the technique became more popular since it not only saved time and energy but also was easy to process. Aluminum oxide phosphor was synthesized by using urea as fuel in combustion reaction.

  4. Shape-Controlled TiCx Particles Fabricated by Combustion Synthesis in the Cu-Ti-C System

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2017-07-01

    Full Text Available TiCx particle-reinforced Cu-matrix composites were prepared in the Cu-Ti-C system by thermal explosion and hot press. Extracted TiCx particles with various shapes of in situ TiCx particles in the Cu-Ti-C system were observed through the Field Emission Scanning Electron Microscope (FESEM. It was found that octahedral and close-to-spherical, spherical or cubic TiCx could be fabricated by changing the C/Ti molar ratio and Cu content. Then, the effect of the C/Ti molar ratio and constituent element concentrations on the shape of in situ TiCx particles was determined: the shape of TiCx particles is octahedral at a C/Ti ratio of 0.4–0.6 with the presence of 70 vol% Cu; or spherical and close-to-spherical at 0.8–1.0 with the presence of 70 vol% Cu; or cubic at C/Ti ratios ≥1.0 with the presence of Cu from 80 vol%–90 vol% and even at C/Ti ratios >1.0 with the presence of 70 vol% Cu. The shape-controlled synthesis of TiCx particles in the Cu-Ti-C system is realized.

  5. Measurement of the enthalpy of formation of an iron pico-hydride and of its main properties

    Science.gov (United States)

    Dufour, Jacques; Dufour, Xavier; Dioury, Fabienne; Vinko, Jenny D.

    2017-10-01

    Chemical reactions result from the outside shell electrons of the reacting species being shared in various types of combinations. Typical distances involved are tenths of nm, resulting in binding energies typically in the order of hundreds of kJ/mole (eV/atom). The synthesis of a novel “atomic system” formed from Iron and di-Hydrogen has been achieved. The measured enthalpy of formation is some 40 MJ/moleFe and the distance between the hydrogen proton and the iron nucleus is some 8 pm, hence the proposed name: Iron Pico-Hydride. This compound is a permanent electric dipole of atomic size. Pico-Hydrides could, thus, play a significant role in HT superconductivity and in super-capacitors. The synthesis is compatible with the standard model.

  6. A Facile Stereoselective Total Synthesis of (R)-Rugulactone

    OpenAIRE

    B Narasimha Reddy; R. P. Singh

    2014-01-01

    An efficient and novel synthesis of (R)-rugulactone has been achieved employing Sharpless asymmetric epoxidation of allyl alcohols followed by selective hydride reduction of epoxy alcohols and olefin cross metathesis reactions.

  7. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  8. Novel baker's yeast catalysed hydride reduction of an epoxide moiety

    CSIR Research Space (South Africa)

    Horak, RM

    1995-02-27

    Full Text Available .m.r, and mass spectroscopy and appears to be due to a novel enzyme catalysed hydride transfer from cofactors such as NADH or NADPH. No example of an enzyme catalysed hydride opening of an epoxide has been reported in the literature. The stereochemical...

  9. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  10. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  11. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  12. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  13. Photochromism of rare-earth metal-oxy-hydrides

    Science.gov (United States)

    Nafezarefi, F.; Schreuders, H.; Dam, B.; Cornelius, S.

    2017-09-01

    Recently, thin films of yttrium oxy-hydride (YOxHy) were reported to show an unusual color-neutral photochromic effect promising for application in smart windows. Our present work demonstrates that also oxy-hydrides based on Gd, Dy, and Er have photochromic properties and crystal structures similar to YOxHy. Compared to YOxHy, the optical bandgaps of the lanthanide based oxy-hydrides are smaller while photochromic contrast and kinetics show large variation among different cations. Based on these findings, we propose that cation alloying is a viable pathway to tailor the photochromic properties of oxy-hydride materials. Furthermore, we predict that the oxy-hydrides of the other lanthanides are also potentially photochromic.

  14. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  15. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  16. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J., E-mail: jesus.ruiz@upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Gomez-Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L, Madrid (Spain)

    2014-09-15

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  17. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I

    2017-01-01

    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  18. Bubble Combustion

    Science.gov (United States)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  19. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  20. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  1. Microstructural and electrical characterization of the ceria oxide doped with lanthanum obtained by combustion synthesis; Caracterizacao microestrutural e eletrica do oxido de cerio dopado com lantanio obtido pela sintese por combustao

    Energy Technology Data Exchange (ETDEWEB)

    Scarabelot, Evandro Garske, E-mail: evandroscarabelot@gmail.com [Universidade Federal do Rio Grande do Sul (LABIOMAT/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Biomateriais e Ceramicas Avancadas

    2016-07-01

    This work aims to microstructural and electrical characterization of cerium-doped oxide with lanthanum varying the most important parameter during the combustion synthesis, the fuel content used, in this case, sucrose. The powders were analyzed by the following techniques: XRD, TGA, SEM, TEM, BET and EIS. Materials used are based on lanthanum nitrate (99.0% purity) and cerium (99.0% purity) as oxidizing reagents, both of VETEC mark and sucrose (C12H22O11- 99.3% purity) as a reducing reagent. The results showed that the excess fuel used in the samples brought positive characteristics in the post-synthesis prepared as increased surface area (21.09 m2 / g to 25.14 m2 / g), small residual mass loss specifies calcination and a lower electric resistance of the samples. (author)

  2. Hot temperatures line lists for metal hydrides

    Science.gov (United States)

    Gorman, M.; Lodi, L.; Leyland, P. pC; Hill, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ExoMol project is an ERC funded project set up with the purpose of calculating high quality theoretical molecular line list data to facilitate the emerging field of exoplanet and cool star atmospheric haracterisation [1]. Metal hydrides are important building blocks of interstellar physical chemistry. For molecular identification and characterisation in astrophysical sources, one requires accurate and complete spectroscopic data including transitional frequencies and intensities in the form of a line list. The ab initio methods offer the best opportunity for detailed theoretical studies of free diatomic metal hydrides and other simple hydride molecules. In this contribution we present progress on theoretical line lists for AlH, CrH, MgH, NiH, NaH and TiH obtained from first principles, applicable for a large range of temperatures up to 3500 K. Among the hydrides, AlH is of special interest because of a relatively high cosmic abundance of aluminium. The presence of AlH has been detected in the spectra of M-type and S-type stars as well as in sunspots (See [2] and references therein). CrH is a molecule of astrophysical interest; under the classification scheme developed by Kirkpatrick et al [3], CrH is of importance in distinguishing L type brown dwarfs. It has been proposed that theoretical line-lists of CrH and CrD could be used to facilitate a 'Deuterium test' for use in distinguishing planets, brown dwarfs and stars [5] and also it has been speculated that CrH exists in sunspots [4] but a higherquality hot-temperature line-list is needed to confirm this finding. The presence of MgH in stellar spectra is well documented through observation of the A2 ! X 2+ and B0 2+ ! X 2+ transitions. Different spectral features of MgH have been used as an indicator for the magnesium isotope abundances in the atmospheres of different stars from giants to dwarfs including the Sun, to measure the temperature of stars, surface gravity, stars' metal abundance, gravitational, as

  3. Effects of Ca Content on Formation and Photoluminescence Properties of CaAlSiN3:Eu2+ Phosphor by Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    Shyan-Lung Chung

    2016-03-01

    Full Text Available Effects of Ca content (in the reactant mixture on the formation and the photoluminescence properties of CaAlSiN3:Eu2+ phosphor (CASIN were investigated by a combustion synthesis method. Ca, Al, Si, Eu2O3, NaN3, NH4Cl and Si3N4 powders were used as the starting materials and they were mixed and pressed into a compact which was then wrapped up with an igniting agent (i.e., Mg + Fe3O4. The compact was ignited by electrical heating under a N2 pressure of ≤1.0 MPa. By keeping the molar ratios of Al and Si (including the Si powder and the Si in Si3N4 powder both at 1.00 and that of Eu2O3 at 0.02, XRD (X-ray diffraction coupled with TEM-EDS (transmission electron microscope equipped with an energy-dispersive X-ray spectroscope and SAED (selected area electron diffraction measurements show that AlN:Eu2+ and Ca-α-SiAlON:Eu2+ are formed as the major phosphor products when the Ca molar ratio (denoted by Y is equal to 0.25 and AlN:Eu2+ and Ca-α-SiAlON:Eu2+ could not be detected at Y ≥ 0.75 and ≥1.00, respectively. CASIN (i.e., CaAlSiN3:Eu2+ becomes the only phosphor product as Y is increased to 1.00 and higher. The extent of formation of CASIN increases with increasing Y up to 1.50 and begins to decrease as Y is further increased to 1.68. While the excitation wavelength regions are similar at various Y, the emission wavelength regions vary significantly as Y is increased from 0.25 to 1.00 due to different combinations of phosphor phases formed at different Y. The emission intensity of CASIN was found to vary with Y in a similar trend to its extent of formation. The Ca and Eu contents (expressed as molar ratios in the synthesized products were found to increase roughly with increasing Y but were both lower than the respective Ca and Eu contents in the reactant mixtures.

  4. Synthesis of Pr0.70Sr0.30MnO3δ and Nd0.70Sr0.30MnO3δ powders by solution-combustion technique

    Directory of Open Access Journals (Sweden)

    Reinaldo Azevedo Vargas

    2011-01-01

    Full Text Available Powders of Pr0.70Sr0.30MnO3δ (PSM and Nd0.70Sr0.30MnO3δ (NSM compositions are being investigated as alternative cathode materials for Intermediate Temperature Solid Oxide Fuel Cells. The compositions were synthesized by a solution-combustion method using metal nitrates and urea as fuel. Combustion synthesis is a highly suitable synthesis route for achieving fine and homogeneous powders at low temperatures. Single phase pseudo-perovskite was obtained by X-ray diffraction after heat treatment of PSM and NSM powders at 900 ºC. The synthesized and milling powders had an average particle size between 0.27 to 0.07 μm. Chemical analyses of the powders calcined was performed by X-ray fluorescence and morphological analysis by scanning electron microscopy. The results were compared with literature values, indicating characteristics adjusted for preparation of ceramic suspensions.

  5. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  6. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...

  7. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  8. High Growth Rate Hydride Vapor Phase Epitaxy at Low Temperature through Use of Uncracked Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simon, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ptak, Aaron J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Braun, Anna [Rose-Hulman Institute of Technology

    2018-01-22

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on mass transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.

  9. Ni/metal hydride secondary element

    Science.gov (United States)

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  10. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  11. Smoldering Combustion Experiments in Microgravity

    Science.gov (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  12. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  13. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the

  14. DETERMINATION OF METAL HYDRIDE SYSTEMS CHARACTERISTICS WHILE HEATING

    Directory of Open Access Journals (Sweden)

    Yu. Kluchka

    2012-01-01

    Full Text Available Experimental dependence of the pressure of hydrogen in the hydride cartridge when it is heated is obtained. Experimental data prove the theoretical values with an accuracy of ≈ 6%.

  15. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  16. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  17. Models for Metal Hydride Particle Shape, Packing, and Heat Transfer

    OpenAIRE

    Smith, Kyle C.; Fisher, Timothy S.

    2012-01-01

    A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decrepitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structu...

  18. Síntese e caracterização de um novo composto obtido pela reação entre hidreto de trifenilestanho e ácido (±-mandélico e avaliação de seu potencial biocida sobre o fungo Fusarium oxysporum f. sp. cubense Synthesis, characterization and evaluation of the biocide effect on the fungus Fusarium oxysporum f. sp. cubense of a new compound obtained by reaction of triphenyltin hydride and (±-mandelic acid

    Directory of Open Access Journals (Sweden)

    Roberto Santos Barbiéri

    2006-06-01

    Full Text Available O presente artigo refere-se à síntese e caracterização de um novo composto organoestânico, pela reação de ácido (±-mandélico e hidreto de trifenilestanho, em meio de acetonitrila e sob refluxo, [(C6H52SnMand 2] {Mand = C6H5CH(OHCOO], identificado por análise elementar de carbono e hidrogênio, espectroscopia no infravermelho e espectrometria de massa de alta resolução, para o qual foi proposta estrutura octaédrica com o grupo fenila em posição trans. Verificou-se que o composto apresenta ação biocida sobre o fungo Fusarium oxysporum f. sp. cubense, sendo mais efetivo que o ácido (±-mandélico livre. No entanto, a atividade biocida do composto foi menos intensa que a observada para cloreto de estanho hidratado, acetato de trifenilestanho e hidreto de trifenilestanho, empregados para fins de comparação. Nos testes de germinação de conídios e microconídios do mesmo fungo, na presença de [(C6H52SnMand 2], os índices de germinação ficaram abaixo de 11%.The present paper refers to the synthesis and characterization of a new organotin compound that was obtained by reaction of (±-mandelic acid with triphenyltin hydride in acetonitrile medium under reflux. According to hydrogen and carbon elemental analysis, infrared spectroscopy and high resolution mass spectrometry the formula of such compounds is (C6H52SnMand 2 {Mand = C6H5CH(OHCOO}. An octahedral complex, with the phenyl groups in trans position was proposed for its structure. It was observed that this compound was active against the fungus Fusarium oxysporum f. sp. cubense. The biocide effect was more intense than the one observed for(±-mandelic acid. However, it was less efficient than tin chloride hydrate, triphenyltin acetate and triphenyltin hydride. In germination assays with conides and microconides of the same fungus in the presence of [(C6H52SnMand 2], the germination rates were below 11%.

  19. The importance of HNCO as a precursor of N{sub 2}O formation in combustion. The synthesis and analysis of HNCO

    Energy Technology Data Exchange (ETDEWEB)

    Rueuetelmann, M. [Chalmers Univ. of Technolgoy, Goeteborg (Sweden). Dept. of Inorganic Chemistry

    1995-12-31

    The atmospheric N{sub 2}O concentration increases steadily. Nitrous oxide is one of the greenhouse gases thus increasing the global temperature. It also contributes to the stratospheric ozone depletion. Any change in the atmospheric content of N{sub 2}O is believed to be anthropogenic. One of the main global source of N{sub 2}O emissions is the fossil fuel combustion in the transportation and utility power plant sections. The amount of N{sub 2}O emitted by conventional power stations is quite moderate 15-20 ppm but the release of N{sub 2}O from fluidised bed combustion is relatively high 100-250 ppm, which is serious since one expects the FBC to increase in the future. Due to the demand to reduce the emissions of nitric oxides from combustion systems to the atmosphere, non-catalytic reduction of NO{sub x} in the gas phase during urea injection has been proposed, but the increase of N{sub 2}O and CO has turned out to be a major problem with the urea use. In combustion processes urea decomposes forming HNCO. HNCO is considered to be one of the precursors in the formation of N{sub 2}O. The work was carried out in two steps. First, HNCO formation and destruction routes in flame combustion, under fluidised bed combustion conditions and during ammonia and urea injection were investigated according to the literature data. Second, HNCO was synthesized from the cyclic trimer of cyanuric acid in laboratory conditions and the analysis of HNCO was carried out by using three different methods. The aim of the work was to calibrate FTIR for different HNCO concentrations in order to start the measurements of HNCO concentrations in flue gases. 37 refs, 32 figs, 6 tabs

  20. Combustion synthesis and thermal expansion measurements of the rare earth-uranium ternary oxides RE 6UO 12 (RE=La, Nd and Sm)

    Science.gov (United States)

    Jena, Hrudananda; Asuvathraman, R.; Govindan Kutty, K. V.

    2000-08-01

    Rare earth-uranium ternary oxides were synthesized by a solution combustion route. The starting materials were the corresponding metal nitrates and urea. In these preparations, the metal nitrates act as oxidizer and urea as fuel. Highly exothermic decomposition of the metal nitrate-urea complexes on heating at about 500 K leads to a combustion process yielding RE 6UO 12 fine powders. Thermal expansion measurements of these compounds were carried out in the temperature range of 298-1173 K by high temperature X-ray powder diffractometry. The observed axial thermal expansion behaviour is explained on the basis of the crystal chemistry of the compounds.

  1. An approach to quantum chemical consideration of "hydride" transfer reactions

    Directory of Open Access Journals (Sweden)

    BORIS I. DREVKO

    2004-06-01

    Full Text Available An approach to the quantum chemical study of "hydride ion" transfer has been proposed, according to which the sequences of changes in ionization potentials, enthalpies and free energies of the affinities to the hydride ion, to the hydrogen atom and to the proton of substrates molecules and their derivatives (cations, radicals, anions, are compared with the experimentally substantiated series of "hydride" mobility. It has been established that the experimental series of "hydride" mobility for six chalcogenopyrans based on "semicyclic" 1,5-diketones is in conformity with the computed ionization potentials of the molecules, and with the affinity of the corresponding radicals to the hydrogen atom involved in the transfer. The direct splitting-out of the hydride ion and the primary deprotonation of the substrates followed by the withdrawal of two electrons was elucidated to be unlikely. Feasible are the mechanisms of "hydride" mobility, the first step of which consists of electron or hydrogen atom transfer from the chalcogenopyrans molecules.

  2. Sol–gel combustion synthesis, particle shape analysis and magnetic properties of hematite (α-Fe{sub 2}O{sub 3}) nanoparticles embedded in an amorphous silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kopanja, Lazar [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milosevic, Irena [Laboratoire CSPBAT, UMR 7244 CNRS Université Paris 13, 93017 Bobigny Cedex (France); Panjan, Matjaz [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Damnjanovic, Vesna [Department of Physics, University of Belgrade, Faculty of Mining and Geology, Belgrade (Serbia); Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2016-01-30

    Graphical abstract: - Highlights: • Hematite nanoparticles are synthesized by using sol–gel combustion synthesis method. • The SQUID measurements show blocking temperature T{sub B} = 27 K and superparamagnetism. • TEM measurements show spherical particles and narrow size distribution. • The sample did not exhibit the Morin transition. • The magnetic moment μ{sub p} = 195 μ{sub B} and diameter d = 5 nm were determined. - Abstract: We report the synthesis and magnetic properties of hematite/amorphous silica nanostructures. Raman spectroscopy showed the formation of a hematite phase. A transmission electron microscopy (TEM) revealed spherically shaped hematite nanoparticles, well-dispersed in an amorphous silica matrix. In order to quantitatively describe morphological properties of nanoparticles, we use the circularity of shapes as a measure of how circular a shape is. Diameters of about 5 nm and a narrow size distribution of nanoparticles are observed. The obtained hematite nanoparticles exhibit superparamagnetic properties at room temperature (SPION). The sample does not display the Morin transition. The FC hysteresis loop at 5 K has shown an exchange bias effect. These results have been compared to those previously reported for α-Fe{sub 2}O{sub 3}/SiO{sub 2} nanosystems in the literature. These comparisons reveal that the sol–gel combustion method yields hematite nanoparticles with a higher magnetization and magnetic moment. These data indicate the existence of an additional factor that contributes to magnetization. We suggest that the increased magnetization is due to an increased number of the surface spins caused by the breaking of large numbers of exchange bonds between surface atoms (disordered structure). This leads to an increase in the magnetic moment per a hematite nanoparticle and an exchange bias effect. We have concluded that the combustion-related part of this synthesis method enhances surface effects, i.e. it promotes the breaking of

  3. Lithium storage in amorphous TiNi hydride: Electrode for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bououdina, M., E-mail: mboudina@gmail.com [Nanotechnology Centre, College of Science, University of Bahrain, PO Box 32038 (Bahrain); Department of Physics, College of Science, University of Bahrain, PO Box 32038 (Bahrain); Oumellal, Y.; Dupont, L.; Aymard, L. [Laboratoire de Reactivite du Solid (RCS), UMR CNRS 6007, 33 rue Saint-Leu, 80039 Amiens (France); Al-Gharni, H. [Department of Electronics, University of York, York (United Kingdom); Al-Hajry, A. [Department of Physics, College of Science and Arts, Najran University, Najran (Saudi Arabia); Maark, T.A. [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, SE-751 20 Uppsala (Sweden); De Sarkar, A. [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, SE-751 20 Uppsala (Sweden); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Deshpande, M.D. [Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik 422 005, Maharashtra (India); Qian, Z. [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, SE-751 20 Uppsala (Sweden); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Rahane, A.B. [Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik 422 005, Maharashtra (India)

    2013-08-15

    In this study, amorphous TiNi phase was successfully prepared using mechanically milling for a very short time of 8 h. HRTEM confirms the formation of amorphous phase with the presence of nanocrystalline Fe particles. After hydrogenation (30 bars of H{sub 2} for a duration of 2 h), the electrochemical reaction shows that TiNi hydride/Li cell discharges at a current of one Li for 10 h between 3 V and 0.005 V. The discharge of TiNiH electrode around x = 1 Li corresponds to a capacity of 251 mAh g{sup −1} and a hydride composition of TiNiH{sub 1.0} at an average voltage of 0.4 V. Ex-situ X-ray diffraction pattern collected at the end of the discharge shows a mixture of amorphous TiNi compound and LiH. A general mechanism for the electrochemical reaction is then proposed: α-TiNiH + Li{sup +} + e{sup −} → α-TiNi + LiH. The results from DFT calculations yield an average cell voltage of 0.396 V, which is in good agreement with the experimental pseudo-plateau occurring at 0.4 V. - Highlights: • Synthesis of amorphous TiNi in a very short time. • Hydrogenation of amorphous TiNi phase using reactive ball milling (30 bars H{sub 2}, 2 h). • A discharge capacity of 251 mAh g{sup −1} which corresponds to TiNiH{sub 1.0} at an average voltage of 0.4 V. • Using ex-situ X-ray diffraction, a mechanism has been proposed: α-TiNiH + Li{sup +} + e{sup −} → α-TiNi + LiH. • DFT results show an average cell voltage of 0.396 V.

  4. Synthesis of meso-crystalline Al2O3 nano-platelet coatings using combustion chemical vapor deposition (C-CVD)

    CSIR Research Space (South Africa)

    Dhonge, BP

    2014-09-01

    Full Text Available Meso-crystalline alumina (Al2O3) coatings having a nano-platelet microstructure were synthesized using an indigenously designed combustion chemical vapor deposition facility. Aluminum acetylacetonate of 0.001 to 0.005 M concentrations dissolved...

  5. Synthesis and characterization of BaxMgyAl2O4: Eu,Dy nanophosphors prepared using solution-combustion method

    CSIR Research Space (South Africa)

    Kebede, MA

    2011-07-01

    Full Text Available Europium-doped barium magnesium aluminate (BaxMgyAl2O4:Eu) phosphors were obtained at low temperature using the solution-combustion of corresponding metal nitrate-urea solution mixtures. The particle sizes, morphology, structural and luminescent...

  6. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  7. Self‐propagating Combustion Triggered Synthesis of  3D Lamellar Graphene/BaFe12O19 Composite and Its  Electromagnetic Wave Absorption Properties

    Directory of Open Access Journals (Sweden)

    Tingkai Zhao

    2017-03-01

    Full Text Available The synthesis of 3D lamellar graphene/BaFe12O19 composites was performed by oxidizing graphite and sequentially self‐propagating combustion triggered process. The 3D lamellar graphene structures were formed due to the synergistic effect of the tremendous heat induced gasification as well as huge volume expansion. The 3D lamellar graphene/BaFe12O19 composites bearing 30 wt % graphene present the reflection loss peak at −27.23 dB as well as the frequency bandwidth at 2.28 GHz (< −10 dB. The 3D lamellar graphene structures could consume the incident waves through multiple Reflection and scattering within the layered structures, Prolonging the propagation path of electromagnetic waves in the absorbers.

  8. Ultrasonic-assisted solution combustion synthesis of porous Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C: formation mechanism and sodium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuyun; Liu, Qing [Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die and Mould Technology (China); Chu, Xiangcheng; Zhang, Yiling [Tsinghua University, State Key Laboratory of New Ceramic and Fine Processing (China); Yan, Youwei; Xue, Lihong, E-mail: xuelh@hust.edu.cn; Zhang, Wuxing, E-mail: zhangwx@hust.edu.cn [Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die and Mould Technology (China)

    2017-04-15

    Solution combustion synthesis (SCS) is an effective and rapid method for synthesizing nanocrystalline materials. However, the control over size, morphology, and microstructure are rather limited in SCS. Here, we develop a novel ultrasonic-assisted solution combustion route to synthesize the porous and nano-sized Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composites, and reveal the effects of ultrasound on the structural evolution of NVP/C. Due to the cavitation effects generated from ultrasonic irradiation, the ultrasonic-assisted SCS can produce honeycomb precursor, which can be further transformed into porous Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C with reticular and hollow structures after thermal treatment. When used as cathode material for Na-ion batteries, the porous Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C delivers an initial discharge capacity of 118 mAh g{sup −1} at 0.1 C and an initial coulombic efficiency of 85%. It can retain 93.8% of the initial capacity after 120 cycles at 0.2 C. The results demonstrate that ultrasonic-assisted SCS can be a new strategy to design crystalline nanomaterials with tunable microstructures.

  9. Combustion synthesis by reaction and characterization of structural Ni-Zn ferrite doped with copper; Sintese por reacao de combustao e caracterizacao estrutural de ferritas Ni-Zn dopadas com cobre

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, J.; Santos, J.R.D.; Cunha, R.B.L.; Feitosa, C.A.; Costa, A.C.F.M., E-mail: joeldadantas@yahoo.com.br, E-mail: jakelineedm@gmail.com [Universidade Federal de Campina Grande (LabSMac/UFCG), PB (Brazil). Lab. de Sintese de Materiais Ceramicos

    2012-07-01

    The present stud aims to evaluate the effect of doping with Cu{sup 2+} ions concentrations of 0.0, 0.1, 0.2, 0.3 and 0.4 mol in the synthesis and structure of Ni-Zn ferrite. Samples were synthesized by the method of the combustion reaction and characterized by measuring the temperature as a function of reaction time, X-ray diffraction (XRD) and infrared spectroscopy in Fourier transform (FTIR). The combustion temperature and time were 646, 900, 989, 975 and 735°C and 210, 175, 220, 210 and 110 seconds for the sample doped with 0.0, 0.1, 0.2, 0.3 and 0.4 mol of copper, respectively. XRD results show that all concentrations of copper evaluated, there was only a training phase inverse spinel ferrite and Ni-Zn FTIR spectra show absorption bands below 1000cm{sup -1}, which are characteristics of the spinel type AB{sub 2}O{sub 4-} (author)

  10. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feraru, S. [“Alexandru Ioan Cuza” University, Faculty of Chemistry, Bv. Carol I no. 11, Iasi 700506 (Romania); Samoila, P. [“Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica Voda Alley, 700487 Iasi (Romania); Borhan, A.I. [“Alexandru Ioan Cuza” University, Faculty of Chemistry, Bv. Carol I no. 11, Iasi 700506 (Romania); Ignat, M. [“Alexandru Ioan Cuza” University, Faculty of Chemistry, Bv. Carol I no. 11, Iasi 700506 (Romania); “Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica Voda Alley, 700487 Iasi (Romania); Iordan, A.R. [“Alexandru Ioan Cuza” University, Faculty of Chemistry, Bv. Carol I no. 11, Iasi 700506 (Romania); Palamaru, M.N., E-mail: palamaru@uaic.ro [“Alexandru Ioan Cuza” University, Faculty of Chemistry, Bv. Carol I no. 11, Iasi 700506 (Romania)

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties of the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.

  11. Filtration Combustion in Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    2001-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous

  12. Structural phase stability in fluorinated calcium hydride

    Science.gov (United States)

    Varunaa, R.; Ravindran, P.

    2017-05-01

    In order to improve the hydrogen storage properties of calcium hydride (CaH2), we have tuned its thermodynamical properties through fluorination. Using ab-initio total energy calculations based on density functional theory, the structural stability, electronic structure and chemical bonding of CaH2-xFx systems are investigated. The phase transition of fluorinated systems from orthorhombic to cubic structure has been observed at 18% fluorine doped CaH2. The phase stability analysis shows that CaH2-xFx systems are highly stable and the stability is directly correlating with their ionicity. Density of states (DOS) plot reveals that CaH2-xFx systems are insulators. Partial DOS and charge density analyses conclude that these systems are governed by ionic bonding. Our results show that H closer to F can be removed more easily than that far away from F and this is due to disproportionation induced in the bonding interaction by fluorination.

  13. Comparative analysis of synthesis and characterization of La{sub 0,9}Sr{sub 0,1}O{sub 3} via sol-gel and combustion reaction; Analise comparativa da sintese e caracterizacao de La{sub 0,9}Sr{sub 0,1}O{sub 3} via sol-gel e via reacao por combustao

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, D.P.; Haeser, G.S.; Malfatti, C.F.; Sousa, V.C. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Materiais, Minas e Metalurgica

    2011-07-01

    Strontium doped lanthanum manganites (LSM) are potential materials for cathode application in solid oxide fuel cells (SOFC) due to their properties and compatibility with yttria stabilized zirconia. In this work a LSM powder obtained by the sol-gel process is compared others previously obtained combustion synthesis using urea or sucrose as fuel. For the synthesis of LSM the nitrates of lanthanum, strontium and manganese were dissolved in citric acid and ethylene glycol forming a gel that was calcinated at 800 deg C. Both methods allowed the synthesis of a single phase powder, according to the X-ray diffraction patterns. Through gas adsorption it was found a specific surface area of 17m²/g, an intermediary value among the combustion synthesized powders. Scanning electron microscopy (SEM) revealed more compact agglomerates in the sol-gel powder, however, the transmission electron microscope (TEM) showed smaller and more uniform particles in this powder. (author)

  14. On the combustion mechanisms of ZrH2 in double-base propellant.

    Science.gov (United States)

    Yang, Yanjing; Zhao, Fengqi; Yuan, Zhifeng; Wang, Ying; An, Ting; Chen, Xueli; Xuan, Chunlei; Zhang, Jiankan

    2017-12-13

    Metal hydrides are regarded as a series of promising hydrogen-supplying fuel for solid rocket propellants. Their effects on the energetic and combustion performances of propellants are closely related to their reaction mechanisms. Here we report a first attempt to determine the reaction mechanism of ZrH2, a high-density metal hydride, in the combustion of a double-base propellant to evaluate its potential as a fuel. ZrH2 is determined to possess good resistance to oxidation by nitrocellulose and nitroglycerine. Thus its combustion starts with dehydrogenation to generate H2 and metallic Zr. Subsequently, the newly formed Zr and H2 participate in the combustion and, especially, Zr melts and then combusts on the burning surface which favors the heat feedback to the propellant. This phenomenon is completely different from the combustion behavior of the traditional fuel Al, where the Al particles are ejected off the burning surface of the propellant to get into the luminous flame zone to burn. The findings in this work validate the potential of ZrH2 as a hydrogen-supplying fuel for double-base propellants.

  15. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  16. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  17. Studies on hydriding kinetics of some La-based metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P.; Satheesh, A.; Groll, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Linder, M.; Mertz, R. [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart (Germany)

    2009-09-15

    In this paper, the hydriding kinetics of LaNi{sub 5}, LaNi{sub 4.7}Al{sub 0.3} and LmNi{sub 4.91}Sn{sub 0.15} is presented. Experiments were carried out by maintaining the pressure ratio (supply pressure to equilibrium pressure at the mid-point of the pressure-concentration-isotherm) equal to 2 and by maintaining nearly isothermal reaction conditions. Two widely used reaction kinetics models, namely Johnson-Mehl-Avrami (JMA) model and Jander diffusion model (JDM) are considered for the analysis. Two JMA models are considered; in the first model, the order of the reaction is assumed as unit and in the second model, the rate constant is calculated by estimating the order by fitting the reaction kinetics data with a reaction kinetics equation. The activation energy and pre-exponential constants of the above-mentioned alloys are estimated by constructing the Arrhenius plot. Activation energies estimated from the different models are compared and the accurate values of activation energy for the different alloys are determined by comparing the reaction kinetics data obtained from the models with the experimental data. The rate-controlling step of the hydriding reaction is obtained for all the alloys investigated. (author)

  18. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H., E-mail: howard.chan@materials.ox.ac.uk; Roberts, S.G.; Gong, J.

    2016-07-15

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam{sup 1/2} and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  19. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  20. Effect of the Fuels Glycine, Urea and Citric Acid on Synthesis of the Ceramic Pigment ZnCr2O4 by Solution Combustion

    OpenAIRE

    Miranda, Edgar Andrés Chavarriaga; Carvajal, Juan Fernando Montoya; Baena,Oscar Jaime Restrepo

    2015-01-01

    AbstractIn this study, ceramic nanopigment ZnCr2O4was prepared by solution combustion using glycine, urea and citric acid as fuels. The objective is to study the influence of fuel on the morphology and the diffuse reflectance spectrum. The nanoparticles were characterized by field emission scanning electron microscopy (FESEM), the phase was investigated by X-ray diffraction (XRD), the thermal behavior was studied by thermogravimetry analysis (TGA) and differential scanning microscopy (DSC), t...

  1. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  2. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    OpenAIRE

    Haileyesus Tsige-Tamirat; Luca Ammirabile

    2015-01-01

    Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR) has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron s...

  3. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  4. Synthesis of the lithium metatitanate, Li{sub 2}TiO{sub 3}, by the modified combustion method; Sintesis del metatitanato de litio, Li{sub 2}TiO{sub 3}, por el metodo modificado de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.; Bulbulian, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Pfeiffer, H. [IIM-UNAM, A.P. 70-360, 04510 Mexico D.F. (Mexico)]. e-mail: sb@nuclear.inin.mx

    2005-07-01

    A modified combustion method to obtain Li{sub 2}TiO{sub 3} it was used, a compound to be used in fusion reactors like tritium generator material. To obtain Li{sub 2}TiO{sub 3} were proven different molar ratios of lithium hydroxide (LiOH), titanium oxide (TiO{sub 2}) and urea (CO(NH{sub 2}){sub 2}), as well as different heating temperatures (550, 650 and 750 C). The characterization of the products it was carried out using X-ray diffraction, Scanning electron microscopy and Thermal gravimetric analysis. The sample prepared with a molar ratio Li: Ti: urea = 2.75: 1: 3 was the one that presented as only product the Li{sub 2}TiO{sub 3}. The particle size and the morphology found in the Li{sub 2}TiO{sub 3}, showed similar particle size and morphology to the TiO{sub 2} used as precursor. (Author)

  5. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  6. Fire Synthesis

    Indian Academy of Sciences (India)

    Fire Synthesis - Preparation of Alumina Products. Tanu Mimani. Volume 16 Issue 12 December 2011 pp 1324-1332. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/016/12/1324-1332. Keywords. Alumina; combustion; refractory materials; urea. Author Affiliations. Tanu Mimani1.

  7. Síntese de 2-iodobenzamidas e 3-(iodoacetamidobenzamidas ligadas à D-galactose e suas reações de carbociclização radicalar mediadas por hidreto de tri-n-butilestanho Synthesis of 2-iodobenzamides and 3-(iodoacetamidobenzamides linked to D-galactose and their tri-n-butyltin hydride-mediated radical carbocyclization reactions

    Directory of Open Access Journals (Sweden)

    Daniel Henriques Soares Leal

    2009-01-01

    Full Text Available Starting from methyl 6-O-allyl-4-azido-2,3-di-O-benzyl-4-deoxy-α-D-galactopyranoside, four new derivatives containing 2-iodobenzamido and 3-(iodoacetamidobenzamido groups were synthesized. These four compounds were submitted to tri-n-butyltin hydride mediated radical cyclization reactions, resulting in two macrolactams from 11- and 15-endo aryl radical cyclization. The corresponding four hydrogenolysis products were also obtained. The structures of the new compounds were elucidated by ¹H and 13C NMR spectroscopy, DEPT, COSY, HMQC and HMBC experiments.

  8. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  9. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  10. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  11. Kinetic and structural aspects of tantalum hydride formation

    Directory of Open Access Journals (Sweden)

    R. DIMITRIJEVIC

    2003-09-01

    Full Text Available Tantalum hydrides of various composition were synthesized by equilibrating tantalum with hydrogen at six different temperatures from 573 to 823 K, under a constant hydrogen pressure of 1 bar. Both the exact Ta/H mole ratios and the kinetic parameters of hydriding were determined on the basis of the dependence of the H/Ta mole ratio on time. The influence of stoichiometry on the appearance of X-ray powder diffractograms at room temperature was studied. As a consequence of hydriding, for ratios H/Ta > 0.2, the original bcc Ta-lattice undergoes distortion, manifesting itself as both a shift and a splitting of the X-ray patterns in the X-ray diffractograms. For samples with H/Ta < 0.2, the appearance of some superstructure reflections at low Bragg angles was noted, which suggests a long range ordering of hydrogen with orthorhombic symmetry.

  12. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  13. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  14. Research on secondary hydriding for advanced nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, S. K. et al. [Hanyang Univ, Seoul (Korea)

    2000-04-01

    First, hydriding kinetics of zirconium alloys are derived as follows: Zircaloy-2 : 1.1X10{sup 7} exp(-20,800/RT), Zircaloy-4 : 6.9X10{sup 7} exp(-23,800/RT), ZIRLO{sup TM} : 1.5X10{sup 6} exp(-18,000/RT) and it is found that it is a linear kinetics. Second, H{sub 2}/H{sub 2}O-ratio-controlling experiments are performed as a function of the ratios, 10{sup 7}, 10{sup 5}. and 10{sup 3} in order to examine the oxidation enhancement under the competing environment of oxidation and hydriding. The results show that under the mixture environment hydriding reaction takes place initially, then reaction turn into oxidation with the growing oxide, and finally turn back into hydriding reaction because of oxide breakage. It is confirmed that the oxidation in the second stage is greatly enhanced due to hydride precipitation. Third, micro-structural analysis is carried out by using SEM/TEM to see the roles of the oxide in the massive hydriding process. It turns out that micro-structural changes of the oxide takes place at the beginning of the massive hydriding. Fourth experiments are carried out both in the pre-transition (at 370 deg C for 72 hours) and in the post-transition regime (at 700 deg C for 210 minutes) to see the pressure effects on the oxidation kinetics. Through this investigation, it is revealed that under 15MPa steam pressure the oxidation is enhanced by 50% in the pre-transition and by 150% in the post-transition regime, respectively. Last, the two stage diffusion FGR model originated from FRAPCON-III code is successfully transplanted in the FEMAXI-IV code and thoroughly reviewed and compared with single stage diffusion FGR model with grain boundary saturation of the FEMAXI-IV code. According to the benchmarking of the computation results against the high burn-up in-pile data it turns out that both predict quite well though the single stage diffusion FGR model somewhat underestimates the release rate. These results will be able to be applicable for the

  15. Utilizing maleic acid as a novel fuel for synthesis of PbFe{sub 12}O{sub 19} nanoceramics via sol–gel auto-combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Fatemeh; Soofivand, Faezeh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir

    2015-05-15

    PbFe{sub 12}O{sub 19} nanostructures were prepared in an aqueous solution by the sol–gel auto-combustion method using Pb(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} as starting materials and various carboxylic acids, including oxalic acid, malonic acid, succinic acid and maleic acid as fuel and reducing and capping agents. The as-synthesized products were characterized by X- ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. The effect of carboxylic acid type, Pb{sup +} {sup 2} to carboxylic acid molar ratio, and calcination temperature was investigated on the morphology of the products and several experiments were carried out to obtain the optimal reaction conditions. It was found that the phase and the morphology of the products are influenced by the investigated parameters. Furthermore, vibrating sample magnetometer (VSM) was used to study the magnetic properties of PbFe{sub 12}O{sub 19} samples. - Graphical abstract: Display Omitted - Highlights: • PbFe{sub 12}O{sub 19} nanoceramics were synthesized from Fe(NO{sub 3}){sub 3} and Pb(NO{sub 3}){sub 2} via the sol–gel auto combustion method. • The maleic acid can be instead of common capping agent and fuel in auto-combustion sol–gel. • The synthesized PbFe{sub 12}O{sub 19} is a hard magnetic material. • The specific saturation magnetization and coercivity are 27 emu/g and 1900 Oe, respectively.

  16. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  17. Structural changes in a catalyst based on the intermetallide hydride ZrNiH/sub 2. 8/ on activation

    Energy Technology Data Exchange (ETDEWEB)

    Rudnitskii, L.A.; Soboleva, T.N.; Bondartsova, I.I.; Dubyaga, N.A.; Mazus, E.I.; Lunin, V.V.; Alekseev, A.M.

    1988-01-01

    A combination of thermogravimetric and x-ray diffraction analysis was used to study structural changes in the intermetallic hydride catalyst during its activation. Changes in the thickness of the hydride pellets were assessed by dilatometry. The activation of the hydride included oxidative and reductive stages. The activation process led to profound changes in the phase composition and structure of the hydride.

  18. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richards, Andrew Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  19. Microwave-induced combustion synthesis and electrical properties of Ce 1- xSm xO 2-1/2 x ceramics

    Science.gov (United States)

    Fu, Yen-Pei; Lin, Cheng-Hsiung; Liu, Chung-Wen; Tay, Kok-Wan; Wen, Shaw-Bing

    Ce 1- xSm xO 2-1/2 x nanopowders were successfully synthesized by microwave-induced combustion process. For the preparation, cerium(III) nitrate hexahydrate, samarium(III) nitrate hexahydrate, and urea were used for the microwave-induced combustion process. The process took only a few minutes to obtain Ce 1- xSm xO 2-1/2 x powders. Ce 1- xSm xO 2-1/2 x ceramics prepared by microwave-induced process sintered at 1400 °C for 3 h, the bulk density of Ce 1- xSm xO 2-1/2 x ceramics were over 95% of the theoretical density. The results revealed that Ce 0.84Sm 0.16O 1.92 possessed the maximum electrical conductivity was 0.0287 S cm -1 at 850 °C and the minimum activity energy, E a was 0.9565 eV determined from 500 to 850 °C.

  20. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Carolina Solis Maldonado

    2014-03-01

    Full Text Available The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS, FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  1. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene.

    Science.gov (United States)

    Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; Hernández-Ramírez, Aracely; Barraza, Felipe F Castillón; Valente, Jaime S

    2014-03-12

    The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al₂O₃ phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al₂O3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al₂O₃ lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  2. Urea and sucrose assisted combustion synthesis of LiFePO4/C nano-powder for lithium-ion battery cathode application

    Directory of Open Access Journals (Sweden)

    Erabhoina Hari Mohan

    2014-11-01

    Full Text Available In this paper, we are reporting a combustion method to prepare carbon coated LiFePO4 nanoparticles using urea as fuel and sucrose as carbon source. The process involves exothermic decomposition of a viscous liquid, containing fuel to oxidizer molar ratio of 1:1 at 300 ℃, followed by heat treatment at 600 ℃ for 6 h, under Ar (95% and H2 (5% mixed gas atmosphere. The resultant products are characterized by Thermogravimetric analysis (TG-DSC, Field emission-scanning Electron microscopy (SEM, Transmission electron microscopy (TEM, X-Ray diffraction (XRD, Raman Spectroscopy, Fourier transformation infrared spectroscopy (FTIR, and Moss-Bauer spectroscopy. The investigation reveals that the prepared sample has ordered olivine structure|with average crystallite size in the range of 30-40 nm. The SEM and TEM images show porous network type morphology with the size of the individual particles in range of 30-40 nm with spherical and oval shape morphology. The cathode obtained by combustion method exhibits a high discharge capacity (~156 mAhg-1 with a good cyclic performance and rate capability.

  3. High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    Chiara Ferrara

    2018-02-01

    Full Text Available One of the primary targets of current research in the field of energy storage and conversion is the identification of easy, low-cost approaches for synthesizing cell active materials. Herein, we present a novel method for preparing nanometric slabs of Na0.44MnO2, making use of the eco-friendly urea within a solution synthesis approach. This kind of preparation greatly reduces the time of reaction, decreases the thermal treatment temperature, and allows the obtaining of particles with smaller dimensions compared with those obtained through conventional solid-state synthesis. Such a decrease in particle size guarantees improved electrochemical performance, particularly at high current densities, where kinetic limitations become relevant. Indeed, the materials produced via solution synthesis outperform those prepared via solid-state synthesis both at 2 C, (95 mA h g−1 vs. 85 mA h g−1, respectively and 5 C, (78 mA h g−1 vs. 68.5 mA h g−1, respectively. Additionally, the former material is rather stable over 200 cycles, with a high capacity retention of 75.7%.

  4. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  5. Structure analysis and magnetic properties of nano-sized Nb(x)Ni(y)Zn1-x-yFe2O4 powders formed by combustion synthesis and mechanical milling.

    Science.gov (United States)

    Choi, Yong; Baik, Nam-Ik

    2012-02-01

    Nano-sized Nb(x)Ni(y)Zn1-x-yFe2O4 ferrites with average particle size of less than 100 nm were prepared by using self-propagating high-temperature synthesis and mechanical ball milling. Average ferrites size of the SHS products were less than about 100 nm after 20 minutes mechanical milling. The average combustion temperatures and the combustion propagating rates were in the ranges of 1145 to 1543 K and 4.1 to 7.2 mm/s, respectively. Rietveld refinement of the pattern converged to good agreement (chi2 = 4.87). Final product of SHS was Nb0.13Ni0.41Zn0.46Fe2O4 with Fd3m structure and the lattice parameter of 0.83623 nm. Maximum magnetization (Ms), residual magnetization (Mr), coercive force (iHc) and susceptibility of the Nb0.013Ni0.41Zn0.46Fe2O4 ferrites formed at the oxygen pressure of 0.25 MPa were 12.30 Wb/m2 Kg, 1.57 Wb/m2 Kg, 6321 A/m, and 0.02 m3/Kg, respectively. Niobium addition to nickel-zinc ferrites resulted in increasing Ms, Mr and iMc about 59%, 78% and 387%, respectively. Neutron diffractometry revealed that the variation of magnetic properties was related to non-stoichiometric number and oxygen position of the niobium-nickel-zinc ferrites due to the competitive reduction reaction among niobium, nickel and zinc oxides.

  6. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  7. Well-defined transition metal hydrides in catalytic isomerizations.

    Science.gov (United States)

    Larionov, Evgeny; Li, Houhua; Mazet, Clément

    2014-09-07

    This Feature Article intends to provide an overview of a variety of catalytic isomerization reactions that have been performed using well-defined transition metal hydride precatalysts. A particular emphasis is placed on the underlying mechanistic features of the transformations discussed. These have been categorized depending upon the nature of the substrate and in most cases discussed following a chronological order.

  8. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  9. New Orbital Hybridization Schemes for Metal Hydrides-Keeping p ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. New Orbital Hybridization Schemes for Metal Hydrides - Keeping p Orbitals out of the Picture. J Chandrasekhar. Research News Volume 1 Issue 8 August 1996 pp 82-85 ...

  10. The Properties of Some Simple Covalent Hydrides: An Ab Initio ...

    African Journals Online (AJOL)

    Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...

  11. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  12. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Mulder, F.M.; Grzech, A.

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  13. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  14. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  15. Synthesis of SrAl2O4: Eu2+ Dy3+ phosphorescence nanosized powder by combustion method and its optical properties

    Science.gov (United States)

    Son, Nguyen Manh; Thi Thao Vien, Le; Van Khoa Bao, Le; Trac, Nguyen Ngoc

    2009-09-01

    Eu2+ Dy3+ codoped strontium aluminate (SrAl2O4) nanosized phosphorescent powder with high brightness and long afterglow were prepared by urea-nitrate solution combustion method at 540°C for 5 minutes. The average particle size of the powders was about 80 nm. The photoluminescent and thermoluminescent properties have been studied. The broad band photoluminescence of SrAl2O4: Eu2+ Dy3+ were observed with maximun wavelength λmax = 516 nm due to transitions from the 4f65d1 to 4f7 configuration of the Eu2+ ions. The main peak of the emission spectra shifted to the short wavelength compared with phosphorescence obtained by the solid state reaction method. The decay time of the afterglow for nanosized phosphorescence was shorter than that obtained by the solid state reaction method.

  16. Synthesis and characterization of CoFe2-xYxO4 (x = 0.05-0.2) by auto combustion method

    Science.gov (United States)

    Patankar, K. K.; Jadhav, P. S.; Devkar, Jyoti; Ghone, D. M.; Kaushik, S. D.

    2017-05-01

    The Yttrium doped Co ferrite nanoparticles were synthesized by Auto combustion route. The XRD of the synthesized ferrites revealed cubic spinel phase formation whereas their Neutron diffraction studies confirmed the existence of secondary phase formation. The average lattice parameters calculated was 8.384Å and the estimated particle size was around 20 nm. SEM results revealed exaggerated grain growth with agglomeration of grains and non uniform grain structure. Resistivity measured was found to increase with increase in Yttrium content. Dielectric dispersion curve revealed Maxwell-Wagner type of polarization asserting Koop's model in these particular compositions. The two important parameters namely retentivity and coercivity show random variation with change in Y3+ ion concentration. It is observed that x=0.15 compositions has almost square wave loop type characteristic suggesting its application in memory devices.

  17. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures

    Science.gov (United States)

    Manikandan, A.; Sridhar, R.; Arul Antony, S.; Ramakrishna, Seeram

    2014-11-01

    Nanocrystalline magnetic spinel CoFe2O4 was synthesized by a simple microwave combustion method (MCM) using ferric nitrate, cobalt nitrate and Aloe vera plant extracted solution. For the comparative study, it was also prepared by a conventional combustion method (CCM). Powder X-ray diffraction, energy dispersive X-ray and selected-area electron diffraction results indicate that the as-synthesized samples have only single-phase spinel structure with high crystallinity and without the presence of other phase impurities. The crystal structure and morphology of the powders were revealed by high resolution scanning electron microscopy and transmission electron microscopy, show that the MCM products of CoFe2O4 samples contain sphere-like nanoparticles (SNPs), whereas the CCM method of samples consist of flake-like nanoplatelets (FNPs). The band gap of the samples was determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy. The magnetization (Ms) results showed a ferromagnetic behavior of the CoFe2O4 nanostructures. The Ms value of CoFe2O4-SNPs is higher i.e. 77.62 emu/g than CoFe2O4-FNPs (25.46 emu/g). The higher Ms value of the sample suggest that the MCM technique is suitable for preparing high quality nanostructures for magnetic applications. Both the samples were successfully tested as catalysts for the conversion of benzyl alcohol. The resulting spinel ferrites were highly selective for the oxidation of benzyl alcohol and exhibit important difference among their activities. It was found that CoFe2O4-SNPs catalyst show the best performance, whereby 99.5% selectivity of benzaldehyde was achieved at close to 93.2% conversion.

  18. Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subohi, Oroosa, E-mail: oroosa@gmail.com [Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462051, M.P. (India); Shastri, Lokesh [Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462051, M.P. (India); Kumar, G.S. [Department of Physics, Osmania University, Hyderabad 500007, A.P. (India); Malik, M.M.; Kurchania, Rajnish [Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462051, M.P. (India)

    2014-01-01

    Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies show that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T{sub c} due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample.

  19. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Raja Naika, H. [Dept. of Biotechnology, University College of Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur (India); Ramakrishnappa, T.; Balakrishna, Geetha R. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Dept. of Chemistry, Siddaganga Institute of Technology, Tumkur (India)

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  20. Synthesis and characterization of reactions by nanoferrites Co{sub 2}Fe{sub 2}O{sub 4} combustion; Sintese por reacao de combustao e caracterizacao de nanoparticulas de Co{sub 2}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Santos, P.T.A.; Dantas, B.B.; Costa, A.C.F.M.; Araujo, P.M.A.G., E-mail: polyanaquimica@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2012-07-01

    In this work CoFe{sub 2}O{sub 4} of magnetic nanoparticles were synthesized by combustion reaction and the structural and morphological characteristics of the synthesized samples as well as the parameters of synthesis temperature and reaction time were investigated in order to assess the reproducibility of the synthesis. The maximum temperature and time of the combustion flame were obtained with pyrometer coupled to a computer with online measurement and a stopwatch. The resulting samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The maximum temperature achieved during synthesis for all reactions ranged from 623 deg C and 755 deg C. The combustion flame time varied between 18 and 23 seconds. The XRD showed the formation of only CoFe{sub 2}O{sub 4} inverse spinel phase, with crystallite size 28 nm and crystallinity 78%, with typical morphology of the formation of agglomerates of uniform size, brittle and comprising nanoparticles together by weak forces. (author)

  1. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  2. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sartor, George B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reeder, Craig L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  3. Microstructures and mechanical properties of large-scale Al IIO 3/ZrO II(Y IIO 3) self-growing ceramic plates prepared by combustion synthesis under high gravity

    Science.gov (United States)

    Zhao, Zhongmin; Zhang, Long; Zhang, Shiyue; Pan, Chuanzeng; Zhang, Jing; Song, Yalin; Zhu, Hao

    2007-07-01

    By introducing ZrO II and Y IIO 3 mixed powder into the thermit, the large-scale Al IIO 3/ZrO II (Y IIO 3) self-growing ceramic plates were prepared from the melts through combustion synthesis under high gravity. The materials were mainly formed by randomly-orientated rod-shaped colonies with faceted structures consisting of a triangular dispersion of orderly nano-submicron ZrO II fibers in the Al IIO 3 matrix, surrounded by the boundary regions that contained the coarse irregular-shaped ZrO II and Al IIO 3 phases. The flexural strength of the self-growing ceramic plate was excellent (measured 1278MPa), and it was not only attributed to the small critical defect size caused by the fine eutectic microstructures, excellent bonding between the Al IIO 3/ZrO II phases and the thin inter-colony regions, but also more importantly dependent on high fracture toughness of 13.7 MPaÂ.m 1/2, which is controlled by residual compressive stress toughening in the colonies, transformation induced toughening and transformation induced microcrack toughening mechanisms in inter-colony regions during crack propagation.

  4. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  5. An efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine

    Directory of Open Access Journals (Sweden)

    Rajesha Bedre Jagannatha

    2017-01-01

    Full Text Available In this study, Zinc oxide nanoparticles were synthesized by gel-combustion method using a novel bio-fuel tapioca starch pearls, derived from the tubers of Mannihot esculenta, to investigate the photocatalytic degradation of ccaffeine. The ZnO photocatalyst was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and UV-visible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures. There are no other impurities in the diffraction peak. In addition, SEM measurement shows that most of the nanoparticles are spongy and spherical in shape and fairly mono dispersed. A significant degradation of the Caffeine was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photo degradation increaseds with the photocatalyst loading. Besides the photocatalyst loading, the effect of some parameters on the photo degradation efficiency such as initial concentration and pH were also studied.

  6. Synthesis and characterization of structural and luminescence properties of blue — green BaAlxOy:Eu2+ phosphor by solution — combustion method

    Science.gov (United States)

    Dejene, Francis; Kebede, Mesfin

    2012-08-01

    Europium-doped barium aluminate (BaAlxOy:Eu2+) phosphors were obtained at low temperatures (500°C) using the solution — combustion of corresponding metal nitrate-urea solution mixtures. The particle size and morphology and the structural and luminescent properties of the synthesized phosphors were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Electron diffraction spectroscopy (EDS) and photoluminescence (PL). It was found that the change in Ba: Al molar ratios showed greatly influence not only on the particle size and morphology, but also on their PL spectra and crystalline structure. The structure of BaAlxOy nanophosphors changes from a hexagonal Ba2Al10O17 phase for samples with 6:100 molar ratios to a hexagonal BaAl2O4 one with an increase in Ba content. The peak of the emission band occurs at a longer wavelength (around 615 nm) with a decrease in Ba concentration but displays a broad blue-green emission band composed from two emissions with the maximum at 495 and 530nm coming from Eu2+ in two sites for increasing Ba content. The blue-green emission is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects while the red emission is due to f - f transitions. These findings clearly demonstrate the possibility of fine tuning the colour emission.

  7. Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavani, A. [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Selvan, R.Kalai, E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Vasylechko, Leonid [Semiconductor Electronics Department, Lviv Polytechnic National University, 12 Bandera Street, Lviv 79013 (Ukraine); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630 004 (India)

    2015-11-15

    Nanocrystalline spinel cobalt ferrite particles are synthesized by simple combustion method using aspartic acid and glycine as fuels. The single phase cubic structure of CoFe{sub 2}O{sub 4} is revealed through X-ray diffraction analysis (XRD). Further the Rietveld refinement confirms the formation of inverse spinel structure of CoFe{sub 2}O{sub 4}. The characteristic functional groups of Co–O and Fe–O are identified from Fourier Transform Infrared (FT-IR) analysis. Uniform distribution of of nearly spherical particles with the size range of 40–80 nm is identified through field emission scanning electron microscope (FESEM) images. The calculated DC conductivity is 1.469 × 10{sup −7} and 2.214 × 10{sup −8} S cm{sup −1}, for CoFe{sub 2}O{sub 4} synthesized using aspartic acid and glycine, respectively. The dielectric behavior obeys the Maxwell–Wagner interfacial polarization. The ferromagnetic behavior of CoFe{sub 2}O{sub 4} is identified using VSM analysis and the calculated coercivity is 27 Oe and saturation magnetization is 68 emu/g.

  8. Rapid Deployment of Rich Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard S. Tuthill

    2004-06-10

    The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

  9. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  10. Composition and structure of sputter deposited erbium hydride thin films

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS,DAVID P.; ROMERO,JUAN A.; RODRIGUEZ,MARK A.; FLORO,JERROLD A.; BANKS,JAMES C.

    2000-05-10

    Erbium hydride thin films are grown onto polished, a-axis {alpha} Al{sub 2}O{sub 3} (sapphire) substrates by reactive ion beam sputtering and analyzed to determine composition, phase and microstructure. Erbium is sputtered while maintaining a H{sub 2} partial pressure of 1.4 x 10{sup {minus}4} Torr. Growth is conducted at several substrate temperatures between 30 and 500 C. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analyses after deposition show that the H/Er areal density ratio is approximately 3:1 for growth temperatures of 30, 150 and 275 C, while for growth above {approximately}430 C, the ratio of hydrogen to metal is closer to 2:1. However, x-ray diffraction shows that all films have a cubic metal sublattice structure corresponding to that of ErH{sub 2}. RBS and Auger electron that sputtered erbium hydride thin films are relatively free of impurities.

  11. Optical studies of neutron-irradiated lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.V.; Pilipenko, G.I.; Tyutyunnik, O.I.; Gavrilov, F.F.; Sulimov, E.M. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1984-09-01

    Lithium hydride single crystals irradiated with neutrons were studied by the optical method. Wide bands belonging to the large F-aggregate and quasimetallic F-centres and to the metallic lithium colloids were discovered in the absorption spectra at room temperature. The small Fsub(n)-centres and molecular lithium centres were detected at 77 K. From the electron-vibrational structure of the absorption spectra of these centres the energies of acoustic phonons in X, W, L points of the Brillouin zone of lithium hydride have been found out: TA(L)-235 cm/sup -1/, TA(X)-27g cm/sup -1/, TA(W)-327 cm/sup -1/, LA(W)-384 cm/sup -1/, LA(X)-426 cm/sup -1/.

  12. Development of a novel metal hydride-air secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Gamburzev, S.; Zhang, W.; Velev, O.A.; Srinivasan, S.; Appleby, A.J. [Texas A and M University, College Station (United States). Center for Electrochemical Systems and Hydrogen Research; Visintin, A. [Universidad Nacional de La Plata (Argentina). Insituto Nacional de Investigaciones Fisicoquimica Teoricas y Applicadas

    1998-05-01

    A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30 mA cm{sup -2} in 6 M KOH, the air electrode potentials were -0.2 V (oxygen reduction) and +0.65 V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10 mA cm{sup -2}). The average discharge/charge voltages of the cell were 0.65 and 1.6 V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles. (author)

  13. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    OpenAIRE

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen storage mechanism of selected Metal-Organic Framework (MOF) materials. Such knowledge may provide information in which direction improvements of the materials may be possible. Detailed analysis of the h...

  14. Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis.

    Science.gov (United States)

    Hassan, M A; Mahmoodian, Reza; Hamdi, M

    2014-01-16

    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.

  15. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  16. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  17. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  18. Two-dimensional dynamic simulation of hydrogen storage in metal hydride tanks

    OpenAIRE

    Brown, TM; Brouwer, J.; Samuelsen, GS; Holcomb, FH; King, J

    2006-01-01

    As proton exchange membrane fuel cell technology advances, the need for hydrogen storage intensifies. Metal hydride alloys offer one potential solution. However, for metal hydride tanks to become a viable hydrogen storage option, the dynamic performance of different tank geometries and configurations must be evaluated. In an effort to relate tank performance to geometry and operating conditions, a dynamic, two-dimensional, multi-nodal metal hydride tank model has been created in Matlab-Simuli...

  19. Design and Characterization of a Hydride-based Hydrogen Storage Container for Neutron Imaging Studies

    Science.gov (United States)

    Baruj, A.; Ardito, M.; Marín, J.; Sánchez, F.; Borzone, E. M.; Meyer, G.

    We have designed, constructed and tested a prototype hydride-based container to in-situ observe the hydride decomposition process using a neutron imaging facility. This work describes the container design parameters and the experimental setup used for the studies. The results open new possibilities for the application of the neutron imaging technique to visualize the internal state of massive hydride-based hydrogen containers, thus aiding in the design of efficient hydrogen storage tanks.

  20. Diffusional exchange of isotopes in a metal hydride sphere.

    Energy Technology Data Exchange (ETDEWEB)

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  1. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  2. Enhanced Hydrogen Generation Properties of MgH2-Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer

    Directory of Open Access Journals (Sweden)

    Liuzhang Ouyang

    2015-05-01

    Full Text Available Due to its relatively low cost, high hydrogen yield, and environmentally friendly hydrolysis byproducts, magnesium hydride (MgH2 appears to be an attractive candidate for hydrogen generation. However, the hydrolysis reaction of MgH2 is rapidly inhibited by the formation of a magnesium hydroxide passivation layer. To improve the hydrolysis properties of MgH2-based hydrides we investigated three different approaches: ball milling, synthesis of MgH2-based composites, and tuning of the solution composition. We demonstrate that the formation of a composite system, such as the MgH2/LaH3 composite, through ball milling and in situ synthesis, can improve the hydrolysis properties of MgH2 in pure water. Furthermore, the addition of Ni to the MgH2/LaH3 composite resulted in the synthesis of LaH3/MgH2/Ni composites. The LaH3/MgH2/Ni composites exhibited a higher hydrolysis rate—120 mL/(g·min of H2 in the first 5 min—than the MgH2/LaH3 composite— 95 mL/(g·min—without the formation of the magnesium hydroxide passivation layer. Moreover, the yield rate was controlled by manipulation of the particle size via ball milling. The hydrolysis of MgH2 was also improved by optimizing the solution. The MgH2 produced 1711.2 mL/g of H2 in 10 min at 298 K in the 27.1% ammonium chloride solution, and the hydrolytic conversion rate reached the value of 99.5%.

  3. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  4. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  5. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  6. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  7. Development and evaluation of a hydride technique for As, Sb, and Se determinations by inductively coupled plasma-atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sloat, Sharon Sue [Iowa State Univ., Ames, IA (United States)

    1977-10-01

    A literature review of hydride techniques, experimental facilities, development and evaluation of a hydride technique, and interelement effects are covered. Suggestions for future work are given. (LK)

  8. Controlling the hydrogenolysis of silica-supported tungsten pentamethyl leads to a class of highly electron deficient partially alkylated metal hydrides

    KAUST Repository

    Maity, Niladri

    2015-11-30

    The well-defined single-site silica-supported tungsten complex [([triple bond, length as m-dash]Si–O–)W(Me)5], 1, is an excellent precatalyst for alkane metathesis. The unique structure of 1 allows the synthesis of unprecedented tungsten hydrido methyl surface complexes via a controlled hydrogenolysis. Specifically, in the presence of molecular hydrogen, 1 is quickly transformed at −78 °C into a partially alkylated tungsten hydride, 4, as characterized by 1H solid-state NMR and IR spectroscopies. Species 4, upon warming to 150 °C, displays the highest catalytic activity for propane metathesis yet reported. DFT calculations using model systems support the formation of [([triple bond, length as m-dash]Si–O–)WH3(Me)2], as the predominant species at −78 °C following several elementary steps of hydrogen addition (by σ-bond metathesis or α-hydrogen transfer). Rearrangement of 4 occuring between −78 °C and room temperature leads to the formation of an unique methylidene tungsten hydride [([triple bond, length as m-dash]Si–O–)WH3([double bond, length as m-dash]CH2)], as determined by solid-state 1H and 13C NMR spectroscopies and supported by DFT. Thus for the first time, a coordination sphere that incorporates both carbene and hydride functionalities has been observed.

  9. Synthesis and evaluation of polystyrene membranes for use in fuel cells; Sintesis y evaluacion de membranas base poliestireno para uso en celdas a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, R. [Centro de Investigacion en Quimica Aplicada (CIQA), Saltillo, Coahuila (Mexico)] e-mail: robertob@ciqa.mx; Paula, M.M.S.; Da Silva, L.; Fiori, M.; Coronetti, J.C.; Silvano, W.F. [Lasicom, Universidade do Extremos Sul Catarinense (UNESC), Criciuma, S.C. (Brasil); B.M. Huerta [Centro de Investigacion en Quimica Aplicada (CIQA), Saltillo, Coahuila (Mexico)

    2009-09-15

    DSC), nivel de entrecruzamiento mediante % Gel y funcion acida mediante titulacion con hidroxido de sodio. Los espectros IR de las membranas antes de sulfonar muestran la existencia de bandas tradicionales de los polimeros utilizados con dos senales de los homopolimeros que se pierden y dos nuevas que aparecen, corroborando las reacciones de copolimerizacion. La termogravimetria muestra una temperatura de descomposicion mayor para las membranas entrecruzadas con el DVB, mientras que el DSC no es muy util para observar transiciones debido a la higroscopicidad de las membranas. Finalmente, el porcentaje de gel esta efectivamente relacionado con la cantidad de DVB utilizado y la acidez de las membranas es mayor con el contenido de acido acrilico, con el tiempo de sulfonacion y el porcentaje de DVB; aunque este valor depende mucho de la facilidad de solubilizar el material. Las propiedades ionicas de las membranas con mejores propiedades mecanicas fueron evaluadas en un prototipo de celda a combustible.

  10. Composition, microstructures and properties of Al2O3/ZrO2 (Y2O3) self-growing ceramic composites prepared by combustion synthesis under high gravity

    Science.gov (United States)

    Zhao, Z. M.; Zhang, L.; Song, Y. G.; Wang, W. G.; Liu, H. B.

    2009-03-01

    By introducing ZrO2 (4Y) powder into the thermit, Al2O3/ZrO2 (4Y) composite ceramics were prepared through combustion synthesis under high gravity, and the correlations of composition, microstructures and mechanical properties of composite ceramics were investigated. The results of XRD, SEM and EDS showed that Al2O3/33%ZrO2 (4Y) were composed of random-orientated rod-shaped colonies consisting of a triangular dispersion of orderly submicron-nanometer t-ZrO2 fibers, surrounded by inter-colony regions consisting of spherically-shaped micronmeter t-ZrO2 grains; Al2O3/45%ZrO2 (4Y) were comprised of spherically-shaped micron-meter t-ZrO2 grains, surround by irregularly-shaped α-Al2O3 grains and a few colonies. Compared to the directionally solidified Al2O3/ZrO2 (Y2O3), the increase in hardness and flexural strength of Al2O3/33%ZrO2 (4Y) in the experiment was due to high densification, small-size defect and high fracture toughness induced by compressive residual stress toughening and transformation toughening mechanisms; meanwhile, in despite of the moderate decrease in hardness, high flexural strength of Al2O3/45%ZrO2 (4Y) was considered to be a result of small-size defect in spherically-shaped micronmeter t-ZrO2 grain matrix and high fracture toughness induced by transformation toughening and micro-crack toughening mechanisms.

  11. Composition, microstructures and properties of Al{sub 2}O{sub 3}/ZrO{sub 2} (Y{sub 2}O{sub 3}) self-growing ceramic composites prepared by combustion synthesis under high gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z M; Zhang, L [Institute of Advanced Materials, Shijiazhuang Mechanical Engineering College, Shijiazhuang, 050003 (China); Song, Y G; Wang, W G; Liu, H B [Science Research Department, Shijiazhuang Mechanical Engineering College, Shijiazhuang, 050003 (China)], E-mail: zhao_zhongmin@163.net

    2009-03-01

    By introducing ZrO{sub 2} (4Y) powder into the thermit, Al{sub 2}O{sub 3}/ZrO{sub 2} (4Y) composite ceramics were prepared through combustion synthesis under high gravity, and the correlations of composition, microstructures and mechanical properties of composite ceramics were investigated. The results of XRD, SEM and EDS showed that Al{sub 2}O{sub 3}/33%ZrO{sub 2} (4Y) were composed of random-orientated rod-shaped colonies consisting of a triangular dispersion of orderly submicron-nanometer t-ZrO{sub 2} fibers, surrounded by inter-colony regions consisting of spherically-shaped micronmeter t-ZrO{sub 2} grains; Al{sub 2}O{sub 3}/45%ZrO{sub 2} (4Y) were comprised of spherically-shaped micron-meter t-ZrO{sub 2} grains, surround by irregularly-shaped {alpha}-Al{sub 2}O{sub 3} grains and a few colonies. Compared to the directionally solidified Al{sub 2}O{sub 3}/ZrO{sub 2} (Y{sub 2}O{sub 3}), the increase in hardness and flexural strength of Al{sub 2}O{sub 3}/33%ZrO{sub 2} (4Y) in the experiment was due to high densification, small-size defect and high fracture toughness induced by compressive residual stress toughening and transformation toughening mechanisms; meanwhile, in despite of the moderate decrease in hardness, high flexural strength of Al{sub 2}O{sub 3}/45%ZrO{sub 2} (4Y) was considered to be a result of small-size defect in spherically-shaped micronmeter t-ZrO{sub 2} grain matrix and high fracture toughness induced by transformation toughening and micro-crack toughening mechanisms.

  12. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  13. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  14. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  15. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  16. Commercial combustion research aboard the International Space Station

    Science.gov (United States)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  17. Well-Defined Molecular Magnesium Hydride Clusters : Relationship between Size and Hydrogen-Elimination Temperature

    NARCIS (Netherlands)

    Intemann, Julia; Spielmann, Jan; Sirsch, Peter; Harder, Sjoerd

    A new tetranuclear magnesium hydride cluster, [{NN-(MgH)2}2], which was based on a NN-coupled bis--diketiminate ligand (NN2-), was obtained from the reaction of [{NN-(MgnBu)2}2] with PhSiH3. Its crystal structure reveals an almost-tetrahedral arrangement of Mg atoms and two different sets of hydride

  18. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  19. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  20. Hydrides in young stellar objects : Radiation tracers in a protostar-disk-outflow system

    NARCIS (Netherlands)

    Benz, A. O.; Bruderer, S.; van Dishoeck, E. F.; Staeuber, P.; Wampfler, S. F.; Melchior, M.; Dedes, C.; Wyrowski, F.; Doty, S. D.; van der Tak, F.; Baechtold, W.; Csillaghy, A.; Megej, A.; Monstein, C.; Soldati, M.; Bachiller, R.; Baudry, A.; Benedettini, M.; Bergin, E.; Bjerkeli, P.; Blake, G.A.; Bontemps, S.; Braine, J.; Caselli, P.; Cernicharo, J.; Codella, C.; Daniel, F.; di Giorgio, A. M.; Dieleman, P.; Dominik, C.; Encrenaz, P.; Fich, M.; Fuente, A.; Giannini, T.; Goicoechea, J. R.; de Graauw, Th.; Helmich, F.; Herczeg, G. J.; Herpin, F.; Hogerheijde, M. R.; Jacq, T.; Jellema, W.; Johnstone, D.; Jorgensen, J. K.; Kristensen, L. E.; Larsson, B.; Lis, D.; Liseau, R.; Marseille, M.; McCoey, C.; Melnick, G.; Neufeld, D.; Nisini, B.; Olberg, M.; Ossenkopf, V.; Parise, B.; Pearson, J. C.; Plume, R.; Risacher, C.; Santiago-Garcia, J.; Saraceno, P.; Schieder, R.; Shipman, R.; Stutzki, J.; Tafalla, M.; Tielens, A. G. G. M.; van Kempen, T. A.; Visser, R.; Yildiz, U. A.

    2010-01-01

    Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims. We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods. W3 IRS5 was observed by

  1. Hydrides in young stellar objects: Radiation tracers in a protostar-disk-outflow system

    NARCIS (Netherlands)

    Benz, A.O.; Bruderer, S.; van Dishoeck, E.F.; Stäuber, P.; Wampfler, S.F.; Melchior, M.; Dedes, C.; Wyrowski, F.; Doty, S.D.; van der Tak, F.; Bächtold, W.; Csillaghy, A.; Megej, A.; Monstein, C.; Soldati, M.; Bachiller, R.; Baudry, A.; Benedettini, M.; Bergin, E.; Bjerkeli, P.; Blake, G.A.; Bontemps, S.; Braine, J.; Caselli, P.; Cernicharo, J.; Codella, C.; Daniel, F.; Di Giorgio, A.M.; Dieleman, P.; Dominik, C.; Encrenaz, P.; Fich, M.; Fuente, A.; Giannini, T.; Goicoechea, J.R.; de Graauw, T.; Helmich, F.; Herczeg, G.J.; Herpin, F.; Hogerheijde, M.R.; Jacq, T.; Jellema, W.; Johnstone, D.; Jørgensen, J.K.; Kristensen, L.E.; Larsson, B.; Lis, D.; Liseau, R.; Marseille, M.; McCoey, C.; Melnick, G.; Neufeld, D.; Nisini, B.; Olberg, M.; Ossenkopf, V.; Parise, B.; Pearson, J.C.; Plume, R.; Risacher, C.; Santiago-García, J.; Saraceno, P.; Schieder, R.; Shipman, R.; Stutzki, J.; Tafalla, M.; Tielens, A.G.G.M.; van Kempen, T.A.; Visser, R.; Yıldız, U.A.

    2010-01-01

    Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims. We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods. W3 IRS5 was observed by

  2. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  3. Compensation Effect in the Hydrogenation/Dehydrogenation Kinetics of Metal Hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.; Vegge, T.; Pedersen, Allan Schrøder

    2005-01-01

    The possible existence of a compensation effect, i.e. concurrent changes in activation energy and prefactor, is investigated for the hydrogenation and dehydrogenation kinetics of metal hydrides, by analyzing a series of reported kinetic studies on Mg and LaNi5 based hydrides. For these systems, we...

  4. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  5. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  6. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

    2008-12-31

    Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  7. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  8. Laboratory Rotational Spectroscopy of Astrophysical Interesting Diatomic Hydrides

    Science.gov (United States)

    Halfen, DeWayne; Ziurys, L.

    2008-05-01

    Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie entirely in the submillimeter and far-infrared regions. Hence, the future airborne and space-borne platforms, such as SOFIA and Herschel, are primed to explore these prevalent molecules. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. Using submillimeter direct absorption methods in the Ziurys laboratory, we have recorded the spectra of several diatomic hydrides of astrophysical interest. We have measured the pure rotational spectrum of MnH (X7Σ+: N = 0 - 1) and MnD (N = 2 - 3), as well as the deuterium and carbon-13 isotopologues of CH, CD (X2Πr: N = 1 - 1 and 1 - 2) and 13CH (N = 1 - 1). Manganese hydride and deuteride were created in a DC discharge of H2 or D2 and manganese vapor, generated in a Broida-type oven. CD and 13CH were produced in an AC discharge of argon and CD4 or 13CH4. For MnH, the five strongest manganese hyperfine transitions were recorded in its N = 0 - 1 transition, each of which are additionally split by hydrogen hyperfine interactions. CD and 13CH also have multiple hyperfine components due to the D, 13C, and/or H atoms. The direct measurement of these fundamental transitions will allow for unambiguous astronomical detections. The results of these studies will be presented.

  9. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  10. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  11. Dynamics of a cis-dihydrogen/hydride complex of iridium.

    Science.gov (United States)

    Nanishankar, H V; Dutta, Saikat; Nethaji, Munirathinam; Jagirdar, Balaji R

    2005-09-05

    Insertion of CS2 into one of the Ir-H bonds of [Ir(H)5(PCy3)2] takes place to afford the dihydrido dithioformate complex cis-[Ir(H)2(eta2-S2CH)(PCy3)2] accompanied by the elimination of H2. Protonation of the dithioformate complex using HBF4.Et2O gives cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] wherein the H atom undergoes site exchange between the dihydrogen and the hydride ligands. The dynamics was found to be so extremely rapid with respect to the NMR time scale that the barrier to exchange could not be measured. Partial deuteration of the hydride ligands resulted in a J(H,D) of 6.5 and 7.7 Hz for the H2D and the HD2 isotopomers of cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4], respectively. The H-H distance (d(HH)) for this complex has been calculated to be 1.05 A, which can be categorized under the class of elongated dihydrogen complexes. The cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] complex undergoes substitution of the bound H2 moiety with CH(3)CN and CO resulting in new hydride derivatives, cis-[Ir(H)(L)(eta2-S2CH)(PCy3)2][BF4] (L = CH3CN, CO). Reaction of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] with electrophilic reagents such as MeOTf and Me3SiOTf afforded a new hydride aquo complex cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] via the elimination of CH4 and Me3SiH, respectively, followed by the binding of a water molecule (present in trace quantities in the solvent) to the iridium center. The X-ray crystal structures of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] and cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] have been determined.

  12. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  13. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  14. Electrochemical process and production of novel complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  15. Lectures on combustion theory

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A. (eds.)

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  16. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.|info:eu-repo/dai/nl/341356034; van Lingen, J.N.J.|info:eu-repo/dai/nl/311441769; Zevenbergen, J.F.; Gijzeman, O.L.J.|info:eu-repo/dai/nl/073464708; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  17. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  18. Rocket Combustion Chamber Coating

    Science.gov (United States)

    Holmes, Richard R. (Inventor); McKechnie, Timothy N. (Inventor)

    2001-01-01

    A coating with the ability to protect (1) the inside wall (i.e., lining) of a rocket engine combustion chamber and (2) parts of other apparatuses that utilize or are exposed to combustive or high temperature environments. The novelty of this invention lies in the manner a protective coating is embedded into the lining.

  19. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  20. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  1. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    Science.gov (United States)

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg2 NiH4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg2 NiH4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol(-1) ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High performance nickel-metal hydride and lithium-ion batteries

    Science.gov (United States)

    Köhler, U.; Kümpers, J.; Ullrich, M.

    In comparison to pure electric vehicles (EV) the opportunities for hybrid electric vehicles (HEV) are much better, since range restrictions no longer apply and the interaction of the internal combustion engine and electrical drive bring increased energy efficiency and environmental friendliness. The batteries used in such applications must meet very high standards in terms of performance and service life. Although the battery capacity is smaller than for a purely EV, it needs to be able to generate far higher levels of power. The technical challenges of hybrid applications have led to the development of high-performance batteries. At the forefront of these is the nickel-metal hydride system (NiMH). With specific power and energy data in the range from 300 to 900 W/kg, 55 to 37 Wh/kg, respectively (based on cell weight), excellent charge efficiency and energy throughput levels of more than 10,000 times the nominal energy, the NiMH system comes very close to satisfying the needs of the HEV. Parallel developments with the lithium-ion system based on manganese spinel as cathode material show that, with specific power and energy levels above 1000 W/kg, 50 Wh/kg, respectively, this technology will also be able to play an important role in the future. Service life figures in terms of calendar life have been improved tremendously to about three years, but there is still a need for further improvement in order to meet the specifications of car manufacturers. For this reason, an increase of life span is the subject of intensive development work.

  3. Synthesis and characterization of TiFe(0.7-x)Mn(0.3)V(x) (x = 0.05, and 0.1) and Ti(1-y)Ta(y)Fe(0.7)Mn(0.3) (y = 0.2, and 0.4) nanostructured metal hydrides for low temperature applications.

    Science.gov (United States)

    Anagnostou, N G; Makridis, S S; Kikkinides, E S; Christodoulou, C N; Stubos, A K

    2012-12-01

    Metal hydrides (MH) are often preferred to absorb and desorb hydrogen at ambient temperature and pressure with a high volumetric density. These hydrogen storage alloys create promising prospects for hydrogen storage and can solve the energetic and environmental issues. In the present research work, the goal of our studies is to find the influence of partial substitution of small amounts of vanadium and tantalum on the hydrogenation properties of TiFe(0.7-x)Mn(0.3)V(x) (x = 0.05, and 0.1) and Ti(1-y)Ta(y)Fe(0.7)Mn(0.3) (y = 0.2, and 0.4) alloys, respectively. The nominal compositions of these materials are TiFe(0.6)Mn(0.3)V(0.05), TiFe(0.6)Mn(0.3)V(0.1), Ti(0.8)Ta(0.2)Fe(0.7)Mn(0.3), and Ti(0.6)Ta(0.4)Fe(0.7)Mn(0.3). All samples were synthesized by arc-melting high purity elements under argon atmosphere. The structural and microstructural properties of the samples were studied by using XRD and SEM, respectively, while the corresponding microchemistry was determined by obtaining EDS measurements at specific regions of the samples. Mapping was obtained in order to investigate atomic distribution in microstructure. Moreover, to ensure the associations between the properties and structure, all samples were examined by an optical microscope for accessional characterization. From all these microscopic examinations a variety of photomicrographs were taken with different magnifications. The hydrogenation properties were obtained by using a Magnetic Suspension Balance (Rubotherm). In this equipment, the hydrogen desorption and re-absorption, can be investigated at constant hydrogen pressures in the range of 1 to 20 MPa (flow-through mode). At least 3.43 wt.% of absorbed hydrogen amount was measured while the effect of substitutions was investigated at the same temperature.

  4. Development of a component design tool for metal hydride heat pumps

    Science.gov (United States)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  5. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  6. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  7. Effects of Alkaline Pre-Etching to Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-10-01

    Full Text Available The responses of one AB5, two AB2, four A2B7, and one C14-related body-centered-cubic (BCC metal hydrides to an alkaline-etch (45% KOH at 110 °C for 2 h were studied by internal resistance, X-ray diffraction, scanning electron microscope, inductively coupled plasma, and AC impedance measurements. Results show that while the etched rare earth–based AB5 and A2B7 alloys surfaces are covered with hydroxide/oxide (weight gain, the transition metal–based AB2 and BCC-C14 alloys surfaces are corroded and leach into electrolyte (weight loss. The C14-predominated AB2, La-only A2B7, and Sm-based A2B7 showed the most reduction in the internal resistance with the alkaline-etch process. Etched A2B7 alloys with high La-contents exhibited the lowest internal resistance and are suggested for use in the high-power application of nickel/metal hydride batteries.

  8. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  9. Identification and characterization of a new zirconium hydride; Identification et caracterisation d'un nouvel hydrure de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Morniroli, J.P.; Legris, A.; Thuinet, L. [Universite des Sciences et Technologies de Lille, USTL, ENSCL, CNRS, 59 - Villeneuve d' Ascq (France); Zhao, Zhao; Blat-Yrieix, M.; Ambard, A.; Legras, L. [Electricite de France (EDF/RD), Centre des Renardieres, 77 - Moret sur Loing (France); Kihn, Y. [CEMES-CNRS, 31 - Toulouse (France)

    2007-07-01

    A study of hydrides characterization has been carried out in using the transmission electron microscopy technique. It has revealed the presence of small hydrides of acicular form whose length does not exceed 500 nm, among the zircaloy-4 samples hydrided by cathodic way. The electronic diffraction has shown that these small hydrides have a crystallographic structure different of those of the hydrides phases already index in literature. A more complete identification study has then been carried out. In combining the different electronic microscopy techniques (precession electronic micro diffraction and EELS) with ab initio calculations, a new hydride phase has been identified. It is called hydride {zeta}, is of trigonal structure with lattice parameters a{sub {zeta}} = a{sub {alpha}}{sub Zr} = 0.33 nm and c{sub {zeta}} 2c{sub {alpha}}{sub Zr} = 1.029 nm, its spatial group being P3m1. (O.M.)

  10. Assessment of the synthesis conditions for nano-Bi{sub 4}Ti{sub 3}O{sub 12} production by the combustion route; Avaliacao das condicoes de sintese para producao de nano-Bi{sub 4}Ti{sub 3}O{sub 12} pelo metodo de combustao

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Jeferson A.; Nascimento, Cassia C.; Oliveira, Jessica A.; Morelli, Marcio R., E-mail: jeferson.unifal@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    The bismuth titanate has interesting optoelectronic properties. Its production in nanometric scale is important due to the demand of miniaturized electronic devices and greater synthesization facility. This study aims at the evaluation of synthesis parameters for nano-Bi{sub 4}Ti{sub 3}O{sub 12} production by the combustion route. For that, the materials were synthesized and calcined at 600°C, 700°C and 800°C. The materials were posteriorly characterized by X-Ray diffraction, SEM, DSC-TGA, FTIR; DRS and impedance spectroscopy. The results have demonstrated that the combustion method was effective for nanocrystalline powders production, which also showed high levels of purity. Particles size growth was observed for high treatment temperatures. Low level of residual organic matter was determined and the high electrical resistivity was observed. The temperature of 600°C was enough to produce particles with optimal properties. Therefore, the results have confirmed the efficacy of combustion route to produce nanometric Bi{sub 4}Ti{sub 3}O{sub 12}. (author)

  11. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  12. Experimental and theoretical study of the hydriding behaviour in the pulse ecm of titanium alloys

    Science.gov (United States)

    Smirnov, G. V.; Pronichev, N. D.; Nekhoroshev, M. V.; Bogdanovich, V. I.

    2017-02-01

    The titanium alloy hydriding is a negative factor since it may result in a slow-action destruction of parts operating at small loads. The introduction of pulse electrochemical machining requires consideration and evaluation of this factor’s influence onto the operating performance of components. Since electrochemical machining is performed at small gaps, and hydrogen release is very intensive on electrodes, favourable conditions for the hydriding process are developed. The work describes a profound theoretical study of this process with proposing technological methods to reduce hydriding.

  13. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  14. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    Science.gov (United States)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  15. Combustion Technology Outreach

    Science.gov (United States)

    1995-01-01

    Lewis' High Speed Research (HSR) Propulsion Project Office initiated a targeted outreach effort to market combustion-related technologies developed at Lewis for the next generation of supersonic civil transport vehicles. These combustion-related innovations range from emissions measurement and reduction technologies, to diagnostics, spray technologies, NOx and SOx reduction of burners, noise reduction, sensors, and fuel-injection technologies. The Ohio Aerospace Institute and the Great Lakes Industrial Technology Center joined forces to assist Lewis' HSR Office in this outreach activity. From a database of thousands of nonaerospace firms considered likely to be interested in Lewis' combustion and emission-related technologies, the outreach team selected 41 companies to contact. The selected companies represent oil-gas refineries, vehicle/parts suppliers, and manufacturers of residential furnaces, power turbines, nonautomobile engines, and diesel internal combustion engines.

  16. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  17. Combustion synthesis of graphene and ultracapacitor performance

    Indian Academy of Sciences (India)

    graphene). For comparison, GO suspension in H2O was heated to 250. ◦. C for 2 h without fuel, hereafter referred to as T250-graphene. 2.3 Characterization. Graphene was characterized by X-ray diffraction (XRD),. X-ray photoelectron spectroscopy ...

  18. Combustion synthesis of cadmium sulphide nanomaterials for ...

    Indian Academy of Sciences (India)

    Anion-doped cadmium sulphide nanomaterials have been synthesized by using combustionmethod at normal atmospheric conditions. Oxidant/fuel ratios have been optimized in order to obtain CdS with best characteristics. Formation of CdS and size of crystallite were identified by X-ray diffraction and confirmed by ...

  19. Combustion synthesis and characterization of porous perovskite ...

    Indian Academy of Sciences (India)

    TECS

    BET specific surface areas were measured by nitrogen adsorption-desorp- tion at 78 K using a Micromeritics ASAP 2020 in- strument. 2.3 Measurement of catalytic activities. The CH4 + O2 reactions were carried out in a flow microreactor by feeding a gas mixture of CH4. (1⋅0 vol.%), O2 (10⋅0 vol.%) and N2(balanced) over.

  20. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.