WorldWideScience

Sample records for hydride generation elements

  1. Dual-mode chemical vapor generation for simultaneous determination of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry.

    Science.gov (United States)

    Wang, Yu; Xu, Kailai; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-05-21

    A dual-mode chemical vapor generation integrating hydride generation and photochemical vapor generation was developed for simultaneous multi-element analysis of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry. Four elements were selected as model elements of hydride-forming (As, Cd) and non-hydride-forming (Ni, Fe) elements to validate this proposed method. Standard or sample solutions were separately pumped to mix with tetrahydroborate, and concentrated formic acid and ammonia, and then directed to a hydride generator and a photochemical reactor to realize simultaneous hydride generation and photochemical vapor generation, respectively. Optimum conditions for dual-mode chemical vapor generation were carefully investigated. Under the optimized conditions, limits of detection of 0.05, 0.008, 0.8 and 0.1 μg L(-1) were obtained for As, Cd, Fe and Ni, respectively. The precisions were 5.0, 5.5, 4.3 and 4.5% (n = 6, RSDs) for 2 μg L(-1) of As, 1 μg L(-1) of Cd, 50 μg L(-1) of Fe and 10 μg L(-1) of Ni, respectively. This method was validated for accuracy with three certified reference water samples and applied to the simultaneous determination of these elements in a tap water sample with spike recoveries in the range of 95-99%.

  2. [Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements].

    Science.gov (United States)

    Sun, Han-Wen; Suo, Ran

    2008-11-01

    A mechanism of hydride generation based on disassembly reaction of hydrogen-transferred interim state [M(BH4)m]* was developed by investigating the effect of reaction medium acidity on hydride generation. The effects of Co2+ and Ni2+, phenanthroline and 8-hydroxyquinoline on hydride generation-atomic fluorescence signals of Zn, Cd, Cu and Ni were studied, respectively, and their enhancing mechnism was discussed. The enhancing effect Co2+ and Ni2+ on the fluorescence signals of Zn and Cd was due to the increase in transmission efficiency of hydride of Zn and Cd. There was a synergic enhancing effect between phenanthroline or 8-hydroxyquinoline and Co2+ on the fluorescence signals of Zn and Cd, however no synergic enhancing effect between phenanthroline and 8-hydroxyquinoline on the fluorescence signals of Zn and Cd. The simulative action of cationic surfactant, anion surfactant and non-ionic surfactant surfactant to hydride generation was investigated. It is shown that both cationic surfactant and non-ionic surfactant have obvious enhancing effect on the fluorescence signals of analytes because of the decrease in surface tension of reaction solution. The release characteristics of hydride from the absorption solution containing surfactant was ulteriorly examined by using graphite furnace atomic absorption spectrometry, and the mechanism of enhancing effect of surfactant on hydride generation and transmission was proposed.

  3. Field cryofocussing hydride generation applied to the simultaneous multi-elemental determination of alkyl-metal(loid) species in natural waters using ICP-MS detection.

    Science.gov (United States)

    Tseng, C M; Amouroux, D; Brindle, I D; Donard, O F

    2000-12-01

    Two hydride generation manifold systems, utilizing flow injection and cryotrapping techniques for alkyl-metal(loid) speciation analysis in natural waters, are described in this paper. They provide shipboard capacity for simultaneous derivatization of analytes with NaBH4 and cryotrapping of the generated products in a field packed column at -196 degrees C. The first system is a large-volume hydride generator, using a reagent-injection flow technique as a flow batch type, that has been fully optimized and applied to the simultaneous detection of alkylated species in estuarine waters. The technique permits the analysis of a large volume sample (0.5-11) at a sampling rate of 3 h-1. The second is an online continuous flow hydride generator. A sampling rate of 3-12 h-1 can be achieved with samples of 0.1-0.51. In addition, shipboard operation eliminates major problems related to sample pretreatment, transport and storage. Ultra-trace multi-element determination is finally performed in the laboratory by cryogenic GC hyphenated with ICP-MS. Routine detection limits of 0.5-10 pg (as metal) for 0.51 water samples were achieved for the selected alkyl-metal(loid) species of arsenic, germanium, mercury and tin. Concentrations of various species, obtained from water samples taken from the Rhine estuary, are also presented. These species include alkylated arsenic compounds, other than methyl derivatives, that have been tentatively identified and are reported here for the first time.

  4. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  5. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  6. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  7. Metal Hydrides for High-Temperature Power Generation

    Directory of Open Access Journals (Sweden)

    Ewa C. E. Rönnebro

    2015-08-01

    Full Text Available Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES applications. By using TES with solar technologies, heat can be stored from sun energy to be used later, which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT metal hydride operating reversibly at 600–800 °C to generate heat, as well as a low-temperature (LT hydride near room temperature that is used for hydrogen storage during sun hours until there is the need to produce electricity, such as during night time, a cloudy day or during peak hours. We proceeded from selecting a high-energy density HT-hydride based on performance characterization on gram-sized samples scaled up to kilogram quantities with retained performance. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a ~200-kWh/m3 bench-scale prototype was designed and fabricated, and we demonstrated the ability to meet or exceed all performance targets.

  8. Development of a direct hydride generation nebulizer for the determination of selenium by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, Nereida E-mail: ncarrion@strix.ciens.ucv.ve; Murillo, Miguel; Montiel, Edie; Diaz, Dorfe

    2003-08-15

    A study was conducted to evaluate the performance of a new direct hydride generation nebulizer system for determination of hydride forming elements by inductively coupled plasma optical emission spectroscopy. This system was designed and optimized to obtain the highest sensitivity. Several experimental designs were used for these purposes. To optimize the individual parameters of the system, and to study the interaction between these parameters for both direct hydride generation nebulizers, a central composite orthogonal design with eight factors was set up. Significant behavioral differences were observed in the two direct hydride generation nebulizers studied. Finally, a 70 {mu}m gas orifice nebulizer exhibits a better detection limit than the 120 {mu}m nebulizer. Generally, for determination of selenium, this new direct hydride generation nebulizer system exhibits a linear dynamic range and detection limit (3{sigma}b) of 3 orders of magnitude and 0.2 {mu}g l{sup -1} for selenium, respectively. This new hydride generator is much simpler system that conventional hydride generation systems, which does not need to be changed to work in normal mode with the inductively coupled plasma, since this system may be used for hydride forming elements and those that do not form them. It produces a rapid response with low memory effect. It reduces the interference level of Ni, Co and Cu to 600, 500 and 5 mg l{sup -1}, respectively. The accuracy of the system was verified by the determination of selenium in several standard reference materials of ambient, food and clinical sample matrices. No statistically significant differences (95 confidence level) were obtained between our method and the reference values.

  9. Hydrogen generation from magnesium hydride by using organic acid

    Science.gov (United States)

    Ho, Yen-Hsi

    In this paper, the hydrolysis of solid magnesium hydride has been studied with the high concentration of catalyst at the varying temperature. An organic acid (acetic acid, CH3COOH) has been chosen as the catalyst. The study has three objectives: first, using three different weights of MgH 2 react with aqueous solution of acid for the hydrogen generation experiments. Secondly, utilizing acetic acid as the catalyst accelerates hydrogen generation. Third, emphasizing the combination of the three operating conditions (the weight of MgH2, the concentration of acetic acid, and the varying temperature) influence the amount of hydrogen generation. The experiments results show acetic acid truly can increase the rate of hydrogen generation and the weight of MgH2 can affect the amount of hydrogen generation more than the varying temperature.

  10. Arsenic speciation analysis by HPLC postcolumn hydride generation and detection by atomic fluorescence spectrometry

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Rychlovský, P.; Dědina, J. (Jiří)

    2014-01-01

    The aim of this contribution is to present a new method of hydride generation that enables to generate arsines from iAs , iAs , MMA and DMA in a flow injection mode with the same efficiency and in the next step connection of this hydride generator with HPLC column.

  11. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  12. Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Illiana; Murillo, Miguel; Carrion, Nereida; Chirinos, Jose [Centro de Quimica Analitica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, P.O. Box 47102, 1041a, Caracas (Venezuela)

    2003-05-01

    A direct hydride generation nebulizer (DHGN) was explored for introduction of the sample in inductively coupled plasma-optical emission spectrometry (ICP-OES) using radially viewed mode. This simple hydride generation system was constructed in our laboratory and requires similar plasma operating conditions to conventional nebulizer-spray-chamber arrangements. This work was focused on the optimization of the operating conditions for hydride generation and evaluation of the main analytical figures of merit for the determination of As, Sb and Se. The excitation conditions of the ICP-OES instrument operated with the DHGN were also explored. Results showed that the analytical performance of the new system for the determination of As, Sb and Se was superior to that of conventional nebulization systems. The DHGN also enabled the determination of elements that do not form volatile hydrides, but with less sensitivity than conventional nebulization systems. Evaluation of the plasma robustness showed that gases generated in hydride generation do not significantly affects the plasma discharge. Similar to conventional hydride generation techniques, analysis with DHGN was susceptible to non-spectroscopic interferences produced by transition metals. Finally, the utility of the DHGN in practical ICP-OES studies was demonstrated in the determination of trace elements in an oyster tissue standard reference material. (orig.)

  13. Finite element mesh generation

    CERN Document Server

    Lo, Daniel SH

    2014-01-01

    Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques

  14. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  15. Elemental step thermodynamics of various analogues of indazolium alkaloids to obtaining hydride in acetonitrile.

    Science.gov (United States)

    Lei, Nan-Ping; Fu, Yan-Hua; Zhu, Xiao-Qing

    2015-12-21

    A series of analogues of indazolium alkaloids were designed and synthesized. The thermodynamic driving forces of the 6 elemental steps for the analogues of indazolium alkaloids to obtain hydride in acetonitrile were determined using an isothermal titration calorimeter (ITC) and electrochemical methods, respectively. The effects of molecular structure and substituents on the thermodynamic driving forces of the 6 steps were examined. Meanwhile, the oxidation mechanism of NADH coenzyme by indazolium alkaloids was examined using the chemical mimic method. The result shows that the oxidation of NADH coenzyme by indazolium alkaloids in vivo takes place by one-step concerted hydride transfer mechanism.

  16. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  17. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B.; Petrov, Panayot K. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Serafimovski, Ivan [Food Institute, Faculty of Veterinary Medicine, Sts. Cyril and Methodius University, P.O. Box 95, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Stafilov, Trajce [Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, P.O. Box 162, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)], E-mail: tsalev@chem.uni-sofia.bg

    2007-03-15

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 {mu}g Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 {mu}mol of zirconium and then with 0.10 {mu}mol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely

  18. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  19. Hydride and ethylated species generation from ordered media: application to the enhanced ICP-AES determination of bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva Tagle, M.; Fernandez de la Campa, M.R.; Sanz-Medel, A. [Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo (Spain)

    1996-11-01

    Earlier work to enhance the efficiency of volatile species generation for atomic spectrometry has demonstrated that organised media, micelles and vesicles, offer a new chemical microenvironment able to improve the thermodynamics and/or kinetics of volatile species generation (hydrides and alkyl compounds). Detection limit can be further improved in this way for ICP-AES detection. In this line the characteristics of volatile species generation of Bi, Ge and In in micellar and vesicular media are studies and critically compared with those obtained in the absence of organized media, Both NaBH{sub 4} and NaBEt{sub 4} reagents for volatile species production have been tested. Bismuth determination was clearly improved by using cationic sufactants, both with NaBH{sub 4} and NaBEt{sub 4} as reducing agents. Thus, the determination of Bi enhanced by either NaBH{sub 4} or NaBEt{sub 4} in organized media with ICP-AES for final specific detection, is described in detail. Bismuth hydride generated from Triton X-100 allowed decrease of detection limits of Bi by ICP-AES from 4 to 1 ng ml``-1. The calibration graphs were linear up to 200 ng ml``-1, with RDS of 1% at 60 ng ml``-1 level. Improved tolerance to interfering elements in organized media, as compared to more conventional hydride generation, was observed. Bi ethylation using NaBEt{sub 4} provided volatile species generation-ICP-AEs detection of the metal characterized by a detection limit of 2 ng ml``-1 eventually attained for Bi. The calibration graphs were linear up to 200 ng ml``-1 with a RDS of 2% at 60 ng ml``-1 level. Effects of addition of different organised media to improve volatile Bi species generation with the ethylation agent NaBEt{sub 4} are reported for the first time. (Author) 29 refs.

  20. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    Science.gov (United States)

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature.

  1. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides.

    Science.gov (United States)

    Kuo, Jonathan L; Hartung, John; Han, Arthur; Norton, Jack R

    2015-01-28

    Transition-metal hydrides generate α-alkoxy radicals by H• transfer to enol ethers. We have measured the rate constant for transfer from CpCr(CO)3H to n-butyl vinyl ether and have examined the chemistry of radicals generated by such transfers. Radicals from appropriate substrates undergo 5-exo cyclization, with higher diastereoselectivity than the analogous all-carbon radicals. From such radicals it is straightforward to make substituted tetrahydrofurans.

  2. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  3. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  4. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials

    Science.gov (United States)

    Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang

    2015-10-01

    Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.

  5. Hyphenating multisyringe flow injection lab-on-valve analysis with atomic fluorescence spectrometry for on-line bead-injection preconcentration and determination of trace levels of hydride-forming elements in environmental samples

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald;

    2006-01-01

    of the functional moieties, so that maximum benefit can be taken from the application of the bead renewal strategy. The proposed procedure is characterized by a high tolerance to metal species and interfering hydride forming elements. In fact, ratios of Se(IV) to As ≤ 5000 and Sb(V) to As ≤ 500 are tolerated...... feasible by interfacing the micromachined LOV-module with AFS by a multisyringe flowing stream network for on-line post column derivatization of the eluate aimed at the generation of hydride species. The potential of this new hyphenated technique for environmental assays was ascertained via...

  6. Improving the analytical performance of hydride generation non-dispersive atomic fluorescence spectrometry. Combined effect of additives and optical filters

    Science.gov (United States)

    D'Ulivo, Alessandro; Bramanti, Emilia; Lampugnani, Leonardo; Zamboni, Roberto

    2001-10-01

    The effects of tetrahydroborate and acid concentration and the presence of L-cysteine and thiourea were investigated in the determination of As, Bi and Sn using continuous flow hydride generation atomic fluorescence spectrometry (HG AFS). The aim was to find conditions allowing the control of those effects exerting negative influence on the analytical performance of the HG AFS apparatus. The effects taken into account were: (i) the radiation scattering generated by carryover of solution from the gas-liquid separator to the atomizer; (ii) the introduction of molecular species generated by tetrahydroborate decomposition into the atomizer; and (iii) interference effects arising from other elements in the sample matrix and from different acids. The effects (i) and (ii) could be controlled using mild reaction conditions in the HG stage. The effect of HG conditions on carryover was studied by radiation scattering experiments without hydride atomization. Compromised HG conditions were found by studying the effects of tetrahydroborate (0.1-20 g l -1) and acid (0.01-7 mol l -1) concentration, and the addition of L-cysteine (10 g l -1) and thiourea (0.1 mol l -1) on the HG AFS signals. The effect of optical filters was investigated with the aim of improving the signal-to-noise ratio. Optical filters with peak wavelengths of 190 and 220 nm provided an improvement of detection limits by factors of approximately 4 and 2 for As and Te, respectively. Under optimized conditions the detection limits were 6, 5, 3, 2, 2 and 9 ng l -1 for As, Sb, Bi, Sn, Se and Te, respectively. Good tolerance to various acid compositions and sample matrices was obtained by using L-cysteine or thiourea as masking agents. Determination of arsenic in sediment and copper certified reference materials, and of bismuth in steel, sediment, soil and ore certified reference material is reported.

  7. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power

    Science.gov (United States)

    Gonzatti, Frank; Nizolli, Vinícius; Ferrigolo, Fredi Zancan; Farret, Felix Alberto; de Mello, Marcos Augusto Silva

    2016-02-01

    Generation of electrical energy with renewable sources is interruptible due to the primary energy characteristics (sun, wind, hydro, etc.). In these cases, it is necessary to use energy storage so increasing penetrability of these sources connected to the distribution system. This paper discusses in details some equipment and accessories of an integrated power plant using fuel cell stack, electrolyzer and metal hydrides. During the plant operation were collected the power consumption data and established the efficiency of each plant component. These data demonstrated an overall efficiency of about 11% due to the low efficiencies of the commercial electrolyzers and power inverters used in the experiments.

  8. High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yuwei [Department of Chemistry and Biochemistry, Laurentian University, Ramsey Lake Road, Sudbury P3E 2C6 (Canada); Belzile, Nelson, E-mail: nbelzile@laurentian.ca [Department of Chemistry and Biochemistry, Laurentian University, Ramsey Lake Road, Sudbury P3E 2C6 (Canada); Cooperative Freshwater Ecology Unit, Laurentian University, Ramsey Lake Road, Sudbury P3E 2C6 (Canada)

    2010-06-25

    We present the most recent applications of high performance liquid chromatography (HPLC) hyphenated to hydride generation or chemical vapour generation and atomic fluorescence spectrometry (HG/CVG-AFS), for the determination and speciation of the selected hydride-forming elements arsenic (As), selenium (Se) and antimony (Sb) and the chemical vapour-forming metal Hg. The review focuses on sample preparation, post-column treatments and on the applications of this technique to various liquid and solid samples. This review also intends to discuss some limitations associated to HPLC-HG/CVG-AFS due to the necessity on post-column treatments, including the oxidation of organo-element compounds and the pre-reduction to a suitable valence. Nevertheless, the hyphenated technique HPLC-HG/CVG-AFS remains an efficient, sensitive and affordable approach to perform speciation of the four studied elements as shown by the variety of applications presented and discussed in this review.

  9. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  10. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  11. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection.

    Science.gov (United States)

    Ezoe, Kentaro; Ohyama, Seiichi; Hashem, Md Abul; Ohira, Shin-Ichi; Toda, Kei

    2016-02-01

    After the Fukushima disaster, power generation from nuclear power plants in Japan was completely stopped and old coal-based power plants were re-commissioned to compensate for the decrease in power generation capacity. Although coal is a relatively inexpensive fuel for power generation, it contains high levels (mgkg(-1)) of selenium, which could contaminate the wastewater from thermal power plants. In this work, an automated selenium monitoring system was developed based on sequential hydride generation and chemiluminescence detection. This method could be applied to control of wastewater contamination. In this method, selenium is vaporized as H2Se, which reacts with ozone to produce chemiluminescence. However, interference from arsenic is of concern because the ozone-induced chemiluminescence intensity of H2Se is much lower than that of AsH3. This problem was successfully addressed by vaporizing arsenic and selenium individually in a sequential procedure using a syringe pump equipped with an eight-port selection valve and hot and cold reactors. Oxidative decomposition of organoselenium compounds and pre-reduction of the selenium were performed in the hot reactor, and vapor generation of arsenic and selenium were performed separately in the cold reactor. Sample transfers between the reactors were carried out by a pneumatic air operation by switching with three-way solenoid valves. The detection limit for selenium was 0.008 mg L(-1) and calibration curve was linear up to 1.0 mg L(-1), which provided suitable performance for controlling selenium in wastewater to around the allowable limit (0.1 mg L(-1)). This system consumes few chemicals and is stable for more than a month without any maintenance. Wastewater samples from thermal power plants were collected, and data obtained by the proposed method were compared with those from batchwise water treatment followed by hydride generation-atomic fluorescence spectrometry.

  12. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2017-08-05

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XHn-1(-) ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    Science.gov (United States)

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  14. Spectrophotometric detection of arsenic using flow-injection hydride generation following sorbent extraction preconcentration.

    Science.gov (United States)

    Neto, J A; Montes, R; Cardoso, A A

    1999-12-06

    An automated system with a C(18) bonded silica gel packed minicolumn is proposed for spectrophotometric detection of arsenic using flow-injection hydride generation following sorbent extraction preconcentration. Complexes formed between arsenic(III) and ammonium diethyl dithiophosphate (ADDP) are retained on a C(18) sorbent. The eluted As-DDP complexes are merged with a 1.5% (w/v) NaBH(4) and the resulting solution is thereafter injected into the hydride generator/gas-liquid separator. The arsine generated is carried out by a stream of N(2) and trapped in an alkaline iodine solution in which the analyte is determined by the arsenomolybdenum blue method. With preconcentration time of 120 s, calibration in the 5.00-50.0 mug As l(-1) range and sampling rate of about 20 samples h(-1) are achieved, corresponding to 36 mg ADDP plus 36 mg ammonium heptamolybdate plus 7 mg hydrazine sulfate plus 0.7 mg stannous chloride and about 7 ml sample consumed per determination. The detection limit is 0.06 mug l(-1) and the relative standard deviation (n=12) for a typical 17.0 mug As l(-1) sample is ca. 6%. The accuracy was checked for arsenic determination in plant materials from the NIST (1572 citrus leaves; 1573 tomato leaves) and the results were in agreement with the certified values at 95% confidence level. Good recoveries (94-104%) of spiked tap waters, sugars and synthetic mixtures of trivalent and pentavalent arsenic were also found.

  15. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    Science.gov (United States)

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  16. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples.

    Science.gov (United States)

    Yeşiller, Semira Unal; Yalçın, Serife

    2013-04-03

    A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.

  17. Studies in hydride generation atomic fluorescence determination of selenium and tellurium. Part 1 — self interference effect in hydrogen telluride generation and the effect of KI

    Science.gov (United States)

    D'Ulivo, A.; Marcucci, K.; Bramanti, E.; Lampugnani, L.; Zamboni, R.

    2000-08-01

    The effects of tetrahydroborate (0.02-1%) and iodide (0-3 M) were investigated in determination of tellurium and selenium by hydride generation atomic fluorescence spectrometry. The effect of tetrahydroborate and iodide concentration were tested on the shape of calibration curves in concentration range of 1-1000 ng ml -1 analyte. Reductant deficiency resulted in a moderate sensitivity depression for tellurium but dramatically reduced the useful dynamic range down to 50 ng ml -1. On the contrary, selenium calibration curves retained a linear character even under conditions generating strong sensitivity depression. Curvature and rollover of tellurium calibration curves has been addressed to a self-interference effect caused by the formation of finely dispersed elemental tellurium. Iodide ions were found to have beneficial or no negative effects in the hydrogen telluride generation. Addition of iodide on-line to the sample has been proved effective in the control of the self-interference effect and allows to work in mild reaction conditions. Moreover, it allows a good control of Cu(II) interference and eliminates Ni(II) and Co(II) interferences. The method has been successfully applied to determination of tellurium in copper and lead ores certified reference materials.

  18. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  19. Spontaneous Double Hydrometallation Induced by N→M Coordination in Organometallic Hydrides of Group 14 Elements.

    Science.gov (United States)

    Novák, Miroslav; Dostál, Libor; Turek, Jan; Alonso, Mercedes; De Proft, Frank; Růžička, Aleš; Jambor, Roman

    2016-04-11

    Our attempts to synthesise N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si (4), Ge (5), Sn (6)] containing the CH=N imine group (in which L is C,N-chelating ligand {2-[(2,6-iPr2C6H3)N=CH]C6 H4}(-)) yielded 1,1'-bis(2,6-diisopropylphenyl)-2,2'-spriobi[benzo[c][1,2]azasilole] (7), 1,1'-bis(2,6-diisopropylphenyl)-2,2'-spriobi[benzo[c][1,2]azagermole] (8) and C,N-chelated homoleptic stannylene L2Sn (10), respectively. Compounds 7 and 8 are an outcome of a spontaneous double hydrometallation of the two CH=N imine moieties induced by N→M intramolecular coordination (M=Si, Ge) in the absence of any catalyst. In contrast, the diorganotin hydride L2SnH2 (6) is redox-unstable and the reduction of the tin centre with the elimination of H2 provided the C,N-chelated homoleptic stannylene L2Sn (10). Compounds 7 and 8 were characterised by NMR spectroscopy and X-ray diffraction analysis. Because the proposed N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si (4), Ge (5), Sn (6)] revealed two different types of reduction reactions, DFT calculations were performed to gain an insight into the structures and bonding of the non-isolable diorganometallic hydrides as well as the products of their subsequent reactions. Furthermore, the thermodynamic profiles of the different reaction pathways with respect to the central metal atom were also investigated.

  20. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): on-line generation of plumbane using potassium hexacyanomanganate(III).

    Science.gov (United States)

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha

    2013-01-25

    A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K(3)Mn(CN)(6), as an additive to facilitate the generation of plumbane (PbH(4)). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO(3) and H(2)SO(4). The solutions prepared in 1% v/v H(2)SO(4) were found to be stable for over a period of 24h. The least suitable medium was 1% v/v HNO(3). For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed on-line along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH(4)). A concentration of 0.5% m/v K(3)Mn(CN)(6) facilitated the generation of PbH(4) remarkably. In comparison to H(2)SO(4), HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL(-1) levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL(-1) Cu were alleviated by increasing the concentration of K(3)Mn(CN)(6) to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3s) was 0.008 μg L(-1) for (208)Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL(-1) Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS.

  1. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  2. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.

  3. Aerosol generation of As and Se hydrides using a new Flow Blurring® multiple nebulizer for sample introduction in inductively coupled plasma optical emission spectrometry

    OpenAIRE

    Pereira, Catarinie D.; Aguirre Pastor, Miguel Ángel; NÓBREGA, Joaquim A.; Hidalgo Núñez, Montserrat; Canals Hernández, Antonio

    2014-01-01

    A new Flow Blurring® multiple nebulizer (FBMN) has been used for the efficient generation of As and Se hydrides directly into the aerosol formed inside the spray chamber before detection by inductively coupled plasma optical emission spectrometry (ICP OES). The FBMN allowed the hydride generation directly into the spray chamber without using any additional device either for solution and gas control or for gas phase separation. Synthetic solutions containing As and Se plus Ca, Mg and K were us...

  4. Determination of inorganic species of Sb and Te in cereals by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Mariela N.M.; Cervera, Maria L.; Guardia, Miguel de la, E-mail: m.luisa.cervera@uv.e [University of Valencia, Valencia (Spain). Dept. of Analytical Chemistry

    2011-07-01

    A non-chromatographic fast, sensitive and easy method has been developed for the determination of Sb(III), Sb(V), Te(IV) and Te(VI) in cereal samples. The procedure is based on ultrasound assisted extraction and determination by hydride generation atomic fluorescence spectrometry (HG AFS). Preliminary studies were made in order to get the best extraction efficiency using 1 mol L{sup -1} phosphoric acid, 1 mol L{sup -1} nitric acid, aqua regia, 1 mol L{sup -1} sulfuric acid and 6 mol L{sup -1} hydrochloric acid. The extraction with aqua regia showed a clear interconversion of the species during the process, being H{sub 2}SO{sub 4} the best extractant with efficiencies greater than 90% from the total content of Sb and Te quantified previously and without species interconversion. This point was checked by recovery experiments at different spiked levels. The method provided limits of detection values from 0.1 to 0.5 ng g{sup -1} with relative standard deviation values from 5.4 to 9.2% of 10 independent analysis of samples containing few ng g-1 of Sb and Te species. (author)

  5. Hydrogen Storage Characteristics of Metal Hydro-Borate and Transition Element-Added Magnesium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myoung Youp; Kwak, Young Jun [Chonbuk National University, Jeonju (Korea, Republic of); Park, Hye Ryoung [Chonnam National University, Gwangju (Korea, Republic of)

    2016-07-15

    A metal hydro-borate Zn(BH{sub 4}){sub 2} was prepared by milling ZnCl{sub 2} and NaBH{sub 4} in a planetary ball mill in an Ar atmosphere. This sample contained NaCl. 95 wt% MgH{sub 2}-2.5 wt% Zn(BH{sub 4}){sub 2}-2.5 wt% Ni samples [named MgH{sub 2}-2.5Zn(BH{sub 4}){sub 2}-2.5Ni] were then prepared by milling in a planetary ball mill in a hydrogen atmosphere. The hydrogen absorption and release properties of the prepared samples were investigated. In particular, variations in the initial hydriding and dehydriding rates with temperature were examined. MgH{sub 2}-2.5Zn(BH{sub 4}){sub 2}-2.5Ni dehydrided at the fourth cycle contained Mg, MgO, and small amounts of β-MgH2 and Mg2Ni. The sample after hydriding-dehydriding cycling had a slightly smaller average particle size and a larger BET specific surface area than the sample after milling. Increasing the temperature from 573 K to 623 K led to a decrease in the initial hydriding rate. The initial dehydriding rate increased as the temperature increased from 573 K to 643 K. At 573 K under 12 bar H{sub 2}, the sample absorbed 3.85 wt% H for 2.5 min, 4.60 wt% H for 5 min, 4.64 wt% H for 10 min, and 4.80 wt% H for 60 min. The MgH{sub 2}-2.5Zn(BH{sub 4}){sub 2}-2.5Ni had an effective hydrogen storage capacity (the quantity of hydrogen absorbed for 60 min) of near 5 wt% (4.96 wt% at 593 K).

  6. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tyburska, Anna; Jankowski, Krzysztof, E-mail: kj@ch.pw.edu.pl; Rodzik, Agnieszka

    2011-07-15

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL{sup -1}, respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  7. Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Wan, Zhuo; Xu, Zhangrun; Wang, Jianhua

    2006-01-01

    A flow injection (FI) on-line solid phase extraction (SPE) procedure for ultra-trace lead separation and preconcentration was developed, followed by hydride generation and atomic fluorescence spectrometric (AFS) detection. Lead is retained on an iminodiacetate chelating resin packed microcolumn, and is afterward eluted with 2.5% (v/v) hydrochloric acid to facilitate the hydride generation by reaction with alkaline tetrahydroborate solution with 1% (m/v) potassium ferricyanide as an oxidizing (or sensitizing) reagent. The hydride was separated from the reaction medium in the gas-liquid separator and swept into the atomizer for quantification. The chemical variables and the FI flow parameters were carefully optimized. With a sample loading volume of 4.8 ml, quantitative retention of lead was obtained, along with an enrichment factor of 11.3 and a sampling frequency of 50 h(-1). A detection limit of 4 ng l(-1), defined as 3 times the blank standard deviation (3 sigma), was achieved along with a RSD value of 1.6% at the 0.4 microg l(-1) level. The procedure was validated by determining lead contents in two certified reference materials, and its practical applicability was further demonstrated by analysing a variety of biological and environmental samples.

  8. Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Asfaw, Alemayehu

    2009-02-01

    Analytical methods have been developed for the simultaneous determination of hydride-forming (As, Sb) and non-hydride-forming (Cr, Mo, V) elements in aqueous samples of a wide pH range (pH 3-13). The methods used dual-mode (DM) sample introduction with ICP-AES and ICP-MS instruments. The effect of selected experimental variables, i.e., sample pH and concentrations of HNO(3), thiourea, and NaBH(4), were studied in a multivariate way using face-centered central composite design (FC-CCD). Compromised optimum values of the experimental parameters were identified using a response optimizer. The statistically found optimum values were verified experimentally. The methods provided improved sensitivities for the hydride-forming elements compared with the respective conventional nebulization (Neb) systems by factors of 67 (As) and 64 (Sb) for ICP-AES and 36 (As) and 54 (Sb) for ICP-MS. Slight sensitivity improvements were also observed for the non-hydride-forming elements. The limits of detection (LOD) of As and Sb were lowered, respectively, to 0.8 and 0.9 microg L(-1) with the DM-ICP-AES system and to 0.01 and 0.02 microg L(-1) with the DM-ICP-MS system. The short-term stabilities of both methods were between 2.1 and 5.4%. The methods were applied for the analysis of leachates of a cement mortar material prepared in the pH range 3-13. The elemental concentration of the leachates determined by the two DM methods were statistically compared with the values obtained from Neb-ICP-MS analysis; the values showed good agreement at the 95% confidence level. Quantitative spike recoveries were obtained for the analytes from most of the leachates using both DM methods.

  9. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  10. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ulusoy, Halil Ibrahim, E-mail: hiulusoy@yahoo.com [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey); Akcay, Mehmet; Ulusoy, Songuel; Guerkan, Ramazan [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey)

    2011-10-10

    Graphical abstract: The possible complex formation mechanism for ultra-trace As determination. Highlights: {yields} CPE/HGAAS system for arsenic determination and speciation in real samples has been applied first time until now. {yields} The proposed method has the lowest detection limit when compared with those of similar CPE studies present in literature. {yields} The linear range of the method is highly wide and suitable for its application to real samples. - Abstract: Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 {mu}g L{sup -1} with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03-4.00 {mu}g L{sup -1}. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.

  11. Determination of Inorganic Arsenic Species by Electrochemical Hydride Generation Atomic Absorption Spectrometry with Selective Electrochemical Reduction

    Institute of Scientific and Technical Information of China (English)

    LI Xun; WANG Zheng-Hao

    2007-01-01

    A new direct procedure for the determination of inorganic arsenic species was developed by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS) with selective electrochemical reduction. The determination of inorganic arsenic species is based on the fact that As(Ⅲ) shows significantly higher absorbance at low electrolytic currents than As(Ⅴ) in 0.3 mol·L-1 H2SO4.The electrolytic current used for the determination of As(Ⅲ) without considerable interferences of As(V) was 0.4 A, whereas the current for the determination of As(Ⅲ)and As(V) was 1.2 A. For equal concentrations of As(Ⅲ) and As(V) in a sample, the interferences of As(V) during the As(Ⅲ) determination were smaller than 5%. The absorbance for As(V) could be calculated by subtracting that for As(Ⅲ) measured at 0.4 A from the total absorbance for As(Ⅲ) and As(V) measured at 1.2 A, and then the concentration of As(V) can be obtained by its calibration curve at 1.2 A. The methodology developed provided the detection limits of 0.3 and 0.6 ng·ml-1 for As(Ⅲ) and As(V) respectively.The relative standrad deviations were of 3.5% for 20 ng·ml-1 As(Ⅲ) and 302% for 20 ng·ml-1 As(V).The method was successfully applied to determination of soluble inorganic arsenic species in Chinese medicine.

  12. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  13. Comix, a New Matrix Element Generator

    Energy Technology Data Exchange (ETDEWEB)

    Gleisberg, Tanju; /SLAC; Hoche, Stefan; /Durham U., IPPP

    2008-09-03

    We present a new tree-level matrix element generator, based on the color dressed Berends-Giele recursive relations. We discuss two new algorithms for phase space integration, dedicated to be used with large multiplicities and color sampling.

  14. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode.

    Science.gov (United States)

    Jiang, Xianjuan; Gan, Wuer; Wan, Lingzhong; Deng, Yun; Yang, Qinghua; He, Youzhao

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH(4) and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL(-1) (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL(-1) Sn(IV) standard solution.

  15. Arsenic speciation by hydride generation-quartz furnace atomic absorption spectrometry. Optimization of analytical parameters and application to environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Molenat, N.; Astruc, A.; Holeman, M.; Pinel, R. [Laboratoire de Chimie Analytique Bioinorganique et Environnement, Dept. de Chimie, Faculte des Sciences et Techniques, 64 - Pau (France); Maury, G. [Montpellier-2 Univ., 34 (France). Dept. de Chimie Organique Fine

    1999-11-01

    Analytical parameters of hydride generation, trapping, gas chromatography and atomic absorption spectrometry detection in a quartz cell furnace (HG/GC/QFAAS) device have been optimized in order to develop an efficient and sensitive method for arsenic compounds speciation. Good performances were obtained with absolute detection limits in the range of 0.1 - 0.5 ng for arsenite, arsenate, mono-methyl-arsonic acid (MMAA), dimethyl-arsinic acid (DMAA) and trimethyl-arsine oxide (TMAO). A pH selective reduction for inorganic arsenic speciation was successfully reported. Application to the accurate determination of arsenic compounds in different environmental samples was performed. (authors)

  16. Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Potin-Gautier, M. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France); Pannier, F. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France)]. E-mail: Florence.pannier@univ-pau.fr; Quiroz, W. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France); Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile); Pinochet, H. [Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile); Gregori, I. de [Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile)

    2005-11-30

    This work presents the development of suitable methodologies for determination of the speciation of antimony in sediment reference samples. Liquid chromatography with a post-column photo-oxidation step and hydride generation atomic fluorescence spectrometry as detection system is applied to the separation and determination of Sb(III), Sb(V) and trimethylantimony species. Post-column decomposition and hydride generation steps were studied for sensitive detection with the AFS detector. This method was applied to investigate the conditions under which speciation analysis of antimony in sediment samples can be carried out. Stability studies of Sb species during the extraction processes of solid matrices, using different reagents solutions, were performed. Results demonstrate that for the extraction yield and the stability of Sb species in different marine sediment extracts, citric acid in ascorbic acid medium was the best extracting solution for antimony speciation analysis in this matrix (between 55% and 65% of total Sb was recovered from CRMs, Sb(III) being the predominant species). The developed method allows the separation of the three compounds within 6 min with detection limits of 30 ng g{sup -1} for Sb(III) and TMSbCl2 and 40 ng g{sup -1} for Sb(V) in sediment samples.

  17. Tin Content Determination in Canned Fruits and Vegetables by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    Sanda Rončević

    2012-01-01

    Full Text Available Tin content in samples of canned fruits and vegetables was determined by hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-OES, and it was compared with results obtained by standard method of flame atomic absorption spectrometry (AAS. Selected tin emission lines intensity was measured in prepared samples after addition of tartaric acid and followed by hydride generation with sodium borohydride solution. The most favorable line at 189.991 nm showed the best detection limit (1.9 μg L−1 and limit of quantification (6.4 μg kg−1. Good linearity and sensitivity were established from time resolved analysis and calibration tests. Analytical accuracy of 98–102% was obtained by recovery study of spiked samples. Method of standard addition was applied for tin determination in samples from fully protected tinplate. Tin presence at low-concentration range was successfully determined. It was shown that tenth times less concentrations of Sn were present in protected cans than in nonprotected or partially protected tinplate.

  18. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  19. Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation.

    Science.gov (United States)

    Swart, Marcel; Rösler, Ernst; Bickelhaupt, F Matthias

    2006-10-01

    We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 2.0 kcal/mol for the proton affinity at 298 K with respect to experiment, and 1.2 kcal/mol with high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the neutral bases constituted by all maingroup-element hydrides of groups 15-17 and the noble gases, that is, group 18, and periods 1-6. We have also studied the effect of step-wise methylation of the protophilic center of the second- and third-period bases. Copyright 2006 Wiley Periodicals, Inc.

  20. Evaluation of arsenic and selenium in Brazilian soluble coffee by inductively coupled plasma atomic emission spectrometry with hydride generation

    Directory of Open Access Journals (Sweden)

    Santos Éder José dos

    2001-01-01

    Full Text Available A method for the evaluation of arsenic and selenium in soluble coffee by inductively coupled plasma atomic emission spectrometry with continuous hydride generation to attend the Brazilian food legislation is described. Samples were digested with nitric acid and hydrogen peroxide in a focused microwave system. Slow heating eliminated nitric acid and selenium (VI was reduced to selenium (IV by addition of 6 mol/L hydrochloric acid and heating at 90° C under a reflux system. The influence of sample acidity on sensitivity was investigated. Hydrochloric acid 6 mol/L was the most suitable reaction medium. Practical detection limits of 2.0mug/L for As and 1.0mu g/L for Se were achieved and attended the Brazilian food legislation. The results of recoveries on spiked samples demonstrate the reliability and accuracy of the procedure.

  1. Design and evaluation of a continuous flow, integrated nebulizer-hydride generator for flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Miguel Murillo

    2008-01-01

    Full Text Available An evaluation of the performance of a continuous flow hydride generator-nebulizer for flame atomic absorption spectrometry was carried out. Optimization of nebulizer gas flow rate, sample acid concentration, sample and tetrahydroborate uptake rates and reductant concentration, on the As and Se absorbance signals was carried out. A hydrogen-argon flame was used. An improvement of the analytical sensitivity relative to the conventional bead nebulizer used in flame AA was obtained (2 (As and 4.8 (Se µg L-1. Detection limits (3σb of 1 (As and 1.3 (Se µg L-1 were obtained. Accuracy of the method was checked by analyzing an oyster tissue reference material.

  2. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Deng Yun; Yang Qinghua; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH{sub 4} and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL{sup -1} (3{sigma}) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL{sup -1} Sn(IV) standard solution.

  3. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  4. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Deng, Biyang; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    To understand the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system, the intermediate products produced in the reaction of lead(II) and NaBH4 in the presence of K3Fe(CN)6 were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH4; (2) the black Pb is oxidized by K3Fe(CN)6 to form Pb2[Fe(CN)6], which further reacts with NaBH4 to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K3Fe(CN)6 to form more Pb2[Fe(CN)6] complex, which would produce more plumbane. In short, the black Pb and Pb2[Fe(CN)6] complex are the key intermediate products for the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L(-1). The linearity range of lead was found between 0.3 and 50,000 μg L(-1) with correlation coefficient of 0.9993. The recovery of lead was determined as 97.6% (n=5) for adding 10 μg L(-1) lead into the milk sample.

  5. A New Reducing Regent: Dichloroindium Hydride

    Institute of Scientific and Technical Information of China (English)

    A. BABA; I. SHIBATA; N. HAYASHI

    2005-01-01

    @@ 1Introduction Among the hydride derivatives of group 13 elements, various types of aluminum hydrides and boron hydrides have been employed as powerful reduction tools. Indium hydrides have not received much attention,whereas the synthesis of indium trihydride (InH3) was reported several decades ago[1]. There have been no precedents for monometallic indium hydrides having practical reactivity, while activated hydrides such as an ate complex LiPhn InH4-n (n = 0- 2) and phosphine-coordinated indium hydrides readily reduce carbonyl compounds. In view of this background, we focused on the development of dichloroindium hydrides (Cl2InH) as novel reducing agents that bear characteristic features in both ionic and radical reactions.

  6. Method of producing a chemical hydride

    Science.gov (United States)

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  7. Enhanced Hydrogen Generation Properties of MgH2-Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer

    Directory of Open Access Journals (Sweden)

    Liuzhang Ouyang

    2015-05-01

    Full Text Available Due to its relatively low cost, high hydrogen yield, and environmentally friendly hydrolysis byproducts, magnesium hydride (MgH2 appears to be an attractive candidate for hydrogen generation. However, the hydrolysis reaction of MgH2 is rapidly inhibited by the formation of a magnesium hydroxide passivation layer. To improve the hydrolysis properties of MgH2-based hydrides we investigated three different approaches: ball milling, synthesis of MgH2-based composites, and tuning of the solution composition. We demonstrate that the formation of a composite system, such as the MgH2/LaH3 composite, through ball milling and in situ synthesis, can improve the hydrolysis properties of MgH2 in pure water. Furthermore, the addition of Ni to the MgH2/LaH3 composite resulted in the synthesis of LaH3/MgH2/Ni composites. The LaH3/MgH2/Ni composites exhibited a higher hydrolysis rate—120 mL/(g·min of H2 in the first 5 min—than the MgH2/LaH3 composite— 95 mL/(g·min—without the formation of the magnesium hydroxide passivation layer. Moreover, the yield rate was controlled by manipulation of the particle size via ball milling. The hydrolysis of MgH2 was also improved by optimizing the solution. The MgH2 produced 1711.2 mL/g of H2 in 10 min at 298 K in the 27.1% ammonium chloride solution, and the hydrolytic conversion rate reached the value of 99.5%.

  8. [Determination of arsenic, mercury and selenium in Gynostemma pentaphyllum and rhizospheric soil samples collected from different regions by hydride generation atomic fluorescence spectrometry].

    Science.gov (United States)

    Wang, Jing; Xiao, Ya-ping; Liang, Xiao-qing; Shao, Xian-hui; Zhang, Ke

    2012-03-01

    The contents of arsenic (As), mercury (Hg) and selenium (Se) in Gynostemma pentaphyllum and rhizospheric soil samples collected from seven provinces were determined, through the optimization of the hydride generation atomic fluorescence spectrometry working conditions. The results show that: the contents of As, Hg and Se in Gynostemma pentaphyllum from seven provinces revealed large differences, but compared with the limits of the two kinds of heavy metal element: As and Hg set by the Green Trade Standards of Importing & Exporting Medicinal Plants & Preparations (As Gynostemma pentaphyllum samples are both lower than them. The Se content in Gynostemma pentaphyllum samples and in rhizospheric soil samples revealed significant correlation, and as a result, the Gynostemma pentaphyllum from the Fu Xi area Enshi in Hu Bei province had obviously higher Se content than others in the 6 provinces. From this study, a preliminary conclusion can be drawn that Se in Gynostemma pentaphyllum is mainly from the soil, moreover, the As and Hg show the difference from Se, possibly they are still affected by the dry and wet deposition of atmospheric aerosols.

  9. Preliminary results on the determination of ultratrace amounts of cadmium in tea samples using a flow injection on-line solid phase extraction separation and preconcentration technique to couple with a sequential injection hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Duan, Taicheng; Song, Xuejie; Jin, Dan; Li, Hongfei; Xu, Jingwei; Chen, Hangting

    2005-10-31

    In this work, a method was developed for determination of ultra-trace levels of Cd in tea samples by atomic fluorescence spectrometry (AFS). A flow injection solid phase extraction (FI-SPE) separation and preconcentration technique, to on-line couple with a sequential injection hydride generation (SI-HG) technique is employed in this study. Cd was preconcentrated on the SPE column, which was made from a neutral extractant named Cyanex 923, while other matrix ions or interfering ions were completely or mostly separated off. Conditions for the SPE separation and preconcentration, as well as conditions for the HG technique, were studied. Due to the separation of interfering elements, Cd hydride generation efficiency could be greatly enhanced with the sole presence of Co(2+) with a concentration of 200mugL(-1), which is much lower than those in other works previously reported. Interferences on both the Cd separation and preconcentration, and Cd hydride generation (HG) were investigated; it showed that both the separation and preconcentration system, and the HG system had a strong anti-interference ability. The SPE column could be repeatedly used at least 400 times, a R.S.D. of 0.97% was obtained for 6 measurements of Cd with 0.2mugL(-1) and a correlation coefficiency of 1.0000 was obtained for the measurement of a series of solutions with Cd concentrations from 0.1 to 2mugL(-1). The method has a low detection limit of 10.8ngL(-1) for a 25mL solution and was successfully validated by using two tea standard reference materials (GBW08513 and GBW07605).

  10. Determination of lead in wine by hydride generation atomic fluorescence spectrometry in the presence of hexacyanoferrate(III).

    Science.gov (United States)

    Karadjova, Irina B; Lampugnani, Leonardo; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L

    2007-06-01

    A rapid, accurate, and precise method is described for the determination of Pb in wine using continuous-flow hydride generation atomic fluorescence spectrometry (CF-HGAFS). Sample pretreatment consists of ten-fold dilution of wine followed by direct plumbane generation in the presence of 0.1 mol L(-1) HCl and 1% m/v K(3)[Fe(CN)(6)] with 1% m/v NaBH(4) as reducing agent. An aqueous standard calibration curve is recommended for Pb quantification in wine sample. The method provides a limit of detection and a limit of quantification of 0.3 microg L(-1) and 1 microg L(-1), respectively. The relative standard deviation varies between 2-6% (within-run) and 4-11% (between-run) at 3-30 microg L(-1) Pb levels in wine. Good agreement has been demonstrated between results obtained by CF-HGAFS and direct electrothermal atomic absorption spectrometry in analyses of red and white wines within the concentration range of 9.2-25.8 microg L(-1) Pb.

  11. Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry.

    Science.gov (United States)

    Elçi, Latif; Arslan, Zikri; Tyson, Julian F

    2009-03-15

    A method for direct determination of lead in wine and rum samples was developed, using a flow injection hydride generation system coupled to an atomic absorption spectrometer with flame-quartz atomizer (FI-HG-AAS). Lead hyride (PbH(4)) was generated using potassium ferricyanide (K(3)Fe(CN)(6)), as oxidant and sodium tetrahydroborate (NaBH(4)) as reductant. Samples were acidified to 0.40% (v/v) HCl for wine and to 0.30% (v/v) HCl for rum, which were then mixed on-line with 3% (m/v) K(3)Fe(CN)(6) solution in 0.03% (v/v) HCl prior to reaction with 0.2% (m/v) alkaline NaBH(4) solution. Lead contents of a rum and two different red wine samples were determined by FI-HG-AAS agreed with those obtained by ICP-MS. The analytical figures of merit of method developed were determined. The calibration curve was linear up to 8.0 microg L(-1) Pb with a regression coefficient of 0.998. The relative error was lower than 4.58%. The relative standard deviation (n=7) was better than 12%. A detection limit of 0.16 microg L(-1) was achieved for a sample volume of 170 microL.

  12. Determination of trace selenium in high purity tellurium by hydride generation atomic fluorescence spectrometry after solid phase extraction of a diaminobenzidine-selenium chelate

    Science.gov (United States)

    Tong, Wang; Ying, Zeng; Jinyong, Xu

    2016-09-01

    Macroporous adsorption resin was used as the sorbent for solid phase extraction and determination of the trace Se content in high purity tellurium prior to hydride generation atomic fluorescence spectrometry analysis. Selenium was converted into an organic Se chelate using 3,3‧-diaminobenzidine and was separated from the tellurium matrix by solid phase extraction. The resin was packed as a column for solid phase extraction. Under optimum conditions, trace Se can be quantitatively extracted and the tellurium matrix can be removed. The Se in the eluate was determined by hydride generation atomic fluorescence spectrometry. The limit of detection (3σ) of this method was 0.22 ng g- 1 and the relative standard deviation (RSD, n = 5) ranged from 2.0 to 2.5% for the three investigated tellurium samples. The proposed method was successfully applied for the determination of the trace Se content in high purity tellurium samples.

  13. [Determination of trace lead in traditional Chinese herbal medicine Astragalus by microwave digestion-CTAB enhancing-continual flow ingection hydride generation-ICP-AES].

    Science.gov (United States)

    Liu, Dong-Lian; Ke, Shao-Ying; Ye, Rong; Ding, Ming-Yu

    2007-11-01

    A new method using microwave digestion technique was developed for the determination of lead in Astragalus by CTAB enhancing-continual flow hydride generation-inductively coupled plasma atomic emission spectrometry (HG-ICP-AES). The experimental conditions of microwave digestion and hydride generation were optimized. This method shows a linear range of 0.23-800 microg x L(-1) and the correlation coefficient is 0.999 9. It is satisfactory to apply the microwave digestion procedure to the determination of Pb under the optimized conditions. The detection limit of the method is 0.23 microg x L(-1) and the RSD is 1.02%. The recovery obtained is 98.8%-100.1%. The results show that this method is rapid and simple with low environmental contamination and complete digestion of samples.

  14. Determination of Mecruy at Trace Level in Natural Water Samples by Hydride Generation Atomic Absorption Spectrophotometry after Cloud Point Extraction Preconcentration

    Institute of Scientific and Technical Information of China (English)

    Ji Ying SONG; Ming HOU; Li Xiang ZHANG

    2006-01-01

    A method for the determination of trace mercury in water samples by hydride generation atomic absorption spectrophotometry after cloud point extraction was proposed in the present work.The effects of pH, concentration of surfactant, and equilibration time on cloud point extraction were discussed. The enhancement factor of 20 and the detection limit of 0.039 μg/L were obtained for mercury with relative standard deviation of 4.8% (n = 11).

  15. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  16. Determination of total arsenic in coal and wood using oxygen flask combustion method followed by hydride generation atomic absorption spectrometry.

    Science.gov (United States)

    Geng, Wenhua; Furuzono, Takuya; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2010-04-15

    A simple and sensitive procedure for the determination of total arsenic in coal and wood was conducted by use of oxygen flask combustion (OFC) followed by hydride generation atomic absorption spectrometry (HGAAS). The effect of various items (composition of absorbent, standing time between the combustion and filtration, particle size and mass of sample) was investigated. Under the optimized conditions of the OFC method, nine certified reference materials were analyzed, and the values of arsenic concentration obtained by this method were in good accordance with the certified values. The limit of detection (LOD) and relative standard deviation (RSD) of the method were 0.29 microg g(-1) and less than 8%, respectively. In addition, eight kinds of coals and four chromated copper arsenate (CCA)-treated wood wastes were analyzed by the present method, and the data were compared to those from the microwave-acid digestion (MW-AD) method. The determination of arsenic in solid samples was discussed in terms of applicable scope and concentration range of arsenic.

  17. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    Science.gov (United States)

    Li, Shan; Wang, Mei; Zhong, Yizhou; Zhang, Zehua; Yang, Bingyi

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea-ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries.

  18. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    Science.gov (United States)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  19. Determination of arsenic speciation in sulfidic waters by Ion Chromatography Hydride-Generation Atomic Fluorescence Spectrometry (IC-HG-AFS).

    Science.gov (United States)

    Keller, Nicole S; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    A method for the analysis of arsenic species in aqueous sulfide samples is presented. The method uses an ion chromatography system connected with a Hydride-Generation Atomic Fluorescence Spectrometer (IC-HG-AFS). With this method inorganic As(III) and As(V) species in water samples can be analyzed, including arsenite (HnAs(III)O3(n-3)), thioarsenite (HnAs(III)S3(n-3)), arsenate (HnAs(V)O4(n-3)), monothioarsenate (HnAs(V)SO3(n-3)), dithioarsenate (HnAs(V)S2O2(n-3)), trithioarsenate (HnAs(V)S3O(n-3)) and tetrathioarsenate (HnAs(V)S4(n-3)). The peak identification and retention times were determined based on standard analysis of the various arsenic compounds. The analytical detection limit was ~1-3 µg L(-1) (LOD), depending on the quality of the baseline. This low detection limit makes this method also applicable to discriminate between waters meeting the drinking water standard of max. 10 µg L(-1) As, and waters that do not meet this standard. The new method was successfully applied for on-site determination of arsenic species in natural sulfidic waters, in which seven species were unambiguously identified.

  20. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jianhua [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Wang Qiuquan [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)]. E-mail: qqwang@xmu.edu.cn; Ma Yuning [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Yang Limin [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Huang Benli [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2006-07-15

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH{sub 4}/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL{sup -1} when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL{sup -1}, respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.

  1. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Biyang, E-mail: dengby16@163.com; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K{sub 3}Fe(CN){sub 6} in plumbane generation. • Clarified the controversial aspects in the mechanism of K{sub 3}Fe(CN){sub 6} enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K{sub 3}Fe(CN){sub 6} and K{sub 4}Fe(CN){sub 6} as new additives. - Absract: To understand the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system, the intermediate products produced in the reaction of lead(II) and NaBH{sub 4} in the presence of K{sub 3}Fe(CN){sub 6} were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH{sub 4}; (2) the black Pb is oxidized by K{sub 3}Fe(CN){sub 6} to form Pb{sub 2}[Fe(CN){sub 6}], which further reacts with NaBH{sub 4} to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K{sub 3}Fe(CN){sub 6} to form more Pb{sub 2}[Fe(CN){sub 6}] complex, which would produce more plumbane. In short, the black Pb and Pb{sub 2}[Fe(CN){sub 6}] complex are the key intermediate products for the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L{sup −1}. The linearity range of lead was found between 0.3 and 50,000 μg L{sup −1} with correlation coefficient of 0

  2. Determination of Phosphorus by Inductively Coupled Plasma Atomic Emission Spectroscopy after Hydride Generation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A continuous phosphine (PH3) generation was developed and applied to the sensitive detection of phosphorus by ICP-AES. Phosphate ion in aqueous solution was converted to phosphine by passing the sample solution through an incandescent copper silica-tube. Detection limit is 2 ng/mL. The relative standard deviation is 4.2% for 20 ng/mL. The method is rapid and simple with low contamination and high sensitivity.

  3. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shan, E-mail: ls_tuzi@163.com; Wang, Mei, E-mail: wmei02@163.com; Zhong, Yizhou, E-mail: yizhz@21cn.com; Zhang, Zehua, E-mail: kazuki.0101@aliyun.com; Yang, Bingyi, E-mail: e_yby@163.com

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea–ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries. - Highlights: • Cloud point extraction was firstly established to determine trace inorganic arsenic(As) species combining with HGAFS. • Separate As(III) and As(V) determinations improve the accuracy. • Ultrasonic release of complexed As(V) enables complete As(V) reduction to As(III). • Direct HGAFS analysis can be performed.

  4. Simple decomposition procedure for determination of selenium in whole blood, serum and urine by hydride generation atomic absorption spectroscopy.

    Science.gov (United States)

    Tiran, B; Tiran, A; Rossipal, E; Lorenz, O

    1993-12-01

    A digestion procedure for selenium determination by hydride generation atomic absorption spectroscopy (AAS) in whole blood, serum and urine is described, it employs sulfuric acid, hydrogen peroxide and vanadium (V) sulfuric acid reagent solution. The method is rapid, uses no explosive reagents and can be performed at a constant temperature of 100 degrees C. Therefore, it is easily applicable in a routine clinical laboratory for a large amount of samples. The coefficient of intra-assay variation was 4.3-5.6%, the coefficient for inter-assay variation was 5-5.9% in the medium and high concentration range, and 5.8-8.6% in the low range. In analyzing several commercial reference materials our results showed good agreement with the target values. Analytical recovery by addition of sodium selenite and seleno-DL-methionine to samples ranged between 97 and 104%. The correlation between the described digestion procedure and the nitric, sulfuric and perchloric acid digestion procedure recommended by the International Union of Pure and Applied Chemistry showed good agreement for whole blood, serum and for urine. We determined selenium in serum (n = 58) and whole blood (n = 50) in a collective of healthy children from 1 to 5 years living in Styria, Austria. The low values in serum (35 +/- 11 micrograms/L) and whole blood (42 +/- 6 micrograms/L) at one year of life increased significantly to 48 +/- 13 mu/L (p = 0.033) and 55 +/- 6 micrograms/L (p = 0.004) at three years of life in serum and whole blood, respectively. The selenium concentration showed no further increase up to five years of age.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Hyphenating multisyringe flow injection lab-on-valve analysis with atomic fluorescence spectrometry for on-line bead-injection preconcentration and determination of trace levels of hydride-forming elements in environmental samples

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    of the functional moieties, so that maximum benefit can be taken from the application of the bead renewal strategy. The proposed procedure is characterized by a high tolerance to metal species and interfering hydride forming elements. In fact, ratios of Se(IV) to As ≤ 5000 and Sb(V) to As ≤ 500 are tolerated...

  6. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    Science.gov (United States)

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.

  7. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  8. Quantitation of toxic arsenic species and arsenobetaine in Pacific oysters using an off-line process with hydride generation-atomic absorption spectroscopy.

    Science.gov (United States)

    Hsiung, Tung-Ming; Huang, Chia-Wei

    2006-04-05

    An off-line process-based speciation technique was devised here to quantitatively determine toxic inorganic arsenic (iAs), methylarsonic acid (MA), dimethylarsinic acid (DMA), and the dominant, albeit virtually nontoxic, arsenobetaine (AB) in Pacific oysters (Crassostrea gigas). Oysters were extracted with fresh methanol-water (8+2), and this was replicated three times. They were then evaporated to near dryness and subsequently redissolved in pure water; defatting was then performed with a C18 cartridge. The trace hydride active arsenic species, that is, iAs, MA, and DMA, in the defatted solutions were determined with a sensitive hydride generation-packed coldfinger trap-atomic absorption spectrometric (HG-PCFT-AAS) coupled system. The arsenicals that were desorbed from the cation-exchange resin (Dowex 50W-X8) in the washings of 4 M NH3 were categorized on the basis of AB + DMA. The total quantity of arsenic in the recovered AB + DMA was determined with a commercial hydride generation-atomic absorption spectrometric (HG-AAS) system, and finally, AB was calculated from (AB + DMA) - DMA. The average concentrations of iAs, MA, DMA, AB, and total arsenic (TAs) in the oysters collected from six aquacultural sites along the west coast of Taiwan were, respectively, 0.15, 0.06, 0.64, 6.93, and 13.74 mg kg(-1) of dry weight. AB was the major species, whereas iAs (arsenite + arsenate) were the most toxic species, although the iAs made up only approximately 1% of the TAs in the oysters. The lifetime target cancer risk, as determined by the concentration of iAs on a fresh weight basis in the oysters, was well below the ordinary health protection criteria (10(-6)).

  9. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  10. Next Generation Energetic Materials: New Cluster Hydrides and Metastable Alloys of Aluminum in Very Low Oxidation States

    Science.gov (United States)

    2016-10-01

    studies (M = Mg, Au, Sn, Mo, Ni, Zn) that preliminarily show similarities to the solution chemistry (Fig. 1c). These results show that AlM hydrides and...oxidation chemistry and thermodynamics. Our studies on the oxidation of Li2Al3(PPh2)61- showed that initial reactivity occurs at the reduced...nanoparticle nucleation on functionalized graphene surfactants from aluminum monochloride solutions. This data shows a strong affinity of AlCl units for

  11. Application of multivariate techniques in the optimization of a procedure for the determination of bioavailable concentrations of Se and As in estuarine sediments by ICP OES using a concomitant metals analyzer as a hydride generator.

    Science.gov (United States)

    Lopes, Watson da Luz; Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida

    2009-10-15

    A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd(2+), Co(2+), Cu(2+), Fe(3+) and Ni(2+)) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 microg kg(-1), respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n=10), was 0.2% for both selenium and arsenic in 200 microg L(-1) solutions, which corresponds to 10 microg g(-1) in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 microg g(-1) was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.

  12. Determination of total Sb,Se Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation-atomic-fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matos Reyes, M.N.; Cervera, M.L.; Guardia, M. de la [University of Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain)

    2009-07-15

    A sensitive and simple analytical method has been developed for determination of Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), Te(VI), and Bi(III) in garlic samples by using hydride-generation-atomic-fluorescence spectrometry (HG-AFS). The method is based on a single extraction of the inorganic species by sonication at room temperature with 1 mol L{sup -1} H{sub 2}SO{sub 4} and washing of the solid phase with 0.1% (w/v) EDTA, followed by measurement of the corresponding hydrides generated under two different experimental conditions directly and after a pre-reduction step. The limit of detection of the method was 0.7 ng g{sup -1} for Sb(III), 1.0 ng g{sup -1} for Sb(V), 1.3 ng g{sup -1} for Se(IV), 1.0 ng g{sup -1} for Se(VI), 1.1 ng g{sup -1} for Te(IV), 0.5 ng g{sup -1} for Te(VI), and 0.9 ng g{sup -1} for Bi(III), in all cases expressed in terms of sample dry weight. (orig.)

  13. Organotin speciation in environmental matrices by automated on-line hydride generation-programmed temperature vaporization-capillary gas chromatography-mass spectrometry detection.

    Science.gov (United States)

    Serra, H; Nogueira, J M F

    2005-11-11

    In the present contribution, a new automated on-line hydride generation methodology was developed for dibutyltin and tributyltin speciation at the trace level, using a programmable temperature-vaporizing inlet followed by capillary gas chromatography coupled to mass spectrometry in the selected ion-monitoring mode acquisition (PTV-GC/MS(SIM)). The methodology involves a sequence defined by two running methods, the first one configured for hydride generation with sodium tetrahydroborate as derivatising agent and the second configured for speciation purposes, using a conventional autosampler and data acquisition controlled by the instrument's software. From the method-development experiments, it had been established that injector configuration has a great effect on the speciation of the actual methodology, particularly, the initial inlet temperature (-20 degrees C; He: 150 ml/min), injection volume (2 microl) and solvent characteristics using the solvent venting mode. Under optimized conditions, a remarkable instrumental performance including very good precision (RSD CRM 462, Nr. 330 dibutyltin: 68+/-12 ng/g; tributyltin: 54+/-15 ng/g on dry mass basis), using liquid-liquid extraction (LLE) and solid-phase extraction (SPE) sample enrichment and multiple injections (2 x 5 microl) for sensitivity enhancement. The methodology evidenced high reproducibility, is easy to work-up, sensitive and showed to be a suitable alternative to replace the currently dedicated analytical systems for organotin speciation in environmental matrices at the trace level.

  14. Boron Hydrides

    Science.gov (United States)

    1946-07-01

    of direct interest could be b.P.4d. ’Thus the discovory of a now proj.ect, since silano is probably too readily infla-zmablo for practical usc’ this...devoted, ho specc4fie compounds vhitih a’-ould be tocdte at prescnt arc: nron tiy * silano , %;2.SiFi3 , diothyl sila~no, (C2 115 )2 Si112, mono r.-rop; ! (n...Bcrohydrido or Li h.... I .A-4A- The prepuation of Silano med of Stannane by the interaction or lithium aluzirun hydride v-ithl silicon tetrtchiorido and

  15. G2(+)M study on N-alkylamino cation affinities of neutral main-group element hydrides: trends across the periodic table.

    Science.gov (United States)

    Geng, Song; Wu, Ding-Lu; Yang, Jing; Wei, Xi-Guang; Zhu, Jun; Zhang, Hai-Bo; Ren, Yi; Lau, Kai-Chung

    2014-05-08

    We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15-17 and periods 2-4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of H(n)X. Our calculations show that the AMCA and NDMAMCA are systematically lower than the corresponding proton affinities (PA) for H(n)X. In general, there is no linear correlation between NAAMCA and PA of H(n)X. Instead, the correlations exist only within the central elements X in period 2, or periods 3-4, which is significantly different from the reasonable correlations between ACA and PA for all H(n)X. NAAMCA (H(n)X) are weaker than NAAMCA (H(n-1)X(-)) by more than 700 kJ/mol and generally stronger than ACA (H(n)X), with three exceptions: H2ONR2(+)(R = H, Me) and HFNH2(+). These new findings can be rationalized by the negative hyperconjugation and Pauli repulsion.

  16. Thermodynamic Hydricity of Transition Metal Hydrides.

    Science.gov (United States)

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  17. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  18. Determination of Trace Germanium in Marine Sediments by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS)

    Institute of Scientific and Technical Information of China (English)

    LI Jing; ZHAO Shilan; ZHANG Zhaohui; ZENG Xianjie

    2004-01-01

    A method for the analysis of trace germanium in marine sediments by HG-AFS has been investigated. The experimental conditions such as the acidity of reduction reaction, the amount of sodium boro-hydride, the carrier gas flow rate, etc., were tested and optimized by using a kind of orthogonal design. The detection limit of the presented method is 0.95 μg L-1 for germanium. The calibration curve shows a satisfactory line in the concentration range 0-320 μg L-1 Ge with a variation coefficient of ±2.1%.

  19. Development of an analytical method for the determination of arsenic in gasoline samples by hydride generation-graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene M. [Universidade Federal do Pampa, Bage, RS (Brazil); Universidade Federal de Pelotas, Pelotas, RS (Brazil); Dessuy, Morgana B.; Boschetti, Wiliam [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil)

    2012-05-15

    The purpose of the present work was to optimize the conditions for the determination of arsenic in gasoline with hydride generation-graphite furnace atomic absorption spectrometry after acid digestion using a full two-level factorial design with center point. The arsine was generated in a batch system and collected in a graphite tube coated with 150 {mu}g Ir as a permanent modifier. The sample volume, the pre-reduction conditions, the temperature program and modifier mass were kept fixed for all experiments. The estimated main effects were: reducing agent concentration (negative effect), acid concentration (negative effect) and trapping temperature (positive effect). It was observed that there were interactions between the variables. Moreover, the curvature was significant, indicating that the best conditions were at the center point. The optimized parameters for arsine generation were 2.7 mol L{sup -1} hydrochloric acid and 1.6% (w/v) sodium tetrahydroborate. The optimized conditions to collect arsine in the graphite furnace were a trapping temperature of 250 Degree-Sign C and a collection time of 30 s. The limit of detection was 6.4 ng L{sup -1} and the characteristic mass was 24 pg. Two different systems for acid digestion were used: a digester block with cold finger and a microwave oven. The concentration of arsenic found with the proposed method was compared with that obtained using a detergentless microemulsion and direct graphite furnace determination. The results showed that the factorial design is a simple tool that allowed establishing the appropriate conditions for sample preparation and also helped in evaluating the interaction between the factors investigated. - Highlights: Black-Right-Pointing-Pointer We determined As in gasoline using hydride generation-graphite furnace AAS. Black-Right-Pointing-Pointer We compared three sample preparation procedures. Black-Right-Pointing-Pointer A multivariate approach was used to optimize the conditions. Black

  20. Finite Element Program Generator and Its Application in Engineering

    Institute of Scientific and Technical Information of China (English)

    WANShui; HUHong; CHENJian-pin

    2004-01-01

    A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.

  1. Key elements for designing a strategy to generate social and ...

    African Journals Online (AJOL)

    Key elements for designing a strategy to generate social and environmental value: ... and commercial entities strive for exemplary corporate social responsibility. ... Keywords: design, events, innovation, hospitality sustainability, strategy, trends ...

  2. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  3. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    remain constant in the tensile direction during the second precipitation regime. This could be due to the fact that the face of reoriented hydride platelet is in compression once these platelets have grown to a sufficient size. The second goal of this study was to perform a spatially resolved study of the effect of a stress concentration such as a notch or a crack on hydride reorientation. Using SEM and image analysis, it was found that a sharp crack induces a different hydride microstructure than a blunt notch. In the case of sharp crack, hydrides are more localized and align more with the defect than for blunt notches. The hydride connectivity also increases close to a stress concentration which will assist in crack propagation during DHC. Using TEM, the microstructure of hydrides grown near crack tips were observed to be similar to that of circumferential hydrides grown in the bulk. The orientation relationship studied with SEM and micro-X-ray diffraction was found to be in most cases δ(111)// α(0002) for hydrides grown both near and far from stress concentrations. Using the same micro-X-ray diffraction technique local hydride and matrix elastic strains were measured and observed to vary significantly from grain to grain. It was however observed that hydrides grown close to the stress concentration are in tension in the face of the platelet, similar to reoriented hydrides, while those grown far from the stress concentration are in tension, similar to circumferential hydrides. The orders of magnitude of the measured strains in the hydrides and the zirconium matrix compared well to those predicted by finite element models. This study shows that it is possible to study hydride dissolution and precipitation in-situ using time-dependent techniques. It was found that the precipitation temperature is lowered by hydride reorientation. The evolution of hydride strains during precipitation was found to be different for unstressed, stressed and reoriented hydrides. The

  4. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  5. Simultaneous determination of p-arsanilic acid and roxarsone in feed by liquid chromatography-hydride generation online coupled with atomic fluorescence spectrometry.

    Science.gov (United States)

    Liu, Jianjing; Yu, Hongxia; Song, Haibin; Qiu, Jing; Sun, Fengmei; Li, Ping; Yang, Shuming

    2008-08-01

    A novel, simple and sensitive liquid chromatography-hydride generation online coupled with atomic fluorescence spectrometry (LC-HG-AFS) method was developed for simultaneous determination of p-arsanilic acid (p-ASA) and roxarsone in feed. 20% Methanol aqueous was used as extraction reagent, after preprocessing samples by ultrasonic oscillation, then injected into the chromatography Waters symmetry shield RP18 analytical column (150mm x 4.6mm, 5 microm), finally detected by an atomic fluorescence spectrometer. The calibration curves of analyses were linear over a range of concentrations (0.2-4mg L-1 and the correlation coefficients were higher than 0.9990. The limits of detection were 0.2 mg L-1. The method has been validated by linearity, precision and recovery. p-ASA and roxarsone in feed can be successfully and simultaneously determined using the developed method without a tedious pretreatment procedure.

  6. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost-perform...

  7. A renewed search for short-lived 126Sn in the early Solar System: Hydride generation MC-ICPMS for high sensitivity Te isotopic analysis

    Science.gov (United States)

    Brennecka, Gregory A.; Borg, Lars E.; Romaniello, Stephen J.; Souders, Amanda K.; Shollenberger, Quinn R.; Marks, Naomi E.; Wadhwa, Meenakshi

    2017-03-01

    Although there is limited direct evidence for supernova input into the nascent Solar System, many models suggest it formed by the gravitational collapse of a molecular cloud that was triggered by a nearby supernova. Existing lines of evidence, mostly in the form of short-lived radionuclides present in the early Solar System, are potentially consistent with this hypothesis, but still allow for alternative explanations. Since the natural production of 126Sn is thought to occur only in supernovae and this isotope has a short half-life (126Sn→126Te, t1/2 = 235 ky), the discovery of extant 126Sn would provide unequivocal proof of supernova input to the early Solar System. Previous attempts to quantify the initial abundance of 126Sn by examining Sn-Te systematics in early solids have been hampered by difficulties in precisely measuring Te isotope ratios in these materials. Thus, here we describe a novel technique that uses hydride generation to dramatically increase the ionization efficiency of Te-an approximately 30-fold increase over previous work. This introduction system, when coupled to a MC-ICPMS, enables high-precision Te isotopic analyses on samples with expected concentrations of Sn and Te, as well as the lack of nucleosynthetic anomalies in other isotopes of Te suggest that the bulk of the Sn and Te recovered from these particular refractory inclusions is not of primary origin and thus does not represent a primary signature of Sn-Te systematics of the protosolar nebula during condensation of CAIs or their precursors. Although no evidence of supernova input was found based on Sn-Te systematics in this sample set, hydride generation represents a powerful tool that can now be used to further explore Te isotope systematics in less altered materials.

  8. System Supporting Automatic Generation of Finite Element Using Image Information

    Institute of Scientific and Technical Information of China (English)

    J; Fukuda

    2002-01-01

    A mesh generating system has been developed in orde r to prepare large amounts of input data which are needed for easy implementation of a finite element analysis. This system consists of a Pre-Mesh Generator, an Automatic Mesh Generator and a Mesh Modifier. Pre-Mesh Generator produces the shape and sub-block information as input data of Automatic Mesh Generator by c arrying out various image processing with respect to the image information of th e drawing input using scanner. Automatic Mesh Generato...

  9. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-01-01

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  10. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-12-31

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  11. Finite Element Meshes Auto-Generation for the Welted Bifurcation

    Institute of Scientific and Technical Information of China (English)

    YUANMei; LIYa-ping

    2004-01-01

    In this paper, firstly, a mathematical model for a specific kind of welted bifurcation is established, the parametric equation for the intersecting curve is resulted in. Secondly, a method for partitioning finite element meshes of the welted bifurcation is put forward, its main idea is that developing the main pipe surface and the branch pipe surface respectively, dividing meshes on each developing plane and obtaining meshes points, then transforming their plane coordinates into space coordinates. Finally, an applied program for finite element meshes auto-generation is simply introduced, which adopt ObjectARX technique and its running result can be shown in AutoCAD. The meshes generated in AutoCAD can be exported conveniently to most of finite element analysis soft wares, and the finite element computing result can satisfy the engineering precision requirement.

  12. Determination of a synchronous generator characteristics via Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kolondzovski Zlatko

    2005-01-01

    Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.

  13. Characterization of hydrides and delayed hydride cracking in zirconium alloys

    Science.gov (United States)

    Fang, Qiang

    This thesis tries to fill some of the missing gaps in the study of zirconium hydrides with state-of-art experiments, cutting edge tomographical technique, and a novel numerical algorithm. A new hydriding procedure is proposed. The new anode material and solution combination overcomes many drawbacks of the AECLRTM hydriding method and leads to superior hydriding result compared to the AECL RTM hydriding procedure. The DHC crack growth velocity of as-received Excel alloy and Zr-2.5Nb alloy together with several different heat treated Excel alloy samples are measured. While it already known that the DHC crack growth velocity increases with the increase of base metal strength, the finding that the transverse plane is the weaker plane for fatigue crack growth despite having higher resistance to DHC crack growth was unexpected. The morphologies of hydrides in a coarse grained Zircally-2 sample have been studied using synchrotron x-rays at ESRF with a new technique called Diffraction Contrast Tomography that uses simultaneous collection of tomographic data and diffraction data to determine the crystallographic orientation of crystallites (grains) in 3D. It has been previously limited to light metals such as Al or Mg (due to the use of low energy x-rays). Here we show the first DCT measurements using high energy x-rays (60 keV), allowing measurements in zirconium. A new algorithm of a computationally effcient way to characterize distributions of hydrides - in particular their orientation and/or connectivity - has been proposed. It is a modification of the standard Hough transform, which is an extension of the Hough transform widely used in the line detection of EBSD patterns. Finally, a basic model of hydrogen migration is built using ABAQUS RTM, which is a mature finite element package with tested modeling modules of a variety of physical laws. The coupling of hydrogen diffusion, lattice expansion, matrix deformation and phase transformation is investigated under

  14. Differential determination of arsenic(III) and arsenic(V), and antimony(III) and antimony-(V) by hydride generation-atomic absorption spectrophotometry, and its application to the determination of these species in sea water

    Science.gov (United States)

    Yamamoto, Manabu; Urata, Keiji; Murashige, Kiyoto; Yamamoto, Yuroku

    A method is described for the differential determination of As(III) and As(V). and Sb(III) and Sb(V) by hydride generation-atomic absorption spectrophotometry with hydrogen-nitrogen flame using sodium borohydride solution as a reductant. For the determination of As(III) and Sb(III), most of the elements, other than Ag +, Cu 2+, Sn 2+, Se 4+ and Te 4+, do not interfere in an at least 30,000 fold excess with respect to As(III) or Sb(III). This method was applied to the determination of these species in sea water and it was found that a sample size of only 100 ml is enough to determine them with a precision of 1.5-2.5%. Analytical results for surface sea water of Hiroshima Bay were 0.72 μgl -1, 0.27 μgl -1 and 0.22 μgl -1 for As(total), As(III) and Sb(total), respectively, but Sb(III) was not detected in the present sample. The effect of acidification on storage was also examined.

  15. 氢化物发生-原子荧光光谱法测定红土镍矿中砷%DETERMINATION OF ARSENIC IN LATERITE NICKEL ORES BY HYDRIDE GENERATION-ATOMIC FLUORESCENCE SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    陈殿耿; 袁玉霞; 何飞顶

    2012-01-01

    提出了以硫脲-抗坏血酸作为还原掩蔽剂,氢化物发生-原子荧光光谱法( HG-AFS)直接测定红土镍矿中砷的方法.考察了测定的最佳条件、共存元素对测定的影响及方法的精密度和回收率.方法适用于红土镍矿中0.005%~0.1%砷的测定.%A method for the determination of arsenic in laterite nickel ores by hydride generation-atomic fluorescence spectrometry (HG-AFS) directly with thiourea-ascorbic acid hydrochloride as masking is proposed. The optimum experimental parameters, the effect of coexistent elements on the determination of arsenic, the precision and recovery of the method are investigated. The method can be applied to the determination of 0. 005% ~ 0. 1% arsenic in laterite nickel ores.

  16. Research and development of peripheral technology for photovoltaic power systems. Study of nickel-hydride storage battery for photovoltaic generation systems; Shuhen gijutsu no kenkyu kaihatsu. Taiyoko hatsuden`yo suiso denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of nickel-hydride storage battery for photovoltaic generation systems in fiscal 1994. (1) On the study on low-cost electrode materials, the physical properties and electrode characteristics were studied of the prototype hydrogen absorbing alloys prepared by substituting Cu or Ni for Co in Mm(Ni-Co-Mn-Al)5 (Mm: mixture of rare earth elements). The result clarified that it is difficult to reduce Co content in the alloy to 0.4 atom or less. Simple heat treatment and milling processes in production of hydrogen absorbing alloy electrodes were achieved by adopting an improved metal mold and gas atomization method. Characteristics and cycle life of the Ni positive electrode prepared by applying active paste material of Ni(OH)2 were studied, however, the result showed only lives of nearly 300 cycles. (2) On the study on electrode structure for high-performance (long-life) battery, the 3-D porous metal electrode support was evaluated, and various battery configurations were studied. 11 figs., 1 tab.

  17. Automatic generation of matrix element derivatives for tight binding models

    Science.gov (United States)

    Elena, Alin M.; Meister, Matthias

    2005-10-01

    Tight binding (TB) models are one approach to the quantum mechanical many-particle problem. An important role in TB models is played by hopping and overlap matrix elements between the orbitals on two atoms, which of course depend on the relative positions of the atoms involved. This dependence can be expressed with the help of Slater-Koster parameters, which are usually taken from tables. Recently, a way to generate these tables automatically was published. If TB approaches are applied to simulations of the dynamics of a system, also derivatives of matrix elements can appear. In this work we give general expressions for first and second derivatives of such matrix elements. Implemented in a tight binding computer program, like, for instance, DINAMO, they obviate the need to type all the required derivatives of all occurring matrix elements by hand.

  18. An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry.

    Science.gov (United States)

    Castor, José Martín Rosas; Portugal, Lindomar; Ferrer, Laura; Hinojosa-Reyes, Laura; Guzmán-Mar, Jorge Luis; Hernández-Ramírez, Aracely; Cerdà, Víctor

    2016-08-01

    A simple, inexpensive and rapid method was proposed for the determination of bioaccessible arsenic in corn and rice samples using an in vitro bioaccessibility assay. The method was based on the preconcentration of arsenic by cloud point extraction (CPE) using o,o-diethyldithiophosphate (DDTP) complex, which was generated from an in vitro extract using polyethylene glycol tert-octylphenyl ether (Triton X-114) as a surfactant prior to its detection by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). The CPE method was optimized by a multivariate approach (two-level full factorial and Doehlert designs). A photo-oxidation step of the organic species prior to HG-AFS detection was included for the accurate quantification of the total As. The limit of detection was 1.34μgkg(-1) and 1.90μgkg(-1) for rice and corn samples, respectively. The accuracy of the method was confirmed by analyzing certified reference material ERM BC-211 (rice powder). The corn and rice samples that were analyzed showed a high bioaccessible arsenic content (72-88% and 54-96%, respectively), indicating a potential human health risk.

  19. Improved microwave-assisted wet digestion procedures for accurate Se determination in fish and shellfish by flow injection-hydride generation-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lavilla, I. [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas - Marcosende s/n, 36310 Vigo (Spain); Gonzalez-Costas, J.M. [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas - Marcosende s/n, 36310 Vigo (Spain); Bendicho, C. [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas - Marcosende s/n, 36310 Vigo (Spain)]. E-mail: bendicho@uvigo.es

    2007-05-22

    Accurate determination of Se in biological samples, especially fish and shellfish, by hydride generation techniques has generally proven troublesome owing to the presence of organoselenium that cannot readily converted into inorganic selenium under usual oxidising conditions. Further improvements in the oxidation procedures are needed so as to obtain accurate concentration values when this type of samples is analyzed. Microwave-assisted wet digestion (MAWD) procedures of seafood based on HNO{sub 3} or the mixture HNO{sub 3}/H{sub 2}O{sub 2} and further thermal reduction of the Se(VI) formed to Se(IV) were evaluated. These procedures were as follows: (I) without H{sub 2}O{sub 2} and without heating to dryness; (II) without H{sub 2}O{sub 2} and with heating to dryness; (III) with H{sub 2}O{sub 2} and without heating to dryness; (IV) with H{sub 2}O{sub 2} and with heating to dryness. In general, low recoveries of selenium are obtained for several marine species (e.g., crustaceans and cephalopods), which may be ascribed to the presence of Se forms mainly associated with nonpolar proteins and lipids. Post-digestion UV irradiation proved very efficient since not only complete organoselenium decomposition was achieved but also the final step required for prereduction of Se(VI) into Se(IV) (i.e. heating at 90 deg. C for 30 min in 6 M HCl) could be avoided. With the MAWD/UV procedure, the use of strong oxidising agents (persuphate, etc.) or acids (e.g. perchloric acid) which are typically applied prior to Se determination by hydride generation techniques is overcome, and as a result, sample pre-treatment is significantly simplified. The method was successfully validated against CRM DOLT-2 (dogfish liver), CRM DORM-2 (dogfish muscle) and CRM TORT-2 (lobster hepatopancreas). Automated ultrasonic slurry sampling with electrothermal atomic absorption spectrometry was also applied for comparison. Total Se contents in ten seafood samples were established. Se levels ranged from 0

  20. Ultrasound- and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples.

    Science.gov (United States)

    Welna, Maja; Borkowska-Burnecka, Jolanta; Popko, Malgorzata

    2015-11-01

    Followed the current idea of simplified sample pretratmet before analysis we evaluated the procedure for the determination of Pb in calcium-rich materials such as dolomites after ultrasound- or microwave- assisted extraction with diluted acids using hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES). Corresponding Pb hydride was generated in the reaction of an acidified sample solution with NaBH4 after pre-oxidation of Pb(II) to Pb(IV) by K3[Fe(CN)6]. Several chemical (acidic media: HCl, HNO3 or CH3COOH, concentration of the reductant as well as type and concentration of oxidazing agents) and physical (reagents flow rates, reaction coil length) parameters affecting the efficiency of plumbane formation were optimized in order to improve the detectability of Pb using HG-ICP-OES. Limitation of the method derived from the matrix effects was pointed out. Employing Pb separation by HG technique allows the significant reduction of interferences caused by sample matrix constituents (mainly Ca and Mg), nevertheless they could not be overcame at all, hence calibration based on the standard addition method was recommended for Pb quantification in dolomites. Under the selected conditions, i.e. 0.3 mol L(-1) HCl, HNO3 or CH3COOH, 1.5% NaBH4 and 3.0% K3[Fe(CN)6] the limits of detection (LODs) between 2.3-5.6 μg L(-1) (3.4-6.8 μg L(-1) considering matrix effects) and the precision below 5% were achieved. The accuracy of the procedure was verified by analysis of certified reference materials (NCS DC70308 (Carbonate Rock) and NIST 14000 (Bone Ash)) and recovery test with satisfactory results of Pb recoveries ranging between 94-108% (CRMs analysis) and 92-114% (standard addition method). The applicability of the proposed method was demonstrated by the determination of Pb in dolomites used by different fertiliser factories.

  1. Simultaneous determination of hydride (Se) and non-hydride-forming (Ca, Mg, K, P, S and Zn) elements in various beverages (beer, coffee, and milk), with minimum sample preparation, by ICP-AES and use of a dual-mode sample-introduction system

    Energy Technology Data Exchange (ETDEWEB)

    Asfaw, Alemayehu; Wibetoe, Grethe [University of Oslo, Department of Chemistry, Blindern (Norway)

    2005-05-01

    A method has been developed enabling direct analysis (i.e. after dilution only) of beer, instant coffee, milk, and milk powder by ICP-AES. Analysis of the beverages after dilution with a low concentration of HNO{sub 3} was used for accurate determination of essential minor and trace elements (Ca, Mg, K, P, S, and Zn). Selenium, introduced as the hydride, was determined simultaneously with the other non-hydride-forming elements using the commercial multi-mode sample-introduction system (MSIS). To obtain accurate results, however, some simple pre-treatment was needed. Analysis was also performed after microwave-assisted decomposition of the samples. Three different modes of sample-preparation, i.e. dilution only, partial decomposition (aqua regia treatment), and complete decomposition were compared. The results obtained by use of the three different sample-preparation methods were in very good agreement. Results from analysis of certified reference material (SRM 1459 non-fat milk powder) also verified the accuracy of the methods. The limit of detection obtained for Se using dual-mode sample introduction was 0.5 ng mL{sup -1}, which corresponds to approximately 2 ng g{sup -1} in beer and approximately 4 ng g{sup -1} in coffee and milk when using the recommended procedure. (orig.)

  2. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  3. Generating unaveraged equations of motion in common orbital elements

    Science.gov (United States)

    Veras, Dimitri

    2014-05-01

    Cartesian equations of motion must be converted or integrated in order to impart information about the evolution of orbital elements such as the semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre and true anomaly. Alternatively, equations of motion in terms of only these orbital elements can reveal aspects of the motion simply by inspection. I advertise a quick method to generate such equations for perturbed two-body problems, where the perturbation may be arbitrarily large, and where no averaging is involved. I use the method to generate complete unaveraged equations from perturbations due to Poynting-Robertson drag, general relativity, mass loss, Galactic tides, and additional massive bodies under the guise of the general restricted few-body problem.

  4. A comparative evaluation of different ionic liquids for arsenic species separation and determination in wine varietals by liquid chromatography - hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Castro Grijalba, Alexander; Fiorentini, Emiliano F; Martinez, Luis D; Wuilloud, Rodolfo G

    2016-09-02

    The application of different ionic liquids (ILs) as modifiers for chromatographic separation and determination of arsenite [As(III)], arsenate [As(V)], dimethylarsonic acid (DMA) and monomethylarsonic acid (MMA) species in wine samples, by reversed-phase high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry detection (RP-HPLC-HG-AFS) was studied in this work. Several factors influencing the chromatographic separation of the As species, such as pH of the mobile phase, buffer solution concentration, buffer type, IL concentration and length of alkyl groups in ILs were evaluated. The complete separation of As species was achieved using a C18 column in isocratic mode with a mobile phase composed of 0.5% (v/v) 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 5% (v/v) methanol at pH 8.5. A multivariate methodology was used to optimize the variables involved in AFS detection of As species after they were separated by HPLC. The ILs showed remarkable performance for the separation of As species, which was obtained within 18min with a resolution higher than 0.83. The limits of detection for As(III), As(V), MMA and DMA were 0.81, 0.89, 0.62 and 1.00μg As L(-1). The proposed method was applied for As speciation analysis in white and red wine samples originated from different grape varieties.

  5. Speciation analysis of inorganic arsenic in coal samples by microwave-assisted extraction and high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Sun, Mei; Liu, Guijian; Wu, Qianghua; Liu, Wenqi

    2013-03-15

    A new method was developed for the speciation analysis of inorganic arsenic in coal samples by high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry after microwave-assisted extraction. Effective extract of As(III) and As(V) in coal sample was achieved by 1.0 mol L(-1)H₃PO₄ and 0.1 mol L(-1)ascorbic acid. Under the optimized conditions, the limits of detection (LOD) were 0.01 μg L(-1) and 0.02 μg L(-1), the relative standard deviations (RSD) were 2.4% and 3.3% (c=10.0 μg L(-1), n=7), recoveries were 102.5% and 96.5% for As(III) and As(V). The proposed method was successfully applied for the determination of speciation of inorganic arsenic in coal samples and GBW11117 coal standard reference material with complex matrix. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A practical method for the determination of total selenium in environmental samples using isotope dilution-hydride generation-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Kleckner, Amy E.; Kakouros, Evangelos; Stewart, A. Robin

    2017-01-01

    A safe, practical, and accurate method for the determination of selenium (Se) in range of environmental samples was developed. Small sample masses, 5–20 mg, were amended with 82Se enriched isotope for the isotope dilution (ID), preceding a multi-step wet digestion with nitric acid (HNO3) and hydrogen peroxide (H2O2). Samples were incubated in an autoclave for 3 h at 20 psi and 126°C. Digestates were subsequently reduced with concentrated hydrochloric acid to Se(IV) the most favorable valence for hydride generation (HG). The solutions were then analyzed on an ICP-MS equipped with Flow Injection system (FIAS-400). Polyatomic, isobaric, and background interferences were removed through the use of HG and ID with an 82Se enriched isotope spike. Recoveries for certified reference materials were determined and averaged 96% for biological tissues (NRCC DOLT3, DOLT4, DORM2, TORT2, and TORT3, and NIST 2976) and 108% for estuarine sediment (NRCC PACS2) with an average coefficient of variation for replicate measurements of ∼ 3.5%. Limit of detection was 0.13 ng Se g−1 dry weight or 0.19 ng Se L−1. This method can be broadly applied to biological tissues, sediments, suspended particulates, and water samples with minimal modifications making this method highly useful for assessing the ecotoxicology of total Se in aquatic ecosystems.

  7. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline.

    Science.gov (United States)

    Beltrán, Blanca G; Leal, Luz O; Ferrer, Laura; Cerdà, Víctor

    2016-01-01

    Hydride generation (HG) of lead technique presents interferences from foreign ions of complex matrix samples. In order to minimize these interferences, the effect of masking agents such as KI, L-cysteine, and 1,10-phenanthroline was studied in the absence and in the presence of selected interfering species (As, Cr, Cu, and Fe). Different modes of addition of masking agents were accomplished, that is, to either sample or KBH4 reducing solution. The lead determinations were performed using a flow injection analysis (FIA) system coupled to HG and atomic fluorescence spectrometry (AFS). The linearity of calibration curves (1-10 μg Pb L(-1)) was not affected by the addition of the masking agents. The use of KI in the reducing solution diminished interferences from concentrations of As and Cu, while 1,10-phenanthroline showed a positive effect on the interference by As. Moreover, Cr and Cu appeared to be the most serious interfering ions for plumbane (PbH4), because they drastically reduced the analytical signal of lead. Fe did not present any interference under the employed experimental conditions, even at high levels. The accuracy was established through the analysis of certified reference material (i.e., BCR-610, groundwater) using KI as masking agent. The detection limit reached by FIA-HG-AFS proposed methodology was 0.03 μg Pb L(-1).

  8. Synthesis of ruthenium hydride

    Science.gov (United States)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  9. Automating the generation of finite element dynamical cores with Firedrake

    Science.gov (United States)

    Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas

    2017-04-01

    The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present

  10. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV-Vis spectrophotometry.

    Science.gov (United States)

    Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein

    2014-12-01

    In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

  11. Hysteresis in Metal Hydrides.

    Science.gov (United States)

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  12. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  13. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation.

    Science.gov (United States)

    Musil, Stanislav; Matoušek, Tomáš; Currier, Jenna M; Stýblo, Miroslav; Dědina, Jiří

    2014-10-21

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).

  14. Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Rosas-Castor, J M; Portugal, L; Ferrer, L; Guzmán-Mar, J L; Hernández-Ramírez, A; Cerdà, V; Hinojosa-Reyes, L

    2015-05-18

    A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L(-1) for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013-0.800, 0.011-0.900 and 0.079-1.400 mg L(-1) for F1, F2, and F3, respectively. The precision of the automated MSFIA-HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L(-1) As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural soil samples from an arsenic-contaminated mining zone to evaluate its extractability. The frequency of analysis of the proposed method was eight times higher than that of the conventional BCR method (6 vs 48 h), and the kinetics of lixiviation were established for each fraction.

  15. Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells

    Science.gov (United States)

    Matoušek, Tomáš; Currier, Jenna M.; Trojánková, Nikola; Saunders, R. Jesse; Ishida, María C.; González-Horta, Carmen; Musil, Stanislav; Mester, Zoltán; Stýblo, Miroslav; Dědina, Jiří

    2013-01-01

    An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at −196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL−1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL−1 total As was performed. The concentrations of methylated As species in tens of pg mL−1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species. PMID:24014931

  16. A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng l{sup -1} level

    Energy Technology Data Exchange (ETDEWEB)

    Kula, I. [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Arslan, Y. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Bakirdere, S. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O.Y. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    A novel analytical technique was developed where gaseous hydrogen selenide formed by sodium tetrahydroborate reduction is transported to and trapped on a resistively heated gold-coated W-coil atom trap for in situ preconcentration. Gold coating on W-coil was prepared by using an organic solution of Au. The atom trap is held at 165 {sup o}C during the collection stage and is heated up to 675 deg. C for revolatilization; analyte species formed are transported to an externally heated quartz T-tube where the atomization takes place and the transient signal is obtained. The carrier gas consisted of 112.5 ml min{sup -1} Ar with 75 ml min{sup -1} H{sub 2} during the collection step and 112.5 ml min{sup -1} Ar with 450 ml min{sup -1} H{sub 2} in the revolatilization step. The half width of the transient signal obtained is less than 0.5 s. The RSD for the measurements was found to be 3.9% (n = 11) for 0.10 {mu}g l{sup -1} Se using peak height measurements. The calibration plot for 27.0 ml of sample collected in 4.0 min using a flow rate of 6.75 ml min{sup -1} was linear between 0.13 and 2.0 {mu}g l{sup -1} of Se. The limit of detection (3 s) is 39 ng l{sup -1}. The enhancement factor for the characteristic concentration (C{sub o}) was found to be 20.1 when compared to conventional hydride generation atomic absorption spectrometry system without trap. In order to check the accuracy of the method, standard reference material, natural water NIST 1640 was employed; the result was found to be in good agreement with the certified value at the 95% confidence level.

  17. A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng l - 1 level

    Science.gov (United States)

    Kula, İ.; Arslan, Y.; Bakırdere, S.; Ataman, O. Y.

    2008-08-01

    A novel analytical technique was developed where gaseous hydrogen selenide formed by sodium tetrahydroborate reduction is transported to and trapped on a resistively heated gold-coated W-coil atom trap for in situ preconcentration. Gold coating on W-coil was prepared by using an organic solution of Au. The atom trap is held at 165 °C during the collection stage and is heated up to 675 °C for revolatilization; analyte species formed are transported to an externally heated quartz T-tube where the atomization takes place and the transient signal is obtained. The carrier gas consisted of 112.5 ml min - 1 Ar with 75 ml min - 1 H 2 during the collection step and 112.5 ml min - 1 Ar with 450 ml min - 1 H 2 in the revolatilization step. The half width of the transient signal obtained is less than 0.5 s. The RSD for the measurements was found to be 3.9% ( n = 11) for 0.10 µg l - 1 Se using peak height measurements. The calibration plot for 27.0 ml of sample collected in 4.0 min using a flow rate of 6.75 ml min - 1 was linear between 0.13 and 2.0 µg l - 1 of Se. The limit of detection (3 s) is 39 ng l - 1 . The enhancement factor for the characteristic concentration ( Co) was found to be 20.1 when compared to conventional hydride generation atomic absorption spectrometry system without trap. In order to check the accuracy of the method, standard reference material, natural water NIST 1640 was employed; the result was found to be in good agreement with the certified value at the 95% confidence level.

  18. Method development and optimization for the determination of selenium in bean and soil samples using hydride generation electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Shaltout, Abdallah A; Castilho, Ivan N B; Welz, Bernhard; Carasek, Eduardo; Martens, Irland B Gonzaga; Martens, Andreas; Cozzolino, Silvia M F

    2011-09-15

    The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5±0.4 ng g(-1) and 1726±55 ng g(-1), and that in soil samples varied between 113±6.5 ng g(-1) and 1692±21 ng g(-1).

  19. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Mirna, E-mail: msigrist@fiq.unl.edu.ar [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Albertengo, Antonela; Beldomenico, Horacio [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH{sub 3} generation using 3.5 mol L{sup -1} HCl as carrier solution and 0.35% (m/v) NaBH{sub 4} in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl{sup -}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, HPO{sub 4}{sup 2-}, HCO{sub 3}{sup -} on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C{sub 6}H{sub 8}O{sub 6} solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 {mu}g L{sup -1} and 0.6 {mu}g L{sup -1} for As(III) and inorganic total As, respectively, were obtained for a 500 {mu}L sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h{sup -1}. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species

  20. [Cloud Point extraction for determination of mercury in Chinese herbal medicine by hydride generation atomic fluorescence spectrometry with optimization using Box-Behnken design].

    Science.gov (United States)

    Wang, Mei; Li, Shan; Zhou, Jian-dong; Xu, Ying; Long, Jun-biao; Yang, Bing-yi

    2014-08-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Hg in Chinese herbal medicine samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). Hg2+ was reacted with dithizone to form hydrophobic chelate under the condition of pH. Using Triton X-114, as surfactant, chelate was quantitatively extracted into small volume of the surfactant-rich phase by heating the solution in a water bath for 15 min and centrifuging. Four variables including pH, dithizone concentration, Triton X-114 concentration and equilibrium temperature (T) showed the significant effect on extraction efficiency of total Hg evaluated by single-factor experiment, and Box-Behnken design and response surface method- ology were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum extraction efficiency. The results showed that the binomial was used to fit the response to experimental levels of each variable. ALL linear, quadratic terms of four variables, and interactions between pH and Trion X-114, pH and di- thizone affected the response value(extraction efficiency) significantly at 5% level. The optimum extraction conditions were as follows: pH 5.1, Triton X-114 concentration of 1.16 g x L(-1), dithizone concentration of 4.87 mol x L(-1), and T 58.2 degrees C, the predicted value of fluorescence was 4528.74 under the optimum conditions, and the experimental value had only 2.1% difference with it. Under the conditions, fluorescence was linear to mercury concentration in the range of 1-5 microg x L(-1). The limit of detection obtained was 0.01247 microg x L(-1) with the relative standard deviations (R.S.D.) for six replicate determinations of 1.30%. The proposed method was successfully applied to determination of Hg in morindae Radix, Andrographitis and dried tangerine samples with the recoveries of 95.0%-100.0%. Apparently Box-Behnken design combined with

  1. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  2. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  3. Laboratory Rotational Spectroscopy of the Interstellar Diatomic Hydride Ion SH+ (X 3Σ-)

    Science.gov (United States)

    Halfen, DeWayne; Ziurys, Lucy M.

    2016-06-01

    Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie principally in the submillimeter and far-infrared regions. Diatomic hydrides, both neutral (MH) and ionic (MH+) forms, are also basic building blocks of interstellar chemistry. In ionic form, they may be the “hidden” carriers of refractory elements in dense gas. They are therefore extremely good targets for space-borne and airborne platforms such as Herschel, SOFIA, and SAFIR. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. To date, there is very little high resolution data available for many hydride species, in particular the ionic form. Using submillimeter/THz direct absorption methods in the Ziurys laboratory, spectra of the interstellar diatomic hydride SH+ (X 3Σ-) have been recorded. Recent work has concerned measurement of all three fine structure components of the fundamental rotational transition N = 1 ← 0 in the range 345 - 683 GHz. SH+ was generated from H2S and argon in an AC discharge. The data have been analyzed, and spectroscopic constants for this species have been refined. SH+ is found in Photon Dominated Regions (PDRs) and X-ray Dominated Regions (XDRs) and is thought to trace energetic processes in the ISM. These current measurements confirm recent observations of this species at submillimeter/THz wavelengths with ALMA and other ground-based telescopes.

  4. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  5. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  6. Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-Castor, J.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Portugal, L.; Ferrer, L. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Guzmán-Mar, J.L.; Hernández-Ramírez, A. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Cerdà, V. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinojosa-Reyes, L., E-mail: laura.hinojosary@uanl.edu.mx [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico)

    2015-05-18

    Highlights: • A fully automated flow-based modified-BCR extraction method was developed to evaluate the extractable As of soil. • The MSFIA–HG-AFS system included an UV photo-oxidation step for organic species degradation. • The accuracy and precision of the proposed method were found satisfactory. • The time analysis can be reduced up to eight times by using the proposed flow-based BCR method. • The labile As (F1 + F2) was <50% of total As in soil samples from As-contaminated-mining zones. - Abstract: A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L{sup −1} for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013–0.800, 0.011–0.900 and 0.079–1.400 mg L{sup −1} for F1, F2, and F3, respectively. The precision of the automated MSFIA–HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L{sup −1} As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural

  7. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  8. [Study on Content Determination of Lead and Arsenic in Four Traditional Tibetan Medicine Prescription Preparations by Wet Digestion Flow Injection-Hydride Generation-Atomic Absorption Spectrometry].

    Science.gov (United States)

    Zheng, Zhi-yuan; Du, Yu-zhi; Zhang, Ming; Yu, Ming-jie; Li, Cen; Yang, Hong-xia; Zhao, Jing; Xia, Zheng-hua; Wei, Li-xin

    2015-04-01

    Four common traditional tibetan medicine prescription preparations "Anzhijinghuasan, Dangzuo, Renqingchangjue and Rannasangpei" in tibetan areas were selected as study objects in the present study. The purpose was to try to establish a kind of wet digestion and flow injection-hydride generation-atomic absorption spectrometry (FI-HAAS) associated analysis method for the content determinations of lead and arsenic in traditional tibetan medicine under optimized digestion and measurement conditions and determine their contents accurately. Under these optimum operating conditions, experimental results were as follows. The detection limits for lead and arsenic were 0.067 and 0.012 µg · mL(-1) respectively. The quantification limits for lead and arsenic were 0.22 and 0.041 µg · mL(-1) respectively. The linear ranges for lead and arsenic were 25-1,600 ng · mL(-1) (r = 0.9995) and 12.5-800 ng · mL(-1) (r = 0.9994) respectively. The degrees of precision(RSD) for lead and arsenic were 2.0% and 3.2% respectively. The recovery rates for lead and arsenic were 98.00%-99.98% and 96.67%-99.87% respectively. The content determination results of lead and arsenic in four traditional tibetan medicine prescription preparations were as fol- lows. The contents of lead and arsenic in Anzhijinghuasan are 0.63-0.67 µg · g(-1) and 0.32-0.33 µg · g(-1) in Anzhijinghua- san, 42.92-43.36 µg · g(-1) and 24.67-25.87 µg · g(-1) in Dangzuo, 1,611. 39-1,631.36 µg · g(-1) and 926.76-956.52 µg- g(-1) in Renqing Changjue, and 1,102.28-1,119.127 µg-g(-1) and 509.96-516.87 µg · g(-1) in Rannasangpei, respectively. This study established a method for content determination of lead and arsenic in traditional tibetan medicine, and determined the content levels of lead and arsenic in four tibetan medicine-prescription preparations accurately. In addition, these results also provide the basis for the safe and effective use of those medicines in clinic.

  9. Generation of Random Particle Packings for Discrete Element Models

    Science.gov (United States)

    Abe, S.; Weatherley, D.; Ayton, T.

    2012-04-01

    An important step in the setup process of Discrete Element Model (DEM) simulations is the generation of a suitable particle packing. There are quite a number of properties such a granular material specimen should ideally have, such as high coordination number, isotropy, the ability to fill arbitrary bounding volumes and the absence of locked-in stresses. An algorithm which is able to produce specimens fulfilling these requirements is the insertion based sphere packing algorithm originally proposed by Place and Mora, 2001 [2] and extended in this work. The algorithm works in two stages. First a number of "seed" spheres are inserted into the bounding volume. In the second stage the gaps between the "seed" spheres are filled by inserting new spheres in a way so they have D+1 (i.e. 3 in 2D, 4 in 3D) touching contacts with either other spheres or the boundaries of the enclosing volume. Here we present an implementation of the algorithm and a systematic statistical analysis of the generated sphere packings. The analysis of the particle radius distribution shows that they follow a power-law with an exponent ≈ D (i.e. ≈3 for a 3D packing and ≈2 for 2D). Although the algorithm intrinsically guarantees coordination numbers of at least 4 in 3D and 3 in 2D, the coordination numbers realized in the generated packings can be significantly higher, reaching beyond 50 if the range of particle radii is sufficiently large. Even for relatively small ranges of particle sizes (e.g. Rmin = 0.5Rmax) the maximum coordination number may exceed 10. The degree of isotropy of the generated sphere packing is also analysed in both 2D and 3D, by measuring the distribution of orientations of vectors joining the centres of adjacent particles. If the range of particle sizes is small, the packing algorithm yields moderate anisotropy approaching that expected for a face-centred cubic packing of equal-sized particles. However, once Rmin 2D and 3D. The analysis demonstrates that this space

  10. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richards, Andrew Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  11. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  12. On the Arsenic Amount Determination in Tungsten Concentrate by Optimal Design of Uniform-hydride Generation Atomic Absorption Spectrometry%均匀优化设计-氢化物发生原子吸收光谱法测定钨精矿中砷量

    Institute of Scientific and Technical Information of China (English)

    陈涛; 潘建忠

    2011-01-01

    A technology based on uniform design is proposed in the optimization of arsenic amount determination in tungsten concentrate by hydride generation atomic Absorption Spectrometry. The optimized analysis condition is obtained by means of experiments: the sample is decomposed by sulfuric acid-ammonium sulfate, coordinated with tungsten, iron, manganese in ammonia medium using citric acid, then reduced pentavalent arsenic to trivalent arsenic by ascorbic acid. Arsenic amount at the degree of 15 % acid solution is measured by the united equipments:flow injection-hydride generator-atomic absorption spectrophotometer. This technology has many advantages, such as high sensitivity, good accuracy, fast and simple, little elements interfering. The detection limit of arsenic amount can be 0.001%.%该方法应用均匀设计这一优化试验设计理论,采用氢化物发生原子吸收光谱法测定钨精矿中砷量.经实验确定了测定砷量的最佳分析条件:经硫酸-硫酸铵分解,用柠檬酸在氨性介质中络合钨、铁、锰等干扰元素,用抗坏血酸预还原五价的砷到三价.样品溶液在15%的酸度中,经流动注射-氢化物发生与原子吸收光谱仪联用测定砷量.该方法具有灵敏度高,准确性好,快速简便,干扰元素少等优点.

  13. Solar Electric Generating System II finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Anderson, J.R.

    1994-04-01

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  14. 氢化物发生-原子荧光光谱法测定Inconel 718合金中痕量硒%Determination of trace selenium in 718 alloy by hydride generation-atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    向祥蓉; 刘虹; 王佼

    2012-01-01

    本文采用氢化物发生-原子荧光光谱法测定Inconel718合金中痕量硒.对影响其测定的负高压、灯电流、载气流量、屏蔽气流量、载流酸类酸度、硼氢化钾等因素进行了较为详细的研究,优化了测定条件,考察了Inconel718合金主要组成元素和基体元素对硒测定的影响.结果表明,用氟化氨溶液络合,柠檬酸溶液作干扰抑制剂能基本消除基体元素和主要组成元素的干扰.硒浓度在0~100μg/L与荧光强度有良好的线性关系,方法的检出限为0.0083μg/L.对铁镍基高温合金标准样品和Inconel 718合金样品进行9次测定,相对标准偏差为1.6%~3.5%.%In this paper a simple and fast analytical procedure for the determination of selenium in Inconel 718 alloy by hydride generation atomic fluorescence spectrometry(HG-AFS) was developed. The in fluence of instrument parameters such as voltage of PMT, current of lamp, atomizer height, carrier gas rate,shield gas rate and concentration of HCI and KBH4 on the determination of selenium were studied, and the optimized conditions were obtained. Interference of coexistent elements and methods to eliminate the interference were investigated in detail. The results showed that ammonium fluoride and citric acid mo nohydrate were the best masking. Under the optimized conditions, the linear range of selenium is 0 ~ 100μg/L, and the detection limit is 0. 0083 μg/L. The relative standard deviation is 1. 6%~3. 5%(n=9) for the standard sample and the sample of Inconel 718 alloy.

  15. Determination of Inorganic Arsenic in Atmospheric Particles by Hydride Generation-atomic Fluorescence Spectrometry%氢化物发生-原子荧光光谱法测定大气颗粒物中的砷形态

    Institute of Scientific and Technical Information of China (English)

    梁淑轩; 吴虹; 齐学先; 郑璇; 何晓娇

    2011-01-01

    Concentration of atmospheric particles is one of the atmospheric pollution indicators. Heavy metals in the atmospheric particles can risk for human health in both direct and indirect way. Arsenic is one of the higher metal content in them. The inorganic compounds are far more toxic than their organic metabolites. In this paper, the hydride generation atomic fluorescence spectrometric method was employed to the determination of As ( Ⅲ ) and As (V) in the Atmospheric particles. The amount of reducing agent,acid medium and its acidity, carrier gas and shield gas flow rate and observation height of the fluorescence intensity were investigated, and the interference experiment was carried out for concomitant elements. In the best conditions, the detection limit was 0. 34 μg/L, the recovery ranged from 98.18% ~ 102.54%,and the relative standard deviation was about 0.8%. The method was featured by easy operation, fast speed and it has been applied to the analysis of arsenic in the particles with satisfactory results.%采用氢化物发生原子荧光法直接测定不同粒径大气颗粒物中As(Ⅲ)和As(Ⅴ)的含量.研究了还原剂用量、酸介质及其酸度、载气及屏蔽气流量和观测高度等对荧光强度的影响,探讨了共存离子对砷测定的干扰.在选定的最佳条件下,得到检出限为0.34μg/L,方法检出限为0.21μg/g,加标回收率为98.18%~102.54%,相对标准偏差为0.8%左右.用该方法测定大气颗粒物中不同形态的砷,操作简便,快速,灵敏度高.

  16. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  17. Hydrogen, lithium, and lithium hydride production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  18. Application of the donor-acceptor concept to intercept low oxidation state group 14 element hydrides using a Wittig reagent as a Lewis base.

    Science.gov (United States)

    Swarnakar, Anindya K; McDonald, Sean M; Deutsch, Kelsey C; Choi, Paul; Ferguson, Michael J; McDonald, Robert; Rivard, Eric

    2014-08-18

    This article outlines our attempts to stabilize the Group 14 element dihydrides, GeH2 and SnH2, using commonly employed phosphine and pyridine donors; in each case, elemental Ge and Sn extrusion was noted. However, when these phosphorus and nitrogen donors were replaced with the ylidic Wittig ligand Ph3P═CMe2, stable inorganic methylene complexes (EH2) were obtained, demonstrating the utility of this under-explored ligand class in advancing main group element coordination chemistry.

  19. Essential Elements for Recruitment and Retention: Generation Y

    Science.gov (United States)

    Luscombe, Jenna; Lewis, Ioni; Biggs, Herbert C.

    2013-01-01

    Purpose: Generation Y (Gen Y) is the newest and largest generation entering the workforce. Gen Y may differ from previous generations in work-related characteristics which may have recruitment and retention repercussions. Currently, limited theoretically-based research exists regarding Gen Y's work expectations and goals in relation to…

  20. Ultratrace determination of lead by hydride generation in-atomizer trapping atomic absorption spectrometry: Optimization of plumbane generation and analyte preconcentration in a quartz trap-and-atomizer device

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz

    2012-05-15

    A compact trap-and-atomizer device and a preconcentration procedure based on hydride trapping in excess of oxygen over hydrogen in the collection step, both constructed and developed previously in our laboratory, were employed to optimize plumbane trapping in this device and to develop a routine method for ultratrace lead determination subsequently. The inherent advantage of this preconcentration approach is that 100% preconcentration efficiency for lead is reached in this device which has never been reported before using quartz or metal traps. Plumbane is completely retained in the trap-and-atomizer device at 290 Degree-Sign C in oxygen-rich atmosphere and trapped species are subsequently volatilized at 830 Degree-Sign C in hydrogen-rich atmosphere. Effect of relevant experimental parameters on plumbane trapping and lead volatilization are discussed, and possible trapping mechanisms are hypothesized. Plumbane trapping in the trap-and-atomizer device can be routinely used for lead determination at ultratrace levels reaching a detection limit of 0.21 ng ml{sup -1} Pb (30 s preconcentration, sample volume 2 ml). Further improvement of the detection limit is feasible by reducing the blank signal and increasing the trapping time. - Highlights: Black-Right-Pointing-Pointer In-atomizer trapping HG-AAS was optimized for Pb. Black-Right-Pointing-Pointer A compact quartz trap-and-atomizer device was employed. Black-Right-Pointing-Pointer Generation, preconcentration and atomization steps were investigated in detail. Black-Right-Pointing-Pointer 100% preconcentration efficiency for lead was reached. Black-Right-Pointing-Pointer Routine analytical method was developed for Pb determination (LOD of 0.2 ng ml{sup -1} Pb).

  1. Next Generation Life Support (NGLS): Variable Oxygen Regulator (VOR) Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Variable Oxygen Regulator Element is to develop an oxygen-rated, contaminant-tolerant oxygen regulator to control suit pressure with a...

  2. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  3. Artificial exomuscle investigations for applications--metal hydride.

    Science.gov (United States)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  4. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  5. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    Science.gov (United States)

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  6. Photodeposited diffractive optical elements of computer generated masks

    Energy Technology Data Exchange (ETDEWEB)

    Mirchin, N. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)]. E-mail: mirchin@hait.ac.il; Peled, A. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Baal-Zedaka, I. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Margolin, R. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Zagon, M. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Lapsker, I. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Verdyan, A. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Azoulay, J. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)

    2005-07-30

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  7. Photodeposited diffractive optical elements of computer generated masks

    Science.gov (United States)

    Mirchin, N.; Peled, A.; Baal-Zedaka, I.; Margolin, R.; Zagon, M.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    2005-07-01

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  8. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  9. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  10. Multiple orbital angular momentum generated by dielectric hybrid phase element

    Science.gov (United States)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  11. Two-Element Generation of Unitary Groups Over Finite Fields

    Science.gov (United States)

    2013-01-31

    like to praise my Lord and Savior, Jesus Christ , for allowing me this opportunity to work on a Ph.D in mathematics, and for His sustaining grace...Ishibashi’s original result. The paper’s main theorem will show that all unitary groups over finite fields of odd characteristic are generated by only two

  12. Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis

    OpenAIRE

    S. Hosseini; MOGHANI, J. S.; Jensen, B B

    2011-01-01

    This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A new method is then proposed that reveals the behavior of the generator under any load. Finally, torque calculations are carried out using three dimensional finite element analyses. It is shown that...

  13. Determination of trace germanium in health protection food by hydride generation atomic fluorescence spectrometry%氢化物-原子荧光光谱法测定保健食品中痕量锗

    Institute of Scientific and Technical Information of China (English)

    宋伟明; 倪刚; 胡奇林; 全晓塞

    2001-01-01

    A new method was introduced for the determination of trace germanium by hydride generation atomic fluorescence spectrometry(HGAFS).The effect of the medium amounts of acid, action of hydride and screening agent of the determination of germanium was investigated. The operating condition of the instrument was optimized. The interference from foreign ions was eliminated by adding phosphoric acid and tartaric acid. This method was applied to the determination of germanium in some health protection and nourishing food. The detection limit (3δ) is 6.2 ng/g with a RSD of 5% .The recovery of standard addition is in 95%~105%.%提出了以氢化物-原子荧光光谱法测定保健食品中锗的新方法,研究了酸介质、氢化物发生、增敏掩蔽剂等因素对测定的影响,并选择出仪器的最佳工作条件;采用磷酸-酒石酸介质进行测定,不但可有效消除共存离子的干扰,而且起到增敏作用,方法的检出限为6.2,ng/g,相对标准偏差(RSD)在5%以内,加标回收率为95%~105%,结果令人满意.

  14. Generation of Multiphoton Entangled States with Linear Optical Elements

    Institute of Scientific and Technical Information of China (English)

    SHENG Yu-Bo; DENG Fu-Guo; ZHOU Hong-Yu

    2008-01-01

    We propose a linear optical protocol to generate three-photon and four-photon entangled states without resorting to entangled sources. The setup in this protocol is composed of three beam splitters and two half-wave plates.We can obtain three-photon and four-photon entangled states with postselection, as with other protocols. This protocol has the advantage of high efficiency and is more feasible than others.

  15. Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech

    2011-01-01

    This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A n...... by combining three single-phase modules into a three-phase generator....

  16. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  17. QCD event generators with next-to-leading order matrix-elements and parton showers

    CERN Document Server

    Kurihara, Y; Ishikawa, T; Kato, K; Kawabata, S; Munehisa, T; Tanaka, H

    2003-01-01

    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order re-summation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method.

  18. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    Science.gov (United States)

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit.

  19. A nickel metal hydride battery for electric vehicles.

    Science.gov (United States)

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  20. Pamgen, a library for parallel generation of simple finite element meshes.

    Energy Technology Data Exchange (ETDEWEB)

    Foucar, James G.; Drake, Richard Roy; Hensinger, David M.; Gardiner, Thomas Anthony

    2008-04-01

    Generating finite-element meshes is a serious bottleneck for large parallel simulations. When mesh generation is limited to serial machines and element counts approach a billion, this bottleneck becomes a roadblock. Pamgen is a parallel mesh generation library that allows on-the-fly scalable generation of hexahedral and quadrilateral finite element meshes for several simple geometries. It has been used to generate more that 1.1 billion elements on 17,576 processors. Pamgen generates an unstructured finite element mesh on each processor at the start of a simulation. The mesh is specified by commands passed to the library as a 'C'-programming language string. The resulting mesh geometry, topology, and communication information can then be queried through an API. pamgen allows specification of boundary condition application regions using sidesets (element faces) and nodesets (collections of nodes). It supports several simple geometry types. It has multiple alternatives for mesh grading. It has several alternatives for the initial domain decomposition. Pamgen makes it easy to change details of the finite element mesh and is very useful for performance studies and scoping calculations.

  1. Insertion of Group 12-16 Hydrides into NHCs: A Theoretical Investigation.

    Science.gov (United States)

    Iversen, Kalon J; Dutton, Jason L; Wilson, David

    2017-03-06

    The endocyclic ring expansion of N-heterocyclic carbene (NHC) rings by transition metal (Group 12) and main group (Group 13-16) element hydrides has been investigated in a computational study. In addition to previously reported insertion reactivity with Si, B, Be and Zn, similar reactivity is predicted to be feasible for heavier group 13 elements (Al, Ga, In, Tl), with the reaction barriers for Al-Tl calculated to be lower than for boron. Insertion is not expected with group 15-16 element hydrides, as the initial adduct formation is thermodynamically unfavourable. The reaction pathway with group 12 hydrides is calculated to be more favourable with two NHCs rather than a single NHC (analogous to Be), however hydride ring insertion with metal dihydrides is not feasible, but rather a reduced NHC is thermodynamically favoured. For group 14, ring-insertion reactivity is predicted to be feasible with the heavier dihydrides. Trends in reactivity of element hydrides may be related to the protic or hydridic character of the element hydrides.

  2. Finite element analysis and performance study of switched reluctance generator

    Science.gov (United States)

    Zhang, Qianhan; Guo, Yingjun; Xu, Qi; Yu, Xiaoying; Guo, Yajie

    2017-03-01

    Analyses a three-phase 12/8 switched reluctance generator (SRG) which is based on its structure and performance principle. The initial size data were calculated by MathCAD, and the simulation model was set up in the ANSOFT software environment with the maximum efficiency and the maximum output power as the main reference parameters. The outer diameter of the stator and the inner diameter of the rotor were parameterized. The static magnetic field distribution, magnetic flux, magnetic energy, torque, inductance characteristics, back electromotive force and phase current waveform of SRG is obtained by analyzing the static magnetic field and the steady state motion of two-dimensional transient magnetic field in ANSOFT environment. Finally, the experimental data of the prototype are compared with the simulation results, which provide a reliable basis for the design and research of SRG wind turbine system.

  3. 3D optical vortices generated by micro-optical elements and its novel applications

    Institute of Scientific and Technical Information of China (English)

    BU J.; LIN J.; K. J. Moh; B. P. S. Ahluwalia; CHEN H. L.; PENG X.; NIU H. B.; YUAN X.C.

    2007-01-01

    In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication

  4. The turn angle gauge of generating type with an element on surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Lepikh Ya. I.

    2009-06-01

    Full Text Available The results of intellectualized angle of rotation sensor with an element on the surface acoustic waves (SAW development are presented. The generating type sensor block diagram, in which the element on SAW plays a role of the appropriate line of a delay is described. The sensor basic characteristics are given and the area of its application are shown.

  5. 离子色谱-氢化物发生原子荧光法测定尿中形态砷%Determination of arsenic species in urine by ion chromatography-hydride generation-atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    魏静; 梁琼; 刘俊娓

    2013-01-01

    Objective:To develop a method for the determination of arsenic species in urine by Ion chromatography - hydride Generation - atomic fluorescence spectrometry. Methods; The urine sample was filtered by 0.45 μm membrane. Using ( NH4 ) 2 HPO4 as mobile phase to explore the best ion chromatographic separation condition and the atomic fluorescence determination condition. The content of various forms of arsenic was determined by Ion chromatography - hydride Generation - atomic fluorescence spectrometry. Results; This method had good relativity and good precision(2.60% ~4. 30% ). The detection limits of As( Ⅲ), DMA, MMA and As( V ) were 2. 0 (μg/L, 4.0 μg/L,4.0 μg/L,8.0 μg/L, the average recoveries of samples were 90.48% ~ 102.90%. Conclusion; The method had the advantages of convenience, speediness, high sensitivity, less interference and high practical value without chemical pretreatment.%目的:建立离子色谱-氢化物发生原子荧光法测定尿中形态砷的方法.方法:尿样经0.45 μm滤膜过滤,以(NH4)2HPO4为流动相,采用离子色谱-氢化物发生原子荧光联机测定不同形态砷的含量.结果:实验结果相关性好,线性范围宽,精密度RSD为2.60%~4.30%,方法检出限为As(Ⅲ)2.0 μg/L,DMA4.0 μg/L,MMA4.0 μg/L,As(V)8.0 μg/L,该方法所得回收率为90.48% ~ 102.90%.结论:方法简便、快速、无需化学预处理、干扰少、灵敏度高,有较高的实用价值.

  6. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides,

  7. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides, relev

  8. COMGEN: A computer program for generating finite element models of composite materials at the micro level

    Science.gov (United States)

    Melis, Matthew E.

    1990-01-01

    COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.

  9. Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4

    Science.gov (United States)

    Raynaud, Patrick A. C.

    In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by

  10. ZONE: a finite element mesh generator. [In FORTRAN IV for CDC 7600

    Energy Technology Data Exchange (ETDEWEB)

    Burger, M. J.

    1976-05-01

    The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures. (RWR)

  11. Monitoring and control of a hydrogen production and storage system consisting of water electrolysis and metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Herranz, V.; Perez-Page, M. [Departamento de Ingenieria Quimica y Nuclear. Universidad Politecnica de Valencia. Camino de Vera S/N, 46022 Valencia (Spain); Beneito, R. [Area de Energia. Departamento de Gestion e Innovacion. Instituto Tecnologico del Juguete (AIJU). Avda. Industria 23, 03440 Ibi, Alicante (Spain)

    2010-02-15

    Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnologicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen. (author)

  12. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  13. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures

    Science.gov (United States)

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-01

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  14. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    Science.gov (United States)

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

  15. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  16. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  17. A simple and sensitive flow-injection on-line preconcentration coupled with hydride generation atomic fluorescence spectrometry for the determination of ultra-trace lead in water, wine, and rice.

    Science.gov (United States)

    Wu, Hong; Jin, Yan; Luo, Mingbiao; Bi, Shuping

    2007-09-01

    A simple and sensitive flow-injection on-line separation and preconcentration system coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) was developed for ultra-trace lead determination in water, wine, and rice samples, with the salient advantages of its minimization of transition-metal interferences and tolerance to an ethanol matrix. A lead hydroxide precipitate was achieved by the on-line merging of a sample and an ammonium buffer solution and collected onto the inner walls of a knotted reactor (KR). Removal of the residual solution from KR was achieved by air flow, and dissolution of the precipitate was carried out by using 0.2 mol l(-1) HCl. With a sample consumption of 11.7 ml, an enhancement factor of 16 was obtained at a sample throughput of 30 h(-1). The limit of detection (3s) was 16 ng l(-1) and the precision (RSD) for 1.0 microg l(-1) Pb was 3.4%.

  18. Determination of As(III) and As(V) by Flow Injection-Hydride Generation-Atomic Absorption Spectrometry via On-line Reduction of As(V) by KI

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Hansen, Elo Harald

    1997-01-01

    A volume-based flow injection (FI) procedure is described for the determination and speciation of trace inorganic arsenic, As(III) and As(V), via hydride generation-atomic absorption spectrometry (HG-AAS) of As(III). The determination of total arsenic is obtained by on-line reduction of As(V) to As...... volume is 100 mu l while the total sample consumption per assay is 1.33 ml, and the sampling frequency is 180 samples per hour. The detection limit (3 sigma) for the on-line reduction procedure was 37 ng l(-1) and at the 5.0 mu g l(-1), the relative standard deviation (RSD) was 1.1% (n=10) by calibrating...... with As(III) standards; by calibrating with As(V) standards the detection limit was 33 ng l(-1) and the RSD was 1.3% (n=10). For the selective determination of As(III) the detection limit was 111 ng l(-1) and the RSD was 0.7% (n=10) at 5.0 mu g l(-1). Both procedures are most tolerant to potential...

  19. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  20. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  1. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Science.gov (United States)

    Idrees, Y.; Yao, Z.; Cui, J.; Shek, G. K.; Daymond, M. R.

    2016-11-01

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen.

  2. Specific Genomic Fingerprints of Phosphate Solubilizing Pseudomonas Strains Generated by Box Elements

    Science.gov (United States)

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2014-01-01

    Primers corresponding to conserved bacterial repetitive of BOX elements were used to show that BOX-DNA sequences are widely distributed in phosphate solubilizing Pseudomonas strains. Phosphate solubilizing Pseudomonas was isolated from oil palm fields (tropical soil) in Malaysia. BOX elements were used to generate genomic fingerprints of a variety of Pseudomonas isolates to identify strains that were not distinguishable by other classification methods. BOX-PCR, that derived genomic fingerprints, was generated from whole purified genomic DNA by liquid culture of phosphate solubilizing Pseudomonas. BOX-PCR generated the phosphate solubilizing Pseudomonas specific fingerprints to identify the relationship between these strains. This suggests that distribution of BOX elements' sequences in phosphate solubilizing Pseudomonas strains is the mirror image of their genomic structure. Therefore, this method appears to be a rapid, simple, and reproducible method to identify and classify phosphate solubilizing Pseudomonas strains and it may be useful tool for fast identification of potential biofertilizer strains. PMID:25580434

  3. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  4. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  5. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  6. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    Science.gov (United States)

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  7. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    Science.gov (United States)

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization.

  8. First-principles study of superabundant vacancy formation in metal hydrides.

    Science.gov (United States)

    Zhang, Changjun; Alavi, Ali

    2005-07-13

    Recent experiments have established the generality of superabundant vacancies (SAV) formation in metal hydrides. Aiming to elucidate this intriguing phenomenon and to clarify previous interpretations, we employ density-functional theory to investigate atomic mechanisms of SAV formation in fcc hydrides of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. We have found that upon H insertion, vacancy formation energies reduce substantially. This is consistent with experimental suggestions. We demonstrate that the entropy effect, which has been proposed to explain SAV formation, is not the main cause. Instead, it is the drastic change of electronic structure induced by the H in the SAV hydrides, which is to a large extent responsible. Interesting trends in systems investigated are also found: ideal hydrides of 5d metals and noble metals are unstable compared to the corresponding pure metals, but the SAV hydrides are more stable than the corresponding ideal hydrides, whereas opposite results exist in the cases of Ni, Rh, and Pd. These trends of stabilities of the SAV hydrides are discussed in detail and a general understanding for SAV formation is provided. Finally, we propose an alternative reaction pathway to generate a SAV hydride from a metal alloy.

  9. HEAT TRANSFER ANALYSIS OF HEAT GENERATING WIRE USING FINITE ELEMENT METHOD

    OpenAIRE

    Dipak J. Parmar; Bhargav M. Chavda

    2000-01-01

    This paper describes the numerical results of the heat transfer from heat generating wire at different conditions by finite element method. The parametric effects on heat transfer were investigated. The varied parameters included ambient conditions, as well as the shape of the cross-section. The numerical results show that the type of the medium where the heat generating wire immerges has strong effects on the heatdissipation rate. As the size of the diameter the heat dis...

  10. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  11. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  12. Complex and liquid hydrides for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  13. Automated volumetric grid generation for finite element modeling of human hand joints

    Energy Technology Data Exchange (ETDEWEB)

    Hollerbach, K.; Underhill, K. [Lawrence Livermore National Lab., CA (United States); Rainsberger, R. [XYZ Scientific Applications, Inc., Livermore, CA (United States)

    1995-02-01

    We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.

  14. ESCHER: An interactive mesh-generating editor for preparing finite-element input

    Science.gov (United States)

    Oakes, W. R., Jr.

    1984-01-01

    ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.

  15. ESCHER: An interactive mesh-generating editor for preparing finite-element input

    Science.gov (United States)

    Oakes, W. R., Jr.

    1984-01-01

    ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.

  16. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  17. Photochemistry of Transition Metal Hydrides.

    Science.gov (United States)

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  18. Determination of As,Hg and Cd in FAPAS Canned Fish in UK by Hydride Generation-Atomic Fluorescence Spectrometry%氢化物-原子荧光光谱法测定英国FAPAS鱼罐头中砷汞镉

    Institute of Scientific and Technical Information of China (English)

    叶海辉; 谢德芳; 谢轶; 吴学进

    2012-01-01

    [Objective] To prove that the determination of As, Hg and Cd by the hydride generation-atomic fluorescence spectrometry (HG-AFS) has reached the international level of advanced detection instrument. [ Method] The parameters and testing methods of the HG-AFS were optimized. Through the testing of samples and the recovery test, a set of methods were established for determining the three elements in FAPAS canned fish. [Result] By comparing the detection report provided by FAPAS with the results of multiple laboratories, the Z value was -0.2 for As, 0. 5 for Hg, and 0.4 for Cd, the evaluation of results was satisfactory. [ Conclusion] It is feasible'to apply the HG-AFS method for the determination of As, Hg and Cd in seafood products.%[目的]证实原子荧光仪对这砷汞镉3种元素的检测已达到国际先进检测仪器的水平.[方法]利用氢化物-原子荧光光谱法,优化仪器条件参数和试验方法,通过测试质控样品与加标回收试验,建立一套测试英国FAPAS鱼罐头中砷汞镉的方法.[结果]根据FAPAS提供回来的检测报告,与全球众多实验室比对的结果为:砷的Z值为-0.2,汞的Z值为0.5,镉的Z值为0.4,对结果的评价为很满意.[结论]应用氢化物-原子荧光光谱法对海产品中砷汞镉进行检测是可行的.

  19. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  20. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  1. Simultaneous Determination of Arsenic and Antimony in Water by Hydride Generation-Atomic Fluorescence Spectrometry%氢化物发生-原子荧光光谱法同时测定水中砷和锑

    Institute of Scientific and Technical Information of China (English)

    黄选忠; 万忠卫; 杜宏山; 郑丽

    2013-01-01

    建立在硝酸介质中用氢化物发生-原子荧光光谱法同时测定水中砷和锑的方法。优化了仪器工作条件、酸度、硼氢化钾及还原剂浓度。砷、锑的线性范围为0~10.0µg/L;检出限分别为0.02,0.01µg/L;测定结果的相对标准偏差分别为1.77%~3.72%,2.95%~4.87%(n=6);加标回收率分别为98%~106%,96%~105%。该法操作简便,灵敏度高,快速,便于推广,适用于水中砷和锑的同时测定。%The method for simultaneous determination of arsenic and antimony in water was established by hydride-generation atomic fluorescence spectrometry in nitric acid medium. Instrument condition,acidity,concentration of potassium borohydride and thiourea-ascorbic acid were selected. The linear relationship of arsenic and antimony was 0-10.0 µg/L. The detection limit of arsenic and antimony was 0.02 µg/L and 0.01 µg/L, the relative standard deviation of arsenic and antimony determination results was 1.77%-3.72%and 2.95%-4.87%(n=6) , the recovery of standard addition of arsenic and antimony was 98%-106%and 96%-105%respectively. This method has the advantages of simple operation and high sensitivity,it is rapid and easy to spread,which is suitable for simultaneous determination of arsenic and antimony in water.

  2. Speciation of the immediately mobilisable As(III), As(V), MMA and DMA in river sediments by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry following ultrasonic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Huerga, A. [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Ciencias (Quimica), Universidad de Vigo, As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Lavilla, I. [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Ciencias (Quimica), Universidad de Vigo, As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Bendicho, C. [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Ciencias (Quimica), Universidad de Vigo, As Lagoas-Marcosende s/n, 36200 Vigo (Spain)]. E-mail: bendicho@uvigo.es

    2005-04-04

    In this work, a fast method is developed for the speciation of As(III), As(V), MMA and DMA in the immediately mobilisable fraction of river sediments (i.e. water-soluble and phosphate-exchangeable) by high performance liquid chromatography-hydride generation-atomic fluorescence detection (HPLC-HG-AFD) after extraction using focused ultrasound. The influence of relevant parameters influencing an ion-pairing chromatographic separation following isocratic elution (i.e. amount of MeOH in the mobile phase, ion pair reagent concentration, pH, flow rate) was studied. Focused ultrasound transmitted from an ultrasonic probe provided the same extractable contents as conventional extraction with no changes in the species distribution. The effect of the drying step over extraction of As species was investigated. The following drying procedures were compared: freeze-, oven-, microwave- and air-drying. No influence of the drying operation on the water-extractable fraction was observed. However, freeze- and air-drying yielded significantly higher phosphate-extractable amounts of As(III) and As(V) as compared to oven and microwaves. Detection limits for the As species were in the range 1.3-4.1 ng/g for the water-soluble fraction and 1.6-4.8 ng/g for the phosphate buffer exchangeable fraction. The method was applied to the speciation of immediately mobilisable As(III), As(V), DMA and MMA in 11 sediment samples collected along the beds of the Louro River (southern Galicia, Spain)

  3. Determination of Se in Saffron by Using Hydride Generation Atomic Fluorescence Spectrometry%氢化物发生原子荧光光谱法测定西红花柱头中的硒

    Institute of Scientific and Technical Information of China (English)

    张宏; 张新申; 颜钫; 陈放

    2001-01-01

    A method for determination of Se in saffron using AFS-230 hydride generation atomic fluorescence spectrometry was introduced.Detections were completed made in every possible best condition.The optimal analytical conditions in HClO4-HNO3 were examined.The detection limit is 0.5μg/L.The linear range is 1.5~15.0 μg/L.The correlation coefficient is 0.9999,and the recovery rate is about 90%~97%.Se of saffrons from 4 regions was determined by standard curve method.The experiment results show that this method has low detection limit,high accurate,simple operation,fast and low cost.It's easy to be spread.%应用AFS-230型双道原子荧光光谱计进行了氢化物发生原子荧光光谱法测定西红花柱头中硒的研究,方法中采用硝酸做介质,并对各种最佳分析条件进行了测定。线性范围为1.5~15μg/L,相关系数R=0.9999,回收率为90%~97%。采用标准曲线法对4种不同产地的西红花干燥柱头中硒进行了测定。该方法操作简单、快速,精密度好,准确性高,检出限较低,经济,便于推广应用。

  4. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hong, E-mail: wuhong1968@hotmail.com; Wang Xuecui; Liu Bing; Liu Yueling; Li Shanshan; Lu Jusheng; Tian Jiuying; Zhao Wenfeng; Yang Zonghui

    2011-01-15

    A new method was developed for the simultaneous speciation of inorganic arsenic and antimony in water by on-line solid-phase extraction coupled with hydride generation-double channel atomic fluorescence spectrometry (HG-DC-AFS). The speciation scheme involved the on-line formation and retention of the ammonium pyrrolidine dithiocarbamate complexes of As(III) and Sb(III) on a single-walled carbon nanotubes packed micro-column, followed by on-line elution and simultaneous detection of As(III) and Sb(III) by HG-DC-AFS; the total As and total Sb were determined by the same protocol after As(V) and Sb(V) were reduced by thiourea, with As(V) and Sb(V) concentrations obtained by subtraction. Various experimental parameters affecting the on-line solid-phase extraction and determination of the analytes species have been investigated in detail. With 180 s preconcentration time, the enrichment factors were found to be 25.4 for As(III) and 24.6 for Sb(III), with the limits of detection (LODs) of 3.8 ng L{sup -1} for As(III) and 2.1 ng L{sup -1} for Sb(III). The precisions (RSD) for five replicate measurements of 0.5 {mu}g L{sup -1} of As(III) and 0.2 {mu}g L{sup -1} of Sb(III) were 4.2 and 4.8%, respectively. The developed method was validated by the analysis of standard reference materials (NIST SRM 1640a), and was applied to the speciation of inorganic As and Sb in natural water samples.

  5. Optimize parameters of hydride generation-atomic fluorescence spectrometry for inorganic arsenic determination in grain%氢化物发生-原子荧光法测定粮食中无机砷条件的研究

    Institute of Scientific and Technical Information of China (English)

    杨庆惠

    2012-01-01

    应用氢化物发生—原子荧光分析技术进行粮食中无机砷测定的研究,通过优化酸度、硼氢化钾、载气流量、灯电流以及原子化器高度等分析条件,结果表明,砷浓度在0~30 ng/ml内呈线性关系,相关系数为0.999 9,相对标准偏差为1.6%,检出限为0.054 μg/L,用此方法测定粮食中无机砷,回收率为96.5%~103.5%.该方法简便、快速、灵敏,在实际样品测定中获得到了满意的结果,便于推广应用.%Hydride generation- atomic fluorescence spectrometry was adopted for determine the inorganic arsenic in grain. The experimental parameters such as Ph, KHB4 concentration, flow rate, lamp current and the height of atomizer were optimized. There is linear relation when the arsenic concentration was between 0~30 ng/ml with a correlation coefficient of 0. 999 9. The relative standard deviation was 1. 6%, and the detection limit was 0. 054μg/L. The recovery rate reached to 96. 5%~103. 5%. This method is simple,rapid and sensitive, and got satisfactory results in practicle,it is worth for generalize.

  6. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  7. Metal hydrides for lithium-ion batteries.

    Science.gov (United States)

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  8. Effect of Nb on Cracking and Hydrogen Content of Zirconium Hydride%铌对氢化锆裂纹行为和氢含量的影响

    Institute of Scientific and Technical Information of China (English)

    王建伟; 王力军; 陈伟东; 张建东

    2012-01-01

    Zirconium hydride was one of the most ideal moderators, especially for the space nuclear power system. But the high hydrogen level zirconium hydride was easy to crack during its preparation. Nb was the main adding element in the zirconium hydride moderator and affected the cracking behaviors and hydrogen content of the zirconium hydride, which was determined by the existing status of Nb in the zirconium hydride. The issues mentioned were investigated at present It indicated that the hydriding products of Zr-Nb alloys with different Nb content were all composed of mixed s phase zirconium hydrides of ZrH2, ZrH1.950 and ZrH1.801. Nb improved the structure and morphology of the zirconium hydride, decreased the defects and inhibited the cracking. In the case of high Nb level, the generated NbR, solid solution with low hydrogen content downgraded the whole hydrogen content of the alloy. The solubility of Nb in the zirconium hydride was low. For the zirconium hydride with low Nb content, majority of Nb was scattered on the surface of the zirconium hydride as small white grains of H-containing Zr-Nb solid solutioa.%氢化锫是一种理想的固体中子慢化材料,尤其适用于空间核电源的反应堆,但是高氢含量的氢化锫在制备过程中很容易形成裂纹.Nb是氢化锆中的主要添加元素,对氢化锆的裂纹形成和氢含量有一定影响,这是由Nb在氢化锆中的存在形式决定的,对此进行了研究.结果表明,在吸氢充分的情况下,不同Nb含量的Zr - Nb合金氢化后产物的主要组成都是ZrH2,ZrH1.950和ZrH1.801的ε相氢化锆混合物,Nb的添加对氢化锫的晶格常数和晶胞大小影响不大.Nb改善了氢化锫的多缺陷状态,减少了氢富集的位置,从而起到抑制裂纹产生的作用.常压下,Nb的添加会影响合金的最大吸氢量,尤其当Nb含量在10%以上时,会生成低氢含量的NbHx固溶体,影响锆合金的整体吸氢量.Nb在氢化锆中的固溶度较小,Nb含量较

  9. Hydrogen Storage in Metal Hydrides

    Science.gov (United States)

    1990-08-01

    Hydrogen Storage Capacity Hydride by weight (%) [1) by volume (g/ml) [2] MgH2 7.00 0.101 Mg2NiH4 3.84 0,081 Mg2CuH4 2.04 - - 27 ...Include Security Classification) Hydrogen Storage in Metal Hydrides (U) 12. PERSONAL AUTHOR(S) DelaRosa, Mark J. 13a. TYPE OF REPORT 13b. TIME...objective of this program was to develop an economical process for pr-ducing a lightweight hydrogen storage medium by the chemical vapor infiltration

  10. Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption.

    Science.gov (United States)

    Dresel, T; Beyerlein, M; Schwider, J

    1996-12-10

    Computer-generated phase-only holograms can be used for laser beam shaping, i.e., for focusing a given aperture with intensity and phase distributions into a pregiven intensity pattern in their focal planes. A numerical approach based on iterative finite-element mesh adaption permits the design of appropriate phase functions for the task of focusing into two-dimensional reconstruction patterns. Both the hologram aperture and the reconstruction pattern are covered by mesh mappings. An iterative procedure delivers meshes with intensities equally distributed over the constituting elements. This design algorithm adds new elementary focuser functions to what we call object-oriented hologram design. Some design examples are discussed.

  11. A Compact Design of Planar Array Antenna with Fractal Elements for Future Generation Applications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    In this paper, a planar phased array fractal antenna for the future fifth generation (5G) applications is presented. The proposed array antenna is designed to operate at 22 GHz. 64 patch antenna elements with coaxial-probe feeds have been used for the proposed design. The antenna elements are based...... on Vicsek fractal geometry where the third iteration patches operate over a wide bandwidth and contribute to improve the efficiency and realized gain performance. The designed planar array has more than 22 dB realized gain and -0.3 dB total efficiency when its beam is tilted to 0 degrees elevation...

  12. Metal Hydrides as hot carrier cell absorber materials

    Science.gov (United States)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  13. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: study of preconcentration technique performance.

    Science.gov (United States)

    Tsogas, George Z; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2009-04-30

    In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 microg L(-1) for Cd(2+), 0.05-0.10 microg L(-1) for Pb(2+) and 0.1-0.25 microg L(-1) for Sn(4+) depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed.

  14. Crystallography of shear transformations in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Michael Philip [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    The crystallography and substructure of the transformations which have been hypothesized as involving a martensitic shear, and which occur between zirconium hydrides were investigated. Specifically, the formation of gamma zirconium hydride from delta hydride and the delta hydride to epsilon hydride transformation were studied. The habit planes, orientation relationships, lattice invariant shears, and interface structures were determined by transmission electron microscopy and diffraction. Surface tilts were observed and measured with an interference microscope. The direction and magnitude of the shape strain produced by the formation of gamma were determined by the measurement of fiducial scratch displacements. These results were compared with the phenomenological crystallographic theory of martensitic transformations.

  15. Characteristics and Applications of Metal Hydrides

    Science.gov (United States)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  16. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  17. Valence properties of tellurium in different chemical systems and its determination in refractory environmental samples using hydride generation – Atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Wei; Alzahrani, Ali [Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada); Deng, Tian-Long [College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin (China); Belzile, Nelson, E-mail: nbelzile@laurentian.ca [Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada); Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada)

    2016-01-28

    Using HG – AFS as a powerful tool to study valence transformations of Te, we found that, in presence of HCl and at high temperature, Te can form volatile species and be lost during sample digestion and pre-reduction steps. It was also noticed that the chemical valences of Te can be modified under different chemical and digestion conditions and even by samples themselves with certain matrices. KBr can reduce Te(VI) to Te(IV) in 3.0 M HCl at 100 °C, but when HNO{sub 3} was >5% (v/v) in solution, Br{sub 2} was formed and caused serious interference to Te measurements. HCl alone can also pre-reduce Te(VI) to Te(IV), only when its concentration was ≥6.0 M (100 °C for 15min). Among 10 studied chemical elements, only Cu{sup 2+} caused severe interference. Thiourea is an effective masking agent only when Cu{sup 2+} concentration is equal or lower than 10 mg/L. Chemical reagents, chemical composition of sample, as well as the modes of digestion can greatly affect Te valences, reagent blanks and analytical precisions. A protocol of 2–step–digestion followed by an elimination of HF is proposed to minimize reagent blank and increase the signal/noise ratios. It is important to perform a preliminary test to confirm whether a pre-reduction step is necessary; this is especially true for samples with complex matrices such as those with high sulfide content. The analytical detection limits of this method in a pure solution and a solid sample were 100 ng/L and 0.10 ± 0.02 μg/g, respectively. - Highlights: • HG–AFS is a powerful tool in studies of chemical valences and forms of Te in different conditions. • Te can be lost in form of volatile species in presence of HCl at high temperature. • Metal ions can be classified into 3 categories of interference; thiourea can effectively mask Cu{sup 2+}. • A 2-step digestion allows to eliminate HF, reduce background and improve analytical precision. • Matrix of sample can strongly influence Te chemical valence

  18. Antimony speciation in soils: improving the detection limits using post-column pre-reduction hydride generation atomic fluorescence spectroscopy (HPLC/pre-reduction/HG-AFS).

    Science.gov (United States)

    Quiroz, Waldo; Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea

    2011-04-15

    HG-AFS is highly sensitive and low cost detection system and its use for antimony chemical speciation coupled to HPLC is gaining popularity. However speciation analysis in soils is strongly hampered because the most efficient extractant reported in the literature (oxalic acid) strongly inhibits the generation of SbH(3) by Sb(V), the major species in this kind of matrix, severely affecting its detection limits. The purpose of this research is to reduce the detection limit of Sb(V), by using a post column on-line reduction system with l-cysteine reagent (HPLC/pre-reduction/HG-AFS). The system was optimized by experimental design, optimum conditions found were 2% (w/v) and 10°C temperature coil. Detection limits of Sb(V) and Sb(III) in oxalic acid (0.25 mol L(-1)) were improved from 0.3 and 0.1 μg L(-1) to 0.07 and 0.07 μg L(-1), respectively. The methodology developed was applied to Chilean soils, where Sb(V) was the predominant species. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Determination of Lead in Tea Garden Soil by Hydride Generation Atomic Fluorescence Spectrometry with Microwave Digestion%微波消解-氢化物发生原子荧光光谱法测定茶园土壤中的铅

    Institute of Scientific and Technical Information of China (English)

    凤海元; 时晓露; 黄勤

    2013-01-01

    样品用王水微波消解浸提,氢化物发生-原子荧光光谱法测定茶园土壤中痕量铅的含量.对样品浸取方法、实验条件、增感剂和共存元素进行了条件实验.结果表明,王水微波消解浸取,铅浸出量最大,减少了试剂用量和环境污染;铁氰化钾-盐酸羟胺体系有显著的增感作用,铁氰化钾在配制溶液时用米糠除去试剂中可能存在的铅,降低了空白;钴、锌、砷、镉等共存离子不干扰铅的测定,通过加入邻菲啰啉-硫氰酸钠消除铁和铜的干扰,提高了铅的回收率.方法检出限为0.65 μg/L,精密度(RSD,n=10)为1.89%,回收率在86.8% ~ 110.4%之间.用土壤标准物质验证,测定值与标准值相符,方法快速准确,适合于大批量样品的分析检测.%The microwave digestion system with aqua regia was developed for the determination of trace lead in tea garden soil using Hydride Generation-Atomic Fluorescence Spectrometry ( HG-AFS). The leaching methods, experimental conditions, booster and coexisting element were optimized. The largest amount of lead was leached out by microwave digestion with aqua regia, which has the advantages of less usage of reagent and less environmental pollution. An appropriate amount of potassium ferricyanide and hydroxylamine hydrochloride improved the hydride generation efficiency of Pb. The lead blank was reduced significantly when Potassium ferricyanide solution was treated with rice husk to remove Pb in the reagent. It was found that Co, Zn, As, and Cd did not interfere with the determination of lead. The addition of 1,10-phenanthroline monohydrate and sodium hydrosulfide could effectively eliminate the interferences from Fe and Cu, which improved the recovery rate of lead. The limit of detection was 0. 65 μg/L and the precision was 1. 89% (n = 10) with recoveries of 86. 8% - 110. 4% for Pb. The reliability of the method has been tested by determination of Pb in the Soils Standard Reference

  20. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J.; Shek, G.K. [Kinectrics Inc., Toronto, Ontario (Canada); Wang, Z.R. [Toronto Univ., Dept. of Materials Science and Engineering, Toronto, Ontario (Canada)

    2007-07-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  1. Boundary element numerical method for the electric field generated by oblique multi-needle electrodes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa- tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced sig- nificance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.

  2. Boundary element numerical method for the electric field generated by oblique multi-needle electrodes

    Institute of Scientific and Technical Information of China (English)

    LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun

    2009-01-01

    According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.

  3. Automatic finite elements mesh generation from planar contours of the brain: an image driven 'blobby' approach

    CERN Document Server

    Bucki, M; Bucki, Marek; Payan, Yohan

    2005-01-01

    In this paper, we address the problem of automatic mesh generation for finite elements modeling of anatomical organs for which a volumetric data set is available. In the first step a set of characteristic outlines of the organ is defined manually or automatically within the volume. The outlines define the "key frames" that will guide the procedure of surface reconstruction. Then, based on this information, and along with organ surface curvature information extracted from the volume data, a 3D scalar field is generated. This field allows a 3D reconstruction of the organ: as an iso-surface model, using a marching cubes algorithm; or as a 3D mesh, using a grid "immersion" technique, the field value being used as the outside/inside test. The final reconstruction respects the various topological changes that occur within the organ, such as holes and branching elements.

  4. Multi-element eddy current probe. For inspecting steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Savin, E.; Sartre, B. [FRAMATOME, 92 - Paris-La-Defense (France); Placko, D.; Premel, D. [Ecole Nationale Superieure de Cachan, 94 (France)

    2000-10-01

    Framatome and the Ecole Normale Superieure de Cachan are developing a multi-element eddy current probe for inspecting steam generator tubes of 900 MWe PWR reactors. The device is intended to replace much slower rotating probes. Using its measurements, the conductivity image of any point in the tube can be reconstructed, thanks to a numerical, thanks to a numerical model, thus allowing diagnosis. The first trial results on mockups seem already competitive with those obtained using a rotary probe. (authors)

  5. Design and Finite Element Analysis of a Novel Transverse Flux Permanent Magnet Disk Generator

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Ershad, Nima Farrokhzad;

    2011-01-01

    This paper presents a novel structure of a transverse flux permanent magnet disk generator. The proposed disk shape structure simplifies prototyping by using simple laminated steel sheets in comparison with previous transverse flux structures that employ bent laminations and soft magnetic composi...... and then optimized. The necessity of optimization is to find the best inner radius which maximizes output power to weight ratio, power factor and efficiency. To this end, the optimization process needs three dimensional finite element analyses....

  6. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  7. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Science.gov (United States)

    Chen, Qiushi; Ostien, Jakob T.; Hansen, Glen

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  8. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiushi, E-mail: qiushi@clemson.edu [Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634 (United States); Ostien, Jakob T., E-mail: jtostie@sandia.gov [Mechanics of Materials Dept. 8256, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969 (United States); Hansen, Glen, E-mail: gahanse@sandia.gov [Computational Multiphysics Dept. 1443, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1321 (United States)

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J{sub 2} elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton–Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  9. Electrochemical hydride generation atomic fluorescence spectrometry with a polyanline modified electrode for detection of tin%聚苯胺修饰电极-电化学氢化物发生原子荧光光谱法测定食品中锡含量

    Institute of Scientific and Technical Information of China (English)

    姜宪娟; 淦五二

    2012-01-01

    An electrochemical hydride generation (EC-HG) system with a polyaniline modified electrode (Pan-ME) as cathode material was developed for Sn ( Ⅳ) determination by couped with atomic fluorescence spectrometry. The electrochemical hydride generation efficiency for Sn (Ⅳ) was improved evidently as the Pan membrane could obstruct the aggradation of Sn atom on cathode surface and facilitate the hydride generation. The effects of experimental parameters and interferences have been studied. The limit of detection ( LOD) was 1. 2 ng/mL (3σ) and the relative standard deviation (RSD) was 2. 3% for eleven consecutive measurements of 50 ng/mL Sn(IV) standard solution.%运用以聚苯胺修饰的石墨电极为阴极的电化学氢化物发生装置实现了锡元素的电化学氢化物发生.在电极表面聚合一层聚苯胺,能够有效地提高锡元素的电化学氢化物发生效率,通过与原子荧光光谱仪联用,成功地测定了食品中的锡含量.本工作对各种实验参数和干扰情况进行了详细研究.方法对锡的检出限为1.2 ng/mL(3σ);样品分析精密度(RSD)为2.3% (50 ng/mL,n=11).

  10. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System....... H- is stable with respect to oxide and halide anions but, among cations only with respect to oxides and halides of strongly electropositive metals such as alkaline, alkaline-earth and main group III metals. H- is only stable in combination with transition metal ions of certain elements...... in their lowest positive oxidation state. Mixed oxide/hydride containing perovskites may thus exist. Steinsvik et al. have recently suggested a defect model for a perovskite including substitutional hydride ions on the oxygen site, H-O(.), and protons associated with a lattice oxygen, OHO.. The defect equations...

  11. Determination of methylmercury in seafood by HPLC coupled with hydride generation and AFS%高效液相色谱原子荧光分光光度联用法测定海产品中的甲基汞含量

    Institute of Scientific and Technical Information of China (English)

    赵凯; 杨大进

    2011-01-01

    目的 建立高效液相色谱原子荧光分光光度法在线联用技术测定海产品中甲基汞的方法.方法 以25%氢氧化钾甲醇溶液水浴加热后超声提取样品,试液中的甲基汞与2-巯基乙醇结合.以5%甲醇溶液(含60 mmol/L乙酸铵和0.1%2-巯基乙醇)作流动相,经Supelco C18色谱柱(150 mm×4.6 mm,5μm)分离,紫外消解后经KBH4还原由原子荧光光度计进行测定.结果 甲基汞的检出限为0.7 μg/L(以汞计),样品测定的相对标准偏差小于4.6%,采用两种参考物质考查方法的准确性,以测定市售海产品中甲基汞含量.结论 本研究通过简化仪器装置,改进前处理步骤,有效地提高了方法的可靠性,该方法简便、快速、可靠,可用于海产品中甲基汞的含量测定.%Objective A high performance liquid chromatography ( HPLC ) coupled with hydride generation and atomic fluorescence spectrometry is proposed for the determination of methyl mercury in seafood. Methods Samples were extracted by 25% potassium hydroxide and the methylmercury-thiol complex was separated on a Supelco C18 (150 mm x 4.6 mm, 5μm) reverse phase column and online UV-digested. After reduced to element Hg by KBH4, the element Hg was selectively detected by AFS in an Ar/H2 flame under optimized conditions. Results The detection limit for methyl mercury was 0. 7μg/L ( as mercury) with a relative standard deviation ( RSD) of lower than 4. 6%. Two standard reference materials were applied for the accuracy of study. Conclusion The content of methylmercury in seafood can be determined by the method with good convenience, rapidity and reliability.

  12. Hydride encapsulation by molecular alkali-metal clusters.

    Science.gov (United States)

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  13. Future's operation areas: new-generation suppression enemy air defence (SEAD) elements

    Science.gov (United States)

    Hazinedar, Ä.°lker

    2015-05-01

    Since air vehicles took place in the theater of operations, they have become the indispensable elements and the strongest attack power of armed forces. In the following period, with technological development, supersonic aircrafts took place in the operation area and this increased effectiveness of air vehicles much more. Air forces have used these aircrafts during important missions like strategic attack and air defense operations. On the other hand, decision makers understood that it was not feasible to intercept fighter aircrafts by executing combat air patrol flight missions. Since there is not enough reaction time to intercept the high speed aircrafts, ground stationed Surface to Air Missiles (SAM) system requirement has emerged. Therefore, SAM systems took place in the operation scene as well. Due to the fact that SAM systems emerged against the attack power, the attack aircrafts are to keep away from the fire of the ground stationed SAM systems. Hence, the requirement of Suppression Enemy Air Defense (SEAD) arose. SEAD elements take under suppression the radar of the SAM systems. In this way, attack aircrafts are able to attack without the risk of SAM systems. The purpose of this study is to find new methods or concepts in order to protect friendly attack aircrafts against ground based surface to air missiles' fires. Modernization of SAM systems and new generation SAM system producing activities have proceeded with positive acceleration. So, current SEAD elements and concepts are not able to cover the requirements due to the increased SAM system ranges. According to the concepts, SEAD weapons` ranges must be longer than the SAM weapons' ranges to protect friendly aircrafts. In this study, new concept was offered to overcome the deficiencies of current SEAD concept. The elements of new concepts were put forward. Classic SEAD concept and new generation concepts were assessed by using SWOT analysis technique. As a result, this study has revealed that, air forces

  14. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  15. The mesh-matching algorithm: an automatic 3D mesh generator for Finite element structures

    CERN Document Server

    Couteau, B; Lavallee, S; Payan, Yohan; Lavallee, St\\'{e}phane

    2000-01-01

    Several authors have employed Finite Element Analysis (FEA) for stress and strain analysis in orthopaedic biomechanics. Unfortunately, the use of three-dimensional models is time consuming and consequently the number of analysis to be performed is limited. The authors have investigated a new method allowing automatically 3D mesh generation for structures as complex as bone for example. This method called Mesh-Matching (M-M) algorithm generated automatically customized 3D meshes of bones from an already existing model. The M-M algorithm has been used to generate FE models of ten proximal human femora from an initial one which had been experimentally validated. The new meshes seemed to demonstrate satisfying results.

  16. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Pawel; Zapata, Israel Jimenez; Bings, Nicolas H. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Voges, Edgar [Universitaet Dortmund, Fakultaet fuer Elektrotechnik und Informationstechnik, Friedrich-Woehler-Weg 4, D-44221 Dortmund (Germany); Broekaert, Jose A.C. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2007-05-15

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH{sub 4} concentration, the concentration of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 {mu}g ml{sup -1}. The microstrip plasma tolerated the introduction of 4.2 ml min{sup -1} of H{sub 2} in the Ar working gas, which corresponded to an H{sub 2}/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H{sub {beta}} line was of the order of 5500 K and 1.50 . 10{sup 14} cm{sup -3}, respectively. Detection limits (3{sigma}) of 18 ng ml{sup -1} for As and 31 ng ml{sup -1} for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 {mu}g ml{sup -1} level in a galvanic bath solution containing 2.5% of NiSO{sub 4}. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 {+-} 15 {mu}g g{sup -1} and a value of 144 {+-} 4 {mu}g g{sup -1} was found.

  17. Determination of Tetraethyl Lead in Water by Hydride Generation-Atomic Absorption Spectrophotometry%水中痕量铜的SBA-15修饰碳糊电极溶出伏安测定法

    Institute of Scientific and Technical Information of China (English)

    杨振兴

    2011-01-01

    Objective To establish a method for the determination of tetraethyl lead in water by hydride generation-atomic absorption spectrophotometry. Methods By solvent extraction of trichloromethane and low-temperature degradation,the best optimum experimental condition of optimal design of orthogonal test: wavelength was 217 nm, lamp current was 3.0 mA, band pass was 0.2 nm, supporting gas was argon GAS (99.99%), argon gas flux was 0.8 L/min, peak height measurement, oxidizing flame, 20 g/L NaBH4 solution,5 mi HNO3 (1.42 g/mi) solution, 1.5 ml HCl(1.19 g/ml) solution, 100 g/L K3Fe(CN)6 solution. Results The limit of detection was 0.049 μg/L,the average recovery rates were 89.7%-101.4% and RSDs were 3.3%-5.3%. Conclusion This method is simple, sensitive, accurate and applicable to the determination of the tetraethyl lead in water.%目的 建立介孔材料修饰碳糊电极测定水中痕量铜的方法.方法 制备SBA-15修饰碳糊电极,并在pH值为4.2的乙酸-乙酸钠缓冲溶液中,采用溶出伏安法对水中痕量铜进行测定.结果 优化实验条件下,相关系数达到0.997 3,测得Cu2+的线性范围和最低检出限分别为2.0×10-10~4.0×10-8mol/L和1.0×10-10mol/L,样品加标回收率为97.0%~101.8%.结论该方法简单、快速、灵敏,可用于实际水样中痕量铜的测定.

  18. Spectrophotometric Determination of Trace Germanium in Chinese Medicine by Hydride Generation Technique%氢化物发生-分光光度法测定中药中微量锗

    Institute of Scientific and Technical Information of China (English)

    仇佩虹; 张华杰; 谢夏丰

    2001-01-01

    研究了在L-半胱氨酸存在下,锗与硼氢化钠反应产生锗化氢挥发分离,再用显色剂2-(5-NO2-2-吡啶偶氮)-5-二乙氨基酚(5-NO2-PADAP),次氯酸钠,六次甲基四胺的混合液吸收显色,有色溶液在564nm处有最大吸收;摩尔吸光系数为1.84×105L·mol/-1·cm-1,锗在0~500μg/L范围内服从比尔定律;样品标准加入回收率为89%~97%;相对标准偏差小于6.3%;用本法对中药材中微量锗的测定,结果令人满意。%The hydride generation technique was used to determination of germanium in the presence of L-cysteine.The GeH4 was absorbed and coloured by a mixed solution of 2-(5-NO2-2-pyridylazo)-5-diethylaminophenyl(5-NO2-PADAP),NaClO and (CH2)6NH+.The maximum absorption of the colour complex was at 564nm.Its apparent molar absorption coefficient was 1.84×105L·mol-1·cm-1.Beer's law was obeyed for 0~500μg/L germanium.The recoveries of spiked samples were in the range of 89%~97%,while the relative standard deviation was less than 6.3%.This method is sensitive,simple and reproducible.The method has been applied to the determination of Ge in the chinese medicine with satisfactory result.

  19. The renaissance of hydrides as energy materials

    Science.gov (United States)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2017-02-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  20. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  1. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  2. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated......This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...

  3. Generation of Bessel Beams at mm- and Sub mm-wavelengths by Binary Optical Elements

    Science.gov (United States)

    Yu, Y. Z.; Dou, W. B.

    2008-07-01

    In this paper, binary optical elements (BOE’s) are designed for generating Bessel beams at mm- and sub mm- wavelengths. The design tool is to combine a genetic algorithm (GA) for global optimization with a two-dimension finite-difference time-domain (2-D FDTD) method for rigorous electromagnetic computation. The design process for converting a normally incident Gaussian beam into a Bessel beam is described in detail. Numerical results demonstrate that the designed BOE’s can not only successfully produce arbitrary order Bessel beams, but also have higher diffraction efficiencies when compared with amplitude holograms.

  4. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen...... and metal and for the stable hydrides this is associated with release of heat (#DELTA#H_f ). The more thermodynamically stable the hydride, the larger DHf, and the higher temperature is needed in order to desorphydrogen (reverse reaction) and vice versa. For practical application the temperature needed...

  5. Research on Metal Hydride Compressor System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ti-Zr series Laves phase hydrogen storage alloys with good hydrogen storage properties, such as large hydrogen capacity, rapid hydriding and dehydriding rate, high compression ratio, gentle plateau, small hysteresis, easily being activated and long cyclic stability etc. for metal hydride compressor have been investigated. In addition, a hydride compressor with special characteristics, namely, advanced filling method, good heat transfer effect and reasonable structural design etc. has also been constructed. A hydride compressor cryogenic system has been assembled coupling the compressor with a J-T micro-throttling refrigeration device and its cooling capacity can reach 0.4 W at 25 K.

  6. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    Science.gov (United States)

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  7. Thermal Analysis on Radial Flux Permanent Magnet Generator (PMG using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful A Syaeful A

    2011-05-01

    Full Text Available The main source of heat in the permanent magnet generator (PMG is the total losses which f come from winding losses, core losses and rotational losses. Total heat arising from such these losses must be properly distributed and maintained so as not to exceed the maximum allowable temperature to prevent damage to insulation on the winding and demagnetization on the permanent magnet machines. In this research, we consider thermal analysis which is occurred on the radial flux PMG by using finite element method to determine the extent to which the heat generated can be properly distributed. The simulation results show that there are no points of heat concentration or hot spot. The simulation maximum temperatures of the permanent magnet and the winding are 39.1oC and 72.5oC respectively while the experimental maximum temperature of the winding is 62oC.

  8. Chromatographic generator systems for the actinides and natural decay series elements

    Energy Technology Data Exchange (ETDEWEB)

    McAlister, D.R.; Horwitz, E.P. [PG Research Foundation, Lisle, IL (United States)

    2011-07-01

    This work describes chromatographic radionuclide generator systems for the production of actinides and natural decay series elements. The generator systems begin with alpha emitting parent radioisotopes with half-lives (T{sub 1/2}) of greater than one year and produce alpha or beta emitting radioisotopes with half-lives of hours to days. Chromatographic systems were chosen to minimize radiolytic damage to chromatographic supports, preserve the parent activity for repeated use, provide high purity daughter radionuclide tracers, and to minimize or eliminate the need for evaporation of solutions of the parent or daughter nuclides. Useful secondary separations involving the daughters of the initial parent radionuclide are also described. Separation systems for {sup 210}Bi, {sup 210}Po, {sup 211}Pb, {sup 212}Pb, {sup 223}Ra, {sup 224}Ra, {sup 225}Ra, {sup 225}Ac, {sup 227}Th, {sup 228}Th, {sup 231}Th, {sup 234}Th, and {sup 239}Np are outlined in detail. (orig.)

  9. Finite Element Modeling of Wall Thinning Defects: Applications to Lamb Wave Generation and Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Kim, Tae Ho [Wonkwang University, Iksan (Korea, Republic of); Lee, Seung Seok; Kim, Young Kil [KRISS, Daejeon (Korea, Republic of)

    2008-04-15

    The generation of axisymmetric Lamb waves and interaction with wall thinning (corrosion) defects in hollow cylinders are simulated using the finite element method. Guided wave interaction with defects in cylinders is challenged by the multi-mode dispersion and the mode conversion. In this paper, two longitudinal, axisymmetric modes are generated using the concept of a time-delay periodic ring arrays (TDPRA), which makes use of the constructive/destructive interference concept to achieve the unidirectional emission and reception of guided waves. The axisymmetric scattering by the wall thinning extending in full circumference of a cylinder is studied with a two-dimensional FE simulation. The effect of wall thinning depth, axial extension, and the edge shape on the reflections of guided waves is discussed.

  10. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    Science.gov (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-09-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  11. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    Science.gov (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-12-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  12. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  13. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  14. Word Generative Grammar -- an Extensible 6-element System: {VT, VN, θ, L, S, P}

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    On the basis of formal grammar, this paper introduces operation set θ (e.g., vector point multiply *, vector couple multiply*, vector set multiply ×, substitution H, function F, set plus ∪, et al.) and set of set's types L (e.g., ordered set, continuous (descending) ordered set, unordered set, coupled set, coordinate, et al.), and generalizes them to other word types of natural language, thus presenting the generative grammar for words--an extensible 6-element formal system {VT, VN, θ, L, S, P}, and takeing time words in natural language as example for detailed discussion. With the colorfulness of time words of natural language, time words for different natural languages assume different meaning. Generative grammar for time words can generate not only different time words, but also their semantics (Generative grammar of Chomsky can only produce all right sentences instead of semantics), and then, generalizes them to other word types, e.g., accurate measure words, adjectives, etc.

  15. Generation of Accelerated Stability Experiment Profile of Inertial Platform Based on Finite Element

    Institute of Scientific and Technical Information of China (English)

    CHEN Yunxia; HUANG Xiaokai; KANG Rui

    2012-01-01

    The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics (UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.

  16. ImageParser: a tool for finite element generation from three-dimensional medical images

    Directory of Open Access Journals (Sweden)

    Yamada T

    2004-10-01

    Full Text Available Abstract Background The finite element method (FEM is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures of interest (ROIs may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.

  17. 氢化物发生-原子荧光光谱法直接测定土壤水溶态Sb(Ⅲ)和Sb(Ⅴ)%Direct Determination of Water-Soluble Antimony(Ⅲ) and Antimony(Ⅴ) in Soil by Hydride Generation Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    于兆水; 张勤

    2009-01-01

    在HCl介质中,Sb(Ⅲ)和Sb(Ⅴ)在氢化物发生过程中的化学反应效率不同,通过测定经还原剂还原后和还原前Sb的荧光强度,求解联立方程计算出Sb(Ⅲ)和Sb(Ⅴ)的含量,据此建立了氧化物发生-原子荧光光谱法直接测定土壤水溶态Sb(Ⅲ)和Sb(Ⅴ)方法,操作简便,实用性强.考察了 HCl浓度和KBH_4浓度对Sb(Ⅲ)和Sb(Ⅴ)测定灵敏度的影响以及共存元素的干扰情况,并比较了丽种还原剂对Sb(Ⅴ)的还原效果.方法检出限为Sb(Ⅲ)1.11 ng·g~(-1),Sb(Ⅴ)1.57 ng·g~(-1).加标回收试验表明方法准确、可靠.%A simple, rapid and useful method for the determination of water-soluble antimony( Ⅲ ) and antimony(Ⅴ) in soil was established using hydride generation atomic fluorescence spectrometry. The method was based on the different chemical reaction efficiency between Sb( Ⅲ ) and Sb( Ⅴ ) with KBH_4 in the media of HCL The amounts of Sb( Ⅲ) and Sb( Ⅴ ) can be obtained through measuring antimony fluorescence intensities before and after reduction with reductant. The effects of HCI and KBH_4 on the sensitivities of Sb(Ⅲ) and Sb(Ⅴ) were investigated, and the interferences from coexistent elements were studied. The re-duction efficiencies of both reductants were compared. The detection limits of the method were 1.11 ng·g~(-1) for Sb( Ⅲ ) and 1.57 ng·g~(-1) for Sb( Ⅴ ). The accuracy of the method was verified by recovery experiments on spiked real soil samples.

  18. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  19. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  20. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  1. 氢化物原子荧光光谱法同时测定生活饮用水中砷和硒%Simulatneous Determination of Arsenic and selenium in Drinking Water Samples by Hydride Generation Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    张祥楼

    2014-01-01

    建立了氢化物发生原子荧光光谱法同时测定生活饮用水中砷和硒的方法.测试结果表明砷和硒在质量浓度分别为0.00μg/L~10.00μg/L和0.00μg/L~40.00μg/L范围内呈线性关系,相关系数分别为(砷r=0.9998,硒r=0.9997)。仪器检出限为砷:0.03μg/L硒:0.05μg/L。本方法检出限砷为0.075μg/L;硒为0.125μg/L。水质样品中砷的回收率为92.6%~96.5%,精密度为0.8%~1.4%;硒的回收率为91.2%~97.4%,精密度为1.0%~1.6%。应用本方法测定生活饮用水中的砷和硒方法简便、快速,结果准确可靠,较好地提高了工作效率。%A method for simulatneous determination of Arsenic and selenium in drinking water samples by hydride generation atomic fluorescence spectrometry.As a matter of fact ,the linear range of Arsenic was 0.00μg/L~10.00μg/L and the related coefficient was 0.9998;While the linear range of Selenium was 0.00μg/L~40.00μg/L and the related coefficient was0.9997. Instrument detection limit was 0.03μg/L(arsenic)and 0.05μg/L(selenium).Detection limits of the method was 0.075μg/L (arsenic)and 0.125μg/L(selenium). The rate of arsenic recovery was 92.6%~96.5%and the precision in the drinking water was in the range of 0.8%~1.4%.while the rate of selenium recovery was 92.6%~96.5%and the precision in the drinking water was in the range of 1.0%~1.6%.The experimental results shows that the method is applicable .

  2. Determination of Tetraethyl Lead in Water by Hydride Generation-Atomic Absorption Spectrophotometry%水中四乙基铅的氢化原子吸收测定法

    Institute of Scientific and Technical Information of China (English)

    公丕峰

    2011-01-01

    Objective To establish a method for the determination of tetraethyl lead in water by hydride generation-atomic absorption spectrophotometry. Methods By solvent extraction of trichloromethane and low-temperature degradation,the best optimum experimental condition of optimal design of orthogonal test: wavelength was 217 nm, lamp current was 3.0 mA, band pass was 0.2 nm, supporting gas was argon GAS (99.99%), argon gas flux was 0.8 L/min, peak height measurement, oxidizing flame, 20 g/L NaBH4 solution,5 ml HNO3 (1.42 g/ml) solution, 1.5 ml HCl(1.19 g/ml) solution, 100 g/L K3Fe(CN)6 solution. Results The limit of detection was 0.049 μg/L,the average recovery rates were 89.7%-101.4% and RSDs were 3.3%-5.3%. Conclusion This method is simple, sensitive, accurate and applicable to the determination of the tetraethyl lead in water.%目的 建立水中四乙基铅的氢化原子吸收测定方法.方法 样品经三氯甲烷萃取,低温消解后,采用氢化原子吸收法进行分析.经正交设计优化后的试验条件:波长为217.0 nm,灯电流为3.0 mA,光谱通带为0.2 nm;载气为99.99%氩气,载气流量为0.8 L/min,测量方式为峰高,氧化性蓝色焰,NaBH4溶液浓度为20g/L,1.42g/ml硝酸用量为5 ml,1.19g/ml盐酸用量为1.5 ml,K3Fe(CN)6溶液浓度为100g/L.结果 在0.049~100μg/L线性范围内,所得四乙基铅的标准曲线回归方程为γ=1.07×10-34+3.49×10-3x,相关系数为0.999 6.该方法的检出限为0.049 μg/L,平均回收率为89.7%~101.4%,RSD为3.3%~53%.结论该方法操作方便,所用试验装置价格低廉,灵敏度和准确度均较高,适合各级单位用于水中四乙基铅的测定.

  3. 氢化物发生原子荧光光谱法测量化妆品中Sb的价态%Valent speciation analysis of antimony in cosmetics by hydride generation atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    肖融; 张新智; 王昌钊; 冯礼; 秦德元; 刘霁欣

    2012-01-01

    考察了NaF、8-羟基喹啉、柠檬酸对Sb(Ⅲ)和Sb(V)原子荧光信号的掩蔽作用和还原解柠檬酸除掩蔽作用的方法.结果表明,0.10mol/L柠檬酸对Sb(V)掩蔽作用最强,且对Sb(Ⅲ)有增敏作用,最适于作为Sb价态测量的掩蔽剂,而10g/L碘化钾(KI)+ 10g/L硫脲(Tu)可在5h内完全解除柠檬酸对Sb(V)的掩蔽作用.据此建立了化妆品中Sb价态的非色谱氢化物发生原子荧光测量方法.样品经0.10mol/L柠檬酸提取两次后,离心去上清液,合并定容,得到提取液;提取液酸化后直接测得Sb(Ⅲ)含量;提取液酸化并加入KI+Tu,放置5h以上后可测得Sb(V)与Sb(Ⅲ)的含量和,此值减去Sb(Ⅲ)含量可得Sb(V)含量.计算表明,该方法对Sb(Ⅲ)和Sb(V)的检出限(3σ)均为0.32μg/L,定量限(3σ)均为1.0μg/L.对实际化妆品作了测量,Sb(Ⅲ)和Sb(V)的加标回收率在70%~130%之间.实验中存在少量Sb(Ⅲ)到Sb(V)的转化.%The masking effects of NaF, 8-hydroxygquinoline and citric acid on the atomic fluorescence signals of Sb(Ⅲ ) and Sb( V ) And the method for eliminating the masking effect of citric acid were investigated. The results show that 0. 10 mol/L citric acid has the strongest masking effect on Sb(V) and can increase the sensitivity of Sb(Ⅲ) , and l0g/L KI+l0g/L thiourea can completely eliminate the masking effect of citric acid in >5h. Based on this, a method for analyzing the valent speciation of Sb in cosmetics by hydride generation atomic fluorescence spectrometry (HGAFS) was developed. The samples were extracted twice with 0. L0ml/L citric acid. The supernatant was removed by centrifugation and the residues were merged asextract solution. After the acidification of the extract solution, the Sb(Ⅲ) content was determined directly. Then the extract solution was added with KI (10g/L)+ thiourea (l0g/L) and set aside for >5h before the total content of Sb(V) and Sb(Ⅲ) was determined. The Sb( V) content was obtained by subtracting Sb

  4. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  5. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  6. Electrical energy generation with differently oriented photovoltaic modules as façade elements

    Directory of Open Access Journals (Sweden)

    Pantić Lana S.

    2016-01-01

    Full Text Available In this paper the results of theoretical and experimental investigation of electrical energy generated with differently oriented PV modules used as facade elements, are presented. It was found that in 2013, optimally oriented monocristalline solar module of 60 Wp generated 62.9 kWh; horizontal module 58.1 kWh; vertical module oriented toward the South 43.9 kWh; vertical module oriented toward the East 25.7 kWh, and vertical module oriented toward the West 22.9 kWh of electrical energy. Also it was found that optimally oriented Building Integrated PV system (BIPV of 1.2 kWp can produce 1081.6 kWh/year; horizontal, vertical oriented toward the South, vertical oriented toward the East and vertical oriented toward the West can generate 7.6%, 30.2%, 59.2% and 63.6 less electrical energy, respectively. The greenhouse-gas payback periods (GPBP for the optimally oriented and horizontal BIPV systems were estimated to be 7.8 and 8.5 years, respectively. The obtained results can be applied in designing residential, commercial and other buildings with BIPV systems in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. TR 33009

  7. Performance study of a hydrogen powered metal hydride actuator

    Science.gov (United States)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  8. Submillimeter Spectroscopy of Hydride Molecules

    Science.gov (United States)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  9. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    Science.gov (United States)

    Le Bourdais, Florian; Marchand, Benoit

    2015-03-01

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  10. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdais, Florian, E-mail: florian.lebourdais@cea.fr; Marchand, Benoit, E-mail: florian.lebourdais@cea.fr [CEA LIST, Centre de Saclay F-91191 Gif-sur-Yvette (France)

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  11. Combining Elements from Two Antagonists of Formyl Peptide Receptor 2 Generates More Potent Peptidomimetic Antagonists.

    Science.gov (United States)

    Skovbakke, Sarah Line; Holdfeldt, André; Nielsen, Christina; Hansen, Anna Mette; Perez-Gassol, Iris; Dahlgren, Claes; Forsman, Huamei; Franzyk, Henrik

    2017-08-24

    Structural optimization of a peptidomimetic antagonist of formyl peptide receptor 2 (FPR2) was explored by an approach involving combination of elements from the two most potent FPR2 antagonists described: a Rhodamine B-conjugated 10-residue gelsonin-derived peptide (i.e., PBP10, RhB-QRLFQVKGRR-OH) and the palmitoylated α-peptide/β-peptoid hybrid Pam-(Lys-βNspe)6-NH2. This generated an array of hybrid compounds from which a new subclass of receptor-selective antagonists was identified. The most potent representatives displayed activity in the low nanomolar range. The resulting stable and potent FPR2-selective antagonists (i.e., RhB-(Lys-βNphe)n-NH2; n = 4-6) are expected to become valuable tools in further elucidation of the physiological role of FPR2 in health and disease.

  12. HELAC-Onia: an automatic matrix element generator for heavy quarkonium physics

    CERN Document Server

    Shao, Hua-Sheng

    2013-01-01

    By the virtues of the Dyson-Schwinger equations, we upgrade the published code \\mtt{HELAC} to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub \\mtt{HELAC-Onia}. We rewrote the original \\mtt{HELAC} to make the new program be able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, \\mtt{HELAC-Onia} is also sufficiently numerical stable in dealing with P-wave quarkonia (e.g. $h_{c,b},\\chi_{c,b}$) and P-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.

  13. Measuring distortion of skeletal elements in Lodox Statscan-generated images.

    Science.gov (United States)

    Stull, Kyra E; L'abbé, Ericka N; Steiner, Stef

    2013-09-01

    Due to a scarcity of available skeletal material, anthropologists and other practitioners face difficulties with either the creation or validation of techniques used to estimate a biological profile in subadults. To address this problem, radiographic images of living individuals are often used in lieu of dry skeletal elements. However, radiographic images suffer from distortion. Some problems with metric analyses when using radiographic images may be addressed with the Lodox Statscan, an X-ray machine that claims to produce minimal distortion along the scan-axis due to a linear slot-scanning design. The purpose of this research was to measure the distortion of skeletal elements in radiographic images generated from a Lodox Statscan. Skeletal elements subject to multiple imaging variables that affect distortion were radiographed, measured, and then compared to the dry bone measurements through multiple approaches. An 85% percent agreement within a ±1 mm range and a 97% agreement within a ±2 mm range was obtained. Percent difference results demonstrate that slot-axis measurements incurred more distortion than scan-axis measurements (11.8% and 2.7%, respectively). Inclusion of foam results in 4.5% more error than when foam is not included in the image. Angled scan-axis measurements also incurred more distortion than either nonangled slot- and scan-axis measurements. A Bland-Altmanplot reveals an overall agreement between the radiographic and dry bonemeasurements, with most measurements falling within the upper and lower limits. Similar measurement error is found in Statscan radiographic and dry bone measurements; therefore, the Statscan offers a radiographic venue to collect metric data.

  14. A methodology for semiautomatic generation of finite element models: Application to mechanical devices

    Directory of Open Access Journals (Sweden)

    Jesús López

    2015-02-01

    Full Text Available In this work, a methodology to create parameterized finite element models is presented, particularly focusing on the development of suitable algorithms in order to generate models and meshes with high computational efficiency. The methodology is applied to the modeling of two common mechanical devices: an optical linear encoder and a gear transmission. This practical application constitutes a tough test to the methodology proposed, given the complexity and the large number of components that set up this high-precision measurement device and the singularity of the internal gears. The geometrical and mechanical particularities of the components lead to multidimensional modeling, seeking to ensure proper interaction between the different types of finite elements. Besides, modeling criteria to create components such as compression and torsion springs, sheet springs, bearings, or adhesive joints are also presented in the article. The last part of the work aims to validate the simulation results obtained with the methodology proposed with those derived from experimental tests through white noise base-driven vibration and hammer impact excitation modal analysis.

  15. Investigation of the surface generation mechanism of mechanical polishing engineering ceramics using discrete element method

    Science.gov (United States)

    Han, Xuesong

    2014-09-01

    Machining technology about ceramics has been developed very fast over recent years due to the growing industrial demand of higher machining accuracy and better surface quality of ceramic elements, while the nature of hard and brittle ceramics makes it difficult to acquire damage-free and ultra-smooth surface. Ceramic bulk can be treated as an assemblage of discrete particles bonded together randomly as the micro-structure of ceramics consists of crystal particles and pores, and the inter-granular fracture of the ceramics can be naturally represented by the separation of particles due to breakage of bonds. Discrete element method (DEM) provides a promising approach for constructing an effective model to describe the tool-workpiece interaction and can serve as a predicting simulation tool in analyzing the complicated surface generation mechanism and is employed in this research to simulate the mechanical polishing process of ceramics and surface integrity. In this work, a densely packed particle assembly system of the polycrystalline Si3N4 has been generated using bonded-particle model to represent the ceramic workpiece numerically. The simulation results justify that the common critical depth of cut cannot be used as the effective parameters for evaluating brittle to ductile transformation in ceramic polishing process. Therefore, a generalized criterion of defining the range of ductile regime machining has been developed based on the numerical results. Furthermore, different distribution of pressure chain is observed with different depth of cut which ought to have intense relationship with special structure of ceramics. This study also justified the advantage of DEM model in its capability of revealing the mechanical behaviors of ceramics at micro-scale.

  16. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  17. Magnetic Simulation and Analysis of Radial Flux Permanent Magnet Generator using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pudji Irasari

    2012-07-01

    Full Text Available This paper discusses magnetic simulation and analysis of radial flux permanent magnet generator (PMG using finite element method (FEM by utilizing open source software FEMM 4.2. The specification of generator is 25 V, 28 A, 3 phase, 300 rpm. The analyzed magnetic flux was in the air gap, stator teeth and slots to find out the distribusian pattern and its fluctuation. The simulations were conducted in no-load and nominal load (28 A conditions. Furthermore the maximum flux density of simulation (Bg(sim was used to calculate phase voltage Eph to find out the magnitude of generated electromotive force (EMF. The calculation results were presented as voltage vs. rotation graph in no-load condition and voltage vs. current graph in nominal load condition. Both graphs were validated with Eph of experiment result (Eph(exp and Eph that the value of Bg obtained from analytical calculation (Eph(calc. The final results showed that in no-load condition, Eph graph with Bg(sim (Eph(sim was close to Eph(exp and Eph(calc. The error rate with respect to the experiment was 6,9%. In nominal load condition, Eph(sim graph almost coincides with Eph(calc. graph, with the voltage drop of both was 0,441 V. Both graphs however were far different from Eph(exp graph, which has 9 V of voltage drop. The overall results demonstrated that magnetic distribution pattern presented by FEM was very helpful to avoid magnetic flux accumulation in a particular segment. Besides Bg(sim facilitated to predict the value of Eph.

  18. Electrochemical process and production of novel complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  19. Equilibrium composition for the reaction of plutonium hydride with air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH2.7(s), PuN(s), Pu2O3(s), N2, O2 and H2, therefore , the system described involves of 2 independent reactions ,both those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The present paper has briefly discussed the simultaneous reactions and its thermodynamic coupling effect.

  20. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  1. Determination of arsenic in antimony ingot and antimony trioxide by hydride generation-atomic fluorescence spectrometry%氢化物发生-原子荧光光谱法测定锑锭及三氧化二锑中的砷

    Institute of Scientific and Technical Information of China (English)

    钱光敏; 赵国杏

    2012-01-01

    The antimony slab and antimonous oxide samples were dissolved by sulfuric acid and hydrochloric acid, respectively. The Sb3+ in solution was precipitated with sodium hydroxide to separate trace arsenic from matrix antimony. The thiourea-ascorbic acid was added to reduce As5+ to As3+. Then, the arsenic in antimony slab and antimonous oxide was determined by atomic fluorescence spec-trometry. The hydride generation conditions were investigated: the concentration of reducing agent potassium borohydride was 25 g/L, the determination medium was 20% (V/V) hydrochloric acid, and the dosage of thiourea - ascorbic acid solution was 5 mL. The interference test of coexisting elements showed that, the interference of residual antimony in solution after precipitation could be fully eliminated by adding 1 mL of tartaric acid solution. Other impurity elements in sample did not interfere with the determination of arsenic after adding thiourea-ascorbic acid solution. The detection limit of method was 0. 156 ng/mL. The antimony slab and antimonous oxide samples were analyzed by the proposed method, and the relative standard deviation (RSD) was 0. 95%-1.2%. The determination results were consistent with those obtained by national standard methods.%采用硫酸溶解锑锭样品,盐酸溶解三氧化二锑样品,用氢氧化钠溶液使Sb3+沉淀从而使基体锑与微量砷分离,通过加入硫脲-抗坏血酸将As5+还原成As3+,然后在原子荧光仪上测定锑锭及三氧化二锑中的砷.对氢化物发生条件进行考察,确定还原剂硼氢化钾的浓度为25 g/L、测定介质为20%(V/V)盐酸、硫脲-抗坏血酸溶液用量为5 mL.共存元素干扰试验表明,沉淀后溶液中残留少量锑的干扰在加入1 mL酒石酸溶液后可以完全消除,而样品中其他杂质元素在加入硫脲-抗坏血酸溶液后不干扰砷的测定.方法的检出限为0.156 ng/mL.对锑锭及三氧化二锑样品进行分析,相对标准偏差为0.95%~1.2%,测定

  2. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Dědina, J. (Jiří)

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were ...

  3. Trace elements and mercury levels in Indian coals used for thermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    Selva Kumaran, P.; Sivasubramanian, R.; Lawrence, A.; Reddy, M.K. [DGM/Coal Research, BHEL, Tiruchi (India)

    2008-03-15

    In this paper the emphasis is on the trace elements, as they exist in Indian coal. Emissions of trace elements to the atmosphere, their concentrations in the environment and their effects, are of concern now, as the environmental importance of the trace elements in coal remains high for the future goal of zero emissions. The US Clean Air Act Amendments of 1990 identified eleven trace elements and their compounds commonly found in coals, the potentially 'hazardous air pollutants'. Values of seven trace elements out of these elements in the input coals in India are listed. Over 53 samples were analysed for 24 trace elements in Indian coals. The database is available for the scientific analysis. Reduction of mercury in washed coals compared to corresponding ROM coals is deduced from direct lab analysis. Future needs of R & D in trace elements are identified. 11 refs., 4 figs., 5 tabs.

  4. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    Science.gov (United States)

    Martin Rengel, M. A.; Gomez, F. J.; Rico, A.; Ruiz-Hervias, J.; Rodriguez, J.

    2017-04-01

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  5. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    Science.gov (United States)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  6. Optimization of power cable thermal performance using finite-element generated gradient

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saud, M.S.; El-Kady, M.A.; Findlay, R.D. [McMaster Univ., Hamilton, ON (Canada). Dept. of Electrical and Computer Engineering

    2007-07-01

    This paper addressed the issue of optimizing the performance of underground power cables used in modern power transmission and distribution grids. The objective was to reduce operating cost through optimized cable performance under a range of loading conditions, soil parameters and ambient conditions. The thermal performance of an underground cable depends on its design, operation and environmental parameters. The cable ampacity is influenced by cable insulation and structure; thermal conductivity of the surrounding soil; ambient temperature and cable loading. This paper proposed a new method for calculating cable thermal field and ampacity using a concept of perturbed finite element which involves the use of derived sensitivity coefficients associated with different cable parameters. The model provides the optimal solution subject to user-defined constraints. The design problem of choosing the optimal parameter values of the thermal circuit parameters, including the thermal conductivities, boundary conditions and heat generation, was formulated using a multi-dimensional gradient optimization method. The technique takes into account all thermal circuit parameters. The model represents a generalization of the nonlinear programming formulation to include practical cases of the cable design objective functions which may include the thermal parameters and the cable temperatures (ampacity) subjected to upper and lower bounds on the design parameters, linear system of equations constrains, or nonlinear constrains. In order to obtain a reliable cable design, this optimization analysis included the ampacity sensitivity profiles of the soil temperature fluctuations with respect to the thermal circuit parameters. 9 refs., 9 figs.

  7. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  8. Well-Defined Silica Supported Aluminum Hydride: Another Step Towards the Utopian Single Site Dream?

    KAUST Repository

    Werghi, Baraa

    2015-07-17

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [(≡SiO)2Al-CH2CH(CH3)2] 1a, silicon isobutyl [≡Si-CH2CH(CH3)2] 1b and a silicon hydride [≡Si-H] 1c. Their structural identity was characterized by FT-IR and advance solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [≡SiO-Al-[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: Transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening of a strained siloxane bridge, ≡Si-O-Si≡ but with two different mechanisms, showing that the reality of “single site” catalyst may be an utopia: DFT calculations indicate that isobutyl transfer occurs via a simple metathesis between the Al-isobutyl and O-Si bonds, while hydride transfer occurs via a two steps mechanism, the first one is a ß-H elimination to Al with elimination of isobutene, whereas the second is a metathesis step between the formed Al-H bond and a O-Si bond. Thermal treatment of 1a (at 250 °C) under high vacuum (10-5 mbar) generates Al-H through a ß-H elimination of isobutyl fragment. These supported well-defined Al-H which are highly stable with time, are tetra, penta and octa coordinated as demonstrated by IR and 27Al–1H J-HMQC NMR spectroscopy. All these observations indicate that surfaces atoms around the site of grafting play a considerable role in the reactivity of a single site system.

  9. Hydrogen storage in complex metal hydrides

    National Research Council Canada - National Science Library

    Bogdanovic, Borislav; Felderhoff, Michael; Streukens, Guido

    2009-01-01

    ...) are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides...

  10. Method of forming metal hydride films

    Science.gov (United States)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  11. Sealed aerospace metal-hydride batteries

    Science.gov (United States)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  12. Destabilization of magnesium hydride through interface engineering

    OpenAIRE

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesium hydride is very stable, which means that hydrogen is released only at elevated temperature. Furthermore, the kinetics of hydrogen sorption is slow, which further hampers the practical use of this...

  13. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  14. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  15. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  16. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused...

  17. Cooldown-induced hydride reorientation of hydrogen-charged zirconium alloy cladding tubes

    Science.gov (United States)

    Won, Ju-Jin; Min, Su-Jeong; Kim, Kyu-Tae

    2015-01-01

    Radial hydride precipitation behaviors of Zr-Nb alloy cladding tubes were investigated using 250 and 500 ppm hydrogen-charged Zr-Nb alloy cladding tubes, cooldown processes from 400 to 300, 200°C and room temperature with five kinds of cooling rates of 0.3, 2.0, 4.0, 7.0 15.0 °C/min under a tensile hoop stress of 150 MPa, which can simulate various cooldown processes during an interim dry storage of PWR nuclear fuel. The slower cooling rate and the lower terminal cooldown temperature generated the more hydrides precipitated during the cooldown as well as the larger fraction and the longer length of radial hydrides. These phenomena can be explained by the difference in the terminal solid solubility of hydrogen for dissolution and precipitation occurring during the heatup and cooldown processes and the cooling rate-dependent hydride nucleation and growth rates. In addition, a drastic decrease in ultimate tensile strength and plastic strain of the tensile tested specimens experiencing the cool-down processes appear to be correlated with the amount of the radial hydrides precipitated during the cooldown.

  18. BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling

    Science.gov (United States)

    Bilgili, Ata; Smith, Keston W.; Lynch, Daniel R.

    2006-06-01

    A brief summary of Delaunay unstructured triangular grid refinement algorithms, including the recent "off-centers" method, is provided and mesh generation requirements that are imperative to meet the criteria of the circulation modeling community are defined. A Matlab public-domain two-dimensional (2-D) mesh generation package (BatTri) based on these requirements is then presented and its efficiency shown through examples. BatTri consists of a graphical mesh editing interface and several bathymetry-based refinement algorithms, complemented by a set of diagnostic utilities to check and improve grid quality. The final output mesh node locations, node depths and element incidence list are obtained starting from only a basic set of bathymetric data. This simple but efficient setup allows fast interactive mesh customization and provides circulation modelers with problem-specific flexibility while satisfying the usual requirements on mesh size and element quality. A test of the "off-centers" method performed on 100 domains with randomly generated coastline and bathymetry shows an overall 25% reduction in the number of elements with only slight decrease in element quality. More importantly, this shows that BatTri is easily upgradeable to meet the future demands by the addition of new grid generation algorithms and Delaunay refinement schemes as they are made available.

  19. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  20. The oxidation of uranium hydride during its instantaneous or gradual exposure to oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Glascott, J., E-mail: joe.glascott@awe.co.uk; Findlay, I.M.

    2015-11-15

    The oxidation behaviour of uranium hydride when exposed to oxygen gas either gradually or instantaneously at an ambient temperature of approximately 37 °C has been investigated. The proportion of the sample converted to oxide and the mean hydride mound temperature rise accompanying the oxidation process were recorded. Pressure changes in the reaction cell were used to deduce the nature of the oxide generated during the oxidation process and the nature of the gaseous reaction products. For the gradual oxidation of the hydride, typically only about 15% of the hydride mass was converted to oxide during the initial period of oxidation defined by an observed temperature excursion lasting a finite time; during this oxidation period it is concluded that, despite the only moderate recoded mean temperature rises, the generated oxide is U{sub 3}O{sub 8} rather than UO{sub 2}. Typically also for such gradual exposure experiments, hydrogen was the principal gaseous reaction product with negligible water being produced. For the instantaneous exposure of the hydride to oxygen, much higher hydride mound mean temperature rises were recorded but the proportion of hydride converted to oxide was quite variable and apparently dependent on several experimental variables; for these experiments, although hydrogen was a major reaction product typically some water was also produced. The boundary between pyrophoric and non-pyrophoric oxidation of uranium hydride for given oxidising conditions is discussed in terms of a calculated particle “thermal runaway temperature”. - Highlights: • Only about 15% of UH{sub 3} is oxidised on its gradual exposure to oxygen. • During the gradual exposure of UH{sub 3} to oxygen U{sub 3}O{sub 8} rather than UO{sub 2} is generated. • For such gradual exposure, predominantly H{sub 2} rather than H{sub 2}O was generated. • For the instantaneous exposure of UH{sub 3} to O{sub 2} the amount oxidised was variable. • For these experiments, H{sub 2

  1. HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

    Directory of Open Access Journals (Sweden)

    JU-JIN WON

    2014-10-01

    Full Text Available Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and 400°C, as well as two terminal cool-down temperatures of 200 and 300°C, were considered. In addition, two cooling rates of 2.5 and 8.0°C/min during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

  2. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  3. Hydride heat pump. Volume I. Users manual for HYCSOS system design program. [HYCSOS code

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, R.; Moritz, P.

    1978-05-01

    A method for the design and costing of a metal hydride heat pump for residential use and a computer program, HYCSOS, which automates that method are described. The system analyzed is one in which a metal hydride heat pump can provide space heating and space cooling powered by energy from solar collectors and electric power generated from solar energy. The principles and basic design of the system are presented, and the computer program is described giving detailed design and performance equations used in the program. The operation of the program is explained, and a sample run is presented. This computer program is part of an effort to design, cost, and evaluate a hydride heat pump for residential use. The computer program is written in standard Fortran IV and was run on a CDC Cyber 74 and Cyber 174 computer. A listing of the program is included as an appendix. This report is Volume 1 of a two-volume document.

  4. An explicit integration finite element method for impact noise generation at squat

    NARCIS (Netherlands)

    Yang, Z.; Li, Z.; Dollevoet, R.P.B.J.

    2013-01-01

    This paper presents a full finite element (FE) interaction model of wheel-track to study the wheel-rail impact noise caused by squat. The wheel, the rail and some other track components are modeled with finite elements in three dimensions, where necessary and appropriate. Realistic contact geometry,

  5. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  6. 氯化盐溶液中氢化燃烧合成MgH2的水解制氢性能%Hydrogen generation properties from hydrolysis of magnesium hydride in chloride salt solution

    Institute of Scientific and Technical Information of China (English)

    刘虎; 赵泽伦; 李姝; 朱云峰; 李李泉

    2015-01-01

    利用氢化燃烧合成(Hydriding Combustion Synthesis,HCS)制备的镁基氢化物(MgH2)与氯化盐溶液反应制取氢气.分别比较了NiCl2、MgCl2、CuCl2及CaCl2溶液中HCS MgH2的水解制氢量和转化率,着重研究了MgCl2溶液的浓度、温度及球磨预处理时间对HCS MgH2水解制氢性能的影响规律.研究表明:60 min球磨预处理的HCS MgH2,在30℃的0.5 mol/L MgCl2溶液中,反应30 min制氢量可达1 635 ml/g,转化率可达96%.

  7. Conjugate $p$-elements of full support that generate the wreath product $C_{p}wr C_{p}$

    Directory of Open Access Journals (Sweden)

    David Ward

    2016-09-01

    Full Text Available For a symmetric group $G:=Sym(n$ and a conjugacy class $mathcal{X}$ of involutions in $G$, it is known that if the class of involutions does not have a unique fixed point, then - with a few small exceptions - given two elements $a,x in mathcal{X}$, either $angbrac{a,x}$ is isomorphic to the dihedral group $D_{8}$, or there is a further element $y in mathcal{X}$ such that $angbrac{a,y} cong angbrac{x,y} cong D_{8}$ (P. Rowley and D. Ward, On $pi$-Product Involution Graphs in Symmetric Groups. MIMS ePrint, 2014. One natural generalisation of this to $p$-elements is to consider when two conjugate $p$-elements generate a wreath product of two cyclic groups of order $p$. In this paper we give necessary and sufficient conditions for this in the case that our $p$-elements have full support. These conditions relate to given matrices that are of circulant or permutation type, and corresponding polynomials that represent these matrices. We also consider the case that the elements do not have full support, and see why generalising our results to such elements would not be a natural generalisation.

  8. P-hydrogen-substituted 1,3,2-diazaphospholenes: molecular hydrides.

    Science.gov (United States)

    Burck, Sebastian; Gudat, Dietrich; Nieger, Martin; Du Mont, Wolf-Walther

    2006-03-29

    P-Hydrogen-substituted 1,3,2-diazaphospholenes 1 were prepared by an improved procedure from diazadienes and were characterized by spectroscopy and in one case by X-ray diffraction. A unique hydride-type reactivity of the P-H bonds was documented by extensive reactivity studies. Aldehydes and ketones were readily reduced to diazaphospholene derivatives of the corresponding alcohols, with alkyl-substituted ketones being converted at much lower rates than aldehydes or diaryl ketones. Reactions with the tetrachlorides of group 14 elements proceeded via hydride/chloride metathesis to give either partially chlorinated derivatives EH(n)Cl(4-n) (n = 0-3 for E = C, Si) or HCl and phosphenium salts 16c[ECl3] (for E = Ge, Sn) which were characterized by spectroscopic and X-ray diffraction studies. Tin dichloride was readily reduced to the element. Reactions of 1c with the P-chloro-diazaphospholene 3c and the salt 16c[OTf] allowed the first experimental detection of intermolecular exchange of a hydride, rather than a proton, between phosphine derivatives. Computational studies indicated that the hydride transfer between 1c and the cation 16c involves a transient H-bridged species with bonding properties similar to those of B2H7-. The preference for the formation of these bridged intermediates over P-P bonded phosphenium-phosphine adducts is attributed to the low electrophilicity of the diazaphospholenium cations and characterizes a novel reaction mode for phosphenium ions.

  9. First-principles screening of complex transition metal hydrides for high temperature applications.

    Science.gov (United States)

    Nicholson, Kelly M; Sholl, David S

    2014-11-17

    Metal hydrides with enhanced thermodynamic stability with respect to the associated binary hydrides are useful for high temperature applications in which highly stable materials with low hydrogen overpressures are desired. Though several examples of complex transition metal hydrides (CTMHs) with such enhanced stability are known, little thermodynamic or phase stability information is available for this materials class. In this work, we use semiautomated thermodynamic and phase diagram calculations based on density functional theory (DFT) and grand canonical linear programming (GCLP) methods to screen 102 ternary and quaternary CTMHs and 26 ternary saline hydrides in a library of over 260 metals, intermetallics, binary, and higher hydrides to identify materials that release hydrogen at higher temperatures than the associated binary hydrides and at elevated temperatures, T > 1000 K, for 1 bar H2 overpressure. For computational efficiency, we employ a tiered screening approach based first on solid phase ground state energies with temperature effects controlled via H2 gas alone and second on the inclusion of phonon calculations that correct solid phase free energies for temperature-dependent vibrational contributions. We successfully identified 13 candidate CTMHs including Eu2RuH6, Yb2RuH6, Ca2RuH6, Ca2OsH6, Ba2RuH6, Ba3Ir2H12, Li4RhH4, NaPd3H2, Cs2PtH4, K2PtH4, Cs3PtH5, Cs3PdH3, and Rb2PtH4. The most stable CTMHs tend to crystallize in the Sr2RuH6 cubic prototype structure and decompose to the pure elements and hydrogen rather than to intermetallic phases.

  10. A method for generating subtractive cDNA libraries retaining clones containing repetitive elements.

    OpenAIRE

    1997-01-01

    Here we describe a two-stepped photobiotin-based procedure to enrich a target (canine retinal) cDNA library for tissue specific clones without removing those containing repetitive ( SINE ) elements, despite the presence of these elements in the driver population. In a first hybridization excess SINE elements were hybridized to a driver (canine cerebellar) cDNA. In a second hybridization target cDNA was added to this reaction. The resulting cDNA library was enriched for retinal specific clones...

  11. Modeling of high power pulse generator based on the non-linear elements of pulsed facilities

    Science.gov (United States)

    Averyanov, G. P.; Dmitrieva, V. V.; Kobylyatskiy, A. V.

    2017-01-01

    The article considered the software implementation mathematical model of the voltage pulse generator with a hard switch. The interactive object-oriented software interface provides the choice of generator parameters and the type of its load, as well as pulses parameters analysis on the load at the generator switching.

  12. Crystal structure of the superconducting phase of sulfur hydride

    Science.gov (United States)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  13. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  14. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  15. NASTRAN data generation of helicopter fuselages using interactive graphics. [preprocessor system for finite element analysis using IBM computer

    Science.gov (United States)

    Sainsbury-Carter, J. B.; Conaway, J. H.

    1973-01-01

    The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.

  16. Autonomous generator based on Ni-Mn-Ga microactuator as a frequency selective element

    Directory of Open Access Journals (Sweden)

    Barandiaran J.M.

    2013-01-01

    Full Text Available In this work, we suggest the temperature-induced resistivity change at the martensitic transformation in the Ni-Mn-Ga ferromagnetic shape memory alloy as a driving mechanism enabling periodic signal generation. We demonstrated its practical importance by a design of the prototype of a low-frequency autonomous generator. A prominent feature of this new generator is a control of its frequency by the external magnetic field.

  17. Lattice contraction in photochromic yttrium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter, E-mail: jepe@ife.no; Mongstad, Trygve T.; You, Chang Chuan; Karazhanov, Smagul

    2013-12-15

    Highlights: •Photochromic yttrium hydride films (YH:O) were prepared by reactive sputtering. •Black and transparent YH:O films were studied by time-resolved synchrotron XRD. •Both YH:O samples showed a lattice contraction upon illumination. •Also exposure to the X-ray beam itself results in a lattice contraction. -- Abstract: A strong photochromic effect was recently discovered in thin films of oxygen-containing yttrium hydride taking place at room temperature and reacting to ultraviolet and visible light. In this paper, we report on a lattice contraction upon illumination observed for thin-film samples of photochromic yttrium hydride, recorded by time-resolved X-ray diffraction using synchrotron radiation. The time dependence of the lattice contraction is consistent with the observed photochromic response of the samples.

  18. Atom probe analysis of titanium hydride precipitates.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Otsuka, H; Fujii, H

    2009-04-01

    It is expected that the three-dimensional atom probe (3DAP) will be used as a tool to visualize the atomic scale of hydrogen atoms in steel is expected, due to its high spatial resolution and very low detection limit. In this paper, the first 3DAP analysis of titanium hydride precipitates in metal titanium is reported in terms of the quantitative detection of hydrogen. FIB fabrication techniques using the lift-out method have enabled the production of needle tips of hydride precipitates, of several tens of microns in size, within a titanium matrix. The hydrogen concentration estimated from 3DAP analysis was slightly smaller than that of the hydride phase predicted from the phase diagram. We discuss the origin of the difference between the experimental and predicted values and the performance of 3DAP for the quantitative detection of hydrogen.

  19. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  20. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    Science.gov (United States)

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  1. Generating Initial Data in General Relativity using Adaptive Finite Element Methods

    CERN Document Server

    Aksoylu, Burak; Bond, Stephen; Holst, Michael

    2008-01-01

    The conformal formulation of the Einstein constraint equations is first reviewed, and we then consider the design, analysis, and implementation of adaptive multilevel finite element-type numerical methods for the resulting coupled nonlinear elliptic system. We derive weak formulations of the coupled constraints, and review some new developments in the solution theory for the constraints in the cases of constant mean extrinsic curvature (CMC) data, near-CMC data, and arbitrarily prescribed mean extrinsic curvature data. We then outline some recent results on a priori and a posteriori error estimates for a broad class of Galerkin-type approximation methods for this system which includes techniques such as finite element, wavelet, and spectral methods. We then use these estimates to construct an adaptive finite element method (AFEM) for solving this system numerically, and outline some new convergence and optimality results. We then describe in some detail an implementation of the methods using the FETK software...

  2. Thermodynamic Calculation on the Formation of Titanium Hydride

    Institute of Scientific and Technical Information of China (English)

    Jing-wei Zhao; Hua Ding; Xue-feng Tian; Wen-juan Zhao; Hong-liang Hou

    2008-01-01

    A modified Miedema model, using interrelationship among the basic properties of elements Ti and H, is employed to calculate the standard enthalpy of formation of titanium hydride TiHx (1≤x≤2). Based on Debye theories of solid thermal capacity, the vibrational entropy, as well as electronic entropy, is acquired by quantum mechanics and statistic thermodynamics methods, and a new approach is presented to calculate the standard entropy of formation of Till2. The values of standard enthalpy of formation of TiHx decrease linearly with increase of x. The calculated results of standard enthalpy, entropy, and free energy of forma- tion of Till2 at 298.16 K are -142.39 kJ/mol, -143.0 J/(mol-K) and -99.75 k J/tool, respectively, which is consistent with the previously-reported data obtained by either experimental or theoretical calculation methods. The results show that the thermodynamic model for titanium hydride is reasonable.

  3. Study of the Magnetic Field of a Permanent Magnet Synchronous Generator by using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Constantin Gabriel Dobrean

    2016-10-01

    Full Text Available The study shows the numerical simulation of the magnetic field for a permanent magnet synchronous generator prototype. Through the study, the OPERA software environment, a program based on the numerical computation using the finite element method and used for the virtual simulation of the synchronous generator prototype, is shown. This 5 kVA power, permanent magnet and low speed prototype is meant for uses in hydraulic driven applications, namely wind applications, and was performed within a cooperations between the Faculty of Automation and Computers and the Faculty of Electrical and Power Engineering within the “Politehnica” University of Timișoara.

  4. Finite Element Assisted Method of Estimating Equivalent Circuit Parameters for a Superconducting Synchronous Generator With a Coreless Rotor

    OpenAIRE

    Lukasik, B.; Goddard, K F; Sykulski, J. K.

    2009-01-01

    The paper outlines methods developed to obtain circuit parameters of a superconducting synchronous generator with a coreless rotor. The need for full three–dmensional (3D) finite element modeling is emphasized and appropriate techniques devised to estimate relevant equivalent characteristics. The methods described use steady-state ac models, predominantly in the rotor frame of reference; the use of transient or full rotating machine models is avoided.

  5. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs.

    Directory of Open Access Journals (Sweden)

    Magdalena Szuplewska

    Full Text Available Functional transposable elements (TEs of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380, (ii isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system, as well as (iii non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs, highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements (262 bp, were identified within two natural plasmids (pZM1P1 and pLM8P2 of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and

  6. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter Andrew; Clark, Blythe; Glazoff, Michael V.; Homer, Eric R.

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  7. Evidence of stress-induced hydrogen ordering in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Steuwer, A. [FaME38 at the ESRF-ILL, 6 rue J Horowitz, 38042 Grenoble (France); ESS Scandinavia, University of Lund, Stora Algatan 4, 22350 Lund (Sweden)], E-mail: steuwer@ill.fr; Santisteban, J.R. [Centro Atomico Bariloche, CNEA, San Carlos de Bariloche (Argentina); Preuss, M. [University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Peel, M.J.; Buslaps, T. [European Synchrotron Radiation Facility, 6 rue J Horowitz, 38042 Grenoble (France); Harada, M. [R and D Section, Chofu-Kita Plant, Kobe Special Tube Co, Shimonoseki 752-0953 (Japan)

    2009-01-15

    The formation of hydrides in zirconium alloys significantly affects their mechanical properties and is considered to play a critical role in their failure mechanisms, yet relatively little is known about the micromechanical behavior of hydrides in the bulk. This paper presents the result of in situ uniaxial mechanical tensioning experiments on hydrided zircaloy-2 and zircaloy-4 specimens using energy-dispersive synchrotron X-ray diffraction, which suggests that a stress-induced transformation of the {delta}-hydride to {gamma}-hydride via ordering of the hydrogen atoms occurs, akin to a Snoek-type relaxation. Subsequent annealing was found to reverse the ordering phenomenon.

  8. Three-port impedance model of a piezoelectric bar element: Application to generation and damping of extensional waves

    Science.gov (United States)

    Jansson, A.; Lundberg, B.

    2008-09-01

    A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two mechanical ports where it can interact with external electrical and mechanical devices through voltage, current, forces and velocities. A generalized force vector, with one voltage and two forces as elements, is expressed as the product of an impedance matrix and a generalized velocity vector, with one current and two velocities, as elements. Due to symmetry and reciprocity, this matrix is defined by four of its nine elements. Two applications are considered for a piezoelectric bar element (PBE) that constitutes a part of a long elastic or viscoelastic bar, viz. generation and damping of extensional waves in the bar. In the first, the PBE is driven by a given input voltage or by the output voltage from a linear power amplifier. In the second, the PBE supplies an output voltage to an external load. In numerical simulations carried out for a specific laminated PBE, an elastic bar, a serial RL load and a bell-shaped incident wave, the highest fraction of wave energy dissipated was 8.1%. This is much less than the 50% achievable for a harmonic wave under condition of electrical impedance matching.

  9. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  10. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.

    Science.gov (United States)

    Alapati, Sudhakar V; Karl Johnson, J; Sholl, David S

    2007-03-28

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.

  11. Hydride formation on deformation twin in zirconium alloy

    Science.gov (United States)

    Kim, Ju-Seong; Kim, Sung-Dae; Yoon, Jonghun

    2016-12-01

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  12. Recovery Of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in nickel (Ni and rare earth elements (La and Ce from spent nickel-metal hydride batteries (NiMH. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent nickel metal hydride batteries were heated over range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD and energy dispersive X-ray spectroscopy (EDX and image of the powder was taken by scanning electron microscopy (SEM. It was finally found that nickel and rare earth elements were mainly recovered to about 45 wt.% and 12 wt.% in electrodic powder, respectively.

  13. Evaluating avalanche generation by 2-D finite element analysis at Pico de Orizaba, Mexico

    Science.gov (United States)

    Concha Dimas, A.; Watters, R. J.

    2003-04-01

    Pico de Orizaba, at the eastern Mexican Volcanic Belt, has collapse twice during its evolution (250 ka and 20 ka ago). In case of collapse of the present day cone, the run out distance of the moving mass represents a hazard for the surrounding population. We evaluate, by using finite element, two geological aspects that have been recognized in the present cone of Pico de Orizaba as possible triggering mechanisms for avalanches: 1) Extensive hydrothermal alteration (argillic), and 2) normal faulting at the volcano basement. Two dimensional finite element analyses were carried out in a profile trending NE40SW, perpendicular to the trend of dikes and volcanic flank eruptions. We evaluate effects of extension of hydrothermal alteration and amount of fault displacement needed for triggering the avalanche. We compare the shape of failure surface (which reflects the volume of the resulting failing mass) through distribution of velocity contours and displacement vectors.

  14. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    Science.gov (United States)

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk.

  15. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form,

  16. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  17. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  18. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  19. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su;

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights ...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  20. Green Luminescence of Divalent Europium in the Hydride Chloride EuHCl

    NARCIS (Netherlands)

    Kunkel, Nathalie; Rudolph, Daniel; Meijerink, A; Rommel, Stefan; Weihrich, Richard; Kohlmann, Holger; Schleid, Thomas

    2015-01-01

    Luminescence properties of divalent europium in the mixed-anion hydride chloride EuHCl were studied for the first time. Olive-green single crystals of EuHCl (PbFCl-type structure: tetragonal, P4/nmm, a = 406.58(3) pm, c = 693.12(5) pm, c/a = 1.705, Z = 2) resulted from the reaction of elemental euro

  1. Preparation and Properties of Zirconium Hydride on the Surface of MCM-41 Mesoporous Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Zirconium monohydride bonded to the framework oxygen of MCM-41 surface was prepared by the reaction of tetraneopentyl zirconium with MCM-41 surface hydroxyl groups, followed by the hydrogenolysis of the resulted product. The surface hydride was characterized by using infrared spectroscopy, solid-state NMR, elemental analysis, gas-phase chromatography and chemical probing reaction. It was shown that this surface species is stable below 150 ℃ and can catalytically crack alkanes into methane and ethane at 100 ℃.

  2. 氢化物发生-非色散原子荧光光谱法同时测定金精矿中痕量铋和汞%Simultaneous determination of trace bismuth and mercury in gold concentrates by hydride generation-nondispersive atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    马熠罡

    2012-01-01

    The method of simultaneous determination of trace bismuth and mercury in gold concentrates by hydride generation-nondispersive atomic fluorescence spectrometry was proposed. The samples were digested by HNO3/HCI and then some references were marked by potassium thiocyanate and thiourea. Calculated the detection limits are 5.6 mg/L and 0. 7 mg/L. The method detection limits are 0. 13 μg/g and 0.012 μg/g,and the precision were 1.2% and 0.6% ,respectively.%采用HNO3/HCl消解,以硫氰化钾掩蔽金,硫脲掩蔽杂质等手段,建立王水消解-双道氢化物发生原子荧光光谱同时测定金精矿中铋和汞含量的新方法.计算出Bi和Hg的检出限分别为5.6,0.7 mg/L,方法的检出限分别为0.13μg/g和0.012 μg/g,精密度分别为1.2%和0.6%.

  3. 流动注射氢化物发生-原子吸收光谱法 测定镍基合金中的硒和锡%Determination of Selenium and Tin in Nickel Alloys by Flow Injection Hydride Generation Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈天裕; 汪正

    2001-01-01

    建立了流动注射氢化物发生-原子吸收光谱法测定高温镍基合金中痕量硒和锡的方法。样品用HNO3和HF经微波消解后,制成以EDTA作掩蔽剂的碱性溶液(pH12~13),用标准加入法测定。方法测定硒和锡的检出限分别为1.0μg.g-1和1.8μg.g-1,RSD分别为3%~8%和3%~7%。%Determination of trace Se and Sn in high-temperature nickelalloys by flow injection hydride generation atomic absorption spectrometry was studied. The sample was dissolved by microwave digestion in HNO3 and HF. After addition of EDTA as the masking agent and adjustment of pH to 12~13, Se and Sn were determined by standard addition method. Some reference materials were analysed and satisfactory results were obtained. The detection limits of the method for Se and Sn are 1.0 μg.g-1 and 1.8 μg.g-1, respectively, the RSD of determination are 3%~8% for Se and 3%~7% for Sn.

  4. Study on determination of lead in aluminium polychlorid by continuous flow-hydride generation atomic fluorescence spectrometry%连续流动-氢化物发生原子荧光光谱法测定聚合氯化铝中铅

    Institute of Scientific and Technical Information of China (English)

    龚胜芳; 高树林; 李志华; 王红柳

    2014-01-01

    采用连续流动-氢化物发生原子荧光光谱法(CF-HGAFS)测定聚合氯化铝中的铅,优化了实验条件,在最佳实验条件下,铅的荧光强度在0~25μg /L范围内与浓度呈良好的线性关系,方法检出限为0.043μg/L ,方法回收率在95.3%~105.6%之间,本法操作简便、快捷,而且具有很好的准确性和精密度,应用前景良好。%A method for the determination of lead in aluminium polychlorid by continuous flow-hydride generation atomic fluorescence spectrometry was established .The effect of experimental conditions on the atomic fluorescence intensity were investigated and optimized .In this condition ,the calibration curve was linear up to 25μg/L ,the detection limit was 0 .043μg/L ,and the recovery was in range of 95 .3%-105.6% . The method is not only simple and rapid but also precise and accurate ,and shows good application pros-pects .

  5. Delayed hydride cracking properties of the endplate resistance welds of CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K.; Wasiluk, B.S., E-mail: Gordon.Shek@kinectrics.com [Kinectrics Inc., Toronto, Ontario (Canada); Freire-Canosa, J. [Nuclear Waste Management Organization, Toronto, Ontario (Canada); Lampman, T. [AMEC NSS, Toronto, Ontario (Canada)

    2010-07-01

    In order to assess the susceptibility of CANDU fuel bundles endplate resistance welds to Delayed Hydride Cracking (DHC) during long term dry storage, the threshold stress intensity factor (KIH) and crack velocity of DHC in endplate welds of three unirradiated fuel bundles were determined. The three bundles tested covered the 28-element and 37-element designs and two Canadian manufacturers. The range of KIH values and DHC velocities obtained from the endplate welds of the three bundles are consistent with previous results obtained from a 37-element bundle produced by one of the manufacturers. (author)

  6. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); Halpert, Gerald (Inventor); Fultz, Brent (Inventor); Witham, Charles K. (Inventor); Bowman, Robert C. (Inventor); Hightower, Adrian (Inventor)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  7. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.

    Science.gov (United States)

    Tang, C Y; Tsui, C P; Tang, Y M; Wei, L; Wong, C T; Lam, K W; Ip, W Y; Lu, W W J; Pang, M Y C

    2014-01-01

    With the development of micro-computed tomography (micro-CT) technology, it is possible to construct three-dimensional (3D) models of human bone without destruction of samples and predict mechanical behavior of bone using finite element analysis (FEA). However, due to large number of elements required for constructing the FE models of entire bone, this demands a substantial computational effort and the analysis usually needs a high level of computer. In this article, a voxel-based approach for generation of FE models of entire bone with microscopic architecture from micro-CT image data is proposed. To enable the FE analyses of entire bone to be run even on a general personal computer, grayscale intensity thresholds were adopted to reduce the amount of elements. Human metacarpal bone (MCP) bone was used as an example for demonstrating the applicability of the proposed method. The micro-CT images of the MCP bone were combined and converted into 3D array of pixels. Dual grayscale intensity threshold parameters were used to distinguish the pixels of bone tissues from those of surrounding soft tissues and improve predictive accuracy for the FE analyses with different sizes of elements. The method of selecting an appropriate value of the second grayscale intensity threshold was also suggested to minimize the area error for the reconstructed cross-sections of a FE structure. Experimental results showed that the entire FE MCP bone with microscopic architecture could be modeled and analyzed on a personal computer with reasonable accuracy.

  8. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  9. Incorporation of Finite Element Analysis into Annual Energy Loss Estimation for Permanent Magnet Wind Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2013-01-01

    Several methods of estimating the annual energy losses for wind turbine generators are investigated in this paper. Utilizing a high amount of transient simulations with motion is first demonstrated. Usage of a space-time transformation for prediction of iron losses is also explored. The methods, ...

  10. First-principles study on structural stability of 3d transition metal alloying magnesium hydride

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A first-principles plane-wave pseudopotential method based on the density functional theory was used to investigate the energy and electronic structure of magnesium hydride (MgH2) alloyed by 3d transition metal elements. Through calculations of the negative heat formation of magnesium hydride alloyed by X (X denotes 3d transition metal) element, it is found that when a little X (not including Sc) dissolves into magnesium hydride, the structural stability of alloying systems decreases, which indicates that the dehydrogenation properties of MgH2 can be improved. After comparing the densities of states(DOS) and the charge distribution of MgH2 with or without X alloying, it is found that the improvement for the dehydrogenation properties of MgH2 alloyed by X attributes to the fact that the weakened bonding between magnesium and hydrogen is caused by the stronger interactions between X (not including Cu) and hydrogen. The calculation results of the improvement for the dehydrogenation properties of MgH2-X (X=Ti, V, Mn, Fe, Co,Ni, Cu) systems are in agreement with the experimental results. Hence, the dehydrogenation properties of MgH2 are expected to be improved by addition of Cr, Zn alloying elements.

  11. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  12. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J C

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated.

  13. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  14. Integration of a finite element generator model into a simulated HVDC connected system

    Energy Technology Data Exchange (ETDEWEB)

    Preston, T.W.; Sturgess, J.P. [GEC Alsthom Engineering Research Center, Stafford (United Kingdom)

    1994-12-31

    Within most system analysis programs generators and motors are represented by an equivalent circuit model either a 2-axis model for both stators and rotor or a three-phase model of the stator and a two-axis model of the rotor. This may be adequate under certain operating conditions such as steady-state or some symmetrical faults but for inverter-fed motors or generators feeding into a rectified load a more rigorous model of the machine is required. This paper describes the theory and development of such a model, its integration with the power electronics and application to 6-pulse and 12-pulse converters, the latter being appropriate in systems similar to HVDC unit connection. (author) 5 refs., 16 figs.

  15. Optimum design of vortex generator elements using Kriging surrogate modelling and genetic algorithm

    Science.gov (United States)

    Neelakantan, Rithwik; Balu, Raman; Saji, Abhinav

    Vortex Generators (VG's) are small angled plates located in a span wise fashion aft of the leading edge of an aircraft wing. They control airflow over the upper surface of the wing by creating vortices which energise the boundary layer. The parameters considered for the optimisation study of the VG's are its height, orientation angle and location along the chord in a low subsonic flow over a NACA0012 airfoil. The objective function to be maximised is the L/D ratio of the airfoil. The design data are generated using the commercially available ANSYS FLUENT software and are modelled using a Kriging based interpolator. This surrogate model is used along with a Generic Algorithm software to arrive at the optimum shape of the VG's. The results of this study will be confirmed with actual wind tunnel tests on scaled models.

  16. Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vocke, R.W.

    1979-01-01

    The development and implementation of standard toxicity tests is a necessity if consistent and reliable data are to be obtained for water quality criteria. The adapted EPA AAPBT is an ideal static algal toxicity test system. The algal test medium has a chemical composition similar to natural unpolluted waters of low ionic strength. It is appropriate to use MATC water quality criteria when assessing the potential impact of pollutants generated by coal-fired power stations because these energy-generated pollutants typically enter aquatic systems in small quantities over long periods. The MATC water quality criteria are estimates of trace element and SASE levels, based on the most sensitive alga investigated, that will not cause significant changes in naturally-functioning algal populations. These levels are 0.016f mg L/sup -1/ As(V), 0.001 mg L/sup -1/ Cd(II), 0.004 mg L/sup -1/ Hg(II), 0.006 mg L/sup -1/ Se(VI), and 0.344% SASE. To provide viable working water quality criteria, an extrapolation from the laboratory to the natural environment must be made. Therefore, those oxidation states of the trace elements were selected which are the dominant states occurring in natural, unpolluted, slightly alkaline freshwaters. It must be pointed out that these MATC values are based on algal responses to single toxicants and no allowance is made for synergistic, additive, or antagonistic relationships which could occur in natural aquatic systems. Additionally, natural chelation may influence toxicity. The highly toxic nature of potential pollutants from coal-fired generating plants emphasizes the need for minimizing stack effluent pollutants and retaining scrubber ash slurry for proper disposal in an effort to maintain trace elements in concentration ranges compatible with naturally-functioning ecosystems.

  17. Visualization of spatiotemporal behavior of discrete maps via generation of recursive median elements.

    Science.gov (United States)

    Daya Sagar, B S

    2010-02-01

    Spatial interpolation is one of the demanding techniques in Geographic Information Science (GISci) to generate interpolated maps in a continuous manner by using two discrete spatial and/or temporal data sets. Noise-free data (thematic layers) depicting a specific theme at varied spatial or temporal resolutions consist of connected components either in aggregated or in disaggregated forms. This short paper provides a simple framework: 1) to categorize the connected components of layered sets of two different time instants through their spatial relationships and the Hausdorff distances between the companion-connected components and 2) to generate sequential maps (interpolations) between the discrete thematic maps. Development of the median set, using Hausdorff erosion and dilation distances to interpolate between temporal frames, is demonstrated on lake geometries mapped at two different times and also on the bubonic plague epidemic spread data available for 11 consecutive years. We documented the significantly fair quality of the median sets generated for epidemic data between alternative years by visually comparing the interpolated maps with actual maps. They can be used to visualize (animate) the spatiotemporal behavior of a specific theme in a continuous sequence.

  18. Finite element model for beef chilling using CFD-generated heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Q.T. [University of New South Wales, Sydney, NSW 2052 (Australia); Trujillo, F.J. [Food Science Australia, 11 Julius Avenue, North Ryde, NSW 2113 (Australia); McPhail, N. [Food Science Australia, P.O. Box 3312, Tingalpa DC, Brisbane, QLD 4173 (Australia)

    2009-01-15

    A combined model of the beef chilling process is presented, in which computational fluid dynamics (CFD) was used to estimate the local heat and mass transfer coefficients, assuming uniform surface temperatures, and a set of 2-D finite element grids was used to solve the heat transfer equation in the product, which has an elongated shape. Another set of 1-D grids was used to solve the water transport equation near the surface of the meat. The surface transfer coefficients were calculated for various combinations of air orientations and speeds, and summarised in a set of regression equations. The model was verified by existing and new data on heat load, temperatures, weight loss and surface water activity. (author)

  19. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); CEA, DAM, DIF, Arpajon (France); Verriere, M. [CEA, DAM, DIF, Arpajon (France); Dubray, N. [CEA, DAM, DIF, Arpajon (France); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  20. Analysis of Unbalanced Magnetic Pull in Wound Rotor Induction Machines using Finite Element Analysis – Transient, Motoring and Generating Modes

    DEFF Research Database (Denmark)

    Dorrell, David G.; Hermann, Alexander Niels August; Jensen, Bogi Bech

    2013-01-01

    There has been much literature on unbalanced magnetic pull in various types of electrical machine. This can lead to bearing wear and additional vibrations in the machine. In this paper a wound rotor induction is studied. Finite element analysis studies are conducted when the rotor has 10 % rotor...... eccentricity. The operating conditions are varied so that transient, motoring and doubly-fed induction generator modes are studied. This allows greater understanding of the radial forces involved. Wound rotor induction machines exhibit higher unbalanced magnetic pull than cage induction machines so...

  1. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    Science.gov (United States)

    Regnier, D.; Verrière, M.; Dubray, N.; Schunck, N.

    2016-03-01

    We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  2. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    CERN Document Server

    Regnier, D; Dubray, N; Schunck, N

    2015-01-01

    We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N $\\geq$ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  3. A novel predictive model for formation enthalpies of Si and Ge hydrides with propane- and butane-like structures.

    Science.gov (United States)

    Weng, C; Kouvetakis, J; Chizmeshya, A V G

    2011-04-15

    Butane- and propane-like silicon-germanium hydrides and chlorinated derivatives represent a new class of precursors for the fabrication of novel metastable materials at low-temperature regimes compatible with selective growth and commensurate with the emerging demand for the reduced thermal budgets of complementary metal oxide semiconductor integration. However, predictive simulation studies of the growth process and reaction mechanisms of these new compounds, needed to accelerate their deployment and fine-tune the unprecedented low-temperature and low-pressure synthesis protocols, require experimental thermodynamic data, which are currently unavailable. Furthermore, traditional quantum chemistry approaches lack the accuracy needed to treat large molecules containing third-row elements such as Ge. Accordingly, here we develop a method to accurately predict the formation enthalpy of these compounds using atom-wise corrections for Si, Ge, Cl, and H. For a test set of 15 well-known hydrides of Si and Ge and their chlorides, such as Si(3)H(8), Ge(2)H(6), SiGeH(6), SiHCl(3), and GeCl(4), our approach reduces the deviations between the experimental and predicted formation enthalpies obtained from complete basis set (CBS-QB3), G2, and B3LPY thermochemistry to levels of 1-3 kcal/mol, or a factor of ∼5 over the corresponding uncorrected values. We show that our approach yields results comparable or better than those obtained using homodesmic reactions while circumventing the need for thermochemical data of the associated reaction species. Optimized atom-wise corrections are then used to generate accurate enthalpies of formation for 39 pure Si-Ge hydrides and a selected group of 20 chlorinated analogs, of which some have recently been synthesized for the first time. Our corrected enthalpies perfectly reproduce the experimental stability trends of heavy butane-like compounds containing Ge. This is in contrast to the direct application of the CBS-QB3 method, which yields

  4. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.

    Science.gov (United States)

    McSkimming, Alex; Chan, Bun; Bhadbhade, Mohan M; Ball, Graham E; Colbran, Stephen B

    2015-02-09

    Taking inspiration from yeast alcohol dehydrogenase (yADH), a benzimidazolium (BI(+) ) organic hydride-acceptor domain has been coupled with a 1,10-phenanthroline (phen) metal-binding domain to afford a novel multifunctional ligand (L(BI+) ) with hydride-carrier capacity (L(BI+) +H(-) ⇌L(BI) H). Complexes of the type [Cp*M(L(BI) )Cl][PF6 ]2 (M=Rh, Ir) have been made and fully characterised by cyclic voltammetry, UV/Vis spectroelectrochemistry, and, for the Ir(III) congener, X-ray crystallography. [Cp*Rh(L(BI) )Cl][PF6 ]2 catalyses the transfer hydrogenation of imines by formate ion in very goods yield under conditions where the corresponding [Cp*Ir(L(BI) )Cl][PF6 ] and [Cp*M(phen)Cl][PF6 ] (M=Rh, Ir) complexes are almost inert as catalysts. Possible alternatives for the catalysis pathway are canvassed, and the free energies of intermediates and transition states determined by DFT calculations. The DFT study supports a mechanism involving formate-driven RhH formation (90 kJ mol(-1) free-energy barrier), transfer of hydride between the Rh and BI(+) centres to generate a tethered benzimidazoline (BIH) hydride donor, binding of imine substrate at Rh, back-transfer of hydride from the BIH organic hydride donor to the Rh-activated imine substrate (89 kJ mol(-1) barrier), and exergonic protonation of the metal-bound amide by formic acid with release of amine product to close the catalytic cycle. Parallels with the mechanism of biological hydride transfer in yADH are discussed.

  5. Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail.

    Science.gov (United States)

    Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana

    2016-09-01

    Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing

  6. Using binary optical elements (BOEs) to generate rectangular spots for illumination in micro flow cytometer

    Science.gov (United States)

    Zhao, Jingjing; You, Zheng

    2016-01-01

    This work introduces three rectangular quasi-flat-top spots, which are provided by binary optical elements (BOEs) and utilized for the illumination in a microflow cytometer. The three spots contain, respectively, one, two, and three rectangles (R1, R2, and R3). To test the performance of this mechanism, a microflow cytometer is established by integrating the BOEs and a three-dimensional hydrodynamic focusing chip. Through the experiments of detecting fluorescence microbeads, the three spots present good fluorescence coefficients of variation in comparison with those derived from commercial instruments. Benefiting from a high spatial resolution, when using R1 spot, the micro flow cytometer can perform a throughput as high as 20 000 events per second (eps). Illuminated by R2 or R3 spot, one bead emits fluorescence twice or thrice, thus the velocity can be measured in real time. Besides, the R3 spot provides a long-time exposure, which is conducive to improving fluorescence intensity and the measurement stability. In brief, using the spots shaped and homogenized by BOEs for illumination can increase the performance and the functionality of a micro flow cytometer. PMID:27733892

  7. Retroviral hybrid LTR vector strategy: functional analysis of LTR elements and generation of endothelial cell specificity.

    Science.gov (United States)

    Richardson, T B; Kaspers, J; Porter, C D

    2004-05-01

    Transcriptional targeting is an important aspect of developing gene therapy vectors in order to restrict transgene expression to selected target cells. One approach, when using retroviral vectors, is to replace viral transcriptional control elements within the long terminal repeat (LTR) with sequences imparting the desired specificity. We have developed such hybrid LTR retroviruses, incorporating sequences from each of the human promoters for flt-1, ICAM-2 and KDR, as part of our antivascular cancer gene therapy strategy targeting tumour endothelial cells. The chosen fragments were used to replace the enhancer or combined enhancer and proximal promoter regions of the viral LTR. All showed activity in primary human breast microvascular endothelial cells, with viruses incorporating ICAM-2 sequences exhibiting the greatest specificity versus nonendothelial cells in vitro and a marked alteration of specificity towards endothelial cells in a subcutaneous xenograft model in vivo. Moreover, our study documents the effect of enhancer and/or proximal promoter deletion on LTR activity and reports that differential dependence in different cell lines can give the false impression of specificity if experiments are not adequately controlled. This finding also has implications for other retroviral vector designs seeking to provide transcriptional specificity and for their safety with respect to prevention of gene activation at sites of proviral integration.

  8. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis.

    Science.gov (United States)

    Oshkour, A A; Abu Osman, N A; Yau, Y H; Tarlochan, F; Abas, W A B Wan

    2013-01-01

    This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.

  9. Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements

    Science.gov (United States)

    Bai, Guang-Fu; Hu, Lin; Jiang, Yang; Tian, Jing; Zi, Yue-Jiao; Wu, Ting-Wei; Huang, Feng-Qin

    2017-08-01

    In this paper, a photonic microwave waveform generator based on a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. In this reported scheme, only one radio frequency signal is used to drive the dual-parallel Mach-Zehnder modulator. Meanwhile, dispersive elements or filters are not required in the proposed scheme, which make the scheme simpler and more stable. In this way, six variables can be adjusted. Through the different combinations of these variables, basic waveforms with full duty and small duty cycle can be generated. Tunability of the generator can be achieved by adjusting the frequency of the RF signal and the optical carrier. The corresponding theoretical analysis and simulation have been conducted. With guidance of theory and simulation, proof-of-concept experiments are carried out. The basic waveforms, including Gaussian, saw-up, and saw-down waveforms, with full duty and small duty cycle are generated at the repetition rate of 2 GHz. The theoretical and simulation results agree with the experimental results very well.

  10. Stress distribution of new generation of Twisted Files in comparison with ProTaper: A finite element analysis

    Directory of Open Access Journals (Sweden)

    Harsha Pujari

    2013-01-01

    Full Text Available Aim: To compare and evaluate the stress distribution of new generation of Twisted File in comparison with ProTaper under bending or torsional conditions using a finite - element analysis model. Materials and Methods: Two NiTi files, a ProTaper file and the latest generation nickel titanium file which is the Twisted File of similar tip diameter were scanned using White light scanning system. Through this a real size digitized models of the two brands of NiTi instruments were obtained. Then, the outline of the instrument was extracted from the stacks of 3D data in software. Finally a mesh of linear, eight-noded, hexahedral elements was overlaid onto the rendered 3D image. The behavior of the instrument under bending or torsional loads was then analyzed mathematically in the software (ABAQUS V6, 5-1 taking into consideration the non linear mechanical characteristic of NiTi material. The results were expressed as von Mises stresses and were calculated by the von Mises criteria. Results: Higher stress values were seen in Twisted Files than the ProTaper universal, however, the angular deflection was seen to be more in Twisted Files. Conclusion: As more angular deflection was seen in Twisted File it was more flexible than ProTaper Universal but did not have the uniform stress distribution like the ProTaper universal.

  11. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  12. Numerical study of a magnesium hydride tank

    Science.gov (United States)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  13. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  14. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.

    Science.gov (United States)

    Alapati, Sudhakar V; Johnson, J Karl; Sholl, David S

    2006-05-04

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through alloying with other elements. A very large number of possible destabilized metal hydride reaction schemes exist. The thermodynamic data required to assess the enthalpies of these reactions, however, are not available in many cases. We have used first principles density functional theory calculations to predict the reaction enthalpies for more than 100 destabilization reactions that have not previously been reported. Many of these reactions are predicted not be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low. More importantly, our calculations identify five promising reaction schemes that merit experimental study: 3LiNH(2) + 2LiH + Si --> Li(5)N(3)Si + 4H(2), 4LiBH(4) + MgH(2) --> 4LiH + MgB(4) + 7H(2), 7LiBH(4) + MgH(2) --> 7LiH + MgB(7) + 11.5H(2), CaH(2) + 6LiBH(4) --> CaB(6) + 6LiH + 10H(2), and LiNH(2) + MgH(2) --> LiMgN + 2H(2).

  15. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  16. Storing hydrogen in the form of light alloy hydrides

    Science.gov (United States)

    Freund, E.; Gillerm, C.

    1981-01-01

    Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.

  17. Hydride phase formation in LaMg{sub 2}Ni during H{sub 2} absorption

    Energy Technology Data Exchange (ETDEWEB)

    Di Chio, M.; Baricco, M. [Dipartimento di Chimica IFM and NIS/CNISM/INSTM, Universita di Torino, Via P.Giuria, 9 10125 Torino (Italy); Schiffini, L.; Enzo, S.; Cocco, G. [Dipartimento di Chimica and INSTM, Universita di Sassari, Via Vienna, 2 07100 Sassari (Italy)

    2008-02-15

    Hydrogen absorption and desorption properties in nanocrystalline LaMg{sub 2}Ni are presented. Nanostructured phases have been obtained by milling grain coarse ingot and by mechanically alloying the parent elements. The structural and hydriding properties were examined by X-ray diffraction, thermal analysis and thermal desorption measurements. Ball milling and mechanical alloying give a significant refinement of the microstructure. Reactive milling has been used for hydrogen absorption experiments. Hydrogenation by means of reactive milling at 300 K under a pressure of 0.4 MPa leads to the formation of a stable La-hydride phase together with an amorphous phase. Thermal desorption up to 983 K of hydrogenated samples leads again to parent LaMg{sub 2}Ni phase. (author)

  18. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    Science.gov (United States)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  19. A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C

    Science.gov (United States)

    Le Saux, M.; Besson, J.; Carassou, S.

    2015-11-01

    A model is proposed to describe the mechanical behavior and the ductile failure at 25, 350 and 480 °C of Zircaloy-4 cladding tubes, as-received and hydrided up to 1200 wt. ppm (circumferential hydrides). The model is based on the Gurson-Tvergaard-Needleman model extended to account for plastic anisotropy and viscoplasticity. The model considers damage nucleation by both hydride cracking and debonding of the interface between the Laves phase precipitates and the matrix. The damage nucleation rate due to hydride cracking is directly deduced from quantitative microstructural observations. The other model parameters are identified from several experimental tests. Finite element simulations of axial tension, hoop tension, expansion due to compression and hoop plane strain tension experiments are performed to assess the model prediction capability. The calibrated model satisfactorily reproduces the effects of hydrogen and temperature on both the viscoplastic and the failure properties of the material. The results suggest that damage is anisotropic and influenced by the stress state for the non-hydrided or moderately hydrided material and becomes more isotropic for high hydrogen contents.

  20. A phase-field model to study the effects of temperature change on shape evolution of γ-hydrides in zirconium

    Science.gov (United States)

    Bair, Jacob; Asle Zaeem, Mohsen; Tonks, Michael

    2016-10-01

    A temperature-dependent phase-field model is developed to study the effects of temperature change on shape evolution of γ-hydrides in an α-zirconium matrix. To construct the temperature-dependent free energy functional of the phase-field model, Gibbs free energies of formation from previous experiments are employed, and one conserved and three non-conserved phase-field variables are used for hydrogen concentration and hydride orientations, respectively. The mixed order evolution equations of phase-field variables coupled with mechanical equilibrium equations are solved in a finite element framework. Results from isothermal simulations of seeded and random nucleation in single crystal α-zirconium matrix show that the thickness of non-equilibrium hydrides varies with temperature during evolution, and the hydrides are more rod-like (thinner) at higher temperatures and thicker at lower temperatures. Quench simulations with random nucleation indicate that the majority of precipitation occurs at early stages of quenching, but the size and shape of hydrides change as the temperature decreases. Simulations from random nucleation of hydrides in a polycrystalline α-zirconium matrix show a higher concentration of precipitates along high angle grain boundaries.

  1. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  2. 高效液相色谱氢化物发生原子荧光光谱联用检测海藻中砷形态%Determination of arsenic speciation in seaweeds using high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation-atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    高鹭; 董伟峰; 彭心婷; 史立娟; 李妍; 庞艳华; 徐静; 曹际娟

    2015-01-01

    目的:测定14种海藻样品中总砷和无机砷的含量,同时分析样品中6种砷形态。方法将海藻样品经过微波消解的前处理方法,通过电感耦合等离子体质谱(inductively coupled plasma mass spectrometry, ICP-MS)测定总砷含量;根据国标方法中无机砷检测的前处理方法,通过原子荧光光谱(atomic fluorescence spectrometry, AFS)测定无机砷含量;最后通过酸提的前处理方法,利用高效液相色谱-氢化物发生-原子荧光光谱法(high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation-atomic fluorescence spectrometry, HPLC-(UV)-HG-AFS)测定海藻样品中6种形态砷含量并与国标无机砷方法比较。结果14种海藻样品中总砷含量为0.038~46.2 mg/kg;无机砷含量为0.006~19.3 mg/kg;对HPLC-(UV)-HG-AFS仪器的优化和方法的摸索后,从海藻样品中主要测得的砷形态为As(III)、As(V)和DMA, MMA含量较少,没有测出AsB和 AsC。结论在砷形态较为复杂的海藻样品检测中,通过 HPLC-(UV)-HG-AFS 检测方法可以有效避免无机砷前处理中可能出现的有机砷向无机砷转变的现象,降低干扰,增加测试的准确性,更为具体地表现海藻样品中主要的砷形态含量。%Objective The content of total arsenic and inorganic arsenic were determined in 14 seaweeds and 6 kinds of arsenic species were determined at the same time. Methods The content of total arsenic was determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. According to the pretreatment method of national standard method, the content of inorganic arsenic was determined by atomic fluorescence spectrometry (AFS). The results of 6 arsenic species were studied by high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation-atomic fluorescence spectrometry (HPLC-(UV)-HG-AFS) after acid extraction, which were compared with the national standard method. Results In 14

  3. 人血和尿中锡的高压微波络合消解氢化物发生-原子荧光测定法%Determination of tin in human blood and urine with high-pressure microwave digestion and complexing ligand and hydride generation-atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈峰; 谢超

    2013-01-01

    Objective To establish the hydride generation-atomic fluorescence spectrometric method for the determination of tin in human blood and urine with high-pressure microwave digestion and complexing ligand.Methods Human blood and urine samples were digested by using high-pressure microwave.Then complexing ligand 1% EDTA,5 ml 150 g/L thiourea and ascorbic acid were added to mask the interfering ions such as nickel,iron,arsenic,selenium and etc.Tin concentration was determined with hydride-generation atomic fluorescence spectrometric method with sodium borohydride as the reductant in 2% sulphuric acid media.Results The linear range of tin was 10-100 μg/ml,the regression equations and correlation coefficients in blood and urine were y=9.391 1 x-16.312,r=0.999 7,y=8.244 7x-27.849 6,r=0.998 2,respectively.The limits of detection of tin in blood and urine were 0.090,0.020 μg/L respectively.The relative standard derivation of this method was 1.4%-6.1%.The rates of recovery were between 98.1% and 101.8%.Conclusion This method presents many advantages,such as completed sample digestion,rapid,less matrix disturbance,accurate,sensitive and is applicable to the determination of tin in blood and urine in grass-roots units.%目的 建立人血、尿中锡的高压微波络合消解氢化物发生-原子荧光测定法.方法 利用高压微波络合消解已加入1% EDTA溶液的人血和尿液,在样品测定液中加入150 g/L硫脲-抗坏血酸5ml来掩蔽镍、铁、砷、硒等干扰离子;以2%硫酸作为介质,以2%的硼氢化钠溶液作为还原剂,采用氢化物发生-原子荧光法测定锡浓度.结果 在10~100 μg/ml的线性范围内,血中锡所得回归方程为y=9.391 1x-16.312,r=0.999 7;尿中锡所得回归方程为y=8.244 7x-27.849 6,r=0.998 2.血、尿中锡的检出限分别为0.090、0.020 μg/L.该方法的RSD为1.4%~6.1%,回收率在98.1%~101.8%之间.结论 该方法样品消解完全,测定时间短,待测元素

  4. Development of the software tool for generation and visualization of the finite element head model with bone conduction sounds

    Science.gov (United States)

    Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad

    2015-12-01

    Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.

  5. 微波消解-氢化物原子荧光光谱法测定粤东地区海产品中砷的研究%Determination of Arsenic in Seafood by Hydride Generation-atomic Fluorescence Spectrometry Combined with Microwave Oven Digestion

    Institute of Scientific and Technical Information of China (English)

    蔡龙飞; 徐春秀; 张应钦; 邱新红

    2011-01-01

    [目的]建立一种测定海产品中微量砷的有效方法.[方法]采用微波消解-氢化物原子荧光光谱法测定了粤东地区海产品中砷的含量.[结果]砷在1.0~50.0μg/L范围内线性关系良好,相关系数为0.995,方法的检出限为0.02107μg/L,相对标准偏差为0.932%.部分海产品的含砷量超过国家标准,其超标原因可能与沿海地区的工业污染有关.[结论]该方法试剂用量少、污染小、简便、快速、准确,适于各类海产品中砷含量的检测.%[Objective] The aim was to establish an effective determination method of arsenic in seafood. [Method] Contents of arsenic in seafood samples from eastern Guangdong area were determined by hydride generation-atomic fluorescence spectrometry combined with microwave oven digestion. [Result] The linear range for detection of arsenic was 1.0- 50.0 μg/L, which showed a good linear relationship,and its correlation coefficient was 0.995. The detection limit and relative standard deviation were 0.021 07 μg/L and 0.932% .respectively. Contents of arsenic in some seafood samples were more than the national standard,which could be caused by industrial pollution in coastal areas. [Conclusion] The method is simple,rapid and accurate,so it is applied to the determination of arsenic in seafood samples.

  6. Separation/preconcentration of ultra-trace levels of inorganic Sb and Se from different sample matrices by charge transfer sensitized ion-pairing using ultrasonic-assisted cloud point extraction prior to their speciation and determination by hydride generation AAS.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2016-10-01

    In the existing study, a new, simple and low cost process for separation/preconcentration of ultra-trace level of inorganic Sb and Se from natural waters, beverages and foods using ultrasonic-assisted cloud point extraction (UA-CPE) prior to their speciation and determination by hydride generation AAS, is proposed. The process is based on charge transfer sensitized complex formations of Sb(III) and Se(IV) with 3-amino-7-dimethylamino-2-methylphenazine hydrochloride (Neutral red, NRH(+)) in presence of pyrogallol and cetyltrimethylammonium bromide (CTAB) as both sensitivity enhancement and counter ion at pH 6.0. Under the optimized reagent conditions, the calibration curves were highly linear in the ranges of 8-300ngL(-1) and 12-250ngL(-1) (r(2)≥0.993) for Se(IV) and Sb(III), respectively. The limits of detection were 2.45 and 3.60ngL(-1) with sensitivity enhancement factors of 155 and 120, respectively. The recovery rate was higher than 96% with a relative standard deviation lower than 5.3% for five replicate measurements of 25, 75 and 150ngL(-1) Se(IV) and Sb(III), respectively. The method was validated by analysis of two certified reference materials (CRMs), and was successfully applied to the accurate and reliable speciation and determination of the contents of total Sb/Sb(III), and total Se/Se(IV) after UA-CPE of the pretreated sample matrices with and without pre-reduction with a mixture of l-cysteine and tartaric acid. Their Sb(V) and Se(VI) contents were calculated from the differences between total Sb and Sb(III) and/or total Se and Se(IV) levels.

  7. Co-generation system with a linear concentrator and thermoelectric elements; Senkei shukokei to netsuden henkan soshi wo mochiita netsuden heikyu system

    Energy Technology Data Exchange (ETDEWEB)

    Kachi, E.; Suzuki, A.; Fujibayashi, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    The co-generation system using a solar cell has the disadvantage that the performance of a cell element deteriorates when the temperature rises. Therefore, the co-generation system in which a BiTe thermoelectric element and linear Fresnel lens are used was constructed. Moreover, the basic characteristics were confirmed and the characteristics of a system model were analyzed. A thermoelectric element area must be reduced to improve the generating efficiency. The generating efficiency depends on the temperature difference between thermoelectric elements rather than the thermoelectric element area. As the thermoelectric area gets lower, the generating efficiency will get higher. This inclination is advantageous on the economic side. The generating efficiency becomes low during operation at high temperature. As a result, the temperature supplied to the thermal load is set to the lower position (100 to 200{degree}C) so as to advance the validity of the system. Even if the co-generation temperature is low, a heat supply capability of 150{degree}C is sufficient for an industrial heat supply system because it holds a large majority of the consumption demand for the whole industry. 3 refs., 8 figs., 3 tabs.

  8. Application of Factorial Designs and Simplex Optimisation in the Development of Flow Injection-Hydride Generation-Graphite Furnace Atomic Absorption Spectrometry Procedures as Demonstrated for the Determination of Trace Levels of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Hansen, Elo Harald

    1997-01-01

    The optimisation of a volume-based FI-HG-GFAAS procedure is described for the trace determination of Ge, comprising in situ collection of the generated germane in the graphite furnace. The response function is the peak area readout (A*s). Based on a preliminary study, where factorial designs were...... at a sampling frequency of 22 h-1. The sensitivity, in terms of the characteristic mass, m0, was 26 pg/0.0044 A*s, with a detection limit of 0.21 mu-g/L (3 sigma). The precision (relative standard deviation) was 2.0% (n=10) at the 1 mu-g/L level....

  9. Finite element modeling of wall-loss sizing in a steam generator tube using a pulsed eddy current probe

    Science.gov (United States)

    Babbar, V. K.; Lepine, B.; Buck, J.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2015-03-01

    Inspection of steam generator (SG) tubes by conventional eddy current may, in general, involve analysis of indications from volumetric wall loss, cracks, fouling and support-plate degradation; however, it may be difficult to size or quantify effects from support-to-tube gap and tube tilt, especially in the presence of support plates. Pulsed eddy current (PEC) technology is being developed to investigate such complex tube and flaw geometries. The present work employs finite element modeling to investigate the effectiveness of PEC in identifying and sizing the outer diameter wall-loss in SG tubes. The signals analyzed using a modified principal components analysis (PCA) method reveal the potential success of a PEC-PCA combination to produce scores that can be used to size the wall-loss in the presence of support plates. The modeling results are in good agreement with experimental observations.

  10. Development of elements of the condition monitoring system of turbo generators of thermal power stations and nuclear power plants

    Science.gov (United States)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.

    2017-08-01

    The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing

  11. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities

    Institute of Scientific and Technical Information of China (English)

    Xue-cheng BIAN; Chang CHAO; Wan-feng JIN; Yun-min CHEN

    2011-01-01

    Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds.A train-track-ground dynamic interaction analysis model based on the 2.5D finite element method is developed for the prediction of ground vibrations due to vertical track irregularities.The one-quarter car model is used to represent the train as lumped masses connected by springs.The embankment and the underlying ground are modeled by the 2.5D finite element approach to improve the computation efficiency.The Fourier transform is applied in the direction of train's movement to express the wave motion with a wave-number.The one-quarter car model is coupled into the global stiffness matrix describing the track-ground dynamic system with the displacement compatibility condition at the wheel-rail interface,including the irregularities on the track surface.Dynamic responses of the track and ground due to train's moving loads are obtained in the wave-number domain by solving the governing equation,using a conventional finite element procedure.The amplitude and wavelength are identified as two major parameters describing track irregularities.The irregularity amplitude has a direct impact on the vertical response for low-speed trains,both for short wavelength and long wavelength irregularities.Track irregularity with shorter wavelength can generate stronger track vibration both for low-speed and high-speed cases.For low-speed case,vibrations induced by track irregularities dominate far field responses.For high-speed case,the wavelength of track irregularities has very little effect on ground vibration at distances far from track center,and train's wheel axle weights becomes dominant.

  12. Method of making crack-free zirconium hydride

    Science.gov (United States)

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  13. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  14. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  15. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  16. High energy density battery based on complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  17. Synthesis, characterization and properties of some organozinc hydride complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of the monopyridine complexes of ethylzinc hydride and phenylzinc hydride are described. On treatment with TMED these complexes are converted into R2Zn3H4. TMED species through a combination of ligand-exchange and disproportionation. The formation of organozinc hyd

  18. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Jovanovic, M.T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Seahra, H. [Ontario Hydro Technol., Ont. (Canada). Mater. Technol. Unit; Ma, Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Li, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering; Eadie, R.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mining, Metallurgical and Petroleum Engineering

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extruded pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at K{sub I} below 12 MPa {radical}m at both 200 and 250 C very large striations (>40 {mu}m at 200 and >50 {mu}m at 250 C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when K{sub I} was increased beyond about 12 MPa {radical}m for these same specimens, the striation spacing decreased below 30 {mu}m, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface. (orig.).

  19. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Science.gov (United States)

    Shek, G. K.; Jovanoviċ, M. T.; Seahra, H.; Ma, Y.; Li, D.; Eadie, R. L.

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extrude pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at KI below 12 MPa √m at both 200 and 250°C very large striations (> 40 μ at 200 and >50 μm at 250°C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when KI was increased beyond about 12 MPa √m for these same specimens, the striation spacing decreased below 30 μ, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface.

  20. High ramp rate thermogravimetric analysis of zirconium(II) hydride and titanium(II) hydride

    Energy Technology Data Exchange (ETDEWEB)

    Licavoli, Joseph J., E-mail: jjlicavo@mtu.edu; Sanders, Paul G., E-mail: sanders@mtu.edu

    2015-09-20

    Highlights: • A unique arc image device has been proposed for high ramp rate thermogravimetry. • Powder oxidation influences decomposition kinetics at temperatures below 933 K. • Particle size has a negligible effect on TiH{sub 2} decomposition behavior. • Improvements to the device are required to conduct accurate kinetic analysis. - Abstract: Zirconium and titanium hydride are utilized in liquid phase metal foam processing techniques. This application results in immediate exposure to molten metal and almost immediate decomposition at high temperatures. Most decomposition characterization techniques utilize slow heating rates and are unable to capture the decomposition behavior of hydrides under foam processing conditions. In order to address this issue a specialized high ramp rate thermogravimetric analyzer was created from a xenon arc image refiner. In addition to thermogravimetry, complimentary techniques including X-ray diffraction and scanning electron microscopy were used to characterize hydride decomposition and compare the results to literature. Hydrides were partially oxidized and separated into particles size ranges to evaluate the influence of these factors on decomposition. Oxidizing treatments were found to decrease decomposition rate only at temperatures below 933 K (660 °C) while particle size effects appeared to be negligible. Several improvements to the unique TGA apparatus presented in the current work are suggested to allow reliable kinetic modeling and analysis.

  1. Metal hydrides used as negative electrode materials for Li-ion batteries

    Science.gov (United States)

    Sartori, Sabrina; Cuevas, Fermin; Latroche, Michel

    2016-02-01

    Energy is a key issue for future generation. Researches are conducted worldwide to develop new efficient means for energy conversion and storage. Electrochemical storage is foreseen as an efficient way to handle intermittent renewable energy production. The most advanced batteries are nowadays based on lithium-ion technology though their specific capacities should be significantly increased to bring solution to mass storage. Conversion reactions are one way to step forward larger capacities at the anode. We here review the possibility to use metallic or complex hydrides as negative electrode using conversion reaction of hydride with lithium. Moreover, promising alloying of lithium with the metallic species might provide additional reversible capacities. Both binary and ternary systems are reviewed and results are compared in the frame of the electrochemical application.

  2. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  3. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  4. Photochromism of rare-earth metal-oxy-hydrides

    Science.gov (United States)

    Nafezarefi, F.; Schreuders, H.; Dam, B.; Cornelius, S.

    2017-09-01

    Recently, thin films of yttrium oxy-hydride (YOxHy) were reported to show an unusual color-neutral photochromic effect promising for application in smart windows. Our present work demonstrates that also oxy-hydrides based on Gd, Dy, and Er have photochromic properties and crystal structures similar to YOxHy. Compared to YOxHy, the optical bandgaps of the lanthanide based oxy-hydrides are smaller while photochromic contrast and kinetics show large variation among different cations. Based on these findings, we propose that cation alloying is a viable pathway to tailor the photochromic properties of oxy-hydride materials. Furthermore, we predict that the oxy-hydrides of the other lanthanides are also potentially photochromic.

  5. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  6. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.

    Science.gov (United States)

    Wang, Xiaowei; Zhang, Yu; Zhang, Tingting; Zhou, Jiti

    2016-03-01

    Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and

  7. Mononuclear Phenolate Diamine Zinc Hydride Complexes and Their Reactions With CO2.

    Science.gov (United States)

    Brown, Neil J; Harris, Jonathon E; Yin, Xinning; Silverwood, Ian; White, Andrew J P; Kazarian, Sergei G; Hellgardt, Klaus; Shaffer, Milo S P; Williams, Charlotte K

    2014-03-10

    The synthesis, characterization, and zinc coordination chemistry of the three proligands 2-tert-butyl-4-[tert-butyl (1)/methoxy (2)/nitro (3)]-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenol are described. Each of the ligands was reacted with diethylzinc to yield zinc ethyl complexes 4-6; these complexes were subsequently reacted with phenylsilanol to yield zinc siloxide complexes 7-9. Finally, the zinc siloxide complexes were reacted with phenylsilane to produce the three new zinc hydride complexes 10-12. The new complexes 4-12 have been fully characterized by NMR spectroscopy, mass spectrometry, and elemental analyses. The structures of the zinc hydride complexes have been probed using VT-NMR spectroscopy and X-ray diffraction experiments. These data indicate that the complexes exhibit mononuclear structures at 298 K, both in the solid state and in solution (d8-toluene). At 203 K, the NMR signals broaden, consistent with an equilibrium between the mononuclear and dinuclear bis(μ-hydrido) complexes. All three zinc hydride complexes react rapidly and quantitatively with carbon dioxide, at 298 K and 1 bar of pressure over 20 min, to form the new zinc formate complexes 13-15. The zinc formate complexes have been analyzed by NMR spectroscopy and VT-NMR studies, which reveal a temperature-dependent monomer-dimer equilibrium that is dominated by the mononuclear species at 298 K.

  8. True boundary for the formation of homoleptic transition-metal hydride complexes.

    Science.gov (United States)

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Aoki, Katsutoshi; Orimo, Shin-ichi

    2015-05-04

    Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition-metal hydride complexes are limited to the Groups 7-12. Here we present evidence for the formation of Mg3 CrH8 , containing the first Group 6 hydride complex [CrH7 ](5-) . Our theoretical calculations reveal that pentagonal-bipyramidal H coordination allows the formation of σ-bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group 3-5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition-metal hydride complexes should be between Group 5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen-rich materials that are of both technological and fundamental interest.

  9. A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Varin, R. A.; Zbroniec, L. [University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, Ontario (Canada); Polanski, M.; Bystrzycki, J. [Faculty of Advanced Technology and Chemistry, Military University of Technology, Warsaw (Poland)

    2011-07-01

    The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada) and Military University of Technology (Warsaw, Poland) are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size) induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand, the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general, catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which, in turn, act catalytically. However, these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g., enthalpy change of hydrogen sorption reactions). It is shown that a complex metal hydride, LiAlH{sub 4}, after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl{sub 2} catalytic precursor, is able to desorb relatively large quantities of hydrogen at room temperature, 40 and 80 {sup o}C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems. (authors)

  10. Hydriding and dehydriding rates and hydrogen-storage capacity of Mg–14Ni–3Fe2O3–3Ti prepared by reactive mechanical grinding

    Indian Academy of Sciences (India)

    Myoung Youp Song; Young Jun Kwak; Hye Ryoung Park; Byoung-Goan Kim

    2013-08-01

    The magnesium prepared by mechanical grinding under H2 (reactive mechanical grinding) with transition elements or oxides showed relatively high hydriding and dehydriding rates when the content of additives was about 20 wt%. Ni (expected to increase hydriding and dehydriding rates) was chosen as transition element to be added. Fe2O3 (expected to increase hydriding rate) was selected as an oxide to be added. Ti was also selected since, it was considered to increase the hydriding and dehydriding rates by forming Ti hydride. A sample, Mg–14Ni–3Fe2O3–3Ti, was prepared by reactive mechanical grinding and its hydrogen storage properties were investigated. This sample absorbed 4.02 wt% H for 5 min, 4.15 wt% H for 10 min and 4.42 wt% H for 60 min at = 2. It desorbed 2.46 wt% H for 10 min, 3.98 wt% H for 30 min and 4.20 wt% H for 60 min at = 2.

  11. A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides

    Directory of Open Access Journals (Sweden)

    Jerzy Bystrzycki

    2010-12-01

    Full Text Available The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada and Military University of Technology (Warsaw, Poland are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand, the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general, catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which, in turn, act catalytically. However, these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g., enthalpy change of hydrogen sorption reactions. It is shown that a complex metal hydride, LiAlH4, after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl2 catalytic precursor, is able to desorb relatively large quantities of hydrogen at RT, 40 and 80 °C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems.

  12. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, Dennis C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  13. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Science.gov (United States)

    Rico, A.; Martin-Rengel, M. A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F. J.

    2014-09-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young's modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young's modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  14. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J., E-mail: jesus.ruiz@upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Gomez-Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L, Madrid (Spain)

    2014-09-15

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  15. Nanostructured Magnesium Hydride for Reversible Hydrogen Storage

    Science.gov (United States)

    de Rango, P.; Chaise, A.; Fruchart, D.; Miraglia, S.; Marty, Ph.

    2013-05-01

    The aim of this work was to develop suitable materials to store hydrogen in a solid state. A systematic investigation of the co-milling process of magnesium hydride with a transition metal was undertaken in order to produce nanostructured and highly reactive powders. The initiating role of the transition metal was evidenced by in situ neutron diffraction experiments. High performances in terms of thermal and mechanical behavior were achieved introducing expanded graphite and compacting the mixture to form composite materials. Absorption and desorption kinetics have been measured versus temperature and H2 pressure.

  16. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    Energy Technology Data Exchange (ETDEWEB)

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  17. Development of nickel-metal hydride cell

    Science.gov (United States)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  18. Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

    Science.gov (United States)

    Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor; Ma, Yanming

    2013-11-01

    As part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc's. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1-4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc ˜ 38 K at 300 GPa.

  19. Multiphysics phase field modeling of hydrogen diffusion and delta-hydride precipitation in alpha-zirconium

    Science.gov (United States)

    Jokisaari, Andrea M.

    Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity

  20. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  1. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  2. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    Science.gov (United States)

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  3. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  4. Determination of inorganic arsenic in coal by hydride generation atomic fluorescence spectrometry combined with ultrasonic extraction%超声提取-顺序注射氢化物发生-原子荧光光谱法测定煤中无机砷

    Institute of Scientific and Technical Information of China (English)

    王长芹; 刘贵勤

    2011-01-01

    A determination method of inorganic arsemc in coal was established by sequence injection hydride generation-atomic fluorescence spectrometry ( HG-AFS) , after the ultrasonic extraction with 6 mol/L HCl as extraction reagent. The ultrasonic extraction conditions were optimized, including extraction reagent, time and temperature. Under the optimized experimental condition, arsemc in concentration range of 0. 20-100 μg/L showed linearity to the fluorescence intensity with correlation coefficient of 0. 999 7. The detection limit of arsenic was 0. 025 μg/L. The relative standard deviation (RSD) for 10 μg/L As was 0. 9 % (n=11). The proposed method has been applied to the analysis of coal fly ash component analysis certified reference material (GBW08401) and coal samples with recoveries of 95%-102 %, and the result of GBW08401 was consist with the certified value.%利用6 mol/L盐酸作为提取试剂,样品经超声提取后,用顺序注射氢化物发生-原子荧光光谱法测定煤中无机砷的含量.对超声提取条件(提取试剂浓度、时间、温度)进行了优化.在优化的实验条件下,砷的浓度在0.20~100μg/L范围内与荧光强度呈线性关系,相关系数为0.999 7,砷的检出限为0.025μg/L,对10 μg/L砷标准溶液进行重复11次测量,得出相对标准偏差(RSD)为0.9%.用该法对煤飞灰成分分析标准物质GBW08401和煤样进行分析,测得回收率在95%~102%之间,标准样品的测定值和认定值相符.

  5. Filiform-mode hydride corrosion of uranium surfaces

    Science.gov (United States)

    Hill, M. A.; Schulze, R. K.; Bingert, J. F.; Field, R. D.; McCabe, R. J.; Papin, P. A.

    2013-11-01

    Hydride nucleation and growth has previously been studied in uranium with an air-formed oxide. Preferred directional growth of uranium hydride has not been observed, presumably due to the constraint of the oxide layer and/or the presence of a surface layer distorted by mechanical grinding and polishing. Instead, hydrides typically first form as subsurface blisters that do not exhibit preferred growth directionality. By eliminating the strained surface layer through electropolishing, removing the natural oxide through ion sputtering, avoiding exposure of the uranium to air, and then exposing uranium to high purity hydrogen in an environmental cell, hydride growth patterns emerge that correspond to defect structures within the microstructure. These hydride growth patterns are similar to filiform corrosion, a type of corrosion that frequently forms under thin protective films. This work describes the first reported observation of filiform-like corrosion in uranium. The uranium hydride initiates at defects, but grows into filaments up to 20 μm wide, and tends to form in straight lines, largely propagating along twin boundaries. Propagation is driven by hydrogen reaction at the filament head, promoted by more efficient delivery of reactant. However, this phenomenon does not involve an electrochemical process associated with conventional filiform corrosion and is therefore described as filiform-like. Hydride growth was observed using optical microscopy for a period of nearly three years. Sample characterization included automated electron backscatter diffraction (EBSD) measurements to determine growth directions. Observation of this anomalous hydride growth provides clues as to the mechanisms operating in uranium hydriding for more conventionally prepared sample surfaces.

  6. Triphosphine-Ligated Copper Hydrides for CO2 Hydrogenation: Structure, Reactivity, and Thermodynamic Studies.

    Science.gov (United States)

    Zall, Christopher M; Linehan, John C; Appel, Aaron M

    2016-08-10

    The copper(I) triphosphine complex LCu(MeCN)PF6 (L = 1,1,1-tris(diphenylphosphinomethyl)ethane), which we recently demonstrated is an active catalyst precursor for hydrogenation of CO2 to formate, reacts with H2 in the presence of a base to form a cationic dicopper hydride, [(LCu)2H]PF6. [(LCu)2H](+) is also an active precursor for catalytic CO2 hydrogenation, with equivalent activity to that of LCu(MeCN)(+), and therefore may be a relevant catalytic intermediate. The thermodynamic hydricity of [(LCu)2H](+) was determined to be 41.0 kcal/mol by measuring the equilibrium constant for this reaction using three different bases. [(LCu)2H](+) and the previously reported dimer (LCuH)2 can be synthesized by the reaction of LCu(MeCN)(+) with 0.5 and 1 equiv of KB(O(i)Pr)3H, respectively. The solid-state structure of [(LCu)2H](+) shows threefold symmetry about a linear Cu-H-Cu axis and significant steric strain imposed by bringing two LCu(+) units together around the small hydride ligand. [(LCu)2H](+) reacts stoichiometrically with CO2 to generate the formate complex LCuO2CH and the solvento complex LCu(MeCN)(+). The rate of the stoichiometric reaction between [(LCu)2H](+) and CO2 is dramatically increased in the presence of bases that coordinate strongly to the copper center, e.g. DBU and TMG. In the absence of CO2, the addition of a large excess of DBU to [(LCu)2H](+) results in an equilibrium that forms LCu(DBU)(+) and also presumably the mononuclear hydride LCuH, which is not directly observed. Due to the significantly enhanced CO2 reactivity of [(LCu)2H](+) under these catalytically relevant conditions, LCuH is proposed to be the catalytically active metal hydride.

  7. K-shell Auger lifetime variation in doubly ionized Ne and first row hydrides.

    Science.gov (United States)

    Kolorenč, Přemysl; Averbukh, Vitali

    2011-10-01

    We consider 1s Auger decay in doubly (core-core and core-valence) ionized Ne and in the isoelectronic first row element hydrides. We show theoretically that the presence of the spectator inner valence vacancy leads to Auger lifetime variation of up to about a factor of 2, relative to the Auger lifetimes in the singly ionized species. The origin of this effect is traced to spin selection rules. Implications on the modelling of the radiation damage in strong x-ray fields are discussed.

  8. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  9. PIE techniques for hydride reorientation test at NDC

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Tomohiro; Shinohara, Yasunari; Yamaguchi, Yoichiro [Nuclear Development Corporation, Ibaraki (Japan)

    2008-11-15

    Dry storage of spent fuels in the interim storage facility is being planned in Japan. However, the gradual deterioration of the mechanical property of fuel cladding due to internal pressure and temperature during the storage term is known. Therefore, the integrity of stored fuel rods should be confirmed before the start of dry storage. For the last several years, NDC had a lot of experiences on the hydride reorientation test. The specimen preparation techniques on the hydride reorientation test and the mechanical testing techniques after the hydride reorientation are shown in this paper.

  10. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  11. Acute arsenious hydride intoxication. Four cases

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, B.; Mathieu, D.; Desprez-Nolf, M.; Cosson, A.; Goudemand, J.; Haguenoer, J.M.; Wattel, F.

    1982-02-06

    While engaged in the repair of a zinc furnace, 4 workers were accidentally exposed to arsenious hydride (AsH3) fumes. Acute intravascular haemolysis developed within a few hours. On admission, the patients immediately underwent exsanguino-transfusion; 8.2 to 10.2 l of blood were exchanged through a continuous perfusion pump at the rate of 1 l/hour. Two patients resumed diuresis during transfusion, but the other two required repeated haemodialysis. Between the 10th and 30th days, while renal function was gradually returning to normal, mildly megaloblastic anaemia developed. This was followed during the 3rd month by clinical and electric signs of polyneuritis of the lower and upper limbs, which subsequently regressed. Regular measurements of arsenic levels in the blood and urine were performed between and during exsanguino-transfusion and haemodialysis.

  12. Hydrogen desorption from nanostructured magnesium hydride composites

    Directory of Open Access Journals (Sweden)

    Brdarić Tanja P.

    2007-01-01

    Full Text Available The influence of 3d transition metal addition (Fe, Co and Ni on the desorption properties of magnesium hydride were studied. The ball milling of MgH2-3d metal blends was performed under Ar. Microstructural and morphological characterization were performed by XRD and SEM analysis, while the hydrogen desorption properties were investigated by DSC. The results show a strong correlation between the morphology and thermal stability of the composites. The complex desorption behavior (the existence of more than one desorption peak was correlated with the dispersion of the metal additive particles that appear to play the main role in the desorption. The desorption temperature can be reduced by more than 100 degrees if Fe is added as additive. The activation energy for H2 desorption from the MgH2-Fe composite is 120 kJ/mol, implying that diffusion controls the dehydration process.

  13. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.|info:eu-repo/dai/nl/186125372; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the

  14. Direct observation of hydrides formation in cavity-grade niobium

    Directory of Open Access Journals (Sweden)

    F. Barkov

    2012-12-01

    Full Text Available Niobium is an important technological superconductor used to make radio frequency cavities for particle accelerators. Using laser confocal microscopy we have directly investigated hydride precipitates formation in cavity-grade niobium at 77 and 140 K. We have found that large hydrides were usually formed after chemical or mechanical treatments, which are known to lead to a strong degradation of the quality factor known as Q disease. From our experiments we can conclude that hydrides causing Q disease are islands with a characteristic thickness of ≳100  nm and in-plane dimensions 1–10  μm. Our results show that mechanical polishing uploads a lot of hydrogen into bulk niobium while electropolishing leads to a mild contamination. Vacuum treatments at 600–800°C are demonstrated to preclude large hydride formation in line with the absence of Q disease in similarly treated cavities.

  15. Materials science of Mg-Ni-based new hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Orimo, S.; Fujii, H. [Hiroshima Univ. (Japan). Faculty of Integrated Arts and Sciences

    2001-02-01

    One of the advantageous functional properties of Mg alloys (or compounds) is to exhibit the reversible hydriding reaction. In this paper, we present our systematic studies regarding the relationship between nanometer- or atomistic-scale structures and the specific hydriding properties of the Mg-Ni binary system, such as(1) nanostructured (n)-Mg{sub 2}Ni, (2) a mixture of n-Mg{sub 2}Ni and amorphous (a)-MgNi,(3) pure a-MgNi, and(4) n-MgNi{sub 2}. Further studies on(5) an a-MgNi-based system for clarifying the effect of the short-range ordering on the structural and hydriding properties and(6) a MgNi{sub 2}-based system for synthesizing the new Laves phase structure are also presented. The materials science of Mg-Ni-based new hydrides will provide indispensable knowledge for practically developing the Mg alloys as hydrogen-storage materials. (orig.)

  16. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  17. DETERMINATION OF METAL HYDRIDE SYSTEMS CHARACTERISTICS WHILE HEATING

    Directory of Open Access Journals (Sweden)

    Yu. Kluchka

    2012-01-01

    Full Text Available Experimental dependence of the pressure of hydrogen in the hydride cartridge when it is heated is obtained. Experimental data prove the theoretical values with an accuracy of ≈ 6%.

  18. Bipolar Nickel-Metal Hydride Battery Being Developed

    Science.gov (United States)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  19. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  20. Out-of-pile accelerated hydriding of Zircaloy fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J.C.

    1979-10-01

    Mechanical joints between Zircaloy and nickel-bearing alloys, mainly the Zircaloy-4/Inconel-600 combination, were exposed to water at 450/sup 0/F and 520/sup 0/F to study hydriding of Zircaloy in contact with a dissimilar metal. Accelerated hydriding of the Zircaloy occurred at both temperatures. At 450/sup 0/F the dissolved hydrogen level of the water was over ten times that at 520/sup 0/F. At 520/sup 0/F the initially high hydrogen ingress rate decreased rapidly as exposure time increased and was effectively shut off in about 25 days. Severely hydrided Zircaloy components successfully withstood thermal cycling and mechanical testing. Chromium plating of the nickel-bearing parts was found to be an effective and practical barrier in preventing nickel-alloy smearing and accelerated hydriding of Zircaloy.

  1. FLOW INJECTION ANALYSIS SYSTEM COUPLED WITH ICP-EOS FOR DETERMINATION OF SOME METALLIC ELEMENTS IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Cristina Dinu

    2009-06-01

    Full Text Available The European Drinking Water Directive (98/83/EC, transposed in Romanian Legislation as Low 458/2002, amended by Low 311/2004, imposes the limit of concentration for metallic elements in water intended for human consumption. The toxic metals arsenic and selenium are among these elements and the limit value is 10 μg/L. In the paper there are presented the working conditions for determination of As and Se from drinking water using modern techniques based on the fl ow injection-hydride generation with the inductively coupled plasma atomic emission spectrometry (FIAS-ICP-EOS. The analyses were performed on Optima 5300 DV Perkin Elmer equipment with FIAS 400 Flow Injection System, Perkin Elmer type. For the hydride generation two types of solution were used: 10% (v/v HCl as a carrier solution and 0.2 % NaBH4 in 0.05%NaOH solution as a reducing agent [1]. The treatment step of the samples and standard solutions consisted in reducing with mixed solutions of KI and ascorbic acid in acidic condition (HCl for As and only with HCl and high temperature for Se [2,3]. The paper contains the characteristic parameters of the methods, such as: low detection limit, quantifi cation limit, repeatability, precision, recovery, which were evaluated using Certifi ed Reference Materials for each element.

  2. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  3. Ab-Initio Study of the Group 2 Hydride Anions

    Science.gov (United States)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  4. Suppression of the critical temperature in binary vanadium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, M.D., E-mail: michael.dolan@csiro.au [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); McLennan, K.G. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Chandra, D. [Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV 89557 (United States); Kochanek, M.A. [CSIRO Energy Technology, 1 Technology Court, Pullenvale, QLD 4069 (Australia); Song, G. [CSIRO Process Science and Engineering, Gate 4, Normanby Rd, Clayton, VIC 3168 (Australia)

    2014-02-15

    Highlights: • Addition of 10 mol% Cr to V increases the β-hydride T{sub C} to >200 °C. • Addition of 10 mol% Ni to V increases the β-hydride T{sub C} to >400 °C. • Addition of 10 mol% Al to V decreases the β-hydride T{sub C} to <30 °C. • V{sub 90}Al{sub 10} membrane can be cycled to <30 °C under H{sub 2} without β-hydride formation. -- Abstract: The tendency of vanadium-based alloy membranes to embrittle is the biggest commercialisation barrier for this hydrogen separation technology. Excessive hydrogen absorption and the α → β hydride transition both contribute to brittle failure of these membranes. Alloying is known to reduce absorption, but the influence of alloying on hydride phase formation under conditions relevant to membrane operation has not been studied in great detail previously. Here, the effect of Cr, Ni, and Al alloying additions on V–H phase equilibrium has been studied using hydrogen absorption measurements and in situ X-ray diffraction studies. The addition of 10 mol% Ni increases the critical temperature for α + β hydride formation to greater than 400 °C, compared to 170 °C for V. Cr also increases the critical temperature, to between 200 and 300 °C. The addition of 10 mol% Al, however, suppresses the critical temperature to less than 30 °C, thereby enabling this material to be cycled thermally and hydrostatically while precluding formation of the β-hydride phase. This is despite Al also decreasing hydrogen absorption. The implication of this finding is that one of the mechanisms of brittle failure in vanadium-based hydrogen-selective membranes has been eliminated, thereby increasing the robustness of this material relative to V.

  5. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  6. Method of selective reduction of halodisilanes with alkyltin hydrides

    Science.gov (United States)

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  7. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    Setten, van M.J.; Popa, V.A.; Wijs, de G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-partic

  8. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  9. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, Z. [CANMET' s Materials Technology Laboratory, Natural Resources Canada, Ottawa (Canada) and Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada)]. E-mail: zwronski@nrcan.gc.ca; Varin, R.A. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Chiu, C. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Czujko, T. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Calka, A. [Department of Materials Science and Engineering, University of Wollongong, NSW 2518 (Australia)

    2007-05-31

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg{sub 2}FeH{sub 6} in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H{sub 2} in a thermally programmed desorption experiment at the range 285-295 {sup o}C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the {beta}-MgH{sub 2} hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H{sub 2} in the temperature range 329-340 {sup o}C in the differential scanning calorimetry experiment. The formation of MgH{sub 2} was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H {sub x}, was formed in a mixture with nanometric MgB{sub 2}. Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB{sub 2}.

  10. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  11. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  12. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  13. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  14. Metallographic and fractographic observations of hydrides during delayed hydride cracking in Zr-2.5% Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, M.T.; Eadie, R.L. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering; Shek, G.K.; Seahra, H. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1998-01-01

    Potential drop measurements, optical microscopy, and scanning electron microscopy were performed to study the mechanism of delayed hydride cracking (DHC), the relation of the fracture to the hydride morphology, and the fractography of the DHC mechanism. The material used in this study was taken from modified extrusions of the material used to manufacture Zr-2.5% Nb pressure tubes. The material was electrolytically hydrided to approximately 60 {micro}g/g before testing. Cracking tests were carried out at 250 C with an applied K{sub 1} of 12 MPa {radical}m. The number of potential jumps was strongly correlated to the number of striations on the fracture surface. The results indicate that the DHC process occurs in these samples in an intermittent fashion. Brittle fracture is the operating fracture mechanism for the hydrides that cover most of the fracture surface, but there are some regions of ductile fracture both within the fracture and at the striations.

  15. Determination of Water Soluble As ( Ⅲ ) and As ( Ⅴ ) in Soil by Hydride Generation-Atomic Fluorescence Spectrometry%氢化物发生-原子荧光光谱法测定土壤中水溶态砷(Ⅲ)和砷(Ⅴ)

    Institute of Scientific and Technical Information of China (English)

    于兆水; 张勤; 刘玲

    2012-01-01

    以氢气发生器为氩-氢火焰提供纯净、稳定的氢气,原子荧光光谱法测定土壤中水溶态和可交换态Sb(Ⅲ)和Sb(Ⅴ)已有应用,本研究进一步将此方法用于测定土壤样品中的As(Ⅲ)和As(Ⅴ).在0.3mol/L NaH2PO4 - Na2HPO4缓冲液中,采用氢化物发生-原子荧光光谱法测定土壤中水溶态As(Ⅲ)和总砷的含量,通过差减法计算As(Ⅴ)的含量.实验考察了0.02~0.4 mol/L NaH2PO4 - Na2 HPO4对As(Ⅲ)和As(Ⅴ)测定的影响,结果表明0.3 mol/L NaH2PO4 - Na2HPO4可以有效掩蔽As(Ⅴ).As(Ⅲ)的检出限为2.92 ng/g,总砷的检出限为2.35 ng/g;As(Ⅲ)和As(Ⅴ)的加标回收率分别为96% ~ 104%和101% ~103%.本方法不再依靠化学反应产生氢气来点燃并维持氩氢火焰,可在发生氢化反应的任何介质中测定砷,且不需要考虑酸度问题.方法操作简便,准确度高,能满足大批量样品分析要求.%Based on the determination method of Sb ( HI) and Sb ( V ) in soil, a method for the determination of water soluble As ( M ) and total arsenic in soil has been established by using Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) in the media of 0. 3 mol/L NaH2PO4-Na2HPO4. An amount of As( V ) was obtained by subtracting As( HI ) from total arsenic. The hydrogen was provided from a hydrogen generator instead of chemical reaction to ignite a H2-Ar flame. Therefore, arsenic in any media was measurable since the arsenic was reduced into AsH3. Effects on the determination of As ( M ) and As ( V ) were investigated for concentrations of NaH2PO4-Na2HPO4 from 0. 02 mol/L to 0. 4 mol/L. The results show As( V ) can be screened by 0. 3 mol/L NaH2PO4-Na2HPO4. The detection limits were 2. 92 ng/g for As( HJ ) and 2. 35 ng/g for total As. The recoveries of As( HI) and As( V ) are 96% - 104% and 101% - 103% , respectively. The method was simple and highly accurate, meeting the requirements for multiple sample analysis.

  16. An enhanced microfluidic control system for improving power density of a hydride-based micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Saeed; Shannon, Mark [Mechanical Science and Engineering, 1206 West Green St., University of Illinois, Urbana, IL 61801 (United States); Chemical and Biomolecular Engineering, 213 Roger Adams Lab, 600 S. Mathews, Urbana, IL 61801 (United States); Pengwang, Eakkachai [Mechanical Science and Engineering, 1206 West Green St., University of Illinois, Urbana, IL 61801 (United States); Masel, Richard I. [Chemical and Biomolecular Engineering, 213 Roger Adams Lab, 600 S. Mathews, Urbana, IL 61801 (United States)

    2010-04-02

    Microfuel cells (MFCs) can potentially power emerging technologies that require power sources in the microliter size range. The recent development of a microfluidic mechanism for self-regulated generation of hydrogen has enabled fabrication of MFCs orders of magnitude smaller than previously possible. In this study, we report an order of magnitude enhancement in the power density of a microliter-scale fuel cell incorporating a new microfluidic design. The microfluidic mechanism is part of an on-board hydrogen generator that uses a reaction between a metal hydride, LiAlH{sub 4}, and water vapor to generate hydrogen. The hydrogen generated exits the hydride reactor through a porous silicon wall to reach a Nafion-based membrane electrode assembly (MEA). The microfluidic design increased the water vapor release rate to the hydride reactor by one order of magnitude over a previous design. A 9 {mu}L device incorporating the enhanced microfluidic design delivered a power density of 92 W L{sup -1}. Details of a parametric study conducted to improve the water vapor release rate of the microfluidic mechanism and performance analysis of the integrated device are presented in this paper. (author)

  17. An enhanced microfluidic control system for improving power density of a hydride-based micro fuel cell

    Science.gov (United States)

    Moghaddam, Saeed; Pengwang, Eakkachai; Masel, Richard I.; Shannon, Mark

    Microfuel cells (MFCs) can potentially power emerging technologies that require power sources in the microliter size range. The recent development of a microfluidic mechanism for self-regulated generation of hydrogen has enabled fabrication of MFCs orders of magnitude smaller than previously possible. In this study, we report an order of magnitude enhancement in the power density of a microliter-scale fuel cell incorporating a new microfluidic design. The microfluidic mechanism is part of an on-board hydrogen generator that uses a reaction between a metal hydride, LiAlH 4, and water vapor to generate hydrogen. The hydrogen generated exits the hydride reactor through a porous silicon wall to reach a Nafion-based membrane electrode assembly (MEA). The microfluidic design increased the water vapor release rate to the hydride reactor by one order of magnitude over a previous design. A 9 μL device incorporating the enhanced microfluidic design delivered a power density of 92 W L -1. Details of a parametric study conducted to improve the water vapor release rate of the microfluidic mechanism and performance analysis of the integrated device are presented in this paper.

  18. Trialkylborane-Assisted CO(2) Reduction by Late Transition Metal Hydrides.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2011-01-01

    Trialkylborane additives promote reduction of CO(2) to formate by bis(diphosphine) Ni(II) and Rh(III) hydride complexes. The late transition metal hydrides, which can be formed from dihydrogen, transfer hydride to CO(2) to give a formate-borane adduct. The borane must be of appropriate Lewis acidity: weaker acids do not show significant hydride transfer enhancement, while stronger acids abstract hydride without CO(2) reduction. The mechanism likely involves a pre-equilibrium hydride transfer followed by formation of a stabilizing formate-borane adduct.

  19. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  20. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  1. Improved hydrogen desorption from lithium hydrazide by alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang, E-mail: liangzeng@hiroshima-u.ac.jp [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •LiH can dramatically improve the hydrogen desorption properties of LiNHNH{sub 2}. •KH doping had positive effect in promoting the hydrogen desorption properties of LiNHNH{sub 2}–LiH mixture. •The reaction mechanism between LiNHNH{sub 2} and LiH was studied and discussed. -- Abstract: Lithium hydrazide (LiNHNH{sub 2}), which is a white solid with 8.0 mass% of theoretical hydrogen content, was synthesized from a reaction between anhydrous hydrazine and n-butyllithium in diethyl ether. The thermodynamic properties of this compound and its detailed decomposition pathways had been investigated in our previous work. However, a number of undesired gaseous products such as hydrazine (N{sub 2}H{sub 4}) and ammonia (NH{sub 3}) were generated during the thermal decomposition of LiNHNH{sub 2}. In this work, alkali metal hydride was used to suppress the impurities in the desorbed hydrogen and improved the hydrogen desorption properties. The reaction mechanism between LiNHNH{sub 2} and LiH was also studied and discussed in this paper.

  2. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides.

    Science.gov (United States)

    Ulloa, Olbelina A; Huynh, Mioy T; Richers, Casseday P; Bertke, Jeffery A; Nilges, Mark J; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-07-27

    The intermediacy of a reduced nickel-iron hydride in hydrogen evolution catalyzed by Ni-Fe complexes was verified experimentally and computationally. In addition to catalyzing hydrogen evolution, the highly basic and bulky (dppv)Ni(μ-pdt)Fe(CO)(dppv) ([1](0); dppv = cis-C2H2(PPh2)2) and its hydride derivatives have yielded to detailed characterization in terms of spectroscopy, bonding, and reactivity. The protonation of [1](0) initially produces unsym-[H1](+), which converts by a first-order pathway to sym-[H1](+). These species have C1 (unsym) and Cs (sym) symmetries, respectively, depending on the stereochemistry of the octahedral Fe site. Both experimental and computational studies show that [H1](+) protonates at sulfur. The S = 1/2 hydride [H1](0) was generated by reduction of [H1](+) with Cp*2Co. Density functional theory (DFT) calculations indicate that [H1](0) is best described as a Ni(I)-Fe(II) derivative with significant spin density on Ni and some delocalization on S and Fe. EPR spectroscopy reveals both kinetic and thermodynamic isomers of [H1](0). Whereas [H1](+) does not evolve H2 upon protonation, treatment of [H1](0) with acids gives H2. The redox state of the "remote" metal (Ni) modulates the hydridic character of the Fe(II)-H center. As supported by DFT calculations, H2 evolution proceeds either directly from [H1](0) and external acid or from protonation of the Fe-H bond in [H1](0) to give a labile dihydrogen complex. Stoichiometric tests indicate that protonation-induced hydrogen evolution from [H1](0) initially produces [1](+), which is reduced by [H1](0). Our results reconcile the required reductive activation of a metal hydride and the resistance of metal hydrides toward reduction. This dichotomy is resolved by reduction of the remote (non-hydride) metal of the bimetallic unit.

  3. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Hao, Mingjun [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Guo, Xianghua [State Key Laboratory of Explosion and Safety Science, Beijing Institute of Technology, Beijing 100081 (China); Tang, Guoyi [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shi, San-Qiang, E-mail: mmsqshi@polyu.edu.hk [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2015-04-15

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  4. Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

    1994-01-01

    This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

  5. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    Science.gov (United States)

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  6. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  7. Hydriding and Dehydriding Properties of Zinc Borohydride, Nickel, and Titanium-Added Magnesium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    A Zn(BH{sub 4}){sub 2} sample was prepared by milling ZnCl{sub 2} and NaBH{sub 4} in a planetary ball mill under Ar gas. This sample contained NaCl. Then, 90 wt% MgH{sub 2}-5 wt% Zn(BH{sub 4}){sub 2}-2.5 wt% Ni-2.5 wt% Ti samples [named 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti] were prepared by milling in a planetary ball mill under H{sub 2} gas. The hydrogen absorption and release properties of the prepared samples were investigated. In particular, the variations of the initial hydriding and dehydriding rates with temperature were examined. SEM micrographs and XRD patterns of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after hydriding-dehydriding were also studied. Particle size distributions and BET specific surface areas of 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti after reactive mechanical grinding and after 11 hydriding-dehydriding cycles were analyzed. The 90MgH{sub 2}-5Zn(BH{sub 4}){sub 2}-2.5Ni-2.5Ti had an effective hydrogen storage capacity (the quantity of hydrogen absorbed for 60 min) of near 5 wt% (4.91 wt% at 593 K).

  8. A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C

    Energy Technology Data Exchange (ETDEWEB)

    Le Saux, M., E-mail: matthieu.lesaux@cea.fr [CEA, DEN, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France); Besson, J. [Mines ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Carassou, S. [CEA, DEN, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France)

    2015-11-15

    A model is proposed to describe the mechanical behavior and the ductile failure at 25, 350 and 480 °C of Zircaloy-4 cladding tubes, as-received and hydrided up to 1200 wt. ppm (circumferential hydrides). The model is based on the Gurson–Tvergaard–Needleman model extended to account for plastic anisotropy and viscoplasticity. The model considers damage nucleation by both hydride cracking and debonding of the interface between the Laves phase precipitates and the matrix. The damage nucleation rate due to hydride cracking is directly deduced from quantitative microstructural observations. The other model parameters are identified from several experimental tests. Finite element simulations of axial tension, hoop tension, expansion due to compression and hoop plane strain tension experiments are performed to assess the model prediction capability. The calibrated model satisfactorily reproduces the effects of hydrogen and temperature on both the viscoplastic and the failure properties of the material. The results suggest that damage is anisotropic and influenced by the stress state for the non-hydrided or moderately hydrided material and becomes more isotropic for high hydrogen contents.

  9. Lithium-lithium hydride process for the production of hydrogen: comparison of two concepts for 950 and 1300 deg C HTR helium outlet temperature

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, M.; Weirich, W.; Kuegler, B.; Luecke, L.; Pietsch, M.; Winkelmann, U.

    1987-01-01

    The lithium-lithium hydride process serves to generate hydrogen from water efficiently, using the high temperature heat of a nuclear reactor. Thermodynamic analyses show that hydrogen can be produced with an overall thermal efficiency of 48% at conventional HTR outlet temperatures of 950/sup 0/C. Assuming helium heat of 1300/sup 0/C, 56% overall thermal efficiency can be achieved.

  10. Determination of Mercuryalkylide in Water Using High Performance Liquid Chromatography with Hydride Generation Atomic Fluorescence Detection%高效液相色谱-氢化物发生-原子荧光光谱联用技术测定水中烷基汞

    Institute of Scientific and Technical Information of China (English)

    陈邵鹏; 顾海东; 秦宏兵

    2012-01-01

    A method for the determination of Mercury species in both surface water and waste water was established by high performance liquid chromatography ( HPLC ) -hydride generation ( HG) -atomic fluorescence spectrophotometry ( AFS). Sample was extracted by dichloromethane, subsequently back-extracted by mixed extractant containing cysteine and ammonium acetate before HPLC-HG-AFS detection. Under the optimized conditions, both methyl mercury and ethyl mercury responded linearly in the concentration of 1-50μg/L. The recoveries for both standard samples and actual samples were 80%-110%. The relative standard deviations for the determination of methyl and ethylmercury with the concentration of 1μg/L were 5. 2% and 3. 9% , respectively. The detection limits for them were 0.4 ng/L and 0.7 ng/L, respectively with the American EPA methord. The proposed method is of good accuracy, high repeatability, precision, less interferences from impurities and low cost, which is benefit for expanding and applying in the common laboratory.%建立了高效液相色谱(HPLC)-氢化物发生(HG)-原子荧光光谱(AFS)联用技术分析地表水及废水中甲基汞和乙基汞的方法.样品经二氯甲烷萃取,再以半胱氨酸+乙酸铵溶液反萃取富集,并进入高效液相色谱分离,经形态分析预处理装置后,借助原子荧光光谱法检测.在优化分离条件下,甲基汞和乙基汞在1 ~ 50 μg/L范围内呈现良好的线性关系,对于标准水样、地表水和废水实际水样,加标平均回收率均为80% ~ 110%.平行进样7次1μg/L的汞混合标准溶液,甲基汞和乙基汞的色谱峰面积的相对标准偏差分别为5.2%和3.9%,检出限则分别为0.4 ng/L和0.7 ng/L.该检测方法前处理简单、回收率稳定、灵敏度和准确度高、检出限低、杂质干扰少、监测费用低,便于在普通实验室推广和应用.

  11. THE DETERMINATION OF ANTIMONY (Ⅲ) AND ANTOMONY (Ⅴ) IN GEOLOGICAL SAMPLES BY HYDRIDE GENERATION-ATOMIC FLUORESCENCE SPECTROMETRY%氢化物发生—原子荧光光谱法测定地质样品中的锑(Ⅲ)和锑(Ⅴ)

    Institute of Scientific and Technical Information of China (English)

    郝志红; 杨帆; 刑夏; 汤志勇; 张勤

    2012-01-01

    A method for the determination of antimony ( Ⅲ ) and antimony ( V ) in geological samples (stream sediments) by hydride generation-atomic fluorescence spectrometry was developed in the paper. 4. 8 mol/L HC1 could be used as the extraclant with ultrasonic-assisted extraction. In the medium of 0. 24 mol/L hydrochloric acid, antimony ( Ⅲ) could be alternatively determined with 6 g/mL sodium citrate as the masking agent for Sb (V). Then antimony ( V ) could be figured out by the subtraction method. The detection limit of the method was 0. 075 × 10 -6 for Sb ( 1) and 0. 097 × 10 -6 for Sb ( V ) , and the relative standard deviation was 1. 1 % and 0. 64% ( n = 11) for 40 ng/mL Sb ( Ⅲ ) and 40 ng/mL Sb( V ) standard solution. The proposed method was applied to the determination of antimony ( Ⅲ) and antimony ( V ) in geological samples, and a comparison between the extraction results and the aqua regia dissolution results shows that the extraction rate of antimony was higher than 80% , the recoveries were in the ranges of 83% - 107% and 98% -114% for Sb ( Ⅲ) and Sb (V) respectively.%提出了一种氢化物发生—原子荧光光谱法测定地质样品(水系沉积物)中Sb(Ⅲ)和Sb(Ⅴ)的方法.选取4.8 mol/L HC1为提取剂,采用超声波辅助提取,以6 g/mL柠檬酸钠作为Sb(Ⅴ)的掩蔽剂,在0.24 mol/L的HC1介质中选择性测定Sb(Ⅲ),用差减法求得Sb(Ⅴ).Sb(Ⅲ)的方法检出限为0.075×10-6,Sb(Ⅴ)的方法检出限为0.097×10-6.对40 ng/mL的Sb(Ⅲ)和Sb(Ⅴ)分别连续测定11次,得到相对标准偏差分别为1.1%和0.64%.应用该方法对地质样品中的Sb(Ⅲ)和Sb(Ⅴ)进行分析测定,并与王水溶解值相比较,该方法测定的总Sb提取率在80%以上,Sb(Ⅲ)和Sb(Ⅴ)的加标回收率分别为83% ~ 107%和98% ~ 114%.

  12. An alternative model for within plate basalts generation suggested by their major elements, trace elements and Pb-Sr-Nd isotope compositions

    Science.gov (United States)

    Mashima, H.

    2003-12-01

    Based on geochemistry, the recent favor model for within-plate basalts (WPB) is plumes with eclogite originally formed by inversion of basaltic oceanic crust into eclogite in subduction zones (e.g. Hauri, 1996). Melting experiments of basalt/peridotie hybrids (Kogiso and Takahashi, 1998), however, have demonstrated that the hybrid source model could not explain major element features of WPB, such as FeO* enrichment and Al2O3 depletion compared with MORB. Melting experiments of peridotites and basalt/peridotite hybrids indicate that the sources of WPB are peridotites abnormally enriched in FeO*. Such Fe-rich sources could not be formed by extraction of basalt melt from typical peridotite or mixing of basalt and typical peridotite. A potential candidate for the abnormally Fe-rich source is Archean peridotitic komatiite (APK) which is enriched in FeO* compared with typical peridotite. Attractive features of the recycled APK melting model are as follows: 1) It explains why within-plate basalts are FeO*-rich and Al2O3-poor relative to MORB because of large proportion of cpx in APK. 2) Moderate partial melting of APK forms LREE-enriched partial melts because of selective fusion of cpx. 3) It explains near bulk earth Nd isotope compositions because of relatively flat REE patterns of APK. 4) Archean age of APK is consistent with Pb isotope ofWPB suggesting their sources have Archean age. 5) Compositional spectrum of Archean komatiite suites ranging from peridotitic komatiite to basalts explains that of WPB from silica-under saturated basalt to silica-oversaturated andesite.

  13. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  14. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  15. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  16. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Science.gov (United States)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  17. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  18. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  19. A copper(I) homocubane collapses to a tetracapped tetrahedron upon hydride insertion.

    Science.gov (United States)

    Liao, Ping-Kuei; Liu, Kuan-Guan; Fang, Ching-Shiang; Liu, C W; Fackler, John P; Wu, Ying-Yann

    2011-09-01

    The hydrido copper(I) and silver(I) clusters incorporating 1,1-dicyanoethylene-2,2-dithiolate (i-MNT) ligands are presented in this paper. Reactions of M(I) (M = Cu, Ag) salts, [Bu(4)N](2)[S(2)CC(CN)(2)], with the anion sources ([Bu(4)N][BH(4)] for H(-), [Bu(4)N][BD(4)] for D(-)) in an 8:6:1 molar ratio in THF produce octanuclear penta-anionic Cu(I)/Ag(I) clusters, [Bu(4)N](5)[M(8)(X){S(2)CC(CN)(2)}(6)] (M = Cu, X = H, 1(H); X = D, 1(D); M = Ag, X = H, 2(H); X = D, 2(D)). They can also be produced from the stoichiometric reaction of M(8)(i-MNT)(6)(4-) with the ammonium borohydride. All four compounds have been fully characterized spectroscopically ((1)H and (13)C NMR, IR, UV-vis) and by elemental analyses. The deuteride-encapsulated Cu(8)/Ag(8) clusters of 1(D) and 2(D) are also characterized by (2)H NMR. X-ray crystal structures of 1(H) and 2(H) reveal a hydride-centered tetracapped tetrahedral Cu(8)/Ag(8) core, which is inscribed within an S(12) icosahedron formed by six i-MNT ligands, each in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The encapsulated hydride in 2(H) is unequivocally characterized by both (1)H and (109)Ag NMR spectroscopies, and the results strongly suggest that the hydride is coupled to eight magnetically equivalent silver nuclei on the NMR time scale. Therefore, a fast interchange between the vertex and capping silver atoms in solution gives a plausible explanation for the perceived structural differences between the Ag(8) geometry deduced from the X-ray structure and the NMR spectra.

  20. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.