WorldWideScience

Sample records for hydraulically braked vehicles

  1. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  2. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  3. Evaluation the course of the vehicle braking process in case of hydraulic circuit malfunction

    Science.gov (United States)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    In the paper, the results of the research were discussed, the aim of which was the evaluation of the vehicle braking performance efficiency and the course of this process with regard to the dysfunction which may occur in braking hydraulic circuit. As part of the research, on-road tests were conducted. During the research, the delay of the vehicle when braking was measured with the use of the set of sensors placed in the parallel and the perpendicular axis of the vehicle. All the tests were conducted on the same flat section of asphalt road with wet surface. Conditions of diminished tire-to-road adhesion were chosen in order to force the activity of anti-lock braking system. The research was conducted comparatively for the vehicle with acting anti-lock braking system and subsequently for the vehicle without the system. In both cases, there was a subsequent evaluation of the course of braking with efficient braking system and with the dysfunction of hydraulic circuit.

  4. Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-07-01

    Full Text Available A novel electric-hydraulic hybrid drivetrain incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. Models of the electric and hydraulic components are constructed. Two control strategies, which are based on two separate rules, are developed; the maximum energy recovery rate strategy adheres to the rule of the maximization of the braking energy recovery rate, while the minimum current impact strategy adheres to the rule of the minimization of the charge current to the battery. The simulation models were established to verify the effects of these two control strategies. An ABS (Anti-lock Braking System fuzzy control strategy is also developed and simulated. The simulation results demonstrate that the developed control strategy can effectively absorb the braking energy, suppress the current impact, and assure braking safety.

  5. Research on Electro Hydraulic Proportional Control for Heavy Vehicle Blend Braking System

    Institute of Scientific and Technical Information of China (English)

    XU Ming

    2009-01-01

    A blend braking system of heavy vehicle was proposed. The main control part of the system is the electro hydraulic proportional servo valve. A nonlinear model of brake cylinder controlled by the valve was deduced through the analysis of its control property and system feature. The transfer function of the system was also proposed, and the hydraulic inherent frequency and the PID closed-loop system feature were calculated. The simulated result is consistent with those tested in the bench and on the site with 50t heavy vehicle. The experimental result shows that the control method has quick response and high precision.

  6. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y.; Hattori, M. Sugisawa, M.; Nishii, M. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  7. Multi-objective optimization of the control strategy of electric vehicle electro-hydraulic composite braking system with genetic algorithm

    OpenAIRE

    Zhang Fengjiao; Wei Minxiang

    2015-01-01

    Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of el...

  8. Multi-objective optimization of the control strategy of electric vehicle electro-hydraulic composite braking system with genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fengjiao

    2015-03-01

    Full Text Available Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of electric vehicle regenerative braking system in typical brake conditions. The results show that optimization objectives achieved a good astringency, and the optimized control strategy can increase the brake energy recovery effectively under the condition of ensuring the braking stability.

  9. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  10. 49 CFR 570.55 - Hydraulic brake system.

    Science.gov (United States)

    2010-10-01

    ... parking brake and turn the ignition to start to verify that the brake system failure indicator lamp is... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles...

  11. Simulation Research on Braking Performance of Tracked Vehicle Hydraulic Energy Storage Braking System%履带车辆液压储能式制动系统制动性能仿真研究

    Institute of Scientific and Technical Information of China (English)

    赵广俊; 吕建刚; 宋彬; 滕飞

    2011-01-01

    为了实现对履带车辆制动能量的回收利用,针对某型履带车辆建立其液压储能式制动系统,分析系统工作模式;在AMESim下建立液压储能式制动系统及车辆模型,在Matlab/Simulink下建立控制系统模型;提出基于踏板行程逻辑门限值的模糊控制策略;在驾驶员不同的制动意图和系统负荷能力条件下,对履带车辆的制动工况进行联合仿真研究.结果表明,在该控制策略下液压储能式制动系统实现了对履带车辆的稳定制动和对制动能量的有效回收.%In order to achieve the tracked vehicle braking energy recovery and utilization, a certain type of tracked vehicle hydraulic energy storage braking system was established, and the working mode was analyzed. The model of hydraulic energy storage braking system and the vehicle was established in AMESim, and the control system model was established in Matlab/Simulink. Fuzzy logic control strategy based on pedal opening threshold was proposed. Under the driver's different braking intention and conditions of system load capacity, the tracked vehicle's braking process was researched under co-simulation. The results show that with the control strategy in the hydraulic energy storage braking system, the stable braking of tracked vehicle and the effective recovery of braking energy were achieved.

  12. Fireproof Brake Hydraulic System.

    Science.gov (United States)

    1981-09-01

    bulk modulus and density are the same (see Table 2). AO-2 is the base stock fluid for AO-8 which is a blend of AO-2 and a viscosity index (VI) improver...RADIANS LI+ BRAK .. .... " 17 . 3000 4 BRAKE .~1~~ 4~~I 4 4 4- 4 .! L 3 00 00i- FTLB 0 ’ 25 00 +--- + + i DISPCE EN FiueE4 raeSse taiiy tndr ytm...VA LVE ... it .. . . .. . F... .. igur E. 8 Brak Syste Stability...... .. .. .. .. Tw-FuRRSstNTer Daming Amit 327. .. .. .. .... APPENDIX F

  13. Electronic-hydraulic-compound regenerative braking control for electric vehicles%纯电动汽车电液复合再生制动控制

    Institute of Scientific and Technical Information of China (English)

    刘志强; 过学迅

    2011-01-01

    The braking force distribution of the compound brake system on small electric vehicles was studied. The safe range of braking force distribution was established by analyzing braking dynamics and the ECE R13-H rule. In the safe braking range, a strategy with optimal energy recovery was developed based on the concept, i.e. braking forces should be distributed on front and rear axles in such a way that the regenerated energy was maximized, as long as the commanded deceleration was reached and neither front nor rear axle was locked. The distribution matrixes of the regenerative braking forces, front and rear hydraulic braking forces were created. A driving cycle was established based on some different braking intensities and ECE-EUDC driving cycle. Simulation on this control strategy was performed in ADVISOR 2002 by establishing an embedded simulation model. The simulation results show that the state-of-charge is progressed by 4.5%, and the proposed control strategy on regenerative braking is effective.%针对纯电动汽车电液复合再生制动过程机电制动力的动态分配问题,通过对制动动力学和ECE R13-H制动法规的分析,从理论上确定纯电动汽车电液复合再生制动的安全运行范围.在安全制动范围内,开发了以最大限度回收能量为目标,达到需求制动强度而前、后轴又不抱死的再生制动控制流程,生成机电制动力分配矩阵.以制动强度分别为0.2,0.3,0.4,0.5和0.6,初始车速为16.67 m/s,结合ECE-EUDC道路循环,构建新的仿真循环,将车辆参数、制动力分配矩阵、道路循环嵌入ADVISOR2002软件.研究结果表明:仿真运行1个道路循环后,电池荷电状态SOC(State of charge)相对原策略有较明显的提高,提高幅度达4.5%,较好地回收了制动能量,更重要的是保证了制动安全,表明开发的控制策略是有效的.

  14. The Application of Hydraulic Braking-system for Light Proof Tire Vehicle%全液压制动系统在轻型防爆胶轮车上的应用

    Institute of Scientific and Technical Information of China (English)

    赵瑞萍

    2013-01-01

    介绍了轻型防爆胶轮车的制动系统,着重介绍了全液压制动系统的组成、特点,详细分析了全液压制动系统各元部件在设计过程中的选型,实践证明,全液压制动系统在轻型防爆胶轮车上的应用是可行及可靠的.%The braking systems in light type vehicle with the rubber wheeles are introduced, introduced the instructures and features of the hydraulic braking system, details how to select the parts in the design. Application shows that the application of hydraulic braking system in light type vehicle with the rubber wheeles is reasonable and reliable.

  15. Simulation analysis of hydraulic regenerative braking system for pure electric vehicle based on AMESim%基于AMESim的纯电动汽车液压再生制动系统的研究

    Institute of Scientific and Technical Information of China (English)

    徐耀挺; 宁晓斌; 王秋成

    2012-01-01

    为提高纯电动汽车制动时的再生制动能量回收率与汽车起步加速的动力性能,通过比较各种再生制动能量回收方案与储能方式,提出了在纯电动汽车的蓄电池回收制动能量的基础上加设液压制动能量回收系统.应用PID控制,在ECE-15循环工况下进行了仿真,并分析了整车的动力性能与能量的回收利用率.研究结果表明,在纯电动汽车上利用液压再生制动系统能够显著地提高整车的起步加速能力,并增加汽车的续驶里程28%左右.%In order to increase the regenerative braking energy recovery and the dynamic performance of vehicle start and acceleration in the stage of brake,the hydraulic braking energy recovery system was used with the storage battery braking energy recovery system after comparing kinds of regenerative braking recovery plan and energy storage method. The system was used to do simulation and analysis in vehicle dynamic performance and energy recovery efficiency under the PID control and ECE-15 cycle. The system simulation and analysis results show that, using hydraulic regenerative braking system in pure electric vehicle.it can significantly improve the ability of vehicle's start-acceleration and increase the vehicle driving range around 28%.

  16. An integrated control strategy for the composite braking system of an electric vehicle with independently driven axles

    Science.gov (United States)

    Sun, Fengchun; Liu, Wei; He, Hongwen; Guo, Hongqiang

    2016-08-01

    For an electric vehicle with independently driven axles, an integrated braking control strategy was proposed to coordinate the regenerative braking and the hydraulic braking. The integrated strategy includes three modes, namely the hybrid composite mode, the parallel composite mode and the pure hydraulic mode. For the hybrid composite mode and the parallel composite mode, the coefficients of distributing the braking force between the hydraulic braking and the two motors' regenerative braking were optimised offline, and the response surfaces related to the driving state parameters were established. Meanwhile, the six-sigma method was applied to deal with the uncertainty problems for reliability. Additionally, the pure hydraulic mode is activated to ensure the braking safety and stability when the predictive failure of the response surfaces occurs. Experimental results under given braking conditions showed that the braking requirements could be well met with high braking stability and energy regeneration rate, and the reliability of the braking strategy was guaranteed on general braking conditions.

  17. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  18. 混合动力汽车下坡辅助电-液复合制动控制方法%Electro-hydraulic brake control method for hybrid electric vehicle during process of downhill assist control

    Institute of Scientific and Technical Information of China (English)

    韩云武; 罗禹贡; 李克强; 陈龙

    2015-01-01

    In order to improve vehicle safety and fuel economy of the whole control system for hybrid electric vehicles (HEV), this paper presents an electro-hydraulic braking control method for the downhill auxiliary braking process. First, through the analysis of the downhill auxiliary braking process and dynamic change of the braking torque, the appropriate time for electro-hydraulic braking and the distribution principle of the braking torque are proposed. Experiment platform and typical control signals are adopted to test the electronic vacuum brake, of which the results illustrate that the braking torque of the electronic vacuum brake is sufficiently large to finish the braking process. However, if the target pressure is low (for example, below 0.15 MPa), the respond of electronic vacuum brake to the pressure is also slow. Increasing target pressure can slove the problem of start-up delay and the response time of the brake. Besides, response errors appearing in the control process of the electronic vacuum brake cannot be eliminated as well. On the contrary, the drive motor has high response speed and high control precision though the maximum driving/braking torque is limited. This provides the possibility of combining the advantages of both devices. Thus, based on the response data of electric vehicle drive motor, the complementarity of braking capacity and response characteristics of the electro-hydraulic system is specifically analyzed and the control inclination of the electro-hydraulic system is obtained. Then, the distribution principle of the downhill auxiliary braking torque is established, which can maximize the breaking torque of the motor in the prerequisite of assuring the total breaking torque. Based on the blending control framework of forward feed and feedback, the hydraulic system response under low pressure is realized using the proposed minimum pressure maintaining method. Meanwhile, by increasing the objective start-up pressure, time delay of the

  19. 77 FR 51649 - Federal Motor Vehicle Safety Standards; Motorcycle Brake Systems

    Science.gov (United States)

    2012-08-24

    .... George Soodoo, Division Chief, Vehicle Dynamics (NVS-122), Office of Crash Avoidance Standards (Email... technologies would help prevent the introduction of unsafe motorcycle brake systems on the road. Moreover... the proper grade of brake fluid. If the service brake system is a split hydraulic type, a...

  20. Research on motor braking-based DYC strategy for distributed electric vehicle

    Science.gov (United States)

    Zhang, Jingming; Liao, Weijie; Chen, Lei; Cui, Shumei

    2017-08-01

    In order to bring into full play the advantages of motor braking and enhance the handling stability of distributed electric vehicle, a motor braking-based direct yaw moment control (DYC) strategy was proposed. This strategy could identify whether a vehicle has under-steered or overs-steered, to calculate the direct yaw moment required for vehicle steering correction by taking the corrected yaw velocity deviation and slip-angle deviation as control variables, and exert motor braking moment on the target wheels to perform correction in the manner of differential braking. For validation of the results, a combined simulation platform was set up finally to simulate the motor braking control strategy proposed. As shown by the results, the motor braking-based DYC strategy timely adjusted the motor braking moment and hydraulic braking moment on the target wheels, and corrected the steering deviation and sideslip of the vehicle in unstable state, improving the handling stability.

  1. Study of Hydraulic Regenerative Braking System in Electrical Vehicle%基于CPS的新型电动汽车液压再生制动能量回收系统研究

    Institute of Scientific and Technical Information of China (English)

    周翎霄

    2015-01-01

    In order to improve efficiency of recovering braking energy in electrical vehicle, a constant pressure hydraulic regenerative braking system with flywheel has been designed after comparing several hydraulic regenerative braking schemes. Then the joint braking and CEC-15 driving condition simulation based are processed. The results of simulation indicate positive correlation between displacement of pump/motor and efficiency of energy recovering under a certain value of displacement and driving range of electrical has been prolonged by 24%.%针对纯电动汽车能量利用率低的问题,提出对电动汽车进行制动能量回收,通过比较多种液压制动能量回收方案与储能方式,认为定压源飞轮液压再生制动系统较合理,且对该系统分别进行汽车联合制动工况和城市循环工况仿真,分析系统制动能量回收利用率和节能效果,仿真结果显示,泵/马达排量在一定范围内,制动能量回收效率与排量大小呈正相关,续驶里程能提高24%左右。

  2. Braking, Wheeled Vehicles. Test Operations Procedure (TOP)

    Science.gov (United States)

    2008-05-20

    shields removed, inspect the internal brake components, perform a camshaft rotation test and record the measurement obtained. c. If with non-removable...preceding 24 months, perform a camshaft rotation test and record the measurement. (2) When proof of wheel removal is not provided, remove brake drum(s...adjustment. Reject the vehicle if: • The adjustment is not within the manufacturer’s specifications. 15. Brake Camshafts Procedure: With

  3. 液压蓄能式车辆制动能量回收系统的AMESim仿真研究%Simulation Study of Hydraulic Regenerative Braking Energy System of Vehicles by AMESim

    Institute of Scientific and Technical Information of China (English)

    刘天豪; 刘海朝; 祝昌洪

    2011-01-01

    The simulation model of hydraulic recovery braking energy system was built using AMESim. The energy loss and the factors affecting the braking performance were simulated. The simulation results show that in the braking process, energy loss made by vehicle resistance accounts for 16% of the total vehicle kinetic energy which is the main aspect of energy loss; the method to improve the efficiency of energy recovery is to increase the accumulator pre-charge pressure or to decrease the volume of accumulator; there is little influence on the energy recovery efficiency when changing the hydraulic pump/motor displacement, but it has a significant impact on the vehicle's starting and braking time.%建立车辆液压蓄能式制动能量回收装置的AMESim仿真模型,对其工作过程中的能量损耗情况和制动性能的影响因素进行仿真研究.仿真结果表明:能量回收制动过程中,由于车辆行驶阻力造成的损失占车辆总动能的16%,是能量损失的主要方面;提高能量回收效率的办法是提高蓄能器预充气压力或减小蓄能器体积;改变液压泵/马达排量对提高能量回收效率的影响不大,但可显著影响车辆的起动和制动时间.

  4. THE THEORETICAL MODEL FOR PREDICTING CIRCULATION VELOCITY OF HYDRAULIC BRAKE

    Institute of Scientific and Technical Information of China (English)

    刘英林; 侯春生

    1997-01-01

    By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of circulation velocity of hydraulic brake which is important parameter. Thus provide the theoritical basis for hydraulic brake of belt conveyor whose research has just been started.

  5. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Science.gov (United States)

    2010-10-01

    ... signal or signals. Electric vehicle or EV means a motor vehicle that is powered by an electric motor... or control signals in an antilock brake system, or a total functional electrical failure in a... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 105; Hydraulic and electric...

  6. 车辆制动能量回收领域中液压技术的应用研究论述%Discussion on the Application of Hydraulic Technology in the Field of Vehicle Braking Energy Recovery

    Institute of Scientific and Technical Information of China (English)

    张明

    2016-01-01

    由于城市人口、车辆较为集中,车辆需要频繁起步加速、换挡制动,特别是公交车辆,能源消耗量大,环境污染严重.液压技术实现车辆制动能量回收,能提高能量利用率,改善车辆的排放性能,降低对环境的污染程度,达到节能减排的目的.%Due to the urban population, the vehicle is more concentrated, the vehicle needs to start accelerating, shift brake, especially the public transport vehicles, energy consumption, environmental pollution is serious. Subsequently, the hydraulic technology is applied to the vehicle braking energy recovery, can improve the energy utilization rate, improve the vehicle emission performance, reduce the pollution degree of the environment, and achieve the purpose of energy saving and emission reduction.

  7. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  8. An Investigation into Regenerative Braking Control Strategy for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    PENG Dong; YIN Cheng-liang; ZHANG Jian-wu

    2005-01-01

    Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.

  9. 分布式电驱动汽车 AFS 与电液复合制动集成控制%Integrated Control of Active Front Steering and Motor/Hydraulic Hybrid Braking in Distributed Electric Drive Vehicles

    Institute of Scientific and Technical Information of China (English)

    袁希文; 桂林; 周兵

    2016-01-01

    针对分布式电驱动汽车,以实现车辆主动安全性同时兼顾制动能量回收为目标,提出一种主动前轮转向(AFS)与电液复合制动集成的控制策略.AFS 控制器采用滑模变结构控制,滑移率控制器采用滑模极值搜索算法,基于分层结构(上层为期望制动力矩计算模块,中层为考虑执行器带宽的动态控制分配模块,下层为电机与液压复合执行器),并考虑位置与速率约束.转向制动时,考虑车辆纵向动力学对侧向动力学的影响,引入前轮转角对滑移率控制律进行了修正.在 MATLAB/Simulink 中建立七自由度整车模型,对控制算法进行了验证.结果表明:分离路面直线制动时,所提出的控制策略可以同时保证制动能量回收和制动方向稳定性;转弯制动时,可以更好地跟踪理想横摆角速度,提高了车辆的侧向稳定性.%A new control strategy was proposed by integrating active front steering and electro-hydrau-lic braking in distributed electric drive vehicles to ensure vehicle active safety by taking into account bra-king energy recuperation.The AFS controller was synthesized by means of sliding mode control.The wheel slip controller was designed with a hierarchical control structure.In the upper layer,sliding mode extremum-seeking algorithm was adopted to obtain the desired braking torque,and a dynamic control allo-cator considering different actuators bandwidths was employed to determine the optimal split between the electric and friction brake torque in the middle layer.In the lower layer,a hybrid actuator system consis-ting of the hydraulic brake and the electrical motor was designed on the basis of actuator position and rate constraints.The wheel slip control law was modified by introducing the road wheel angle factor consider-ing the strongly coupled dynamics of steering and braking systems when braking-in-turn.Simulation re-sults obtained with a 7-Do

  10. 纯电动汽车电液复合制动系统联合仿真%Co-simulation Study of Electro-hydraulic Compound Brake System of Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    王晖; 陈燎; 盘朝奉

    2014-01-01

    The study described the braking energy recovery system principle and structure. And then, according to the stroke simulator,high-pressure accumulator and hydraulic principles were established AMEsim based model,simulink-based vehicle dynamics model to establish a vehicle,motor,super capacitors and DC / DC converter models. The joint simulation of AMEsim-Simulink model was estab-lished based on all the above established model. In the vehicle initial condition of 36 km/ h,the brake pedal force size 30 N(small strength brake),50 N(small and medium strength brake)was simula-ted,and the simulation results were analyzed. In city conditions(low intensity brake),brake energy recovery rate was about 40% ,and the results showed the recovery effect is better.%介绍了制动能量回收系统的原理和结构,然后根据行程模拟器、高压蓄能器和液压泵的原理分别建立了以上部件基于 AMEsim 的模型,并应用 Simulink 建立了车辆整车动力学模型和电机、超级电容、DC / DC 变换器模型。以此为基础建立了 AMEsim-Simulink 联合仿真模型。在车辆初始行驶速度为36 km/ h 的工况下,分别选取制动踏板力为30 N(小强度制动)和50 N (中小强度制动)进行仿真,并对仿真结果进行了分析。结果表明:在城市工况下(小强度制动),制动能量回收率在40%左右,回收效果较好。

  11. Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianlong; YIN Chengliang; ZHANG Jianwu

    2009-01-01

    Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) function. When the ABS control is terminated, the motor regenerative braking is readmitted.Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure. The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.

  12. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    National Research Council Canada - National Science Library

    Vu Trieu Minh; Godwin Oamen; Kristina Vassiljeva; Leo Teder

    2016-01-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking...

  13. Vehicle state estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; Boekel, J.J.P. van; Iersel, S.S. van; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the elctric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  14. In-depth analysis of bicycle hydraulic disc brakes

    Science.gov (United States)

    Maier, Oliver; Györfi, Benedikt; Wrede, Jürgen; Arnold, Timo; Moia, Alessandro

    2017-10-01

    Hydraulic Disc Brakes (HDBs) represent the most recent and innovative bicycle braking system. Especially Electric Bicycles (EBs), which are becoming more and more popular, are equipped with this powerful, unaffected by environmental influences, and low-wear type of brakes. As a consequence of the high braking performance, typical bicycle braking errors lead to more serious accidents. This is the starting point for the development of a Braking Dynamics Assistance system (BDA) to prevent front wheel lockup and nose-over (falling over the handlebars). One of the essential prerequisites for the system design is a better understanding of bicycle HDBs' characteristics. A physical simulation model and a test bench have been built for this purpose. The results of the virtual and real experiments conducted show a high correlation and allow valuable insights into HDBs on bicycles, which have not been studied scientifically in any depth so far.

  15. IDEAL BRAKE FORCE DISTRIBUTION BETWEEN THE AXLES OF THE TWO-AXLE VEHICLE SERVICE BRAKE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Podryhalo

    2015-07-01

    Full Text Available The obtained analytical expressions allow us to evaluate the stability of two-axle vehicles at various slowdowns. An analytical expression for calculating the ideal according to condition stability ensuring of a two-axle vehicle at service brake applications of brake force distribution allows to offer automatic control devices for brake force adjucement. With decellerationg growth of the two-axle vehicle at service braking the braking force acting on the front axle should decrease relative to the brake force on the rear axle.

  16. NAC Off-Vehicle Brake Testing Project

    Science.gov (United States)

    2007-05-01

    Project Officer ( TIPO ) US Army National Automotive Center (NAC) Warren, MI Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...May 2007 FinalR1 UNCLAS: Dist A. Approved for public release Leo Miller, Technology Insertion Project Officer ( TIPO ) NAC Off-vehicle Brake Testing

  17. Electronic Brake-Force Distribution Control Methods of ABS-Equipped Vehicles During Cornering Braking

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-ye; LIU Zhao-du; MA Yue-feng; QI Zhi-quan

    2007-01-01

    Based on the dynamics of ABS-equipped vehicles during cornering braking,the electronic brakeforce distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed.According to the dynamics and the tire model under tire adhesion limit,the stability acceptance criteria of vehicles during cornering braking are proposed.According to the stability acceptance criteria and the ABS control,the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently.The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods,whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.

  18. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    Science.gov (United States)

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  19. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  20. Accumulator Parameters Match the Characteristic Analysis of Hydraulic Brake for Trackless Rubber Tire Vehicle%全液压制动无轨胶轮车载蓄能器参数匹配与特性分析

    Institute of Scientific and Technical Information of China (English)

    梁玉芳

    2016-01-01

    根据目前无轨胶轮车全液压制动系统的使用情况,建立了蓄能器的数学模型,通过分析液压蓄能器参数匹配和能量利用对制动系统动态性能的影响,为液压制动系统蓄能器设计提供理论依据.%According to the current use of trackless rubber tire vehide hydraulic braking system, the mathematical model of the accumulator, hydraulic accumulator parameters by analyzing the matchand use of energy on the dynamic performance of the brake system, hydraulic brake system reservoir design can provide a theoretical basis.

  1. A high performance pneumatic braking system for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  2. 75 FR 5553 - Federal Motor Vehicle Safety Standards; Motor Vehicle Brake Fluids

    Science.gov (United States)

    2010-02-03

    ... Federal Motor Vehicle Safety Standards; Motor Vehicle Brake Fluids AGENCY: National Highway Traffic Safety... NPRM proposes to amend FMVSS No. 116, Motor Vehicle Brake Fluids, so that brake fluids would be tested... Date VII. Rulemaking Analyses and Notices VIII. Public Participation I. Background Federal...

  3. Determination of minimum sample size for fault diagnosis of automobile hydraulic brake system using power analysis

    Directory of Open Access Journals (Sweden)

    V. Indira

    2015-03-01

    Full Text Available Hydraulic brake in automobile engineering is considered to be one of the important components. Condition monitoring and fault diagnosis of such a component is very essential for safety of passengers, vehicles and to minimize the unexpected maintenance time. Vibration based machine learning approach for condition monitoring of hydraulic brake system is gaining momentum. Training and testing the classifier are two important activities in the process of feature classification. This study proposes a systematic statistical method called power analysis to find the minimum number of samples required to train the classifier with statistical stability so as to get good classification accuracy. Descriptive statistical features have been used and the more contributing features have been selected by using C4.5 decision tree algorithm. The results of power analysis have also been verified using a decision tree algorithm namely, C4.5.

  4. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  5. REGRESSIVE ANALYSIS OF BRAKING EFFICIENCY OF M1 CATEGORY VEHICLES WITH ANTI-BLOCKING BRAKE SYSTEM

    Directory of Open Access Journals (Sweden)

    О. Sarayev

    2015-07-01

    Full Text Available The problematics of assessing the effectiveness of vehicle braking after road accidentoccurrence is considered. For the first time in relation to the modern models of vehicles equipped with anti-lock brakes there were obtained regression models describing the relationship between the coefficient of traction and a random variable of steady deceleration. This does not contradict the essence of the stochastic physical object, which is the process of vehicle braking, unlike the previously adopted method of formalizing this process, using a deterministic function.

  6. 静动液辅助制动系统恒转矩制动策略研究%Research on Constant Torque Braking Strategy of Hydrostatic and Hydraulic Auxiliary Braking System

    Institute of Scientific and Technical Information of China (English)

    吕建刚; 郭劭琰; 李彦路; 滕飞; 宋彬

    2012-01-01

    A constant torque braking strategy for tracked vehicle hydrostatic and hydraulic auxiliary braking system is studied. Combining the test and theoretical analysis results, the influence law of coupler filling liquid quantity and hydraulic pump discharge variation to vehicle braking force under the hydrodynamic braking and hydrostatic braking work condition is obtained. Absorbing the advantages of hydrodynamic braking and hydrostatic braking,aiming at the work condition of hydrodynamic - hydrostatic braking, the constant torque braking strategy is built. The vehicle constant torque braking is achieved through the automatic regulation of coupler filling liquid quantity and hydraulic pump discharge. The efficiency is verified through the comparison of energy recovery and braking length before and after using constant torque braking strategy.%对履带车辆液力辅助制动系统的恒转矩制动策略进行了研究.结合实验与理论分析的结果,得到了液压制动与液力制动工况下偶合器充液量、液压泵排量的变化对车辆制动力的影响规律,吸取了液压制动与液力制动的优点,针对液力-液压制动工况建立了恒转矩制动策略.通过对偶合器充液量、液压泵排量的自动调节,实现了车辆的恒转矩制动.最后对采用恒转矩制动策略前后的能量回收率与制动距离进行了对比,验证了该策略的效能.

  7. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  8. Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization

    Science.gov (United States)

    Lü, Hui; Yu, Dejie

    2014-12-01

    An uncertain optimization method for brake squeal reduction of vehicle disc brake system with interval parameters is presented in this paper. In the proposed method, the parameters of frictional coefficient, material properties and the thicknesses of wearing components are treated as uncertain parameters, which are described as interval variables. Attention is focused on the stability analysis of a brake system in squeal, and the stability of brake system is investigated via the complex eigenvalue analysis (CEA) method. The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of instability. The response surface method (RSM) is applied to approximate the implicit relationship between the unstable mode and the system parameters. A reliability-based optimization model for improving the stability of the vehicle disc brake system with interval parameters is constructed based on RSM, interval analysis and reliability analysis. The Genetic Algorithm is used to get the optimal values of design parameters from the optimization model. The stability analysis and optimization of a disc brake system are carried out, and the results show that brake squeal propensity can be reduced by using stiffer back plates. The proposed approach can be used to improve the stability of the vehicle disc brake system with uncertain parameters effectively.

  9. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Jingang Guo

    2014-10-01

    Full Text Available Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs. A sliding mode controller (SMC based on the exponential reaching law for the anti-lock braking system (ABS is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC. A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the motor braking and the hydraulic braking. Simulations were carried out with Matlab/Simulink. By comparing with a conventional Bang-bang ABS controller, braking stability and passenger comfort is improved with the proposed SMC controller, and the chatting phenomenon is reduced effectively with the parameter optimizing by FLC. With the increasing proportion of the motor braking torque, the tracking of the slip ratio is more rapid and accurate. Furthermore, the braking distance is shortened and the conversion energy is enhanced.

  10. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    Science.gov (United States)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  11. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    Science.gov (United States)

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%.

  12. Stability Control of Vehicle Emergency Braking with Tire Blowout

    Directory of Open Access Journals (Sweden)

    Qingzhang Chen

    2014-01-01

    Full Text Available For the stability control and slowing down the vehicle to a safe speed after tire failure, an emergency automatic braking system with independent intellectual property is developed. After the system has received a signal of tire blowout, the automatic braking mode of the vehicle is determined according to the position of the failure tire and the motion state of vehicle, and a control strategy for resisting tire blowout additional yaw torque and deceleration is designed to slow down vehicle to a safe speed in an expected trajectory. The simulating test system is also designed, and the testing results show that the vehicle can be quickly stabilized and kept in the original track after tire blowout with the emergency braking system described in the paper.

  13. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    Science.gov (United States)

    Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo

    2016-11-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.

  14. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle.

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  15. 49 CFR 393.41 - Parking brake system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Parking brake system. 393.41 Section 393.41... NECESSARY FOR SAFE OPERATION Brakes § 393.41 Parking brake system. (a) Hydraulic-braked vehicles...,536 kg (10,000 pounds) shall be equipped with a parking brake system as required by FMVSS No....

  16. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  17. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  18. Regenerative braking control strategy in mild hybrid electric vehicles equipped with automatic manual transmission

    Institute of Scientific and Technical Information of China (English)

    QIN Datong; YE Ming; LIU Zhenjun

    2007-01-01

    The actual regenerative braking force of an integrated starter/generator (ISG),which is varied with desired braking deceleration and vehicle speed,is calculated based on an analysis of the required deceleration,maximum braking force of ISG,engine braking force and state of charge (SOC) of battery.Braking force distribution strategies are presented according to the actual regenerative braking force of ISG.To recover the vehicle's kinetic energy maximally,braking shift rules for a mild hybrid electric vehicle (HEV) equipped with automatic manual transmission (AMT) are brought forward and effects of transmission ratios are considered.A test-bed is built up and regenerative braking tests are carried out.The results show that power recovered by the braking shift rules is more than that recovered by the normal braking control rules.

  19. Design and Development of Hydraulic Disc Brake Systems for Well Servicing Rig Drawworks

    Institute of Scientific and Technical Information of China (English)

    Gao xiangqian; Zhou Yongxia

    1996-01-01

    @@ The conventional band brakes have been known to be important but also the most unlnerable part in servicing rig deawworks.. The failures in braking and releasing operations haven't well been avoided. There have evidently existed the problems of difficult operation and inconvenient maintenance in this connection. The use of power-assisted hydraulic cylinders or pneumatic cylinders can not meet the requirements of operations either. Since the late 1980s, we have cooperated with Shengli oilfields and others in the successful design and development of PST25 hydraulic disc brake systems for well servicing rig in a fully closed working state.

  20. Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. The HHVs under study - Autocar E3 refuse trucks equipped with Parker Hannifin's RunWise Advanced Series Hybrid Drive systems - can recover as much as 70 percent of the energy typically lost during braking and reuse it to power the vehicle. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs.

  1. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  2. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    OpenAIRE

    Jiankun Peng; Hongwen He; Wei Liu; Hongqiang Guo

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking s...

  3. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  4. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  5. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Science.gov (United States)

    2010-10-01

    ... vehicle is determined by measuring the stopping distance from a given initial speed. S6.5.3.2. Unless... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 135; Light vehicle brake systems. 571... Federal Motor Vehicle Safety Standards § 571.135 Standard No. 135; Light vehicle brake systems. S1. Scope...

  6. STUDY ON THE CONTROL SYSTEM OF HYDRAULIC MOMENT-ADJUSTED BRAKE FOR DOWNWARD BELT CONVEYOR

    Institute of Scientific and Technical Information of China (English)

    孟国营; 徐志强; 霍森; 方佳雨

    1997-01-01

    Having analyzed the drawbacks on the design of control system of hydraulic momentadjusted brake system, the author presents a closed loop control system in the process of start and braking of the conveyer. On the basis of the concept of the critical time and the critical acceleration and its deductions, the working mode of the conveyer can be identified and controlled in feedback, furthermore, thus realize the process of soft start. In the deceleration process, the author points out the problems that exist in the present control system and sets forward the control process that acted by the combined function of brake moment of motor and the drag torque of hydraulic brake at the beginning of deceleration, it will further improved reliability of conveyor system.

  7. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AK62 Federal Motor Vehicle Safety... that amended the Federal motor vehicle safety standard for air brake systems by requiring substantial... 37122) amending Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to...

  8. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... Administration 49 CFR Part 571 [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to require improved...

  9. Electro-mechanical Braking Method in Hybrid Electric Vehicles Based on Feedback Control Theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; YU Jun-quan; LIU Zheng-yu; CHANG Cheng

    2014-01-01

    In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, functions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What’s more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.

  10. Suitability of Hydraulic Disk Brakes for Passive Actuation of Upper-Extremity Rehabilitation Exoskeleton

    Directory of Open Access Journals (Sweden)

    Arno H. A. Stienen

    2009-01-01

    Full Text Available Passive, energy-dissipating actuators are promising for force-coordination training in stroke rehabilitation, as they are inherently safe and have a high torque-to-weight ratio. The goal of this study is to determine if hydraulic disk brakes are suitable to actuate an upper-extremity exoskeleton, for application in rehabilitation settings. Passive actuation with friction brakes has direct implications for joint control. Braking is always opposite to the movement direction. During standstill, the measured torque is equal to the torque applied by the human. During rotations, it is equal to the brake torque. Actively assisting movement is not possible, nor are energy-requiring virtual environments. The evaluated disk brake has a 20 Nm bandwidth (flat-spectrum, multi-sine of 10 Hz; sufficient for torques required for conventional therapy and simple, passive virtual environments. The maximum static output torque is 120 Nm, sufficient for isometric training of the upper extremity. The minimal impedance is close zero, with only the inertia of the device felt. In conclusion, hydraulic disk brakes are suitable for rehabilitation devices.

  11. Study on the Energy-Regeneration-based Velocity Control of the Hydraulic-Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    SONG Yunpu

    2012-11-01

    Full Text Available This paper simplifies the energy regenerationbased vehicle velocity system of the hydraulichybrid businto a process in which the extension rod of the hydraulic cylinder drives the secondary-element variable delivery pump/motor to change its displacement. This process enables braking of the vehicle and also allows recovery of energy. The stability, energy efficiency and other characteristics of the system are studied based on analysis of mathematical models of the vehicle velocity control. The relevant controller is designed to study effects of the controller on system characteristics. The vehicle velocity control module of the energy regeneration system is stable and able to recovery the inertia energy generated in vehicle braking. After the controller intended to improve response speed is added, system response becomes quicker but energy recovery rate declines.

  12. Braking System for Domestic Low-floor Light Rail Transit Vehicles%国产低地板轻轨车辆制动系统方案

    Institute of Scientific and Technical Information of China (English)

    曹国利; 曾宪华; 刘睿

    2012-01-01

    描述了国产化低地板车制动系统的参数、组成和原理,本系统为电子液压制动系统,由电气指令直接控制液压基础制动装置,简化了制动系统,节省了车底空间,解决了低地板轻轨车辆底部空间小,无法容纳空气制动装置的问题,满足低地板轻轨车辆的要求.%The parameters,composition and principle of domestic low-floor hydraulic brake system are described. This system uses electronic signals to control the foundation braking gears directly,it simplifies the braking systems and occupies less space. It also solves the installation problem of pneumatic braking equipments under the floor in a lowfloor light rail vehicle. Consequently, the electric hydraulic braking system could meet the requirements of low-floor light rail vehicles, and help to establish a theoretical foundation for the future study of low-floor hydraulic brake system.

  13. Brakes, brake control and driver assistance systems function, regulation and components

    CERN Document Server

    2014-01-01

    Braking systems have been continuously developed and improved throughout the last years. Major milestones were the introduction of antilock braking system (ABS) and electronic stability program. This reference book provides a detailed description of braking components and how they interact in electronic braking systems. Contents Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Car braking-system components.- Wheel brakes.- Antilock breaking systems.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modulator.- Sensors for brake control.- Sensotronic brake control.- Active steering.- Occupant protection systems.- Driver assistance systems.- Adaptive cruise control.- Parking systems.- Instrumentation.- Orientation methods.- Navigation systems.- Workshop technology. The target groups Motor-vehicle technicians in education and vocational training Master-mechanics and technicians in garage-workshops Teachers and lecturers in vocation...

  14. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved. PMID:26236772

  15. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-01-01

    Full Text Available This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  16. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed Mourad

    2011-01-01

    Full Text Available Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  17. Diagnostics monitor of the braking efficiency in the on board diagnostics system for the motor vehicles

    Science.gov (United States)

    Gajek, Andrzej

    2016-09-01

    The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.

  18. Effect of Dimensions of Crimped Portion upon Sealing Performance of Hydraulic Brake Hose by Applying Three-Dimensional FEM Analysis

    National Research Council Canada - National Science Library

    NODA, Nao-Aki; KIM, Bongkee; OTA, Kento; KAWAHARA, Hirofumi; SHINOZAKI, Takahiro

    2013-01-01

    .... In this study, three-dimensional FEM analysis has been applied to the crimped portion of hydraulic brake hose in order to investigate the effects of manufacturing errors upon the sealing performance...

  19. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  20. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    OpenAIRE

    Wang, Hongliang; Dong, Wei; Li, Nan; Dai, Xiaoming

    2015-01-01

    Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-positi...

  1. Pneumatic brake control for precision stopping of heavy-duty vehicles

    OpenAIRE

    Bu, Fanping; Tan, Han-Shue

    2007-01-01

    Precision stopping is an important automated vehicle control function that is critical in applications such as precision bus docking, automated truck or bus fueling, as well as automatic intersection, or toll booth stopping. The initial applications of this technology are most likely to be applied to heavy-duty vehicles such as buses or trucks. Such applications require specific attention to brake control since the characteristics of a typical pneumatic brake system of a heavy vehicle is inhe...

  2. A Predictive Distribution Model for Cooperative Braking System of an Electric Vehicle

    OpenAIRE

    Hongqiang Guo; Hongwen He; Xuelian Xiao

    2014-01-01

    A predictive distribution model for a series cooperative braking system of an electric vehicle is proposed, which can solve the real-time problem of the optimum braking force distribution. To get the predictive distribution model, firstly three disciplines of the maximum regenerative energy recovery capability, the maximum generating efficiency and the optimum braking stability are considered, then an off-line process optimization stream is designed, particularly the optimal Latin hypercube d...

  3. Brake wear from vehicles as an important source of diffuse copper pollution

    NARCIS (Netherlands)

    Hulskotte, J.H.J.; Gon, H.A.C.D. van der; Visschedijk, A.J.H.; Schaap, M.

    2007-01-01

    In this article we show that brake wear from road traffic vehicles is an important source of atmospheric (participate) copper concentrations in Europe. Consequently, brake wear also contributes significantly to deposition fluxes of copper to surface waters. We estimated the copper emission due to br

  4. A New Model of Stopping Sight Distance of Curve Braking Based on Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    Rong-xia Xia

    2016-01-01

    Full Text Available Compared with straight-line braking, cornering brake has longer braking distance and poorer stability. Therefore, drivers are more prone to making mistakes. The braking process and the dynamics of vehicles in emergency situations on curves were analyzed. A biaxial four-wheel vehicle was simplified to a single model. Considering the braking process, dynamics, force distribution, and stability, a stopping sight distance of the curve braking calculation model was built. Then a driver-vehicle-road simulation platform was built using multibody dynamic software. The vehicle test of brake-in-turn was realized in this platform. The comparison of experimental and calculated values verified the reliability of the computational model. Eventually, the experimental values and calculated values were compared with the stopping sight distance recommended by the Highway Route Design Specification (JTGD20-2006; the current specification of stopping sight distance does not apply to cornering brake sight distance requirements. In this paper, the general values and limits of the curve stopping sight distance are presented.

  5. Brake wear from vehicles as an important source of diffuse copper pollution

    NARCIS (Netherlands)

    Hulskotte, J.H.J.; Gon, H.A.C.D. van der; Visschedijk, A.J.H.; Schaap, M.

    2007-01-01

    In this article we show that brake wear from road traffic vehicles is an important source of atmospheric (participate) copper concentrations in Europe. Consequently, brake wear also contributes significantly to deposition fluxes of copper to surface waters. We estimated the copper emission due to

  6. ELECTRICAL AND DYNAMIC BRAKING OF THE HYBRID VEHICLE ON THE ROADS WITH LOW COUPLING COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Sitovskyi, O.

    2013-06-01

    Full Text Available There were carried out theoretical researches of the processes of the electrical and dynamic braking of the vehicle with hybrid power-plant on the roads with low coupling coefficient, it was proved the probability of the wheels blocking appearing, during electrical and dynamic braking.

  7. Design of Braking Caliper's Braking Torque in Hydraulic Disc Braking System%液压盘式刹车系统制动钳制动力矩的设计

    Institute of Scientific and Technical Information of China (English)

    高燕; 宋胜涛; 王跃军; 韩美香; 郭太清

    2012-01-01

    针对目前液压盘式刹车系统刹车力矩小,刹车性能不稳定等现状,基于老算法对制动转矩的计算原理设计了一种新算法,对制动钳的工作制动转矩,紧急制动转矩及驻车制动转矩,冗余安全设计等进行了计算.为提高液压盘式刹车系统的设计效率和安全系数,该算法从制动钳的工作原理出发,通过对制动钳的制动结构进行分析,以下放到井中的最重套管柱所形成的静制动转矩作为盘刹系统能满足的最小工作制动转矩为依据,通过验证计算结果,保障了液压盘式刹车系统的安全性和有效性.%The current braking torque of the hydraulic disc braking system is small and braking performance is instable.A new algorithm was designed based on the braking torque's calculation of the old algorithm.The work braking torque, emergency braking torque, park braking torque and the redundant safety design were calculated in this new algorithm.To improve the design efficiency and safety coefficient of the hydraulic disc braking system, the algorithm based on the working principle of the braking caliper, through the braking structure analysis of the braking caliper, according to the static braking torque formed by the heaviest casing string that put into the well could be taken as the minimum working braking torque which the disc braking system could meet.The safety and effectiveness of the hydraulic disc braking system are safeguarded through the authentication and calculation of the result.

  8. A Combined Cooperative Braking Model with a Predictive Control Strategy in an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Hongqiang Guo

    2013-12-01

    Full Text Available Cooperative braking with regenerative braking and mechanical braking plays an important role in electric vehicles for energy-saving control. Based on the parallel and the series cooperative braking models, a combined model with a predictive control strategy to get a better cooperative braking performance is presented. The balance problem between the maximum regenerative energy recovery efficiency and the optimum braking stability is solved through an off-line process optimization stream with the collaborative optimization algorithm (CO. To carry out the process optimization stream, the optimal Latin hypercube design (Opt LHD is presented to discrete the continuous design space. To solve the poor real-time problem of the optimization, a high-precision predictive model based on the off-line optimization data of the combined model is built, and a predictive control strategy is proposed and verified through simulation. The simulation results demonstrate that the predictive control strategy and the combined model are reasonable and effective.

  9. Evaluation of Wear in Aftermarket Brake Pads for Enhancing Braking Performance in a Passenger Vehicle

    Directory of Open Access Journals (Sweden)

    Mohd Zaki Bahrom

    2016-08-01

    Full Text Available Nowadays, due to the high demands from the independence automotive service centers; there are many aftermarket brake pads available at spare parts shops and sold at reasonable prices. Several types of brake pads are available in the market such as semi-metallic and Non-Asbestos brake pads. The purpose of this study is to evaluate the wear of after-market brake pad performance under the normal driving conditions (highway and non-highway. Three types of aftermarket brake pads that mainly used and sold by independent service shop were selected in this study.  The data of the wear in thicknesses losses and weight percentage losses were recorded. The results show that brake pad of non- Asbestos Organic type gives the highest wear loss and create a lot of dust. For semi-metallic brake pad type, the result shows the lowest mass loss. Therefore, it is important to select the suitable type of after-market brake pads in order to get balance between cost and quality.

  10. Development of brake system of railway vehicles for real-time HILS

    Science.gov (United States)

    Kim, Min-Soo; Park, Joon-Hyuk; Goo, Byeong-Choon

    2007-12-01

    Brake system of railway vehicles has a crucial role for the safety as well as riding quality of passengers. Its core technology for successful development of the brake system is to design of ECU (Electric Control Unit) containing antiskid control, brake blending control, load compensating control, and so on. Each development procedure of ECU involves a verifying test for each step and is completed by an evaluation test of the comprehensive performance verification for the overall systems. The development tool which is applied to this objective is the HILS (Hardware-In-the- Loop-Simulation). In order to design a controller, a good representative model of the system is needed. This paper describes the dynamic modeling of brake system of railway vehicle for HILS and analyzes some dynamic behavior under emergency braking force.

  11. 49 CFR 571.106 - Standard No. 106; Brake hoses.

    Science.gov (United States)

    2010-10-01

    .... Preformed means a brake hose that is manufactured with permanent bends and is shaped to fit a specific vehicle without further bending. Rupture means any failure that results in separation of a brake hose from... hydraulic brake hose assembly shall not rupture when run continuously on a flexing machine for 35 hours (S6...

  12. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AL11 Federal Motor Vehicle Safety... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... published a final rule in the Federal Register amending Federal Motor Vehicle Safety Standard (FMVSS)...

  13. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    Science.gov (United States)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  14. Parameters Matching and Control Method of Hydraulic Hybrid Vehicles with Secondary Regulation Technology

    Institute of Scientific and Technical Information of China (English)

    SUN Hui; JIANG Jihai; WANG Xin

    2009-01-01

    Hydraulic hybrid vehicles (HHV) with secondary regulation technology has the potential of improving fuel economy by operating the engine in the optimum efficiency range and making use of regenerative braking. Hydrostatic transmission technology has the advantage of higher power density and the ability to accept the high rates and high frequencies of charging and discharging, both of which are not favorable for batteries, but the lower energy density requires special power matching design and control strategy to coordinate all the powertrain components in an optimal manner. A multi-objective optimization method is proposed to distinguish the components size values of HHV by considering the requirements of driving cycles and technology aspects. The regenerative braking strategy and energy control strategy based on the optimized HHV is proposed to recovery the braking energy and distribute the regenerated braking energy. Simulation results show that by taking the optimized configuration of HHV, adopting the regenerative braking strategy and energy control strategy are helpful to improve the system efficiency and fuel economy of HHV under urban driving cycles.

  15. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  16. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts.

    Science.gov (United States)

    Duan, Jingliang; Li, Renjie; Hou, Lian; Wang, Wenjun; Li, Guofa; Li, Shengbo Eben; Cheng, Bo; Gao, Hongbo

    2017-08-28

    Bicycling is one of the fundamental modes of transportation especially in developing countries. Because of the lack of effective protection for bicyclists, vehicle-bicycle (V-B) accident has become a primary contributor to traffic fatalities. Although AEB (Autonomous Emergency Braking) systems have been developed to avoid or mitigate collisions, they need to be further adapted in various conflict situations. This paper analyzes the driver's braking behavior in typical V-B conflicts of China to improve the performance of Bicyclist-AEB systems. Naturalistic driving data were collected, from which the top three scenarios of V-B accidents in China were extracted, including SCR (a bicycle crossing the road from right while a car is driving straight), SCL (a bicycle crossing the road from left while a car is driving straight) and SSR (a bicycle swerving in front of the car from right while a car is driving straight). For safety and data reliability, a driving simulator was employed to reconstruct these three scenarios and some 25 licensed drivers were recruited for braking behavior analysis. Results revealed that driver's braking behavior was significantly influenced by V-B conflict types. Pre-decelerating behaviors were found in SCL and SSR conflicts, whereas in SCR the subjects were less vigilant. The brake reaction time and brake severity in lateral V-B conflicts (SCR and SCL) was shorter and higher than that in longitudinal conflicts (SSR). The findings improve their applications in the Bicyclist-AEB and test protocol enactment to enhance the performance of Bicyclist-AEB systems in mixed traffic situations especially for developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dynamic response of a vehicle with planar suspension system (PSS) under differential braking

    Science.gov (United States)

    Zhu, Jian Jun; Khajepour, Amir; Esmailzadeh, Ebrahim

    2012-01-01

    To absorb the vibrations and shocks caused by road obstacles effectively in any direction within the wheel rotation plane, a planar suspension system (PSS), in which there are spring-damper struts in both the vertical and longitudinal directions, is proposed to improve the ride quality of a vehicle with such novel suspension systems. The longitudinal spring-damper strut in a PSS is considerably soft compared with the longitudinal connection in a conventional suspension. Consequently, the wheels in a vehicle with PSS can move forth and back with respect to the body. The dynamic behaviours of a PSS vehicle under some special conditions, such as a differential braking in which the braking torque applied to the wheels at two sides of an axle are uneven, may exhibit special characteristics. The directional stability of the PSS vehicle in such a case may be one of the major concerns. The dynamic performance of the PSS vehicle in the differential braking condition is thus necessary to be investigated. This paper presents the investigation results of the transient response of a vehicle with the PSS in such a case. The simulation results are also compared with those of a similar vehicle with conventional suspensions. The study demonstrates that the PSS vehicle is directionally stable in differential braking conditions. The dynamic behaviour of the PSS vehicle is generally comparable with that of a conventional vehicle.

  18. A mechanical brake hardware-in-the-loop simulation of a railway vehicle that accounts for hysteresis and pneumatic cylinder dynamics

    OpenAIRE

    Dong-Chan Lee; Chul-Goo Kang

    2015-01-01

    A brake hardware-in-the-loop simulation system for a railway vehicle provides an effective platform for testing the braking performance under various dangerous braking conditions. However, in general, four-brake calipers are required to implement a mechanical brake system for one car. In this article, we implement a brake hardware-in-the-loop simulation system only with one brake caliper and three air tanks accounting for hysteresis and pneumatic cylinder dynamics, ultimately saving installat...

  19. 电动汽车制动能量回收最大化影响因素分析%Maximum Braking Energy Recovery of Electric Vehicles and Its Influencing Factors

    Institute of Scientific and Technical Information of China (English)

    王猛; 孙泽昌; 卓桂荣; 程鹏

    2012-01-01

    Based on an analysis of the principle and energy flow of regenerative braking, relations among braking power, regenerative braking power and braking energy recovery efficiency are revealed. Analysis results show that motor, battery and hydraulic brake system are main factors to affect braking energy recovery, of which, the influences of layout of brake pipes are specially introduced. Under ideal and typical braking condition, the potential of braking energy recovery and braking energy recovery efficiency of front-axis electric drive vehicles can be calculated, but the results are not satisfactory. A comparative study shows that dual-axis electric drive vehicles can achieve optimal performances on the potential of braking energy recovery, braking efficiency and braking energy recovery efficiency.%对再生制动的原理和能量流动进行了分析,并讲述了制动功率、再生制动功率、制动能量回收效率等之间的关系和计算方法.从分析中得出电机、蓄电池、液压制动系统是影响制动能量回收的主要因素,并重点分析了制动管路布置型式对制动能量回收的影响.针对典型的理想制动工况,计算出前轴电驱动汽车在制动能量回收方面的潜力和制动能量回收效率,但结果并不理想.通过对比发现,双轴电驱动汽车无论是在制动能量回收潜力还是在制动能量回收效率以及制动效能方面都有能力达到最优.

  20. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    OpenAIRE

    Bo Long; Shin Teak Lim; Ji Hyoung Ryu; Kil To Chong

    2013-01-01

    Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs). This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC) motor, so that the braking energy can be returned to the battery. Compared with ...

  1. Braking energy recuperation performance of input coupled power-split hydraulic hybrid powertrain%车辆分矩式混合动力系统储能特性

    Institute of Scientific and Technical Information of China (English)

    杜玖玉; 张洪辉; 王贺武

    2013-01-01

      为了提高采用分矩式液压机械传动商用车的燃油经济性,论证该系统应用混合动力驱动的可行性,该文研究分矩式混合动力系统制动能量回收条件和特性,基于功率分流分析法,在Matlab中建立流量分析模型,分析了调速范围内的分流工况、循环工况下的驱动功率流和制动功率流特性,并建立了制动能量回馈过程的转速、流量和转矩约束条件方程,得出了不同工况的制动能量回收特性。获得了不同工况条件下,可满足制动能量回收条件的液压元件相对变量率控制区间。为了验证理论分析结论,搭建了试验台,对分流工况和循环工况制动能量回收特性进行了试验台架验证。研究结果表明:分矩汇速式液压机械传动系统循环工况制动能量回收能力有限,分流工况高效制动能量回收效率较高,应用多段式方案制动能量回收潜力高约60%。研究结果可为制定合理的控制策略和评估系统的综合节油潜力提供参考。%  The fuel economy of the heavy-duty vehicles in China is relatively lower than that of advanced technologies in the world, and the fuel consumption of heavy duty commercial vehicles are very high, so energy-saving and advanced powertrain technologies for fleet users are urgently required, especially for the vehicles operating under city driving condition with heavy traffic jams. The power hybrid technologies are the paper, the regenerative braking condition was investigated. Whenυ π operating status is the power cycle condtion, and when condition, the hydraulic unit 1 and hydraulic unit 2 must be adusted by the rules of adjusted by the rules of best solution to improve the efficiency of heavy-duty commercial vehicles. Due to the benefit of high power density, hydraulic hybrid powertrains have more advantages than hybrid electric powertrains, especially under an urban duty cycle. Among all the

  2. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    Science.gov (United States)

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals

    Science.gov (United States)

    Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross

    2013-05-01

    The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be

  4. Study on the Integrated Control for Vehicle Stability Based on Two-wheeled Motor Regenerative Braking System%基于双轮式电机再生制动车辆稳定性集成控制研究

    Institute of Scientific and Technical Information of China (English)

    陈庆樟; 许广举; 孟杰; 焦洪宇

    2014-01-01

    Taking two-wheeled motor front drive electric vehicle regenerative braking system as the research object, the regenerative braking system coordinated controller was developed by integrating the dual-motor regenerative braking, hydraulic brake and the stability system. The vehicle braking mode and the allocation of braking torque were determined according to the vehicle's braking demand, vehicle status and energy storage system state, and the stability control torque was provided by the two-wheeled motor regenerative braking system according to the real-time vehicle stability condition. The results show that, compared with the motor unilateral independent control strategy, the integrated coordinated controller has better stability effect on vehicle braking in the process of turning.%以双轮式电机前驱电动汽车制动系统为研究对象,把双电机再生制动、液压制动、稳定性控制集成在一起,开发了再生制动系统协调控制器。根据车辆制动需求、车辆状态、系统储能状态等确定车辆制动模式及分配制动力矩,并根据车辆实时稳定性状况由双轮式电机再生制动提供车辆稳定性控制力矩。仿真和试验结果表明,在车辆转弯制动工况中采用所述集成协调控制器比采用电机单边独立控制稳定性控制效果更好。

  5. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  6. Modeling and Simulation of integrated steering and braking control for vehicle active safety system

    Directory of Open Access Journals (Sweden)

    Beibei Zhang

    2011-03-01

    Full Text Available Active chassis systems like braking, steering, suspension and propulsion systems are increasingly entering the market. In addition to their basic functions, these systems may be used for functions of integrated vehicle dynamics control. An experimental platform which aims to study the integration control of steering and braking is designed due to the research requirement of vehicle active safety control strategy in this paper. A test vehicle which is equipped with the systems of steer-by-wire and brake-bywire is provided and the Autobox, combined with Matlab/simulink and MSCCarsim, is used to fulfill the RCP (Rapid Control Prototyping and HIL (Hardware-in-loop. The seven-freedom vehicle model is constructed first and the approach of vehicle parameters estimation based on the Extended Kalman Filter (EKF is proposed. Testing the vehicle state through the sensor has its own disadvantage that the cost is high and easily affected by environment outside. To find a actual method of receiving the vehicle state using the ready-made sensors in vehicle, the researchers put forward various estimation method, of which have advantages and disadvantages. Based on the above, this paper applies the EKF to estimate the vehicle state, making the actual estimation come true. The primary control methods and controller designment is carried out to prove the validation of the platform.

  7. Vehicle longitudinal velocity estimation during the braking process using unknown input Kalman filter

    Science.gov (United States)

    Moaveni, Bijan; Khosravi Roqaye Abad, Mahdi; Nasiri, Sayyad

    2015-10-01

    In this paper, vehicle longitudinal velocity during the braking process is estimated by measuring the wheels speed. Here, a new algorithm based on the unknown input Kalman filter is developed to estimate the vehicle longitudinal velocity with a minimum mean square error and without using the value of braking torque in the estimation procedure. The stability and convergence of the filter are analysed and proved. Effectiveness of the method is shown by designing a real experiment and comparing the estimation result with actual longitudinal velocity computing from a three-axis accelerometer output.

  8. INVESTIGATION OF VEHICLE WHEEL ROLLING WITH MAXIMUM EFFICIENCY IN THE BRAKE MODE

    Directory of Open Access Journals (Sweden)

    D. Leontev

    2011-01-01

    Full Text Available Up-to-date vehicles are equipped by various systems of braking effort automatic control theparameters calculation of which do not as a rule have a rational solution. In order to increase theworking efficiency of such systems it is necessary to have the data concerning the impact of variousoperational factors on processes occurring at braking of the object of adjustment (vehicle wheel.Data availability concerning the impact of operational factors allows to decrease geometricalparameters of adjustment devices (modulators and maintain their efficient operation under variousexploitation conditions of vehicle’s motion.

  9. An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-08-01

    Full Text Available This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs. Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect.

  10. Energy recapture through deceleration - regenerative braking in electric vehicles from a user perspective.

    Science.gov (United States)

    Cocron, Peter; Bühler, Franziska; Franke, Thomas; Neumann, Isabel; Dielmann, Benno; Krems, Josef F

    2013-01-01

    We report results from a 1-year field study (N = 80) on user interactions with regenerative braking in electric vehicles. Designed to recapture energy in vehicles with electric powertrains, regenerative braking has an important influence on both the task of driving and energy consumption. Results from user assessments and data from onboard data loggers indicate that most drivers quickly learned to interact with the system, which was triggered via accelerator. Further, conventional braking manoeuvres decreased significantly as the majority of deceleration episodes could only be executed through regenerative braking. Still, some drivers reported difficulties when adapting to the system. These difficulties could be addressed by offering different levels of regeneration so that the intensity of the deceleration could be individually modified. In general, the system is trusted and regarded as a valuable tool for prolonging range. Regenerative braking in electric vehicles has direct implications for the driving task. We found that drivers quickly learn to use and accept a system, which is triggered via accelerator. For those reporting difficulties in the interaction, it appears reasonable to integrate options to customise or switch off the system.

  11. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    Science.gov (United States)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  12. Personal exposure to asbestos and respiratory health of heavy vehicle brake mechanics.

    Science.gov (United States)

    Cely-García, María Fernanda; Torres-Duque, Carlos A; Durán, Mauricio; Parada, Patricia; Sarmiento, Olga Lucía; Breysse, Patrick N; Ramos-Bonilla, Juan P

    2015-01-01

    Asbestos brake linings and blocks are currently used in heavy vehicle brake repair shops (BRSs) in Bogotá, Colombia. Some brake products are sold detached from their supports and without holes, requiring manipulation before installation. The aim of this study was to assess asbestos exposures and conduct a preliminary evaluation of respiratory health in workers of heavy vehicles in BRSs. To estimate asbestos exposures, personal and area samples were collected in two heavy vehicle BRSs. Each shop was sampled during six consecutive days for the entire work shift. Personal samples were collected on 10 workers including riveters, brake mechanics, and administrative staff. Among workers sampled, riveters had the highest phase contrast microscopy equivalent (PCME) asbestos concentrations, with 8-h time-weighted average (TWA) personal exposures ranging between 0.003 and 0.157 f/cm(3). Respiratory health evaluations were performed on the 10 workers sampled. Three workers (30%) had circumscribed pleural thickening (pleural plaques), with calcifications in two of them. This finding is strongly suggestive of asbestos exposure. The results of this study provide preliminary evidence that workers in heavy vehicle BRSs could be at excessive risk of developing asbestos-related diseases.

  13. Multiple-Vehicle Longitudinal Collision Mitigation by Coordinated Brake Control

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Lu

    2014-01-01

    Full Text Available Rear-end collision often leads to serious casualties and traffic congestion. The consequences are even worse for multiple-vehicle collision. Many previous works focused on collision warning and avoidance strategies of two consecutive vehicles based on onboard sensor detection only. This paper proposes a centralized control strategy for multiple vehicles to minimize the impact of multiple-vehicle collision based on vehicle-to-vehicle communication technique. The system is defined as a coupled group of vehicles with wireless communication capability and short following distances. The safety relationship can be represented as lower bound limit on deceleration of the first vehicle and upper bound on maximum deceleration of the last vehicle. The objective is to determine the desired deceleration for each vehicle such that the total impact energy is minimized at each time step. The impact energy is defined as the relative kinetic energy between a consecutive pair of vehicles (approaching only. Model predictive control (MPC framework is used to formulate the problem to be constrained quadratic programming. Simulations show its effectiveness on collision mitigation. The developed algorithm has the potential to be used for progressive market penetration of connected vehicles in practice.

  14. Investigation of Control Model in a New Series Hybrid Hydraulic/Electric System for Heavy Vehicles Based on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Soroosh Mahmoodi

    2016-01-01

    Full Text Available An interesting model which was able to recuperate and reuse braking energy was investigated. It was named series hybrid hydraulic/electric system (SHHES. The innovated model was presented for heavy hybrid vehicles to overcome the existing drawbacks of single energy storage sources. The novelty of this paper was investigation of a new series hybrid vehicle with triple sources, combustion engine, electric motor, and hydraulic sources. It was simulated with MATLAB-Simulink and different operational mode of control system was investigated. The aim was to improve the efficiency of the energy-loading components in the power train system and the transmission system independently. The ability to store and reuse the kinetic energy was added to the system to prevent energy wasting while the vehicle was braking. Control models were also investigated to realize suitable control algorithms to offer the best efficiency in system components for different vehicle conditions. The torque control strategy based on fuzzy logic controller was proposed to achieve better vehicle performance while the fuel consumption was minimized. The results implied efficient storage and usage in the transmission system. A small vehicle model experimentally verified the simulation results.

  15. Modeling and Analysis on Braking Hydraulic System for LHD Based on Automation Studio%基于Automation Studio地下铲运机制动液压系统建模分析

    Institute of Scientific and Technical Information of China (English)

    张楠; 韩飞

    2016-01-01

    该文以CY-6型地下铲运机的重要单元之一制动液压系统为研究对象,该系统采用的是SAHR型制动器系统,其为全液压单回路式的制动形式,分析其工作原理,并对动作执行机构及所受载荷进行研究,在此基础之上,应用Automation Studio仿真分析软件搭建整机制动液压系统的仿真分析模型,对其动态工作过程进行仿真分析,获取了系统的充液过程和制动过程的性能曲线和相关参数,为实现该种车辆制动液压系统的优化设计获得理论参考和技术支撑,具有一定的工程应用价值。%In this paper, CY-6-type LHD braking hydraulic system as the research object, the system uses the SAHR type braking system, which is single-loop hydraulic braking system. Analyze the working principle of the system, and the action actuator and suffered payload. On this basis, the application of Automation Studio simulation software to build a model of braking hydraulic system. Simulation dynamic working process. And get the performance curve of filling process and the braking system and related parameters. To achieve optimal design this kind of vehicle hydraulic steering system to obtain a theoretical reference and technical support, with some engineering value.

  16. A Predictive Distribution Model for Cooperative Braking System of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Hongqiang Guo

    2014-01-01

    Full Text Available A predictive distribution model for a series cooperative braking system of an electric vehicle is proposed, which can solve the real-time problem of the optimum braking force distribution. To get the predictive distribution model, firstly three disciplines of the maximum regenerative energy recovery capability, the maximum generating efficiency and the optimum braking stability are considered, then an off-line process optimization stream is designed, particularly the optimal Latin hypercube design (Opt LHD method and radial basis function neural network (RBFNN are utilized. In order to decouple the variables between different disciplines, a concurrent subspace design (CSD algorithm is suggested. The established predictive distribution model is verified in a dynamic simulation. The off-line optimization results show that the proposed process optimization stream can improve the regenerative energy recovery efficiency, and optimize the braking stability simultaneously. Further simulation tests demonstrate that the predictive distribution model can achieve high prediction accuracy and is very beneficial for the cooperative braking system.

  17. The Improvement of Hydraulic System in Press Brake%折弯机液压系统的改进

    Institute of Scientific and Technical Information of China (English)

    尹亮

    2011-01-01

    On the analysis of design faults in the hydraulic system for the 1000kN press brake, the design has been improved. The practice production shows that the improvement has a good effect.%在分析1000kN折弯机液压系统设计缺陷的基础上,进行了改进.经一段时间的生产表明,达到了预期效果.

  18. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    Science.gov (United States)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  19. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  20. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2016-10-01

    In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.

  1. ENERGY-LOADING OF DISKS IN FRICTION PAIRS OF “DISC-PAD” OF BRAKING DEVICES IN VEHICLES (part two

    Directory of Open Access Journals (Sweden)

    Krasin P. S.

    2015-06-01

    Full Text Available In the materials of the article we mention the regularities of changes in the volume and surface solid temperature gradients and self-ventilated brake discs and illustrate their impact on the main operating parameters of the friction pairs of disk-to-pad brakes of the A 172 bus; the relationship between thermo-physical parameters of polished and matte surfaces with areas of brake discs of various types. The influence of the type of tests on the pairs of loaded with energy friction disk and pad brakes of the vehicle. We have set the intensity of heat exchange processes from the surfaces of the brake discs of various types. It is shown that this leads to increased surface temperature gradient. The volume and the surface temperature gradients of the brake discs were determined with the involvement of the hypothesis of summation of temperatures on the surface when you post the generated electric currents. It was found that in the surface layer of the working surface of a solid brake disc at its pulse heating under the influence of the temperature of the flash nucleate cracks due to the thermal fatigue of the material of the disk. The features of the design of the brake discs were considered as well. On the basis of the calculation and the experimental data we have shown a correlation between the emissivity of brushed and polished surfaces and their areas in the disk-to-pad brakes when using solid and self-ventilated discs

  2. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  3. Study on the Optimum Service Braking System for Low-speed Goods Vehicle%低速货车配备行车制动系统的研究

    Institute of Scientific and Technical Information of China (English)

    马恩; 杨博竣

    2016-01-01

    Current condition of service braking system for low-speed goods vehicle in China are discussed. Service brake safety properties of low-speed goods vehicle are affected directly by service brake system. To ex-plore the optimum designs of service braking system for low-speed goods vehicle, tests were carried out in ac-cordance with GB7258-2012 safety specifications for power-driven vehicles operating on roads. Research and practice in a long period proves the optimum designs are service manual hydraulic braking system for load less than one ton low-speed goods vehicle, but are service power pneumatic braking system for load more than one ton low-speed goods vehicle.%论述了我国低速货车配备行车制动系统的现状,低速货车行车制动系统直接影响其行车安全,试验按照强制性国家标准GB7258-2012《机动车运行安全技术条件》进行,经过研究人员长期研究和实践证明,得到最佳方案是:载重量小于1t的低速货车配备行车人力液压制动系统;载重量大于1t的低速货车配备行车动力气压制动系统。

  4. 车辆制动能量回收模拟系统设计与仿真%Design and Simulation of Vehicle Braking Energy Recovery Analog System

    Institute of Scientific and Technical Information of China (English)

    蔡普; 林慕义; 王连新; 郑鑫

    2016-01-01

    目前国内液压节能汽车试验平台结构复杂,管路繁多,液压泵/马达、飞轮等的动态参数不确定,无法满足多种工况下的实验配合问题。新型车辆制动能量回收模拟系统,使用电液比例控制系统代替传统的液压泵/马达,可实现能量回收过程多种复杂工况的动态模拟。设计车辆制动能量回收模拟系统,运用MATLAB/Simulink软件,建立了车辆制动能量回收模拟系统的仿真模型,通过仿真得到了该模拟系统在充、放液过程中的动态特性,并设计了试验台架,为后续车辆制动能量回收系统的实验研究提供了平台。%At present, domestic hydraulic energy⁃saving automobile test platform structure is complex, the pipe is various, and the hydraulic pump/motor, flywheel and other dynamic parameters are uncertainty, so it can not meet the experiments with a variety of conditions. In the new type of vehicle braking energy recovery simulation system, the electro⁃hydraulic proportional control system was used to replace the traditional hydraulic pump/motor. It could realize dynamic simulations of a variety of complex working conditions in energy recovery process. The system of vehicle braking energy recovery was designed, and the simulation model of this system was es⁃tablished by using MATLAB/Simulink software. The dynamic characteristics of the simulation system during charging and discharging hydraulic fluid were figured out, and the test bench was designed initially. It provides platform for subsequent experimental verification of vehicle braking energy recovery simulation system.

  5. Signal Processing for MoC brake rattle noise of moving vehicles using prony analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Cheol; Kwak, Yun Sang; Park, Jun Hong [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-08-15

    To verify the possibility of generating rattling noise from a motor on caliper brake system, a test was conducted using a caliper excited with vibrations similar to that in a vehicle running on actual roads; this test was conducted using a quiet shaker installed in an anechoic room. After several hours of external excitation, the test assembly was loosened, and the frequency of rattling noise generation increased. A microphone was used to record the generated noise. The measured signals were analyzed by conventional spectrum analysis. Since the noise is generated as an impact response, the advantages of employing Prony analysis was discussed, and the results were compared to those obtained using conventional fast Fourier transforms. The accuracy of Prony analysis was through endurance tests on different brake systems.

  6. A mechanical brake hardware-in-the-loop simulation of a railway vehicle that accounts for hysteresis and pneumatic cylinder dynamics

    Directory of Open Access Journals (Sweden)

    Dong-Chan Lee

    2015-11-01

    Full Text Available A brake hardware-in-the-loop simulation system for a railway vehicle provides an effective platform for testing the braking performance under various dangerous braking conditions. However, in general, four-brake calipers are required to implement a mechanical brake system for one car. In this article, we implement a brake hardware-in-the-loop simulation system only with one brake caliper and three air tanks accounting for hysteresis and pneumatic cylinder dynamics, ultimately saving installation space and reducing financial budget costs. Since the brake caliper has a high nonlinearity, such as hysteresis resulting from friction and from the precompressed spring of the brake cylinder, we measured the hysteresis of the brake caliper clamping force for a mechanical brake system using loadcells, based on which a mathematical model was constructed for the hysteresis of the clamping force between the brake pad and the disk. Moreover, the pneumatic cylinder dynamics are identified and are implemented in three air tanks, together with hysteresis nonlinearity. The proposed brake hardware-in-the-loop simulation system is applied to the wheel-slide protection simulation of a railway vehicle with an initial speed of 80 km/h and demonstrated experimentally accounting for the hysteresis and brake cylinder dynamics.

  7. Simulation and analysis of vehicle stability based on ADAMS/CAR differential brake

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To improve the braking safety of automobiles, the author studied the effect of differential brake on the stabilities. To analyze the mechanical characteristics of differential brake, automotive subsystem models were built by applying ADAMS/CAR, and automotive mechanics simulation model was built by setting the main subsystems such as body, engine and brake. The simulation model studied the distribution mode of three kinds of differential brake, and beeline braking stability and turning braking stability wer...

  8. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.;

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...

  9. Simulation and analysis of vehicle stability based on ADAMS/CAR differential brake

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To improve the braking safety of automobiles, the author studied the effect of differential brake on the stabilities. To analyze the mechanical characteristics of differential brake, automotive subsystem models were built by applying ADAMS/CAR, and automotive mechanics simulation model was built by setting the main subsystems such as body, engine and brake. The simulation model studied the distribution mode of three kinds of differential brake, and beeline braking stability and turning braking stability were simulated. It shows that differential brake can amend turning shortage of automobile brake and improve its braking stability, but the effect of automobile mass on its braking stability is great. So the distribution mode of braking force and the effect of mass change should be considered while differential brake is applied.

  10. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    Directory of Open Access Journals (Sweden)

    Bo Long

    2013-12-01

    Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

  11. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  12. Metro Vehicle Braking Control and Longitudinal Impact%地铁车辆制动控制与纵向冲击

    Institute of Scientific and Technical Information of China (English)

    王超

    2015-01-01

    主要介绍了地铁车辆的两个评价指标:稳定性和舒适度。列车纵向冲动是列车运行质量的关键影响因素,分析了列车减速度和纵向冲击率对于稳定性和舒适度的影响。研究地铁列车制动减速度与列车冲击率之间的关系,提出了针对地铁制动系统空气制动和复合制动的制动控制方法,通过优化制动控制策略提高了稳定性和舒适度。%This paper introduces two evaluation indexes of metro vehicles which mainly refer to stability and comfort.The longitudinal impact of train is a key influencing factor.This paper analyses the effect of train deceleration rate and longitudinal impact on the stabili-ty and comfort,studies the relationship between braking deceleration rate and impact for the metro vehicles and then proposes the bra-king controlling method of air braking and composite braking for metro braking system.The optimization of braking control is able to improve the stability and comfort.

  13. Control allocation for for regenerative braking of electric vehicles with an electric motor at the front axle using the state-dependent Riccati equation control technique

    NARCIS (Netherlands)

    Kanarachos, S.A.; Alirezaei, M.; Jansen, S.T.H.; Maurice, J.P.

    2014-01-01

    In this paper the systematic development of an integrated braking controller for a vehicle driven by an electric motor on the front axle is presented. The objective is to engage the electric motor only during braking, up to the point at which the vehicle reaches its manoeuvrability and stability lim

  14. 液压同步系统和液压制动系统在行走马达上的应用%Application of Hydraulic Synchronization System and Hydraulic Brake System on Walking Motor

    Institute of Scientific and Technical Information of China (English)

    张帅君; 赖雨薇; 刘会涛; 高伟航; 张庆勇; 苏伟民

    2015-01-01

    A new kind of loop was introduced in which hydraulic synchronization and hydraulic brake could be realized. How to realize synchronization and braking functions was illustrated through example. And the loop has simple structure, practicality and safety utmostly.%介绍一种可同时实现液压同步和液压制动的回路,通过具体实例说明如何实现同步和制动的功能,并且最大可能实现结构简单、经济实用和安全可靠。

  15. Quantification of brake creep groan in vehicle tests and its relation with stick-slip obtained in laboratory tests

    Science.gov (United States)

    Neis, P. D.; Ferreira, N. F.; Poletto, J. C.; Matozo, L. T.; Masotti, D.

    2016-05-01

    This paper describes the development of a methodology for assessing and correlating stick-slip and brake creep groan. For doing that, results of tribotests are compared to data obtained in vehicle tests. A low velocity and a linear reduction in normal force were set for the tribotests. The vehicle tests consisted of subjecting a sport utility vehicle to three different ramp slopes. Creep groan events were measured by accelerometers placed on the brake calipers. The root mean square of the acceleration signal (QRMS parameter) was shown to be able to measure the creep groan severity resulting from the vehicle tests. Differences in QRMS were observed between front-rear and left-right wheels for all tested materials. Frequency spectrum analysis of the acceleration revealed that the wheel side and material type do not cause any significant shift in the creep groan frequency. QRMS measured in the vehicle tests presented good correlation with slip power (SP) summation. For this reason, SP summation may represent the "creep groan propensity" of brake materials. Thus, the proposed tribotest method can be utilized to predict the creep groan severity of brake materials in service.

  16. Fuzzy control method of regenerative braking in electric vehicles considering parameter sensitivity%考虑参数灵敏度的电动汽车回馈制动模糊控制

    Institute of Scientific and Technical Information of China (English)

    刘志强; 汪浩磊; 杜荣华

    2016-01-01

    The influence factors on braking energy feedback in electric vehicles were analyzed. To recycle more energy, a braking force distribution model was established, and a fuzzy controller on braking force distribution was designed, in which the inputs parameters were vehicle speed, braking strength and battery SOC, and output parameter was regenerative braking ratio. The sensitivity analysis of SOC, braking strength and vehicle speed was conducted by adopting a perturbation method, in which energy recovery rate was taken as the evaluation index. The results show that SOC has the greatest impact on energy recovery ratio, and braking strength has the second impact. So the fuzzy rules for the electronic-hydraulic-compound braking force distribution are improved in accordance with the influence weight of each characteristic parameter to the evaluation index. The recovery ratio of regenerative braking energy can be increased effectively by using fuzzy control method, in which the sensitivities of the characteristic parameters are considered.%分析影响电动汽车制动能量回馈的主要因素;以制动能量最大化为目标,建立电液复合制动力分配模型,设计以电液复合制动特性参数蓄电池荷电状态(SOC)、制动强度、车速为输入,回馈制动比例为输出的制动力模糊分配规则。同时,以能量回收率为评价指标对SOC、制动强度及车速进行灵敏度分析。研究结果明:SOC对能量回收率的影响最大,制动强度对能量回收率的影响次之;根据各特性参数对评价指标的影响权重,可改进电液复合制动力分配模糊规则;在相同制动工况下,考虑参数灵敏度的电动汽车电液复合回馈制动模糊控制方法可有效提高制动能量回收率。

  17. Brake fault diagnosis using Clonal Selection Classification Algorithm (CSCA – A statistical learning approach

    Directory of Open Access Journals (Sweden)

    R. Jegadeeshwaran

    2015-03-01

    Full Text Available In automobile, brake system is an essential part responsible for control of the vehicle. Any failure in the brake system impacts the vehicle's motion. It will generate frequent catastrophic effects on the vehicle cum passenger's safety. Thus the brake system plays a vital role in an automobile and hence condition monitoring of the brake system is essential. Vibration based condition monitoring using machine learning techniques are gaining momentum. This study is one such attempt to perform the condition monitoring of a hydraulic brake system through vibration analysis. In this research, the performance of a Clonal Selection Classification Algorithm (CSCA for brake fault diagnosis has been reported. A hydraulic brake system test rig was fabricated. Under good and faulty conditions of a brake system, the vibration signals were acquired using a piezoelectric transducer. The statistical parameters were extracted from the vibration signal. The best feature set was identified for classification using attribute evaluator. The selected features were then classified using CSCA. The classification accuracy of such artificial intelligence technique has been compared with other machine learning approaches and discussed. The Clonal Selection Classification Algorithm performs better and gives the maximum classification accuracy (96% for the fault diagnosis of a hydraulic brake system.

  18. THE MOMENT OF UNSAFETY FOR DRIVING IN CONDITIONS OF POOR VISIBILITY TAKING INTO ACCOUNT THE EVALUATION OF VEHICLE BRAKING EFFICIENCY

    Directory of Open Access Journals (Sweden)

    A. Sarayev

    2014-02-01

    Full Text Available This study is aimed at investigation of a car collision with a pedestrian under limited visibility condi-tions. For this purpose an expert has to analyze the accident details and determine the critical time at which the car driver must take an action to avoid the collision. The analysis is complicated due to the fact that the vehicle is equipped with an anti-blocking braking system and does not leave a braking trace on the pavement. In this case, a relevant expert analysis technique does not exist. The development of such techniques as the basis of this scientific work is given.

  19. 49 CFR 571.116 - Standard No. 116; Motor vehicle brake fluids.

    Science.gov (United States)

    2010-10-01

    ... butadiene rubber (SBR), ethylene and propylene rubber (EPR), polychloroprene (CR) brake hose inner tube... whom he delivers brake fluid, the following information: (a) A serial number identifying the production... humidified under controlled conditions; 350 ml. of SAE triethylene glycol monomethyl ether, brake fluid grade...

  20. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems...

  1. Designing autonomous emergency braking for commercial vehicles; Der Weg zur autonomen Notbremsung im Nutzfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, K.; Kitterer, H.; Dieckmann, T. [WABCO GmbH, Hannover (Germany); Ottenhues, T.; Seuss, J. [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2007-07-01

    In the last years driver assistance systems in commercial vehicles grew out of research projects and have been further developed to series products. But up to now the penetration rate of such systems stays behind all expectations. One of the main reasons for this effect can be located in the different demands to driver assistance systems in commercial vehicles in comparison to their use in passenger car. It is difficult to do a compelling cost benefit analysis on systems, which are mainly designed to increase driver comfort. Also today's systems do not fully take advantage in increasing active safety as it could be imagined by the use of environment sensing systems. When designing the next generation of driver assistance systems for series application the main focus is on their change from comfort to safety systems. Those systems not only will support the driver upon his demand but may also act autonomously to prevent accidents or mitigate their consequences at least. Besides the development of new functionalities this change of focus also causes the demand for more powerful environment sensors. In the following course the development from Adaptive Cruise Control (ACC), which represents the current state of art, to Autonomous Emergency Braking (AEB) will be shown. (orig.)

  2. Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-07-01

    Full Text Available Today’s battery powered electric vehicles still face many issues: (1 Ways of improving the regenerative braking energy; (2 how to maximally extend the driving-range of electric vehicles (EVs and prolong the service life of batteries; (3 how to satisfy the energy requirements of the EVs both in steady and dynamic state. The electrochemical double-layer capacitors, also called ultra-capacitors (UCs, have the merits of high energy density and instantaneous power output capability, and are usually combined with power battery packs to form a hybrid power supply system (HPSS. The power circuit topology of the HPSS has been illustrated in this paper. In the proposed HPSS, all the UCs are in series, which may cause an imbalanced voltage distribution of each unit, moreover, the energy allocation between the batteries and UCs should also be considered. An energy-management scheme to solve this problem has been presented. Moreover, due to the parameter variations caused by temperature changes and produced errors, the modelling procedure of the HPSS becomes very difficult, so an H∞ current controller is presented. The proposed hybrid power source circuit is implemented on a laboratory hardware setup using a digital signal processor (DSP. Simulation and experimental results have been put forward to demonstrate the feasibility and validity of the approach.

  3. Design of Energy Recovery Strategy and Simulation Analysis of Rotary Drill Hydraulic Braking System%牙轮钻机静液压制动系统仿真分析及能量回收方案设计

    Institute of Scientific and Technical Information of China (English)

    齐九龙; 张志壮; 赵静一; 王智勇; 唱荣蕾

    2016-01-01

    Hydraulic braking is used on rotary drill, to avoid the impact on the pump caused by the system pressure fluctuations is necessary, and the kinetic or potential energy can be recycled for use of the rotary drill when braking.Through the calculation and simulation analysis of the hydraulic braking system, the pressure relief valve of parameters of the closed pump was adjusted, and the system pressure impact was reduced.Energy recovery strategy of the braking system was proposed, and the mathematical model was es-tablished and the energy recovery system was simulation analyzed.The relationship of the pressure increasing of the accumulator gas chamber along with time was obtained, and the relationship between the size of the throttle opening and the braking time was revealed. The efficiency of energy recovery braking system was calculated.The correctness of the using of hydraulic braking system on rotary drill and the feasibility of energy recovery strategy are verified.Energy recovery is implemented which tranforms the kinetic or potential ener-gy of the rotary drill to pressure energy of the accumulator, and a reference for energy recovery braking system on large vehicle is pro-vided.%牙轮钻机采用静液压制动,需要避免系统压力波动对泵产生的冲击,同时钻机的动能或者势能可以回收再利用。通过对静液压制动系统的计算与仿真分析,对闭式泵高压溢流阀参数进行调整,减小系统压力冲击;提出了制动系统能量回收方案,并对能量回收系统进行了数学建模与仿真分析,获得了蓄能器气腔压力随时间的增长关系,揭示了节流阀开度大小与制动时间的关系;对制动系统能量回收效率进行了计算。证明了牙轮钻机采用静液压制动系统的正确性以及能量回收方案的可行性,实现了将钻机动能或者势能转换为蓄能器压力能的能量回收,为大型车辆制动系统能量回收提供了参考。

  4. 液压蓄能器制动能量回收系统建模与仿真%Hydraulic Accumulator Brake Energy Recovery System Modeling and Simulation

    Institute of Scientific and Technical Information of China (English)

    殷允朝

    2016-01-01

    本文分析了液压蓄能器混合动力制动回收系统基本组成和工作原理并建立力学模型,重点研究了基于Matlab/simulink仿真和传动比的匹配。结果表明:在最高转速变化允许范围内合理选择传动比的参数匹配,能缩短制动时间和获取较高的制动回收率。%Hydraulic accumulator hybrid brake recovery system basic composition and working principle are analyzed,Based on Matlab/simulink and the ratio of matching is key research, The results show that:In the range of allowable maximum speed change the rational selection of parameters matching ratio, Braking time is shortened and Brake recovery rate was improved.

  5. 风轮机液压制动控制系统的研究%Research on Hydraulic Braking Control System of Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    张文亭

    2015-01-01

    该文分析了风轮机常用的制动系统和控制系统,设计了基于紧急情况下的风轮机液压制动系统,并通过实验进行了测试,最后进行了紧急情况下的数据仿真研究,指出本制动器在不同最大设置压力和初始转速条件下的制动性能。%This paper analyses common braking system and control system in wind turbine, designs the hydraulic brake system of wind tur-bine based on emergency cases,and verified by experiment, also studies on the data simulation in case of emergency, points out the brake performance at different maximum set pressure and initial speed conditions.

  6. Investigation of energy efficiency for electro-hydraulic composite braking system which is based on the regenerated energy

    National Research Council Canada - National Science Library

    Bin Ma; Muyi Lin; Yong Chen; Lian-xin Wang

    2016-01-01

      A novel structure of the combined braking system based on the regenerative braking energy has been proposed to achieve simplified structure and energy-saving capability simultaneously, which includes...

  7. Investigation of energy efficiency for electro-hydraulic composite braking system which is based on the regenerated energy

    National Research Council Canada - National Science Library

    Ma, Bin; Lin, Muyi; Chen, Yong; Wang, Lian-xin

    2016-01-01

    A novel structure of the combined braking system based on the regenerative braking energy has been proposed to achieve simplified structure and energy-saving capability simultaneously, which includes...

  8. 基于ADAMS的电力液压盘式制动器仿真研究%Simulation of Electro-hydraulic Disc Brake Based on ADAMS

    Institute of Scientific and Technical Information of China (English)

    姜朝俊; 田树涛; 孔祥虎

    2015-01-01

    以电力液压盘式制动器为研究对象 ,利用ADAMS软件进行建模仿真 ,优化分析获得制动器所需要的制动力矩和间隙.仿真数据与试验数据对比表明 :ADAMS软件的分析结果和试验数据基本吻合 ,为制动器的设计和计算提供了可靠的方法和依据 ,节省了研发费用并缩短了开发周期.%Taking an electro-hydraulic disc brake as research object ,this paper carried out the simulation analysis on electro-hydraulic disc brake ,getting braking moment and clearance .Experimental data show the analytical results of ADAMS agree with that of ex-perimental data .It provides a reliable method and basis for the design of brakes .

  9. Modeling and control for hydraulic transmission of unmanned ground vehicle

    Institute of Scientific and Technical Information of China (English)

    王岩; 张泽; 秦绪情

    2014-01-01

    Variable pump driving variable motor (VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle (UGV). VPDVM is a dual-input single-output nonlinear system with coupling, which is difficult to control. High pressure automatic variables bang-bang (HABB) was proposed to achieve the desired motor speed. First, the VPDVM nonlinear mathematic model was introduced, then linearized by feedback linearization theory, and the zero-dynamic stability was proved. The HABB control algorithm was proposed for VPDVM, in which the variable motor was controlled by high pressure automatic variables (HA) and the variable pump was controlled by bang-bang. Finally, simulation of VPDVM controlled by HABB was developed. Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed, load and pump speed.

  10. Dynamic characteristics of hydraulic power steering system with accumulator in load-haul-dump vehicle

    Institute of Scientific and Technical Information of China (English)

    杨忠炯; 何清华; 柳波

    2004-01-01

    Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%- 80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.

  11. Hydraulically interconnected vehicle suspension: theoretical and experimental ride analysis

    Science.gov (United States)

    Smith, Wade A.; Zhang, Nong; Jeyakumaran, Jeku

    2010-01-01

    In this paper, a previously derived model for the frequency-domain analysis of vehicles with hydraulically interconnected suspension (HIS) systems is applied to the ride analysis of a four-degrees of freedom roll-plane, half-car under a rough road input. The entire road surface is assumed to be a realisation of a two-dimensional Gaussian homogenous and isotropic random process. The frequency responses of the half-car, in terms of bounce and roll acceleration, suspension deflection and dynamic tyre forces, are obtained under the road input of a single profile represented by its power spectral density function. Simulation results obtained for the roll-plane half-car fitted with an HIS and those with conventional suspensions are compared in detail. In addition, sensitivity analysis of key parameters of the HIS to the ride performance is carried out through simulations. The paper also presents the experimental validation of the analytical results of the free and forced vibrations of the roll-plane half-car. The hydraulic and mechanical system layouts, data acquisition system and the external force actuation mechanism of the test set-up are described in detail. The methodology for free and forced vibration tests and the application of mathematical models to account for the effective damper valve pressure loss are explained. Results are provided for the free and forced vibration testing of the half-car with different mean operating pressures. Comparisons are also given between the test results and those obtained from the system model with estimated damper valve loss coefficients. Furthermore, discussions on the deficiencies and practical implications of the proposed model and suggestions for future investigation are provided. Finally, the key findings of the investigation on the ride performance of the roll-plane half-car are summarised.

  12. 49 CFR 571.121 - Standard No. 121; Air brake systems.

    Science.gov (United States)

    2010-10-01

    ... compressed air or vacuum only to assist the driver in applying muscular force to hydraulic or mechanical... transmission of response or control signals in the vehicle's antilock brake system. The indicator lamp shall...) S5.1.6.3Antilock power circuit for towed vehicles. Each truck tractor manufactured on or after...

  13. Design and Analysis of Hydraulic System of Disc Brake for Downward Belt Conveyor%下运带式输送机盘式制动器液压系统设计与分析

    Institute of Scientific and Technical Information of China (English)

    刘灿杰; 贾跃虎; 刘志奇

    2011-01-01

    通过分析下运带式输送机制动工况的特点以及盘式制动器的优点,设计出适合各制动工况要求的新型盘式制动器液压系统.该液压系统具有松闸、保压、正常停车制动、超速制动、紧急制动和系统突然断电制动等功能.建立了系统的数学模型,将数学模型线性化后推导出了系统传递函数,分析了各元件参数对系统响应性的影响,为设计压力精细调节的制动器提供了理论基础.%The characteristics of braking condition of downward belt conveyor and advantages of disc brake were analyzed. A new hydraulic system of disc brake which met each braking condition requirement was designed. This hydraulic system have functions of loose braking, the normal parking braking, emergency braking and suddenly lose power braking. The mathematical model of this hydraulic system was established. The transfer function of this hydraulic system was deduced by the mathematical model linearization. The influences of the parameters to the response of the system were analyzed. The research work lays theory foundation for the design of brake with pressure fine adjustment.

  14. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    OpenAIRE

    Jia-Shiun Chen

    2015-01-01

    Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs) ar...

  15. Research on New Automobile Power Hydraulic Braking System by Vibratory Energy%新型振动能量主缸助力式汽车液压制动系统研究

    Institute of Scientific and Technical Information of China (English)

    李滟泽; 丁志华

    2013-01-01

    介绍了一种新型振动能量回收式液压减振系统,研究了一种振动能量主缸助力式汽车液压制动系统,油液在储液罐、减振器、蓄能器和制动液压元件之间循环流动.所述的振动能量助力式汽车液压制动系统能回收部分汽车的振动能量转化为液压能用于汽车助力制动,减小制动踏板力,降低驾驶疲劳度,缩短制动滞后时间,提高汽车制动安全性能.所述振动能量回收式液压减振系统申报了国家发明专利(CN102152778A),振动能量助力式汽车液压制动系统申报了国家实用新型专利(ZL 2011 20101080.1).%A new vibratory energy-recovery hydraulic damping system is introduced, and an automobile power hydraulic braking system by vibratory energy is researched. The oil is circulated between storage tank, energy accumulator, vibratum dampers and hydraulic components. The braking system can recycle some vibratory energy and convert to hydraulic energy which is used for automobile power braking system.It can reduce brake pedal force, lower fatigue of drive, shorten retardation time of braking, and enhance safety of braking. The vibratory energy-recovery hydraulic damping system has reported the national invention patent (CN102152778A), and the vibratory energy power-assisted automobile hydraulic braking system also has reported the national practical new patent(ZL 2011 2 0101080.1).

  16. M1078 Hybrid Hydraulic Vehicle Fuel Economy Evaluation

    Science.gov (United States)

    2012-09-01

    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 28-09-2012 2. REPORT TYPE Interim Report 3. DATES COVERED (From...system shakedown and developmental testing. During developmental testing, a hydraulic motor failure occurred. Although not catastrophic, the motor...main hydraulic hybrid system control module to request the TCM to shift the transmission. Clutch Operation with engine- off (hydraulic-only power) or

  17. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  18. Research on Recovering System of Braking Energy in Hydraulic Excavator%液压挖掘机制动能量的回收系统

    Institute of Scientific and Technical Information of China (English)

    吴文海; 郑辉; 邓斌; 刘桓龙

    2013-01-01

    针对传统液压挖掘机回转系统能量损失严重的问题,提出并设计一套液压挖掘机回转制动能量回收系统.分析该系统工作原理,以及液压蓄能器的参数匹配,通过AMESim软件建立模型,并进行仿真分析.仿真结果表明:该回转制动能量回收系统使挖掘机回转系统的节能效率达到50%左右,蓄能器进行能量回收的效率达到66.9%,回收能量再利用效率为50.3%,实现了节能减排的目的.%The paper proposes a recovering system of swing braking energy, which is designed to reduce the energy loss in hydraulic excavators swing system. Furthermore, the principle of the recovering system and the parameters of hydraulic accumulator are introduced. The simulation model is built by AMESim, Simulation results shown that the hydraulic excavator equipped with the recovering system of swing braking energy can save about 50% energy compared with the traditonal hydraulic excavator. The energy recovery efficiency can reach to 66. 9% with the hydraulic accumulator. The recovery energys utilization efficiency also can achieve 50. 3%. Thus, the recovering system meets the goal of energy-saving and emission-reduction.

  19. 城市轨道车辆制动能量回收方法%Recovery method of braking energy for urban railway vehicle

    Institute of Scientific and Technical Information of China (English)

    杨俭; 宋瑞刚

    2012-01-01

    城市轨道车辆频繁的制动过程产生了大量的电能。该部分能量在不满足反馈电网条件时常常通过制动电阻的方式消耗,导致了能量的浪费。结合动力学理论和供电网络关系分析了城市轨道交通车辆制动能量产生的特性及约束条件,提出一种基于车载的脱离电网的制动能量回收方法,并通过制动能量回收实验系统,进行了实验研究。结果表明,利用该系统可以对城市轨道车辆制动能量进行有效的回收。%This paper is an attempt to address the waste of the braking energy such as occurs when a lot of electrical energy produced by the frequent braking process of the urban railway vehicles is often consumed in the form of breaking resistor due to the failure to fulfill the requirements of braking energy feedback to power grid.The paper describes the analysis of the characteristics and restrained conditions of producing braking energy of the urban railway vehicle by combining vehicle dynamics with power supply,proposes a novel recovery method of braking energy free from power grid on the urban railway vehicle and introduces the experimental research depending on an experimental system of braking energy recovery.The results show that the system is capable of an effective recovery of braking energy.

  20. Analysis of Testing and Matching of Braking Energy Recovery System of Hydraulic Energy Storage Type Buses%液压蓄能式公共汽车制动能量回收系统匹配与试验分析

    Institute of Scientific and Technical Information of China (English)

    曲金玉; 王儒; 任传波; 韩尔睴; 刘林

    2014-01-01

    针对城市公共汽车运行的特殊工况,设计并研制了一种新型液压蓄能式制动能量回收系统,介绍了该制动能量回收系统的组成和工作原理,对液压系统主要部件参数进行了分析与匹配。通过台架和实车道路试验,结果表明:所设计的液压蓄能式制动能量回收系统在满足汽车运行安全的前提下,具有较高的制动能量回收率,对改善汽车的燃油经济性具有积极作用。%Aimed at the special condition of the city buses operation,a new type of hydraulic energy storage type braking energy recovery system was designed and developed.The composition and working principle of the brake energy recovery system was intro-duced,and the main components of the hydraulic system parameters were analyzed and matched.Finally,by the bench and vehicle re-fitting test,the results show that the design of the new hydraulic energy storage type braking energy regeneration system improved the braking energy recovery rate under the premise of safety operation,has positive effect on fuel economy improvement of automobile.

  1. Safety Braking System

    Directory of Open Access Journals (Sweden)

    Joseph Charles

    2016-10-01

    Full Text Available Now a day's accidents due to brake failure are increasing in a high margin, so safety has acquired a greater priority. In order to control this sudden brake failures we have modified the conventional braking systems in automobiles by adding an extra safety brake to the engine shaft. The idea of the work is to improve the safety parameters regarding the brakes. Engagement of the secondary brake without the assistance of driver is an advantage for this system. As it would make the vehicle to stop without any lag. A Hall effect sensor is used to detect the motion of wheel by noting the magnetic field. The signals given out from the sensor directs the microcontroller to operate the relay and hence to actuate the solenoid and thereby actuating the secondary brake.

  2. 汽车在对开路面上的制动稳定性研究%Study of Vehicle Braking Stability On Bisectional Road

    Institute of Scientific and Technical Information of China (English)

    李继良

    2012-01-01

    According to the theory of vehicle braking stability control and the related dynamic vehicle model,the theoretical analysis of vehicle braking condition on bisectional roads with large difference between road adhesion coefficients of two sides of the road was made.From the analysis result,by means of active steering technique to control vehicle stability when braking in emergency and restoring vehicle to correct lane quickly after braking deflection driven by the way of steering control。%以汽车动力学模型和汽车制动稳定性控制原理为基础,通过分析汽车两侧车轮在路面附着系数相差较大的对开路面上的紧急制动状况进行理论分析,提出运用主动转向技术控制汽车的方向稳定性,并使汽车在制动驶偏后能快速通过转向控制恢复到正确的行驶车道。

  3. New idea for braking energy recovery of electric vehicle%电动汽车制动能量回收新设想

    Institute of Scientific and Technical Information of China (English)

    张赫; 张吉康; 左乾成; 赵岩

    2013-01-01

    Aiming at the problem of development of electric vehicles , the necessity of the research for braking energy recovery of electric vehicle is stated , and the current development of the braking energy recovery technology of electric vehicle is analyzed .On the basis of deeply study of braking energy recov-ery technology of electric vehicles , several key factors , such as energy can be recovered ,the efficiency of energy recovery and the economy of energy recovery , are point out , based on which , the independent braking energy regeneration system is put forward , and the key technologies for the idea are analyzed .%针对电动汽车发展的问题,阐述了电动汽车制动能量回收研究的必要性,分析了电动汽车制动能量回收技术的发展现状。在深入研究电动汽车制动能量回收技术的基础上,梳理出能够用于回收的能量、能量回收的效率、能量回收的经济性等关键因素,在此基础上提出了独立制动能量回收系统,并对关键技术作了阐述。

  4. 混合动力电动汽车混合制动技术分析%Hybrid Braking Technology for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    俞剑波; 何仁

    2013-01-01

    以提高混合动力电动汽车的制动安全性、稳定性和制动能量回收充分性为目标,介绍了混合制动系统的结构与工作原理,分析了混合制动系统的关键技术;指出目前混合制动系统的研究重点任务;探讨了混合制动技术的发展趋势.%In order to improve the safety of brake,stability and energy recovery of braking for hybrid electric vehicle,the structure and work principles of hybrid braking system are introduced.And the key techniques of hybrid braking system are also analyzed.Then the present key tasks of hybrid electric vehicle are pointed out.Finally,the future trend of hybrid braking system is discussed.

  5. 基于优化的电动车制动力分配%Optimization Based Braking Force Distribution for Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    郭金刚; 王军平; 曹秉刚

    2011-01-01

    The braking force distribution for an electric vehicle is described as a constrained optimization problem,in which both the energy recovery and brake performance are taken into account,and the genetic algorithm is used to solve the problem.The optimization problem of braking force distribution has a comprehensive consideration on the braking torque demand,the motor available braking torque,the maximum charge power of battery and brake performance requirement.Simulation results show that the optimization strategy takes advantage of the braking torque of the electric motor,making maximum recovery energy,together with good brake performance.Compared with the parallel strategy,our optimization strategy can obtain higher energy regeneration for typical driving cycles.%提出一种兼顾能量回收和制动性能要求的电动车制动力分配策略,建立了制动力分配的约束优化问题,并使用遗传算法来解决这一问题。制动力分配优化问题全面考虑了电机的可用制动转矩和最高转速限制、电池的最大充电功率限制以及汽车制动性能方面的要求。仿真结果表明:优化策略能够充分利用电机的制动转矩,保证汽车的制动性能,并使能量回收最大。与并联策略相比,采用优化方法,汽车在典型道路循环上的能量回收效率大大提高。

  6. Performance Test of Countershaft Brake System for Commercial Vehicle AMT%商用车 AMT 中间轴制动器性能试验

    Institute of Scientific and Technical Information of China (English)

    范珊珊; 宁立群; 崔伟; 杨子轩

    2016-01-01

    商用车电控机械式自动变速器 AMT 升档时,通过中间轴制动器来同步待啮合的齿轮,以保证换档的平顺性,因而中间轴制动器的性能直接关系到 AMT 的换档品质。本文设计台架试验,对 AMT 中间轴制动器的制动力、密封性、一致性、寿命等性能进行测试。试验模拟实车升档情况,以16档商用车自动变速器为对象,采用 TTC200控制器,协调控制离合器和制动器,同时采用 CANalyser 实时监测制动器性能,最终提出制动器的改进方案。试验表明,该中间轴制动器可以满足自动变速器的使用需求。%In order to achieve shift comfort, automatic mechanical transmissions for commercial vehicles use a counter shaft brake system to synchronize the target gears when upshifting. Therefore the AMT shift quality depends largely on the performance of the countershaft brake system. A testbed for the countershaft brake system was built to analyze the braking force, sealing, consistency, durability etc. During the test, TTC200, a type of control unit which supports the rapid prototy ping, coordinately controled the clutch and brake system, simulating the actual upshift process. Meanwhile, CANalyser monitored the behavior of the brake system. Finally, improvements for brake system were proposed. In conclusion, the countershaft brake system could meet the requirements of AMT.

  7. DESIGN OF ELECTRIC VEHICLE BRAKING ENERGY RECOVERY SYSTEM BASED ON THE COMPOSITE BRAKING%基于复合制动的电动汽车制动能量回收系统设计

    Institute of Scientific and Technical Information of China (English)

    彭闪闪; 赵雪松; 时培成

    2015-01-01

    以某国产品牌纯电动汽车为研究对象,以回收和利用汽车的制动能量为研究目标,综合考虑汽车制动动力学特性、电机发电特性和电池充电特性等多方面因素,对其制动能量回收及控制策略进行探讨和研究;提出了一种机械和电机复合制动的能量回收方案;并基于Simulink软件进行了详细的仿真分析,获得了一个较为理想的能量回收率,为进一步开发设计具体的制动能量回收系统控制器奠定了良好的基础。%A domestic brand of pure electric vehicles is taken as the research object and the recovering and using of car braking energy of automobile is taken as the research target. The braking energy recovery and control method is discussed with the consideration of the vehicle braking dynamics, electric power generation characteristics, battery charging characteristics and other factors. A mechanical and electrical composite braking plan of energy recovery is proposed, and using the Simulink to simulate. The simulation results show that the energy efficiency is higher. It laid a good foundation for further design of specific braking energy recovery system controller.

  8. Dual Mode Vehicle with In-Wheel Motor: Regenerative Braking Optimization.

    OpenAIRE

    2013-01-01

    To meet the growing need for mobility of people and goods while massively reducing CO2 emissions, the electrification of vehicles is an essential solution. The variety of vehicles and their use results in innovative solutions for adapted architecture. This is especially true for light commercial vehicles where the objective is to promote full electric use in urban conditions (zero emission vehicle) while maintaining significant range autonomy on road. The project VelRoue, a partnership b...

  9. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  10. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  11. XJ250修井机液压盘式刹车液压控制系统仿真分析%Simulation Analysis of the Hydraulic Control System of the Hydraulic Disc Brake on the X J250 Workover Rig

    Institute of Scientific and Technical Information of China (English)

    张连业; 吴文秀; 刘威

    2012-01-01

    Taking as the object of study the hydraulic control system of the hydraulic disc brake on the XJ250 workover rig, the mathematical model on the basis of global flow and hydraulic cylinder piston motion equation was established by analyzing the structure of the control system. The AMESim simulation model for the hydraulic control system of the braking system was constructed and the model parameters and simulation parameters were set. The var- iation of the typical sine curve hydraulic source signal and excitation electromagnetic valve signal was used to carry out a simulation study of the response system of the operating brake hydraulic control system. The sudden opening of the step switch signal was used to conduct a simulation analysis of the urgency brake hydraulic system response. The hydraulic dynamic response curve of the main valve port of the hydraulic control system in the process of operating brake and urgency brake was derived. The simulation result is in agreement with the practical operation. The simulation analysis offers a reference for the improvement of the performance of the hydraulic control system of the workover rig disc brake.%以XJ250修井机液压盘式刹车的液压控制系统为研究对象,通过分析液压盘式刹车的液压控制系统结构,建立了基于全局流量与液压缸活塞运动方程的数学模型;构建了液压控制系统的AMESim仿真模型,设置了模型参数及仿真参数。以典型的正弦曲线液压源信号及激励电磁阀信号变化仿真研究工作制动液压控制系统响应性能,以阶跃开关信号突然开启模拟分析紧急制动液压系统响应。得到了工作制动及紧急制动过程中液压控制系统主要阀口处液压动态响应曲线,仿真结果与实际运行情况相符。该仿真分析为修井机液压盘式刹车液压控制系统性能的改进与完善提供了参考。

  12. Simulation on Series Electro-hydraulic Combined Braking for 4WD Hybrid Electric Car%四驱混合动力轿车串联式电液复合制动仿真

    Institute of Scientific and Technical Information of China (English)

    赵治国; 彭玉钢

    2012-01-01

    针对自主开发的四轮驱动混合动力轿车,设计了串联式制动能量回收系统。基于制动安全性和最大化回收制动能量的原则,提出了ABS液压制动与再生制动协调控制的电液复合制动控制策略。该策略先根据驾驶员的操作实时计算制动强度和总需求制动力矩,然后依据制动强度大小对总需求制动力矩进行分配,并且实时检测车轮滑移率以判断是否切换到ABS独立工作模式。并在Simulink软件平台上建立了样车动力传动、制动系统及控制策略模型,分别在轻度、中度和紧急制动三种制动工况下仿真了串联式制动能量回收系统的性能。仿真结果表明:所提出的电液复合制动控制策略能有效地提高制动能量的回收效率,且在紧急制动时能保证车辆的制动稳定性能。%A new type of series regenerative braking system was designed for 4WD-hybrid electric car.Based on a principle of braking safety and maximize energy recovery,a electro-hydraulic combined braking control strategy for the sake of coordinately controlled between regenerative braking and ABS hydraulic braking was proposed.This strategy firstly calculated the braking strength and the braking torque required on the basis of driver's operation,then according to braking strength,the braking torque required was distributed,besides judging when would the operating mode switch to ABS mode by real-time detection of slip ratio.Simulation model including powertrain,braking system and control strategy was modeled on Matlab/Simulink,the performance of Series Regenerative Braking system was respectively verified in the condition of slight braking,moderate braking and emergency braking.The simulation results show that the proposed strategy obviously improves the braking energy recovery efficiency,meanwhile making sure that the car has a good braking performance in an emergency braking condition.

  13. Dynamic simulation analysis for emergent braking of a tracked vehicle%履带车辆紧急制动动力学仿真分析

    Institute of Scientific and Technical Information of China (English)

    李伟; 马吉胜; 李志强; 范兆军

    2009-01-01

    基于虚拟样机技术,用ADAMS/ATV模块建立了某型履带车辆的紧急制动动力学模型.通过实车的行驶试验和紧急制动试验对模型进行了VV&A验证,结果表明所建动力学模型在反映履带车辆行驶及紧急制动动力学行为方面能够满足工程分析的需要.将其作为分析平台,对履带车辆进行了紧急制动动力学仿真分析,分析了3-6档平均车速下紧急制动的动力学响应;并通过紧急制动仿真实验得到了履带车辆的制动特性图.%Based on virtual prototyping technology, the dynamic model for emergent braking of a certain tracked ve- hicle was established by means of ADAMS/ATV software. With travel test and emergent braking test of a tracked vehicle, VV&A of the dynamic model was carried out and its credence was proved. Using it as a simulation base, the dynamic sim- ulation analysis for emergent braking of the tracked vehicle was carried out. The emergent braking dynamic responses at the mean velocity of 3-6 gear ranks were analyzed and the braking characteristic curve was obtained with a simulation test of emergent braking.

  14. Research on the Feasibility of Application of ABS in Hydraulic Disc Brake%ABS在液压盘式刹车中应用的可行性研究

    Institute of Scientific and Technical Information of China (English)

    石固欧; 刘威

    2013-01-01

    The anti-lock braking system (ABS) of automobiles has such advantages as slippage and lock prevention,relatively short distance of braking and reduction of tyre wear.Therefore,the ABS control strategy was introduced to the design of the hydraulic system of drilling and workover rigs.The neotype hydraulic control system of hydraulic disc brake with both manual and automatic operation modes was built,which could achieve ABS control strategy.A comparative braking dynamic simulation analysis of the hydraulic system and running conditions with and without the ABS system was conducted.The analysis shows that selection of the proper duty cycle of the ABS system can get closer to the braking time and angle displacement without the ABS system.The better pressure regulation waveform had been obtained.Regulation of the ABS control strategy can obtain the ideal braking time and brake's braking torque.Therefore,the complex requirement of workover lifting system for operation process can be satisfied desirably.%汽车ABS防抱死刹车系统具有防滑防抱、制动相对距离短及能减轻轮胎磨损等优点.为此,将汽车ABS控制策略引入到钻(修)井机液压盘式刹车系统设计中,构建了具有手动/自动操作方式且能实现ABS控制策略的液压盘式刹车的新型液压控制系统,并对具有ABS系统与无ABS系统的盘式刹车分别进行液压系统与下入工况制动动力学仿真对比分析.分析结果表明,选择适当的ABS系统占空比,可以更接近无ABS系统刹车时间与角位移,并获得较好的压力调节波形,调整ABS控制策略可使系统获得理想的刹车时间与刹车制动力矩,从而能够较好地满足修井机起升系统作业过程的复杂要求.

  15. Recovering system of swing braking energy in hydraulic excavator%液压挖掘机回转制动能量回收系统

    Institute of Scientific and Technical Information of China (English)

    管成; 徐晓; 林潇; 王守洪

    2012-01-01

    为了回收液压挖掘机在回转阶段的制动能量,提出一种基于回转马达进/出口压力差自动识别回转过程所处阶段,决策能量回收的全液压自动控制回转制动能量回收系统.引入一正态分布函数,以蓄能器压力状态(SOP)、液压泵出口压力以及负流量反馈压力为输入信号,根据负载的实时需求功率,提出一种以复合恒功率-负流量动力控制决策发动机和蓄能器主辅动力源的能量分配方法,保证回转机构的正常高效运转.仿真结果表明,当回转系统作为单独执行机构时,采用该回收系统的液压挖掘机,能够实现高达50.0%的再生制动能量用于驱动回转的能量回收利用效率,在相同工况下比同吨位液压挖掘机节能16.3%,不影响操作习惯和操作性能.%In order to recover the braking energy from the hydraulic excavator during swing phase,an automatic hydraulic-controlled braking energy recovery system was proposed which can automatically identify the swing stage by the pressure difference between inlet and outlet of the swing pump and determining distribution algorithm of the recovering energy. One normal school function was introduced. State of pressure (SOP) of the accumulator, the outlet pressure of the hydraulic pump and the feedback pressure from negative-flow control were considered as input signals. According to the real-time required power of the load, the energy distribution algorithm was proposed based on the comprehensive constant-power negative-flow control between the main power source and the auxiliary power source (that is engine and accumulator) , which ensures the normal operation of the swing mechanism. Simulation results show that the hydraulic excavator equipped with the swing recovery system can achieve 16. 3% energy saving compared with the baseline under the same working condition, and the overall chain efficiency from the total braking energy to the terminal swing mechanism is as

  16. Design and Simulation on Electric Braking System of Pure Electric Vehicle%纯电动汽车电制动系统设计与仿真

    Institute of Scientific and Technical Information of China (English)

    王系朋; 潘盛辉

    2016-01-01

    In order to improve the utilization of electrical energy and more efficient pure electric vehicles, electric braking system can be installed on pure electric vehicles. Electric brake system can recover kinetic energy during braking and convert it into electrical energy. This paper presents an electrical braking system. The basic idea of the design is to rectify AC during braking is-sued by the AC motor into DC, and DC-DC converter converts the rectified voltage DC to appropriate size and charge it to the battery pack. According to the simulation results, electric energy 17 267 J can be recovered with the recovery efficiency 49. 1%. The sim-ulation results show that the designed electric braking system can recover kinetic energy during braking, and convert it into electrical energy to re-use, improving utilization of electrical energy, and effectively extending the pure electric vehicle mileage.%为了提高电能的利用率,让纯电动汽车在行驶过程中更加节能,可以为纯电动汽车安装电制动系统,电制动系统可以回收纯电动汽车在制动过程中的部分动能,并将其转换成为电能再次利用。本文设计了一种电制动系统,设计的基本思路是先将制动过程中电机发出的交流电整流,然后通过DC-DC直流变换器把整流后的直流电的电压值转换为合适的大小并充入电池组。根据仿真结果求得本文设计的电制动系统在测试的工况下,可以回收电能17267 J,回收效率为49.1%。仿真结果表明,本文设计的电制动系统可以将纯电动汽车制动过程中的部分动能被转化成为了电能再次利用,提高了电能的利用率,可以有效地延长纯电动汽车的续航里程。

  17. The science of vehicle dynamics handling, braking, and ride of road and race cars

    CERN Document Server

    Guiggiani, Massimo

    2014-01-01

    Vehicle dynamics is often perceived as a quite intuitive subject. As a matter of fact, lots of people are able to drive a car. Nevertheless, without a rigorous mathematical formulation it is very difficult to truly understand the physical phenomena involved in the motion of a road vehicle. In this book, mathematical models of vehicles are developed, always paying attention to state the relevant assumptions and to provide explanations for each step. This approach allows for a deep, yet simple, analysis of the dynamics of vehicles, without having to resort to foggy concepts. The reader will soon achieve a clear understanding of the subject, which will be of great help both in dealing with the challenges of designing and testing new vehicles and in tackling new research topics. The book covers handling and performance of both road and race cars. A new approach, called MAP (Map of Achievable Performance), is presented and thoroughly discussed. It provides a global and intuitive picture of the handling features of...

  18. Full vehicle ABS braking using the SWIFT rigid ring tyre model

    NARCIS (Netherlands)

    Jansen, S.; Pauwelussen, J.P.; Gootjes, L.; Schröder, C.

    2000-01-01

    In recent years, at the Delft University of Technology and TNO Automotive and in conjuction with an industrial consortium, a pragmatic tyre model has been developed going by the name SWIFT, which is geared to the analysis of tyre oscillations and its effects on vehicle behaviour. The SWIFt tyre mode

  19. Research of Braking Force Distribution and Energy Recovery Control Strategy of Hybrid Electric Vehicle%混合动力电动汽车制动力分配及能量回收控制策略研究

    Institute of Scientific and Technical Information of China (English)

    金宇华; 张庭芳; 刘建春

    2011-01-01

    Braking energy recovery is one of resource of HEV great advantage over traditional vehicles. Through regenerative braking, kinetic energy in the course of braking can be transformed to electricity energy into battery which can be utilized again when driving, so the vehicle energy efficiency is improved. So it's necessary to research on how to coordinate and control the assignment proportion between friction brake and regenerative brake, and try to recycle braking energy as much as possible under the precondition that brake security is ensured, and then the secondary development of regenerative braking control strategy module in simulation software ADVISOR is carried out.%制动能量回收是混合动力汽车相对于传统燃油汽车的巨大节能优势来源之一.利用再生制动,可以将制动过程中的动能转化为电能储存到电池当中,以备驱动时使用,提高整车的能量利用率.深入研究了如何协调控制摩擦制动和再生制动之间的分配比例,在保证制动稳定性前提下,尽可能多地回收制动能量,并对ADVISOR中再生制动控制策略模块进行二次开发.

  20. Brake Performance Simulation and Test Analysis of Hydraulic Hybrid Bus%液压混合动力公交车制动性能仿真与试验分析

    Institute of Scientific and Technical Information of China (English)

    曲金玉; 李训明; 任传波; 韩尔樑; 刘林

    2014-01-01

    In consideration of city buses operating characteristics and poor fuel economy in urban driving cycles, we present a novel hydraulic hybrid system, and build three models, i.e. brake energy recovery dynamic model, energy regeneration dynamic model and diesel hydraulic start model, and then make brake performance simulation. Finally we test performance of the system by bench and road test. The results show that the hydraulic hybrid bus is capable of braking energy recovery, braking energy recovery rate in typical urban driving cycle is up to 69.7 % and energy regeneration rate is 32.8%, hydraulic engine start time is 1.7 second.%针对城市公交车运行特点和在城市运行工况下燃油经济性差的问题,提出一种新型液压混合动力系统,并建立制动回收过程动力学模型、能量再生过程动力学模型和柴油机液压起动模型等,对其制动性能进行仿真,最后进行了样机台架、实车道路试验。试验结果表明,该液压混合动力公交车可实现汽车制动能量回收等功能,在典型城市循环工况下制动能量回收率为69.7%,制动能量再生率为32.8%,液压起动发动机时间为1.7 s。

  1. Research and Development of the Brake Performance Inspection Device for Parked Vehicles%一种驻车制动性能检验装置的研制

    Institute of Scientific and Technical Information of China (English)

    于浩淼; 徐弢; 高文翔

    2011-01-01

    对机动车辆驻车制动性能进行研究,设计了一种符合国标要求的机动车驻车制动性能检验装置.该装置采用检测仪表与机械牵引装置相结合的方法,将坡道上的驻军制动测量转换为平坦路面驻车制动测量.测试结果表明,采用该装置进行驻车制动性能测试的结果与制动试验台测试基本一致,且装置具有操作简单、安装方便、精确度高等特点,适用于机动车检测站、汽车修理厂、事故车辆检验等场合.%The brake performance of the motor-driven parked vehicles is researched and the inspection device conforms national standard has been designed. By combining the detection instruments and mechanical traction equipment, the parked brake measurement on slope is transformed into parked brake measurement on smooth land. The test results indicate that the inspection result obtained by this device is basically consistent with that from brake test bench. The device features ease operated, installed and high accuracy. It is suitable for inspection stations, and repair shops of the motor-driven vehicles, as well as examination of accident vehicles.

  2. 基于双制动模式的电动汽车制动能量回收方法*%Braking Energy Recovery of Electric Vehicle Based on Dual-mode

    Institute of Scientific and Technical Information of China (English)

    张吉康; 麻友良

    2013-01-01

    Aiming at the problem of the development of electric vehicles, the importance and necessity of the research for braking energy recovery of electric vehicle is briefly analyzed. And the current development of the braking energy recovery technology of electric vehicle is briefly analyzed. On the basis of deeply study of braking energy recovery technology of electric vehicles, the method of braking energy recovery of electric vehicle based on the dual braking mode is put forward, and the structural design of the braking energy recovery system is introduced, and focused on the method for determining the relevant parameters.%  针对电动汽车发展的问题,扼要地分析了电动汽车制动能量回收研究的重要性和必要性,简要分析了电动汽车制动能量回收技术的发展现状。在深入研究电动汽车制动能量回收技术的基础上,提出了基于双制动模式的电动汽车制动能量回收方法,介绍了其结构设计,重点论述了相关参数的确定方法。

  3. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  4. 基于区间分析的汽车制动器不确定性优化%Uncertainty Optimization of Vehicle Brakes Based on Interval Analysis

    Institute of Scientific and Technical Information of China (English)

    吕辉; 于德介

    2015-01-01

    为抑制不确定参数汽车制动器的制动噪声,基于区间分析理论,将响应面法与优化技术相结合,提出了一种降低系统复模态负阻尼比以提高汽车制动器稳定性的优化方法。该方法采用拉丁超立方试验设计在设计变量和不确定参数构成的混合空间内采样,建立了包含不确定参数的制动器系统复模态负阻尼比的响应面近似模型;以系统结构参数为设计变量,以最小化系统复模态负阻尼比为优化目标,利用基于区间分析的不确定性优化方法对响应面近似模型进行优化。对某型车的浮钳盘式制动器的优化结果表明,采用该方法对汽车制动器进行优化,能在整个使用周期内有效减小制动器不稳定模态的负阻尼比,从而提高制动器的稳定性。%To suppress the noise of vehicle brakes with uncertain parameters, an optimization scheme by re-ducing the negative damping ratio of the complex mode of brake system to improve the brake stability is presented based on the theory of interval analysis and combining response surface method with optimization technique. The scheme adopts the Latin hypercube design of experiment to conduct sampling within the mixed space formed by de-sign variables and uncertain parameters and create a response surface approximation model for the negative damping ratio of the complex mode of brake system with uncertain parameters. With the structural parameters of brake system as design variables and minimizing the negative damping ratio of its complex mode as optimization objective, an opti-mization is performed on response surface approximation model with an uncertainty optimization scheme based on in-terval analysis. The results of the optimization on the float caliper disc brake of a vehicle show that the optimization on vehicle brakes using the scheme presented can effectively reduce the negative damping ratio of unstable mode of brake system in entire life

  5. Braking Energy Recovery System for Electric Vehicle%电动汽车制动能量回收系统研究

    Institute of Scientific and Technical Information of China (English)

    王猛; 孙泽昌; 卓桂荣; 程鹏

    2012-01-01

    In order to further improve the energy efficiency of electric vehicles, thus to improve the driving range economy, a braking energy recovery system for electric vehicles with simple structure, high reliability and fail-safe function was developed. Meanwhile, considering performance parameters of motor and battery, the efficient regenerative braking control strategy with strong portability was developed. Based on the proposed system and control strategy, hardware-in-loop tests were accomplished. Test results showed that friction braking force and regenerative braking force could be well integrated and braking energy recovery efficiency was high. Finally, experimental data of a FCV on CYC Japan-1015 proved the performance and feasibility of the proposed system. Braking energy recovery efficiency reached to 59. 15%.%为进一步提高电动汽车的能量利用效率以改善其续驶里程,开发了一套电动汽车制动能量回收系统.系统结构简单,可靠性高,并具有机械制动备份功能.同时,考虑到电动汽车电动机和电池性能参数,开发了高效的再生制动控制策略,算法具有较强的移植性.采用硬件在环的方式对系统的控制效果和制动能量回收效率进行了仿真测试.结果表明,再生制动力和摩擦制动力可以很好地协调运作,同时有效地回收制动能量.最后,在燃料电池汽车上进行转鼓实验,很好地完成了Japan-1015循环工况,能量回收效率高达59.15%.

  6. 多轴汽车驻车制动性能分析方法%Analysis Method of Parking Braking Performance for Multi-axle Vehicles

    Institute of Scientific and Technical Information of China (English)

    何仁; 童成前; 何建清

    2011-01-01

    Taking three-axle vehicle as an example, the calculation formula of parking grade limit of multiaxle vehicle is derived with its influencing factors analyzed. On this basis, an analysis method for parking-braking performance of multi-axle vehicle is proposed, in which the maximum parking grade is determined by comparing parking grade limit and the maximum parking grade calculated by torque method. In addition, a concept named utilization rate of grade limit is proposed as a supplement to the analysis indicators of parking braking performance.The results of real sample analysis show that the method proposed is simple, pragmatic and can effectively analyze the parking braking performance of multi-axle vehicles.%以三轴汽车为例,推导出多轴汽车的驻车极限坡度计算公式,并对其影响因素进行分析.在此基础上,提出了多轴汽车的驻车制动性能分析方法,即通过对驻车极限坡度与力矩法求出的最大驻车坡度进行比较而获得汽车的最大驻车坡度:外,提出了极限坡度利用率的概念,作为对驻车制动性能分析指标的补充.实例分析结果表明,该方法简单、实用,能对多轴汽车驻车制动性能进行有效分析.

  7. 混合动力汽车再生制动的归类及其应用%Classification and Its Application of Regenerative Braking for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    盖福祥; 杜家益; 张彤

    2011-01-01

    According to different braking control strategies, the regenerative braking systems of hybrid electric vehicle (HEV) are classified into three categories: series braking with the best braking effect, series braking with the maximum energy regeneration rate and parallel braking, which are then analyzed respectively. A control strategy is put forward based on SOC, vehicle speed and the position of braking pedal, and is applied to a typical parallel HEV. The test results show that the braking control strategy proposed can recovery more braking energy with better braking feeling on the premise of safety assurance.%按不同的制动控制策略,将混合动力汽车再生制动系统分为具有最佳制动效果的串联制动、具有最佳能最回收率的串联制动和并联制动3种类型,并分别对它们进行了分析.提出了基于SOC、车速和制动踏板位置,动态地控制冉生制动转矩的控制策略,并将其应用于一款并联混合动力汽车上.测试结果表明:所制定的制动控制策略,可在保证安伞的前提下,更多地回收制动能量,并有较好的制动感觉.

  8. 城市轨道车辆电气制动能量建模及仿真%Model Building and Simulation of the Electric Brake Energy of Urban Rail Vehicle

    Institute of Scientific and Technical Information of China (English)

    师蔚; 方宇

    2011-01-01

    By analyzing conditions that urban rail vehicles in the traction power supply network occur the regenerative braking or resistor braking in electric braking process, and depending on the grouping of vehicles, lines, load, run strategy, operation plans, traction power supply and other basic conditions, based on single vehicle computing model and multi-vehicles power supply network model, electric braking energy distribution model were established and simulation were carried out. Simulation results showed that in the same line and vehicle conditions, the ratio of regenerative braking energy occupying the total braking was 80.1% when vehicle interval was 180 seconds, with the interval increases the ratio decrease. When the interval was 900 seconds the electric braking energy was almost consumed by braking resistor.The braking energy distribution model can provide theoretical support for a variety of urban rail transit braking energy recovery methods, but also offer foundation for selection of braking energy recovery device.%通过分析城轨车辆在电气制动过程中发生再生制动及电阻制动的条件,并且根据车辆的编组、线路、载重、运行策略、运行图、牵引供电等基本因素,在单车牵引计算模型及多车运行的牵引供电网络模型的基础上,建市了城轨车辆电气制动能量分布模型,并进行了实例仿真计算.仿真计算结果表明,在相同的线路及车辆条件下,车辆发车间隔为180 s时,再生制动能量占总电气制动能量的比率为80.1%,随着发车间隔的增大,该比率逐渐减小;当发车间隔在900 s时,电气制动能最绝大多数消耗在制动电阻上.该制动能量分布模型可以为各种城市轨道交通制动能量回收方法提供理论支持,还可以为各种制动能量回收装置提供装置选型等方面的依据.

  9. Experimental study on wheel-hub motor driven electric vehicles with hybrid brake%轮毂电机驱动电动车复合制动控制实验研究

    Institute of Scientific and Technical Information of China (English)

    魏海峰

    2011-01-01

    为降低轮毂电机驱动电动车功率、元件损耗,提高能量使用效率,研究了一种新颖的机电复合制动方案.轻度制动或缓速制动初期优先采用回馈制动;高制动强度时,回馈制动与机械制动共同作用,在保证足够制动力矩前提下,尽可能提高制动能量回收程度.制动控制中,采用Mamdani模糊控制器对制动电流进行设定.实验结果表明该方案安全可靠,制动能量回收效率较高,并能有效减少车辆制动距离.%In order to reduce losses and improve the efficiency of energy use, a new hybrid braking scheme is proposed. Regenerative brake has priority in mild braking situations. Working together of regenerative braking and mechanical braking can maximize braking energy recovery. Meanwhile, it can ensure adequate braking torque in high intensity brake situations. Mamdani fuzzy controller is used to set the conference brake current.Experimental results show that the designed scheme is valid, and the efficiency of braking energy recovery is high. It is effective to reduce the braking distance of electric vehicles.

  10. Research of Motorcycle Braking Parameters

    Directory of Open Access Journals (Sweden)

    Loreta Levulytė

    2016-12-01

    Full Text Available From a technical point of view, in dangerous or emergency situation is very important motorcycle driver reaction and vehicle braking time. Motor-cycle deceleration parameters depend not only on the motorcycle brake system, but also on the driving experience. A significant influence on decel-eration the motorcycle has aerodynamic parameters, pavement type and condition, as well as the technical condition of the motocycle, shock absorb-ers, tire type and their technical condition. This article provides an analysis of the motorcycle longitudinal deceleration, braking modes of the mo-torcycle on a dry asphalt road surface. Motorcycle stopping – deceleration – acceleration efficiency issue, stopping in different modes. First ana-lyzed the dynamics of a motorcycle deceleration braking only the front wheel, then braked front and rear wheels and complex – then braked the front and rear wheels at the same time. The goal of experimental study is to determine the influence of braking modes intense fir motorcycle brak-ing deceleration when braking on dry road pavement, at three different braking modes, and set the braking path of change. Motorcycle decelera-tion in the longitudinal direction is an important parameter for analysis traffic accidents, for accident reconstruction process and the examination of motorcyclists technical possibility to avoid an accident.

  11. Improvement of control strategy in hybrid brake system of electric vehicle%电动汽车混合制动系统控制策略的改进

    Institute of Scientific and Technical Information of China (English)

    何仁; 俞剑波; 王润才

    2013-01-01

    针对电动汽车混合制动系统,通过对整车制动动力学和ECE R13法规的分析,理论上确定了混合制动系统的安全制动区域.在此区域内,以充分回收车辆制动能量为目标,在满足ECE R13制动法规和整车制动稳定性的前提下,对于前后轴机械制动力分配固定的混合制动系统,提出了一种电动机制动力与摩擦制动力分配的优化方法.以工作模式切换点的坐标及制动力分配曲线的斜率为优化对象进行优化.此外,基于制动力分配影响因素多变的特点,设计了一种3参数输入的制动力分配模糊控制策略.分别建立新的制动控制策略模型嵌入到ADVISOR2002中进行仿真分析,从而验证改进控制策略的有效性.结果表明2种新的控制策略能够有效改善电动汽车的制动能量回收率.%The safe area of braking force distribution was established theoretically by analyzing braking dynamics and the ECE R13 rule for hybrid braking system of electric vehicles. In the safe area, to obtain maximum energy of regenerative braking and meet the requirements of ECE R13 and braking stability, an optimization method of motor regenerative braking force and friction braking force distribution was proposed for the hybrid braking system with friction braking force distribution to front and rear axle. The point coordinate of switching operation mode and the rake ratio of braking force distribution were optimized. According to the changeable effect factors of braking force distribution, a novel control strategy of braking force distribution was designed based on fuzzy logic with three parameters-input. The new models of braking control strategy were simulated in ADVISOR2002 to verify the improved control strategy. The results show that the two new control strategies can effectively improve the rate of braking energy recovery in electric vehicle.

  12. An analysis of braking measures

    NARCIS (Netherlands)

    De Groot, S.; De Winter, J.C.F.; Wieringa, P.A.; Mulder, M.

    2010-01-01

    Braking to a full stop at a prescribed target position is a driving manoeuvre regularly used in experiments to investigate driving behaviour or to test vehicle acceleration feedback systems in simulators. Many different performance measures have been reported in the literature for analysing braking.

  13. Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karbaschian

    2014-05-01

    Full Text Available The main advantage of hybrid powertrains is based on the efficient transfer of power and torque from power sources to the powertrain as well as recapturing of reversible energies without effecting the vehicle performance. The benefits of hybrid hydraulic powertrains can be better utilized with an appropriate power management. In this paper, different types of power management algorithms like off-line and on-line methods are briefly reviewed and classified. Finally, the algorithms are evaluated and compared. Therefore, different related criteria are evaluated and applied.

  14. Study on Braking Sensation Based on Urban Working Conditions

    Directory of Open Access Journals (Sweden)

    Abi Lanie

    2017-01-01

    Full Text Available In this paper we researched the vehicle braking sense in three aspects of human, vehicle and environment and analysed their impacts on brake feeling. Through the real vehicle test we analysed the relationship among pedal force, pedal travel and deceleration. We used dynamometer test method to study the brake noise question. We designed a fixture which could imitate the suspension and made the test more close to the true level. Moreover we discussed how to establish the evaluation system of vehicle braking condition. Through real vehicle test of braking, we can test and record the brake system parameters in the braking process under urban working conditions. We recorded the brake frequency, the change of brake speed and brake disc temperature. Meanwhile, based on the analysis of braking condition, we put forward the index of brake load to reflect the city’s traffic conditions. Experiment show that the braking condition and brake feel are related, braking condition also provides theoretical support for the design of brake system.

  15. Emergency Braking Dynamic Simulation Analysis of Tracked Vehicle on Downward Slope Road%履带车辆下长坡紧急制动动力学仿真分析

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Based on virtual prototyping technology, emergency braking dynamic model of a certain tracked vehicle was established by means of ADAMS/ATV software. By travel test and emergency braking test of the tracked vehicle, VV&A of the emergency braking dynamic model was carried out and its credence was proved. The results show that the model can meet the needs of engineering analysis on dynamics behavior of travel and emergency braking. Using it as a simulation base, emergency braking dynamic simulation analysis of the tracked vehicle was carried out about the tracked vehicle on different slope of the road with different braking condition. Through the results, it has an important reference value for studying dynamics behavior of the emergency braking of tracked vehicle on the slope road.%  基于虚拟样机技术,用ADAMS/ATV模块建立了某型履带车辆紧急制动的动力学模型。通过实车的行驶试验和紧急制动试验对模型进行了验证,结果表明所建动力学模型在反映履带车辆行驶及紧急制动动力学行为方面能够满足工程分析的需要。将其作为分析平台,对履带车辆进行了下不同坡度路面在不同制动工况下的紧急制动的动力学仿真分析,通过仿真结果,对研究履带车辆下长坡紧急制动的动力学行为具有很大的参考价值。

  16. A Model Predictive Control Approach for Fuel Economy Improvement of a Series Hydraulic Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tri-Vien Vu

    2014-10-01

    Full Text Available This study applied a model predictive control (MPC framework to solve the cruising control problem of a series hydraulic hybrid vehicle (SHHV. The controller not only regulates vehicle velocity, but also engine torque, engine speed, and accumulator pressure to their corresponding reference values. At each time step, a quadratic programming problem is solved within a predictive horizon to obtain the optimal control inputs. The objective is to minimize the output error. This approach ensures that the components operate at high efficiency thereby improving the total efficiency of the system. The proposed SHHV control system was evaluated under urban and highway driving conditions. By handling constraints and input-output interactions, the MPC-based control system ensures that the system operates safely and efficiently. The fuel economy of the proposed control scheme shows a noticeable improvement in comparison with the PID-based system, in which three Proportional-Integral-Derivative (PID controllers are used for cruising control.

  17. Free-piston engine-and-hydraulic pump for railway vehicles

    Directory of Open Access Journals (Sweden)

    A. F. Golovchuk

    2013-04-01

    Full Text Available Purpose. The development of the free-piston diesel engine-and-hydraulic pump for the continuously variable hydrostatical transmission of mobile power vehicles. Methodology. For a long time engine builders have been interesting in the problem of developing free piston engines, which have much bigger coefficient of efficiency (40…80%. Such engines don’t have the conversion of reciprocating motion for inner combustion engine piston into rotating motion of crankshaft, from which the engine torque is transferred to the power machine transmission. Free-piston engines of inner combustion don’t have the crank mechanism (CM that significantly reduces mechanical losses for friction. Such engines can be used as compressors. Free-piston engine compressor (FPEC – is a free-piston machine in which energy received from engine’s cylinder is being transferred direct to compressor’s pistons connected with operational pistons of engine without crank mechanism. Part of the pressed air is being consumed for engine cylinder drain and the other part is going to the consumer. Findings. The use of free-piston engines-and-hydraulic pumps as power-transmission plants of power vehicles (diesel locomotives, combine harvester, tractors, cars and other mobile and stationary power installations with the continuously variable transmissions allows cost effectiveness improvement and metal consumption reduction of these vehicles, since the cost effectiveness of FPE is higher by 25-30%, and the metal consumption is lower by 40-50%. Originality. One of the important advantages of the free-piston engines is their simplicity and engine balance. As a result of the crank mechanism absence their construction is much simplified and the vibrations, peculiar to the ordinary engines are eliminated. In such installation the engine pistons are directly connected through the rod to compressor pistons and therefore there are no losses in the bearing bushes. Practical value. The free

  18. 燃料电池汽车线控串行复合制动系统的开发%Development of BBW Series Hybrid Brake System for FCV

    Institute of Scientific and Technical Information of China (English)

    刘清河; 刘涛; 孙泽昌

    2011-01-01

    A brake-by-wire (BBW) hydraulic brake valve with mechanical backup is developed and its control performance is tested and analyzed. Based on BBW, a series hybrid brake system for a fuel-cell vehicle is built with corresponding control algorithm for electro-hydraulic braking designed. A hardware-in-the-loop simulation on series hybrid braking process is conducted. The results show that the system achieves the series application of motor regenerative braking and hydraulic friction braking, effectively enhancing braking energy recovery rate.%开发了具备机械备份的线控液压制动阀并对其控制性能进行了试验和分析.以线控制动系统为基础,建立了燃料电池汽车线控串行复合制动系统,并设计了与之相适应的电液复合制动控制算法.对串行复合制动过程进行了硬件在环仿真.结果表明,该系统实现了电机再生制动与液压摩擦制动的串行施加,有效提高了制动能量回收率.

  19. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  20. Developing of a software for determining advanced brake failures in brakes test bench

    Directory of Open Access Journals (Sweden)

    Hakan Köylü

    2016-08-01

    Full Text Available At present time, the brake test bench conducts the braking and suspension tests of front or rear axles and the test results are evaluated through one axle. The purpose of the brake testing system is to determine braking force and damping coefficient dissymmetry of one axle. Thus, this test system evaluates the performance of service brake, hand brake and suspension systems by considering separately front and rear axle dissymmetry. For this reason, the effects of different braking and damping forces applied by right and left wheels of both axles on braking performance of all vehicle are not determined due to available algorithm of the test bench. Also, the other brake failures are not occurred due to the algorithm of brake test system. In this study, the interface has been developed to determine the other effects of dissymmetry and the other brake failures by using the one axle results of brake test bench. The interface has algorithm computing the parameters according to the interaction between front and rear axles by only using measured test results. Also, it gives the warnings by comparing changes in the parameters with braking performance rules. Braking and suspension tests of three different vehicles have been conducted by using brake test bench to determine the performance of the algorithm. Parameters based on the axle interaction have been calculated by transferring brake test results to the interface and the test results have been evaluated. As a result, the effects of brake and suspension failures on braking performance of both axle and vehicle have been determined thanks to the developed interface.

  1. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đukan Majkić

    2013-10-01

    Full Text Available Hydraulic servo controls are designed to facilitate rotation in place without providing increased ppower to steering wheels. In the initial design phase, the dimensions required for control systems are usually obtained through the calculation of their load when wheels rotate in place, where the torque is calculated empirically. The starting point in the project calculation is thus to determine the hydraulic power steering torque torsional resistance which is then used to determine the maximum value of force i.e. the torque on the stering wheel. The calculation of the control system servo control consists of determining the basic parameters, the required pump capacity, the main dimensions of the hub and the  pipeline and the conditions for the stability of the system control mechanism. Introduction The aim of the calculation of the steering control system is to determine the basic parameters of its components which ensure the fulfilment of requirements of the control system. Calculations are performed in several stages with a simultaneous  detailed constructive analysis of the control system leading to the best variant. At each stage, design and control calculations of the hydraulic servo of the steering mechanism are performed. The design allows the computation to complete the selection of basic dimensions of the amplifer elements, starting from the approved scheme and the basic building loads of approximate values. Calculations control is carried out to clarify the structural solution and to obtain the output characteristics of the control amplifier which are applied in the  estimation of  potential properties of the structure. Project calculation Baseline data must be sufficiently reliable, ie. must correspond to the construction characteristics of the vehicle design and the control system as well as to service conditions..A proper deterimination of the torque calculation of torsional resistance in wheels is of utmost importance. Moment of

  2. Design and Simulation of Electronically Controlled Brake System for Heavy Off-Road Vehicle%重型越野汽车电控制动系统的设计与仿真

    Institute of Scientific and Technical Information of China (English)

    张堃; 黄茂; 刘保国; 虎忠

    2014-01-01

    For reducing the braking response time and improving the braking performance of heavy off-road vehicle, an electronically controlled brake system ( EBS) for pneumatic braking is designed. Based on the perform-ance parameters of target vehicle and EBS control algorithm with Matlab/Simulink as simulation platform, models for target vehicle and control alroithm are built to simulate the braking performance of EBS designed in different working conditions, which are then compared with the test data of conventional ABS system, verifying the rationality of sys-tem designed. The results show that the EBS designed has obvious advantages in reducing brake response time and enhancing braking safety.%为缩短重型越野汽车的制动响应时间,提高制动性能,设计了基于气压制动的电控制动系统( EBS)。依据目标车型的性能参数及EBS控制算法,以Matlab/Simulink为仿真平台,建立了目标车型的整车模型及控制算法模型。仿真研究了所设计的EBS系统在不同工况下的制动性能,并通过与常规ABS制动系统试验数据的对比,验证了系统设计的合理性。结果表明,所设计的EBS系统在减少制动响应时间和提高制动安全性方面具有明显的优势。

  3. The design of brake fatigue testing system

    Directory of Open Access Journals (Sweden)

    Huang, Xiaoya

    2015-01-01

    Full Text Available Brake is used to reduce the operating speed of the machinery equipment or to make it stop. It is essential for vehicles, climbing machines and many fixed equipment in their safety work. Brake tester is an experimental apparatus to measure and analyse the braking performance. Based on the PLC technology and for the purpose of testing brake shoe friction material’s life, this paper designed a virtual brake test platform. In it, inverter were used to control the motor, so that it can load automatically and ensure brake drum constant speed output; what is more, closed loop control system were used to control the brake shoe, so that the cylinder pressure keeps stable in the process of dynamic braking.

  4. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  5. 49 CFR 393.40 - Required brake systems.

    Science.gov (United States)

    2010-10-01

    ... motor vehicle must meet the applicable service, parking, and emergency brake system requirements....49, and 393.52 of this subpart. (c) Parking brakes. Each commercial motor vehicle must be equipped with a parking brake system that meets the applicable requirements of § 393.41. (d) Emergency...

  6. 49 CFR 570.5 - Service brake system.

    Science.gov (United States)

    2010-10-01

    ... lb. (a) Failure indicator. The brake system failure indicator lamp, if part of a vehicle's original... CFR 571.105, on every new passenger car manufactured on or after January 1, 1968, and on other types... vehicle manufacturer that the brake system failure indicator lamp is operable. (b) Brake system integrity...

  7. Parameter Design for the Energy-Regeneration System of Series Hydraulic-Hybrid Bus

    Directory of Open Access Journals (Sweden)

    SONG Yunpu

    2012-10-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.  

  8. Magnetostrictive Brake

    Science.gov (United States)

    Diftler, Myron A.; Hulse, Aaron

    2010-01-01

    A magnetostrictive brake has been designed as a more energy-efficient alternative to a magnetic fail-safe brake in a robot. (In the specific application, failsafe signifies that the brake is normally engaged; that is, power must be supplied to allow free rotation.) The magnetic failsafe brake must be supplied with about 8 W of electric power to initiate and maintain disengagement. In contrast, the magnetostrictive brake, which would have about the same dimensions and the same torque rating as those of the magnetic fail-safe brake, would demand only about 2 W of power for disengagement. The brake (see figure) would include a stationary base plate and a hub mounted on the base plate. Two solenoid assemblies would be mounted in diametrically opposed recesses in the hub. The cores of the solenoids would be made of the magnetostrictive alloy Terfenol-D or equivalent. The rotating part of the brake would be a ring-and spring- disk subassembly. By means of leaf springs not shown in the figure, this subassembly would be coupled with the shaft that the brake is meant to restrain. With no power supplied to the solenoids, a permanent magnet would pull axially on a stepped disk and on a shelf in the hub, causing the ring to be squeezed axially between the stepped disk and the hub. The friction associated with this axial squeeze would effect the braking action. Supplying electric power to the solenoids would cause the magnetostrictive cylinders to push radially inward against a set of wedges that would be in axial contact with the stepped disk. The wedges would convert the radial magnetostrictive strain to a multiplied axial displacement of the stepped disk. This axial displacement would be just large enough to lift the stepped disk, against the permanent magnetic force, out of contact with the ring. The ring would then be free to turn because it would no longer be squeezed axially between the stepped disk and the hub.

  9. New technical solutions of using rolling stock electrodynamical braking

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available The paper considers some theoretical and practical problems associated with the use of traction motor are operating in the generator mode (in braking. Mathematical and graphical relationships of electrodynamic braking, taking into account the requirements raised to braking systems in rail transport are presented. The latter include discontinuity of braking process, braking force regulation, depending on the locomotive speed, mass, type of railway and other parameters. Schematic diagrams of the locomotive braking and ways of controlling the braking force by varying electric circuit parameters are presented. The authors suggested contact-free regulation method of braking resistor for controlling braking force in rheostatic braking, and resistor parameters regulate with pulse regulation mode by semiconductor devices, such as new electrical components for rolling stock – IGBT transistors operating in the key mode. Presenting energy savings power systems, which are using regenerative braking-returning energy and diesel engine or any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  10. 机动车坡道驻车制动效能检验的现状与探新%Status and New Exploration on the Performance Test of Automotive Vehicle Rampway Hand Brake

    Institute of Scientific and Technical Information of China (English)

    黄俊平

    2011-01-01

    By analyzing the status of the performance test of automotive vehicle rampway hand brake, the paper points out the problems of the current test method that test line desktop brake test results replace the actual rampway hand brake performance of vehicle, tries to explore the accurate,safe, convenient, economical way to test motor vehicle parking by developing the simulation platform of automotive vehicle rampway hand brake.%文章通过对机动车驻车效能检验的现状分析,指出了目前以检测线台式制动方式检验结果代替车辆在实际坡道驻车制动效能的检验方式所带来的一些问题,提出了通过研发机动车坡道驻车制动模拟平台,探索精确、安全、便捷、经济的机动车驻车检验方式.

  11. CFD Analysis Of Straight Ventilated Disc Brake

    Directory of Open Access Journals (Sweden)

    Nikhil K

    2016-05-01

    Full Text Available Brakes are the key pieces of a vehicle that plays an active role in safety and performance of the system. The study of aerodynamic cooling of a disc brake in real working condition of vehicle is important in present situations. Brake discs get very hot quickly, so it should be dissipated properly through different modes of heat transfer. Contributions of these heat transfer modes are different in different type of problems. The cooling transfer rates are different in vane surface and frictional surface of a disc brake. Also the temperature varies in each small interval of braking time. So a transient problem simulation is important to study the cooling of a disc brake when a vehicle decelerates from a particular speed. ANSYS CFX tool is used for the simulation of this transient problem.

  12. The design of brake fatigue testing system

    OpenAIRE

    2015-01-01

    Brake is used to reduce the operating speed of the machinery equipment or to make it stop. It is essential for vehicles, climbing machines and many fixed equipment in their safety work. Brake tester is an experimental apparatus to measure and analyse the braking performance. Based on the PLC technology and for the purpose of testing brake shoe friction material’s life, this paper designed a virtual brake test platform. In it, inverter were used to control the motor, so that it can load automa...

  13. Control Strategy on Plug-in Hybrid Electric Vehicle Regenerative Braking%插电式混合动力汽车再生制动控制策略

    Institute of Scientific and Technical Information of China (English)

    刘闪闪; 韩震; 业德明; 乔曌

    2012-01-01

    Regenerative braking control strategy directly influenced fuel economy of Plug-in hybrid electric vehicles. A style of a control strategy based on ideal braking force is proposed in this paper. This strategy can ensure braking stability, at the meantime reclaim the braking energy as much as possible. And the control strategy model of regenerative brake system is built based on Simulink. The control strategy model is imbedded in Cruise and simulated. The simulation results show that compared with PHEV with no braking energy recovery and traditional vehicles fuel economy is improved and the control strategy of regenerative braking system are proved to be appropriate.%由于再生制动控制策略直接影响了插电式混合动力汽车(PHEV)的经济性,文章提出了一种基于理想制动力分配的再生制动控制策略,这种策略能在保证制动稳定性的同时,尽可能多地回收制动能量,在Simulink平台上建立再生制动控制策略模型,并嵌入到Cruise软件中进行仿真。仿真结果表明,此模型相比没有制动能量回收的PHEV和传统汽车,都有效地提高了经济性,验证了再生制动控制策略的合理性。

  14. An integrated characteristic simulation method for hydraulically damped rubber mount of vehicle engine

    Science.gov (United States)

    Wang, Li-Rong; Wang, Jia-Cai; Hagiwara, Ichiro

    2005-09-01

    Hydraulically Damped Rubber Mount (HDM) is widely equipped in vehicle powertrain mounting system and plays an important role in noise, vibration and harshness (NVH) control of vehicle. It is necessary that static and dynamic characteristics of HDM and its effectiveness on vibration isolation of powertrain system are predicted at design and development stage. In this paper, a kind of graphic HDM modeling method integrating with parameter identifications obtained from finite element (FE) analysis and experimental analysis is investigated to predict performance of HDM. The fluid-structure interactions in HDM are explored by predictions of volumetric elasticity and equivalent piston area of fluid chamber using a kind of hydrostatic fluid-structure FE method in commercial code of ABAQUS. Predications of static elasticity and dynamic characteristics and frequency response analysis of a typical HDM with fixed-decoupler verify the effectiveness of the proposed method. This research helps automotive engineers to enhance computer-aided system technology in design and development of HDM and powertrain mounting system.

  15. ISG混合动力汽车制动力动态协调控制策略研究%The Research On Braking Force Dynamic Coordinated Control Strategy of ISG Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    李清纯; 颜景斌; 王旭东

    2011-01-01

    The essay analyzes the energy feedback the insufficient of efficiency feedback for braking process in hybrid electric vehicle. With ISG technology of medium hybrid cars as platform, through the analysis of front and rear wheels of hybrid car brake force distribution and frictional braking force and regenerative braking force distribution, dynamic coordination regenerative braking control strategy model, which is based on the safety and efficient braking energy recovery is established. It simulated analysis and correction on different conditions. Simulation results show that compared with the original traditional model, the dynamic braking force coordination control strategies improves the efficiency of the braking energy recovery.%本文针对混合动力汽车的制动过程能量回馈效率不足进行分析.以ISG技术的中度混合动力汽车为平台,通过分析混合动力汽车前、后轮制动力分配以及摩擦制动力和再生制动力的合理分配,建立了基于制动安全性和高效制动能量回收的动态协调再生制动控制策略模型,并在不同的路况下进行仿真分析和修正.仿真结果表明,制动力动态协调控制策略与原有传统模型相比提高了制动能量回收的效率.

  16. INCREASE OF ACCURACY ESTIMATION OF BRAKING MECHANISM ENERGY LOADING

    Directory of Open Access Journals (Sweden)

    V. Shein

    2011-01-01

    Full Text Available The components of the energy balance of the braking vehicle that can be used at braking mechanisms energy loading for specified algorithm of qualimetric estimation carrying out are deter-mined.

  17. Evaluation and dynamic forecast of reliability on vehicle brake system based on time-dependent theory%基于时变理论的车辆制动系统可靠性评估及动态预测

    Institute of Scientific and Technical Information of China (English)

    石博强; 唐歌腾

    2014-01-01

    为了研究整车制动系统的使用可靠性,以某越野车的盘式制动器为研究对象,针对制动系统在使用过程中会受到温度、车速、磨损等随时间变化的不确定性因素的影响,建立了基于时变理论的制动系统可靠性评估及动态预测模型,并应用模糊综合评判对各不确定性因素的影响程度进行了定量化,最后对此款越野车的制动系统可靠性进行了动态预测。结果表明,模型制动距离预测误差为2.1%,误差较小,该模型预测结果有效可行;同时该模型又可对未来t时刻的制动系统可靠性进行预测,可为整车制动安全性的主动预警提供有效参考数据。%As one of the most important sub-systems ensuring vehicle’s driving safety, the brake system, whose work reliability greatly determines the safety of car running in a large extent, is usually taken as an important object in studies of vehicle’s braking reliability. While for brake system, the use reliability is related to the allowable braking distance, braking deceleration and other relevant parameters prescribed by travel safety regulations. The intention of this paper is to establish a model of evaluation and dynamic forecast on brake system’s reliability based on time-dependent theory. Therefore the vehicle’s braking performance was studied to analyze the use reliability of brake system and the uncertain factors (such as temperature, speed and wear) which can cause the fluctuation of braking performance and exist in brake system’s whole lifetime were also analyzed. In addition, the impact extent of uncertain factors was quantified by fuzzy comprehensive evaluation method in this paper as well. Combined with the study of vehicle braking distances under different conditions, the model can not only assess the reliability of brake system in current time, but also dynamically predict that in future time. The evaluation and dynamic forecast model was

  18. 减速制动时机械式自动变速器车辆换档控制策略%Shifting Control Strategy of Deceleration Braking for Automated Mechanical Transmission Vehicle

    Institute of Scientific and Technical Information of China (English)

    朱敏; 刘海鸥; 王尔烈; 陈慧岩

    2015-01-01

    将制动工况分为普通制动、紧急制动和惯性制动三种,研究不同制动工况下手动变速器(Manual transmission, MT)车辆优秀驾驶员的操控特点。将普通制动工况和紧急制动工况归为减速制动这一类情况对机械式自动变速器(Automated mechanical transmission, AMT)车辆进行研究。结合某重型越野车辆的车辆参数和试验数据,分析位置式电控柴油机的特性,提出油门关闭时其发动机转速存在一个固有转速下降率的概念,指出由于外界的原因来延缓或加快这一变化率时,发动机都将产生阻碍这一运动趋势的转矩。在对制动过程中传动系统动力学模型进行详细分析的基础上,讨论不同制动工况下发动机的作用。根据发动机转速及其下降率、变速器输出轴转速及其下降率,结合当前档位、离合器状态以及制动信号来识别普通制动和紧急制动,制定减速制动时AMT车辆换档控制策略,通过实车道路试验进行验证。%Braking conditions are divided into three categories: ordinary braking, emergency braking and inertia braking, then a research about the characteristics of manual transmission(MT) vehicle excellent drivers’ manipulation in different braking conditions is made. The conditions of ordinary braking and emergency braking are classified as deceleration braking, and then begin the study of the automated mechanical transmission(AMT) vehicle. Combined with a heavy off-road vehicle’s parameters and test data, a detailed analysis of the characteristics of Position-type electronically controlled diesel engine is carried out. Then the concept of the natural descending rate of engine speed when throttle is closed is put forward, to slow down or speed up the rate due to external reasons, the engine will produce torque to hinder this movement trends. On the basis of a detailed analysis of the drive system dynamics model of the braking process, the role

  19. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  20. 串联型液压混合动力车辆节能控制策略%Control strategy of energy-saving for a series connected hydraulic hybrid vehicle

    Institute of Scientific and Technical Information of China (English)

    伍迪; 姚进; 韩嘉骅; 李华

    2013-01-01

    With the rising concerns about global environmental issues, energy saving in automobiles becomes a very important subject. In recent years, fuel consumption by heavy vehicles grew faster due to the increasing number of heavy vehicles used for transportation. As a result, it is important to save fuel by improving their hydraulic system. The series hydraulic hybrid drive system is more effective than the traditional hydraulic system because of the higher recurperation energy generated by the system. Therefore, in order to reduce energy consumption and exhaust emissions of the heavy vehicle, the series hydraulic hybrid drive system of the heavy vehicles was designed to recover and reuse the energy lost in braking. In this paper, in comparison with the traditional hydraulic drive system, a high-pressure accumulator and a low-pressure accumulator were added in the series hydraulic hybrid drive system. The high-pressure accumulator works as an energy storage system and a power supply, and the low-pressure accumulator works as the tank to supply oil to the system. For an exact description of the working state of the accumulator, the Beattie-Bridgman equation was used to express the pressure of gas in the accumulator. The mathematical models of the pump and the secondary element were established to describe the dynamic working process of them in consideration of the compressibility character of fluid, the pipe pressure loss, the external and internal leakage of the system. According to the higher power density characteristic of hydraulic hybrid system and the frequent starts/stops operation characteristics of the heavy vehicle, an integrated control strategy for the heavy vehicle with series hydraulic hybrid system was proposed. Using the functions of Matlab/Simulink, the simulation block diagram of the control system was set up based on the mathematical model established and the control strategy designed. The control system consisted of a main control unit, a displacement

  1. Optimal Design of Vehicle Disc Brake Integrated Electromagnetism and Friction%集成电磁与摩擦的车辆盘式制动器优化设计

    Institute of Scientific and Technical Information of China (English)

    王奎洋; 唐金花; 李国庆; 袁传义

    2013-01-01

    Structure and working principle of vehicle disc brake integrated electromagnetism and friction are introduced. Based on optimal theory ofmulti objections, the disc brake integrated electromagnetism and friction is researched comprehensively, and the performance indexes and geometric constraint condition which must be satisfied during the design of disc brake are analyzed. The optimal mathematical model ofmulti objections which takes maximum brake torque and minimum temperature elevated of brake as objective function is built. Multiple targets are transformed into single target through multiplication and division of function method unified targets, and are solved with optimization. The optimal result shows that the parameter scheme of structure which is got through optimal design method may improve braking effect and the performance which shows ability to resist thermal decay of disc brake integrated electromagnetism and friction.%介绍了集成电磁与摩擦的车辆盘式制动器的结构和工作原理,基于多目标优化理论,通过对集成电磁与摩擦盘式制动器的深入研究,分析了该集成化制动器设计过程中必须满足的性能指标和几何约束条件,建立了以制动力矩最大和制动温升最小为目标函数的多目标化的优化数学模型,采用统一目标函数法中的乘除法将多目标转化为单一目标进行优化求解.优化结果表明,采用优化设计方法得到的结构参数方案改善了集成电磁与摩擦制动器制动效果和抗热衰退性能.

  2. Design, Modeling, and Analysis of a Novel Hydraulic Energy-Regenerative Shock Absorber for Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Junyi Zou

    2017-01-01

    Full Text Available To reduce energy consumption or improve energy efficiency, the regenerative devices recently have drawn the public’s eyes. In this paper, a novel hydraulic energy-regenerative shock absorber (HERSA is developed for vehicle suspension to regenerate the vibration energy which is dissipated by conventional viscous dampers into heat waste. At first, the schematic of HERSA is presented and a mathematic model is developed to describe the characteristic of HERSA. Then the parametric sensitivity analysis of the vibration energy is expounded, and the ranking of their influences is k1≫m2>m1>k2≈cs. Besides, a parametric study of HERSA is adopted to research the influences of the key parameters on the characteristic of HERSA. Moreover, an optimization of HERSA is carried out to regenerate more power as far as possible without devitalizing the damping characteristic. To make the optimization results more close to the actual condition, the displacement data of the shock absorber in the road test is selected as the excitation in the optimization. The results show that the RMS of regenerated energy is up to 107.94 W under the actual excitation. Moreover it indicates that the HERSA can improve its performance through the damping control.

  3. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    Science.gov (United States)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  4. An examination of vehicles at the brake-chassis test bed in the range of the partial engine load

    Directory of Open Access Journals (Sweden)

    Paweł MARZEC

    2017-06-01

    Full Text Available The performance of a ZI engine is presented in the paper, as well as a project involving a device for applying a partial load in the performed examinations of a brakechassis test bed. The device was prepared for an Opel Astra and enabled the determination of exterior characteristics of the engine for different values of the engine load. The indicating pressure sensor and the angle marker on the crankshaft allowed for the recording of the indicating pressure obtained at different values of the load. The analysis of heat evolution in the process of burning, based on the registered results of the measurements at the brake-chassis test bed, has also been included in the presentation.

  5. Fault Diagnosis for Hydraulic Oil Pump Vehicle Based on Fuzzy Theory%基于模糊理论的液压油泵车故障诊断

    Institute of Scientific and Technical Information of China (English)

    张来丰; 朱张青

    2013-01-01

      针对YYBC-2型液压油泵车的故障诊断需求和现有诊断方法存在的问题,本文基于模糊理论,设计了对油泵车液压系统的故障诊断系统,给出了具体实现方法。最后,通过诊断实例证明了本文方法的有效性。%According to the requirement of fault diagnosis for YYBC-2 hydraulic oil pump vehicle and the existing problems, fault diagnosis for hydraulic system of hydraulic oil pump vehicle is presented based on fuzzy theory, and the method to accomplish fault detection is discussed. Final y hydraulic system of YYBC-2 hydraulic oil pump vehicle is studied to explain that the fault diagnosis based on fuzzy theory is effective.

  6. Design and Application of Hydraulic Brake System for Mega-watt Graded Wind Turbine%兆瓦级风力发电机组液压制动系统的设计与应用

    Institute of Scientific and Technical Information of China (English)

    董连俊

    2015-01-01

    阐述了风力发电机组液压制动系统的工作原理,针对兆瓦级风力发电机组对液压制动系统的高集成化、高可靠性的要求,对液压制动系统进行深入研究探讨;针对现场实际应用中容易出现的问题进行了分析,并提出相应的解决方案。%For the purpose of high integration and high reliability, this paper introduces principle of hydraulic brake system for wind turbine, and conducts in-depth research of this system. According to problems during application, proposes corresponding resolving scheme.

  7. 插电式并联混合动力汽车再生制动控制策略%Control Strategy of Regenerative Braking for Plug-in Parallel Hybrid Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    陈泽宇; 杨英; 王新超; 吕明

    2016-01-01

    再生制动是混合动力汽车区别于传统汽车的技术特点,是提高车辆燃油经济性的重要措施之一。以一种轴间力矩耦合的插电式并联混合动力汽车为研究对象,从再生制动分配算法的影响因素入手,提出了一种带有模糊控制的混合动力汽车再生制动能量管理策略。所设计的控制策略主要针对两个层面的控制决策,顶层是轴间制动力矩的分配决策,底层是再生制动电机所在的后轴力矩在摩擦制动与再生制动之间的分配决策。采用多种典型车辆行驶工况对所提出的模糊控制策略进行仿真研究。结果表明,所提出的模糊控制策略能够明显改善车辆的能量回收效果,与传统理想制动力分配曲线控制策略相比,能量回收最多可提高23��44%。%Different from traditional internal combustion engine vehicles, hybrid electric vehicles ( HEVs) have regenerative braking capability to improve fuel economy. Taking a plug-in parallel HEV with axles torque coupling as the research object, the influences of regenerative braking were analyzed. A regenerative braking control strategy using fuzzy control was then proposed. The presented strategy was to make two-layers control decision. The braking torque was allocated between the front axle and rear axle in the top layer, while the algorithm in bottom layer split the rear axle braking torque between mechanical braking and electric braking. The strategy was evaluated in a simulation study using several typical driving cycles. The results show that the as-proposed fuzzy control strategy can significantly improve the effect of energy recovery up to 23��44% , compared with that of the traditional ideal braking force distribution curve strategy.

  8. Research on Swing Braking Energy Recovering Strategy of Hydraulic excavator%液压挖掘机回转制动能量回收策略的研究

    Institute of Scientific and Technical Information of China (English)

    刘薇; 贾跃虎; 丁小宁; 程旭华

    2015-01-01

    回转系统能量损耗大、具有很大的回收潜力,为了提高挖掘机的节能性,本文提出了基于马达电机组和液压蓄能器两种回收方式复合回收的能量回收策略,并将蓄能器回收的能量储存在超级电容中进行再利用.采用AMESim仿真软件对回转制动能量回收过程进行了仿真分析.仿真结果表明,基于液压蓄能器与超级电容的复合回收方案可行,在制动时可以完成能量回收,可以有效提高系统的回收效率.%The slewing hydraulic system has large energy loss and large potential of energy recovery. In order to improve the energy saving of excavator, the article proposes a energy recovery method for swing regenerative braking strategy, the system recover energy by both mo-tor group and hydraulic accumulator at the same time, and store the energy recovered by accumulator in Super capacitor, the hydraulic simu-lation model of the system was based by AMESim, simulation result indicated that the system recover energy by both Super capacitor and hydraulic accumulator is feasible. The system can complete the energy recovery effectively, and improve the recovery efficiency of the sys-tem.

  9. ACTIVE FRONT STEERING DURING BRAKING PROCESS

    Institute of Scientific and Technical Information of China (English)

    CHEN Deling; CHEN Li; YIN Chengliang; ZHANG Yong

    2008-01-01

    An active front steering (AFS) intervention control during braking for vehicle stability is presented. Based on the investigation of AFS mechanism, a simplified model of steering system is established and integrated with vehicle model. Then the AFS control on vehicle handling dynamics during braking is designed. Due to the difficulties associated with the sideslip angle measurement of vehicle, a state observer is designed to provide real time estimation. Thereafter, the controller with the feedback of both sideslip and yaw angle is implemented. To evaluate the system control, the proposed AFS controlled vehicle has been tested in the Hardware-in-the-loop-simulation (HILS) system and compared with that of conventional vehicle. Results show that AFS can improve vehicle lateral stability effectively without reducing the braking performance.

  10. 一种电动汽车用制动能量回收控制器的设计%Design of a New Regenerative Braking Controller for Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    全力; 顾剑波; 朱孝勇; 陈燎; 张德望

    2011-01-01

    The energy reclaiming scheme of composite power by using the super capacitor as energy storage element to realize the regenerative braking of electric vehicles was put forward. A kind of regenerative braking controller of electric vehicle based on digital PID control technology and megal6 microcontroller of ATMEL corporation was designed. The principle of regenerative braking as well as main circuit of controller, signal acquisition, and each work module written with C language were introduced. The test result indicates that the regenerative braking controller based on PID theory has a very good adjustment of PWM of duty cycle when charge and discharge current changing with voltage, and energy recovery system is confirmed to be able to recycle the electric automobile regenerative braking energy well.%提出了利用超级电容作为制动能量回收储能容器的复合电源方案,并针对ATMEL公司mega16单片机,应用数字PID控制算法,设计了一种可应用于纯电动汽车的制动能量回收控制器模块.介绍了再生制动的原理及其控制器主电路与信号采集电路,以及用C语言编写的各工作模块.试验调试结果表明,充、放电电流随电压变化时,数字PID控制策略能很好地调节PWM占空比的合理变化,并验证了此制动能量回收系统可以有效地回收电动汽车再生制动能量.

  11. The strength of the hybrid braking calipers analysis

    Institute of Scientific and Technical Information of China (English)

    Li Weitao; Yu Haiqing; Jiang Xiaoyan

    2015-01-01

    The braking system is an important part to ensure the safety of the vehicle, so the strength analysis is essential to the brake caliper. In this article, the forces will be mixed in the caliper brake systems theoretical analysis, and based on the actual working conditions established calipers ABAQUS finite element model to simulate calipers provide a theoretical basis for the structural design of the brake caliper.

  12. HEAT TRANSIENT TRANSFER ANALYSIS OF BRAKE DISC /PAD SYSTEM

    OpenAIRE

    Thuppal Vedanta, Srivatsan; Kora, Naga Vamsi Krishna

    2016-01-01

    Braking is mainly controlled by the engine. Friction between a pair of pads and a rotating disc converts the kinetic energy of the vehicle into heat. High temperatures can be reached in the system which can be detrimental for both, components and passenger safety. Numerical techniques help simulate load cases and compute the temperatures field in brake disc and brake pads. The present work implements a Finite Element (FE) toolbox in Matlab/Simulink able to simulate different braking manoeuvre...

  13. Parker Hybrid Hydraulic Drivetrain Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  14. 基于混合系统理论的串联式再生制动控制策略分析%Analysis on the Control Strategy for Series Regenerative Braking Based on Hybrid System Theory

    Institute of Scientific and Technical Information of China (English)

    宋士刚; 李小平; 孙泽昌

    2015-01-01

    With series regenerative braking system of electric vehicle as the object of study, by the analyses on braking energy and braking regulations, the safe operation range of electro-hydraulic hybrid regenerative braking is theoretically determined, and with concurrent consideration of motor regenerative braking and battery charging power, a mathematical model for the optimization of regenerative braking is established. Based on the theory of hy-brid system and the model for hybrid automata, the regenerative braking system is visually described and a regenera-tive braking control strategy is proposed with coordinated control between motor regenerative braking force and the hydraulic braking forces on front and rear wheels, and a simulation is conducted on control model. The results indi-cate that the regenerative braking control strategy proposed increases the proportion of motor regenerative braking and thus enhance the recovery rate of vehicle braking energy in braking process.%以电动汽车串联式再生制动系统为研究对象,通过对制动能量和制动法规的分析,从理论上确定了电液复合再生制动的安全运行范围,并综合考虑电机再生制动和电池充电功率,建立了再生制动优化问题的数学模型。基于混合系统理论,利用混合自动机模型,直观描述了再生制动系统,提出了电机再生制动力和前后轮液压制动力协调控制的再生制动控制策略,并对控制模型进行了仿真分析。结果表明,该再生制动控制策略在制动过程中增加了电机再生制动的比例,从而提高了汽车制动能量的回收率。

  15. 基于超级电容电动汽车制动能回收的研究%Research on the Recovery of Electric Vehicle Braking Energy Based on Super Capacitor

    Institute of Scientific and Technical Information of China (English)

    肖佐无; 王海波

    2015-01-01

    针对电动汽车制动能回收的问题,采用超级电容为储能器件,无刷直流电机的制动能通过BUCK斩波器以恒流充电的方式给超级电容充电,既能回收制动能又使制动力矩可控。采用电流闭环负反馈,自动调节BUCK斩波器的占空比,达到恒流充电的目的。仿真实验表明:这种方法是可行的、有效的。%For the problem of electric vehicle braking energy recovery, using the super capacitor as energy storage device, the braking energy of Brushless DC motor charging the super capacitor with the constant current charge by BUCK chopper, not only recovers the braking energy but also makes the brake torque controllable. Negative feedback of current closed-loop was adopted, and the duty cycle of the BUCK chopper is adjusted automatically, which achieves the constant current charging. The simulation experiment shows that this method is feasible and effective.

  16. 基于改进卡尔曼滤波的汽车路试制动性能检测方法%Test method of vehicle braking performance based on improved Kalman filtering

    Institute of Scientific and Technical Information of China (English)

    李旭; 宋翔; 张国胜; 于家河; 张为公

    2011-01-01

    In view the shortcomings of traditional test methods, a novel test method of vehicle braking performance based on improved Kalman filtering is proposed. The speed and azimuth outputted by single-frequency carrier phase single-point GPS receiver is selected as the observed information of Kalman filter. By improving Kalman filter recursion algorithm, the speed and plane coordinates of vehicle braking process are calculated with high frequency and high precision. Then, the vehicle braking distance and mean fully developed deceleration (MFDD) can be easily determined to judge vehicle braking performance. The real vehicle tests demonstrate that the measurement precision of braking distance of the proposed method can reach 0.2 m to 0.3 m, the speed precision is lower than 0.1 m/s, and the output frequency is up to 100 Hz. The proposed test method has such advantages as low cost, high output frequency, high precision and environmental adaptability, which overcomes the shortcomings of traditional methods.%针对传统汽车路试制动性能检测方法的不足,提出了一种基于改进卡尔曼滤波的汽车路试制动性能检测方法.根据卡尔曼滤波理论,以单频载波相位单点GPS接收机输出的速度和方位角作为观测量,通过改进的卡尔曼滤波递推算法高频率、高精度地推算出汽车制动过程的平面运动坐标和速度,进而确定汽车制动距离和平均减速度MFDD,以检测汽车的制动性能.实车试验表明,该方法的制动距离测量精度可达0.2~0.3 m,速度精度小于0.1 m/s,输出频率可达100 Hz,具有成本低、输出频率高、精度高、环境适应力强的优点,克服了传统方法的不足.

  17. The Analysis of Ttransient Temperature Field Distribution of Vehicle Ventilated Disc Brake under Emergency Braking Condition%紧急制动工况下汽车通风盘式制动器瞬态温度场分布的研究

    Institute of Scientific and Technical Information of China (English)

    简弃非; 吴昊

    2016-01-01

    The ventilated disc brake which used in a passenger vehicle front wheel as the research object is set,its thermal-structure coupled three-dimensional finite element analysis model is set up. Then direct coupling method is adopt to simulate the transient temperature field of ventilated disc brake under emergency braking condition on the basis of model,eventually the distribution and change characteristics of temperature field of ventilated brake disc and pad in emergency braking are gotten. The results show that the temperature field distribution of brake disc is not axial symmetry in emergency braking,there are certain temperature gradient in radial,circumferential and axial three directions. The highest temperature of the brake disc appeared in 1. 91 s,the highest temperature is 227. 1℃. Meanwhile the ventilated disc brake bench test is carried on under the brake condition as same as the simulation a-nalysis,the obtained experimental result basic consistent with the result of the simulation calculation,thus the validi-ty of the simulation analysis is verified,and a theoretical basis for design and optimization of ventilated disc brake is provided.%以某乘用车前轮采用的通风盘式制动器为研究对象,建立其热-结构耦合的3维有限元分析模型.在此基础上采用直接耦合法对该通风盘式制动器在紧急制动工况下的瞬态温度场进行仿真分析,获得整个通风式制动盘和摩擦片在紧急制动过程中温度场的分布情况及变化特性.结果显示:在整个紧急制动过程中,制动盘温度场的分布不是轴对称的,其在径向、周向及轴向3个方向上均存在着一定的温度梯度;制动盘的最高温度出现在1.91 s,最高温度为227.1℃.同时对该通风盘式制动器进行了与仿真分析相同制动工况下的台架试验,所获得的实验结果与仿真计算结果基本一致,从而验证了仿真分析的有效性,为通风盘式制动器的设计及优化提供了理论基础.

  18. 一种电动汽车能量高效回馈制动方法%A High-Efficiency Regenerative Braking for Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    任桂周; 常思勤

    2011-01-01

    为提高电动汽车的能量利用率,提出了一种将可变电压系统作为电机驱动系统实现能量回馈的方法,利用可串并联切换的超级电容器组与双向直流功率变换器相结合,采用了2种回馈制动模式的控制策略,提高了电机到驱动系统电源之间能量流的传递效率和变换效率,实现了速度大范围变化的能量回馈.与常规制动方法相比,上述方法具有驱动系统体积小、成本低、能量回馈效率高的特点,通过计算机仿真对采用不同回馈制动方法时的3种情况进行了对比分析,仿真结果验证了该方法的可行性和有效性.%To improve energy efficiency of electric vehicles, a method, which uses variable voltage system as electric motor driving system to implement energy recovery is proposed. Combining the ultra-capacitor (UC) banks,which is series-parallelly switchable, with bi-directional DC/DC power converter (BDPC) and adopting the control strategy containing two regenerative braking modes, the transferring efficiency and conversion efficiency of energy flow between electric motor and supply of driving system are improved, thus the energy recovery within wide speed range is attained. Comparing with conventional breaking methods, the proposed method possesses the features of small size of driving system, low cost and high energy recovery efficiency.By means of simulation on Matlab/Simulink platform, the comparative analysis on three situations adopting different regenerative braking ways is performed, and the feasibility and effectiveness of the proposed method are verified by simulation results.

  19. The Development of an Optimal Control Strategy for a Series Hydraulic Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Chih-Wei Hung

    2016-03-01

    Full Text Available In this work, a Truck Class II series hydraulic hybrid model is established. Dynamic Programming (DP methodology is applied to derive the optimal power-splitting factor for the hybrid system for preselected driving schedules. Implementable rules are derived by extracting the optimal trajectory features from a DP scheme. The system behaviors illustrate that the improved control strategy gives a highly effective operation region for the engine and high power density characteristics for the hydraulic components.

  20. Analysis on the Residual Braking Performance of Multi-axle Vehicles Based on ECE Regulation%基于ECE法规的多轴汽车剩余制动性能分析

    Institute of Scientific and Technical Information of China (English)

    童成前; 何仁; 周燕; 高树新

    2011-01-01

    根据ECE制动法规对行车制动失效条件下的多轴汽车剩余制动性能的要求,提出基于ECE制动法规的多轴汽车剩余制动性能分析方法,包括理论分析和试验验证.在理论分析中,最大减速度采用作图分析方法求得.最后,通过实例来说明本方法的分析过程.结果表明:该方法简单、实用.%According to the requirements of residual braking performance of multi-axle vehicles in the event of service braking failure specified in ECE regulation, an analysis method of residual braking performance of multi-axle vehicles based on ECE regulation is proposed, including theoretical analysis and test verification. In theoretical analysis,the maximum deceleration is evaluated by mapping. Finally,the method is illustrated by an analysis on a real case. The results indicate that the method is simple and practical.

  1. Mountain Braking Test Venue Study

    Science.gov (United States)

    2013-12-12

    resistance, and engine braking. The following equation shows this relationship: PB = W ∙ V ∙ ϴ - PA – PRR – PE. (1) The engine braking power...vehicle rolling resistance is due to tires and can be characterized as: PRR = CRR ∙ W ∙ V ∙ CT / 375 (HP), (3) where CRR is the tire-road interface...resistance is proportional to tire load results in the following equation: PRR = (0.0002455 ∙ V2 + 1.784 ∙ V) ∙ W/80,000 (HP). (4) The power absorbed

  2. 纯电动汽车电—液复合制动系统控制算法的多边界条件优化设计%Optimization Design of EV Electro—Hydraulic Composite Braking System Control Algorithm with Multi—boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    李玉芳; 周丽丽

    2012-01-01

    According to the characteristics of pure EV power system, an optimization design method of brake force control algorithm of electro-hydraulic composite brake system with multi - boundary conditions was proposed. And based on the analysis of boundary conditions, including the braking strength requirements, ECE regulations, and motor/battery characteristics etc, a reasonable range of brake force distribution ratio was achieved. And braking force distribution approach between the front and rear axles was brought out by considering such factors as the braking strength of demand and using frequency of the various adhesion coefficient roads. And the simulation analysis verifies the rationality and effectiveness of the brake force distribution algorithm.%根据纯电动汽车动力系统的特点,提出电—液复合制动系统控制算法的多边界条件优化设计方法.基于对制动强度需求、ECE法规和电机/蓄电池特性等多边界条件的分析,得出制动力分配比例的合理取值范围,以此为基础,提出根据制动强度需求和不同附着系数路面的使用频率等因素确定前后轴制动力分配系数的方法.仿真分析验证了制动力分配算法的有效性和合理性.

  3. A Study on the Control Strategy for Maximum Energy Recovery by Regenerative Braking in Electric Vehicles%电动汽车最大能量回收再生制动控制策略的研究

    Institute of Scientific and Technical Information of China (English)

    杨亚娟; 赵韩; 朱茂飞

    2013-01-01

    本文中针对一款轻型混合动力汽车进行了再生制动控制策略的研究.首先,以整体效率最高为目标,提出了最大能量回收制动控制策略,并采用序列二次规划法对充电功率进行优化,获得ISG电机优化转矩.接着建立了整车仿真模型,采用模糊控制方法对优化的ISG电机转矩进行跟随控制.分别进行了NEDC循环和3种不同制动力的仿真,得到不同工况下的再生制动能量回收率.最后进行了与仿真工况相应的实车试验,验证了控制策略的有效性.%The regenerative braking control strategy for a light hybrid electric vehicle (LHEV) is studied in this paper. Specifically, a braking control strategy for maximum energy recovery is proposed first with an objective of highest overall efficiency, and the charging powers are optimized by using sequential quadratic programming technique to obtain optimized torque working points of ISG motor. Then a simulation model for LHEV is built, a tracking control is performed over optimized torque of ISG motor with fuzzy control scheme, and a simulation is conducted on three different braking forces respectively with NEDC cycle to obtain energy recovery ratios in regenerative braking. Finally a real vehicle test corresponding to simulation conditions is carried out to verify the effectiveness of control strategy proposed.

  4. Recycle of Urban Rail Transit Vehicle Braking Energy%城市轨道交通车辆再生制动能量的回收利用

    Institute of Scientific and Technical Information of China (English)

    何治新

    2013-01-01

    By analyzing the recycle of urban rail transit vehicle braking energy,3 main systems are enumerated:the consumption type,energy storage type and feedback inverter type,their economic and technical characters are compared.The feedback inverter type is mainly analyzed,in which the mature technique,localization level and economic benefit could meet the needs of rail transit construction and development in China,and thus has a broad application prospect:In determining a recycle scheme,it is necessary to make a technical comparison in order to ensure social and economic benefits.%介绍了城市轨道交通车辆再生制动能量回收利用方式中的消耗型、储能型和逆变回馈型三种系统方案,并比较分析了三种系统方案的经济技术性.重点分析了逆变回馈型车辆再生制动能量回收利用方案.采用逆变回馈型车辆制动能量回收装置,在技术成熟度、国产化水平、经济效益等方面均适合我国城市轨道交通工程建设运营的发展需要,是工程应用的方向.在确定车辆制动能量回收装置设置方案时,应进行经济技术比较,以确定合理的设置方案,保证社会效益与经济效益均优.

  5. The Research on Key Technology of Electric-hydraulic Hybrid Vehicles%电液复合动力汽车关键技术探讨

    Institute of Scientific and Technical Information of China (English)

    车威; 朱清山

    2011-01-01

    This article gives a brief introduction to the working principle of electric-hydraulic hybrid dynamical system. The key technologies of electric-hydraulic hybrid dynamical system are studied, so as to make the engine reduce the consumption of fuel and diminish the emissions pollution, prolong service life of engine and braking system, and its future finally is foreseen.%通过介绍电液复合动力系统的工作原理,对电液复合动力系统相关的关键技术进行探讨,以期使发动机进一步达到降低油耗、减少排放污染、延长发动机和刹车系统寿命,并对电液复合动力汽车的应用前景进行展望.

  6. Application of AMESim and MATLAB on Modeling and Study of Megawatt Wind Turbine Brake System Hydraulic Locking Device%AMESim与MATLAB在兆瓦级风力发电机制动系统液压锁紧装置建模及研究中的应用

    Institute of Scientific and Technical Information of China (English)

    闫利文; 艾存金; 王福山; 谢辉

    2015-01-01

    作为一个兆瓦级风力发电机制动系统,除制动装置外,在适当的位置还应设有风轮的锁定装置,以确保在正常制动系统失效情况下风机在不会突发的再次启动。针对该问题文章设计了一套液压锁紧装置,并分别采用AMEsim和MATLAB软件对其进行了研究与分析,并比较了两种分析软件在液压系统研究中的不同。%As a megawatt wind turbine braking system,in addition to the braking device,there should also have a locking device in the ap-propriate position,In order to ensure not burst start again during normal braking system failure. Aiming at this problem, we designed a set of hydraulic locking device,used AMESim and MATLAB software to research and analysis the hydraulic locking device,compared the differ-ence between two of them in the research of hydraulic system.

  7. Brake caliper with offset pads: Innovative brake technology for commercial vehicles offers opportunities to reduce weight and cost; Bremssattel mit tangential versetzten Bremsbelaegen: Innovative Radbremsentechnologie fuer Nutzfahrzeuge bietet neue Moeglichkeiten zur Gewichts- und Kostenreduzierung

    Energy Technology Data Exchange (ETDEWEB)

    Antony, P.; Blatt, P. [WABCO Radbremsen GmbH, Mannheim (Germany)

    2005-07-01

    Continuous optimizations and technical improvements showed no further potential for cost and weight reductions on basis of the conventional technique of a sliding caliper and two supported pads in the carrier. Additionally, global and technical needs are growing. With its 4th generation of air disc brakes and a new caliper concept, WABCO accounts to these developments. Characteristically for the New Generation (NG) is the caliper concept with pad offset in circumferential direction. This presentation describes construction and basics of the system, shows the usage of FEM and elements of Bionic methods and proofs its effectiveness with test bench results. Additional potential for the design of a new interfaces between brake and axle are identified. A significant improved disc cracking behavior offers possibilities for additional cost and weight savings. (orig.)

  8. Simulation and analysis of electric vehicle regenerative braking system with multiplex power supply%复合电源电动车再生制动系统的仿真与分析

    Institute of Scientific and Technical Information of China (English)

    戚思良; 盘朝奉; 陈昆山; 陈龙; 马跃超

    2013-01-01

    针对以蓄电池为单一车载电源的纯电动汽车存在着功率密度低、能量密度低、使用寿命短等缺点,将超级电容引入到纯电动汽车的储能系统中,组成了超级电容—蓄电池的复合电源结构.在MATLAB/SIMULINK环境下建立复合电源储能系统和驱动系统的仿真模型.基于搭建的实验平台参数,以可能多地利用电机再生制动力、最大程度实现制动能量的回收为目的制定制动力分配控制策略,根据标准市区循环工况进行再生制动仿真实验.结果表明,此再生制动系统回收了24%的制动能量,可以很好地弥补了蓄电池的低功率密度和低能量密度等缺陷,提高车载能量的利用率和车辆的动力性能,延长电动车的续驶里程.%Because storage battery used for driving the electric vehicle only has low power density, low energy density and other disadvantages, supercapacitor was applied to the energy storage system in battery electric vehicle to form a multiple energy supply system with battery. The multiple energy supply system model and driving system model were established via simulation environment of MATLAB/SIMULINK. In order to use more motor regenerative braking force and maximize braking energy recovery module, the braking force distribution control strategy was developed based on experiment platform parameter. The regenerative simulation test was conducted according to the power demands under standard urban driving cycle. The result shows that the regenerative braking system can recycled 24% braking energy. The multiple energy supply system can make up for the low power density, low energy density and other defects of car battery very well. It can improve the energy utilization ratio and the dynamic performance of the vehicle, and extend the driving range of electric cars.

  9. Study on Braking Energy Regeneration System for City Bus

    Institute of Scientific and Technical Information of China (English)

    ZOU Zheng-yao; CHEN Ru-wen; YANG Xue-mei; LIU Gou-bing; JIN Jia-jun

    2011-01-01

    Braking of the urban vehicles of public service wastes a large number of engine energy in the condition of starting and stopping frequently. Aiming at the problem, an electro-mechanical braking energy regeneration system was proposed which adopted a high-speed flywheel and a battery to recover the braking energy and achieve the secondary traction for the auxiliary start function. The system strategy was designed and the braking simulation was processed to validate its feasibility. The experiment results show that the system can effectively recover the braking energy, improve the starting performance of the city bus and it can be applied to the engineering.

  10. Emergency braking : research summary.

    NARCIS (Netherlands)

    Schlösser, L.H.M.

    1976-01-01

    This report deals with an investigation concerning braking capacity of trucks if somewhere a failure occurs in the normal service brake. Purpose of research was to get an insight in various secondary braking systems for trucks. It is shown that with almost all of the secondary braking system it was

  11. Bicycle Braking System

    OpenAIRE

    Brady, Noel

    2001-01-01

    A bicycle braking system for permitting controlled rotation and continuous power to the wheels of a bicycle during braking of the bicycle to enhance control of the bicycle during braking includes a cylindrical brake pad that is spring loaded within angled slots in a casing. The brake pad is positioned proximate the rim of a wheel and a cable assembly is coupled to the brake pad for urging the brake pad towards an end of the angled slots and against the rim of the wheel to slow rotation of the...

  12. Analysis of brake condition and parameter matching of hybrid energy storage system for hybrid electric vehicles%混合动力车制动工况分析与储能装置参数匹配

    Institute of Scientific and Technical Information of China (English)

    王伟达; 王言子; 项昌乐; 刘辉

    2014-01-01

    为提高混合动力系统整体性能,实现高效能量回收,分析某重型越野车辆驾驶循环工况中制动过程的功率与能量分布,从制动能量回收率与电机参数出发讨论对储能装置的性能要求。提出电池组-超级电容复合储能装置的参数匹配方法,针对21 t级试验样车混合动力系统进行实例计算,论证锂离子电池组与超级电容组成的复合储能装置的性能。实例计算与道路试验结果表明:匹配的复合储能装置符合车辆整体性能与制动能量回收的要求,体积、重量满足总体设计约束;匹配超级电容后,储能装置的瞬时功率能力大幅提升,可显著提高车辆的制动能力和制动能量回收率。%According to the driving cycle of heavy off-road vehicles, the brake power and energy permutation is analyzed, and the performance requirement for the hybrid energy storage system( HESS) is achieved based on the brake energy recovery rate and motor parameters. The parameter matching method for the HESS is proposed and by which the instance calculation for the hybrid propulsion system of 21 tons class vehicles is carried out, and the performance of the HESS with Li-ion cells and ultra capacitors is discussed too. The instance calculation and the test results indicate that the designed HESS can meet the requirement of the total performance of the HEV and the brake energy recovery, the volume and weight answer for the restriction of the top design of the HEV. The designed HESS with ultra capacitors can increase the transient power volume greatly and the brake performance and the brake energy recovery rate are enhanced remarkably.

  13. 一体式电液复合制动系统轮缸压力的精细调节%Wheel cylinder pressure fine regulation for integrated electro-hydraulic brake system

    Institute of Scientific and Technical Information of China (English)

    刘杨; 孙泽昌; 邹小琼; 王猛

    2015-01-01

    Wheel cylinder pressure fine regulation was studied for electro‐hydraulic brake system with an integrated master cylinder .Pressure regulation process and system structural characteristics were analyzed .The impact of brake disc gap on pressure regulation was studied ,pressure control dividing point of non‐linear and linear region was determined ,using the ladder method and interpolation table method to estimate cylinder pressure ,also the impact of w heel cylinder piston hysteresis characteris‐tics on linear region was considered ,and then the segmented‐ladder‐lookup fine regulation strategy was developed .Hardware in the loop simulation bench was built using xPC target to verify the pres‐sure regulation performance by sine target pressure test and comparisons of single increase‐decrease interpolation table strategy and the proposed one .Test results show that the wheel cylinder pressure could keep up with the target curve ,and the proposed system structure and pressure regulation meth‐od could meet the pressure control requirements .%针对基于一体式主缸的电液复合制动系统,进行了轮缸压力的精细调节研究,分析了一体式复合制动系统轮缸压力调节过程及其结构特点。探讨了制动间隙对盘式制动器轮缸压力调节的影响,确定了轮缸压力控制的非线性区及线性区,采用阶梯估算和基本插值数表的方法对轮缸压力进行估计,并考虑了线性区轮缸活塞运动迟滞特性对插值数表的影响,综合上述因素制定了分段阶梯查表的轮缸压力精细调节策略。采用xPC target搭建了硬件在环仿真台架,进行了正弦曲线跟随和与单一增/减压数表法的对比试验。试验结果表明:轮缸压力能够实时跟随目标曲线变化,所提出的结构及控制方法能够满足轮缸压力精细调节的控制需求。

  14. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  15. Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System

    Directory of Open Access Journals (Sweden)

    Nenglian Feng

    2013-01-01

    Full Text Available This paper presents a collaborative control system for an electric vehicle chassis based on a centralized and hierarchical control architecture. The centralized controller was designed for the suspension and steering system, which is used for improving ride comfort and handling stability; the hierarchical controller was designed for the braking system, which is used for distributing the proportion of hydraulic braking and regenerative braking to improve braking performance. These two sub-controllers function at the same level of the vehicle chassis control system. In order to reduce the potential conflict between the two sub-controllers and realize a coordination optimization of electric vehicle performance, a collaborative controller was built, which serves as the upper controller to carry out an overall coordination analysis according to vehicle signals and revises the decisions of sub-controllers. A simulation experiment was carried out with the MATLAB/Simulink software. The simulation results show that the proposed collaborative control system can achieve an optimized vehicle handling stability and braking safety.

  16. 球车制动系统寿命试验机的设计%Design of System Life Tester of Ball Vehicle Braking Mechanism

    Institute of Scientific and Technical Information of China (English)

    柳金梅; 朱晓杰

    2012-01-01

    根据球车的制动踏板和加速踏板的联动运动原理,设计一种气动试验机,通过它模拟人在驾驶车辆时加速踏板和制动踏板的往复运动,来检验联动机构的耐久性,从而考察其制动系统的寿命。%According to link motion principle of brake pedal and accelerator pedal, a pneumatic tester is designed which simulates the reciprocating motion of brake and accelerator pedal when people driving the car. The durability of link gear is tested and the system life of brake system is tested.

  17. THE INFLUENCE OF BRAKE PADS THERMAL CONDUCTIVITY ON PASSANGER CAR BRAKE SYSTEM EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Predrag D Milenković

    2010-01-01

    Full Text Available In phase of vehicle braking system designing, besides of mechanical characteristics, it is also necessary to take under consideration the system's thermal features. This is because it is not enough just to achieve proper braking power, for the brake system to be effective but equally important thing is the dissipation of heat to the environment. Heat developed in the friction surfaces dissipate into the environment over the disk in one hand and through the brake linings and caliper, in the other. The striving is to make that greatest amount of heat to dissipate not threw the brake pads but threw disc. The experimental researching of heat transfer process taking place at vehicle brakes was made in the R&D Center of "Zastava automobili" car factory in order to increase the efficiency of brake system. The standard laboratory and road test procedures were used, according to factory quality regulations. The modern equipment such as thermo camera, thermo couples, torque transducers, signal amplifiers, optical speed measuring system and laptop computer were used. In this paper will be shown the part of the experimental researching, which refers to the thermal conductivity of brake pad friction linings.

  18. 泵控电液混合驱动系统在板料折弯机上的应用研发%The application and exploration of pump-control electro-hydraulic driving system in press brake for sheet metal

    Institute of Scientific and Technical Information of China (English)

    李振光; 汪立新; 温峰虎; 雷斌华; 茅问宇

    2013-01-01

    The electric and hydraulic principles of the pump-control electro-hydraulic driving system have been introduced in the text, as well as the advantages of pump-control press brake comparing with the conventional one. It is pointed out that the application of pump-control electro-hydraulic driving system is more widely, which has a broad marketing prospect.%介绍了泵控电液混合驱动系统的电气原理、液压原理,以及与传统折弯机相比泵控折弯机的诸多优点,指出泵控电液混合驱动系统的应用将越来越广泛,具有广阔的市场前景.

  19. Regenerative Braking Algorithm for an ISG HEV Based on Regenerative Torque Optimization

    Institute of Scientific and Technical Information of China (English)

    XIAO Wen-yong; WANG Feng; ZHUO Bin

    2008-01-01

    A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy. The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system. Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component, and EECB is a useful extended type of regenerative braking. The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one, and life-span of brake disks is prolonged for the novel algorithm.

  20. Effect of stiffness and movement speed on selected dynamic torque characteristics of hydraulic-actuation joystick controls for heavy vehicles.

    Science.gov (United States)

    Oliver, Michele; Rogers, Robert; Rickards, Jeremy; Tingley, Maureen; Biden, Edmund

    2006-02-22

    The purpose of this work was to quantify the effects of joystick stiffness and movement speed on the dynamic torque characteristics of hydraulic-actuation joystick controls, as found in off-road vehicles, as one of the initial steps towards the development of a joystick design protocol. Using a previously developed mathematical model in which a hydraulic-actuation joystick is assumed to rotate about two axes where the rotation origin is a universal joint, the dynamic torque characteristics incurred by an operator were predicted. Utilizing a laboratory mock-up of an excavator cab environment, three actuation torque characteristics (peak torque, angular impulse and deceleration at the hard endpoint) were quantified for nine unskilled joystick operators during the use of a commonly used North American hydraulic-actuation joystick. The six different experimental conditions included combinations of three joystick stiffnesses and two movement speeds. The highest instantaneous input torque over the course of the joystick movement (not including the hard endpoint) was evaluated using the peak torque value. Angular impulse provided an indication of the sustained exposure to force. The third indicator, deceleration at the hard endpoint, was included to provide a description of impact loading on the hand as the joystick came to a sudden stop. The most important result of this work is that the dynamic torque characteristics incurred during hydraulic-actuation joystick use are substantial. While the peak torque values were not very different between the fast and slow motion conditions, the high decelerations even for slow movements observed at maximum excursion of the joystick indicate that the dynamics do matter. On the basis of deceleration at the hard endpoint and peak torque, the joystick movements that require the highest values for a combination of torque variables are the side-to-side ones. This suggests that less stiff balance and return springs should be considered for

  1. Shift Strategy of Electric Vehicle Equipped with Electro-mechanical Continuously Variable Transmission in Regenerative Braking%搭载机电控制CVT电动汽车再生制动变速策略

    Institute of Scientific and Technical Information of China (English)

    叶明; 谢佳佳; 叶心

    2014-01-01

    基于对机电控制无级变速器工作原理的分析,提出电动汽车搭载机电控制无级变速器的结构方案,并相应地建立了电机数值模型、电池充电数学模型和机电控制无级变速器速比控制模型。综合考虑电机效率、机电控制无级变速器效率、电池荷电状态和整车特性,提出了再生制动时机电控制无级变速器的变速策略。在MAT-LAB/Simulink仿真平台上,搭建了系统再生制动性能仿真模型,并对搭载机电控制无级变速器的电动汽车再生制动性能进行了仿真。结果表明,采用所提出的变速策略与传统两挡变速策略相比,能更好地发挥电动汽车性能,提高再生制动过程中的能量回收率。通过台架试验,验证了仿真结果的有效性。%A configuration of electric vehicle equipped with electro-mechanical continuously variable trans-mission ( EMCVT) is put forward based on the analysis on the working principle of EMCVT, and the corresponding motor model, battery charging model and the speed ratio control model for EMCVT are established. With considera-tions of motor efficiency, EMCVT efficiency, battery SOC and vehicle characteristics, the shift strategy for EMCVT in regenerative braking is proposed. A simulation model is then built and a simulation on the regenerative braking performance of electric vehicle equipped with EMCVT is conducted with MATLAB/Simulink platform and its results are verified by bench tests. It is shown that compared with traditional two gear shift strategy, the shift strategy pro-posed can better give full play to the performance of electric vehicle and increase the energy recovery rate in regener-ative braking.

  2. The new Mercedes-Benz decompression valve engine brake (DVB); Die neue Dekompressionsventil-Motorbremse (DVB) von Mercedes-Benz

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, T.; Holloh, K.D.; Fleckenstein, G.; Juergens, R.

    1995-07-01

    During recent years there has been a continuing increase in the demands for higher braking performance of commercial vehicle engines. Mercedes-Benz developed the engine brake with continuously open decompression valve (`Konstantdrossel`) and introduced it into series production in 1989 as an option. For the use on engines developed by Mercedes-Benz for foreign markets and for further improvements of vehicle safety investigations were made to increase the engine braking power even more. The further increase of braking power had to be achieved while retaining the additional decompression valve in the cylinder head. For this, the decompression valve was no longer kept open during the whole working cycle (continueously open decompression valve), but only for a short period from just before compression TDC to about 90 .. 120 crank angle after compression TDC (pulsed decompression valve). The hydraulic actuating system which opens and closes the decompression valves was developed in cooperation with Mannesmann-Rexroth GmbH, Lohr, Germany. The engine braking performance attainable with this system is shown in comparison to other known engine braking systems. The effects of the engine braking system on the downhill performance of commercial vehicles compared to other continuous braking systems are presented. (orig.) [Deutsch] In den letzten Jahren sind generell die Forderungen nach hoeherer Motorbremsleistung immer weiter gestiegen. Mercedes-Benz entwickelte die Konstantdrossel-Motorbremse und fuehrte sie 1989 in die Serie ein. Fuer den Einsatz an von Mercedes-Benz fuer aussereuropaeische Maerkte entwickelten Motoren und zur weiteren Erhoehung der Fahrzeugsicherheit wurde nach weiteren Moeglichkeiten zur Steigerung der Motorbremsleistung gesucht. Die Steigerung sollte unter Beibehaltung des zusaetzlichen Dekompressionsventils ermoeglicht werden. Dies wurde dadurch erreicht, dass das Dekompressionsventil nicht mehr waehrend des gesamten Arbeitsspiels konstant offen gehalten

  3. Excitation Method of Linear-Motor-Type Rail Brake without Using Power Sources by Dynamic Braking with Zero Electrical Output

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    The eddy current rail brake is a type of braking system used in railway vehicles. Because of problems such as rail heating and problems associated with ensuring that power is supplied when the feeder malfunctions, this braking system has not been used for practical applications in Japan. Therefore, we proposed the use of linear induction motor (LIM) technology in eddy current rail brake systems. The LIM rail brake driven by dynamic braking can reduce rail heating and generate the energy required for self-excitation. In this paper, we present an excitation system and control method for the LIM rail brake driven by “dynamic braking with zero electrical output”. The proposed system is based on the concept that the LIM rail brake can be energized without using excitation power sources such as a feeder circuit and that high reliability can be realized by providing an independent excitation system. We have studied this system and conducted verification tests using a prototype LIM rail brake on a roller rig. The results show that the system performance is adequate for commercializing the proposed system, in which the LIM rail brake is driven without using any excitation power source.

  4. 49 CFR 393.48 - Brakes to be operative.

    Science.gov (United States)

    2010-10-01

    ...) The steering axle of a three-axle dolly which is steered by a co-driver; (5) Loaded house moving... times be capable of operating. (b) Devices to reduce or remove front-wheel braking effort. A commercial motor vehicle may be equipped with a device to reduce the front wheel braking effort (or in the case...

  5. 49 CFR 214.529 - In-service failure of primary braking system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false In-service failure of primary braking system. 214... Maintenance Machines and Hi-Rail Vehicles § 214.529 In-service failure of primary braking system. (a) In the event of a total in-service failure of its primary braking system, an on-track roadway...

  6. Study on Cooperative Control Method of Vehicle Steering/Anti-lock Braking System%汽车转向/防抱死制动系统的协调控制研究

    Institute of Scientific and Technical Information of China (English)

    李果; 刘华伟; 王旭

    2012-01-01

    A new cooperative control system was proposed for the vehicle's steering antilock braking stability fields.The cooperative control architecture is composed with the execution layer and the cooperation layer.On the execution layer,based on the optimum slip ratio,the vehicle adjustable sliding mode controller was designed for the robustness of vehicles.Moreover,the adaptor was designed to adjust the gain of sliding mode control parameters,so as to reduce the chatter.On the other hand,the yaw moment and the front wheel angle controllers based on the robust adaptive control law were designed to improve the respond,adaptive robustness and stability of vehicles.On the cooperation layer,the brake force distribution policy applicable to the complex work condition and a new cooperative control method were proposed to solve the problems of steering and braking systems.Finally,the stability and the validity of the control algorithm were validated by simulation results.%协同控制结构由执行级和协调级组成。在执行级中,设计基于最佳滑移率的汽车防抱死制动可调节滑模控制器。针对滑模控制中固有抖振缺陷,自动适时调节控制参数增益以消弱抖振。此外,设计基于鲁棒自适应控制的横摆力矩控制器和主动前轮转向控制器力求改善汽车动态响应、鲁棒自适应性和稳定性。在协调级中,设计适用于复杂工况的制动力分配策略,并提出一种协调控制转向系统和制动系统的新方法。最后用仿真结果验证所设计控制算法的稳定性和有效性。

  7. 制动力作用下车辆-车站结构耦合系统分析%Analysis method for a vehicle structure coupled system under braking force

    Institute of Scientific and Technical Information of China (English)

    张楠; 夏禾; 程潜; G.De Roeck

    2011-01-01

    研究制动力作用下车辆-结构耦合系统的分析方法.以刚体动力学方法建立车辆子系统模型,以振型叠加法建立结构子系统模型,以给定的制动加速度时程、简化的Kalker蠕滑理论和轮轨密贴假定分别定义纵向、横向和竖向轮轨间相互作用力,采用时程积分和时间步内的力一运动状态迭代方式求解运动方程.作为算例,研究了深圳地铁4号线、6号线列车制动于深圳北站时车辆-结构动力耦合系统的动力响应,并对车站结构关键郎位的振动状态做出了分析和评价.%The analysis method for a vehicle-structure coupled system under braking force was studied. The vehicle subsystems were modeled using the rigid-body dynamics method, the structure subsystems were modeled with the modal superposition method. The longitudinal, lateral and vertical wheel-rail interacting forces were defined with the given braking acceleration time-history, the simplified Kalker creep theory and the wheel-rail osculation assumption,respectively. The equations of motion of the system were solved using the time-history integral method and the force-motion state iterations within time steps. As a case study, the dynamic responses of the vehicle-structure coupled system for Shenzhen North Station under brakings of Metro Line 4 and Line 6 trains were computed, and the vibration properties of some key structural parts of the station building were analyzed and evaluated.

  8. 新款三轮运动车制动系统设计%Design of Brake System of New Three-wheel Sports Car

    Institute of Scientific and Technical Information of China (English)

    田锐; 李桂华

    2012-01-01

    Through the braking performance analysis for new three-wheel sports car,the paper designed and calculated the structure of floating type disc brake in braking system and fully hydraulic braking drive system by human power.According to GB 7258-2004"safety specification for power-driven vehicles operating on road",its performance is verified,and the design result is good.And so the braking requirements of three-wheel sports car in ideal pavement is also met.%通过对新款三轮运动车制动性能要求进行分析,设计计算了制动系统的浮钳形盘式制动器结构和采用人力操纵的全液压制动驱动系统,并根据《机动车运行安全技术条件》(GB 7258-2004)进行了验证,达到了设计效果,满足了三轮运动车在理想路面上的制动要求。

  9. Sistem Pendingin Paksa Anti Panas Lebih (Over Heating pada Rem Cakram (Disk Brake Kendaraan

    Directory of Open Access Journals (Sweden)

    Joni Dewanto

    2010-01-01

    Full Text Available Until now, the vehicle brakes are not usually equipped with a special cooling system, so that the release of heat into the air occurs naturally. When used continuously, the brakes can suffer damage as a result of the occurrence of over-heating. This condition is potentially causing a fatal accident. Physically, the over-heating often occurs in type disc brake, because the heat transfer surface is less proportionately, especially for high braking loads. This research aims to develop a brake disc with an active cooling system to prevent overheating. The system is applied to a simulated model of disc brakes empirically. The test was conducted at several levels of constant disc speed and breaking force. The results of this research indicate that at various braking load, the development of disc brakes with an active cooling system in the form of water vapor that is sprayed, can control the brake temperature rise and prevent over-heating.

  10. Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Lee, Ho Yong [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kwon, Sung Duck [Dept. of Physics, Andong National University, Andong (Korea, Republic of)

    2017-02-15

    Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk.

  11. Energy Saving Design and Research on Hydraulic System of Aerial Vehicle%高空作业车液压系统节能设计与研究

    Institute of Scientific and Technical Information of China (English)

    顾长明; 贾学军; 吕明亮

    2016-01-01

    Carrier rocket satellite fairing of docking and installation needs to be done using aerial vehicle, continue to work more than 4 hours, energy-saving hydraulic system on aerial vehicle, working hours .etc are put forward higher requirements. Based on aerial vehicle thermal limit under continuous operation and energy saving requirements, adopting a vale controlled load-sensing circuit to achieve energy efficiency goals,it is obtained by theoretical calculation that heating power and the temperature rise of hydraulic system. This paper builds simulation model of aerial vehicle hydraulic system load sensor, balance valve, the basic arm circuit , testing the energy saving effect of hy-draulic system, and verify the correctness of the energy-saving principle of the vale controlled load-sensing circuit.%运载火箭卫星整流罩的对接和安装需要使用高空作业车完成,持续工作时长4h以上,对高空作业车液压系统节能性、工作时长等都提出了较高要求。针对高空作业车持续作业下的发热限制和节能要求,采用了一种阀控负荷传感回路实现液压系统节能目标,建立高空作业车液压系统负荷传感阀、平衡阀、基本臂回路等的仿真模型,并对液压系统节能效果进行试验测试,验证了阀控负荷传感回路节能原理的正确性。

  12. Hands Solution Pump in Application of Explosion-proof Vehicle%解制动手泵在防爆车辆上的应用

    Institute of Scientific and Technical Information of China (English)

    闫晶

    2015-01-01

    Hands solution pump is indispensable for walking vehicle hydraulic components. According to vehicle hydraulic system and brake system method to choose appropriate solution in the form of hand pump, to use when need to provide solution for vehicle braking system to pump, complete solution for vehicle braking, the vehicle can be drag and move, not because no way solution braking and affect the normal work and operation of the mine.%解制动手泵是行走车辆上必备的液压元部件。根据整车液压系统和制动系统方式选用合适形式的解制动手泵,在需要给整车解制动时使用解制动手泵,完成整车解制动,使车辆可以被拖动或移动,不至于由于没办法解制动而影响矿井的正常工作和运转。

  13. 50 CFR 27.31 - General provisions regarding vehicles.

    Science.gov (United States)

    2010-10-01

    ... the request of any authorized official. (h) Stopping, parking or leaving any vehicle, whether attended... motor vehicle shall not be operated at anytime without proper brakes and brake lights, or from sunset...

  14. A Comparative Study on Automotive Brake Testing Standards

    Science.gov (United States)

    Kumbhar, Bhau Kashinath; Patil, Satyajit Ramchandra; Sawant, Suresh Maruti

    2016-06-01

    Performance testing of automotive brakes involves determination of stopping time, distance and deceleration level. Braking performance of an automobile is required to be ensured for various surfaces like dry, wet, concrete, bitumen etc. as well as for prolonged applications. Various brake testing standards are used worldwide to assure vehicle and pedestrian safety. This article presents methodologies used for automotive service brake testing for two wheelers. The main contribution of this work lies in comparative study of three main brake testing standards; viz. Indian Standards, Federal Motor Vehicle Safety Standards and European Economic Commission Standards. This study shall help the policy makers to choose the best criteria out of these three while formulating newer edition of testing standards.

  15. A Comparative Study on Automotive Brake Testing Standards

    Science.gov (United States)

    Kumbhar, Bhau Kashinath; Patil, Satyajit Ramchandra; Sawant, Suresh Maruti

    2017-08-01

    Performance testing of automotive brakes involves determination of stopping time, distance and deceleration level. Braking performance of an automobile is required to be ensured for various surfaces like dry, wet, concrete, bitumen etc. as well as for prolonged applications. Various brake testing standards are used worldwide to assure vehicle and pedestrian safety. This article presents methodologies used for automotive service brake testing for two wheelers. The main contribution of this work lies in comparative study of three main brake testing standards; viz. Indian Standards, Federal Motor Vehicle Safety Standards and European Economic Commission Standards. This study shall help the policy makers to choose the best criteria out of these three while formulating newer edition of testing standards.

  16. The brake-system of the new Mercedes van-generation Sprinter; Die Bremsanlage der neuen Transporter-Generation Sprinter von Mercedes-Benz

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, M.; Spielmann, W.

    1996-01-01

    The new Mercedes-Sprinter is the first van model series in this weight category which is equipped with disc brakes all round and ABS und ABD as standard. A diagonally divided hydraulic brake system with vacuum-controlled power assistance and automatic load-sensitive brake pressure control (ALB) is installed. The wheel brakes used are of a floating caliper type. During the development particular attention was paid to the constant friction coefficient of the brake linings, the `high` speed suitability and the provision of high thermal reserves. This concept offers good prerequisites for adding additional functions such as a brake assistant or a dynamic handling control system. For the first time there was a close cooperation between vehicle manufacturer, suppliers of brakes, linings and components during the development phase. To organise this complex development work a comprehensive specification booklet with detailed specs was drawn up and agreed with all parties involved. The result of the close cooperation is a positive example of the Mercedes-Benz tandem philosophy. (orig.) [Deutsch] Beim neuen Mercedes-Sprinter handelt es sich um die erste Transporter-Baureihe in dieser Gewichtsklasse mit vier Scheibenbremsen und serienmaessigem ABS mit ABD. Zum Einsatz kommt eine diagonal aufgeteilte hydraulische Bremsanlage mit Vakuum-Hilfskraftunterstuetzung und automatisch lastabhaengiger Bremskraftregelung (ALB). Als Radbremsen werden Schwimmsattelbremsen in Faustsattelbauweise verwendet. Besondere Schwerpunkte bei der Entwicklung waren die Reibwertkonstanz der Bremsbelaege, die Tauglichkeit bei hohen Geschwindigkeiten und die Schaffung hoher thermischer Reserven. Mit dieser Konzeption sind gute Voraussetzungen geschaffen, um weitere Zusatzfunktionen wie etwa einen Bremsassistenten oder eine Fahrdynamikregelung einzusetzen. Bei der Entwicklung wurde erstmals eine enge Zusammenarbeit zwischen Fahrzeughersteller, Bremsen-, Belag- und Komponentenlieferanten praktiziert. Zur

  17. Brake Fundamentals. Automotive Articulation Project.

    Science.gov (United States)

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  18. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    P. Suntharalingam

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  19. Muzzle brakes and their performance

    Directory of Open Access Journals (Sweden)

    J. P. Sirpal

    1958-01-01

    Full Text Available A criteria for the usefulness of a muzzle brake on any equipment is discussed and applied to existing weapons. Efficiencies of the existing muzzle brakes are also calculated. Design considerations for a muzzle brake are summarized.

  20. Linear Control Technique for Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    Chankit Jain

    2014-08-01

    Full Text Available Antilock braking systems are used in modern cars to prevent the wheels from locking after brakes are applied. The dynamics of the controller needed for antilock braking system depends on various factors. The vehicle model often is in nonlinear form. Controller needs to provide a controlled torque necessary to maintain optimum value of the wheel slip ratio. The slip ratio is represented in terms of vehicle speed and wheel rotation. In present work first of all system dynamic equations are explained and a slip ratio is expressed in terms of system variables namely vehicle linear velocity and angular velocity of the wheel. By applying a bias braking force system, response is obtained using Simulink models. Using the linear control strategies like PI-type the effectiveness of maintaining desired slip ratio is tested. It is always observed that a steady state error of 10% occurring in all the control system models.

  1. 重型内燃牵引车双回路制动系统的设计和研究%Design and Research of Two-Circuit Braking System in Heavy Motor Tractor

    Institute of Scientific and Technical Information of China (English)

    张瑜

    2015-01-01

    介绍了双回路气制动系统在内燃牵引车如何有效地应用。该系统通过使用液压元件和气压元件,保证当一个制动回路失灵后,第二个制动回路能正常工作。同时在两套管路中设置比例阀,分别调节前后制动器分泵压力,使每个车轮有合适的制动力,充分利用整车附着力,使得工程车辆既能达到最大的制动力,保证整车安全可靠性。气源通过气制动控制系统与制动泵相连接,能够实现牵引的挂车制动的远程集中控制。同时利用重型卡车成熟的气制动控制元件和叉车成熟的液压制动执行元件,满足了港口牵引车的制动安全性、结构的紧凑性,又能够实现牵引的挂车制动的远程集中控制,具有很好的拓展性。%This article introduces the effective implication of two-circuit braking system in internal combustion tractor. This system uses hydraulic components and pneumatic components to make sure the second circuit braking system is in working or-der when the first fails. Meanwhile, proportional valves are installed in both circuits to adjust the pressure of front and rear brakes. Therefore, each wheel has appropriate brake force. By taking advantages of friction, the vehicle can achieve the maxi-mum braking force which ensures safety and reliability. Air source is connected with the brake pump through air braking con-trol system, thus to realize the remote centralized control of the braking of trailer. Moreover, it applies mature air brake com-ponents of heavy truck and mature hydraulic components of forklift truck. So that it satisfies braking safety and structural com-pactness, which has favorable expansibility.

  2. 14 CFR 25.735 - Brakes and braking systems.

    Science.gov (United States)

    2010-01-01

    ... (ii) Allow the pilot(s) to override the system by use of manual braking. (d) Parking brake. The airplane must have a parking brake control that, when selected on, will, without further attention, prevent... be indication in the cockpit when the parking brake is not fully released. (e) Antiskid system. If...

  3. Electrically powered automotive vehicle with an energy recovering apppartus

    OpenAIRE

    Chevroulet, Tristan; Damminger, Ludwig

    1994-01-01

    Electrically driven motor vehicle, comprising mechanical means for braking the driving wheel and at least one electric motor. System for transfering brake energy into air-conditioning device. Enhances electro brake capabilities, provides controlled dissipation means, enables energy recovery & management. Improves accumulator lifetime (limits power surges due to braking). SMH - MCC Smart car concepts (electic & hybrid)

  4. A Study of Strategy for Electro-mechanical Braking of Electric Vehicle Based on Fuzzy Control%基于模糊控制的纯电动汽车机电复合制动控制策略研究

    Institute of Scientific and Technical Information of China (English)

    潘盛辉; 宋仲达; 王系朋

    2015-01-01

    The key problem of pure electric vehicle with electro-mechanical hybrid braking control is how to coordinate the rela⁃tionship among front, rear brake force and motor regenerative braking, to ensure the safety of braking distance , the stability of brak⁃ing direction as well as the efficiency of braking energy recovery. The control of electro-mechanical hybrid braking based on fuzzy logic is proposed in this paper, and embed the reestablished braking dynamics simulation model into the platform of ADVISOR. The results indicate that the distribution between front and rear brake force following the designed curve which meets the safety re⁃quirements, the ratio of braking energy recovery can reach 43.49% in the condition of CYC_UDDS driving cycle, increase by 67.8%compared to the original strategy. They verify the feasibility and effectiveness of this control strategy.%纯电动汽车机电复合制动控制所要解决的关键问题是在一定的制动需求下,如何合理的协调前、后轴制动力以及电机再生制动力三者之间的关系,使车辆既能有效地保证制动距离的安全性、制动方向的稳定性又能充分地回收制动能量。该文提出了一种基于模糊控制的机电复合制动控制策略,并将重新搭建的制动控制模块嵌入ADVISOR中进行仿真。结果表明:前、后轴制动力分配分布在设计的曲线上,满足安全要求;在CYC_UDDS循环工况下制动能量回收效率到达了43.49%,比ADVISOR自带的策略提高了67.8%,验证了该文提出的控制策略的有效性和可行性。

  5. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  6. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  7. The Application of Vibration Accelerations in the Assessment of Average Friction Coefficient of a Railway Brake Disc

    Science.gov (United States)

    Sawczuk, Wojciech

    2017-06-01

    Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.

  8. High Pressure Hydraulic Distribution System

    Science.gov (United States)

    1991-05-20

    to 500 0 F. 5 cycles. 5000 F room temperature to 50001F; 45 ______________ Icycles The tesis planned for the distribution system demonstrator were...American Society for Testing and Materials ASTM D412 - Tension Testing of Vulcanized Rubber ASTM D571 - Testing Automotive Hydraulic Brake Hose Society of

  9. RELIABILITY OF BRAKE SYSTEMS OF BUSES OF GROUP MAZ

    Directory of Open Access Journals (Sweden)

    A. Bessarab

    2013-01-01

    Full Text Available All over the world safety of maintained vehicles has the major value. For motor vehicles of the Republic of Belarus this problem is also actual. Maintenance of high reliability of brake systems of cars in operation is one of ways of the decision of a problem of increase of traffic safety.The analysis of reliability of brake systems of buses MAZ is carried out following the results of the state maintenance service in 2010 and the analysis of premature returns from routes of movement of buses MAZ-103 and МАZ-104 one of the motor transportation enterprises of a city of Minsk. Principal causes of structural parameters modification of brake pneumatic system of buses, the brake mechanism and elements АBS are considered.

  10. Numerical Modeling of Disc Brake System in Frictional Contact

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2014-03-01

    Full Text Available Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyse the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor by holding account certain parameters such as; the material used, the geometric design of the disc and the mode of braking. The analysis also gives us, the heat flux distribution for the two discs.

  11. Research on Regenerative Braking Torque Distribution Strategies for Fuel Cell Range Extended Electric Vehicle Based on Cruise%基于Cruise的燃料电池增程式电动汽车再生制动转矩分配策略研究

    Institute of Scientific and Technical Information of China (English)

    周苏; 杨国; 任宏伟; 支雪磊

    2015-01-01

    以锂电池SOC、车速和制动强度为约束条件,提出2种针对燃料电池增程式电动汽车再生制动转矩的分配策略。基于Cruise/Simulink联合仿真平台,对2种制动转矩分配策略进行了对比分析。结果表明,与并联再生制动系统相比,在4种典型工况下串联再生制动系统的锂电池单独驱动续驶里程增加率最大达11.66%,总续驶里程增加率最大达12.08%,制动能量回收率均增加了29%以上。%With lithium-ion battery SOC, vehicle speed and braking force as constraints, two distribution strategies for regenerative braking torque are proposed for fuel cell range extended electric vehicle (FCE-REV). These two strategies are simulated on Cruise/Simulink co-simulation platform for comparison and analysis. The results show that compared with parallel regenerative braking system, the maximal increasing rate of pure battery driving range for series regenerative braking system can be up to 11.66 %, the maximal increasing rate of total driving range is 12.08 % and braking energy recovery rate is increased by over 29%in four typical driving conditions.

  12. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  13. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  14. The Vehicle Hydraulic Constant Speed Power Generation System%一种车载液压恒速发电系统

    Institute of Scientific and Technical Information of China (English)

    卢学渊; 杨红; 白清鹏

    2015-01-01

    The parking or driving in the car engine with constant or variable speed drive L10V constant pressure/flow variable pump, using the fixed throttle hole in the outlet of the variable pump and the throttle pressure feedback back to the control variable pump export, so that the output and load constant flow independent drive hydraulic motor constant speed, constant speed hydraulic motor to drive the permanent magnet generator to generate electricity. The vehicle constant speed hydraulic power generation system has the features of parking or driv-ing power generation, control, large unit weight, compact size and so on..%驻车或行驶中的汽车发动机以恒定或变化转速驱动L10V恒压/流量变量泵,在变量泵出口采用所需的固定节流孔,并把节流孔后压力反馈回变量泵控制口,使之输出与负载无关的恒定流量驱动液压马达恒速运转,恒速液压马达再驱动永磁发电机进行发电.该车载恒速液压发电系统具有驻车或行车发电功能、控制简单、单位重量功率大、体积小巧等特点.

  15. 天津滨海二期车辆无牵引无制动故障分析%Failure Analysis on Traction and Brake for Tianjin Binhai Phase II Vehicle

    Institute of Scientific and Technical Information of China (English)

    米志宏; 龙贤

    2013-01-01

    天津滨海二期车辆运行偶尔出现全车无常用制动力,还经常出现牵引时各级牵引力输出均为最大牵引力,司机按压紧急制动按钮停车,之后通过重新启动编码器电源的方式恢复。造成列车欠标停车和晚点,经过长时间跟踪调查,确定为编码器供电电源受外部干扰所致,为编码器电源增加浪涌抑制器后,该故障现象消除。%The Tianjin Binhai Phase II vehicles suffer occasional cases of running without braking force, and there are often happenings of towing traction output levels reaching maximum traction, which requires driver to press emergency stop button, then restart the encoder power supply to resume operation. This has caused train delays and parking not to sign position. After a long-term follow-up survey, the problem is identiifed as external interference on encoder power supply. The problem is solved after installing surge suppressor for encoder power supply.

  16. Choice of time-headway in car-following and the role of time-to-collision information in braking.

    Science.gov (United States)

    Van Winsum, W; Heino, A

    1996-04-01

    Time-headway (THW) during car-following and braking response were studied in a driving simulator from the perspective that behaviour on the manoeuvring level (e.g. choice of THW) may be linked to operational competence of vehicle control (e.g. braking) via a process of adaptation. Time-headway was consistent within drivers and constant over a range of speeds. Since time-headway represents the time available to the driver to reach the same level of deceleration as the lead vehicle in case it brakes, it was studied whether choice of time-headway was related to skills underlying braking performance. The initiation and control of braking were both affected by time-to-collision (TTC) at the moment the lead vehicle started to brake. This strongly supported the idea that time-to-collision information is used for judging the moment to start braking and in the control of braking. No evidence was found that short followers differ from long followers in the ability to accurately perceive TTC. There was, however, evidence that short followers are better able to programme the intensity of braking to required levels. Also, short followers tuned the control of braking better to the development of criticality in time during the braking process. It was concluded that short followers may differ from long followers in programming and execution of the braking response.

  17. Effect of joystick stiffness, movement speed and movement direction on joystick and upper limb kinematics when using hydraulic-actuation joystick controls in heavy vehicles.

    Science.gov (United States)

    Oliver, M; Tingley, M; Rogers, R; Rickards, J; Biden, E

    2007-06-01

    Despite the widespread use of hydraulic-actuation joysticks in mobile North American construction, mining and forestry vehicles, the biomechanical effects that joysticks have on their human operators has not been studied extensively. Using nine unskilled joystick operators and a laboratory mock-up with a commonly used North American heavy off-road equipment hydraulic-actuation joystick and operator seat, the purpose of this work was to quantify and compare the effects of three hydraulic-actuation joystick stiffnesses and two movement speeds on upper limb and joystick kinematics as one of the initial steps towards the development of a hydraulic-actuation joystick design protocol. In addition to providing a detailed description of the kinematics of a constrained occupational task, coupled with the corresponding effects of the task on operator upper limb kinematics, results from principal component analysis and ANOVA procedures revealed a number of differences in joystick and upper limb angle ranges and movement curve shapes resulting from the various joystick stiffness-speed combinations tested. For the most part, these joystick motion alterations were caused by small, insignificant changes in one or more upper limb joint angles. The two exceptions occurred for forward movements of the joystick; the fast speed - light stiffness condition movement pattern shape change was caused primarily by an alteration of the elbow flexion-extension movement pattern. Similarly, the fast speed - normal stiffness condition movement curve shape perturbation - was caused principally by a combination of significant movement curve shape alterations to elbow flexion-extension, external-internal shoulder rotation and flexion-extension of the shoulder. The finding that joystick stiffness and speed alterations affect joystick and upper limb kinematics minimally indicates that the joystick design approach of modelling the joystick and operator upper limb as a closed linkage system should be

  18. A low cost, light weight cenosphere–aluminium composite for brake disc application

    Indian Academy of Sciences (India)

    V Saravanan; P R Thyla; S R Balakrishnan

    2016-02-01

    The commonly used composite material for brake rotor consists of silicon carbide (SiC) or aluminium oxide (Al$_2$O$_3$) particles which are more expensive. The weight of conventionally used composite is more compared to base alloy. The aim of this paper is to develop a light weight material for brake disc applications thereby substituting base alloy and conventional composite. This analysis led to 10 vol% cenosphere reinforced aluminium alloy (AA) 6063 composite as the most appropriate material for brake disc. To ensure the manufacturability of composite, composite brake rotor was casted using the sand casting technique and was machined to achieve the final component. Thermal capability of brake disc was ensured by studying temperature variation through vehicle testing procedure of disc brake. Cost reduction is one of the important benefit acquired using cenosphere reinforced composite. This was ensured by cost estimation and analysis. The cost estimated to manufacture the AA6063 brake disc was compared with composite cost.

  19. Variable structure Control with sliding Mode for ABs of Vehicle Based on EMB systen%基于EMB系统的整车ABS滑模变结构控制

    Institute of Scientific and Technical Information of China (English)

    周淑文; 陈庆明; 孙大明

    2016-01-01

    Compared with the traditional hydraulic brake system or the pneumatic braking system, the electromechanical brake is being paid increasing attention due to its simple structure,short response time and high braking efficiency. Therefore,based on the as-designed electromechanical brake device,a variable structure controller with sliding mode for anti-lock braking system( ABS) was proposed. A vehicle model which was built in the Carsim and control system was designed in Simulink. Then,a co-simulation was conducted between the Carsim and the Simulink. By comparing with the braking performance of the traditional hydraulic brake, using the logic threshold method with the electromechanical brake,it was verified that variable structure control with sliding mode method for anti-lock braking system is effective in vehicle equipping with the electromechanical brake system and advanced in braking performance.%相对于传统的液压式或气压式制动系统,电子机械式制动系统因具有结构简单、响应时间短以及制动效率高等优点正受到越来越高的重视。在设计出一套电子机械式制动装置模型的基础上,提出了一种适合安装有电子机械式制动系统的整车制动防抱死滑模变结构控制器。通过动力学仿真软件Carsim建立整车仿真模型,并与Simulink进行联合控制仿真。将仿真结果与传统的基于逻辑门限值控制的液压制动器制动性能进行比较,验证了滑模变结构控制方法在安装有电子机械式制动系统的整车制动防抱死系统上的有效性及制动性能的优越性。

  20. Design of hydraulic output Stirling engine

    Science.gov (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  1. Pedestrian injury mitigation by autonomous braking.

    Science.gov (United States)

    Rosén, Erik; Källhammer, Jan-Erik; Eriksson, Dick; Nentwich, Matthias; Fredriksson, Rikard; Smith, Kip

    2010-11-01

    The objective of this study was to calculate the potential effectiveness of a pedestrian injury mitigation system that autonomously brakes the car prior to impact. The effectiveness was measured by the reduction of fatally and severely injured pedestrians. The database from the German In-Depth Accident Study (GIDAS) was queried for pedestrians hit by the front of cars from 1999 to 2007. Case by case information on vehicle and pedestrian velocities and trajectories were analysed to estimate the field of view needed for a vehicle-based sensor to detect the pedestrians one second prior to the crash. The pre-impact braking system was assumed to activate the brakes one second prior to crash and to provide a braking deceleration up to the limit of the road surface conditions, but never to exceed 0.6 g. New impact speeds were then calculated for pedestrians that would have been detected by the sensor. These calculations assumed that all pedestrians who were within a given field of view but not obstructed by surrounding objects would be detected. The changes in fatality and severe injury risks were quantified using risk curves derived by logistic regression of the accident data. Summing the risks for all pedestrians, relationships between mitigation effectiveness, sensor field of view, braking initiation time, and deceleration were established. The study documents that the effectiveness at reducing fatally (severely) injured pedestrians in frontal collisions with cars reached 40% (27%) at a field of view of 40 degrees. Increasing the field of view further led to only marginal improvements in effectiveness.

  2. Study on the dynamic characteristics of a high frequency brake based on giant magnetostrictive material

    Science.gov (United States)

    Xu, Ai Qun

    2016-06-01

    In order to meet the requirements of rapid and smooth braking, high-frequency braking using a giant magnetostrictive actuator is proposed, which can solve the problems in hydraulic braking, such as, it leaks easily, catches fire easily, is difficult to find failures, high cost on maintenance and repairing, etc. The main factors affecting the force of a high-frequency braking actuator are emphatically analyzed, the brakes dynamic model is established and a performance testing device for high frequency braking is constructed based on LabVIEW. The output force of the actuator increases with the excitation current of the driving coil increasing, and the increased multiple of the output force is greater than that of the excitation current; the range of the actuator force amplitude is 121.63 N ∼ 158.14 N, which changes little, while excitation frequency changes between 200 Hz ∼ 1000 Hz. In a minor range of pre-stress, the output force decreases with an increase in the axial pre-stress of the giant magnetostrictive rod, but is not obvious. It is known by finite element simulation analysis that high-frequency braking shortens the braking displacement and time effectively, which proves the feasibility and effectiveness of high frequency braking. Theoretical analysis and experimental results indicate that the output force of the actuator changes at the same frequency with excitation current; it is controllable and its mechanical properties meet the requirements of high frequency braking.

  3. Dual Mode Vehicle with In-Wheel Motor: Regenerative Braking Optimization Véhicule bi-mode avec moteurs roues : optimisation du freinage récupératif

    Directory of Open Access Journals (Sweden)

    Le Solliec G.

    2013-03-01

    Full Text Available To meet the growing need for mobility of people and goods while massively reducing CO2 emissions, the electrification of vehicles is an essential solution. The variety of vehicles and their use results in innovative solutions for adapted architecture. This is especially true for light commercial vehicles where the objective is to promote full electric use in urban conditions (zero emission vehicle while maintaining significant range autonomy on road. The project VelRoue, a partnership between Renault, Michelin and IFP Energies nouvelles, aims to develop a dedicated dual-mode vehicle using a conventional thermal powertrain on the front axle and in-wheel motors on the rear one each powertrain to its use and makes it possible to achieve a low level of homologation CO2 emissions. In addition to features that meet the specific use of a commercial vehicle, in this paper we will particularly demonstrate the benefit of such an architecture to optimize the regenerative braking while ensuring a safe dynamic behaviour. Pour faire face au besoin croissant de mobilité des personnes et des biens tout en réduisant massivement les émissions de CO2, l’électrification des véhicules est une solution majeure. La grande variété des véhicules et de leur utilisation conduit à la mise en place d’architectures adaptées et donc de solutions innovantes. Cela est particulièrement le cas pour le développement de véhicules utilitaires dont l’objectif est de promouvoir un usage tout électrique en ville (véhicule zéro émission tout en maintenant une autonomie significative pour un usage extra-urbain. Le projet VelRoue, un partenariat entre Renault, Michelin et IFP Energies nouvelles, a pour objectif le développement d’un véhicule utilitaire bi-mode utilisant un groupe motopropulseur thermique traditionnel sur le train avant et des moteurs roues sur le train arrière. Chaque système de propulsion sera alors séparément optimisé à son utilisation

  4. 49 CFR 393.52 - Brake performance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Brake performance. 393.52 Section 393.52... NECESSARY FOR SAFE OPERATION Brakes § 393.52 Brake performance. (a) Upon application of its service brakes... braking force is measured by a performance-based brake tester which meets the requirements of...

  5. Free-piston Stirling hydraulic engine and drive system for automobiles

    Science.gov (United States)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  6. Correcting Students' Misconceptions about Automobile Braking Distances and Video Analysis Using Interactive Program Tracker

    Science.gov (United States)

    Hockicko, Peter; Trpišová, Beáta; Ondruš, Ján

    2014-12-01

    The present paper informs about an analysis of students' conceptions about car braking distances and also presents one of the novel methods of learning: an interactive computer program Tracker that we used to analyse the process of braking of a car. The analysis of the students' conceptions about car braking distances consisted in obtaining their estimates of these quantities before and after watching a video recording of a car braking from various initial speeds to a complete stop and subsequent application of mathematical statistics to the obtained sets of students' answers. The results revealed that the difference between the value of the car braking distance estimated before watching the video and the real value of this distance was not caused by a random error but by a systematic error which was due to the incorrect students' conceptions about the car braking process. Watching the video significantly improved the students' estimates of the car braking distance, and we show that in this case, the difference between the estimated value and the real value of the car braking distance was due only to a random error, i.e. the students' conceptions about the car braking process were corrected. Some of the students subsequently performed video analysis of the braking processes of cars of various brands and under various conditions by means of Tracker that gave them exact knowledge of the physical quantities, which characterize a motor vehicle braking. Interviewing some of these students brought very positive reactions to this novel method of learning.

  7. 混合动力汽车匀速下坡再生制动模型预测控制%Model Predictive Control of Regenerative Braking for a Hybrid Electric Vehicle Cruising Downhill

    Institute of Scientific and Technical Information of China (English)

    舒红; 潘文军; 袁景敏; 蒋勇

    2011-01-01

    基于车载导航系统(GPS/CIS等)所提供的未来一段预测路线上的汽车运行状态信息,建立中度混合动力汽车再生制动能量回收的全局优化动态规划模型;采用模型预测控制方法,将动态规划的全局优化控制策略转化成预测视距内的局部优化算法,实现滚动优化控制;为解决动态规划中的维数灾问题,确定了电池荷电状态和温度的可达区域;对模型预测控制策略、全局优化控制策略和瞬时优化控制策略进行了计算比较,在不同坡度、不同坡长的匀速下坡工况下的仿真表明:模型预测算法的计算效率显著高于全局优化策略的;应用模型预测控制策略的再生制动能量回收效率明显高于瞬时优化控制策略的,相比全局优化策略的降低不到1.31%,且采用档位提示的模型预测控制策略能量回收效果更好.%Based on the driving states of vehicles built by GPS/GIS on board in the future predictive route, a global optimal dynamic programming model of regenerative braking energy recovery for a medium hybrid electric vehicle was established. In order to realize a receding horizon optimal control, the global optimal dynamic programming algorithm was converted into a local optimal algorithm within prediction horizon using the model predictive control method. To overcome the curse of dimensionality of dynamic programming, the reachable ranges of SOC and temperature for battery were determined. The calculation comparison among the control strategies of model prediction, global optimization and instantaneous optimization was carried out. The simulation under the conditions of different gradients and slope lengths, and cruising downhill was performed.The results show that ( 1 ) the computational efficiency of model predictive control strategy is higher than that of global optimal control strategy; (2) energy recovery efficiency of regenerative braking of model predictive control strategy is greater than

  8. RELIABILITY OF BRAKE SYSTEMS OF BUSES OF GROUP MAZ

    OpenAIRE

    A. Bessarab

    2013-01-01

    All over the world safety of maintained vehicles has the major value. For motor vehicles of the Republic of Belarus this problem is also actual. Maintenance of high reliability of brake systems of cars in operation is one of ways of the decision of a problem of increase of traffic safety.The analysis of reliability of brake systems of buses MAZ is carried out following the results of the state maintenance service in 2010 and the analysis of premature returns from routes of movement of buses M...

  9. 铰接车辆转向系统液压管路动态特性%Dynamic characteristics of hydraulic pipelines of steering system of articulated vehicles

    Institute of Scientific and Technical Information of China (English)

    侯友山; 石博强; 肖成勇; 王慧; 郭朋彦

    2009-01-01

    对于铰接车辆转向系统,管路特性对转向系统性能影响较大,其影响因素不能被忽略.基于功率键合图-方块图方法及SIMULINK控制仿真软件,建立了铰接车辆转向系统液压管路至油缸及负载的通用数学模型.定量地研究分析了铰接车辆转向系统液压管路的动态特性以及液压管路参数对转向系统动态特性的影响.研究结果表明:对于小管径管路,液阻和液感较大,液容较小,系统振荡幅度小,响应速度快;随着管路长度的增加,液阻、液感和液容皆逐渐增大,系统振荡次数逐渐减少,振荡幅度逐渐减小,但是系统动态响应较慢;提高油液的等效体积弹性模量有利于改善系统的动态响应速度和稳定性.%For articulated vehicles steering system, the pipelines characteristics have great effects on the steering system performance, the impacts can not be ignored. Based on power bond graph-block diagram method and SIMULINK software, the general mathematical model of the hydraulic pipelines to the load of the articulated vehicles steering system was established. The dynamic characteristics of hydraulic pipelines of the articulated vehicles and the influence of the pipelines parameters on the articulated vehicles steering system were analyzed quantitatively. The study results show that for smaller diameter pipelines, the fluid resistance and fluid sense get larger, the fluid capacity gets smaller instead. The system oscillation amplitude is smaller and the dynamic response is faster; with an increase in the length of pipelines, the fluid sense, fluid resistance and fluid capacity are all increasing gradually, the system oscillation frequency reduces gradually, the oscillation amplitude also gradually decreases, but the dynamic response is getting slower. Increasing the oil volume elastic modulus of the system is conducive to improve the dynamic response speed and stability.

  10. 双向液压锁新型车载液压尾板系统的研究与设计%Research and Design of A New Type of Vehicle Hydraulic Lift-tail System Using Hydraulic Lock

    Institute of Scientific and Technical Information of China (English)

    赵丽华; 李喜玲; 高和平

    2016-01-01

    车载液压尾板在现代汽车装载作业中被广泛应用。由于汽车车底空间有限,不能承受太大的重量,所以整个液压尾板的尺寸与重量成为尾板设计过程中首先要考虑的问题。现在市面上大部分液压尾板采用两个举升油缸、两个翻转油缸和一个平衡油缸的结构型式控制尾板的举升与翻转,油缸较多,使整个尾板的重量增加,且传动结构复杂。本文将介绍一种新式液压尾板设计思路,省去平衡缸,且举升缸和翻转缸分别用一个,举升缸采用二级伸缩油缸控制尾板的翻转与举升,液压系统中加装液压锁。该传动机构简单实用,在减小了尾板尺寸与重量的同时,提升了整套设备的安全性与可靠性。%Vehicle hydraulic lift-tail has been applied in the truck loading operation . Due to the space of the car’s bottom is limited,it can’t bear too much,so the size and weight of the hydraulic lift-tail become the first issue to be consided in the process of design. Now on the market,most of the hydraulic lift-tail works with two lifting oil cylinder, two overturning oil cylinder and one balance cylinder to f control the lift-tail’s lifting and overturning, cylinder is too many, make the whole weight of the lift-tail increase,and the transmission structure is too complex. This paper will introduce a new design of the hydraulic lift-tail,save the balance cylinder,only use one lifting cylinder and one overturning cylinder, and use the secondary scaling cylinder to control the overturning and lifting of the lift-tail ,the transmission mechanism is simple and practical ,in this way,it can achieve the purpose of reducing the size and weight of the hydraulic lift-tail and improving the security and reliability of the whole equipment.

  11. Research of blended braking characteristics of super-big electric wheels of mining dump truck%特大型电动轮矿用自卸车联合制动特性研究

    Institute of Scientific and Technical Information of China (English)

    罗春雷; 钟锡继; 吴伟传

    2012-01-01

    In order to obtain the blended braking characteristics of super-big electric wheels of mining dump truck on different downhill slope, and analyze the power distribution between grid resistance electric dynamic brake and hydraulic wet multi-disc brake, the dynamic model of blended braking system was established by using a certain type of 520 tons gross vehicle weight dump truck as research object. Results show that with the initial velocity of 30 km/h, emergency braking distance is less than 21 m on different slopes below 10% ; the average specific brake force nearly remain unchanged on different slope, and the maximum value is about 0. 35; for rear specific brake force is bigger than that of front, the possibility of sideslip and deviation is bigger than that of out of steering control; the specific brake force difference between rear and front can be reduced by moving the center of gravity to the rear axle, while the average specific brake force remain unchanged, so the ground adhesion can used effectively; the brake power ratio between grid resistance and wet multi-disc brake is about 2- 3. These results shows that the blended braking system can reduce the brakes load effectively, increase braking performance, and extend the service life of the main brakes.%为了研究特大型电动轮矿用自卸车下坡联合制动时的制动特性,分析联合制动时电阻栅能耗制动及液压多片湿盘式制动器制动功率的分配,以湘电重装满载整车重量达520t的自卸车为研究对象,建立了自卸车电阻栅能耗制动及液压多片湿盘式制动器联合制动系统动力学模型,利用Mtlab/simulink对该自卸车在不同下坡坡道上的紧急联合制动进行了数值分析计算,获得制动特性曲线.结果表明:初速度为30 km/h时,在不高于10%的坡度下紧急制动距离不超过21 m;平均比制动力在不同坡道基本保持不变,最高值为0.35左右;后轮比制动力大于前轮比制动力,侧滑、跑

  12. Heat distribution in disc brake

    Science.gov (United States)

    Klimenda, Frantisek; Soukup, Josef; Kampo, Jan

    2016-06-01

    This article is deals by the thermal analysis of the disc brake with floating caliper. The issue is solved by numerically. The half 2D model is used for solution in program ADINA 8.8. Two brake discs without the ventilation are solved. One disc is made from cast iron and the second is made from stainless steel. Both materials are an isotropic. By acting the pressure force on the brake pads will be pressing the pads to the brake disc. Speed will be reduced (slowing down). On the contact surface generates the heat, which the disc and pads heats. In the next part of article is comparison the maximum temperature at the time of braking. The temperatures of both materials for brake disc (gray cast iron, stainless steel) are compares. The heat flux during braking for the both materials is shown.

  13. Thermal Modeling of Disc Brake Rotor in Frictional Contact

    Science.gov (United States)

    Ali, Belhocine; Ghazaly, Nouby Mahdi

    2013-01-01

    Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor. The analysis also gives us, the heat flux distribution for the two discs.

  14. ANALYSIS OF POSSIBILITY TO AVOID A RUNNING-DOW ACCIDENT TIMELY BRAKING

    Directory of Open Access Journals (Sweden)

    Sarayev, A.

    2013-06-01

    Full Text Available Such circumstances under which the drive can stop the vehicle by applying timely braking before reaching the pedestrian crossing or decrease the speed to the safe limit to avoid a running-down accident is considered.

  15. A method to model anticipatory postural control in driver braking events

    NARCIS (Netherlands)

    Osth, J.; Eliasson, E.; Happee, R.; Brolin, K.

    2014-01-01

    Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated brakin

  16. Analysis of disc brake squeal using a ten-degree-of-freedom model ...

    African Journals Online (AJOL)

    Analysis of disc brake squeal using a ten-degree-of-freedom model. ... International Journal of Engineering, Science and Technology ... It is a significant problem in passenger vehicles that has not been solved satisfactorily until recently.

  17. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    Science.gov (United States)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  18. Design and Simulation of the Robust ABS and ESP Fuzzy Logic Controller on the Complex Braking Maneuvers

    Directory of Open Access Journals (Sweden)

    Andrei Aksjonov

    2016-11-01

    Full Text Available Automotive driving safety systems such as an anti-lock braking system (ABS and an electronic stability program (ESP assist drivers in controlling the vehicle to avoid road accidents. In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for vehicle stability control in complex braking maneuvers. The proposed control algorithm is implemented for a sport utility vehicle (SUV and investigated for braking on different surfaces. The results obtained for the vehicle software simulator confirm the robustness of the developed control strategy for a variety of road profiles and surfaces.

  19. Characteristic Analysis and Control of a Hybrid Excitation Linear Eddy Current Brake

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2015-07-01

    Full Text Available In this paper, a novel hybrid excitation linear eddy current brake is presented as a braking system for high-speed road and rail vehicles. The presence of the permanent magnets (PMs, whose flux lines in the primary core are oppositely directed with respect to the flux lines by the excitation windings, has the effect of mitigating the saturation of the iron in the teeth of the primary core. This allows the brake to be fed with more intense currents, improving the braking force. First, using the magnetic equivalent circuit method and the layer theory approach, the analytical model of the hybrid excitation linear eddy current brake was developed, which can account for the saturation effects occurring in the iron parts. The saturation effects make the design and control of eddy current brakes more difficult. Second, the relationship between the braking force characteristics and the design parameters were analyzed to provide useful information to the designers of eddy current brakes. Then, the controller of the hybrid excitation linear eddy current brake was designed to control the amplitude of the braking force. Finally, experimental measurements were conducted to verify the validity of the theoretical analysis.

  20. Vehicle Sprung Mass Estimation for Rough Terrain

    Science.gov (United States)

    2011-03-01

    drivetrain controllers. These autonomous systems and controllers schedule gear shifts, actuate brakes, induce steer, schedule fuel injection, warn...longitudinal vehicle dynamics, drivetrain shuffle dynamics, or combined lateral, yaw, and roll dynamics to estimate the vehicle mass. Despite the research

  1. 工程车辆联合制动与能量回收的建模与仿真%Modeling and Simulation of Combined Braking and Energy Recovery for Construction Vehicle

    Institute of Scientific and Technical Information of China (English)

    李竹芳; 李鹏; 蔡普; 王大江; 杨龙

    2015-01-01

    This paper describes the mechanism of energy recovery and combined braking system, and establishes its mathematical model. Matlab/Simulink simulation software is use to analyze and calculate the braking efficiency and energy recovery conditions during braking. The results show that energy recovery can improve braking efficiency and saving energy. The energy recovery and dynamic braking test is carried out on comprehensive test bench, the results verifies the correctness and reliability of simulation results.%阐述了联合制动与能量回收机理。建立了能量回收与联合制动的数学模型,利用Matlab/Simulink仿真软件分析和计算了一次制动过程中制动效率和能量回收的情况。结果表明,制动过程中进行能量回收可以很好地提高制动效率且节约能源。利用综合试验台进行了能量回收与动力制动试验,试验结果很好地验证了仿真结果的正确性和可靠性。

  2. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  3. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL

    2011-11-01

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and

  4. Numerical analysis of frictional heat generation in bicycle disc brake

    Science.gov (United States)

    Tahmid, Shadman; Alam, Saima

    2017-06-01

    Precise braking operations are pivotal to ensure safety in modern day vehicle designs. Brakes are mechanical devices for increasing the frictional resistance that obstructs the turning motion of vehicle wheels by absorbing either kinetic, potential energy or both while in action. This absorbed energy appears in the form of heat. Stress, distribution of friction on surface, frictional heat generation, material and geometry are the major controlling factors for efficiency of braking operations. Frictional heat generation and its effective dissipation is one of the most predominant of these factors and hence it is the focus of this study. The purpose of this study is to analyze the thermal behavior of a full bicycle disc brake using finite element method. Sequential thermal structured method based on Ansys 14.5 is used to carry out the numerical simulation for evaluating the variation of total heat flux and temperature profiles with respect to time. The analysis model was studied experimentally and results obtained by numerical analysis were within 3% of the experimental result for maximum temperature. The model is thus adequately validated to be followed for a similar analysis on bicycle brakes.

  5. Adaptive Brake By Wire: From Human Factors to Adaptive Implementation

    OpenAIRE

    Spadoni, Andrea

    2013-01-01

    The introduction of the Brake By Wire is replacing the traditional mechanical control systems with ECUs and it is raising the need to reproduce feelings of eliminated static mechanical components (i.e. hydraulic fluids, pumps and cylinders). Thanks to electromechanical actuators and human-machine interfaces (i.e. active pedal) it is possible to reproduce such feelings and, therefore, arbitrarily change their features. In this way it will be possible to customize the pedal feelings and the veh...

  6. 29 CFR 1918.65 - Mechanically powered vehicles used aboard vessels.

    Science.gov (United States)

    2010-07-01

    ... repair. (g) Parking brakes. All mechanically powered vehicles purchased after January 21, 1998, shall be equipped with parking brakes. (h) Operation. (1) Only stable and safely arranged loads within the rated..., brakes set and power shut off. Wheels shall be blocked or curbed if the vehicle is on an incline....

  7. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    Science.gov (United States)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  8. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    Science.gov (United States)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  9. Clutches and brakes design and selection

    CERN Document Server

    Orthwein, William C

    2004-01-01

    FRICTION MATERIALSFriction CodeWearBrake FadeFriction MaterialsNotationReferencesBAND BRAKESDerivation of EquationsApplicationLever-Actuated Band Brake: Backstop DesignExample: Design of a BackstopNotationFormula CollectionReferencesEXTERNALLY AND INTERNALLY PIVOTED SHOE BRAKESPivoted External Drum BrakesPivoted Internal Drum BrakesDesign of Dual-Anchor Twin-Shoe Drum BrakesDual-Anchor Twin-Shoe Drum Brake Design ExamplesDesign of Single-Anchor Twin-Shoe Drum BrakesSingle-Anchor Twin-Shoe Drum Brake Design Exam

  10. Analysis of the stability of PTW riders in autonomous braking scenarios.

    Science.gov (United States)

    Symeonidis, Ioannis; Kavadarli, Gueven; Erich, Schuller; Graw, Matthias; Peldschus, Steffen

    2012-11-01

    While fatalities of car occupants in the EU decreased remarkably over the last decade, Powered Two Wheelers (PTWs) fatalities still increase following the increase of PTW ownership. Autonomous braking systems have been implemented in several types of vehicles and are presently addressed by research in the field of PTWs. A major concern in this context is the rider stability. Experiments with volunteers were performed in order to find out whether autonomous braking for PTWs will produce a greater instability of the rider in comparison to manual braking. The PTW's braking conditions were simulated in a laboratory with a motorcycle mock-up mounted on a sled, which was accelerated with an average of 0.35 g. The motion of the rider was captured in autonomous braking scenarios with and without pre-warning as well as in manual braking scenarios. No significant differences between the scenarios were found with respect to maximum forward displacement of the volunteer's torso and head (pautonomous braking at low deceleration will not cause significant instabilities of the rider in comparison to manual braking in idealized laboratory conditions. Based on this, further research into the development and implementation of autonomous braking systems for PTWs, e.g. by extensive riding tests, seems valuable.

  11. Experimental Method for Analyzing Friction Phenomenon Related to Drum Brake Squeal

    Directory of Open Access Journals (Sweden)

    J. GLIŠOVIĆ

    2010-12-01

    Full Text Available Automobile brakes have been intensively developed during past few decades, but the maximum motor’s power, that should amortized in vehicle brakes, has been significantly increased also. Most of the kinetic energy of the moving vehicles is transforming into heat through friction. But the small part of kinetic energy transforms into sound pressure and makes noise. Low frequency squeal of drum brakes is very intense and can lead to customers’ complain. The interaction between the brake system and the vehicle framework and suspension is often very substantial during occurrence of brake noise. Unfortunately, to solve this type of squeal problem is also difficult because of the large number of components involved. The other cause is attributed to self-excited vibration that is induced when the friction material has a negative slope in relation to the relative velocity. This paper illustrates an approach to experimental studies of drum brakes in road conditions in order to monitor changes in the coefficient of friction that can generate drum brake squeal at low frequencies.

  12. Thermal Characterisation of Brake Pads

    DEFF Research Database (Denmark)

    Ramousse, Séverine; Høj, Jakob Weiland; Sørensen, O. T.

    2001-01-01

    The chemical-physical decomposition processes that occur in a brake pad heated to 1000degreesC have been studied. This temperature can be reached when a brake pad is applied. Thermogravimetry and differential thermal analysis were used in combination with evolved gas analysis, and image analysis...

  13. Dynamics Models of Interacting Torques of Hydrodynamic Retarder Braking Process

    Directory of Open Access Journals (Sweden)

    Wenhao Shen

    2013-01-01

    Full Text Available Hydrodynamic retarder is a kind of assist braking device, which can transfer the vehicle kinetic energy into the heat energy of working medium. There are complicated three-dimensional viscous incompressible turbulent flows in hydrodynamic retarder, so that it is difficult to represent the parameters changing phenomenon and investigate the interactional law. In order to develop a kind of reliable theoretical model for internal flow field, in this study, the dynamics models of interacting torques between impellers and working fluid were constructed based on braking energy transfer principle by using Euler theory to describe the flow state in view of time scale. The model can truly represent the dynamic braking process.

  14. Product and process innovation of grey cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Schorn, M. [Brembo S.P.A. (Italy)

    2006-07-01

    The brake disc out of grey cast iron often seems to be playing the role of the ''underdog'' in the technical examinations of the entire brake system. This is also reflected by the 25 year history of the {mu}-club. In a total of 93 presentations in those 25 years, only 3 were related to the topic of grey cast iron discs. This is not a correct relation to the importance of this component within the brake system. The disc, although per definition with a lower specific load than the pad, has the major task to store and dissipate the heat in which the kinetic energy of the vehicle is transformed. The disc also has a significant effect on NVH behaviour, particularly in the low frequency range. It also has a permanent fight with its weight as an unsprung mass. (orig.)

  15. Investigation of Friction Behaviors of Brake Shoe Materials using Metallic Filler

    Directory of Open Access Journals (Sweden)

    E. Surojo

    2015-12-01

    Full Text Available Some vehicles use brake shoe made from semi-metallic materials. Semi-metallic brake shoes are made from a combination of metallic and non-metallic materials. Metallic particles are added in the formulation of brake shoe material to improve composites characteristics. In this paper, friction behaviors of brake shoe material using metallic filler were investigated. Machining chips of cast iron and copper wire of electric motor used were incorporated in composite as metallic fillers with amount 0, 2, and 4 vol. %. Friction testing was performed to measure coefficient of friction by pressing surface specimen against the surface of rotating disc. The results show that cast iron chip and Cu short wire have effect on increasing coefficient of friction of brake shoe material. They form contact plateau at contact surface. At contact surface, the Cu short wires which have parallel orientation to the sliding contact were susceptible to detach from the matrix.

  16. Advanced Vehicle and Power Initiative

    Science.gov (United States)

    2010-07-29

    bases.) Qualifying advanced propulsion vehicles for this initiative are battery electric vehicles (BEV), hybrid electric vehicles (HEV), hybrid...hydraulic vehicles (HHV), plug-in hybrid electric vehicles (PHEV) and fuel cell electric vehicles (FCEV). The AVPI integrates use of renewable energy at

  17. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  18. Performance of a fully mechanical parking brake system for passenger cars

    Science.gov (United States)

    Rozaini, A. H.; Ishak, M. R.; Abu Bakar, A. R.; Mohd Zain, M. Z.

    2013-12-01

    In order to ensure that a vehicle remains stationary when it is parked at a certain road slope, the driver has to apply sufficient pulling force on the handbrake lever. Otherwise, the vehicle will start to rollaway where the torque generated by the parking brake system is lower that the torque required by the vehicle to remain stationary. This poses a danger situation not only to the vehicle's occupants but also to the people surrounding it. Thus, this paper aims to investigate performance of a typical parking brake system used in passenger cars. A theoretical model of drum-type parking brake system is derived and later being validated by test data that measured from the parking brake test bench. A good agreement is achieved between calculated and test results. Results from the model show that the parking brake system used in this work can hold the vehicle stationary at 11 degree slope less than 200 N of the applied force and thus it meets the regulation requirement, and also the vehicle will not rollaway even though there are four adult passengers inside it.

  19. 49 CFR 238.231 - Brake system.

    Science.gov (United States)

    2010-10-01

    ... by testing or previous service. (h) Hand brakes and parking brakes. (1) Except for a locomotive that..., and except for MU locomotives, all locomotives shall be equipped with a hand or parking brake that can... locomotives, on locomotives so equipped, the hand or parking brake as well as its parts and connections...

  20. 49 CFR 238.431 - Brake system.

    Science.gov (United States)

    2010-10-01

    ... thermal damage to wheels or discs. (f) The brake system design shall allow a disabled train's pneumatic... 49 Transportation 4 2010-10-01 2010-10-01 false Brake system. 238.431 Section 238.431... Equipment § 238.431 Brake system. (a) A passenger train's brake system shall be capable of stopping...

  1. An evaluation of short-term exposures of brake mechanics to asbestos during automotive and truck brake cleaning and machining activities.

    Science.gov (United States)

    Richter, Richard O; Finley, Brent L; Paustenbach, Dennis J; Williams, Pamela R D; Sheehan, Patrick J

    2009-07-01

    Historically, the greatest contributions to airborne asbestos concentrations during brake repair work were likely due to specific, short-duration, dust-generating activities. In this paper, the available short-term asbestos air sampling data for mechanics collected during the cleaning and machining of vehicle brakes are evaluated to determine their impact on both short-term and daily exposures. The high degree of variability and lack of transparency for most of the short-term samples limit their use in reconstructing past asbestos exposures for brake mechanics. However, the data are useful in evaluating how reducing short-term, dust-generating activities reduced long-term exposures, especially for auto brake mechanics. Using the short-term dose data for grinding brake linings from these same studies, in combination with existing time-weighted average (TWA) data collected in decades after grinding was commonplace in rebuilding brake shoes, an average 8-h TWA of approximately 0.10 f/cc was estimated for auto brake mechanics that performed arc grinding of linings during automobile brake repair (in the 1960s or earlier). In the 1970s and early 1980s, a decline in machining activities led to a decrease in the 8-h TWA to approximately 0.063 f/cc. Improved cleaning methods in the late 1980s further reduced the 8-h TWA for most brake mechanics to about 0.0021 f/cc. It is noteworthy that when compared with the original OSHA excursion level, only 15 of the more than 300 short-term concentrations for brake mechanics measured during the 1970s and 1980s possibly exceeded the standard. Considering exposure duration, none of the short-term exposures were above the current OSHA excursion level.

  2. 15 CFR 265.19 - Unattended vehicles.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Unattended vehicles. 265.19 Section... Unattended vehicles. No person shall leave a motor vehicle unattended on the site with the engine running or a key in the ignition switch or the vehicle not effectively braked....

  3. 煤矿井下车载液压绞车的设计与实验研究%Design and experimental research of vehicle-mounted hydraulic winch in underground coal mine

    Institute of Scientific and Technical Information of China (English)

    潘成杰

    2016-01-01

    According to the structure and performance characteristics of the underground shovel plate carrier used in the coal mine, a U-shaped arrangement of vehicle-mounted hydraulic winch was designed. Under the control of the driving unit integrated by the rotary reducer and the POSI-STOP type anti-drag locking device, the vehicle hydraulic winch driven by the underground shovel plate carrier's hydraulic system could transfer power to the lateral arrangement transmission reducer. Meanwhile, through the application of a new type material rope made from ultra-high molecular weight polyethylene (UHMWPE) and aramid fiber, the inapplicability and the insecurity problems of steel wire rope used in the situation of small curvature radius roller were solved fundamentally. To acquire technical parameters of the vehicle hydraulic winch, the dynamometer tests under various sustained load were carried out with hydraulic test bed and transmission test bed. As a result, the structural correctness of the hydraulic winch's design and the thermal equilibrium of each element were proved.%针对煤矿井下铲板式搬运车的结构和性能特点设计了一种U型布置方式的车载液压绞车,该绞车以铲板式搬运车液压系统为动力源,通过集成了回转减速器、 P OSI-STOP 型反拖自锁装置为一体的驱动控制单元将动力传递给侧向布置传动减速箱,在经过小半径滚筒卷扬超高分子量聚乙烯+芳纶材料的缆绳代替传统钢丝绳实现工作输出,解决了钢丝绳不能应用于较小曲力半径滚筒上的问题和使用安全性问题。通过液压试验台和传动试验台对该绞车进行各种持续负载工况的测功平台试验,以获得绞车的各种技术参数,从而验证绞车结构、设计的合理性和绞车各部位的热平衡。

  4. FSC赛车制动系统设计%FSC racing brake system design

    Institute of Scientific and Technical Information of China (English)

    吴祥超; 赵运德; 鲁雄文

    2014-01-01

    A design method of brake system that is applicable to theFormula Student China racing car is proposed in this paper. A simple hydraulic disc brake system is chosen, and adding balance bar is to regulate the distribution coefficient of braking force. Calculation and analysis show that the braking system can meet the requirements of dynamic testing during the game.%本文提出了一套适用于FSC赛车制动系统的设计方法。选用简单液压盘式制动系统,并且加装平衡杆以调节制动器制动力分配系数。计算和分析表明,该制动系统能够满足比赛时动态测试的要求。

  5. Comparison of Regenerative Braking Efficiencies of MY2012 and MY2013 Nissan Leaf

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2016-07-01

    Full Text Available The use of kinetic energy recovery systems (KERS is the best solution presently available to dramatically improve the energy economy of passenger cars. The paper presents an experimental analysis of the energy flow to and from the battery of a MY 2012 and a MY 2013 Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS. The two vehicles differ for the integration of the electric drivetrain component, plus a different use of the electric motor and the regenerative brakes, in addition to a different weight. It is shown that while the efficiency propulsive power to vehicle / power from battery are basically unchanged, at about 87-89 %, the efficiency power to the battery / braking power to vehicle are significantly improved from values of about 70-80 % to values of 72-87 %. The analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles.

  6. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    Science.gov (United States)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  7. Brake Stops Both Rotation And Translation

    Science.gov (United States)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  8. DISTRIBUTION OF TRACTION AND BRAKING FORCES ON VEHICLE’S UNDER DIFFERENT RIDING CYCLES

    OpenAIRE

    Ivanov, A.; А. Timkov

    2011-01-01

    The method calculation wich can been used to determine the distribution of traction and braking force of the vehicle in different driving cycles and use it when choosing characteristics of a hybrid vehicle deviced. The differential equation of vehicle’s motion basis of Newton’s second law lies in the basis of the given methodology.

  9. DISTRIBUTION OF TRACTION AND BRAKING FORCES ON VEHICLE’S UNDER DIFFERENT RIDING CYCLES

    Directory of Open Access Journals (Sweden)

    A. Ivanov

    2011-01-01

    Full Text Available The method calculation wich can been used to determine the distribution of traction and braking force of the vehicle in different driving cycles and use it when choosing characteristics of a hybrid vehicle deviced. The differential equation of vehicle’s motion basis of Newton’s second law lies in the basis of the given methodology.

  10. Spontaneous-braking and lane-changing effect on traffic congestion using cellular automata model applied to the two-lane traffic

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-08-01

    Full Text Available In the real traffic situations, vehicle would make a braking as the response to avoid collision with another vehicle or avoid some obstacle like potholes, snow, or pedestrian that crosses the road unexpectedly. However, in some cases the spontaneous-braking may occur even though there are no obstacles in front of the vehicle. In some country, the reckless driving behaviors such as sudden-stop by public-buses, motorcycle which changing lane too quickly, or tailgating make the probability of braking getting increase. The new aspect of this paper is the simulation of braking behavior of the driver and presents the new Cellular Automata model for describing this characteristic. Moreover, this paper also examines the impact of lane-changing maneuvers to reduce the number of traffic congestion that caused by spontaneous-braking behavior of the vehicles.

  11. 高原山区车辆轮毂轴承润滑脂流失过程温度场仿真计算%Temperature Field Calculation of Brake Drum for Plateau Mountain Heavy Vehicle Lubricating Grease Loss

    Institute of Scientific and Technical Information of China (English)

    米红英; 管亮; 郭小川; 杨庭栋

    2013-01-01

    According to the technic parameter and working condition of trucks operated under heavy loading and moun-tain driving at altiplano region,the distributing of temperature field and the process of temperature rising of the break drum under frequent breaking were analyzed through computer simulation by COMSOL Multiphysics. The results show that tem-perature between brake drum and block ranges from 430 ℃ to 580 ℃ and the temperature of drum ranges from 150 ℃ to 210 ℃ under continuous braking. Continuous braking is the major reason for lubricating grease loss failure of high tempera-ture.%  根据高原山区重载运输车辆轮毂技术参数及实际使用工况,使用COMSOL Multiphysics软件对连续制动情下制动鼓及轴承温度场分布及温升过程进行模拟仿真分析。结果表明:在高原山区特殊路况下连续制动时,重载车辆动鼓与刹车片摩擦表面的温度在430~580℃之间;轮毂轴承温度随着制动时间增长逐步上升,在150~210℃之间;续制动导致车辆轮毂轴承温度明显升高是造成轮毂轴承润滑脂流失失效的主要原因。

  12. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  13. Analysis of natural frequency variability of a brake component

    Science.gov (United States)

    Gallina, A.; Lisowski, W.; Pichler, L.; Stachowski, A.; Uhl, T.

    2012-10-01

    The manufacture of automotive disc brake calipers is subjected to many inherent variabilities resulting in product variability. In particular, the dispersion of natural frequency values is a primary issue in the context of vehicle comfort. This paper aims to quantify natural frequency variability and search for its causes. Extensive experimental tests and numerical simulations, described in the paper, point out the fundamental role of mold wear and assembling process in this variability.

  14. Control of Braking Noise of A Car Disc Brake%某型轿车盘式制动器制动噪声的控制

    Institute of Scientific and Technical Information of China (English)

    戢何民

    2011-01-01

    Bench test is made to a car diac brake, it is found in this test that braking noise frequency mainly occurs at 3 kHz. With FEA, vibration characteristic analysis is made to brake disc, brake caliper case, caliper bracket and friction pad. Test results indicate that 7-order vibration mode of brake caliper bracket is a major contributor of -braking noise. Structure of brake caliper bracket is modified, and bench test is made to the disc brake with the modified caliper bracket. The results show that cold state braking noise is reduced from 100.5 dB to 73.4 dB, meeting the requirement of noise limit of this vehicle.%对某型轿车盘式制动器进行了台架试验,发现该制动器主要制动噪声频率在3 kHz附近.采用有限元FEA分析手段对制动盘、制动钳壳体、制动钳支架和摩擦片进行了振动特性分析.结果表明,制动钳支架的7阶振动模态是导致制动噪声产生的原因之一.对制动钳支架结构设计进行了改进,并对装有改进后制动钳支架的盘式制动器进行了台架试验.结果表明,制动器冷态制动噪声从100.5 dB下降为73.4 dB,达到了该车型对制动器噪声的限值要求.

  15. Magnetic Braking Revisited

    CERN Document Server

    Taam, R E

    2003-01-01

    We present a description for the angular momentum loss rate due to magnetic braking for late type stars taking into account recent observational data on the relationship between stellar activity and rotation. The analysis is based on an idealized two component coronal model subject to constraints imposed on the variation of the coronal gas density with rotation period inferred from the observed variation of X-ray luminosity, L_x, with rotation rate, Omega, (L_x \\propto Omega^2) for single rotating dwarfs. An application of the model to high rotation rates leads to a gradual turnover of the X-ray luminosity which is similar to the saturation recently observed in rapidly rotating dwarfs. The resulting angular momentum loss rate, \\dot J, depends on Omega in the form \\dot J \\propto Omega^beta where beta ~ 3 for slow rotators and ~ 1.3 for fast rotators. The relation at high rotation rates significantly differs from the power law exponent for slowly rotating stars, depressing the angular momentum loss rate without...

  16. Vehicle path tracking by integrated chassis control

    Institute of Scientific and Technical Information of China (English)

    Saman Salehpour; Yaghoub Pourasad; Seyyed Hadi Taheri

    2015-01-01

    The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator (LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization (PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10%and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance.

  17. Motion-mode energy method for vehicle dynamics analysis and control

    Science.gov (United States)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  18. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  19. Road Identification for Anti-Lock Brake Systems Equipped with Only Wheel Speed Sensors

    Institute of Scientific and Technical Information of China (English)

    吴卫东; 尹用山

    2001-01-01

    Anti-lock brake systems (ABS) are now widely used on motor vehicles. To reduce product cost andto use currently available technologies, standard ABS uses only wheel speed sensors to detect wheel angularvelocities, which is not enough to directly obtain wheel slip ratios needed by the control unit, but can be usedto calculate reference slip ratios with measured wheel angular velocities and the estimated vehicle speed.Therefore, the road friction coefficient, which determines the vehicle deceleration during severe braking, is animportant parameter in estimating vehicle speed. This paper analyzes wheel acceleration responses insimulations of severe braking on different road surfaces and selects a pair of specific points to identify thewheel acceleration curve for each operating condition, such as road surface, pedal-braking torque and wheelvertical load. It was found that the curve using the selected points for each road surface clearly differs fromthat of the other road surfaces. Therefore, different road surfaces can be distinguished with these selectedpoints which represent their corresponding road surfaces. The analysis assumes that only wheel speed sensorsare available as hardware and that the road cohesion condition can be determined in the initial part of thesevere braking process.``

  20. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  1. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  2. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  3. CFD Analysis of Automotive Ventilated Disc Brake Rotor

    Directory of Open Access Journals (Sweden)

    Amol V. More

    2014-04-01

    Full Text Available Disc brakes work on the principle of friction by converting kinetic energy into heat energy. The key objective of a disc brake rotor is to accumulate this heat energy and dissipate it immediately. The effect of rotational speed on the aero-thermal performance is assessed. The rotor speed is observed to have substantial effect on the rotor performance. The heat dissipation and thermal performance of ventilated brake discs intensely be influenced by the aerodynamic characteristics of the air flow through the rotor passages. In order to investigate the aero-thermal performance of the ventilated disc brake at several altered driving speeds of the vehicle, the simulations were carried out at 3 different rotational speeds of 44rad/s 88 rad/s and 120 rad/s. The semi-automatic geometric model is created using the package Solid Works and the mesh for the model is done using ICEM CFD and the Post processing of the results is done using FLUENT-14.5.The results are discussed and presented in detail.

  4. Development of a DC propulsion system for an electric vehicle

    Science.gov (United States)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  5. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  6. Detection of braking intention in diverse situations during simulated driving based on EEG feature combination

    Science.gov (United States)

    Kim, Il-Hwa; Kim, Jeong-Woo; Haufe, Stefan; Lee, Seong-Whan

    2015-02-01

    Objective. We developed a simulated driving environment for studying neural correlates of emergency braking in diversified driving situations. We further investigated to what extent these neural correlates can be used to detect a participant's braking intention prior to the behavioral response. Approach. We measured electroencephalographic (EEG) and electromyographic signals during simulated driving. Fifteen participants drove a virtual vehicle and were exposed to several kinds of traffic situations in a simulator system, while EEG signals were measured. After that, we extracted characteristic features to categorize whether the driver intended to brake or not. Main results. Our system shows excellent detection performance in a broad range of possible emergency situations. In particular, we were able to distinguish three different kinds of emergency situations (sudden stop of a preceding vehicle, sudden cutting-in of a vehicle from the side and unexpected appearance of a pedestrian) from non-emergency (soft) braking situations, as well as from situations in which no braking was required, but the sensory stimulation was similar to stimulations inducing an emergency situation (e.g., the sudden stop of a vehicle on a neighboring lane). Significance. We proposed a novel feature combination comprising movement-related potentials such as the readiness potential, event-related desynchronization features besides the event-related potentials (ERP) features used in a previous study. The performance of predicting braking intention based on our proposed feature combination was superior compared to using only ERP features. Our study suggests that emergency situations are characterized by specific neural patterns of sensory perception and processing, as well as motor preparation and execution, which can be utilized by neurotechnology based braking assistance systems.

  7. THE STUDY OF BRAKE EFFECTIVENESS HOPPER SYSTEM WITH SEPARATE BRAKING TRUCKS

    Directory of Open Access Journals (Sweden)

    O. Je. Nishhenko

    2009-06-01

    Full Text Available The results of tests of the hopper brake systems for the pellets having typical system and separate braking per each bogie are presented. It is shown that the brake system with separate braking has several advantages as compared to the typical one.

  8. Plugging Braking of Two-PMSM Drive in Subway Applications with Fault-Tolerant Operation

    Directory of Open Access Journals (Sweden)

    Adel A. obed

    2016-06-01

    Full Text Available The Permanent Magnet Synchronous Motor (PMSM is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI controlled using Space Vector Pulse Width Modulation technique (SVPWM, Field Oriented Control method (FOC for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.

  9. A method to model anticipatory postural control in driver braking events.

    Science.gov (United States)

    Östh, Jonas; Eliasson, Erik; Happee, Riender; Brolin, Karin

    2014-09-01

    Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering.

  10. Study on Parameter Optimization Design of Drum Brake Based on Hybrid Cellular Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available In consideration of the significant role the brake plays in ensuring the fast and safe running of vehicles, and since the present parameter optimization design models of brake are far from the practical application, this paper proposes a multiobjective optimization model of drum brake, aiming at maximizing the braking efficiency and minimizing the volume and temperature rise of drum brake. As the commonly used optimization algorithms are of some deficiency, we present a differential evolution cellular multiobjective genetic algorithm (DECell by introducing differential evolution strategy into the canonical cellular genetic algorithm for tackling this problem. For DECell, the gained Pareto front could be as close as possible to the exact Pareto front, and also the diversity of nondominated individuals could be better maintained. The experiments on the test functions reveal that DECell is of good performance in solving high-dimension nonlinear multiobjective problems. And the results of optimizing the new brake model indicate that DECell obviously outperforms the compared popular algorithm NSGA-II concerning the number of obtained brake design parameter sets, the speed, and stability for finding them.

  11. Control Algorithm of Electric Vehicle in Coasting Mode Based on Driving Feeling

    Institute of Scientific and Technical Information of China (English)

    SUN Daxu; LAN Fengchong; ZHOU Yunjiao; CHEN Jiqing

    2015-01-01

    Coasting in gear is a common driving mode for the conventional vehicle equipped with the internal combustion engine (ICE), and the assistant braking function of ICE is utilized to decelerate the vehicle in this mode. However, the electric vehicle (EV) does not have this feature in the coasting mode due to the relatively small inertia of the driving motor, so it will cause the driver cannot obtaln the similar driving feeling to that of the conventional vehicle, and even a traffic accident may occur if the driver cannot immediately adapt to the changes. In this paper, the coasting control for EV is researched based on the driving feeling. A conventional vehicle equipped with continuously variable transmission (CVT) is taken as the reference vehicle, and the combined simulation model of EV is established based on AVL CRUISE and MATLAB/Simulink. The torque characteristic of the CVT output shaft is measured in coasting mode, and the data are smoothed and fitted to a polynomial curve. For the EV in coasting mode, if the state of charge (SOC) of the battery is below 95%, the polynomial curve is used as the control target for the torque characteristic of the driving motor, otherwise, the required torque is replaced by hydraulic braking torque to keep the same deceleration. The co-simulation of Matlab/Simulink/Stateflow and AVL CRUISE, as well as the hardware-in-loop experiment combined with dSPACE are carried out to verify the effectiveness and the real-time performance of the control algorithm. The results show that the EV with coasting braking control system has similar driving feeling to that of the reference vehicle, meanwhile, the battery SOC can be increased by 0.036%and 0.021%in the initial speed of 100 km/h and 50 km/h, respectively. The proposed control algorithm for EV is beneficial to improve the driving feeling in coasting mode, and it also makes the EV has the assistant braking function.

  12. Magnetic braking in ultracompact binaries

    CERN Document Server

    Farmer, Alison

    2010-01-01

    Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binary's component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which a...

  13. TWO DESIGNS OF THE ELECTROMECHANICAL BRAKE EMBEDDED INTO AN ASYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    V. V. Solencov

    2016-01-01

    Full Text Available The significance of the braking devices is increasing due to the intensification of manufacturing, increase in the moving masses, speeds of movement and frequency of braking. During a short time period the braking device needs to convert a significant amount of mechanical energy into heat energy and transfer it into the environment without compromising the operability of both devices and machines in general. For electric actuators braking a normally closed mechanical brake is frequently used. When disconnecting the motor from the network the brake friction surfaces are closed and prevent rotation, and when the motor is switched on, they are opens under the action of the electromagnet, electro-hydraulic pusher, special electric motor, mechanical or pneumatic device. In the case of joint implementation of the asynchronous motor and the mechanical brake, the drive of quick stop is more compact and convenient. Such devices are further called asynchronous motors with electromechanical braking systems henceforth. The large number of requirements as well as different conditions of operation cause a large variety of designs of such motors. One of the major shortcomings of the functioning of well-known design is the periodic wear of the friction linings and the need for frequent replacement of them. The solution to this problem is the use of asynchronous motor with recessed combo braking device. However, for some mechanisms that do not require a smooth stop of the motor shaft and that have a speed of rotation of the motor shaft less than 1500 rpm, more simple and cheap solution would be the use of an electromechanical braking device with an air gap compensation. Due to wear of the friction linings the air gap of the electromagnet increases. Due to the compensation of the air gap of the electromagnet these devices make it possible to rub the material of the friction lining longer. The current designs of the electromechanical braking device with

  14. Modeling Hydraulic Components for Automated FMEA of a Braking System

    Science.gov (United States)

    2014-12-23

    Palestine , Oct. 2013, pp 85-91, http://www.dx-2013.org/proceedings.php ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 783 ...HEALTH MANAGEMENT SOCIETY 2014 775 ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 2 of space of scenarios and faults. In...another valve, M_Vixx, is discussed in section 5.3 ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 776 ANNUAL CONFERENCE OF

  15. 轮边电机制动器及其设计计算%Wheel-side motor brake and design calculation

    Institute of Scientific and Technical Information of China (English)

    张学艳; 张文明; 金纯; 罗维东

    2012-01-01

    The structure principle and characteristics of a new kind of wheel-side motor brake installed on the motor shaft is introduced,which integrates service brake,parking brake and emergency brake, and simplifies the structure and the hydraulic brake control circuit.The braking force of this brake is supplied by the compression springs and relieved by hydraulic oiLTherefore,the brake can be still effective even if the engine or the hydraulic piping fails.Through calculating the maximum braking force,traditional design for the compression spring is implemented, and optimized by matlab with the length of spring as the optimization objective.The result shows the optimization is obvious and the energy storage capacity of the brake is improved significantly.%介绍了一种新型的轮边电机制动器的结构原理及特点,该制动器布置在电动机轴上,集行车制动、驻车制动和紧急制动于一体,大大简化了制动器结构和液压控制回路.该制动器由压缩弹簧提供制动力,由液压油解除制动,因此在发动机失效及液压管路故障的情况下仍能安全制动.通过计算制动时制动器需要提供的最大制动力对压缩弹簧进行了传统设计计算,并用Matlab优化工具箱以制动时弹簧的长度为优化目标进行了优化,优化效果明显,显著提高了制动器的储能能力.

  16. 30 CFR 56.14101 - Brakes.

    Science.gov (United States)

    2010-07-01

    ... equipped on self-propelled mobile equipment, parking brakes shall be capable of holding the equipment with... stop under normal operating conditions. Parking or emergency (secondary) brakes are not to be actuated... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 56.14101 Section 56.14101...

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART I), II--LEARNING ABOUT BRAKES (PART II).

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE STARTING ENGINES AND BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPERATION, (3) COMBUSTION SPACE AND VALVE ARRANGEMENT (STARTING ENGINES), (4) TYPES OF BRAKES, AND (5) DOUBLE…

  18. The Comparative Analysis and Evaluation of Ecological Characteristics of Drum and Disk Wheel Brakes

    Directory of Open Access Journals (Sweden)

    Aleksandr Revin

    2011-04-01

    Full Text Available It is well-known that automobile transport as well as industry are the main sources of air pollution. In addition to exhaust gases, the flow of traffic releases a cloud of dust, consisting of over 60% of micro- and ultramicroscopic particles with radius of 10.0–0.25 µm, which are formed due to wheel abrasion (caused by the road grip of a tyre and the use of the brake blocks (in braking. The products formed in the process of wearing of the wheel brake pads are also the sources of the mass of fine dispersed particles over an urban highway. The authors analyse and evaluate ecological characteristics of drum and disk wheel brakes of vehicles.Article in Russian

  19. State estimation for integrated vehicle dynamics control

    NARCIS (Netherlands)

    Zuurbier, J.; Bremmer, P.

    2002-01-01

    This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability con

  20. Braking performance of aircraft tires

    Science.gov (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  1. Stability and optimised H∞ control of tripped and untripped vehicle rollover

    Science.gov (United States)

    Jin, Zhilin; Zhang, Lei; Zhang, Jiale; Khajepour, Amir

    2016-10-01

    Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.

  2. Detection of visually unrecognizable braking tracks using Laser-Induced Breakdown Spectroscopy, a feasibility study

    Science.gov (United States)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2016-04-01

    Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.

  3. Remote control for motor vehicle

    Science.gov (United States)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  4. 重车联合制动电液比例控制系统仿真与实验研究%Simulation and Experiment Research on Electro Hydraulic Proportional Control for Heavy Vehicle Blend Brake System

    Institute of Scientific and Technical Information of China (English)

    徐鸣

    2008-01-01

    根据重型车辆联合制动电液比例控制系统的组成和工作特性,分析了其主要控制元件电液比例/伺服减压阀的数学模型,建立了比例/伺服阀控制制动缸系统的非线性数学模型,并给出了制动系统的线性化传递函数;根据所选的具体比例阀特性和系统参数,计算了液压固有频率和PID闭环系统特性.分别进行了闭环系统数字仿真计算、控制系统台架试验和某50 t重型车辆的实际控制试验,三者的数据基本吻合.试验数据表明,采用电液比例阀控制制动缸的联合制动系统具有高响应、高精度的优点.

  5. SPECIFICITY AND TRENDS IN IMPROVEMENT OF TRACTOR TRAIN BRAKING DYNAMICS

    Directory of Open Access Journals (Sweden)

    G. A. Tayanovsky

    2015-01-01

    Full Text Available The paper considers an important problem in improvement of  braking dynamics potential as part of the overall tractor train dynamics consisting of  an all-wheel drive tractor and heavy-duty trailers which are either locally manufactured or developed with the participation of the paper’s authors. The trailers have a mechanical drive for their wheels from the tractor engine. The trains are intended for transportation peat, organic fertilizers and various loads in  forest exploitation and under other complicated soil and climatic and road conditions where there is justified necessity to activate the trailer wheels.Methodological tools have been developed with the purpose to analyze an influence of the blocked inter-double-reduction axle drive of an active tractor train on distribution of braking forces in double-reduction axles with due account of the heavy-duty peat trailer specificity. Theoretical provisions for wheeled vehicles have been developed with regard to the braking application specificity of active tractor trains with mechanical multi-path drive for wheels of a multi-double-reduction axle propulsion device. The paper presents calculation and theoretical data in order to estimate  distribution of specific braking forces in the double-reduction axle links of the active tractor train when the blocked inter-double-reduction axle drive of the tractor and trailer wheels is switched on and also in the case when the tractor engine is involved in braking process and a clutch coupling is switched-on.Sequence of the calculation formula has been completely carried out in the paper. They represent clear design and operational parameters of the active tractor train. Such approach has made it possible to realize them in the form of a software application which is convenient for analysis of the braking process pertaining to the investigated objects in order to select means for improvement of braking dynamics, rational parameters of multi

  6. Eddy current braking experiment using brake disc from aluminium series of A16061 and A17075

    Science.gov (United States)

    Baharom, M. Z.; Nuawi, M. Z.; Priyandoko, G.; Harris, S. M.

    2012-09-01

    The electromagnetic braking using eddy current was studied, focused on two series of aluminium as the brake disc which are A16061 and A17075. This paper presents the comparison for both series in a few varied parameters related to eddy current braking such as air-gap, number of turns and brake disc thickness. Optical tachometer has been used along with PULSE analyzer to capture the speed (rpm) and time (s). The findings shows that the smaller the air-gap, the larger of electromagnet turns and the thicker disc thickness is, will generate higher braking torque to stop the rotational motion of disc brake and give great performance for eddy current braking. Thos parameters that been evaluated also addressed a potential on expanding this knowledge to develop an electromagnetic braking system to replace the conventional braking system.

  7. Control of Energy Regeneration for Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; MAO Xiao-jian; LI Li-ming; ZHUO Bn

    2008-01-01

    To extend electric vehicle (EV) running distance, the vehicle energy regeneration (ER) method and vehicle control strategy were designed based on the original vehicle braking system. The ER principle of direct current (DC) brushless motor was studied, the motor mathematical model and PI control method with torque close-loop were built. This control method was applied to pure EV and the real road tests were evaluated.The ER control does not make any significant uncomfortable influence brake feeling and can save about 10% battery energy based on 3 times economic commission for Europe (ECE) driving cycles.

  8. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  9. Thermal analysis of both ventilated and full disc brake rotors with frictional heat generation

    Directory of Open Access Journals (Sweden)

    Belhocine A.

    2014-06-01

    Full Text Available In automotive engineering, the safety aspect has been considered as a number one priority in development of a new vehicle. Each single system has been studied and developed in order to meet safety requirements. Instead of having air bags, good suspension systems, good handling and safe cornering, one of the most critical systems in a vehicle is the brake system. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake discs and to identify the critical temperature of the rotor. The analysis also gives us the heat flux distribution for the two discs.

  10. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.

    2003-01-01

    system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common......This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper...

  11. Dynamic characteristics analysis of hydraulic pipes in fully hydraulic steering system of engineering vehicles%工程车辆全液压转向系统管路特性分析

    Institute of Scientific and Technical Information of China (English)

    葛振亮; 侯友山; 姜勇

    2011-01-01

    基于功率键合图理论建立了工程车辆全液压转向系统的数学模型.运用20sim键图软件重点研究了全液压转向系统管路的动态特性以及液压管路参数对转向系统动态特性的影响.研究结果表明:对于小管径及长管路转向系统,管路内液阻、液感较大,有利于抑制系统的高频振荡和冲击以增强转向系统的稳定性,但延长了系统的动态响应时间;对于大管径及短管路转向系统,管路液阻、液感较小,系统动态响应较快,但转向系统振荡剧烈,振荡幅度增大,振荡次数增多,不利于车辆的操作稳定性.提高油液的体积弹性模量利于改善系统的动态响应速度和稳定性.研究结果为全液压转向系统的设计及管网动态特性分析提供理论依据.%Based on power bond graph diagram method, the general mathematical model of fully hydraulic steering system(FHSS) was established. The dynamic characteristics of hydraulic pipes of FHSS and the influences of pipeline parameters on the steering system were mainly analyzed by using 20sim bond graph software. The study results show that for the long and small diameter pipeline steering systems, the fluid resistance and fluid sense get larger, which are conducive to suppress high-frequency oscillation and shock to enhance the stability of steering system, but prolong the system's dynamic response time; for the short and large diameter pipeline, the fluid resistance and fluid sense get smaller,the system responses rapidly, but the steering system endures intensive high-frequency oscillation, with the increasing of both amplitude and frequency, which is uncondueive to the stability of steering system. Increasing the volume elastic modulus of oil in the system can improve the dynamic response speed and stability. The study results provide a theoretical support for the design of fully hydraulic steering system and for the analysis of pipeline nets' dynamic characteristics.

  12. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  13. 弹性盘型制动闸片装置振动特性研究%On Vibration Characteristics of Elastic Disc Brake Pad Device

    Institute of Scientific and Technical Information of China (English)

    杨宽; 张济民

    2013-01-01

    设计了一种新型的具有弹性的盘型制动闸片装置,建立了低速的轨道车辆弹性盘型制动的数学模型,与无弹性的制动闸片进行了单轴制动特性的动态仿真比较.仿真结果表明,具有弹性的闸片制动时同样能够保证车辆的制动性能;在制动盘或闸片摩擦面有缺陷时,弹性闸片能有效降低闸片与制动盘间摩擦力引起的振动.该设计为盘型制动系统的设计及分析提供了新的思路.%A new elastic disc brake pad device is designed, and a mathematical model on low speed railway vehicle e-lastic disc brake is established to compare with the non-elastic brake pad by single wheel-set braking simulation. The result shows that the elastic brake pad can guarantee the vehicle braking performance as same as the non-elastic brake pad. When the disc or the friction surface of brake pad has some defects, elastic brake pad can effectively reduce the friction and the vibration between the brake pad and the brake disc. The design has been proved to be correct and rational, it will provide new ideas for the design and analysis of the disc brake system.

  14. Brake Fluid Compatibility Studies with Advanced Brake Systems

    Science.gov (United States)

    2016-01-16

    identified as silane based compounds. Therefore, we can eliminate brake fluid polymerization as a possible cause since no siloxane based polymers were...cm-1 indicate presence of O-H peak corresponding UNCLASSIFIED DRAFT UNCLASSIFIED 21 to water ; 1631.50 cm-1 indicate presence of C=C peak...measurements are usually made using an auxiliary liquid with a known density. In this case, water is used as the auxiliary liquid. The weight of the o

  15. Shifting Rule Modification Strategy of Automatic Transmission Based on Driver-vehicle-road Environment

    Institute of Scientific and Technical Information of China (English)

    WU Guangqiang; ZHANG Deming

    2010-01-01

    Accidental or frequent shift often occurs when the shifting rule is built based on traditional two parameters (I.e., velocity and throttle), because the speed of engine varies slower than change of throttle opening. Currently, modifying shift point velocity value or throttle by throttle change rate is one of common methods, but the results are not so satisfactory in some working condition such as uphill. The reason is that these methods merely consider throttle change rate which is not enough for a car driving in driver-vehicle-road environment system. So a novel fuzzy control modification strategy is proposed to avoid or reduce those abnormal shift actions. It can adjust shifting rule by the change rate of throttle, current gear position and road environment information, while different gear position and driving environment get corresponding modification value. In order to compare the results of shifting actions, fuel consumption and braking distance, emergent braking in level road and extra-urban driving cycle(EUDC) working conditions with fuzzy shifting schedule modification strategy are simulated digitally. Furthermore, a hardware-in-the-loop simulation platform is introduced to verify its effect in slope road condition according to the ON/OFF numbers of solenoid valve in hydraulic system. The simulation results show that the problem of unexpected shift in those working conditions may be resolved by fuzzy modification strategy. At last, it is concluded that although there is some slight decline in power performance in uphill situation, this fuzzy modification strategy could correctly identify slope of road, decrease braking distance, improve vehicle comfort and fuel economy effectively and prolong the life of clutch system. So, this fuzzy logic shifting strategy provides important References for vehicle intelligent shifting schedule.

  16. Control strategy for electro-mechanical braking based on curves of ECE regulations and ideal braking force%基于ECE法规和Ⅰ曲线的机电复合制动控制策略

    Institute of Scientific and Technical Information of China (English)

    刘丽君; 姬芬竹; 杨世春; 徐斌

    2013-01-01

    具有再生制动功能的电动汽车制动系统与传统燃油汽车的摩擦制动系统不同,在回收部分制动能量的同时其制动稳定性会发生变化.在保证安全制动距离的前提下,制动能量回收率的提高受到制动稳定性的制约和限制.针对电制动和常规摩擦制动组成的机电复合制动系统,建立了电制动力、电制动力矩和电池充电功率计算模型.考虑到电机转矩特性和电池充电功率限制,以最大化回收制动能量为目标,设计3种不同的机电复合制动控制策略.通过在ADVISOR软件中建立嵌入式仿真模块对制动能量回收率、电池荷电状态和纯电动模式的续驶里程进行了仿真计算和分析.计算结果表明:Ⅰ曲线和ECE(Economic Commissionof Europe safety regulations)法规边界线都不是理想的制动力分配曲线,所提出的制动力分配曲线OABCD综合性能较好,制动能量回收率达到59.56%,且一个循环的荷电状态变化很小,仅降低了4.29%.实车试验表明能量回收能够提高续驶里程.%The braking system of electric vehicle with regenerative braking is different from friction braking system of conventional fuel vehicle. Regenerative braking system makes braking stability of electric vehicles change when it recovers braking energy of vehicles. The improvement of braking energy recovery ration was restricted by the braking stability under the precondition of safe braking distance. Aiming at the electromechanical hybrid braking system composed of electric braking and conventional friction braking, the calculation models of electric braking force, electric braking torque and battery charging power were established. In view of the motor torque characteristics and battery charging power limit, three kinds of control strategies for e-lectro-mechanical hybrid braking were designed for recovering the maximal braking energy. The baking energy recovery ration, state of charge and driving range in

  17. 49 CFR 230.77 - Foundation brake gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  18. 49 CFR 393.49 - Control valves for brakes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  19. Time headway in car following and operational performance during unexpected braking.

    Science.gov (United States)

    van Winsum, W; Brouwer, W

    1997-06-01

    The relation between car-following behaviour and braking performance was studied in a driving simulator. The theoretical perspective was that individual differences in tactical car-driving behaviour may be related to skills on the operational level of the driving task via a process of adaptation. In a sample of 16 young and middle-aged experienced drivers independent assessments were made of preferred time headway during car following and of braking skill. Starting from modern theories of visual-motor learning, braking performance was analyzed in terms of a reaction time component, an open-loop visual-motor component, and a closed-loop visual-motor component involving the precise adjustment of braking (timing and force) to the situation. The efficiency of the visual-motor component of braking was a strong and significant predictor of choice of time headway to the lead vehicle in such a way that less efficient braking indicated a preference for a longer time headway. This result supports the theory of adaptation on the individual level.

  20. Design on Automatic Heave Compensation Hydraulic System of Remotely Operated Vehicle Based on Neuron PID Control%基于神经元PID的水下机器人自动升沉补偿液压系统设计

    Institute of Scientific and Technical Information of China (English)

    何新英; 吴家鸣

    2015-01-01

    针对母船的升沉运动会影响到带缆遥控水下机器人的安全作业和收放功能,提出了利用液压绞车进行水下机器人自动升沉补偿的方案。设计了带缆遥控水下机器人升沉补偿液压系统,控制系统采用了神经元自适应PID控制算法。并在Matlab中进行了仿真,仿真结果表明,该系统能够较好的实现水下机器人的升沉补偿运动。%The supporting ship heave motion affects the remotely operated vehicle safety operation and storage function,using hydraulic winch for automatic heave compensation of ROV was presented in this paper,The heave compensation hydraulic system of ROV has been designed, which the neuron adaptive PID control algorithm has been adopted. And has been simulate in mat lab,the simulation result show that the system can realize the ROV heave compensation movement.

  1. 29 CFR 1910.67 - Vehicle-mounted elevating and rotating work platforms.

    Science.gov (United States)

    2010-07-01

    ...) The brakes shall be set and outriggers, when used, shall be positioned on pads or a solid surface...) Bursting safety factor. All critical hydraulic and pneumatic components shall comply with the provisions...

  2. Transnet regenerative braking concept definition

    CSIR Research Space (South Africa)

    Giesler, Achmed

    2015-09-01

    Full Text Available have the added advantage that they can be housed in temperature and controlled buildings in a relatively clean environment. Technologies being used and researched Energy regenerated during braking can either be fed back into the grid or stored... Body of Knowledge: http://sebokwiki.org/wiki/Concept_Definition Halligan, R. J. (2011, October 6). Operational Concept Description. Operational Concept Description. Melbourne: Project Performance International. Jaafar, A., Akli, C. S., Roboam, X...

  3. What brakes the Crab pulsar?

    Science.gov (United States)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  4. Friction Wear Property of Brake Materials by Copper-based Powder Metallurgy With Various Brake Speeds

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiu; GAO Hong-xia; WEI Xiu-lan

    2004-01-01

    The experiment is conducted on MM-1000 friction test machine, which tests friction wear property of copper-based brake materials by powder metallurgy at different brake speeds. It shows that the coefficient of friction and wear volume are greatly influenced by brake speed. When the brake speed is 4000 r/min, which is a bit higher, the material still has a higher coefficient of friction with 0.47. When the brake speed is over 4000r/min, the coefficient of friction decreased rapidly. When the brake speed is 3000r/min, the material's wear is in its minimum. That is to say no matter how higher or lower the brake speed is the wear volume is bigger relatively. With the brake speed of the lower one it mainly refers to fatigue wear; while of higher one it mainly refers to abradant and oxidation wear.

  5. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    Science.gov (United States)

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  6. Determining PACAF Transportation Alternatives to the General Purpose Vehicle

    Science.gov (United States)

    2005-03-01

    equipped with specified headlamps, stop lamps, turn signal lamps, reflex reflectors, parking brakes, rear view mirrors, windshields, seat belts, and...Lighting: Quartz-halogen headlamps, front and rear turn signals , high-mount rear brake and taillamps with a 20 second safety delay after vehicle is

  7. An Experimental Analysis of Brake Efficiency Using four Fluids in a Disc Brake System

    Directory of Open Access Journals (Sweden)

    Seth Daniel Oduro

    2013-02-01

    Full Text Available The paper studies disc brake failure in Mini-buses using an experimental analysis to test the maximum braking force when different brake fluids such as clean, less dirty, dirty and soapy water solution were used in the braking system. The experimental results clearly showed that the soap solution appears to be the best fluid as far as low viscosity and stability of viscosity with increase in temperature are concerned. However, the soap solution is not compatible with other fluid which makes it difficult to be substitute as a clean brake fluid. The result of the Thepra Universal Brake Testing Equipment used for the braking efficiency test indicated that a pedal brake of 117 kN produce a brake force of 0.96 kN for clean brake fluid, 0.91 kN for the less dirty, 0.85 kN for dirty and 1.44 kN for soap solution. The value of 1.44 kN which was achieved when the soap solution was used indicated a positive braking force and the indicating that soap solution could be used to produce a high pedal force within a very short time (about 10-30 min and can therefore be used only in case of emergency. The brake efficiency test indicated that under hot conditions the braking efficiency is reduced and the presence of air in the system renders the braking ineffective because higher pedal force was needed to be able to produce a significant braking force which is noted for causing brake failure.

  8. BRAKE TEST OF SiCp/A356 BRAKE DISK AND INTERPRETATION OF EXPERIMENTAL RESULTS

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiyong; HAN Jianmin; LI Weijing; WANG Jinhua

    2007-01-01

    Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis. There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized.

  9. Verification of pneumatic railway brake models

    Science.gov (United States)

    Piechowiak, Tadeusz

    2010-03-01

    The article presents a survey of diverse methods for validation of pneumatic train brake modelling. Various experimental measurements of railway pneumatic brakes were made chiefly on a test stand at Poznań University of Technology; other test stands and some results have been taken from the literature. The measurements, some of them unconventional, were performed on separate pneumatic elements, brake devices, the brake pipe and fragments thereof. Mechanical devices were also included. The experimental measurement results were used for the verification of numerical models and for the determination of parameters. The latter was partially performed using an optimisation method.

  10. Operator interface for vehicles

    Science.gov (United States)

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  11. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  12. Fuzzy Control Strategy of Battery Management for PHEV during Regenerative Braking

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available Based on analyzing the structure of Parallel Hybrid Electric Vehicle (PHEV and its operation during regenerative braking, a fuzzy control strategy of battery management is proposed. Firstly, the state of charging is estimated by establishing the mathematical relationship between open circuit voltage and the internal resistance model. Secondly, the fuzzy logic controller is designed in regenerative braking system. Finally, by modeling and simulation in ADVISOR, it is shown that the rate of energy recovery with the fuzzy control strategy is increased by 12.3, 18.3 and 7.6%, respectively in three different driving cycles, compared with the benchmark control strategy in the same driving cycles.

  13. Thermomechanical behavior of dry contacts in disc brake rotor with a grey cast iron composition

    Directory of Open Access Journals (Sweden)

    Belhocine Ali

    2013-01-01

    Full Text Available The main purpose of this study is to analysis the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase. The simulation strategy is based on the calculation code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles. The thermal-structural analysis is then used coupling to determine the deformation established and the Von Mises stresses in the disk, the contact pressure distribution in pads. The results are satisfactory compared to those found in the literature.

  14. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    2003-02-03

    on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  15. Driving style recognition method using braking characteristics based on hidden Markov model

    National Research Council Canada - National Science Library

    Chao Deng; Chaozhong Wu; Nengchao Lyu; Zhen Huang

    2017-01-01

    .... Firstly, braking impulse and the maximum braking unit area of vacuum booster within a certain time are collected from braking operation, and then general braking and emergency braking characteristics...

  16. Simulation of storage performance on hydropneumatic driveline in dual hybrid hydraulic passenger car

    Directory of Open Access Journals (Sweden)

    Wasbari Faizil

    2017-01-01

    Full Text Available The charging process is one of the critical processes in the hydro-pneumatic driveline storage system. It converts the kinetic energy of the vehicle braking and coasting to the compression energy. This energy is stored in the storage device called the accumulator. The system is planned to be used on the dual hydro-pneumatic hybrid driveline and applied to a hydraulic hybrid passenger car. The aim of this paper is to find the effect of charging parameters on the storage performance through simulation. Through the storage behaviour, the desirable and optimal sizing of the accumulator can be selected. The paper emphasized on the effect of pressure elevation, pre-charge pressure, effective volume, thermal reaction and required time of the accumulator’s charging process. The circuit of charging process has been designed and simulated by using the hydraulic tool in the Automation Studio software. The simulation results were corroborated through the component specification for data rationality. Through the simulation, it was found that pre-charge pressure had a significant effect on the charging process. It determined the efficiency of the effective volume. The higher the pressure elevation, the higher the effective volume. Nevertheless, the more energy required to compress the nitrogen gas in the bladder. Besides, in term of volume displacement, higher volume displacement reduced charging time and lower the fluid temperature. The simulation had been positively highlighted the critical point in charging process which later on, benefited the sizing process in the component selection specification.

  17. Analysis and Design of Circular Plate MR Fluids Brake

    Institute of Scientific and Technical Information of China (English)

    Yang Yan; Lin Chang-Hua; Li Hui; Zhou Jing

    2004-01-01

    A magnetorheological (MR) fluids brake is a device to achieve brake by shear force of MR fluids. A MR rotary brake has the property that its braking torque changes quickly in response to an external magnetic field. In this study, the design method of the circular plate MR fluids brake is investigated theoretically. The equation of the torque transmitted by the MR fluids in the brake is derived to provide the theoretical foundation in the design of the brake. Based on this equation, after mathematically manipulated, the calculations of the volume, thickness and width of the MR fluids within the circular plate MR fluids brake are yield.

  18. Research on Heat-Mechanical Coupling of Ventilated Disc Brakes under the Condition of Emergency Braking

    Science.gov (United States)

    Tan, Xuelong; Zhang, Jian; Tang, Wenxian; Zhang, Yang

    Taking the ventilated disc brake in some company as research object, and using UG to build 3D models of brake disc and pad, and making use of ABAQUS/Standard to set up two parts' finite element model, via the decelerated motion of actual simulation brake disc, which gets ventilated disc brake in the case of emergency breaking in time and space distribution of conditions of temperature and stress field, summarizes the distribution of temperature field and stress field, proves complex coupling between temperature, stress, and supplies the direct basis for brake's fatigue life analysis.

  19. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    Directory of Open Access Journals (Sweden)

    Guoshun Wang

    2013-01-01

    Full Text Available Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the position of the friction block of the brake pad. Structure optimization was conducted on brake pads composed of 5 or 7 circular friction blocks. The result shows that, with the same overall contact area of friction pair, an appropriate brake pad structure can make the friction energy distribute evenly and therefore lowers peak temperature and stress of the brake disc. Compared with a brake pad of 7 friction blocks, an optimized brake pad of 5 friction blocks lowered the peak temperature of the corresponding brake disc by 4.9% and reduced the highest stress by 10.7%.

  20. Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake

    Science.gov (United States)

    Wang, Na; Li, Dong Heng; Li Song, Wan; Chao Xiu, Shi; Zhi Meng, Xiang

    2016-10-01

    In this paper, the effect of the surface textures of braking disc on the braking performance is experimentally investigated under the conditions of different working gaps and applied currents. For this purpose, a new configuration of magnetorheological fluid brake (MRB) with adjustable working gap is developed to improve the manufacturing accuracy and cost, and to reduce the problem of replacing the braking disc. In addition, the braking discs with three types of surface texture are designed and machined. Based on the test bed developed for the proposed MRB, a series of experiments are carried out on the manufactured prototype and the results are presented to obtain the relationship among the surface texture of the braking disc, applied current, working gap and the braking performance. The results show that the braking torque is significantly influenced by the working gap and surface texture of the braking disc, and the maximum braking torque is obtained on the conditions of 0.25 mm working gap and the braking disc with square surface texture.

  1. 14 CFR 27.735 - Brakes.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For rotorcraft with wheel-type landing gear, a braking device must be installed that is— (a) Controllable by the pilot... torque when starting or stopping the rotor; and (2) Hold the rotorcraft parked on a 10-degree slope on...

  2. 14 CFR 29.735 - Brakes.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes. For rotorcraft with wheel-type landing gear, a braking device must be installed that is— (a) Controllable by the... torque when starting or stopping the rotor; and (2) Hold the rotorcraft parked on a 10-degree slope on...

  3. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe...

  4. Hardware simulation of automatic braking system based on fuzzy logic control

    Directory of Open Access Journals (Sweden)

    Noor Cholis Basjaruddin

    2016-07-01

    Full Text Available In certain situations, a moving or stationary object can be a barrier for a vehicle. People and vehicles crossing could potentially get hit by a vehicle. Objects around roads as sidewalks, road separator, power poles, and railroad gates are also a potential source of danger when the driver is inattentive in driving the vehicle. A device that can help the driver to brake automatically is known as Automatic Braking System (ABS. ABS is a part of the Advanced Driver Assistance Systems (ADAS, which is a device designed to assist the driver in driving the process. This device was developed to reduce human error that is a major cause of traffic accidents. This paper presents the design of ABS based on fuzzy logic which is simulated in hardware by using a remote control car. The inputs of fuzzy logic are the speed and distance of the object in front of the vehicle, while the output of fuzzy logic is the intensity of braking. The test results on the three variations of speed: slow-speed, medium-speed, and high-speed shows that the design of ABS can work according to design.

  5. Method and apparatus for electromagnetically braking a motor

    Science.gov (United States)

    Davis, Donald R. (Inventor); Radford, Nicolaus A (Inventor); Permenter, Frank Noble (Inventor); Parsons, Adam H (Inventor); Mehling, Joshua S (Inventor)

    2011-01-01

    An electromagnetic braking system and method is provided for selectively braking a motor using an electromagnetic brake having an electromagnet, a permanent magnet, a rotor assembly, and a brake pad. The brake assembly applies when the electromagnet is de-energized and releases when the electromagnet is energized. When applied the permanent magnet moves the brake pad into frictional engagement with a housing, and when released the electromagnet cancels the flux of the permanent magnet to allow a leaf spring to move the brake pad away from the housing. A controller has a DC/DC converter for converting a main bus voltage to a lower braking voltage based on certain parameters. The converter utilizes pulse-width modulation (PWM) to regulate the braking voltage. A calibrated gap is defined between the brake pad and permanent magnet when the brake assembly is released, and may be dynamically modified via the controller.

  6. Research on temperature rise of hoisting machine disk brake

    Institute of Scientific and Technical Information of China (English)

    MA Jun; JANG Hai-bo

    2012-01-01

    A mathematical model and finite element model for analysis of temperature rise of the hoisting machine brake system was constructed,limit conditions were defined,and the law of temperature rise of brake shoes during emergent brake course was analyzed and calculated by using finite element software.By analyzing the calculation results,the law of temperature change of surface of brake disk and shoes during the braking process was found.The law of brake shoes surface temperature distribution and the law of temperature change along with thickness of brake shoes at brake time 0.5 s,1.0 s and 1.5 s was analyzed.A hoisting machine emergent braking test was carried out.Finally,the author concluded that velocity rebound in the process of hoisting machine emergent brake is due to decreased friction coefficient caused by the temperature rise of the brake shoes surface.

  7. Modular Robotic Vehicle

    Science.gov (United States)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  8. Composites materials for friction and braking application

    Science.gov (United States)

    Crăciun, A. L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A.

    2017-05-01

    The brake pads are an important component in the braking system of automotive. Materials used for brake pads should have stable and reliable frictional and wear properties under varying conditions of load, velocity, temperature and high durability. These factors must be satisfied simultaneously which makes it difficult to select effective brake pads material. The paper presents the results of the study for characterisation of the friction product used for automotive brake pads. In the study it was developed four frictional composites by using different percentages of coconut fibres (0%, 5%, 10%, 15%) reinforcement in aluminium matrix. The new composites tested in the laboratory, modelling appropriate percentage ratio between matrix and reinforcement volume and can be obtained with low density, high hardness properties, good thermal stability, higher ability to hold the compressive force and have a stable friction coefficient. These characteristics make them useful in automotive industry.

  9. 电动汽车制动能量回收系统评价方法研究%The Study on Evaluation Method of Braking Energy Recovery System for Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    王计广; 李孟良; 徐月云; 方茂东

    2014-01-01

    To study transfer relation of different energies during the process of vraking energy recovery of electric vehicle, we propose a set of evaluation methods and indicators for EV vraking energy recovery system, and set up an EV test platform for vraking energy recovery system, which is used to study the recovery efficiency of vraking energy for an EV in NEDC. Test results show that vrake recovery energy and recovery efficiency are affected mainly vy the control strategy of recovery system, initial vraking speed and deceleration. The recovery system does not operate when the initial speed of vraking falls velow the speed set vy the control strategy. However, since the initial speed of vraking and deceleration in NEDC are simple, we propose to develop a new driving condition suitavle for evaluating the vraking energy recovery system of electric vehicles.%以电动汽车制动能量回收过程中不同能量间的传递关系为研究对象,提出了评价制动能量回收系统的测试方法和评价指标,搭建了电动汽车制动能量回收系统测试平台,并利用该平台对某电动汽车在NEDC工况下的制动能量回收效率进行了研究。试验结果表明,制动回收能量和回收率主要受制动能量回收控制策略、制动初速度和减速度的影响,当制动初速度低于控制策略中设定车速时系统将不进行能量回收;鉴于NEOC工况中制动初速度和减速度比较单一的情况,建议开发一种适用于电动汽车制动能量回收系统评价的工况。

  10. What brakes the Crab pulsar?

    CERN Document Server

    Čadež, A; Barbieri, C; Calvani, M; Naletto, G; Barbieri, M; Ponikvar, D

    2015-01-01

    Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes "inst...

  11. Investigations upon the effects of an auxiliary brake system on the working parameters of diesel engines

    Science.gov (United States)

    Suciu, Cornel; Mihai, Ioan

    2016-12-01

    Classical systems have the main disadvantage of being unable to ensure that high load diesel engine vehicles are slowed in good conditions, for the entire range of combinations of inclinations and lengths of sloped public roads. On such roads, where brakes are used repeatedly and for long periods, friction components that enter classical braking systems will overheat and lead to failure. The present paper aims to investigate, the efficiency of a braking system based on compression release, called a Jake Brake. In such a system, the exhaust valve is actuated at a certain predetermined angle of the crankshaft. The presented research was conducted on an experimental rig based on a four-stroke mono-cylinder diesel engine model Lombardini 6 LD400. Pressure and temperature evolutions were monitored before and during the use of the Jake Brake system. As the generated phonic pollution is the main disadvantage of such systems, noise generated in the vicinity of the engine was monitored as well. The monitored parameters were then plotted in diagrams that allowed evaluating the performances of the system.

  12. Braking Distance Prediction by Hydroplaning Analysis of 3-D Patterned Tire Model

    Science.gov (United States)

    Cho, Jin-Rae; Choi, Joo-Hyoung; Lee, Hong-Woo; Woo, Jong-Shik; Yoo, Wan-Suk

    In this paper, we present a wet-road braking distance estimate for the vehicles equipped with ABS (Anti-lock Brake System). In order to effectively compute the interval-wise braking times and the resulting total braking distance, we divide the entire speed interval at braking into finite number of uniform sub-intervals and apply the energy conservation law to individual sub-intervals. The proposed method is based on a numerical-analytical approach such that the frictional energy loss of the patterned tire is computed by 3-D hydroplaning analysis while the other at the disc pad is analytically derived. The hydroplaning simulation is performed by generally coupling an Eulerian finite volume method and an explicit Lagrangian finite element method. The operation of ABS is numerically implemented by controlling the tire angular velocity such that the preset tire slip ratio on the wet road is maintained. Numerical results are presented to illustrative and verify the the proposed numerical estimate.

  13. Development of Refined Natural Resin based Cashew Nut Shell Oil Liquid (CNSL) for Brake Pads Composite

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Rahmawati, P.; Tamtama, B. P. N.; Sari, P. P.; Sari, P. L.; Ichsan, S.; Kristiawan, Y. R.; Aini, F. N.

    2017-02-01

    Brake is one of the most important components in the vehicle. One type of brake that widely used is brake-based composites. One of the manufacture of composite material is resin. Cashew Nut Shell Liquid (CNSL) is a natural material which has chemical structure similar to synthetic phenol so it can be an alternative as a resin. Brake pads manufacture using CNSL as resin composites made to obtain the brake which is strong, wear-resistant, and environmentally friendly. The composite made using powder metallurgy techniques by mixing ingredients such as rubber, fibre glass, carbon, mineral sands and phenolic resin. Two formulas were composed by varying the resin and iron mineral sands in 5 grams. Composites were tested using Universal Testing Machine (UTM). The tensile strength result of those formulas are 600 N and 900 N and the elongations are 1.98 mm and 2.59 mm respectively. Formula 2 has a better tensile strength due to the addition of more resin is 15%. Since the better properties, formula 2 was derivated to 4 extended formulas and showed excellent pressure strength reached 20.000 N. It indicates that the addition of the resin can improve the mechanical properties of a composite.

  14. Frictional Performance and Temperature Rise of a Mining Nonasbestos Brake Material during Emergency Braking

    Directory of Open Access Journals (Sweden)

    Jiusheng Bao

    2015-01-01

    Full Text Available By simulating emergency braking conditions of mine hoisters, tribological experiments of a mining nonasbestos brake material sliding on E355CC steel friction disc investigated a pad-on-disc friction tester. It is shown that, under combined influence of braking velocity and pressure, the lubricating film and micro-convex-apices on wear surface would have complex physicochemical reactions which make the instant friction coefficient rise gradually while the instant surface temperature rises first and then falls. With the antifriction effect from lubricating film and the desquamating of composite materials, the mean friction coefficient decreases first, then rises, and decreases again with the increasing of initial braking velocity. And with the existence of micro-convex-apices and variation from increment ratio of load and actual contacting area, it rises first and then falls with the increasing of braking pressure. However, the mean surface temperature rises obviously with the increasing of both initial braking velocity and braking pressure for growth of transformed kinetic energy. It is considered that the friction coefficient cannot be considered as a constant when designing brake devices for mine hoisters. And special attention should be paid to the serious influence of surface temperature on tribological performance of brake material during emergency braking.

  15. Composite braking control strategy of pure electric bus based on brake driving intention recognition%基于制动驾驶意图辨识的纯电动客车复合制动控制策略

    Institute of Scientific and Technical Information of China (English)

    赵轩; 马建; 汪贵平

    2014-01-01

    To research braking force distribution ratio of composite braking system for pure electric bus,a composite braking control strategy based on brake driving intention recognition was presented.A double-layer brake driving intention recognition model based on hidden Markov theory was set up and identified by using road experiment data.Based on recognized driving intention and vehicle speed,the distribution ratios of braking forces for front and rear wheels, ECE regulation, motor characteristics, slip ratios, battery characteristics, super capacitor characteristics and transmission system characteristics were taken as constraint conditions,the braking force distribution strategy of composite braking system was proposed,and the control strategy of composite braking system was simulated by Simulink software under 9 operating conditions.Simulation result shows that friction braking system and motor regenerative braking system can work coordinately and steadily under various operating conditions when the braking control strategy is applied,and braking energy can be recovered as much as possible under the premise of ensuring braking safety.Energy recovery efficiency is highest under slight brake when vehicle speed was low,and the efficiency can reach to 43 .84%.Energy recovery efficiency is lowest under emergency brake when vehicle speed is high,and the efficiency is only 0. 89%. 2 tabs,21 figs,23 refs.%为了研究纯电动客车复合制动系统制动力分配比例,提出了基于制动驾驶意图辨识的复合制动控制策略。基于隐形马尔科夫理论建立了双层制动驾驶意图辨识模型,运用道路试验数据对模型进行辨识验证。基于辨识出的驾驶意图和车速,以前后轮制动力分配比例、ECE 法规、电机特性、滑移率、蓄电池特性、超级电容特性与传动系统特性为约束条件,制定了复合制动系统制动力分配策略,在9种工况下,应用Simulink对复合制动系统进行建

  16. ANALYTICAL COMPARISION OF DISC BRAKES WITH LINEAR AND CURVED SHAPED SLOTS BETWEEN PLATES FOR STRUCTURAL ANALYSIS ON DIFFERENT PARAMETER USING THROUGH CATIA V5 R20 AND ANSYS 15.0.7

    OpenAIRE

    Vivek Kumar*, Anshuka Srivastava

    2016-01-01

    The process which converts the kinetic energy of the vehicle into mechanical energy is known as Braking, which must be dissipated in the form of heat. The device using for decelerating or stopping the rotation of a wheel is called as disc brake. A brake disc (or rotor) usually made of linear shaped slots between plates and a disc brake ( or rotor) usually made of curved shaped slots between plates having materials used in both is Structural Steel, is connected to the wheel and/or the axle. Fr...

  17. 49 CFR 238.315 - Class IA brake test.

    Science.gov (United States)

    2010-10-01

    ... and release of the brakes on the last car in the train; and (6) The communicating signal system is... that operating conditions pose a safety hazard to an inspector walking the brakes, brake indicators may be used to verify the set and release on cars so equipped. However, the observation of the brake...

  18. 49 CFR 570.58 - Electric brake system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... no fluctuation evidencing a short circuit or other interruption of current. (1) Inspection procedure...

  19. 49 CFR 238.317 - Class II brake test.

    Science.gov (United States)

    2010-10-01

    ... locomotives that utilize an electric signal to communicate a service brake application and only a pneumatic... 49 Transportation 4 2010-10-01 2010-10-01 false Class II brake test. 238.317 Section 238.317... Requirements for Tier I Passenger Equipment § 238.317 Class II brake test. (a) A Class II brake test shall...

  20. 49 CFR 236.701 - Application, brake; full service.

    Science.gov (United States)

    2010-10-01

    ... developed. As applied to an automatic or electro-pneumatic brake with speed governor control, an application... 49 Transportation 4 2010-10-01 2010-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous...

  1. 49 CFR 570.59 - Service brake system.

    Science.gov (United States)

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY...-second of an inch over the fastener, or one-sixteenth of an inch over the brake shoe on bonded linings or... surface. Drum brake linings shall be securely attached to brake shoes. Disc brake pads shall be...

  2. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  3. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  4. Structure Topology Optimization of Brake Pad in Large- megawatt Wind Turbine Brake Considering Thermal- structural Coupling

    Science.gov (United States)

    Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.

    2016-11-01

    There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.

  5. A Conceptual Design Method of Disc Brake Systems for Reducing Brake Squeal Considering Pressure Distribution Variations

    OpenAIRE

    松島, 徹; 泉井, 一浩; 西脇, 眞二

    2011-01-01

    This paper proposes a design optimization method for disc brake systems that specifically aims to reduce brake squeal, with robustness against changes on contact surface pressure distribution, based on the concept of First Order Analysis. First, a simplified analysis model is constructed in which a pressure distribution parameter is introduced, and the relationships between the occurrence of brake squeal and the characteristics of various components is then clarified, using the simplified mod...

  6. Near-term electric vehicle program. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Integrated Vehicle Tests will be performed to determine the degree to which the (DOE) performance goals for the near-term electric vehicle program have been met, to provide a subjective evaluation of the regeneration brake system, to provide a general customer acceptability review. The specific tests covered in this plan are enumerated. Group 1 tests will be performed on the first available vehicle and will, in general, concentrate on performance tests to satisfy the DOE goals. Group 2 tests, to be performed on Vehicle No. 2, will provide additional test data (braking, suspension system, shake, noise level, ride and handling evaluations, and general customer acceptability review).

  7. Optimal design and selection of magneto-rheological brake types based on braking torque and mass

    Science.gov (United States)

    Nguyen, Q. H.; Lang, V. T.; Choi, S. B.

    2015-06-01

    In developing magnetorheological brakes (MRBs), it is well known that the braking torque and the mass of the MRBs are important factors that should be considered in the product’s design. This research focuses on the optimal design of different types of MRBs, from which we identify an optimal selection of MRB types, considering braking torque and mass. In the optimization, common types of MRBs such as disc-type, drum-type, hybrid-type, and T-shape types are considered. The optimization problem is to find an optimal MRB structure that can produce the required braking torque while minimizing its mass. After a brief description of the configuration of the MRBs, the MRBs’ braking torque is derived based on the Herschel-Bulkley rheological model of the magnetorheological fluid. Then, the optimal designs of the MRBs are analyzed. The optimization objective is to minimize the mass of the brake while the braking torque is constrained to be greater than a required value. In addition, the power consumption of the MRBs is also considered as a reference parameter in the optimization. A finite element analysis integrated with an optimization tool is used to obtain optimal solutions for the MRBs. Optimal solutions of MRBs with different required braking torque values are obtained based on the proposed optimization procedure. From the results, we discuss the optimal selection of MRB types, considering braking torque and mass.

  8. An Efficient Energy Management Strategy, Unique Power Split & Energy Distribution, Based on Calculated Vehicle Road Loads

    Science.gov (United States)

    2012-08-01

    gearbox with pneumatic shift actuator. The differential connects to the final drives at the front axle. There are wheel end reduction units (WERU) at...regenerative braking or simulated engine braking . AVL Hybrid Control System (HCU) coordinates and controls all system components as laid out in Figure...HMMWV for the current given inputs based on the current vehicle speed, acceleration pedal, and brake pedal. From this driver requested power at the

  9. Aircraft Hydraulic System Leakage Detection and Servicing Recommendations Method

    Science.gov (United States)

    2014-10-02

    accumulators, filters, and consumers, that include all the actuators connected to the hydraulic power such as flight controls , brake and landing...Conference, October 4-8 Calgary, Alberta, Canada. Merrit, H. E., (1967), Hydraulic Control Systems. New York: John Willey & Sons. Vianna, W. O. L...2008), Modelagem e Análise do Sistema Hidráulico de uma Aeronave Comercial Regional. M.Sc. Thesis. Instituto Tecnológico de Aeronáutica, São José

  10. An Analysis of the Manpower Impact of Unmanned Aerial Vehicles on Subsurface Platforms

    Science.gov (United States)

    2012-03-01

    gear systems including wheels and tires, brakes , and emergency systems, pneumatic power, storage and distribution systems, hoists and winches, wing...Mechanic—Hydraulics: AMs maintain aircraft airframe and structural components, flight surfaces and controls, hydraulic and pneumatic control...61 Ibid., AE-3 62 Ibid., AM-3 30 pneumatic systems, steering and suspension systems, cryogenic systems, electrical systems, gas turbine

  11. Hunting Plan Morgan Brake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan provides guidelines for administration of hunting activity and for development, maintenance, and enforcement of regulations and guidelines on Morgan Brake...

  12. Pulsar braking: Time dependent moment of inertia?

    Science.gov (United States)

    Urbanec, Martin

    2017-08-01

    Pulsars rotate with extremely stable rotational frequency enabling one to measure its first and second time derivatives. These observed values can be combined to the so-called braking index. However observed values of braking index differ from the theoretical value of 3 corresponding to braking by magnetic dipole radiation being the dominant theoretical model. Such a difference can be explained by contribution of other mechanism like pulsar wind or quadrupole radiation, or by time dependency of magnetic field or moment of inertia. In this presentation we focus on influence of time dependent moment of inertia on the braking index. We will also discuss possible physical models for time-dependence of moment of inertia.

  13. Product Quality Improvement Using FMEA for Electric Parking Brake (EPB)

    Science.gov (United States)

    Dumitrescu, C. D.; Gruber, G. C.; Tişcă, I. A.

    2016-08-01

    One of the most frequently used methods to improve product quality is complex FMEA. (Failure Modes and Effects Analyses). In the literature various FMEA is known, depending on the mode and depending on the targets; we mention here some of these names: Failure Modes and Effects Analysis Process, or analysis Failure Mode and Effects Reported (FMECA). Whatever option is supported by the work team, the goal of the method is the same: optimize product design activities in research, design processes, implementation of manufacturing processes, optimization of mining product to beneficiaries. According to a market survey conducted on parts suppliers to vehicle manufacturers FMEA method is used in 75%. One purpose of the application is that after the research and product development is considered resolved, any errors which may be detected; another purpose of applying the method is initiating appropriate measures to avoid mistakes. Achieving these two goals leads to a high level distribution in applying, to avoid errors already in the design phase of the product, thereby avoiding the emergence and development of additional costs in later stages of product manufacturing. During application of FMEA method using standardized forms; with their help will establish the initial assemblies of product structure, in which all components will be viewed without error. The work is an application of the method FMEA quality components to optimize the structure of the electrical parking brake (Electric Parching Brake - E.P.B). This is a component attached to the roller system which ensures automotive replacement of conventional mechanical parking brake while ensuring its comfort, functionality, durability and saves space in the passenger compartment. The paper describes the levels at which they appealed in applying FMEA, working arrangements in the 4 distinct levels of analysis, and how to determine the number of risk (Risk Priority Number); the analysis of risk factors and established

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVI, I--CATERPILLAR LUBRICATION SYSTEMS AND COMPONENTS, II--LEARNING ABOUT BRAKES (PART I).

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTIONS OF DIESEL ENGINE LUBRICATION SYSTEMS AND COMPONENTS AND THE PRINCIPLES OF OPERATION OF BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THE NEED FOR OIL, (2) SERVICE CLASSIFICATION OF OILS, (3) CATERPILLAR LUBRICATION SYSTEM COMPONENTS (4)…

  15. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    Science.gov (United States)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  16. Constraining the Braking Indices of Magnetars

    CERN Document Server

    Gao, Z F; Wang, N; Yuan, J P; Peng, Q H; Du, Y J

    2015-01-01

    Due to the lack of long term pulsed emission in quiescence and the strong timing noise, it is impossible to directly measure the braking index $n$ of a magnetar. Based on the estimated ages of their potentially associated supernova remnants (SNRs), we estimate the values of $n$ of nine magnetars with SNRs, and find that they cluster in a range of $1\\sim$41. Six magnetars have smaller braking indices of $13$ for other three magnetars are attributed to the decay of external braking torque, which might be caused by magnetic field decay. We estimate the possible wind luminosities for the magnetars with $13$ within the updated magneto-thermal evolution models. We point out that there could be some connections between the magnetar's anti-glitch event and its braking index, and the magnitude of $n$ should be taken into account when explaining the event. Although the constrained range of the magnetars' braking indices is tentative, our method provides an effective way to constrain the magnetars' braking indices if th...

  17. Analysis of Failure Causes and the Criticality Degree of Elements of Motor Vehicle’s Drum Brakes

    Directory of Open Access Journals (Sweden)

    D. Ćatić

    2014-09-01

    Full Text Available The introduction of the paper gives the basic concepts, historical development of methods of Fault Tree Analysis - FTA and Failure Modes, Effects and Criticality Analysis - FMECA for analysis of the reliability and safety of technical systems and importance of applying this method is highlighted. Failure analysis is particularly important for systems whose failures lead to the endangerment of people safety, such as, for example, the braking system of motor vehicles. For the failure analysis of the considered device, it is necessary to know the structure, functioning, working conditions and all factors that have a greater or less influence on its reliability. By formation of the fault tree of drum brakes in braking systems of commercial vehicles, it was established a causal relation between the different events that lead to a reduction in performance or complete failure of the braking system. Based on data from exploitation, using FMECA methods, determination of the criticality degree of drum brake’s elements on the reliable and safe operation of the braking system is performed.

  18. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  19. Structure Analysis at the Micro Iron Pour at Gray Brake

    Directory of Open Access Journals (Sweden)

    Melya D. Sebayang

    2012-01-01

    Full Text Available The use of gray cast iron brake drum as the material is the most appropriate choice, because it has properties which have good heat conductivity, hardness, toughness, good friction properties and the ability to absorb vibration. The purpose of this study to determine the ratio of the microstructure on both original material drum that is new and original drum ex-wear. With the aim of analysis is expected to be used as basis in planning the development of better vehicle brakes. Of all the test results it can be mentioned chemical composition of test results with the main alloying elements, to drum new original: C 4:13%, 2:51% Si, 0.15% S, 0.65% Mn, 0.0054% P, and the original drum ex-wear: C 4:13%, 2:17% Si, 0.15% S, 0.53% Mn, 0.0054% P. So the comparison of properties of the resulting structure after the testing process on each drum is the hardness and resistance to wear and tear on a new original drum better when compared with the original drum ex-wear.

  20. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  1. Adaptive Fuzzy Control for CVT Vehicle

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-tuning fuzzy-PI throttle controller, and a hybrid fuzzy-PID CVT ratio and brake controller. The presented adaptive fuzzy control strategy is vehicle model independent, which depends only on the instantaneous vehicle states, but does not depend on vehicle parameters. So it has good robustness against uncertain vehicle parameters and exogenous load disturbance. Simulation results show that the proposed adaptive fuzzy strategy has good adaptability and practicality value.

  2. On the safety of braking mine up-haulage devices

    Energy Technology Data Exchange (ETDEWEB)

    Murzin, V.A.; Samusia, V.I.

    1982-01-01

    Experiments conducted on several mine up-haulage devices to analyze breakdowns due to the operator who quickly turned on the brake showed that sudden braking may really invoke maximum brake application on the machine winding much earlier than preventive braking and may lead to shutdown. It was concluded that in the Safety Regulations or Engineering Regulations that use of the handbrake should be more clearly outlined to preclude breakdown. One method of prevention is to develop and use a diagram showing build-up and magnitude of the braking moment when using the manual brake.

  3. Braking Index of Isolated Pulsars

    CERN Document Server

    Hamil, Oliver Q; Urbanec, Martin; Urbancova, Gabriela

    2016-01-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities $\\Omega$, and their time derivatives that show unambiguously that the pulsars are slowing down. The commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of $\\Omega$. This relation leads to the power law $\\dot{\\Omega}$ = -K $\\Omega^{\\rm n}$ where $n$ is called the braking index. The MDR model predicts $n$ exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of $n$, individually accurate to a few percent or better, in the range 1$ <$ n $ < $ 2.8, which is consistently less than the predictions of the MDR model. In spite of an extensive investigation of various modifications of the MDR model, no satisfactory explanation of observation has been found yet. The aim of this work is t...

  4. Development of more effective methods of normalization and application at braking in turn test; Senkai seido shiken no koritsuka to oyo han`i no kakucho shuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, T.; Nagae, H. [Nihon University, Tokyo (Japan)

    1997-10-01

    Recant passenger cars have so higher grades of the cornering performance that the vehicle behaviors at braking in turn have become more important for the security on the obstacle avoidance ability. In this paper, the influences of amount of initial centripetal acceleration to braking motion of vehicles are discussed by experimental and theoretical analysis. Under the higher centripetal accelerations, even smaller deceleration bring the vehicle oscillating yaw velocity phenomena as same as centripetal accelerations. As to advance the effective test procedure. the authors proposed one of the methods that enable to reduce the test error by insufficient vehicle velocity. 7 refs., 6 figs., 1 tab.

  5. Distributed Heterogeneous Simulation of a Hybrid-Electric Vehicle

    Science.gov (United States)

    2006-03-29

    operate as a generator to convert mechanical energy from the diesel t~nginc 01 from regenerative braking to electrical energy. A vehicle control module...Distributed Heterogeneous Simulation of a Hybrid- Electric Vehicle Ning Wu’, Curtis Rands t , Charles E. Lucas!, Eric A. Walters§, and Maher A...Masrurit US Army RDECOM-TARDEC, Warren, MI, 48397 Hybrid- electric military vehicles provide many advantages over conventional military vehicles powered

  6. 49 CFR 232.609 - Handling of defective equipment with ECP brake systems.

    Science.gov (United States)

    2010-10-01

    ... conventional pneumatic brakes shall not move in a freight train operating in ECP brake mode unless it would otherwise have effective and operative brakes if it were part of a conventional pneumatic brake-equipped... pneumatic brakes shall not operate with freight cars equipped with stand-alone ECP brake systems unless:...

  7. Improvement of Brake System of XJ-650 Workover Rig%XJ-650型修井机绞车制动系统改进

    Institute of Scientific and Technical Information of China (English)

    赵有清

    2015-01-01

    The working principle of hydraulic disc brake system of the hydraulic disc brake system is described in this paper.The problem of the existence of the pneumatic control belt brake for the XJ-650 type of the well is put forward.The hydraulic disc brake system of the workover rig is a-dapted for technological reformation,which is suitable for workover operation in deep and com-plex well conditions,and the construction of the labor intensity is decreased,security is obviously enhanced.%简述了修井机液压盘式刹车系统的工作原理。指出现有 XJ-650型修井机的气控带式刹车存在的问题。采用液压盘式刹车系统对该修井机进行技术改造,适应深井、复杂工况井等修井作业要求,并且使施工的劳动强度下降,安全性明显增强。

  8. Flatness-based model inverse for feed-forward braking control

    Science.gov (United States)

    de Vries, Edwin; Fehn, Achim; Rixen, Daniel

    2010-12-01

    For modern cars an increasing number of driver assistance systems have been developed. Some of these systems interfere/assist with the braking of a car. Here, a brake actuation algorithm for each individual wheel that can respond to both driver inputs and artificial vehicle deceleration set points is developed. The algorithm consists of a feed-forward control that ensures, within the modelled system plant, the optimal behaviour of the vehicle. For the quarter-car model with LuGre-tyre behavioural model, an inverse model can be derived using v x as the 'flat output', that is, the input for the inverse model. A number of time derivatives of the flat output are required to calculate the model input, brake torque. Polynomial trajectory planning provides the needed time derivatives of the deceleration request. The transition time of the planning can be adjusted to meet actuator constraints. It is shown that the output of the trajectory planning would ripple and introduce a time delay when a gradual continuous increase of deceleration is requested by the driver. Derivative filters are then considered: the Bessel filter provides the best symmetry in its step response. A filter of same order and with negative real-poles is also used, exhibiting no overshoot nor ringing. For these reasons, the 'real-poles' filter would be preferred over the Bessel filter. The half-car model can be used to predict the change in normal load on the front and rear axle due to the pitching of the vehicle. The anticipated dynamic variation of the wheel load can be included in the inverse model, even though it is based on a quarter-car. Brake force distribution proportional to normal load is established. It provides more natural and simpler equations than a fixed force ratio strategy.

  9. A Review of a Study on Disc Brake Noise

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the development of the automotive industry, disc brake noise has become an issue of growing concern to the automotive industry and customers. In this paper, the types of disc brake noise have been discussed. Ajter that, the theories and models that have been proposed as an explanation of brake squeal are reviewed. On the basis of these theories and models, some example simulations of disc brake squeal which use the Finite Element method and mathematical model have been introduced.

  10. Transient thermal behavior of a cylindrical brake system

    Energy Technology Data Exchange (ETDEWEB)

    Naji, M.; Al-Nimr, M.; Masoud, S. [Jordan Univ. of Science and Technology, Irbid (Jordan). Dept. of Mechanical Engineering

    2000-03-01

    A mathematical model is presented to describe the thermal behavior of a brake system which consists of shoe and drum. The model is solved analytically using Green's function method for any type of the stopping braking action. In terms of the obtained solutions, the transient temperature distribution of the brake is described. The thermal behavior is investigated for three specified braking actions which are the impulse, unit step and trigonometric stopping actions. (orig.)

  11. Mathematical Model of Asynchronous Motor with Embedded Combined Braking Device

    Directory of Open Access Journals (Sweden)

    V. Solencov

    2013-01-01

    Full Text Available The paper presents a conclusion of a mathematical model pertaining to asynchronous motor with embedded combined braking device on the basis of electromechanical brake and electromagnetic slip coupling. The mathematical model has been obtained in an orthogonal coordinate system a, b, which is fixed with respect to the asymmetric part of the asynchronous motor with embedded combined braking device. The model makes it possible to investigate transient processes in various asynchronous motors with embedded braking devices.

  12. Influences of pre-crash braking induced dummy - forward displacements on dummy behaviour during EuroNCAP frontal crashtest.

    Science.gov (United States)

    Woitsch, Gernot; Sinz, Wolfgang

    2014-01-01

    Combination of active and passive safety systems is a future key to further improvement in vehicle safety. Autonomous braking systems are able to reduce collision speeds, and therefore severity levels significantly. Passengers change their position due to pre-impact vehicle motion, a fact, which has not yet been considered in common crash tests. For this paper, finite elements simulations of crash tests were performed to show that forward displacements due to pre-crash braking do not necessarily increase dummy load levels. So the influence of different pre-crash scenarios, all leading to equal closing speeds in the crash phase, are considered in terms of vehicle motion (pitching, deceleration) and restraint system configurations (belt load limiter, pretensioner). The influence is evaluated by dummy loads as well as contact risk between the dummy and the interior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  14. Cold Regions Test of Tracked and Wheeled Vehicles

    Science.gov (United States)

    2015-12-11

    ft). (3) Test slopes of 5%, 10%, and 15% grades in asphalt or concrete surfaces and slopes of 20%, 30%, 40%, and 60% in gravel and concrete ...may be modified or otherwise exempted depending on the military requirements. b. All operator and maintenance operations should be attempted...the braking tests. Caution must be exercised when braking of a tracked vehicle at high speed if using rubber track pads without grousers or ice

  15. Central Mississippi Refuges: Yazoo, Panther Swamp, Hillside, Morgan Brake & Bathews Brake: Annual narrative report: Calendar year 2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yazoo, Hillside, Panther Swamp, Morgan Brake, and Mathews Brake NWRs covers refuge activities during 2001. The report begins with a...

  16. Biweekly Waterfowl Counts from Mathews Brake, Morgan Brake, and Hillside National Wildlife Refuges in 2001 and 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Biweekly Waterfowl Counts from Mathews Brake, Morgan Brake, and Hillside National Wildlife Refuges conducted from October 2001 to February 2002

  17. Hillside, Morgans Brake, and Mathews Brake National Wildlife Refuges Deer Harvest Records are from 2008 and 2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These harvest data are from Hillside, Morgans Brake, and Mathews Brake NWRs during the 2008 and 2014 deer seasons. They measure weight, antler size, prevalence of...

  18. 30 CFR 75.1404 - Automatic brakes; speed reduction gear.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic brakes; speed reduction gear. 75.1404... Automatic brakes; speed reduction gear. Each locomotive and haulage car used in an underground coal mine... brakes, locomotives and haulage cars shall be subject to speed reduction gear, or other similar...

  19. 49 CFR 229.57 - Foundation brake gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 229.57 Section 229.57 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Foundation brake gear. A lever, rod, brake beam, hanger, or pin may not be worn through more than 30...

  20. 49 CFR 238.309 - Periodic brake equipment maintenance.

    Science.gov (United States)

    2010-10-01

    ... that all of the equipment's brake system pneumatic components that contain moving parts and are sealed... 49 Transportation 4 2010-10-01 2010-10-01 false Periodic brake equipment maintenance. 238.309... Maintenance Requirements for Tier I Passenger Equipment § 238.309 Periodic brake equipment maintenance....

  1. 49 CFR 238.319 - Running brake test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  2. Performance prediction of serpentine type compact magnetorheological brake prototype

    Science.gov (United States)

    Ubaidillah, Wibowo, A.; Adiputra, D.; Tjahjana, D. D. D. P.; Rahman, M. A. A.; Mazlan, S. A.

    2017-01-01

    A magnetorheological brake (MRB) with serpentine flux type for ankle-foot orthosis (rehabilitation device) was assessed its performance regarding braking torque and dynamic range. This assessment was conducted based on a problem that the MRB did not generate sufficient braking torque for the orthosis device. The braking capability was appraised through analytical approached based on the prototype design. The magnetic circuit of the MRB design was firstly investigated its capability for generating magnetic flux at braking surface area using finite element method magnetic (FEMM) software. Governing equation was derived to determine the braking performance i.e. braking torque and dynamic range as a function of applied current. The main factors influencing the braking performance were magneto-induced shear stress, the clearance between rotor and stator, and braking surface area. Especially for shear stress, this factor was totally influenced by the magnetic flux generated within the braking area. These all factors were contained within the governing equation. Furthermore, the braking performances were determined by solving the governing equation according to the design parameters. As a result, the governing equation can be used for improving the MRB design to get a better braking performances.

  3. International Institute for Hydraulic and Environmental Engineering

    Science.gov (United States)

    Mostertman, L. J.

    1977-01-01

    Describes the activities of the International Institute for Hydraulic and Environmental Engineering (IHE), whose primary function is the promotion of the better use of water resources as a vehicle of development by the transfer of knowledge and experience. (Author/RK)

  4. The "paradox" of a brake pad

    Science.gov (United States)

    Zhuravlev, V. Ph.

    2017-05-01

    By the example of a brake pad, a typical error is illustrated, i.e., the fact that the initial conditions should be reconsidered upon finding that there is no solution of the static problem in a certain region of parameters (incorrect in the sense of Hadamard). For example, it turns out that the conditions of disk rotation in the positive direction cannot be implemented in the domain of parameters leading to a "paradox." In this region, the "brake-pad" mechanism is transformed into the "wedge stopper" mechanism.

  5. The braking indices in pulsar emission models

    CERN Document Server

    Wu, F; Gil, J; Gil, Janusz

    2003-01-01

    Using the method proposed in a previous paper, we calculate pulsar braking indices in the models with torque contributions from both inner and outer accelerating regions, assuming that the interaction between them is negligible. We suggest that it is likely that the inverse Compton scattering induced polar vacuum gap and the outer gap coexist in the pulsar magnetosphere. We include the new near threshold vacuum gap models with curvature-radiation and inverse Compton scattering induced cascades, respectively; and find that these models can well reproduce the measured values of the braking indices.

  6. The mechanical hybrid vehicle: an investigation of a flywheel-based vehicular regenerative energy capture system

    OpenAIRE

    Diego-Ayala, U.; Martinez-Gonzalez, P.; McGlashan, N; Pullen, K. R.

    2008-01-01

    Capturing braking energy by regeneration into an onboard energy storage unit offers the potential to reduce significantly the fuel consumption of vehicles. A common technique is to generate electricity in the motors of a hybrid electric vehicle when braking, and to use this to charge an onboard electrochemical battery. However, such batteries are costly, bulky, and generally not amenable to fast charging as this affects battery life and capacity. In order to overcome these problems, a mechani...

  7. Research of Braking Energy Recovery Control Algorithm Based on Single Wheel Bench%基于单轮台架制动能量回收控制算法的研究

    Institute of Scientific and Technical Information of China (English)

    刘喜明; 孙仁云; 张霞

    2011-01-01

    Electric vehicle can provide a good braking performance under braking,while energy recovery can be guaranteed is an important feature for the electric vehicle control system.We propose a control algorithm which takes single-wheel ABS brake in our laboratory as the prototype bench,which can allocate the relationship between the braking force and the electronic brake force properly,and meanwhile,the braking energy recovery is also considered when the electric vehicle is under braking.It can make the electric vehicle has a good economic fitness in the premise of getting a safety brake,which has an important practical significance to extend driving range of electric vehicles.%电动汽车在制动情况下提供一个良好制动性能的同时保证其能进行能量回收是电动汽车能量回收控制系统的一个重要特性。针对此特性,以本实验室的单轮ABS制动台架为原型,提出了一套控制算法,不仅合理地分配了制动器制动力和电机制动力之间的关系,而且顾及到了制动时进行制动能量回收的问题,使得电动汽车在获得制动安全性的前提下有一个良好的经济适用性,这对延长电动汽车的续驶里程有着重要的实际意义。

  8. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005.

    Science.gov (United States)

    Hjortenkrans, David S T; Bergbäck, Bo G; Häggerud, Agneta V

    2007-08-01

    Road traffic has been highlighted as a major source of metal emissions in urban areas. Brake linings and tires are known emission sources of particulate matter to air; the aim of the current study was to follow the development of metal emissions from these sources over the period 1995/ 1998-2005, and to compare the emitted metal quantities to other metal emission sources. Stockholm, Sweden was chosen as a study site. The calculations were based on material metal concentrations, traffic volume, particle emission factors, and vehicle sales figures. The results for metal emissions from brake linings/tire tread rubber in 2005 were as follows: Cd 0.061/0.47 kg/year, Cu 3800/5.3 kg/year, Pb 35/3.7 kg/year, Sb 710/0.54 kg/year, and Zn 1000/4200 kg/ year. The calculated Cu and Zn emissions from brake linings were unchanged in 2005 compared to 1998, indicating that brake linings still remain one of the main emission sources for these metals. Further, brake linings are a source of antimony. In contrast, Pb and Cd emissions have decreased to one tenth compared to 1998. The results also showed that tires still are one of the main sources of Zn and Cd emissions in the city.

  9. Hillside, Morgan Brake, and Mathews Brake National Wildlife Refuges Reforestation Plan for 1992-1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan addresses the history of reforestation at Hillside National Wildlife Refuge and its two satellite refuges, Morgan Brake National Wildlife Refuge and...

  10. Vehicle lateral dynamics stabilization using active suspension

    Directory of Open Access Journals (Sweden)

    Drobný V.

    2008-12-01

    Full Text Available The paper deals with the investigation of active nonlinear suspension control in order to stabilize the lateral vehicle motion in similar way as systems like ESP do. The lateral stabilization of vehicle based on braking forces can be alternatively provided by the different setting of suspension forces. The basis of this control is the nonlinear property of the tyres. The vehicle has at least four wheels and it gives one or more redundant vertical forces that can be used for the different distribution of vertical suspension forces in such a way that resulting lateral and/or longitudinal forces create the required correction moment for lateral dynamic vehicle stabilization.

  11. Study on heavy duty truck stability control by braking force control; Seidoryoku seigyo ni yoru truck no sharyo kyodo anteika ni taisuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K.; Shinjo, H.; Harada, M.; Ohata, K.; Sakata, K. [Mitsubishi Motors Corp., Tokyo (Japan)

    1997-10-01

    Now a days we are discussing about the vehicle stability control system which freely controls the braking force of each wheel to apply the yaw t and decelerate the vehicle. The system drastically improve the vehicle cornering performance and stabilize the vehicle behavior in its critical area. This paper discusses a point to notice in case of applying this technique for heavy duty trucks, and describes the possibility of the stabilization for vehicle cornering behavior about heavy duty truck. 3 refs., 10 figs., 2 tabs.

  12. Parametric Optimization Design of Brake Block Based on Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Jin Hua-wei

    2017-01-01

    Full Text Available As one of the key part of automotive brake,the performance of brake block has a direct impact on the safety and comfort of cars. Modeling the brake block of disc brake in reverse parameterization by reverse engineering software, analyzing and optimizing the reconstructed model by CAE software. Processing the scanned point cloud by Geomagic Studio and reconstructing the CAD model of the brake block with the parametric surface function of the software, then analyzing and optimizing it by Wrokbench. The example shows that it is quick to reconstruct the CAD model of parts by using reverse parameterization method and reduce part re-design development cycle significantly.

  13. 飞机数字电传防滑刹车系统污染控制方法研究%Study on the Pollution Control Method for Aircraft Digital Telex Antiskid Brake System

    Institute of Scientific and Technical Information of China (English)

    刘忠平; 亢敏; 韩亚国; 赵文庆

    2015-01-01

    The work principles, using requirements and pollution control requirements for high precision electro⁃hydraulic servo valve were discussed from a view of solving oil pollution problem synthetically in braking control system. The pollution control methods and ways were proposed. Through controlling pollution in the aspects of design, utility and maintenance of the braking control system, braking wheels and hydraulic tubes, holding brake pressure in air and braking failures caused by hydraulic oil pollution could be effec⁃tively avoided.%从刹车系统污染综合治理角度出发,论述了飞机刹车控制系统中高精度电液伺服阀的工作原理、选用要求及污染度控制要求,提出了飞机刹车系统油液污染控制的方法和途径。通过在刹车系统、刹车机轮、刹车管路的设计、使用、维护等方面进行污染控制,能够有效避免飞机刹车系统在使用中由于污染问题导致着陆过程中出现空中带压、刹车失效现象。

  14. Control and state estimation for energy recuperation in fully electric vehicles

    NARCIS (Netherlands)

    Falcone, P.; Lidberg, M.; Ólafsdóttir, J.M.; Jansen, S.T.H.; Iersel, S. van

    2011-01-01

    Energy recuperation in fully electric vehicles is mainly limited by the requirement to preserve vehicle stability but it is also dependent on the brake system design and the ability of the control system. The boundaries of vehicle stability are difficult to assess, and must be approached with care,

  15. Towards A Good ABS Design for More Reliable Vehicles on the Roads

    Directory of Open Access Journals (Sweden)

    Afifa Ghenai

    2013-07-01

    Full Text Available Nowadays, better driving also means betterbraking. To this end, vehicle designersmust find allfailuresduring the design phase of antilock braking systems which play animportant roleinautomobilessafety.However, mechatronic systems are so complex and failures can be badly identified. So it is necessary topropose a design approach of an antilock braking system which will be able to avoid wheels locking duringbraking and maintain vehicle stability. This paper describes this approach, in which we model thefunctional and the dysfunctional behavior of an antilock braking system using stopwatch Petri nets

  16. 基于坡度和ECE法规的制动力分配研究%Research on Braking Force Distribution Based on Gradient and ECE Regulations

    Institute of Scientific and Technical Information of China (English)

    冯强; 张晓龙; 吴涛; 陈奇

    2015-01-01

    为了使汽车在上、下坡制动时前后制动力分配能够满足ECE法规的要求。通过对汽车在上、下坡制动时进行受力分析,得到汽车上、下坡制动时前、后轴的利用附着系数,根据ECE法规和汽车在上、下坡及平直路面上制动时前、后轴利用附着系数的大小关系进行前、后制动力分配系数设计,最后对分配效果进行验证,结果表明:该方法设计的制动力分配系数在汽车上、下坡制动时可以满足ECE法规的要求。%To make sure the front and back braking force distribution can meet the requirements of ECE regulations when the vehicle brakes uphill and downhill, the front and rear axle utilization adhesion co⁃efficient of the vehicle were obtained by force analysis during braking uphill and downhill, then the braking force distribution coefficients were designed according to ECE regulations and the magnitude relation of the front and rear axle utilization adhesion coefficients during braking uphill, downhill and straight, finally distribution effects were verified. The results show the braking force distribution coeffi⁃cients designed by this method can meet the requirements of ECE regulations when the vehicle brakes uphill and downhill.

  17. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    Arnab Ganguly; Raji George

    2008-02-01

    An asbestos free friction material composite for brake linings is synthesized containing fibrous reinforcing constituents, friction imparting and controlling additives, elastomeric additives, fire retarding components and a thermosetting resin. The composite shows exemplary friction characteristics and has great resistance to wear and shows good temperature stability.

  18. 30 CFR 57.14101 - Brakes.

    Science.gov (United States)

    2010-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety... equipped on self-propelled mobile equipment, parking brakes shall be capable of holding the equipment with... surface-operated equipment at underground mines when an MSHA inspector has reasonable cause to...

  19. A HIGH BRAKING INDEX FOR A PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montréal, QC H3A 2T8 (Canada); Gotthelf, E. V. [Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027-6601 (United States); Guillot, S. [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Harrison, F. A. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Keane, E. F. [SKA Organization, Jodrell Bank Observatory, Cheshire SK11 9DL (United Kingdom); Pivovaroff, M. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550-9234 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Tomsick, J. A. [Space Science Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States)

    2016-03-01

    We present a phase-coherent timing solution for PSR J1640–4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR J1640–4631 to be n = 3.15 ± 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3σ upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy.

  20. Massive star models with magnetic braking

    CERN Document Server

    Meynet, Georges; Maeder, Andre

    2010-01-01

    Magnetic fields at the surface of a few early-type stars have been directly detected. These fields have magnitudes between a few hundred G up to a few kG. In one case, evidence of magnetic braking has been found. We investigate the effects of magnetic braking on the evolution of rotating ($\\upsilon_{\\rm ini}$=200 km s$^{-1}$) 10 M$_\\odot$ stellar models at solar metallicity during the main-sequence (MS) phase. The magnetic braking process is included in our stellar models according to the formalism deduced from 2D MHD simulations of magnetic wind confinement by ud-Doula and co-workers. Various assumptions are made regarding both the magnitude of the magnetic field and of the efficiency of the angular momentum transport mechanisms in the stellar interior. When magnetic braking occurs in models with differential rotation, a strong and rapid mixing is obtained at the surface accompanied by a rapid decrease in the surface velocity. Such a process might account for some MS stars showing strong mixing and low surfa...