WorldWideScience

Sample records for hydraulic-severe accident code

  1. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    Energy Technology Data Exchange (ETDEWEB)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.

  2. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    International Nuclear Information System (INIS)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-01-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds

  3. Accident consequence assessment code development

    International Nuclear Information System (INIS)

    Homma, T.; Togawa, O.

    1991-01-01

    This paper describes the new computer code system, OSCAAR developed for off-site consequence assessment of a potential nuclear accident. OSCAAR consists of several modules which have modeling capabilities in atmospheric transport, foodchain transport, dosimetry, emergency response and radiological health effects. The major modules of the consequence assessment code are described, highlighting the validation and verification of the models. (author)

  4. CINETHICA - Core accident analysis code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    A computer program for nuclear accident analysis has been developed based on the point-kinetics approximation and one-dimensional heat transfer model for reactivity feedback calculation. Hansen's method/1/ were used for the kinetics equation solution and explicit Euler method were adopted for the thermohidraulic equations. The results were favorably compared to those from the GAPOTKIN Code/2/. (author) [pt

  5. DOZIM - evaluation dose code for nuclear accident

    International Nuclear Information System (INIS)

    Oprea, I.; Musat, D.; Ionita, I.

    2008-01-01

    During a nuclear accident an environmentally significant fission products release can happen. In that case it is not possible to determine precisely the air fission products concentration and, consequently, the estimated doses will be affected by certain errors. The stringent requirement to cope with a nuclear accident, even minor, imposes creation of a computation method for emergency dosimetric evaluations needed to compare the measurement data to certain reference levels, previously established. These comparisons will allow a qualified option regarding the necessary actions to diminish the accident effects. DOZIM code estimates the soil contamination and the irradiation doses produced either by radioactive plume or by soil contamination. Irradiations either on whole body or on certain organs, as well as internal contamination doses produced by isotope inhalation during radioactive plume crossing are taken into account. The calculus does not consider neither the internal contamination produced by contaminated food consumption, or that produced by radioactive deposits resuspension. The code is recommended for dose computation on the wind direction, at distances from 10 2 to 2 x 10 4 m. The DOZIM code was utilized for three different cases: - In air TRIGA-SSR fuel bundle destruction with different input data for fission products fractions released into the environment; - Chernobyl-like accident doses estimation; - Intervention areas determination for a hypothetical severe accident at Cernavoda Nuclear Power Plant. For the first case input data and results (for a 60 m emission height without iodine retention on active coal filters) are presented. To summarize, the DOZIM code conception allows the dose estimation for any nuclear accident. Fission products inventory, released fractions, emission conditions, atmospherical and geographical parameters are the input data. Dosimetric factors are included in the program. The program is in FORTRAN IV language and was run on

  6. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T.; Rollstin, J.A.; Chanin, D.I.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs

  7. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Rollstin, J.A.; Chanin, D.I.; Jow, H.N.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management

  8. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  9. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  10. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  11. Fire-accident analysis code (FIRAC) verification

    International Nuclear Information System (INIS)

    Nichols, B.D.; Gregory, W.S.; Fenton, D.L.; Smith, P.R.

    1986-01-01

    The FIRAC computer code predicts fire-induced transients in nuclear fuel cycle facility ventilation systems. FIRAC calculates simultaneously the gas-dynamic, material transport, and heat transport transients that occur in any arbitrarily connected network system subjected to a fire. The network system may include ventilation components such as filters, dampers, ducts, and blowers. These components are connected to rooms and corridors to complete the network for moving air through the facility. An experimental ventilation system has been constructed to verify FIRAC and other accident analysis codes. The design emphasizes network system characteristics and includes multiple chambers, ducts, blowers, dampers, and filters. A larger industrial heater and a commercial dust feeder are used to inject thermal energy and aerosol mass. The facility is instrumented to measure volumetric flow rate, temperature, pressure, and aerosol concentration throughout the system. Aerosol release rates and mass accumulation on filters also are measured. We have performed a series of experiments in which a known rate of thermal energy is injected into the system. We then simulated this experiment with the FIRAC code. This paper compares and discusses the gas-dynamic and heat transport data obtained from the ventilation system experiments with those predicted by the FIRAC code. The numerically predicted data generally are within 10% of the experimental data

  12. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    Energy Technology Data Exchange (ETDEWEB)

    Camous, F.; Jacq, F.; Chatelard, P. [IPSN/DRS/SEMAR CE-Cadarache, St Paul Lez Durance (France)] [and others

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  13. Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications

    International Nuclear Information System (INIS)

    2013-12-01

    Requests for severe accident investigations and assurance of mitigation measures have increased for operating nuclear power plants and the design of advanced nuclear power plants. Severe accident analysis investigations necessitate the analysis of the very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The IAEA organizes coordinated research projects (CRPs) to facilitate technology development through international collaboration among Member States. The CRP on Benchmarking Severe Accident Computer Codes for HWR Applications was planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). This publication summarizes the results from the CRP participants. The CRP promoted international collaboration among Member States to improve the phenomenological understanding of severe core damage accidents and the capability to analyse them. The CRP scope included the identification and selection of a severe accident sequence, selection of appropriate geometrical and boundary conditions, conduct of benchmark analyses, comparison of the results of all code outputs, evaluation of the capabilities of computer codes to predict important severe accident phenomena, and the proposal of necessary code improvements and/or new experiments to reduce uncertainties. Seven institutes from five countries with HWRs participated in this CRP

  14. Benchmarking severe accident computer codes for heavy water reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [International Atomic Energy Agency, Vienna (Austria)

    2010-07-01

    Consideration of severe accidents at a nuclear power plant (NPP) is an essential component of the defence in depth approach used in nuclear safety. Severe accident analysis involves very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. International cooperative research programmes are established by the IAEA in areas that are of common interest to a number of Member States. These co-operative efforts are carried out through coordinated research projects (CRPs), typically 3 to 6 years in duration, and often involving experimental activities. Such CRPs allow a sharing of efforts on an international basis, foster team-building and benefit from the experience and expertise of researchers from all participating institutes. The IAEA is organizing a CRP on benchmarking severe accident computer codes for heavy water reactor (HWR) applications. The CRP scope includes defining the severe accident sequence and conducting benchmark analyses for HWRs, evaluating the capabilities of existing computer codes to predict important severe accident phenomena, and suggesting necessary code improvements and/or new experiments to reduce uncertainties. The CRP has been planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for HWRs. (author)

  15. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  16. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  17. Development of the criticality accident analysis code, AGNES

    International Nuclear Information System (INIS)

    Nakajima, Ken

    1989-01-01

    In the design works for the facilities which handle nuclear fuel, the evaluation of criticality accidents cannot be avoided even if their possibility is as small as negligible. In particular in the system using solution fuel like uranyl nitrate, solution has the property easily becoming dangerous form, and all the past criticality accidents occurred in the case of solution, therefore, the evaluation of criticality accidents becomes the most important item of safety analysis. When a criticality accident occurred in a solution fuel system, due to the generation and movement of radiolysis gas voids, the oscillation of power output and pressure pulses are observed. In order to evaluate the effect of criticality accidents, these output oscillation and pressure pulses must be calculated accurately. For this purpose, the development of the dynamic characteristic code AGNES (Accidentally Generated Nuclear Excursion Simulation code) was carried out. The AGNES is the reactor dynamic characteristic code having two independent void models. Modified energy model and pressure model, and as the benchmark calculation of the AGNES code, the results of the experimental analysis on the CRAC experiment are reported. (K.I.)

  18. Severe accident analysis code Sampson for impact project

    International Nuclear Information System (INIS)

    Hiroshi, Ujita; Takashi, Ikeda; Masanori, Naitoh

    2001-01-01

    Four years of the IMPACT project Phase 1 (1994-1997) had been completed with financial sponsorship from the Japanese government's Ministry of Economy, Trade and Industry. At the end of the phase, demonstration simulations by combinations of up to 11 analysis modules developed for severe accident analysis in the SAMPSON Code were performed and physical models in the code were verified. The SAMPSON prototype was validated by TMI-2 and Phebus-FP test analyses. Many of empirical correlation and conventional models have been replaced by mechanistic models during Phase 2 (1998-2000). New models for Accident Management evaluation have been also developed. (author)

  19. Computer codes developed in FRG to analyse hypothetical meltdown accidents

    International Nuclear Information System (INIS)

    Hassmann, K.; Hosemann, J.P.; Koerber, H.; Reineke, H.

    1978-01-01

    It is the purpose of this paper to give the status of all significant computer codes developed in the core melt-down project which is incorporated in the light water reactor safety research program of the Federal Ministry of Research and Technology. For standard pressurized water reactors, results of some computer codes will be presented, describing the course and the duration of the hypothetical core meltdown accident. (author)

  20. Integrated severe accident containment analysis with the CONTAIN computer code

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Williams, D.C.; Rexroth, P.E.; Tills, J.L.

    1985-12-01

    Analysis of physical and radiological conditions iunside the containment building during a severe (core-melt) nuclear reactor accident requires quantitative evaluation of numerous highly disparate yet coupled phenomenologies. These include two-phase thermodynamics and thermal-hydraulics, aerosol physics, fission product phenomena, core-concrete interactions, the formation and combustion of flammable gases, and performance of engineered safety features. In the past, this complexity has meant that a complete containment analysis would require application of suites of separate computer codes each of which would treat only a narrower subset of these phenomena, e.g., a thermal-hydraulics code, an aerosol code, a core-concrete interaction code, etc. In this paper, we describe the development and some recent applications of the CONTAIN code, which offers an integrated treatment of the dominant containment phenomena and the interactions among them. We describe the results of a series of containment phenomenology studies, based upon realistic accident sequence analyses in actual plants. These calculations highlight various phenomenological effects that have potentially important implications for source term and/or containment loading issues, and which are difficult or impossible to treat using a less integrated code suite

  1. Severe accident analysis using MARCH 1.0 code

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.

    1987-09-01

    The description and utilization of the MARCH 1.0 computer code, which aim to analyse physical phenomena associated with core meltdown accidents in PWR type reactors, are presented. The primary system is modeled as a single volume which is partitioned into a gas (steam and hydrogen) region and a water region. March predicts blowdown from the primary system in single phase. Based on results of the probabilistic safety analysis for the Zion and Indian Point Nuclear Power Plants, the S 2 HFX sequence accident for Angra-1 reactor is studied. The S 2 HFX sequence means that the loss of coolant accident occurs through small break in primary system with bot total failures of the reactor safety system and containment in yours recirculation modes, leading the core melt and the containment failure due to overpressurization. The obtained results were considered reasonable if compared with the results obtained for the Zion and Indian Point nuclear power plants. (Author) [pt

  2. Test Data for USEPR Severe Accident Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  3. Integrated computer codes for nuclear power plant severe accident analysis

    International Nuclear Information System (INIS)

    Jordanov, I.; Khristov, Y.

    1995-01-01

    This overview contains a description of the Modular Accident Analysis Program (MAAP), ICARE computer code and Source Term Code Package (STCP). STCP is used to model TMLB sample problems for Zion Unit 1 and WWER-440/V-213 reactors. Comparison is made of STCP implementation on VAX and IBM systems. In order to improve accuracy, a double precision version of MARCH-3 component of STCP is created and the overall thermal hydraulics is modelled. Results of modelling the containment pressure, debris temperature, hydrogen mass are presented. 5 refs., 10 figs., 2 tabs

  4. Integrated computer codes for nuclear power plant severe accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jordanov, I; Khristov, Y [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    This overview contains a description of the Modular Accident Analysis Program (MAAP), ICARE computer code and Source Term Code Package (STCP). STCP is used to model TMLB sample problems for Zion Unit 1 and WWER-440/V-213 reactors. Comparison is made of STCP implementation on VAX and IBM systems. In order to improve accuracy, a double precision version of MARCH-3 component of STCP is created and the overall thermal hydraulics is modelled. Results of modelling the containment pressure, debris temperature, hydrogen mass are presented. 5 refs., 10 figs., 2 tabs.

  5. Health effects estimation code development for accident consequence analysis

    International Nuclear Information System (INIS)

    Togawa, O.; Homma, T.

    1992-01-01

    As part of a computer code system for nuclear reactor accident consequence analysis, two computer codes have been developed for estimating health effects expected to occur following an accident. Health effects models used in the codes are based on the models of NUREG/CR-4214 and are revised for the Japanese population on the basis of the data from the reassessment of the radiation dosimetry and information derived from epidemiological studies on atomic bomb survivors of Hiroshima and Nagasaki. The health effects models include early and continuing effects, late somatic effects and genetic effects. The values of some model parameters are revised for early mortality. The models are modified for predicting late somatic effects such as leukemia and various kinds of cancers. The models for genetic effects are the same as those of NUREG. In order to test the performance of one of these codes, it is applied to the U.S. and Japanese populations. This paper provides descriptions of health effects models used in the two codes and gives comparisons of the mortality risks from each type of cancer for the two populations. (author)

  6. Development of INCTAC code for analyzing criticality accident phenomena

    International Nuclear Information System (INIS)

    Mitake, Susumu; Hayashi, Yamato; Sakurai, Shungo

    2003-01-01

    Aiming at understanding nuclear transients and thermal- and hydraulic-phenomena of the criticality accident, a code named INCTAC has been newly developed at the Institute of Nuclear Safety. The code is applicable to the analysis of criticality accident transients of aqueous homogenous fuel solution system. Neutronic transient model is composed of equations for the kinetics and for the spatial distributions, which are deduced from the time dependent multi-group transport equations with the quasi steady state assumption. Thermal-hydraulic transient model is composed of a complete set of the mass, momentum and energy equations together with the two-phase flow assumptions. Validation tests of INCTAC were made using the data obtained at TRACY, a transient experiment criticality facility of JAERI. The calculated results with INCTAC showed a very good agreement with the experiment data, except a slight discrepancy of the time when the peak of reactor power was attained. But, the discrepancy was resolved with the use of an adequate model for movement and transfer of the void in the fuel solution mostly generated by radiolysis. With a simulation model for the transport of radioactive materials through ventilation systems to the environment, INCTAC will be used as an overall safety evaluation code of the criticality accident. (author)

  7. Sensitivity assessment of fuel performance codes for LOCA accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Alfredo; Gomes, Daniel; Silva, Antonio Teixeira e; Muniz, Rafael O.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia; Martins, Marcelo, E-mail: ayabe@ipen.br, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco

    2017-07-01

    FRAPCON code predicts fuel rod performance in LWR (Light Water Reactor) by modeling fuel responses under normal operating conditions and anticipated operational occurrences; FRAPTRAN code is applied for fuel transient under fast transient and accident conditions. The codes are well known and applied for different purposes and one of the use is to address sensitivity analysis considering fuel design parameters associated to fabrication, moreover can address the effect of physical models bias. The objective of this work was to perform an assessment of fuel manufacturing parameters tolerances and fuel models bias using FRAPCON and FRAPTRAN codes for Loss of Coolant Accident (LOCA) scenario. The preliminary analysis considered direct approach taken into account most relevant manufacturing tolerances (lower and upper bounds) related to design parameters and physical models bias without considering their statistical distribution. The simulations were carried out using the data available in the open literature related to the series of LOCA experiment performed at the Halden reactor (specifically IFA-650.5). The manufacturing tolerances associated to design parameters considered in this paper were: enrichment, cladding thickness, pellet diameter, pellet density, and filling gas pressure. The physical models considered were: fuel thermal expansion, fission gas release, fuel swelling, irradiation creep, cladding thermal expansion, cladding corrosion, and cladding hydrogen pickup. The results obtained from sensitivity analysis addressed the impact of manufacturing tolerances and physical models in the fuel cladding burst time observed for the IFA-650.5 experiment. (author)

  8. Sensitivity assessment of fuel performance codes for LOCA accident scenario

    International Nuclear Information System (INIS)

    Abe, Alfredo; Gomes, Daniel; Silva, Antonio Teixeira e; Muniz, Rafael O.R.; Giovedi, Claudia; Martins, Marcelo

    2017-01-01

    FRAPCON code predicts fuel rod performance in LWR (Light Water Reactor) by modeling fuel responses under normal operating conditions and anticipated operational occurrences; FRAPTRAN code is applied for fuel transient under fast transient and accident conditions. The codes are well known and applied for different purposes and one of the use is to address sensitivity analysis considering fuel design parameters associated to fabrication, moreover can address the effect of physical models bias. The objective of this work was to perform an assessment of fuel manufacturing parameters tolerances and fuel models bias using FRAPCON and FRAPTRAN codes for Loss of Coolant Accident (LOCA) scenario. The preliminary analysis considered direct approach taken into account most relevant manufacturing tolerances (lower and upper bounds) related to design parameters and physical models bias without considering their statistical distribution. The simulations were carried out using the data available in the open literature related to the series of LOCA experiment performed at the Halden reactor (specifically IFA-650.5). The manufacturing tolerances associated to design parameters considered in this paper were: enrichment, cladding thickness, pellet diameter, pellet density, and filling gas pressure. The physical models considered were: fuel thermal expansion, fission gas release, fuel swelling, irradiation creep, cladding thermal expansion, cladding corrosion, and cladding hydrogen pickup. The results obtained from sensitivity analysis addressed the impact of manufacturing tolerances and physical models in the fuel cladding burst time observed for the IFA-650.5 experiment. (author)

  9. Assessment of ICARE/CATHARE V1 Severe Accident Code

    International Nuclear Information System (INIS)

    Chatelard, Patrick; Fleurot, Joelle; Marchand, Olivier; Drai, Patrick

    2006-01-01

    The ICARE/CATHARE code system has been developed by the French 'Institut de Radioprotection et de Surete Nucleaire' (IRSN) in the last decade for the detailed evaluation of Severe Accident (SA) consequences in a primary system. It is composed of the coupling of the core degradation IRSN code ICARE2 and of the thermal-hydraulics French code CATHARE2. It has been extensively used to support the level 2 Probabilistic Safety Assessment (PSA-2) of the 900 MWe PWR. This paper presents the synthesis of the ICARE/CATHARE V1 assessment which was conducted in the frame of the 'International ICARE/CATHARE Users' Club', under the management of IRSN. The ICARE/CATHARE V1 validation matrix is composed of more than 60 experiments, distributed in few thermal-hydraulics non-regression tests (to handle the front end phase of a severe accident), numerous Separate-Effect Tests, about 30 Integral Tests covering both the early and the late degradation phases, as well as a 'circuit' experiment including hydraulics loops. Finally, the simulation of the TMI-2 accident was also added to assess the code against real conditions. This validation task was aimed at assessing the ICARE/CATHARE V1 capabilities (including the stand-alone ICARE2 V3mod1 version) and also at proposing recommendations for an optimal use of this version ('Users' Guidelines'). Thus, with a correct account for the recommended guidelines, it appeared that the last ICARE/CATHARE V1 version could be reasonably used to perform best-estimate reactor studies up to a large corium slumping into the lower head. (authors)

  10. Severe accident tests and development of domestic severe accident system codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  11. Severe accident tests and development of domestic severe accident system codes

    International Nuclear Information System (INIS)

    2013-01-01

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  12. EAC european accident code. A modular system of computer programs to simulate LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Wider, H.; Cametti, J.; Clusaz, A.; Devos, J.; VanGoethem, G.; Nguyen, H.; Sola, A.

    1985-01-01

    One aspect of fast reactor safety analysis consists of calculating the strongly coupled system of physical phenomena which contribute to the reactivity balance in hypothetical whole-core accidents: these phenomena are neutronics, fuel behaviour and heat transfer together with coolant thermohydraulics in single- and two-phase flow. Temperature variations in fuel, coolant and neighbouring structures induce, in fact, thermal reactivity feedbacks which are added up and put in the neutronics calculation to predict the neutron flux and the subsequent heat generation in the reactor. At this point a whole-core analysis code is necessary to examine for any hypothetical transient whether the various feedbacks result effectively in a negative balance, which is the basis condition to ensure stability and safety. The European Accident Code (EAC), developed at the Joint Research Centre of the CEC at Ispra (Italy), fulfills this objective. It is a modular informatics structure (quasi 2-D multichannel approach) aimed at collecting stand-alone computer codes of neutronics, fuel pin mechanics and hydrodynamics, developed both in national laboratories and in the JRC itself. EAC makes these modules interact with each other and produces results for these hypothetical accidents in terms of core damage and total energy release. 10 refs

  13. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  14. Development of a system of computer codes for severe accident analyses and its applications

    International Nuclear Information System (INIS)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan

    1991-12-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy

  15. Waste Evaporator Accident Simulation Using RELAP5 Computer Code

    International Nuclear Information System (INIS)

    POLIZZI, L.M.

    2004-01-01

    An evaporator is used on liquid waste from processing facilities to reduce the volume of the waste through heating the waste and allowing some of the water to be separated from the waste through boiling. This separation process allows for more efficient processing and storage of liquid waste. Commonly, the liquid waste consists of an aqueous solution of chemicals that over time could induce corrosion, and in turn weaken the tubes in the steam tube bundle of the waste evaporator that are used to heat the waste. This chemically induced corrosion could escalate into a possible tube leakage and/or the severance of a tube(s) in the tube bundle. In this paper, analyses of a waste evaporator system for the processing of liquid waste containing corrosive chemicals are presented to assess the system response to this accident scenario. This accident scenario is evaluated since its consequences can propagate to a release of hazardous material to the outside environment. It is therefore important to ensure that the evaporator system component structural integrity is not compromised, i.e. the design pressure and temperature of the system is not exceeded during the accident transient. The computer code used for the accident simulation is RELAP5-MOD31. The accident scenario analyzed includes a double-ended guillotine break of a tube in the tube bundle of the evaporator. A mitigated scenario is presented to evaluate the excursion of the peak pressure and temperature in the various components of the evaporator system to assess whether the protective actions and controls available are adequate to ensure that the structural integrity of the evaporator system is maintained and that no atmospheric release occurs

  16. A computer code for analysis of severe accidents in LWRs

    International Nuclear Information System (INIS)

    2001-01-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  17. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  18. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  19. Development and assessment of ASTEC code for severe accident simulation

    International Nuclear Information System (INIS)

    Van Dorsselaere, J.P.; Pignet, S.; Seropian, C.; Montanelli, T.; Giordano, P.; Jacq, F.; Schwinges, B.

    2005-01-01

    Full text of publication follows: The ASTEC integral code, jointly developed by IRSN and GRS since several years for evaluation of source term during a severe accident (SA) in a Light Water Reactor, will play a central role in the SARNET network of excellence of the 6. Framework Programme (FwP) of the European Commission which started in spring 2004. It should become the reference European SA integral code in the next years. The version V1.1, released in June 2004, allows to model most of the main physical phenomena (except steam explosion) near or at the state of the art. In order to allow to study a great number of scenarios, a compromise must be found between precision of results and calculation time: one day of accident time usually takes less than one day of real time to be simulated on a PC computer. Important efforts are being made on validation by covering more than 30 reference experiments, often International Standard Problems from OECD (CORA, LOFT, PACTEL, BETA, VANAM, ACE-RTF, Phebus.FPT1...). The code is also used for the detailed interpretation of all the integral Phebus.FP experiments. Eighteen European partners performed a first independent evaluation of the code capabilities in 2000-03 within the frame of the EVITA 5. FwP project on one hand by comparison to experiments and on another hand by benchmarking with MAAP4 and MELCOR integral codes on plant applications on PWR and VVER. Their main conclusions were the needs of improvement of code robustness (especially the 2 new modules CESAR and DIVA simulating respectively circuit thermal hydraulics and core degradation) and of post-processing tools. Some improvements have already been achieved in the latest version V 1.1 on these two aspects. A new module MEDICIS devoted to Molten Core Concrete Interaction (MCCI) is implemented in this version, with a tight coupling to the containment thermal hydraulics module CPA. The paper presents a detailed analysis of a TMLB sequence on a French 900 MWe PWR, from

  20. Investigation of alpha experiment by severe accident analysis code SAMPSON

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Ninokata, Hisashi; Naitoh, Masanori

    2006-01-01

    The severe accident analysis code SAMPSON is adopted in this work to evaluate its capability of reproducing the complex gap cooling phenomenon. The ALPHA experiment is adopted for validation, where molten aluminum oxide (Al 2 O 3 ) produced by a thermite reaction is poured into a water filled hemispherical vessel at the ambient pressure of approximately 1.3 MPa. The spreading and cooling of the debris that has relocated into the pressure vessel lower plenum are simulated, including the analysis of the RPV failure. The model included in the core to mimic the water penetration inside the gap is evaluated and improvements are proposed. The importance of the introduction of some mechanistic approach to describe the gap formation and evolution is underlined, where the results show its necessity in order to correctly reproduce the experimental trends. (author)

  1. Computer code calculations of the TMI-2 accident: initial and boundary conditions

    International Nuclear Information System (INIS)

    Behling, S.R.

    1985-05-01

    Initial and boundary conditions during the Three Mile Island Unit 2 (TMI-2) accident are described and detailed. A brief description of the TMI-2 plant configuration is given. Important contributions to the progression of the accident in the reactor coolant system are discussed. Sufficient information is provided to allow calculation of the TMI-2 accident with computer codes

  2. Development of a severe accident training simulator using a MELCOR code

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo; Jung, Won Dae

    2002-03-01

    Nuclear power plants' severe accidents are, despite of their rareness, very important in safety aspects, because of their huge damages when occurred. For the appropriate execution of severe accident strategy, more information for decision-making are required because of the uncertainties included in severe accidents. Earlier NRC raised concerns over severe accident training in the report NUREC/CR-477, and accordingly, developing effective training tools for severe accident were emphasized. In fact the training tools were requested from industrial area, nevertheless, few training tools were developed due to the uncertainties in severe accidents, lacks of analysis computer codes and technical limitations. SATS, the severe accident training simulator, is developed as a multi-purpose tools for severe accident training. SATS uses the calculation results of MELCOR, an integral severe accident analysis code, and with the help of SL-GMS graphic tools, provides dynamic displays of severe accident phenomena on the terminal of IBM PC. It aimed to have two main features: one is to provide graphic displays to represent severe accident phenomena and the other is to process and simulate severe accident strategy given by plant operators and TSC staffs. Severe accident strategies are basically composed of series of operations of available pumps, valves and other equipments. Whenever executing strategies with SATS, the trainee should follow the HyperKAMG, the on line version of the recently developed severe accident guidance (KAMG). Severe accident strategies are closely related to accidents scenarios. TLOFW and LOCA , two representative severe accident scenarios of Uljin 3,4, are developed as a built-in scenarios of SATS. Although SATS has some minor problems at this time, we expect SATS will be a good severe accident training tool after the appropriate addition of accident scenarios. Moreover, we also expect SATS will be a good advisory tool for the severe accident research

  3. Feasibility study on the rod ejection accident analysis with RETRAN-MASTER code system

    International Nuclear Information System (INIS)

    Kim, Y. H.; Lee, C. S.

    2003-01-01

    KEPRI has been developed the in-house methodology for non-LOCA safety analyses based on the codes and methodologies of vendors and EPRI. Using the methodology, the rod ejection accident, which is classified into the generic accident analysis category of reactivity insertion accident in primary system, has been analyzed with RETRAN-MASTER code system. And the feasibility of the coupled code system has been verified by the review of the results. Furthermore, to assess the important parameters to the accident, the sensitivity analyses have been carried out over some parameters

  4. Development of system of computer codes for severe accident analysis and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H S; Jeon, M H; Cho, N J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  5. Development of system of computer codes for severe accident analysis and its applications

    International Nuclear Information System (INIS)

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others

    1992-01-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts

  6. Application of the severe accident code ATHLET-CD. Modelling and evaluation of accident management measures (Project WASA-BOSS)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Polina; Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Schaefer, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety

    2016-07-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. Numerical analyses are used to investigate the accident progression and the complex physical phenomena during the core degradation phase, as well as to evaluate the effectiveness of possible countermeasures in the preventive and mitigative domain [1, 2]. The presented analyses have been performed with the computer code ATHLET-CD developed by GRS [3, 4].

  7. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    International Nuclear Information System (INIS)

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-01

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR

  8. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-15

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR.

  9. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Trambauer, K. [GRS, Garching (Germany)

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  10. Development status of Severe Accident Analysis Code SAMPSON

    International Nuclear Information System (INIS)

    Iwashita, Tsuyoshi; Ujita, Hiroshi

    2000-01-01

    The Four years of the IMPACT, 'Integrated Modular Plant Analysis and Computing Technology' project Phase 1 have been completed. The verification study of Severe Accident Analysis Code SAMPSON prototype developed in Phase 1 was conducted in two steps. First, each analysis module was run independently and analysis results were compared and verified against separate-effect test data with good results. Test data are as follows: CORA-13 (FZK) for the Core Heat-up Module; VI-3 of HI/VI Test (ORNL) for the FP Release from Fuel Module; KROTOS-37 (JRC-ISPRA) for the Molten Core Relocation Module; Water Spread Test (UCSB) for the Debris Spreading Model and Benard's Melting Test for Natural Convection Model in the Debris Cooling Module; Hydrogen Burning Test (NUPEC) for the Ex-Vessel Thermal Hydraulics Module; PREMIX, PM10 (FZK) for the Steam Explosion Module; and SWISS-2 (SNL) for the Debris-Concrete Interaction Module. Second, with the Simulation Supervisory System, up to 11 analysis modules were executed concurrently in the parallel environment (currently, NUPEC uses IBM-SP2 with 72 process elements), to demonstrate the code capability and integrity. The target plant was Surry as a typical PWR and the initiation events were a 10-inch cold leg failure. The analysis is divided to two cases; one is in-vessel retention analysis when the gap cooling is effective (In-vessel scenario test), the other is analysis of phenomena event is extended to ex-vessel due to the Reactor Pressure Vessel failure when the gap cooling is not sufficient (Ex-vessel scenario test). The system verification test has confirmed that the full scope of the scenarios can be analyzed and phenomena occurred in scenarios can be simulated qualitatively reasonably considering the physical models used for the situation. The Ministry of International Trade and Industry, Japan sponsors this work. (author)

  11. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    International Nuclear Information System (INIS)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.; Helton, J.C.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  12. Modeling of pipe break accident in a district heating system using RELAP5 computer code

    International Nuclear Information System (INIS)

    Kaliatka, A.; Valinčius, M.

    2012-01-01

    Reliability of a district heat supply system is a very important factor. However, accidents are inevitable and they occur due to various reasons, therefore it is necessary to have possibility to evaluate the consequences of possible accidents. This paper demonstrated the capabilities of developed district heating network model (for RELAP5 code) to analyze dynamic processes taking place in the network. A pipe break in a water supply line accident scenario in Kaunas city (Lithuania) heating network is presented in this paper. The results of this case study were used to demonstrate a possibility of the break location identification by pressure decrease propagation in the network. -- Highlights: ► Nuclear reactor accident analysis code RELAP5 was applied for accident analysis in a district heating network. ► Pipe break accident scenario in Kaunas city (Lithuania) district heating network has been analyzed. ► An innovative method of pipe break location identification by pressure-time data is proposed.

  13. Simulation of small break loss of coolant accident using relap 5/ MOD 2 computer code

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1992-01-01

    An assessment of relap 5 / MOD 2/Cycle 36.05 best estimate computer code capabilities in predicting the thermohydraulic response of a PWR following a small break loss of coolant accident is presented. The experimental data base for the evaluation is the results of Test S-N H-3 performed in the semi scale MOD-2 c Test facility which modeled a 0.5% small break loss of coolant accident with an accompanying failure of the high pressure injection emergency core cooling system. A conclusion was reached that the code is capable of making small break loss of coolant accident calculations efficiently. However, some of the small break loss of coolant accident related phenomena were not properly predicted by the code, suggesting a need for code improvement.9 fig., 3 tab

  14. A thermo mechanical benchmark calculation of a hexagonal can in the BTI accident with INCA code

    International Nuclear Information System (INIS)

    Zucchini, A.

    1988-01-01

    The thermomechanical behaviour of an hexagonal can in a benchmark problem (simulating the conditions of a BTI accident in a fuel assembly) is examined by means of the INCA code and the results systematically compared with those of ADINA

  15. Simulation of severe accident using March-3 computer code

    International Nuclear Information System (INIS)

    Fernandes, A.; Nakata, H.

    1991-01-01

    The severe accident sensitivity analysis utilizing the March-3 approximate modelization options has been performed. The reference results against which the present results have been compared were obtained from the best published results for the most representative accident sequences: TMLU, S sub(2)DC sub(r) and S sub(2)DCF sub(r) for the Zion-1 reactor. The results of the present sensitivity analysis revealed the presence of very crude modelizations, in the March-3 program, to represent the critical phenomenologies involved in the severe accident sequences considered, even though large uncertainties must still be taken into account due primarily to the scarcity of the integral benchmark data. (author)

  16. Study on severe accidents and countermeasures for WWER-1000 reactors using the integral code ASTEC

    International Nuclear Information System (INIS)

    Tusheva, P.; Schaefer, F.; Altstadt, E.; Kliem, S.; Reinke, N.

    2011-01-01

    The research field focussing on the investigations and the analyses of severe accidents is an important part of the nuclear safety. To maintain the safety barriers as long as possible and to retain the radioactivity within the airtight premises or the containment, to avoid or mitigate the consequences of such events and to assess the risk, thorough studies are needed. On the one side, it is the aim of the severe accident research to understand the complex phenomena during the in- and ex-vessel phase, involving reactor-physics, thermal-hydraulics, physicochemical and mechanical processes. On the other side the investigations strive for effective severe accident management measures. This paper is focused on the possibilities for accident management measures in case of severe accidents. The reactor pressure vessel is the last barrier to keep the molten materials inside the reactor, and thus to prevent higher loads to the containment. To assess the behaviour of a nuclear power plant during transient or accident conditions, computer codes are widely used, which have to be validated against experiments or benchmarked against other codes. The analyses performed with the integral code ASTEC cover two accident sequences which could lead to a severe accident: a small break loss of coolant accident and a station blackout. The results have shown that in case of unavailability of major active safety systems the reactor pressure vessel would ultimately fail. The discussed issues concern the main phenomena during the early and late in-vessel phase of the accident, the time to core heat-up, the hydrogen production, the mass of corium in the reactor pressure vessel lower plenum and the failure of the reactor pressure vessel. Additionally, possible operator's actions and countermeasures in the preventive or mitigative domain are addressed. The presented investigations contribute to the validation of the European integral severe accidents code ASTEC for WWER-1000 type of reactors

  17. Reactivity Insertion Accident (RIA) Capability Status in the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Folsom, Charles Pearson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    One of the Challenge Problems being considered within CASL relates to modelling and simulation of Light Water Reactor LWR) fuel under Reactivity Insertion Accident (RIA) conditions. BISON is the fuel performance code used within CASL for LWR fuel under both normal operating and accident conditions, and thus must be capable of addressing the RIA challenge problem. This report outlines required BISON capabilities for RIAs and describes the current status of the code. Information on recent accident capability enhancements, application of BISON to a RIA benchmark exercise, and plans for validation to RIA behavior are included.

  18. Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code.

    Science.gov (United States)

    Koonin, Eugene V

    2017-05-23

    Nearly 50 years ago, Francis Crick propounded the frozen accident scenario for the evolution of the genetic code along with the hypothesis that the early translation system consisted primarily of RNA. Under the frozen accident perspective, the code is universal among modern life forms because any change in codon assignment would be highly deleterious. The frozen accident can be considered the default theory of code evolution because it does not imply any specific interactions between amino acids and the cognate codons or anticodons, or any particular properties of the code. The subsequent 49 years of code studies have elucidated notable features of the standard code, such as high robustness to errors, but failed to develop a compelling explanation for codon assignments. In particular, stereochemical affinity between amino acids and the cognate codons or anticodons does not seem to account for the origin and evolution of the code. Here, I expand Crick's hypothesis on RNA-only translation system by presenting evidence that this early translation already attained high fidelity that allowed protein evolution. I outline an experimentally testable scenario for the evolution of the code that combines a distinct version of the stereochemical hypothesis, in which amino acids are recognized via unique sites in the tertiary structure of proto-tRNAs, rather than by anticodons, expansion of the code via proto-tRNA duplication, and the frozen accident.

  19. Users guide for NRC145-2 accident assessment computer code

    International Nuclear Information System (INIS)

    Pendergast, M.M.

    1982-08-01

    An accident assessment computer code has been developed for use at the Savannah River Plant. This computer code is based upon NRC Regulatory Guide 1.145 which provides guidence for accident assessements for power reactors. The code contains many options so that the user may utilize the code for many different assessments. For example the code can be used for non-nuclear assessments such as Sulpher Dioxide which may be required by the EPA. A discription of the code is contained in DP-1646. This document is a compilation of step-by-step instructions on how to use the code on the SRP IBM 3308 computer. This document consists of a number of tables which contain copies of computer listings. Some of the computer listings are copies of input; other listings give examples of computer output

  20. Study on the code system for the off-site consequences assessment of severe nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

  1. Study on the code system for the off-site consequences assessment of severe nuclear accident

    International Nuclear Information System (INIS)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents

  2. Code package {open_quotes}SVECHA{close_quotes}: Modeling of core degradation phenomena at severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Kisselev, A.E.; Palagin, A.V. [Nuclear Safety Institute, Moscow (Russian Federation)] [and others

    1995-09-01

    The code package SVECHA for the modeling of in-vessel core degradation (CD) phenomena in severe accidents is being developed in the Nuclear Safety Institute, Russian Academy of Science (NSI RAS). The code package presents a detailed mechanistic description of the phenomenology of severe accidents in a reactor core. The modules of the package were developed and validated on separate effect test data. These modules were then successfully implemented in the ICARE2 code and validated against a wide range of integral tests. Validation results have shown good agreement with separate effect tests data and with the integral tests CORA-W1/W2, CORA-13, PHEBUS-B9+.

  3. The assessment of containment codes by experiments simulating severe accident scenarios

    International Nuclear Information System (INIS)

    Karwat, H.

    1992-01-01

    Hitherto, a generally applicable validation matrix for codes simulating the containment behaviour under severe accident conditions did not exist. Past code applications have shown that most problems may be traced back to inaccurate thermalhydraulic parameters governing gas- or aerosol-distribution events. A provisional code-validation matrix is proposed, based on a careful selection of containment experiments performed during recent years in relevant test facilities under various operating conditions. The matrix focuses on the thermalhydraulic aspects of the containment behaviour after severe accidents as a first important step. It may be supplemented in the future by additional suitable tests

  4. Thermal-hydraulic analysis of the Three Mile Island Unit 2 reactor accident with THALES code

    International Nuclear Information System (INIS)

    Hashimoto, Kazuichiro; Soda, Kunihisa

    1991-10-01

    The OECD Nuclear Energy Agency (NEA) has established a Task Group in the Committee on the Safety of Nuclear Installations (CSNI) to perform an analysis of Three Mile Island Unit 2 (TMI-2) accident as a standard problem to benchmark severe accident computer codes and to assess the capability of the codes. The TMI-2 Analysis Exercise was performed at the Japan Atomic Energy Research Institute (JAERI) using the THALES (Thermal-Hydraulic Analysis of Loss-of-Coolant, Emergency Core Cooling and Severe Core Damage) - PM1/TMI code. The purpose of the analysis is to verify the capability of THALES-PM1/TMI code to describe accident progression in the actual plant. The present paper describes the final result of the TMI-2 Analysis Exercise performed at JAERI. (author)

  5. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  6. Thermohydraulic analysis of nuclear power plant accidents by computer codes

    International Nuclear Information System (INIS)

    Petelin, S.; Stritar, A.; Istenic, R.; Gregoric, M.; Jerele, A.; Mavko, B.

    1982-01-01

    RELAP4/MOD6, BRUCH-D-06, CONTEMPT-LT-28, RELAP5/MOD1 and COBRA-4-1 codes were successful y implemented at the CYBER 172 computer in Ljubljana. Input models of NPP Krsko for the first three codes were prepared. Because of the high computer cost only one analysis of double ended guillotine break of the cold leg of NPP Krsko by RELAP4 code has been done. BRUCH code is easier and cheaper for use. Several analysis have been done. Sensitivity study was performed with CONTEMPT-LT-28 for double ended pump suction break. These codes are intended to be used as a basis for independent safety analyses. (author)

  7. Application of RASCAL code for multiunit accident in domestic nuclear sites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun; Jeong, Seung Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    All of domestic nuclear power plant sites are multiunit site (at least 5 - 6 reactors are operating), so this capability has to be quickly secured for nuclear licensee and institutes responsible for nuclear emergency response. In this study, source term and offsite dose from multiunit event were assessed using a computer code, RASCAL. An emergency exercise scenario was chosen to verify applicability of the codes to domestic nuclear site accident. Employing tools and new features of the code, such as merging more than two individual source terms and source term estimate for long term progression accident, main parameters and information in the scenario, release estimates and dose projections were performed. Radiological releases and offsite doses from multiunit accident were calculated using RASCAL.. A scenario, in which three reactors were damaged coincidently by a great natural disaster, was considered. Surrogate plants were chosen for the code calculation. Source terms of each damaged unit were calculated individually first, and then total source term and integrated offsite dose assessment data was acquired using a source term merge function in the code. Also comparison between LTSBO and LOCA source term estimate options was performed. Differences in offsite doses were caused by release characteristics. From LTSBO option, iodines were released much higher than LOCA. Also LTSBO source term release was delayed and the duration was longer than LOCA. This option would be useful to accidents which progress with much longer time frame than LOCA. RASCAL can be useful tool for radiological consequence assessment in domestic nuclear site accidents.

  8. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code

    International Nuclear Information System (INIS)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-01

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  9. Evaluation of the General Atomic codes TAP and RECA for HTGR accident analyses

    International Nuclear Information System (INIS)

    Ball, S.J.; Cleveland, J.C.; Sanders, J.P.

    1978-01-01

    The General Atomic codes TAP (Transient Analysis Program) and RECA (Reactor Emergency Cooling Analysis) are evaluated with respect to their capability for predicting the dynamic behavior of high-temperature gas-cooled reactors (HTGRs) for postulated accident conditions. Several apparent modeling problems are noted, and the susceptibility of the codes to misuse and input errors is discussed. A critique of code verification plans is also included. The several cases where direct comparisons could be made between TAP/RECA calculations and those based on other independently developed codes indicated generally good agreement, thus contributing to the credibility of the codes

  10. A commentary on the current status and the future role of the European accident code

    International Nuclear Information System (INIS)

    Butland, A.T.D.

    1990-01-01

    This paper describes the history of the project to produce the European Accident code (EAC), leading to the planned release of a version of EAC-2 at the end of 1989. The requirements of a computer code to model the initiation phase of Hypothetical Core Disruptive Accidents (HCDAs) are discussed, paying particular attention to the lessons learnt in the CABRI project. The current status and content of the EAC-2 code are examined in relation to these requirements, noting how the sophisticated modelling plans for EAC-2 make it a benchmark code. The validation status of EAC-2 and future plans are discussed, noting that currently it consists solely of stand-alone validation of the modules used in EAC-2, rather than validation of the combined code. The future role of EAC-2 is briefly discussed in relation to the fast reactor plans in the EEC countries. (author)

  11. Validation of the metal fuel version of the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.

    1991-01-01

    This paper describes recent work directed towards the validation of the metal fuel version of the SAS4A accident analysis code. The SAS4A code system has been developed at Argonne National Laboratory for the simulation of hypothetical severe accidents in Liquid Metal-Cooled Reactors (LMR), designed to operate in a fast neutron spectrum. SAS4A was initially developed for the analysis of oxide-fueled liquid metal-cooled reactors and has played an important role in the simulation and assessment of the energetics potential for postulated severe accidents in these reactors. Due to the current interest in the metal-fueled liquid metal-cooled reactors, a metal fuel version of the SAS4A accident analysis code is being developed in the Integral Fast Reactor program at Argonne. During such postulated accident scenarios as the unprotected (i.e. without scram) loss-of-flow and transient overpower events, a large number of interrelated physical phenomena occur during a relatively short time. These phenomena include transient heat transfer and hydrodynamic events, coolant boiling, and fuel and cladding melting and relocation. Due to strong neutronic feedbacks these events can significantly influence the reactor power history in the accident progression. The paper presents the results of a recent SAS4A simulation of the M7 TREAT experiment. 6 refs., 5 figs

  12. Analysis of eventual accidents in a water experimental loop, using the Relap 4 computer code

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1981-01-01

    Transients caused by accidents as (1) loss of coolant, (2) failure in the principal pump and (3) power excursions were analysed. In the accident simulation, the Relap 4/Mod 3 computer code was used. The results obtained with the steady state model showed to be consistent with the project-and operation data of the experimental loop. For all the accidents analysed that considered the performance of safety systems, the highest temperature of the heating rods in the testing section did not exceed the permissible temperature. (E.G.) [pt

  13. An uncertainty analysis using the NRPB accident consequence code Marc

    International Nuclear Information System (INIS)

    Jones, J.A.; Crick, M.J.; Simmonds, J.R.

    1991-01-01

    This paper describes an uncertainty analysis of MARC calculations of the consequences of accidental releases of radioactive materials to atmosphere. A total of 98 parameters describing the transfer of material through the environment to man, the doses received, and the health effects resulting from these doses, was considered. The uncertainties in the numbers of early and late health effects, numbers of people affected by countermeasures, the amounts of food restricted and the economic costs of the accident were estimated. This paper concentrates on the results for early death and fatal cancer for a large hypothetical release from a PWR

  14. Fast dose assessment models, parameters and code under accident conditions for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Hu, E.B.; Meng, X.C.; Zhang, Y.; Yao, R.T.

    1993-01-01

    According to requirement of accident emergency plan for Qinshan Nuclear Power Plant, a Gaussian straight-line model was adopted for estimating radionuclide concentration in surface air. In addition, the effects of mountain body on atmospheric dispersion was considered. By combination of field atmospheric dispersion experiment and wind tunnel modeling test, necessary modifications have been done for some models and parameters. A computer code for assessment was written in Quick BASIC (V4.5) language. The radius of assessment region is 10 km and the code is applicable to early accident assessment. (1 tab.)

  15. CITADEL: a computer code for the analysis of iodine behavior in steam generator tube rupture accidents

    International Nuclear Information System (INIS)

    1982-04-01

    The computer code CITADEL was written to analyze iodine behavior during steam generator tube rupture accidents. The code models the transport and deposition of iodine from its point of escape at the steam generator primary break until its release to the environment. This report provides a brief description of the code including its input requirements and the nature and form of its output. A user's guide describing the manner in which the input data are required to be set up to run the code is also provided

  16. Two codes used in analysis of rod ejection accident for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhu Xinguan

    1987-12-01

    Two codes were developed to analyse rod ejection accident for Qinshan Nuclear Power Plant. One was based on point model with temperature reactivity feedback. In this code, the worth of ejected rod was obtained under'adiabatic' approximation. In the other code, the Nodal Green's Function Method was used to solve space-time dependent neutron diffusion equation. Using these codes, the transient core-power have been calculated for two rod ejection cases at beginning of core-life in Qinshan Nuclear Power Plant

  17. Code portability and data management considerations in the SAS3D LMFBR accident-analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1981-01-01

    The SAS3D code was produced from a predecessor in order to reduce or eliminate interrelated problems in the areas of code portability, the large size of the code, inflexibility in the use of memory and the size of cases that can be run, code maintenance, and running speed. Many conventional solutions, such as variable dimensioning, disk storage, virtual memory, and existing code-maintenance utilities were not feasible or did not help in this case. A new data management scheme was developed, coding standards and procedures were adopted, special machine-dependent routines were written, and a portable source code processing code was written. The resulting code is quite portable, quite flexible in the use of memory and the size of cases that can be run, much easier to maintain, and faster running. SAS3D is still a large, long running code that only runs well if sufficient main memory is available

  18. Thermal-hydraulic and aerosol containment phenomena modelling in ASTEC severe accident computer code

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Dapper, Maik; Dienstbier, Jiri; Herranz, Luis E.; Koch, Marco K.; Fontanet, Joan

    2010-01-01

    Transients in containment systems of different scales (Phebus.FP containment, KAEVER vessel, Battelle Model Containment, LACE vessel and VVER-1000 nuclear power plant containment) involving thermal-hydraulic phenomena and aerosol behaviour, were simulated with the computer integral code ASTEC. The results of the simulations in the first four facilities were compared with experimental results, whereas the results of the simulated accident in the VVER-1000 containment were compared to results obtained with the MELCOR code. The main purpose of the simulations was the validation of the CPA module of the ASTEC code. The calculated results support the applicability of the code for predicting in-containment thermal-hydraulic and aerosol phenomena during a severe accident in a nuclear power plant.

  19. Qualification of ARROTTA code for LWR accident analysis

    International Nuclear Information System (INIS)

    Huang, P.-H.; Peng, K.Y.; Lin, W.-C.; Wu, J.-Y.

    2004-01-01

    This paper presents the qualification efforts performed by TPC and INER for the 3-D spatial kinetics code ARROTTA for LWR core transient analysis. TPC and INER started a joint 5 year project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, the ARROTTA code was chosen to perform multi-dimensional kinetics calculations such as rod ejection for PWR and rod drop for BWR. To qualify ARROTTA for analysis of FSAR licensing basis core transients, ARROTTA has been benchmarked for the static core analysis against plant measured data and SIMULATE-3 predictions, and for the kinetic analysis against available benchmark problems. The static calculations compared include critical boron concentration, core power distribution, and control rod worth. The results indicated that ARROTTA predictions match very well with plant measured data and SIMULATE-3 predictions. The kinetic benchmark problems validated include NEACRP rod ejection problem, 3-D LMW LWR rod withdrawal/insertion problem, and 3-D LRA BWR transient benchmark problem. The results indicate that ARROTTA's accuracy and stability are excellent as compared to other space-time kinetics codes. It is therefore concluded that ARROTTA provides accurate predictions for multi-dimensional core transient for LWRs. (author)

  20. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    International Nuclear Information System (INIS)

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor

    2013-01-01

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  1. Computer code TRANS-ACE predicting for fire and explosion accidents in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Nishio; Gunji; Naito, Yoshitaka

    1993-11-01

    The accident analysis code TRANS-ACE was developed to evaluate the safety of a ventilation system in a reprocessing plant in the event of fire and explosion accidents. TRANS-ACE can evaluate not only the integrity of a ventilation system containing HEPA filters but also the source term of radioactive materials for release out of a plant. It calculates the temperature, pressure, flow rate, transport of combustion materials and confinement of radioactive materials in the network of a ventilation system that might experience a fire or explosion accident. TRANS-ACE is based on the one-dimensional compressible thermo-fluid analysis code EVENT developed by Los Alamos National Laboratory (LANL). Calculational functions are added for the radioactive source term, heat transfer and radiation to cell and duct walls and HEPA filter integrity. For the second edition in the report, TRANS-ACE has been improved incorporating functions for the initial steady-state calculation to determine the flow rates, pressure drops and temperature in the network before an accident mode analysis. It is also improved to include flow resistance calculations of the filters and blowers in the network and to have an easy to use code by simplifying the input formats. This report is to prepare an explanation of the mathematical model for TRANS-ACE code and to be the user's manual. (author)

  2. Audit calculations of accidents analysis for second unit of Ignalina NPP with ATHLET code

    International Nuclear Information System (INIS)

    Adomavicius, A.; Belousov, A.; Ognerubov, V.

    2004-01-01

    Background of thermo hydraulic processes audit calculations in the frame of RSR-2 project is presented. Assumptions for the design based accident - RBMK-1500 group distributor header break analysis and modeling are presented. Audit calculations by ATHLET code and evaluation of results were provided. (author)

  3. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    International Nuclear Information System (INIS)

    Kim, Heui Dong; Cho, Sung Won; Park, Jong Hwa; Hong, Sung Wan; Yoo, Dong Han; Hwang, Moon Kyoo; Noh, Kee Man; Song, Yong Man

    1995-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H 2 /air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author)

  4. Calculation code used in criticality analyses for the accident of JCO precipitation tank

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    2000-01-01

    In order to evaluate nuclear features on criticality accident formed at the nuclear fuel processing facility in Tokai Works of the JCO, Ltd. (JCO), in Tokai-mura, Ibaraki prefecture, dynamic analyses to calculate output change after occurring the accident as well as criticality analyses to calculate reactivity added to precipitation tank, were carried out according to scenario on accident formation. For the criticality analyses, a continuous energy Monte Carlo code MCNP was used to carry out calculation of reactivity fed into the precipitation tank as correctly as possible. And, SRAC code system was used for calculation on temperature and void reactivity coefficients, effective delayed neutron ratio beta eff , and instantaneous neutron generation time required for parameters controlling transition features at criticality accident. In addition, for the dynamic analyses, because of necessity of considering on volume expansion of solution fuels used as exothermic body and radiation decomposition gas forming into solution, output behavior, numbers of nuclear fission, and so forth at initial burst portion were calculated by using TRACE and quasi-regular code, at a center of AGNES-2 promoting on its development in JAERI. Here were reported on outlines and an analysis example on calculation code using for the nuclear features evaluation. (G.K.)

  5. Quality assurance and verification of the MACCS [MELCOR Accident Consequence Code System] code, Version 1.5

    International Nuclear Information System (INIS)

    Dobbe, C.A.; Carlson, E.R.; Marshall, N.H.; Marwil, E.S.; Tolli, J.E.

    1990-02-01

    An independent quality assurance (QA) and verification of Version 1.5 of the MELCOR Accident Consequence Code System (MACCS) was performed. The QA and verification involved examination of the code and associated documentation for consistent and correct implementation of the models in an error-free FORTRAN computer code. The QA and verification was not intended to determine either the adequacy or appropriateness of the models that are used MACCS 1.5. The reviews uncovered errors which were fixed by the SNL MACCS code development staff prior to the release of MACCS 1.5. Some difficulties related to documentation improvement and code restructuring are also presented. The QA and verification process concluded that Version 1.5 of the MACCS code, within the scope and limitations process concluded that Version 1.5 of the MACCS code, within the scope and limitations of the models implemented in the code is essentially error free and ready for widespread use. 15 refs., 11 tabs

  6. Validation and application of the system code ATHLET-CD for BWR severe accident analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Imke, Uwe; Sanchez, Victor

    2016-10-15

    Highlights: • We present the application of the system code ATHLET-CD code for BWR safety analyses. • Validation of core in-vessel models is performed based on KIT CORA experiments. • A SB-LOCA scenario is simulated on a generic German BWR plant up to vessel failure. • Different core reflooding possibilities are investigated to mitigate the accident consequences. • ATHLET-CD modelling features reflect the current state of the art of severe accident codes. - Abstract: This paper is aimed at the validation and application of the system code ATHLET-CD for the simulation of severe accident phenomena in Boiling Water Reactors (BWR). The corresponding models for core degradation behaviour e.g., oxidation, melting and relocation of core structural components are validated against experimental data available from the CORA-16 and -17 bundle tests. Model weaknesses are discussed along with needs for further code improvements. With the validated ATHLET-CD code, calculations are performed to assess the code capabilities for the prediction of in-vessel late phase core behaviour and reflooding of damaged fuel rods. For this purpose, a small break LOCA scenario for a generic German BWR with postulated multiple failures of the safety systems was selected. In the analysis, accident management measures represented by cold water injection into the damaged reactor core are addressed to investigate the efficacy in avoiding or delaying the failure of the reactor pressure vessel. Results show that ATHLET-CD is applicable to the description of BWR plant behaviour with reliable physical models and numerical methods adopted for the description of key in-vessel phenomena.

  7. Analysis code for large rupture accidents in ATR. SENHOR/FLOOD/HEATUP

    International Nuclear Information System (INIS)

    1997-08-01

    In the evaluation of thermo-hydraulic transient change, the behavior of core reflooding and the transient change of fuel temperature in the events which are classified in large rupture accidents of reactor coolant loss, that is the safety evaluation event of the ATR, the analysis codes for thermo-hydraulic transient change at the time of large rupture SENHOR, for core reflooding characteristics FLOOD and for fuel temperature HEATUP are used, respectively. The analysis code system for loss of coolant accident comprises the analysis code for thermo-hydraulic transient change at the time of medium and small ruptures LOTRAC in addition to the above three codes. Based on the changes with time lapse of reactor thermal output and steam drum pressure obtained by the SENHOR, average reflooding rate is analyzed by the FLOOD, and the time of starting the turnaround of fuel cladding tube temperature and the heat transfer rate after the turnaround are determined. Based on these data, the detailed temperature change of fuel elements is analyzed by the HEATUP, and the highest temperature and the amount of oxidation of fuel cladding tubes are determined. The SENHOR code, the FLOOD code and the HEATUP code and various models for these codes are explained. The example of evaluation and the sensitivity analysis of the ATR plant are reported in the Appendix. (K.I.)

  8. A Deformation Analysis Code of CANDU Fuel under the Postulated Accident: ELOCA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jung, Jong Yeob

    2006-11-15

    Deformations of the fuel element or fuel channel might be the main cause of the fuel failure. Therefore, the accurate prediction of the deformation and the analysis capabilities are closely related to the increase of the safety margin of the reactor. In this report, among the performance analysis or the transient behavior prediction computer codes, the analysis codes for deformation such as the ELOCA, HOTSPOT, CONTACT-1, and PTDFORM are briefly introduced and each code's objectives, applicability, and relations are explained. Especially, the user manual for ELOCA code which is the analysis code for the fuel deformation and the release of fission product during the transient period after the postulated accidents is provided so that it can be the guidance to the potential users of the code and save the time and economic loss by reducing the trial and err000.

  9. A Deformation Analysis Code of CANDU Fuel under the Postulated Accident: ELOCA

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jung, Jong Yeob

    2006-11-01

    Deformations of the fuel element or fuel channel might be the main cause of the fuel failure. Therefore, the accurate prediction of the deformation and the analysis capabilities are closely related to the increase of the safety margin of the reactor. In this report, among the performance analysis or the transient behavior prediction computer codes, the analysis codes for deformation such as the ELOCA, HOTSPOT, CONTACT-1, and PTDFORM are briefly introduced and each code's objectives, applicability, and relations are explained. Especially, the user manual for ELOCA code which is the analysis code for the fuel deformation and the release of fission product during the transient period after the postulated accidents is provided so that it can be the guidance to the potential users of the code and save the time and economic loss by reducing the trial and error

  10. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems

  11. Application of the coupled Relap5/Panther codes for PWR steam. Line break accident analysis

    International Nuclear Information System (INIS)

    Guisset, J.-P.; Bosso, S.; Charlier, A.; Delhaye, X.; Ergo, O.; Ouliddren, K.; Schneidesch, C.; Zhang, J.

    2001-01-01

    A dynamic coupling between the existing 1-dimensional thermal-hydraulics system code RELAP5 and the 3-dimensional neutronics code PANTHER is applied via the transient analysis code linkage program TALINK. An interface between PANTHER and the subchannel thermal-hydraulic analysis code COBRA 3C allows direct evaluation of the Departure from Nucleate Boiling Ratio in parallel with the coupled PANTHER/RELAP5 simulation. The coupled codes are applied to develop a Final Safety Analysis Report (FSAR) accident analysis methodology for the major Steam Line Break (SLB) accident at hot zero power in a typical three-loop pressurised water reactor. In this methodology, the uncertainties related to the plant, core thermal-hydraulic and neutronic parameters are combined in a deterministic bounding approach based on sensitivity studies. The results of coupled thermal-hydraulic and neutronic analysis of SLB are presented and discussed. It is shown that there exists an important margin in the traditional FSAR accident analysis for SLB, which can be attributed by the conservatism's introduced by de-coupling the plant sub-systems. (author)

  12. Application of the coupled Relap5/Panther codes for PWR steam. Line break accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guisset, J.-P.; Bosso, S.; Charlier, A.; Delhaye, X.; Ergo, O.; Ouliddren, K.; Schneidesch, C.; Zhang, J. [Tractebel Energy Engineering, Brussels (Belgium)

    2001-07-01

    A dynamic coupling between the existing 1-dimensional thermal-hydraulics system code RELAP5 and the 3-dimensional neutronics code PANTHER is applied via the transient analysis code linkage program TALINK. An interface between PANTHER and the subchannel thermal-hydraulic analysis code COBRA 3C allows direct evaluation of the Departure from Nucleate Boiling Ratio in parallel with the coupled PANTHER/RELAP5 simulation. The coupled codes are applied to develop a Final Safety Analysis Report (FSAR) accident analysis methodology for the major Steam Line Break (SLB) accident at hot zero power in a typical three-loop pressurised water reactor. In this methodology, the uncertainties related to the plant, core thermal-hydraulic and neutronic parameters are combined in a deterministic bounding approach based on sensitivity studies. The results of coupled thermal-hydraulic and neutronic analysis of SLB are presented and discussed. It is shown that there exists an important margin in the traditional FSAR accident analysis for SLB, which can be attributed by the conservatism's introduced by de-coupling the plant sub-systems. (author)

  13. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    Science.gov (United States)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  14. Steady-state and accident analyses of PBMR with the computer code SPECTRA

    International Nuclear Information System (INIS)

    Stempniewicz, Marek M.

    2002-01-01

    The SPECTRA code is an accident analysis code developed at NRG. It is designed for thermal-hydraulic analyses of nuclear or conventional power plants. The code is capable of analysing the whole power plant, including reactor vessel, primary system, various control and safety systems, containment and reactor building. The aim of the work presented in this paper was to prepare a preliminary thermal-hydraulic model of PBMR for SPECTRA, and perform steady state and accident analyses. In order to assess SPECTRA capability to model the PBMR reactors, a model of the INCOGEN system has been prepared first. Steady state and accident scenarios were analyzed for INCOGEN configuration. Results were compared to the results obtained earlier with INAS and OCTOPUS/PANTHERMIX. A good agreement was obtained. Results of accident analyses with PBMR model showed qualitatively good results. It is concluded that SPECTRA is a suitable tool for analyzing High Temperature Reactors, such as INCOGEN or for example PBMR (Pebble Bed Modular Reactor). Analyses of INCOGEN and PBMR systems showed that in all analyzed cases the fuel temperatures remained within the acceptable limits. Consequently there is no danger of release of radioactivity to the environment. It may be concluded that those are promising designs for future safe industrial reactors. (author)

  15. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  16. Analysis of ASTEC code adaptability to severe accident simulation for CANDU type reactors

    International Nuclear Information System (INIS)

    Constantin, Marin; Rizoiu, Andrei

    2008-01-01

    In order to prepare the adaptation of the ASTEC code to CANDU NPP severe accident analysis two kinds of activities were performed: - analyses of the ASTEC modules from the point of view of models and options, followed by CANDU exploratory calculation for the appropriate modules/models; - preparing the specifications for ASTEC adaptation for CANDU NPP. The paper is structured in three parts: - a comparison of PWR and CANDU concepts (from the point of view of severe accident phenomena); - exploratory calculations with some ASTEC modules- SOPHAEROS, CPA, IODE, CESAR, DIVA - for CANDU type reactors specific problems; - development needs analysis - algorithms, methods, modules. (authors)

  17. Methods and codes for assessing the off-site Consequences of nuclear accidents. Volume 2

    International Nuclear Information System (INIS)

    Kelly, G.N.; Luykx, F.

    1991-01-01

    The Commission of the European Communities, within the framework of its 1980-84 radiation protection research programme, initiated a two-year project in 1983 entitled methods for assessing the radiological impact of accidents (Maria). This project was continued in a substantially enlarged form within the 1985-89 research programme. The main objectives of the project were, firstly, to develop a new probabilistic accident consequence code that was modular, incorporated the best features of those codes already in use, could be readily modified to take account of new data and model developments and would be broadly applicable within the EC; secondly, to acquire a better understanding of the limitations of current models and to develop more rigorous approaches where necessary; and, thirdly, to quantify the uncertainties associated with the model predictions. This research led to the development of the accident consequence code Cosyma (COde System from MAria), which will be made generally available later in 1990. The numerous and diverse studies that have been undertaken in support of this development are summarized in this paper, together with indications of where further effort might be most profitably directed. Consideration is also given to related research directed towards the development of real-time decision support systems for use in off-site emergency management

  18. Development of a dose assessment computer code for the NPP severe accident

    International Nuclear Information System (INIS)

    Cheong, Jae Hak

    1993-02-01

    A real-time emergency dose assessment computer code called KEDA (KAIST NPP Emergency Dose Assessment) has been developed for the NPP severe accident. A new mathematical model which can calculate cloud shine has been developed and implemented in the code. KEDA considers the specific Korean situations(complex topography, orientals' thyroid metabolism, continuous washout, etc.), and provides functions of dose-monitoring and automatic decision-making. To verify the code results, KEDA has been compared with an NRC officially certified code, RASCAL, for eight hypertical accident scenarios. Through the comparison, KEDA has been proved to provide reasonable results. Qualitative sensitivity analysis also the been performed for potentially important six input parameters, and the trends of the dose v.s. down-wind distance curve have been analyzed comparing with the physical phenomena occurred in the real atmosphere. The source term and meteorological conditions are turned out to be the most important input parameters. KEDA also has been applied to simulate Kori site and a hyperthetical accident with semi-real meteorological data has been simulated and analyzed

  19. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code; Verbundprojekt WASA-BOSS: Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt B: Druckwasserreaktor-Stoerfallanalysen unter Verwendung des Severe-Accident-Codes ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-15

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  20. Dispersion of radioactive materials from JRTR following a postulated accident using HOTSPOT code

    International Nuclear Information System (INIS)

    Mistarihi, Qusai M.; Lee, Kwan Hee

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is the first nuclear facility in Jordan. The JRTR is 5 MW, light water moderated and open type pool reactor. In case of an accident, the radioactive materials will be released to the surrounding environment and endanger the people living in the vicinity of the reactor. However, up to now, no study has been published about the dispersion of radioactive materials from JRTR in case of an accident. As preliminary stage for the construction of the JRTR, the dispersion of the radioactive materials from JRTR in case of an accident was studied using HOTSOT code. The result of the report indicates that for ground level release with an average speed of 3.6 m/s of hourly averaged meteorological data for one year with a dominant direction from the west a person located at distance .062 km from the reactor site will receive .25 Sv

  1. Dispersion of radioactive materials from JRTR following a postulated accident using HOTSPOT code

    Energy Technology Data Exchange (ETDEWEB)

    Mistarihi, Qusai M.; Lee, Kwan Hee [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    Jordan Research and Training Reactor (JRTR) is the first nuclear facility in Jordan. The JRTR is 5 MW, light water moderated and open type pool reactor. In case of an accident, the radioactive materials will be released to the surrounding environment and endanger the people living in the vicinity of the reactor. However, up to now, no study has been published about the dispersion of radioactive materials from JRTR in case of an accident. As preliminary stage for the construction of the JRTR, the dispersion of the radioactive materials from JRTR in case of an accident was studied using HOTSOT code. The result of the report indicates that for ground level release with an average speed of 3.6 m/s of hourly averaged meteorological data for one year with a dominant direction from the west a person located at distance .062 km from the reactor site will receive .25 Sv.

  2. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.

    1985-01-01

    SAS4A is a new code system which has been designed for analyzing the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modeling the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel motion experiment analyses are also presented

  3. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.; Kalimullah; Hill, D.J.

    1986-01-01

    The SAS4A code system has been designed for the analysis of the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modelong the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel relocation are emphasized. 12 refs

  4. Preliminary Analysis of a Loss of Condenser Vacuum Accident Using the MARS-KS Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jieun Kim; Bang, Young Seok; Oh, Deog Yeon; Kim, Kap; Woo, Sweng-Wong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    In accordance with revision of NUREG-0800 of USNRC, the area of review for loss of condenser vacuum(LOCV) accident has been expanded to analyze both peak pressures of primary and secondary system separately. Currently, the analysis of LOCV accident, which is caused by malfunction of condenser, has been focused to fuel cladding integrity and peak pressure in the primary system. In this paper, accident analysis for LOCV using MARS-KS code were conducted to support the licensing review on transient behavior of secondary system pressure of APR1400 plant. The accident analysis for the loss of condenser vacuum (LOCV) of APR1400 was conducted with the MARS-KS code to support the review on the pressure behavior of primary and secondary system. Total four cases which have different combination of availability of offsite power and the pressurizer spray are considered. The preliminary analysis results shows that the initial conditions or assumptions which concludes the severe consequence are different for each viewpoint, and in some cases, it could be confront with each viewpoint. Therefore, with regard to the each acceptance criteria, figuring out and sensitivity analysis of the initial conditions and assumptions for system pressure would be necessary.

  5. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Gyori, C.; Schubert, A.; Laar, J. van de; Hozer, Z.; Spykman, G.

    2008-01-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events

  6. Analysis of fuel behaviour after loss-of-coolant accident with the TESPA-code

    International Nuclear Information System (INIS)

    Keusenhoff, J.

    1981-01-01

    After a loss-of-coolant accident fuel rods go through a phase of high temperature and differential pressure before quenching and initiation of long term cooling. For licensing purpose the highest cladding temperature and the coolability of the core is of interest. The highest temperature is evaluated by a hot channel calculation with conservative assumptions. It gives little information about the status of the entire core. Therefore more detailed information is necessary. TESPA is a fast running code, which uses best-estimate assumptions, considers statistical uncertainties in the input parameters and calculates clad ballooning and rupture. The code is a usefull tool for calculation of channel blockage and cladding rupture

  7. Results of a survey on accident and safety analysis codes, benchmarks, verification and validation methods

    International Nuclear Information System (INIS)

    Lee, A.G.; Wilkin, G.B.

    1995-01-01

    This report is a compilation of the information submitted by AECL, CIAE, JAERI, ORNL and Siemens in response to a need identified at the 'Workshop on R and D Needs' at the IGORR-3 meeting. The survey compiled information on the national standards applied to the Safety Quality Assurance (SQA) programs undertaken by the participants. Information was assembled for the computer codes and nuclear data libraries used in accident and safety analyses for research reactors and the methods used to verify and validate the codes and libraries. Although the survey was not comprehensive, it provides a basis for exchanging information of common interest to the research reactor community

  8. Modeling of severe accident sequences with the new modules CESAR and DIVA of ASTEC system code

    International Nuclear Information System (INIS)

    Pignet, Sophie; Guillard, Gaetan; Barre, Francois; Repetto, Georges

    2003-01-01

    Systems of computer codes, so-called 'integral' codes, are being developed to simulate the scenario of a hypothetical severe accident in a light water reactor, from the initial event until the possible radiological release of fission products out of the containment. They couple the predominant physical phenomena that occur in the different reactor zones and simulate the actuation of safety systems by procedures and by operators. In order to allow to study a great number of scenarios, a compromise must be found between precision of results and calculation time: one day of accident time should take less than one day of real time to simulate on a PC computer. This search of compromise is a real challenge for such integral codes. The development of the ASTEC integral code was initiated jointly by IRSN and GRS as an international reference code. The latest version 1.0 of ASTEC, including the new modules CESAR and DIVA which model the behaviour of the reactor cooling system and the core degradation, is presented here. Validation of the modules and one plant application are described

  9. Verification of fire and explosion accident analysis codes (facility design and preliminary results)

    International Nuclear Information System (INIS)

    Gregory, W.S.; Nichols, B.D.; Talbott, D.V.; Smith, P.R.; Fenton, D.L.

    1985-01-01

    For several years, the US Nuclear Regulatory Commission has sponsored the development of methods for improving capabilities to analyze the effects of postulated accidents in nuclear facilities; the accidents of interest are those that could occur during nuclear materials handling. At the Los Alamos National Laboratory, this program has resulted in three computer codes: FIRAC, EXPAC, and TORAC. These codes are designed to predict the effects of fires, explosions, and tornadoes in nuclear facilities. Particular emphasis is placed on the movement of airborne radioactive material through the gaseous effluent treatment system of a nuclear installation. The design, construction, and calibration of an experimental ventilation system to verify the fire and explosion accident analysis codes are described. The facility features a large industrial heater and several aerosol smoke generators that are used to simulate fires. Both injected thermal energy and aerosol mass can be controlled using this equipment. Explosions are simulated with H 2 /O 2 balloons and small explosive charges. Experimental measurements of temperature, energy, aerosol release rates, smoke concentration, and mass accumulation on HEPA filters can be made. Volumetric flow rate and differential pressures also are monitored. The initial experiments involve varying parameters such as thermal and aerosol rate and ventilation flow rate. FIRAC prediction results are presented. 10 figs

  10. Experience with COSYMA in an international intercomparison of probabilistic accident consequence assessment codes

    International Nuclear Information System (INIS)

    Hasemann, I.; Jones, J.A.; Steen, J. van der; Wonderen, E. van

    1996-01-01

    The Commission of the European Communities and the Nuclear Energy Agency of the OECD have organized an international exercise to compare the predictions of accident consequence assessment codes, and to identify those features of the models which lead to differences in the predicted results. Alongside this, a further exercise was undertaken in which the COSYMA code was used independently by several different organizations. Some of the findings of the COSYMA users' exercise are described that have general applications to accident consequence assessments. A number of areas are identified in which further work on accident consequence models may be justified. These areas, which are also of interest for codes other than COSYMA, are (a) the calculation and averaging of doses and risks to people sheltered in different types of buildings, particularly with respect to the evaluation of early health effects; (b) the modeling of long-duration releases and their description as a series of shorter releases; (c) meteorological sampling for results at a certain location, specifically for use with trajectory models of atmospheric dispersion; and (d) aspects of calculating probabilities of consequences at a point

  11. The coupling algorithm between fuel pin and coolant channel in the European Accident Code EAC-2

    International Nuclear Information System (INIS)

    Goethem, G. van; Lassmann, K.

    1989-01-01

    In the field of fast breeder reactors the Commission of the European Communities (CEC) is conducting coordination and harmonisation activities as well as its own research at the CEC's Joint Research Centre (JRC). The development of the modular European Accident Code (EAC) is a typical example of concerted action between EC Member States performed under the leadership of the JRC. This computer code analyzes the initiation phase of low-probability whole-core accidents in LMFBRs with the aim of predicting the rapidity of sodium voiding, the mode of pin failure, the subsequent fuel redistribution and the associated energy release. This paper gives a short overview on the development of the EAC-2 code with emphasis on the coupling mechanism between the fuel behaviour module TRANSURANUS and the thermohydraulics modules which can be either CFEM or BLOW3A. These modules are also briefly described. In conclusion some numerical results of EAC-2 are given: they are recalculations of an unprotected LOF accident for the fictitious EUROPE fast breeder reactor which was earlier analysed in the frame of a comparative exercise performed in the early 80s and organised by the CEC. (orig.)

  12. Coupling Computer Codes for The Analysis of Severe Accident Using A Pseudo Shared Memory Based on MPI

    International Nuclear Information System (INIS)

    Cho, Young Chul; Park, Chang-Hwan; Kim, Dong-Min

    2016-01-01

    As there are four codes in-vessel analysis code (CSPACE), ex-vessel analysis code (SACAP), corium behavior analysis code (COMPASS), and fission product behavior analysis code, for the analysis of severe accident, it is complex to implement the coupling of codes with the similar methodologies for RELAP and CONTEMPT or SPACE and CAP. Because of that, an efficient coupling so called Pseudo shared memory architecture was introduced. In this paper, coupling methodologies will be compared and the methodology used for the analysis of severe accident will be discussed in detail. The barrier between in-vessel and ex-vessel has been removed for the analysis of severe accidents with the implementation of coupling computer codes with pseudo shared memory architecture based on MPI. The remaining are proper choice and checking of variables and values for the selected severe accident scenarios, e.g., TMI accident. Even though it is possible to couple more than two computer codes with pseudo shared memory architecture, the methodology should be revised to couple parallel codes especially when they are programmed using MPI

  13. Coupling Computer Codes for The Analysis of Severe Accident Using A Pseudo Shared Memory Based on MPI

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Park, Chang-Hwan; Kim, Dong-Min [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    As there are four codes in-vessel analysis code (CSPACE), ex-vessel analysis code (SACAP), corium behavior analysis code (COMPASS), and fission product behavior analysis code, for the analysis of severe accident, it is complex to implement the coupling of codes with the similar methodologies for RELAP and CONTEMPT or SPACE and CAP. Because of that, an efficient coupling so called Pseudo shared memory architecture was introduced. In this paper, coupling methodologies will be compared and the methodology used for the analysis of severe accident will be discussed in detail. The barrier between in-vessel and ex-vessel has been removed for the analysis of severe accidents with the implementation of coupling computer codes with pseudo shared memory architecture based on MPI. The remaining are proper choice and checking of variables and values for the selected severe accident scenarios, e.g., TMI accident. Even though it is possible to couple more than two computer codes with pseudo shared memory architecture, the methodology should be revised to couple parallel codes especially when they are programmed using MPI.

  14. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  15. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  16. MABEL-1. A code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.

    1978-06-01

    The MABEL-1 code has been written to investigate the deformation, of fuel pin cladding and its effects on fuel pin temperature transients during a loss-of-coolant accident. The code considers a single fuel pin with heated fuel concentric within the cladding. The fuel pin temperature distribution is evaluated using a one-dimensional conduction model with heat transfer to the coolant represented by an input set of heat transfer coefficients. The cladding deformation is calculated using the code CANSWEL, which assumes all strain to be elastic or creep and models the creep under a multi-axial stress system by a spring/dashpot combination undergoing alternate relaxation and elastic strain. (author)

  17. NAUAHYGROS - A code for calculating aerosol behavior in nuclear power plant containments following a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Sher, R. [Rudolph Sher Associates, Stanford, CA (United States); Li, J. [Polestar Applied Technology, Inc., Los Altos, CA (United States)

    1995-02-01

    NAUAHYGROS is a computer code to calculate the behavior of fission product and other aerosol particles in the containment of a nuclear reactor following a severe accident. It is an extension of the German code NAUA, which has been in widespread use for many years. Early versions of NAUA treated various aerosol phenomena in dry atmospheres, including aerosol agglomeration, diffusion (plateout), and settling processes. Later versions added treatments of steam condensation on particles in saturated or supersaturated containment atmospheres. The importance of these condensation effects on aerosol removal rates was demonstrated in large scale simulated containment tests. The additional features incorporated in NAUAHYGROS include principally a treatment of steam condensation on hygroscopic aerosols, which can grow as a result of steam condensation even in superheated atmospheres, and improved modelling of steam condensation on the walls of the containment. The code has been validated against the LACE experiments.

  18. Development of Evaluation Technology for Hydrogen Combustion in containment and Accident Management Code for CANDU

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, D. H.; Song, Y. M.

    2011-08-01

    For a licensing of nuclear power plant(NPP) construction and operation, the hydrogen combustion and hydrogen mitigation system in the containment is one of the important safety issues. Hydrogen safety and its control for the new NPPs(Shin-Wolsong 1 and 2, Shin-Ulchin 1 and 2) have been evaluated in detail by using the 3-dimensional analysis code GASFLOW. The experimental and computational studies on the hydrogen combustion, and participations of the OEDE/NEA programs such as THAI and ISP-49 secures the resolving capabilities of the hydrogen safety and its control for the domestic nuclear power plants. ISAAC4.0, which has been developed for the assessment of severe accident management at CANDU plants, was already delivered to the regulatory body (KINS) for the assessment of the severe accident management guidelines (SAMG) for Wolsong units 1 to 4, which are scheduled to be submitted to KINS. The models for severe accident management strategy were newly added and the graphic simulator, CAVIAR, was coupled to addition, the ISAAC computer code is anticipated as a platform for the development and maintenance of Wolsong plant risk monitor and Wolsong-specific SAMG

  19. A2 Code - Internal Accident Report. Does it ring a bell?

    CERN Document Server

    HSE Unit

    2015-01-01

    A2 Code* - It is under this designation (used by the CERN community) that the form for internal accident reports is hidden. More specifically it refers to the CERN Safety Code A2 “Reporting of Accidents and Near Misses” (EDMS: 335502 or here via the official Safety Rules website).   Which events should be declared? All accidental events, which cause or could have caused injuries or damage to property or the environment, must be reported especially if they involve: a) a member of the personnel, visitor, temporary labourer or contractor if it occurred on the CERN site or between sites. b) a member of the personnel if it occurred while commuting or during duty travel. Who can fill in the report? The reporting of occurred accidents or near misses should be made by the person involved or by any direct or indirect witness of the event as soon as possible after the event. Contribute to the improvement of Safety within the Organizatio...

  20. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  1. JERICHO computer code: PWR containment response during severe accidents description and sensitivity analysis

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.

    1983-12-01

    The JERICHO code has been developed in order to study the thermodynamic behaviour inside the reactor containment building for the complete spectrum of accident sequences likely to occur in such a reactor, including models for the various mass and energy transfer phenomena, for water spray, for hydrogen and carbon monoxide flammability limits and combustion, as well as for containment venting. Sensitivity analyses have been performed on a severe accident sequence, (namely, small LOCA with failure of the emergency core cooling and containment spray systems), involving core melting and subsequent concrete containment basemat erosion. The effect of various models, such as mass and energy transfer to the structures, has been studied. The influence of the concrete composition, of the fission product deposition and of the thermal degradation of the reactor cavity concrete walls on long term thermodynamic behaviour has also been investigated

  2. Assessment of SPACE code for multiple failure accident: 1% Cold Leg Break LOCA with HPSI failure at ATLAS Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Lee, Seung Wook; Kim, Kyung-Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Design extension conditions (DECs) is a popular key issue after the Fukushima accident. In a viewpoint of the reinforcement of the defense in depth concept, a high-risk multiple failure accident should be reconsidered. The target scenario of ATLAS A5.1 test was LSTF (Large Scale Test Facility) SB-CL-32 test, a 1% SBLOCA with total failure of high pressure safety injection (HPSI) system of emergency core cooling system (ECCS) and secondary side depressurization as the accident management (AM) action, as a counterpart test. As the needs to prepare the DEC accident because of a multiple failure of the present NPPs are emphasized, the capability of SPACE code, just like other system analysis code, is required to expand the DEC area. The objectives of this study is to validate the capability of SPACE code for a DEC scenario, which represents multiple failure accident like as a SBLOCA with HPSI fail. Therefore, the ATLAS A5.1 test scenario was chosen. As the needs to prepare the DEC accident because of a multiple failure of operating NPPs are emphasized, the capability of SPACE code is needed to expand the DEC area. So the capability of SPACE code was validated for one of a DEC scenario. The target scenario was selected as the ATLAS A5.1 test, which is a 1% SBLOCA with total failure of HPSI system of ECCS and secondary side depressurization. Through the sensitivity study on discharge coefficient of break flow, the best fit of integrated mass was found. Using the coefficient, the ATLAS A5.1 test was analyzed using the SPACE code. The major thermal hydraulic parameters such as the system pressure, temperatures were compared with the test and have a good agreement. Through the simulation, it was concluded that the SPACE code can effectively simulate one of multiple failure accidents like as SBLOCA with HPSI failure accident.

  3. The FIRAC code - its applicability and boundary conditions for fire accident analysis in a reprocessing plant

    International Nuclear Information System (INIS)

    Roewekamp, M.

    1991-01-01

    After a short description of the modelling capabilities and the implementation of the computer code the possible applications of FIRAC are demonstrated by means of two test-examples. The so gained experiences with respect to the variation of different parameters, convergency criteria, etc. can be used for the simulation of a fire accident in the storage area for unconditioned combustible low active waste (LAW) of the planned reprocessing plant at Wackersdorf. The code is prepared for calculating direct effects (of the fire) in the fire room as well as particularly effects on adjacent rooms and ventilation systems. Source terms for the release of radioactive particles outside a building can also be investigated. The temperature and pressure curves for the fire room as well as for other areas in the facility show that no damages caused by temperature effects are expected for the considered fire of low active waste. As a result of the calculated mass and volumetric flows radioactive aerosole particles could be transported into normally non-active areas. The FIRAC code renders the possibility of a more detailed analysis of those parameters relevant for fire accidents and by this means completes the so far phenomenological procedure of the fire hazard analysis in nuclear facilities. (orig.) [de

  4. Application of the SCANAIR code for VVER RIA conditions - Boron dilution accident

    International Nuclear Information System (INIS)

    Arffman, A.; Cazalis, B.

    2010-01-01

    This paper consists of two parts. In part A, RIA pulse tests conducted at the Russian BIGR reactor are being analysed at IRSN with SCANAIR V6 fuel performance code as a part of the code validation for VVER fuel. Recently a new version of the SCANAIR code was made available to VTT Technical Research Centre of Finland, and part B of the paper covers the introduction of the code version at VTT by a calculation of a hypothetical boron dilution accident in a VVER-440 power reactor. Concerning part A, it appears that the SCANAIR V6 version, including a BIGR/NSRR heat transfer model, validated by Japanese NSRR experiments, and a Norton viscoplastic clad mechanical behaviour, is able to simulate the rod thermal behaviour in BIGR tests. Concerning the clad mechanics, it has been seen that a pellet swelling model is able to simulate the average rod deformation. Nonetheless, the current clad creep model associated with the free volume equilibrium assumption is not suited to predict the maximum clad deformation and the possible post DNB rod failure because they do not simulate local balloons. Furthermore, it has been shown that the clad deformation is strongly dependent on transient gas transfer. Concerning part B, a boron dilution accident previously calculated with SCANAIR V2 was recalculated with SCANAIR V6. A limited amount of result parameters were compared with the results of VTT's neutronics code TRAB. Divergence problems encountered previously when reaching the DNB limit were not present anymore. Fuel and cladding temperatures produced by SCANAIR were in good agreement with those calculated with TRAB

  5. SPACE code simulation of ATLAS DVI line break accident test (SB DVI 08 Test)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Gyu [KHNP, Daejeon (Korea, Republic of)

    2012-10-15

    APR1400 has adopted new safety design features which are 4 mechanically independent DVI (Direct Vessel Injection) systems and fluidic device in the safety injection tanks (SITs). Hence, DVI line break accident has to be evaluated as one of the small break LOCA (SBLOCA) to ensure the safety of APR1400. KAERI has been performed for DVI line break test (SB DVI 08) using ATLAS (Advanced Thermal Hydraulic Test Loop for Accident Simulation) facility which is an integral effect test facility for APR1400. The test result shows that the core collapsed water level decreased before a loop seal clearance, so that a core uncover occurred. At this time, the peak cladding temperature (PCT) is rapidly increased even though the emergency core cooling (ECC) water is injected from safety injection pump (SIP). This test result is useful for supporting safety analysis using thermal hydraulic safety analysis code and increases the understanding of SBLOCA phenomena in APR1400. The SBLOCA evaluation methodology for APR1400 is now being developed using SPACE code. The object of the development of this methodology is to set up a conservative evaluation methodology in accordance with appendix K of 10 CFR 50. ATLAS SB DVI 08 test is selected for the evaluation of SBLOCA methodology using SPACE code. Before applying the conservative models and correlations, benchmark calculation of the test is performed with the best estimate models and correlations to verify SPACE code capability. This paper deals with benchmark calculations results of ATLAS SB DVI 08 test. Calculation results of the major hydraulics variables are compared with measured data. Finally, this paper carries out the SPACE code performances for simulating the integral effect test of SBLOCA.

  6. Dosimetric reconstruction of radiological accident by numerical simulations by means associating an anthropomorphic model and a Monte Carlo computation code

    International Nuclear Information System (INIS)

    Courageot, Estelle

    2010-01-01

    After a description of the context of radiological accidents (definition, history, context, exposure types, associated clinic symptoms of irradiation and contamination, medical treatment, return on experience) and a presentation of dose assessment in the case of external exposure (clinic, biological and physical dosimetry), this research thesis describes the principles of numerical reconstruction of a radiological accident, presents some computation codes (Monte Carlo code, MCNPX code) and the SESAME tool, and reports an application to an actual case (an accident which occurred in Equator in April 2009). The next part reports the developments performed to modify the posture of voxelized phantoms and the experimental and numerical validations. The last part reports a feasibility study for the reconstruction of radiological accidents occurring in external radiotherapy. This work is based on a Monte Carlo simulation of a linear accelerator, with the aim of identifying the most relevant parameters to be implemented in SESAME in the case of external radiotherapy

  7. Inclusion of models to describe severe accident conditions in the fuel simulation code DIONISIO

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Daverio, Hernando [Gerencia Reactores y Centrales Nucleares, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Denis, Alicia [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina)

    2017-04-15

    The simulation of fuel rod behavior is a complex task that demands not only accurate models to describe the numerous phenomena occurring in the pellet, cladding and internal rod atmosphere but also an adequate interconnection between them. In the last years several models have been incorporated to the DIONISIO code with the purpose of increasing its precision and reliability. After the regrettable events at Fukushima, the need for codes capable of simulating nuclear fuels under accident conditions has come forth. Heat removal occurs in a quite different way than during normal operation and this fact determines a completely new set of conditions for the fuel materials. A detailed description of the different regimes the coolant may exhibit in such a wide variety of scenarios requires a thermal-hydraulic formulation not suitable to be included in a fuel performance code. Moreover, there exist a number of reliable and famous codes that perform this task. Nevertheless, and keeping in mind the purpose of building a code focused on the fuel behavior, a subroutine was developed for the DIONISIO code that performs a simplified analysis of the coolant in a PWR, restricted to the more representative situations and provides to the fuel simulation the boundary conditions necessary to reproduce accidental situations. In the present work this subroutine is described and the results of different comparisons with experimental data and with thermal-hydraulic codes are offered. It is verified that, in spite of its comparative simplicity, the predictions of this module of DIONISIO do not differ significantly from those of the specific, complex codes.

  8. Advantages of Westinghouse BWR control rod drop accidents methodology utilizing integrated POLCA-T code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2008-01-01

    The paper focuses on the activities pursued by Westinghouse in the development and licensing of POLCA-T code Control Rod Drop Accident (CRDA) Methodology. The comprehensive CRDA methodology that utilizes PHOENIX4/POLCA7/POLCA-T calculation chain foresees complete cycle-specific analysis. The methodology consists of determination of candidates of control rods (CR) that could cause a significant reactivity excursion if dropped throughout the entire fuel cycle, selection of limiting initial conditions for CRDA transient simulation and transient simulation itself. The Westinghouse methodology utilizes state-of-the-art methods. Unnecessary conservatisms in the methodology have been avoided to allow the accurate prediction of margin to design bases. This is mainly achieved by using the POLCA-T code for dynamic CRDA evaluations. The code belongs to the same calculation chain that is used for core design. Thus the very same reactor, core, cycle and fuel data base is used. This allows also reducing the uncertainties of input data and parameters that determine the energy deposition in the fuel. Uncertainty treatment, very selective use of conservatisms, selection of the initial conditions for limiting case analyses, incorporation into POLCA-T code models of the licensed fuel performance code are also among the means of performing realistic CRDA transient analyses. (author)

  9. A thermo-mechanical benchmark calculation of an hexagonal can in the BTI accident with ABAQUS code

    International Nuclear Information System (INIS)

    Zucchini, A.

    1988-07-01

    The thermo-mechanical behaviour of an hexagonal can in a benchmark problem (simulating the conditions of a BTI accident in a fuel assembly) is examined by means of the ABAQUS code: the effects of the geometric nonlinearity are shown and the results are compared with those of a previous analysis performed with the INCA code. (author)

  10. Results of a survey on accident and safety analysis codes, benchmarks, verification and validation methods

    International Nuclear Information System (INIS)

    Lee, A.G.; Wilkin, G.B.

    1996-03-01

    During the 'Workshop on R and D needs' at the 3rd Meeting of the International Group on Research Reactors (IGORR-III), the participants agreed that it would be useful to compile a survey of the computer codes and nuclear data libraries used in accident and safety analyses for research reactors and the methods various organizations use to verify and validate their codes and libraries. Five organizations, Atomic Energy of Canada Limited (AECL, Canada), China Institute of Atomic Energy (CIAE, People's Republic of China), Japan Atomic Energy Research Institute (JAERI, Japan), Oak Ridge National Laboratories (ORNL, USA), and Siemens (Germany) responded to the survey. The results of the survey are compiled in this report. (author) 36 refs., 3 tabs

  11. ASTEC code development, validation and applications for severe accident management within the CESAM European project - 15392

    International Nuclear Information System (INIS)

    Van Dorsselaere, J.P.; Chatelard, P.; Chevalier-Jabet, K.; Nowack, H.; Herranz, L.E.; Pascal, G.; Sanchez-Espinoza, V.H.

    2015-01-01

    ASTEC, jointly developed by IRSN and GRS, is considered as the European reference code since it capitalizes knowledge from the European research on the domain. The CESAM project aims at its enhancement and extension for use in severe accident management (SAM) analysis of the nuclear power plants (NPP) of Generation II-III presently under operation or foreseen in near future in Europe, spent fuel pools included. Within the CESAM project 3 main types of research activities are performed: -) further validation of ASTEC models important for SAM, in particular for the phenomena being of importance in the Fukushima-Daichi accidents, such as reflooding of degraded cores, pool scrubbing, hydrogen combustion, or spent fuel pools behaviour; -) modelling improvements, especially for BWR or based on the feedback of validation tasks; and -) ASTEC applications to severe accident scenarios in European NPPs in order to assess prevention and mitigation measures. An important step will be reached with the next major ASTEC V2.1 version planned to be delivered in the first part of 2015. Its main improvements will concern the possibility to simulate in details the core degradation of BWR and PHWR and a model of reflooding of severely degraded cores. A new user-friendly Graphic User Interface will be available for plant analyses

  12. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha

    2016-01-01

    The gas and aerosol phases of the radioactive materials move through the reactor coolant systems and containments as loaded on the carrier gas or liquid, such as steam or water. Most radioactive materials might escape in the form of aerosols from a nuclear power plant during a severe reactor accident, and it is very important to predict the behavior of these radioactive aerosols in the reactor cooling system and in the containment building under severe accident conditions. Aerosols are designated as very small solid particles or liquid droplets suspended in a gas phase. The suspended solid or liquid particles typically have a range of sizes of 0.01 m to 20 m. Aerosol concentrations in reactor accident analyses are typically less than 100 g/m3 and usually less than 1 g/m3. When there are continuing sources of aerosol to the gas phase or when there are complicated processes involving engineered safety features, much more complicated size distributions develop. It is not uncommon for aerosols in reactor containments to have bimodal size distributions for at least some significant periods of time early during an accident. Salient features of aerosol physics under reactor accident conditions that will affect the nature of the aerosols are (1) the formation of aerosol particles, (2) growth of aerosol particles, (3) shape of aerosol particles. At KAERI, a fission product module has been developed to predict the behaviors of the radioactive materials in the reactor coolant system under severe accident conditions. The fission product module consists of an estimation of the initial inventories, species release from the core, aerosol generation, gas transport, and aerosol transport. The final outcomes of the fission product module designate the radioactive gas and aerosol distribution in the reactor coolant system. The aerosol sedimentation models in the fission product module were validated using ABCOVE and LACE experiments. There were some discrepancies on the predicted

  13. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The gas and aerosol phases of the radioactive materials move through the reactor coolant systems and containments as loaded on the carrier gas or liquid, such as steam or water. Most radioactive materials might escape in the form of aerosols from a nuclear power plant during a severe reactor accident, and it is very important to predict the behavior of these radioactive aerosols in the reactor cooling system and in the containment building under severe accident conditions. Aerosols are designated as very small solid particles or liquid droplets suspended in a gas phase. The suspended solid or liquid particles typically have a range of sizes of 0.01 m to 20 m. Aerosol concentrations in reactor accident analyses are typically less than 100 g/m3 and usually less than 1 g/m3. When there are continuing sources of aerosol to the gas phase or when there are complicated processes involving engineered safety features, much more complicated size distributions develop. It is not uncommon for aerosols in reactor containments to have bimodal size distributions for at least some significant periods of time early during an accident. Salient features of aerosol physics under reactor accident conditions that will affect the nature of the aerosols are (1) the formation of aerosol particles, (2) growth of aerosol particles, (3) shape of aerosol particles. At KAERI, a fission product module has been developed to predict the behaviors of the radioactive materials in the reactor coolant system under severe accident conditions. The fission product module consists of an estimation of the initial inventories, species release from the core, aerosol generation, gas transport, and aerosol transport. The final outcomes of the fission product module designate the radioactive gas and aerosol distribution in the reactor coolant system. The aerosol sedimentation models in the fission product module were validated using ABCOVE and LACE experiments. There were some discrepancies on the predicted

  14. Comparison of Severe Accident Results Among SCDAP/RELAP5, MAAP, and MELCOR Codes

    International Nuclear Information System (INIS)

    Wang, T.-C.; Wang, S.-J.; Teng, J.-T.

    2005-01-01

    This paper demonstrates a large-break loss-of-coolant accident (LOCA) sequence of the Kuosheng nuclear power plant (NPP) and station blackout sequence of the Maanshan NPP with the SCDAP/RELAP5 (SR5), Modular Accident Analysis Program (MAAP), and MELCOR codes. The large-break sequence initiated with double-ended rupture of a recirculation loop. The main steam isolation valves (MSIVs) closed, the feedwater pump tripped, the reactor scrammed, and the assumed high-pressure and low-pressure spray systems of the emergency core cooling system (ECCS) were not functional. Therefore, all coolant systems to quench the core were lost. MAAP predicts a longer vessel failure time, and MELCOR predicts a shorter vessel failure time for the large-break LOCA sequence. The station blackout sequence initiated with a loss of all alternating-current (ac) power. The MSIVs closed, the feedwater pump tripped, and the reactor scrammed. The motor-driven auxiliary feedwater system and the high-pressure and low-pressure injection systems of the ECCS were lost because of the loss of all ac power. It was also assumed that the turbine-driven auxiliary feedwater pump was not functional. Therefore, the coolant system to quench the core was also lost. MAAP predicts a longer time of steam generator dryout, time interval between top of active fuel and bottom of active fuel, and vessel failure time than those of the SR5 and MELCOR predictions for the station blackout sequence. The three codes give similar results for important phenomena during the accidents, including SG dryout, core uncovery, cladding oxidation, cladding failure, molten pool formulation, debris relocation to the lower plenum, and vessel head failure. This paper successfully demonstrates the large-break LOCA sequence of the Kuosheng NPP and the station blackout sequence of the Maanshan NPP

  15. Analysis code for medium and small rupture accidents in ATR. LOTRAC/HEATUP

    International Nuclear Information System (INIS)

    1997-08-01

    In the evaluation of thermo-hydraulic and fuel temperature transient changes in the events which are classified in medium and small rupture accidents of reactor coolant loss that is the safety evaluation event of the ATR, the analysis code for synthetic thermo-hydraulic transient change at the time of medium and small ruptures LOTRAC and the detailed analysis code for fuel temperature HEATUP are used, respectively. By using the LOTAC, the thermo-hydraulic behavior of reactor cooling facility and the temperature behavior of fuel at the time of blow-down are analyzed, and also the characteristics of changing reactor thermal output is analyzed, considering the functioning characteristics of emergency core cooling system. Based on the data of thermo-hydraulic behavior obtained by the LOTRAC, the time of beginning the turn-around of fuel cladding tube temperature obtained by the data of ECCS pouring characteristics, the heat transfer rate after the turn-around and so on, the detailed temperature change of fuel elements is analyzed by the HEATUP, and the highest temperature and the amount of oxidation of fuel cladding tubes are determined. The LOTRAC code, the HEATUP code, various analysis models, and rupture simulation experiment are reported. (K.I.)

  16. Integral large scale experiments on hydrogen combustion for severe accident code validation-HYCOM

    International Nuclear Information System (INIS)

    Breitung, W.; Dorofeev, S.; Kotchourko, A.; Redlinger, R.; Scholtyssek, W.; Bentaib, A.; L'Heriteau, J.-P.; Pailhories, P.; Eyink, J.; Movahed, M.; Petzold, K.-G.; Heitsch, M.; Alekseev, V.; Denkevits, A.; Kuznetsov, M.; Efimenko, A.; Okun, M.V.; Huld, T.; Baraldi, D.

    2005-01-01

    A joint research project was carried out in the EU Fifth Framework Programme, concerning hydrogen risk in a nuclear power plant. The goals were: Firstly, to create a new data base of results on hydrogen combustion experiments in the slow to turbulent combustion regimes. Secondly, to validate the partners CFD and lumped parameter codes on the experimental data, and to evaluate suitable parameter sets for application calculations. Thirdly, to conduct a benchmark exercise by applying the codes to the full scale analysis of a postulated hydrogen combustion scenario in a light water reactor containment after a core melt accident. The paper describes the work programme of the project and the partners activities. Significant progress has been made in the experimental area, where test series in medium and large scale facilities have been carried out with the focus on specific effects of scale, multi-compartent geometry, heat losses and venting. The data were used for the validation of the partners CFD and lumped parameter codes, which included blind predictive calculations and pre- and post-test intercomparison exercises. Finally, a benchmark exercise was conducted by applying the codes to the full scale analysis of a hydrogen combustion scenario. The comparison and assessment of the results of the validation phase and of the challenging containment calculation exercise allows a deep insight in the quality, capabilities and limits of the CFD and the lumped parameter tools which are currently in use at various research laboratories

  17. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  18. On the use of the HOTSPOT code for evaluating accidents involving radioactive materials

    International Nuclear Information System (INIS)

    Sattinger, D.; Sarussi, R.; Tzarfati, Y.; Levinson, S.; Tshuva, A.

    2004-01-01

    The HOTSPOT Health Physics code was created by LLNL in order to provide Health Physics personnel with a fast, field portable calculation tool for evaluating accidents involving radioactive materials. The HOTSPOT code is a first order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT code produce a consistent output for the same input assumptions, and minimize the probability of errors associated with reading a graph incorrectly. Four general programs, Plume, Explosion, Fire, and Resuspension, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel or fire, or an area contamination event. Additional programs estimate the dose commitment from inhalation of any one of the radionuclides listed in the database of radionuclides, calibrate a radiation survey instrument for ground survey measurements, and screening of alpha emitters in the Lung. We believe that the HOTSPOT code is extremely valuable in providing reasonable and reliable guidance for a diversity of application. For example, we demonstrate the release of 241 Am(20Ci) to the atmosphere

  19. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report

    International Nuclear Information System (INIS)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-01

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  20. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Kenji; Ebata, Shigeo [Toshiba Corp., Yokohama (Japan)

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  1. The hierarchy-by-interval approach to identifying important models that need improvement in severe-accident simulation codes

    International Nuclear Information System (INIS)

    Heames, T.J.; Khatib-Rahbar, M.; Kelly, J.E.

    1995-01-01

    The hierarchy-by-interval (HBI) methodology was developed to determine an appropriate phenomena identification and ranking table for an independent peer review of severe-accident computer codes. The methodology is described, and the results of a specific code review are presented. Use of this systematic and structured approach ensures that important code models that need improvement are identified and prioritized, which allows code sponsors to more effectively direct limited resources in future code development. In addition, critical phenomenological areas that need more fundamental work, such as experimentation, are identified

  2. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives

    International Nuclear Information System (INIS)

    Chatelard, P.; Reinke, N.; Arndt, S.; Belon, S.; Cantrel, L.; Carenini, L.; Chevalier-Jabet, K.; Cousin, F.; Eckel, J.; Jacq, F.; Marchetto, C.; Mun, C.; Piar, L.

    2014-01-01

    The severe accident integral code ASTEC, jointly developed since almost 20 years by IRSN and GRS, simulates the behaviour of a whole nuclear power plant under severe accident conditions, including severe accident management by engineering systems and procedures. Since 2004, the ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out in the frame of the SARNET European network of excellence. The first version of the new series ASTEC V2 was released in 2009 to about 30 organizations worldwide and in particular to SARNET partners. With respect to the previous V1 series, this new V2 series includes advanced core degradation models (issued from the ICARE2 IRSN mechanistic code) and necessary extensions to be applicable to Gen. III reactor designs, notably a description of the core catcher component to simulate severe accidents transients applied to the EPR reactor. Besides these two key-evolutions, most of the other physical modules have also been improved and ASTEC V2 is now coupled to the SUNSET statistical tool to make easier the uncertainty and sensitivity analyses. The ASTEC models are today at the state of the art (in particular fission product models with respect to source term evaluation), except for quenching of a severely damage core. Beyond the need to develop an adequate model for the reflooding of a degraded core, the main other mean-term objectives are to further progress on the on-going extension of the scope of application to BWR and CANDU reactors, to spent fuel pool accidents as well as to accidents in both the ITER Fusion facility and Gen. IV reactors (in priority on sodium-cooled fast reactors) while making ASTEC evolving towards a severe accident simulator constitutes the main long-term objective. This paper presents the status of the ASTEC V2 versions, focussing on the description of V2.0 models for water-cooled nuclear plants

  3. Development of Lower Plenum Molten Pool Module of Severe Accident Analysis Code in Korea

    International Nuclear Information System (INIS)

    Son, Donggun; Kim, Dong-Ha; Park, Rae-Jun; Bae, Jun-Ho; Shim, Suk-Ku; Marigomen, Ralph

    2014-01-01

    To simulate a severe accident progression of nuclear power plant and forecast reactor pressure vessel failure, we develop computational software called COMPASS (COre Meltdown Progression Accident Simulation Software) for whole physical phenomena inside the reactor pressure vessel from a core heat-up to a vessel failure. As a part of COMPASS project, in the first phase of COMPASS development (2011 - 2014), we focused on the molten pool behavior in the lower plenum, heat-up and ablation of reactor vessel wall. Input from the core module of COMPASS is relocated melt composition and mass in time. Molten pool behavior is described based on the lumped parameter model. Heat transfers in between oxidic, metallic molten pools, overlying water, steam and debris bed are considered in the present study. The models and correlations used in this study are appropriately selected by the physical conditions of severe accident progression. Interaction between molten pools and reactor vessel wall is also simulated based on the lumped parameter model. Heat transfers between oxidic pool, thin crust of oxidic pool and reactor vessel wall are considered and we solve simple energy balance equations for the crust thickness of oxidic pool and reactor vessel wall. As a result, we simulate a benchmark calculation for APR1400 nuclear power plant, with assumption of relocated mass from the core is constant in time such that 0.2ton/sec. We discuss about the molten pool behavior and wall ablation, to validate our models and correlations used in the COMPASS. Stand-alone SIMPLE program is developed as the lower plenum molten pool module for the COMPASS in-vessel severe accident analysis code. SIMPLE program formulates the mass and energy balance for water, steam, particulate debris bed, molten corium pools and oxidic crust from the first principle and uses models and correlations as the constitutive relations for the governing equations. Limited steam table and the material properties are provided

  4. Oxidation behavior analysis of cladding during severe accidents with combined codes for Qinshan Phase II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shi, Xingwei; Cao, Xinrong; Liu, Zhengzhi

    2013-01-01

    Highlights: • A new verified oxidation model of cladding has been added in Severe Accident Program (SAP). • A coupled analysis method utilizing RELAP5 and SAP codes has been developed and applied to analyze a SA caused by LBLOCA. • Analysis of cladding oxidation under a SA for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) has been performed by SAP. • Estimation of the production of hydrogen has been achieved by coupled codes. - Abstract: Core behavior at a high temperature is extremely complicated during transition from Design Basic Accident (DBA) to the severe accident (SA) in Light Water Reactors (LWRs). The progression of core damage is strongly affected by the behavior of fuel cladding (oxidation, embrittlement and burst). A Severe Accident Program (SAP) is developed to simulate the process of fuel cladding oxidation, rupture and relocation of core debris based on the oxidation models of cladding, candling of melted material and mechanical slumping of core components. Relying on the thermal–hydraulic boundary parameters calculated by RELAP5 code, analysis of a SA caused by the large break loss-of-coolant accident (LBLOCA) without mitigating measures for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) was performed by SAP for finding the key sequences of accidents, estimating the amount of hydrogen generation and oxidation behavior of the cladding

  5. Preprocessor for RELAP5 code, nuclear reactor thermal hydraulics accident analysis program, using Microsoft MS-EXCEL tool

    International Nuclear Information System (INIS)

    Biaty, Patricia Andrea Paladino; Sabundjian, Gaiane

    2005-01-01

    The thermal hydraulic study in accidents and transients analyses in nuclear power plants is realized with some special tools. These programs use the best estimate analyses and have been developed to simulate accidents and transients in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code has been used as tool to licensing the nuclear facilities in our country, which is the objective of this study. The main problem when RELAP5 code is used is a lot of information necessary to simulate thermal hydraulic accidents. Moreover, there is the necessity of a reasonable amount of mathematical operations to calculation of the geometry of the components existents. Therefore, in order to facilitate the manipulation of this information, it is necessary the developing a friendly preprocessor for attainment of the mathematical calculations for RELAP5 code. One of the tools used for some of these calculations is the MS-EXCEL, which will be used in this work. (author)

  6. Development of severe accident analysis code - Development of a finite element code for lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hoon; Lee, Choong Ho; Choi, Tae Hoon; Kim, Hyun Sup; Kim, Se Ho; Kang, Woo Jong; Seo, Chong Kwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-08-01

    The study concerns the development of analysis models and computer codes for lower head failure analysis when a severe accident occurs in a nuclear reactor system. Although the lower head failure modes consists of several failure modes, the study this year was focused on the global rupture with the collapse pressure and mode by limit analysis and elastic deformation. The behavior of molten core causes elevation of temperature in the reactor vessel wall and deterioration of load-carrying capacity of a reactor vessel. The behavior of molten core and the heat transfer modes were, therefore, postulated in several types and the temperature distributions according to the assumed heat flux modes were calculated. The collapse pressure of a nuclear reactor lower head decreases rapidly with elevation of temperature as time passes. The calculation shows the safety of a nuclear reactor is enhanced with the lager collapse pressure when the hot spot is located far from the pole. 42 refs., 2 tabs., 31 figs. (author)

  7. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis to be presented will restrict attention to the elastic part of the elastic-plastic constitutive equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan. 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several simple deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed

  8. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis presented restricts attention to the elastic part of the elastic-plastic equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed. (Auth.)

  9. ASTEC V2 severe accident integral code: Fission product modelling and validation

    International Nuclear Information System (INIS)

    Cantrel, L.; Cousin, F.; Bosland, L.; Chevalier-Jabet, K.; Marchetto, C.

    2014-01-01

    One main goal of the severe accident integral code ASTEC V2, jointly developed since almost more than 15 years by IRSN and GRS, is to simulate the overall behaviour of fission products (FP) in a damaged nuclear facility. ASTEC applications are source term determinations, level 2 Probabilistic Safety Assessment (PSA2) studies including the determination of uncertainties, accident management studies and physical analyses of FP experiments to improve the understanding of the phenomenology. ASTEC is a modular code and models of a part of the phenomenology are implemented in each module: the release of FPs and structural materials from degraded fuel in the ELSA module; the transport through the reactor coolant system approximated as a sequence of control volumes in the SOPHAEROS module; and the radiochemistry inside the containment nuclear building in the IODE module. Three other modules, CPA, ISODOP and DOSE, allow respectively computing the deposition rate of aerosols inside the containment, the activities of the isotopes as a function of time, and the gaseous dose rate which is needed to model radiochemistry in the gaseous phase. In ELSA, release models are semi-mechanistic and have been validated for a wide range of experimental data, and noticeably for VERCORS experiments. For SOPHAEROS, the models can be divided into two parts: vapour phase phenomena and aerosol phase phenomena. For IODE, iodine and ruthenium chemistry are modelled based on a semi-mechanistic approach, these FPs can form some volatile species and are particularly important in terms of potential radiological consequences. The models in these 3 modules are based on a wide experimental database, resulting for a large part from international programmes, and they are considered at the state of the art of the R and D knowledge. This paper illustrates some FPs modelling capabilities of ASTEC and computed values are compared to some experimental results, which are parts of the validation matrix

  10. Simulation and verification studies of reactivity initiated accident by comparative approach of NK/TH coupling codes and RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Ud-Din Khan, Salah [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; King Saud Univ., Riyadh (Saudi Arabia). Sustainable Energy Technologies Center; Peng, Minjun [Harbin Engineering Univ. (China). College of Nuclear Science and Technology; Yuntao, Song; Ud-Din Khan, Shahab [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; Haider, Sajjad [King Saud Univ., Riyadh (Saudi Arabia). Sustainable Energy Technologies Center

    2017-02-15

    The objective is to analyze the safety of small modular nuclear reactors of 220 MWe power. Reactivity initiated accidents (RIA) were investigated by neutron kinetic/thermal hydraulic (NK/TH) coupling approach and thermal hydraulic code i.e., RELAP5. The results obtained by these approaches were compared for validation and accuracy of simulation. In the NK/TH coupling technique, three codes (HELIOS, REMARK, THEATRe) were used. These codes calculate different parameters of the reactor core (fission power, reactivity, fuel temperature and inlet/outlet temperatures). The data exchanges between the codes were assessed by running the codes simultaneously. The results obtained from both (NK/TH coupling) and RELAP5 code analyses complement each other, hence confirming the accuracy of simulation.

  11. SSYST. A code system to analyze LWR fuel rod behavior under accident conditions

    International Nuclear Information System (INIS)

    Gulden, W.; Meyder, R.; Borgwaldt, H.

    1982-01-01

    SSYST (Safety SYSTem) is a modular system to analyze the behavior of light water reactor fuel rods and fuel rod simulators under accident conditions. It has been developed in close cooperation between Kernforschungszentrum Karlsruhe (KfK) and the Institut fuer Kerntechnik und Energiewandlung (IKE), University Stuttgart, under contract of Projekt Nukleare Sicherheit (PNS) at KfK. Although originally aimed at single rod analysis, features are available to calculate effects such as blockage ratios of bundles and wholes cores. A number of inpile and out-of-pile experiments were used to assess the system. Main differences versus codes like FRAP-T with similar applications are (1) an open-ended modular code organisation, (2) availability of modules of different sophistication levels for the same physical processes, and (3) a preference for simple models, wherever possible. The first feature makes SSYST a very flexible tool, easily adapted to changing requirements; the second enables the user to select computational models adequate to the significance of the physical process. This leads together with the third feature to short execution times. The analysis of transient rod behavior under LOCA boundary conditions e.g. takes 2 mins cpu-time (IBM-3033), so that extensive parametric studies become possible

  12. Development of GRIF-SM: The code for analysis of beyond design basis accidents in sodium cooled reactors

    International Nuclear Information System (INIS)

    Chvetsov, I.; Kouznetsov, I.; Volkov, A.

    2000-01-01

    GRIF-SM code was developed at the IPPE fast reactor department in 1992 for the analysis of transients in sodium cooled fast reactors under severe accident conditions. This code provides solution of transient hydrodynamics and heat transfer equations taking into account possibility of coolant boiling, fuel and steel melting, reactor kinetics and reactivity feedback due to variations of the core components temperature, density and dimensions. As a result of calculation, transient distribution of the coolant velocity and density was determined as well as temperatures of the fuel pins, reactor core and primary circuit as a whole. Development of the code during further 6 years period was aimed at the modification of the models describing thermal hydraulic characteristics of the reactor, and in particular in detailed description of the sodium boiling process. The GRIF-SM code was carefully validated against FZK experimental data on steady state sodium boiling in the electrically heated tube; transient sodium boiling in the 7-pin bundle; transient sodium boiling in the 37-pin bundle under flow redaction simulating ULOF accident. To show the code capabilities some results of code application for beyond design basis accident analysis on BN-800-type reactor are presented. (author)

  13. Application of the integral code MELCOR for German NPPs and use within accident management and PSA projects

    International Nuclear Information System (INIS)

    Sonnenkalb, Martin

    2006-01-01

    The paper summarizes the application of MELCOR to German NPPS with PWR and BWR. A development of different code systems like ATHLET/ATHLET-CD, COCOSYS and ASTEC is done as well at GRS but it is not discussed in this paper. GRS has been using MELCOR since 1990 for real plant calculations. The results of MELCOR analyses are used mainly in PSA level 2 studies and in Accident Management projects for both types of NPPs. MELCOR has been a very useful and robust tool for these analyses. The calculations performed within the PSA level 2 studies for both types of German NPPs have shown that typical severe accident scenarios are characterized by several phases and that the consideration of plant specifics are important not only for realistic source term calculations. An overview of typically severe accident phases together with main accident management measures installed in German NPPs is presented in the paper. Several severe accident sequences have been calculated for both reactor types and some detailed nodalisation studies and code to code comparisons have been prepared in the past, to prove the developed core, reactor circuit and containment/building nodalisation schemes. Together with the compilation of the MELCOR data set, the qualification of the nodalisation schemes has been pursued with comparative calculations with detailed GRS codes for selected phases of severe accidents. The results of these comparative analyses showed in most of the areas a good agreement of essential parameters and of the general description of the plant behaviour during the accident progression. The in general detail of the German plant nodalisation schemes developed for MELCOR contributes significantly to this good agreement between integral and detailed code results. The implementation of MELCOR into the GRS simulator ATLAS was very important for the assessment of the results, not only due to the great detail of the nodalisation schemes used. It is used for training of severe accident

  14. Safety analysis of the IAEA reference research reactor during loss of flow accident using the code MERSAT

    International Nuclear Information System (INIS)

    Hainoun, A.; Ghazi, N.; Abdul-Moaiz, B. Mansour

    2010-01-01

    Using the thermal hydraulic code MERSAT detailed model including primary and secondary loop was developed for the IAEA's reference research reactor MTR 10 MW. The developed model enables the simulation of expected neutronic and thermal hydraulic phenomena during normal operation, reactivity and loss of flow accidents. Two different loss of flow accident (LOFA) have been simulated using slow and fast decrease time of core mass flow. In both cases the expected flow reversal from downward forced to upward natural circulation has been successfully simulated. The results indicate that in both accidents the limit of onset of subcooled boiling was not arrived and consequently no exceed of design limits in term of thermal hydraulic instability or DNB is observed. Finally, the simulation results show good agreement with previous international benchmark analyses accomplished with other qualified channel and thermal hydraulic system codes.

  15. The TE coupled RELAP5/PANTHER/COBRA code package and methodology for integrated PWR accident analysis

    International Nuclear Information System (INIS)

    Schneidesch, Christophe R.; Zhang, Jinzhao; Ammirabile, Luca; Dalleur, Jean-Paul

    2006-01-01

    At Tractebel Engineering (TE), a dynamic coupling has been developed between the best estimate thermal hydraulics system code RELAP5 and the 3-dimensional neutronics code PANTHER via the transient analysis code linkage program TALINK. An interface between PANTHER and the subchannel core thermal-hydraulic analysis code COBRA 3C has been established for on-line calculation of the Departure from Nucleate Boiling Ratio (DNBR). In addition to the standard RELAP5-PANTHER coupling, the fully dynamic coupling of the RELAP5/PANTHER/COBRA3C-TE code package can be activated for evaluation purposes in which the PANTHER close-channel thermal-hydraulics module is replaced by the COBRA3C-TE with cross flow modelling and extended T-H flow conditions capabilities. The qualification of the RELAP5-PANTHER coupling demonstrated the robustness achieved by the combined 3-D neutron kinetics/system T-H code package for transient simulations. The coupled TE code package has been approved by the Belgian Safety Authorities and is used at TE for analyzing asymmetric PWR accidents with strong core-system interactions. In particular, the TE coupled code package was first used to develop a main steam line break in hot shutdown conditions (SLBHZP) accident analysis methodology based on the TE deterministic bounding approach. This methodology has been reviewed and accepted by the Belgian Safety Authorities for specific applications. Those specific applications are related to the power up-rate and steam generator replacement project of the Doel 2 plant or to the Tihange-3 SLB accident re-analysis. A coupled feedwater line break (FLB) accident analysis methodology is currently being reviewed for application approval. The results of coupled thermal-hydraulic and neutronic analysis of SLB and FLB show that there exist important margins in the traditional final safety analysis report (FSAR) accident analysis. Those margins can be used to increase the operational flexibility of the plants. Moreover, the

  16. The TE coupled RELAP5/PANTHER/COBRA code package and methodology for integrated PWR accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneidesch, Christophe R.; Zhang, Jinzhao; Ammirabile, Luca; Dalleur, Jean-Paul [Suez-Tractebel Engineering, Avenue Ariane 7, B-1200 Brussels (Belgium)

    2006-07-01

    At Tractebel Engineering (TE), a dynamic coupling has been developed between the best estimate thermal hydraulics system code RELAP5 and the 3-dimensional neutronics code PANTHER via the transient analysis code linkage program TALINK. An interface between PANTHER and the subchannel core thermal-hydraulic analysis code COBRA 3C has been established for on-line calculation of the Departure from Nucleate Boiling Ratio (DNBR). In addition to the standard RELAP5-PANTHER coupling, the fully dynamic coupling of the RELAP5/PANTHER/COBRA3C-TE code package can be activated for evaluation purposes in which the PANTHER close-channel thermal-hydraulics module is replaced by the COBRA3C-TE with cross flow modelling and extended T-H flow conditions capabilities. The qualification of the RELAP5-PANTHER coupling demonstrated the robustness achieved by the combined 3-D neutron kinetics/system T-H code package for transient simulations. The coupled TE code package has been approved by the Belgian Safety Authorities and is used at TE for analyzing asymmetric PWR accidents with strong core-system interactions. In particular, the TE coupled code package was first used to develop a main steam line break in hot shutdown conditions (SLBHZP) accident analysis methodology based on the TE deterministic bounding approach. This methodology has been reviewed and accepted by the Belgian Safety Authorities for specific applications. Those specific applications are related to the power up-rate and steam generator replacement project of the Doel 2 plant or to the Tihange-3 SLB accident re-analysis. A coupled feedwater line break (FLB) accident analysis methodology is currently being reviewed for application approval. The results of coupled thermal-hydraulic and neutronic analysis of SLB and FLB show that there exist important margins in the traditional final safety analysis report (FSAR) accident analysis. Those margins can be used to increase the operational flexibility of the plants. Moreover, the

  17. Modeling of a confinement bypass accident with CONSEN, a fast-running code for safety analyses in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it [Sapienza University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Roma (Italy); Giannetti, Fabio [Sapienza University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Roma (Italy); Porfiri, Maria Teresa [ENEA FUS C.R. Frascati, Via Enrico Fermi, 45, 00044 Frascati, Roma (Italy)

    2013-12-15

    Highlights: • The CONSEN code for thermal-hydraulic transients in fusion plants is introduced. • A magnet induced confinement bypass accident in ITER has been simulated. • A comparison with previous MELCOR results for the accident is presented. -- Abstract: The CONSEN (CONServation of ENergy) code is a fast running code to simulate thermal-hydraulic transients, specifically developed for fusion reactors. In order to demonstrate CONSEN capabilities, the paper deals with the accident analysis of the magnet induced confinement bypass for ITER design 1996. During a plasma pulse, a poloidal field magnet experiences an over-voltage condition or an electrical insulation fault that results in two intense electrical arcs. It is assumed that this event produces two one square meters ruptures, resulting in a pathway that connects the interior of the vacuum vessel to the cryostat air space room. The rupture results also in a break of a single cooling channel within the wall of the vacuum vessel and a breach of the magnet cooling line, causing the blow down of a steam/water mixture in the vacuum vessel and in the cryostat and the release of 4 K helium into the cryostat. In the meantime, all the magnet coils are discharged through the magnet protection system actuation. This postulated event creates the simultaneous failure of two radioactive confinement barrier and it envelopes all type of smaller LOCAs into the cryostat. Ice formation on the cryogenic walls is also involved. The accident has been simulated with the CONSEN code up to 32 h. The accident evolution and the phenomena involved are discussed in the paper and the results are compared with available results obtained using the MELCOR code.

  18. Calculation of an accident with delayed scram at NPP Greifswald using the coupled code DYN3D/ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S

    1998-10-01

    Complex computer codes modeling the whole reactor system including 3D neutron kinetics in combination with advanced thermohydraulic plant models become more and more important for the safety assessment of nuclear reactors. Transients or experiments with both neutron kinetic and thermalhydraulic data are needed for the validation of such coupled codes like DYN3D/ATHLET. First of all measured results from nuclear power plant (NPP) transients should be used, because the experimental thermalhydraulic facilities do not offer the possibility to model space-dependent neutron kinetic effects and research reactors with reliably measured 3D neutron kinetic data do not allow to study thermalhydraulic feedback effects. In this paper, an accident with delayed scram which occurred in 1989 at the NPP Greifswald is analyzed. Calculations of this accident were carried out with the goal to validate the coupled code DYN3D/ATHLET. (orig.)

  19. Calculation of an accident with delayed scram at NPP Greifswald using the coupled code DYN3D/ATHLET

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    Complex computer codes modeling the whole reactor system including 3D neutron kinetics in combination with advanced thermohydraulic plant models become more and more important for the safety assessment of nuclear reactors. Transients or experiments with both neutron kinetic and thermalhydraulic data are needed for the validation of such coupled codes like DYN3D/ATHLET. First of all measured results from nuclear power plant (NPP) transients should be used, because the experimental thermalhydraulic facilities do not offer the possibility to model space-dependent neutron kinetic effects and research reactors with reliably measured 3D neutron kinetic data do not allow to study thermalhydraulic feedback effects. In this paper, an accident with delayed scram which occurred in 1989 at the NPP Greifswald is analyzed. Calculations of this accident were carried out with the goal to validate the coupled code DYN3D/ATHLET. (orig.)

  20. Qualification and application of nuclear reactor accident analysis code with the capability of internal assessment of uncertainty

    International Nuclear Information System (INIS)

    Borges, Ronaldo Celem

    2001-10-01

    This thesis presents an independent qualification of the CIAU code ('Code with the capability of - Internal Assessment of Uncertainty') which is part of the internal uncertainty evaluation process with a thermal hydraulic system code on a realistic basis. This is done by combining the uncertainty methodology UMAE ('Uncertainty Methodology based on Accuracy Extrapolation') with the RELAP5/Mod3.2 code. This allows associating uncertainty band estimates with the results obtained by the realistic calculation of the code, meeting licensing requirements of safety analysis. The independent qualification is supported by simulations with RELAP5/Mod3.2 related to accident condition tests of LOBI experimental facility and to an event which has occurred in Angra 1 nuclear power plant, by comparison with measured results and by establishing uncertainty bands on safety parameter calculated time trends. These bands have indeed enveloped the measured trends. Results from this independent qualification of CIAU have allowed to ascertain the adequate application of a systematic realistic code procedure to analyse accidents with uncertainties incorporated in the results, although there is an evident need of extending the uncertainty data base. It has been verified that use of the code with this internal assessment of uncertainty is feasible in the design and license stages of a NPP. (author)

  1. A parametric study of MELCOR Accident Consequence Code System 2 (MACCS2) Input Values for the Predicted Health Effect

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The MELCOR Accident Consequence Code System 2, MACCS2, has been the most widely used through the world among the off-site consequence analysis codes. MACCS2 code is used to estimate the radionuclide concentrations, radiological doses, health effects, and economic consequences that could result from the hypothetical nuclear accidents. Most of the MACCS model parameter values are defined by the user and those input parameters can make a significant impact on the output. A limited parametric study was performed to identify the relative importance of the values of each input parameters in determining the predicted early and latent health effects in MACCS2. These results would not be applicable to every case of the nuclear accidents, because only the limited calculation was performed with Kori-specific data. The endpoints of the assessment were early- and latent cancer-risk in the exposed population, therefore it might produce the different results with the parametric studies for other endpoints, such as contamination level, absorbed dose, and economic cost. Accident consequence assessment is important for decision making to minimize the health effect from radiation exposure, accordingly the sufficient parametric studies are required for the various endpoints and input parameters in further research

  2. SARNET, a success story. Survey of major achievements on severe accidents and of knowledge capitalization within the ASTEC code

    International Nuclear Information System (INIS)

    Albiol, T.; Van Dorsselaere, J.P.; Reinke, N.

    2013-01-01

    51 organizations from Europe and Canada cooperated within SARNET (Severe Accident Research Network of Excellence) joining their capacities of research in order to resolve the most important pending issues for enhancing, in regard to Severe Accidents (SA), the safety of existing and future Nuclear Power Plants (NPPs). SARNET defines common research programmes and develops common computer codes and methodologies for safety assessment. The ASTEC integral code, jointly developed by IRSN (France) and GRS (Germany) for Light Water Reactor (LWR) source term SA evaluation, Probabilistic Safety Assessment (PSA) level-2 studies and SA management evaluation, is the main integrating component of SARNET. The scientific knowledge generated in the Corium, Source Term and Containment Topics has been integrated into the code through improved or new physical models. ASTEC constitutes now the reference European SA integral code. During the 4 and half years of SARNET, 30 partners have assessed the successive versions of the ASTEC V1 code through validation. More than 60 scientists have been trained on the code use. Validation tasks on about 65 experiments were performed to cover all physical phenomena occurring in a severe accident: circuit thermalhydraulic, core degradation, fission products (FP) release and transport, Molten-Corium-Concrete-Interaction (MCCI), and in the containment, thermalhydraulic, aerosol and iodine as well as hydrogen behaviour. The overall status of validation can be considered as good, with results often close to results of mechanistic codes. Some reach the limits of present knowledge, for instance on MCCI, and, like in most codes, an adequate model for reflooding of a degraded core is still missing. IRSN and GRS are currently preparing the new series of ASTEC V2 versions that will account for most of the needs of evolution expressed by the SARNET partners. The first version V2.0, planned for March 09, will be applicable to EPR and will include the ICARE2

  3. Proceedings of the Seminar on Methods and Codes for Assessing the off-site consequences of nuclear accidents. Volume 1

    International Nuclear Information System (INIS)

    Kelly, G.N.; Luykx, F.

    1991-01-01

    The Commission of the European Communities, within the framework of its 1980-84 radiation protection research programme, initiated a two-year project in 1983 entitled 'methods for assessing the radiological impact of accidents' (Maria). This project was continued in a substantially enlarged form within the 1985-89 research programme. The main objectives of the project were, firstly, to develop a new probabilistic accident consequence code that was modular, incorporated the best features of those codes already in use, could be readily modified to take account of new data and model developments and would be broadly applicable within the EC; secondly, to acquire a better understanding of the limitations of current models and to develop more rigorous approaches where necessary; and, thirdly, to quantify the uncertainties associated with the model predictions. This research led to the development of the accident consequence code Cosyma (COde System from MAria), which will be made generally available later in 1990. The numerous and diverse studies that have been undertaken in support of this development are summarized in this paper, together with indications of where further effort might be most profitably directed. Consideration is also given to related research directed towards the development of real-time decision support systems for use in off-site emergency management

  4. Reactor physics modelling of accident tolerant fuel for LWRs using ANSWERS codes

    International Nuclear Information System (INIS)

    Lindley, B.A.; Lillington, J.N.; Kotlyar, D.; Parks, G.T.; Petrovic, B.

    2016-01-01

    The majority of nuclear reactors operating in the world today and similarly the majority of near-term new build reactors will be LWRs. These currently accommodate traditional Zr clad UO_2/PuO_2 fuel designs which have an excellent performance record for normal operation. However, the events at Fukushima culminated in significant hydrogen production and hydrogen explosions, resulting from high temperature Zr/steam interaction following core uncovering for an extended period. These events have resulted in increased emphasis towards developing more accident tolerant fuels (ATFs)-clad systems, particularly for current and near-term build LWRs. R and D programmes are underway in the US and elsewhere to develop ATFs and the UK is engaging in these international programmes. Candidate advanced fuel materials include uranium nitride (UN) and uranium silicide (U_3Si_2). Candidate cladding materials include advanced stainless steel (FeCrAl) and silicon carbide. The UK has a long history in industrial fuel manufacture and fabrication for a wide range of reactor systems including LWRs. This is supported by a national infrastructure to perform experimental and theoretical R and D in fuel performance, fuel transient behaviour and reactor physics. In this paper, an analysis of the Integral Inherently Safe LWR design (I"2S-LWR), a reactor concept developed by an international collaboration led by the Georgia Institute of Technology, within a US DOE Nuclear Energy University Program (NEUP) Integrated Research Project (IRP) is considered. The analysis is performed using the ANSWERS reactor physics code WIMS and the EDF Energy core simulator PANTHER by researchers at the University of Cambridge. The I"2S-LWR is an advanced 2850 MWt integral PWR with inherent safety features. In order to enhance the safety features, the baseline fuel and cladding materials that were chosen for the I"2S-LWR design are U_3Si_2 and advanced stainless steel respectively. In addition, the I"2S-LWR design

  5. Development of an anthropomorphic model and a Monte Carlo calculation code devoted to the physical reconstruction of a radiological accident

    International Nuclear Information System (INIS)

    Roux, A.

    2001-01-01

    The diversity of radiological accidents makes difficult the medical prognosis and the therapy choice from only clinical observations. To complete this information, it is important to know the global dose received by the organism and the dose distributions in depth in tissues. The dose estimation can be made by a physical reconstruction of the accident with the help of tools based on experimental techniques or on calculation. The software of the geometry construction (M.G.E.D.), associated to the Monte-Carlo code of photons and neutrons transport (M.O.R.S.E.) replies these constraints. An important result of this work is to determine the principal parameters to know in function of the accident type, as well as the precision level required for these parameters. (N.C.)

  6. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  7. Simulation analysis on accident at Fukushima Daiichi Nuclear Power Plant Unit 2 by SAMPSON code

    International Nuclear Information System (INIS)

    Takahashi, Atsuo; Pellegrini, Marco; Mizouchi, Hideo; Suzuki, Hiroaki; Naitoh, Masanori

    2015-01-01

    The accident occurred at the Fukushima Daiichi Nuclear Power Plant Unit 2 has been investigated by the severe accident analysis code, SAMPSON with more realistic boundary conditions and newly introduced models. In Unit 2, the Reactor Core Isolation Cooling system (RCIC) is thought to have worked for unexpectedly long time (about 70 hours) without batteries. It is thought to be due to balance between injected water from the RCIC pump and supplied mixture of steam and water to the RCIC turbine. To confirm the RCIC working condition and reproduce the measured plant properties, such as pressure and water level in the reactor pressure vessel (RPV), we introduced two-phase turbine driven pump model into SAMPSON. In the model, mass flow rate of water injected by RCIC was calculated through mass flow rate of steam included in extracted two-phase flow, steam generated from flashing of water included in extracted two-phase flow, and turbine efficiency degradation originated by the mixture of steam and water flowing to the RCIC turbine. To reproduce the dry well (DW) pressure, we assumed that torus room was flooded by the tsunami and heat was removed from the suppression chamber to the sea water. Simulation results by SAMPSON basically agree with the measured values such as pressure in the RPV and in the DW until several days after the scram. However, some contradictions between the simulation results and the measured values, such as that inversion of the RPV pressure at 10 hours after scram in the measurement happened at 14 hours in the simulation and that the DW pressure showed different behavior between simulation and measurement when SRV started periodic operation at 71 hours, are still remain and are under consideration. In the current calculation, model for falling core to the lower plenum was modified so that debris is not retained at the core plate based on observation of the XR2-1 experiment. Additionally, model of the RPV failure by melting of the penetrating pipe

  8. Modelization of the initiator success of the accident of Fukushima Daiichi in the NPP of ZION by the code MAAP-5

    International Nuclear Information System (INIS)

    Kevin Fernandez, M.; Jimenez, G.; Batteira, P.

    2013-01-01

    The main objective of the project is the modeling of the accident with a code new in the industry, MAAP5, and in a different nuclear plant, as well as various parameters sensitivity analysis to assess their influence on the evolution of the accident. The paper presents the analysis of the evolution of the simulated accident, as well as the evaluation of different sensitivity analyses performed on different parameters influence on the evolution: pre-accident conditions, actions of operator, etc. Operator actions, not referred to in the emergency procedures, which could influence the behavior of the reactor vessel during severe accident progression were analyzed.

  9. Simulation of experiment on aerosol behaviour at severe accident conditions in the LACE experimental facility with the ASTEC CPA code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2007-01-01

    The experiment LACE LA4 on thermal-hydraulics and aerosol behavior in a nuclear power plant containment, which was performed in the LACE experimental facility, was simulated with the ASTEC CPA module of the severe accident computer code ASTEC V1.2. The specific purpose of the work was to assess the capability of the module (code) to simulate thermal-hydraulic conditions and aerosol behavior in the containment of a light-water-reactor nuclear power plant at severe accident conditions. The test was simulated with boundary conditions, described in the experiment report. Results of thermal-hydraulic conditions in the test vessel, as well as dry aerosol concentrations in the test vessel atmosphere, are compared to experimental results and analyzed. (author)

  10. Simulation of KAEVER experiments on aerosol behavior in a nuclear power plant containment at accident conditions with the ASTEC code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2006-01-01

    Experiments on aerosol behaviour in saturated and non-saturated atmosphere, which were performed in the KAEVER experimental facility, were simulated with the severe accident computer code ASTEC CPA V1.2. The specific purpose of the work was to assess the capability of the code to model aerosol condensation and deposition in the containment of a light-water-reactor nuclear power plant at severe accident conditions, if the atmosphere saturation conditions are simulated adequately. Five different tests were first simulated with boundary conditions, obtained from the experiments. In all five tests, a non-saturated atmosphere was simulated, although, in four tests, the atmosphere was allegedly saturated. The simulations were repeated with modified boundary conditions, to obtain a saturated atmosphere in all tests. Results of dry and wet aerosol concentrations in the test vessel atmosphere for both sets of simulations are compared to experimental results. (author)

  11. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  12. Accident analysis in the water loop of the nuclear engineering department of IPEN using the RELAP4 code

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1980-06-01

    A thermal-hydraulic analysis to describe the transient behavior in the water loop of the Nuclear Engineering Department of the Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brazil, was performed. Postulated accidents such as those resulting from (1) loss of coolant, (2) main pump failure and (3) power excursions, were studied. The computer code RELAP4/Mod.3 was employed as the principal tool of analysis. (Author) [pt

  13. Prediction of corium debris characteristics in lower plenum of a nordic BWR in different accident scenarios using MELCOR code - 15367

    International Nuclear Information System (INIS)

    Phung, V.A.; Galushin, S.; Raub, S.; Goronovski, A.; Villanueva, W.; Koeoep, K; Grishchenko, D.; Kudinov, P.

    2015-01-01

    Severe accident management strategy in Nordic boiling water reactors (BWRs) relies on ex-vessel core debris coolability. The mode of corium melt release from the vessel determines conditions for ex-vessel accident progression and threats to containment integrity, e.g., formation of a non-coolable debris bed and possibility of energetic steam explosion. In-vessel core degradation and relocation is an important stage which determines characteristics of corium debris in the vessel lower plenum, such as mass, composition, thermal properties, timing of relocation, and decay heat. These properties affect debris reheating and remelting, melt interactions with the vessel structures, and possibly vessel failure and melt ejection mode. Core degradation and relocation is contingent upon the accident scenario parameters such as recovery time and capacity of safety systems. The goal of this work is to obtain a better understanding of the impact of the accident scenarios and timing of the events on core relocation phenomena and resulting properties of the debris bed in the vessel lower plenum of Nordic BWRs. In this study, severe accidents in a Nordic BWR reference plant are initiated by a station black out event, which is the main contributor to core damage frequency of the reactor. The work focuses on identifying ranges of debris bed characteristics in the lower plenum as functions of the accident scenario with different recovery timing and capacity of safety systems. The severe accident analysis code MELCOR coupled with GA-IDPSA is used in this work. GA-IDPSA is a Genetic Algorithm-based Integrated Deterministic Probabilistic Safety Analysis tool, which has been developed to search uncertain input parameter space. The search is guided by different target functions. Scenario grouping and clustering approach is applied in order to estimate the ranges of debris characteristics and identify scenario regions of core relocation that can lead to significantly different debris bed

  14. Parameterization of the driving time in the evacuation or fast relocation model of an accident consequence code

    International Nuclear Information System (INIS)

    Pfeffer, W.; Hofer, E.; Nowak, E.; Schnadt, H.

    1988-01-01

    The model of protective measures in the accident consequence code system UFOMOD of the German Risk Study, Phase B, requires the driving times of the population to be evacuated for the evaluation of the dose received during the evacuation. The parameter values are derived from evacuation simulations carried out with the code EVAS for 36 sectors from various sites. The simulations indicated that the driving time strongly depends on the population density, whereas other influences are less important. It was decided to use different driving times in the consequence code for each of four population density classes as well as for each of three or four fractions of the population in a sector. The variability between sectors of a class was estimated from the 36 sectors, in order to derive subjective probability distributions that are to model the uncertainty in the parameter value to be used for any of the fractions in a particular sector for which an EVAS simulation has not yet been performed. To this end also the impact of the uncertainties in the parameters and modelling assumptions of EVAS on the simulated times was quantified using expert judgement. The distributions permit the derivation of a set of driving times to be used as so-called ''best estimate'' or reference values in the accident consequence code. Additionally they are directly applicable in an uncertainty and sensitivity analysis

  15. Estimation of doses received by operators in the 1958 RB reactor accident using the MCNP5 computer code simulation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2012-01-01

    Full Text Available A numerical simulation of the radiological consequences of the RB reactor reactivity excursion accident, which occurred on October 15, 1958, and an estimation of the total doses received by the operators were run by the MCNP5 computer code. The simulation was carried out under the same assumptions as those used in the 1960 IAEA-organized experimental simulation of the accident: total fission energy of 80 MJ released in the accident and the frozen positions of the operators. The time interval of exposure to high doses received by the operators has been estimated. Data on the RB1/1958 reactor core relevant to the accident are given. A short summary of the accident scenario has been updated. A 3-D model of the reactor room and the RB reactor tank, with all the details of the core, created. For dose determination, 3-D simplified, homogenised, sexless and faceless phantoms, placed inside the reactor room, have been developed. The code was run for a number of neutron histories which have given a dose rate uncertainty of less than 2%. For the determination of radiation spectra escaping the reactor core and radiation interaction in the tissue of the phantoms, the MCNP5 code was run (in the KCODE option and “mode n p e”, with a 55-group neutron spectra, 35-group gamma ray spectra and a 10-group electron spectra. The doses were determined by using the conversion of flux density (obtained by the F4 tally in the phantoms to doses using factors taken from ICRP-74 and from the deposited energy of neutrons and gamma rays (obtained by the F6 tally in the phantoms’ tissue. A rough estimation of the time moment when the odour of ozone was sensed by the operators is estimated for the first time and given in Appendix A.1. Calculated total absorbed and equivalent doses are compared to the previously reported ones and an attempt to understand and explain the reasons for the obtained differences has been made. A Root Cause Analysis of the accident was done and

  16. Comparison of european computer codes relative to the aerosol behavior in PWR containment buildings during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Beonio-Brocchieri, F.

    1986-09-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes used in reactor safety in order to assess their capability of realistically describing the aerosol behavior in PWR reactor containment buildings during severe accidents. The codes included in the present study are the following: AEROSIM-M, AEROSOLS/Bl, CORRAL-2, NAUA Mod5. In AEROSIM-M, AEROSOLS/Bl and NAUA Mod5, the integro-differential equation for the evolution of the particle mass distribution is approximated by a set of coupled first order differential equations. To this end, the particle distribution function is replaced by a number of discrete monodisperse fractions. The CORRAL-2 has an essentially empirical basis (processes not explicitely modelled, but their net effects accounted for). The physical processes taken into account in the codes are shown finally

  17. Development of a dose assessment computer code for the NPP severe accident at intermediate level - Korean case

    International Nuclear Information System (INIS)

    Cheong, J.H.; Lee, K.J.; Cho, H.Y.; Lim, J.H.

    1993-01-01

    A real-time dose assessment computer code named RADCON (RADiological CONsequence analysis) has been developed. An approximation method describing the distribution of radionuclides in a puff was proposed and implemented in the code. This method is expected to reduce the time required to calculate the cloud shine (external dose from radioactive plumes). RADCON can simulate an NPP emergency situation by considering complex topography and continuous washout phenomena and provide a function of effective emergency planning. To verify the code results, RADCON has been compared with RASCAL, which was developed for the U.S. NRC by ORNL, for eight hypothetical accident scenarios. Sensitivity analysis was also performed for the important input parameters. (2 tabs., 3 figs.)

  18. SCAR - Post-Accident Simulator SIPA with safety analysis code CATHARE-2 and PWR cold shutdown state simulation

    International Nuclear Information System (INIS)

    Farvacque, M.; Faydide, B.; Dufeil, Ph.; Raimond, E.

    2003-01-01

    The use of Cathare in the simulators of pressurized water reactors has been effective since the beginning of the nineties. Scar project is the second stage of the Cathare strategy for the simulators, its main objective is the extension of the field of simulation to the accident situations in cold shutdown states. Work was carried out in 3 major areas: modelling, optimization and integration in the simulator. Throughout the project, the developments were part of a 3 stages validation strategy: -) elementary tests of the developments of new model on the N4 (1450 MW PWR); -) analytical tests and systems to ensure non regression of the validation of the physical laws of the Cathare code during the modifications carried out within the optimization stage; and -) overall tests of the SIPA-CP1 (900 MW PWR) simulator, controlled automatically by programmed scenarios including the transients which are carried out in PWR, the transients of the Regulatory Guides and the accident transients

  19. Study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP

    International Nuclear Information System (INIS)

    Soares, Alexandre de Souza

    2014-01-01

    The present paper proposes a study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP. To this end, it considered a loss of coolant accident with 160 cm 2 breaking area in cold leg of 20 circuit of the reactor cooling system of nuclear power plant Angra 2, with the reactor operating in stationary condition, to 100% power. It considered that occurred at the same time the loss of External Power Supply and the availability of emergency cooling system was not full. The results obtained are quite relevant and with the possibility of being used in the planning of future activities, given that the construction of Angra 3 is underway and resembles the Angra 2. (author)

  20. The coevolution of genes and genetic codes: Crick's frozen accident revisited.

    Science.gov (United States)

    Sella, Guy; Ardell, David H

    2006-09-01

    The standard genetic code is the nearly universal system for the translation of genes into proteins. The code exhibits two salient structural characteristics: it possesses a distinct organization that makes it extremely robust to errors in replication and translation, and it is highly redundant. The origin of these properties has intrigued researchers since the code was first discovered. One suggestion, which is the subject of this review, is that the code's organization is the outcome of the coevolution of genes and genetic codes. In 1968, Francis Crick explored the possible implications of coevolution at different stages of code evolution. Although he argues that coevolution was likely to influence the evolution of the code, he concludes that it falls short of explaining the organization of the code we see today. The recent application of mathematical modeling to study the effects of errors on the course of coevolution, suggests a different conclusion. It shows that coevolution readily generates genetic codes that are highly redundant and similar in their error-correcting organization to the standard code. We review this recent work and suggest that further affirmation of the role of coevolution can be attained by investigating the extent to which the outcome of coevolution is robust to other influences that were present during the evolution of the code.

  1. FIRAC: a computer code to predict fire-accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Krause, F.R.; Tang, P.K.; Andrae, R.W.; Martin, R.A.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire

  2. An improved Zircaloy-steam reaction model for use with the March 2 (Meltdown Accident Response Characteristics) code

    International Nuclear Information System (INIS)

    Manahan, M.P.

    1983-01-01

    An improved Zircaloy-steam oxidation reaction model has been incorporated into the MARCH 2 code which includes: (1) improved physical modeling for solid-state process oxidation, (2) improved geometric modeling for gaseous diffusion oxidation, (3) chemisorption/dissociation retardation due to high hydrogen partial pressures, and (4) laminar and turbulent flow conditions. Several accident sequences have been analyzed using the model, and for the sequences considered, the results indicate that the integrated and averaged variables are not significantly altered for the current level of fuel modeling, however, the localized variables such as nodal temperature and oxide thickness are affected

  3. MABEL-2D: a code to analyse cladding deformation in a loss-of-coolant accident. Part 2

    International Nuclear Information System (INIS)

    Bowring, R.W.

    1985-08-01

    The MABEL series of codes is being developed at Harwell to predict the extent of cladding deformation (ballooning) in pressurized water reactor fuel rods during a loss of coolant accident. MABEL - 2D is an updated version of MABEL - 2C. These are user notes for MABEL - 2D (which is described in a separate report AEEW - R1979). They describe the input data specification; the use of the restart facility; debug printing and quick-running sample problems. The input data are divided into rod data, thermal hydraulic data and creep data. There is an input data flow chart. The main appendix gives the detailed input data specification. (U.K.)

  4. Simulation of accident and restrained transients in PWR nuclear power plant with RELAP 5/MOD 1 computer code

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1986-01-01

    The computer code RELAP5/MOD1 has been utilized to investigate the thermal-hydraulic behaviour of a standard 1300 Mwe pressurized water reactor plant of the KWU design during a station blackout and during a loss-of-coolant accident involving 2% break in the cross-sectional area the cold leg in one of the four loops and located between the pump and the reactor pressure vessel. During the simulations the reactor scram system and the emergency coolant system were considered inactive. (Author) [pt

  5. Atmospheric dispersion calculation for posturated accident of nuclear facilities and the computer code: PANDA

    International Nuclear Information System (INIS)

    Kitahara, Yoshihisa; Kishimoto, Yoichiro; Narita, Osamu; Shinohara, Kunihiko

    1979-01-01

    Several Calculation methods for relative concentration (X/Q) and relative cloud-gamma dose (D/Q) of the radioactive materials released from nuclear facilities by posturated accident are presented. The procedure has been formulated as a Computer program PANDA and the usage is explained. (author)

  6. Detailed thermalhydraulic analysis of induced break severe accidents using the massively parallel CFD code TrioU/Priceles

    International Nuclear Information System (INIS)

    Bieder, U.; Calvin, C.

    2003-01-01

    This paper reports the preliminary studies carried out with the CFD (computational fluid dynamics) code Trio U to study the natural gas circulation that may flow in the primary circuit of a pressurized water reactor during a high-pressure severe accident scenario. Two types of 3-dimensional simulations have been performed on one loop using a LES (large eddy simulations) approach. In the first type of calculations, the gas flow in the hot leg has been investigated with a simplified representation of the reactor vessel and the Steam Generator (SG) tubes. Structured and unstructured meshing have been tested on the full-scale geometry with and without radiative heat transfer modelling between walls and gas. The second type of calculations deals with the gas circulation in the SG. The first results show a good agreement with the available experimental data and provide some confidence in the Trio U code to simulate complex natural flows. (authors)

  7. MABEL 2: a code to analyse cladding deformation in a loss of coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.; Nye, M.T.S.

    1983-06-01

    The calculation strategy of MABEL-2 and the hierarchy and purpose of its subroutines are described so that a programmer can readily identify both the overall structure of the code and the functions of its constituent parts. Also, to assist those who wish to examine the coding in detail, the common block variables are defined and a list is given of all variables used in the code, together with the subroutines in which they are used. (author)

  8. Quality assurance procedures for the CONTAIN severe reactor accident computer code

    International Nuclear Information System (INIS)

    Russell, N.A.; Washington, K.E.; Bergeron, K.D.; Murata, K.K.; Carroll, D.E.; Harris, C.L.

    1991-01-01

    The CONTAIN quality assurance program follows a strict set of procedures designed to ensure the integrity of the code, to avoid errors in the code, and to prolong the life of the code. The code itself is maintained under a code-configuration control system that provides a historical record of changes. All changes are incorporated using an update processor that allows separate identification of improvements made to each successive code version. Code modifications and improvements are formally reviewed and checked. An exhaustive, multilevel test program validates the theory and implementation of all codes changes through assessment calculations that compare the code-predicted results to standard handbooks of idealized test cases. A document trail and archive establish the problems solved by the software, the verification and validation of the software, software changes and subsequent reverification and revalidation, and the tracking of software problems and actions taken to resolve those problems. This document describes in detail the CONTAIN quality assurance procedures. 4 refs., 21 figs., 4 tabs

  9. Kinetics Parameters of VVER-1000 Core with 3 MOX Lead Test Assemblies To Be Used for Accident Analysis Codes

    International Nuclear Information System (INIS)

    Pavlovitchev, A.M.

    2000-01-01

    The present work is a part of Joint U.S./Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactor and presents the neutronics calculations of kinetics parameters of VVER-1000 core with 3 introduced MOX LTAs. MOX LTA design has been studied in [1] for two options of MOX LTA: 100% plutonium and of ''island'' type. As a result, zoning i.e. fissile plutonium enrichments in different plutonium zones, has been defined. VVER-1000 core with 3 introduced MOX LTAs of chosen design has been calculated in [2]. In present work, the neutronics data for transient analysis codes (RELAP [3]) has been obtained using the codes chain of RRC ''Kurchatov Institute'' [5] that is to be used for exploitation neutronics calculations of VVER. Nowadays the 3D assembly-by-assembly code BIPR-7A and 2D pin-by-pin code PERMAK-A, both with the neutronics constants prepared by the cell code TVS-M, are the base elements of this chain. It should be reminded that in [6] TVS-M was used only for the constants calculations of MOX FAs. In current calculations the code TVS-M has been used both for UOX and MOX fuel constants. Besides, the volume of presented information has been increased and additional explications have been included. The results for the reference uranium core [4] are presented in Chapter 2. The results for the core with 3 MOX LTAs are presented in Chapter 3. The conservatism that is connected with neutronics parameters and that must be taken into account during transient analysis calculations, is discussed in Chapter 4. The conservative parameters values are considered to be used in 1-point core kinetics models of accident analysis codes

  10. Improvement and evaluation of debris coolability analysis module in severe accident analysis code SAMPSON using LIVE experiment

    International Nuclear Information System (INIS)

    Wei, Hongyang; Erkan, Nejdet; Okamoto, Koji; Gaus-Liu, Xiaoyang; Miassoedov, Alexei

    2017-01-01

    Highlights: • Debris coolability analysis module in SAMPSON is validated. • Model for heat transfer between melt pool and pressure vessel wall is modified. • Modified debris coolability analysis module is found to give reasonable results. - Abstract: The purpose of this work is to validate the debris coolability analysis (DCA) module in the severe accident analysis code SAMPSON by simulating the first steady stage of the LIVE-L4 test. The DCA module is used for debris cooling in the lower plenum and for predicting the safety margin of present reactor vessels during a severe accident. In the DCA module, the spreading and cooling of molten debris, gap cooling, heating of a three-dimensional reactor vessel, and natural convection heat transfer are all considered. The LIVE experiment is designed to investigate the formation and stability of melt pools in a reactor pressure vessel (RPV). By comparing the simulation results and experimental data in terms of the average melt pool temperature and the heat flux along the vessel wall, a bug is found in the code and the model for the heat transfer between the melt pool and RPV wall is modified. Based on the Asfia–Dhir and Jahn–Reineke correlations, the modified version of the DCA module is found to give reasonable results for the average melt pool temperature, crust thickness in the steady state, and crust growth rate.

  11. Evaluation on operation of liquid relief valves for steam line break accidents by RELAP5/CANDU+ code

    International Nuclear Information System (INIS)

    Yang, C. Y.; Bang, Y. S.; Kim, H. J.

    2001-01-01

    A development of RELAP5/CANDU+ code for regulatory audits of accident analysis of CANDU nuclear power plants is on progress. This paper is undertaken in a procedure of a verification and validation for RELAP5/CANDU+ code by analyzing main steam line break accidents of WS 2/3/4. Following the ECC injection in sequence of the steam line breaks, the mismatch in heat transfer between the primary and the secondary systems makes pressure of the primary system instantly peaked to the open setpoint of liquid relief valves. The event sequence follows the result of WS 2/3/4 FSAR, but there is a difference in pressure transient after ECC injection. Sensitivity analysis for main factors dependent on the peak pressure such as control logics of liquid relief valves. ECC flow path and feedwater flow is performed. Because the pressure increase is continued for a long time and its peaking is high, open and close of the liquid relief valves are repeated several times, which is obviously different from those of WS 2/3/4 FSAR. As a result, it is evaluated that conservative modeling for the above variables is required in the analysis

  12. FIRAC - a computer code to predict fire accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire. A basic material transport capability that features the effects of convection, deposition, entrainment, and filtration of material is included. The interrelated effects of filter plugging, heat transfer, gas dynamics, and material transport are taken into account. In this paper the authors summarize the physical models used to describe the gas dynamics, material transport, and heat transfer processes. They also illustrate how a typical facility is modeled using the code

  13. The Development of Severe Accident Codes at IRSN and Their Application to Support the Safety Assessment of EPR

    International Nuclear Information System (INIS)

    Caroli, Cataldo; Bleyer, Alexandre; Bentaib, Ahmed; Chatelard, Patrick; Cranga, Michel; Van Dorsselaere, Jean-Pierre

    2006-01-01

    IRSN uses a two-tier approach for development of codes analysing the course of a hypothetical severe accident (SA) in a Pressurized Water Reactor (PWR): on one hand, the integral code ASTEC, jointly developed by IRSN and GRS, for fast-running and complete analysis of a sequence; on the other hand, detailed codes for best-estimate analysis of some phenomena such as ICARE/CATHARE, MC3D (for steam explosion), CROCO and TONUS. They have been extensively used to support the level 2 Probabilistic Safety Assessment of the 900 MWe PWR and, in general, for the safety analysis of the French PWR. In particular the codes ICARE/CATHARE, CROCO, MEDICIS (module of ASTEC) and TONUS are used to support the safety assessment of the European Pressurized Reactor (EPR). The ICARE/CATHARE code system has been developed for the detailed evaluation of SA consequences in a PWR primary system. It is composed of the coupling of the core degradation IRSN code ICARE2 and of the thermal-hydraulics French code CATHARE2. The CFD code CROCO describes the corium flow in the spreading compartment. Heat transfer to the surrounding atmosphere and to the basemat, leading to the possible formation of an upper and lower crust, basemat ablation and gas sparging through the flow are modelled. CROCO has been validated against a wide experimental basis, including the CORINE, KATS and VULCANO programs. MEDICIS simulates MCCI (Molten-Corium-Concrete-Interaction) using a lumped-parameter approach. Its models are being continuously improved through the interpretation of most MCCI experiments (OECD-CCI, ACE...). The TONUS code has been developed by IRSN in collaboration with CEA for the analysis of the hydrogen risk (both distribution and combustion) in the reactor containment. The analyses carried out to support the EPR safety assessment are based on a CFD formulation. At this purpose a low-Mach number multi-component Navier-Stokes solver is used to analyse the hydrogen distribution. Presence of air, steam and

  14. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.

    1982-04-01

    MABEL-2 has been developed to predict the extent of cladding deformation in PWR fuel rods during a loss of coolant accident. The user notes describe how to run MABEL. They include case preparation and input data, the job control language, a description of the output tables available, and aids to debugging. The input data and results for two sample cases are given. (U.K.)

  15. Evaluation of finite element codes for demonstrating the performance of radioactive material packages in hypothetical accident drop scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.F. [Arup (United Kingdom); Hueggenberg, R. [Gesellschaft fuer Nuklear-Behaelter mbH (Germany)

    2004-07-01

    Drop testing and analysis are the two methods for demonstrating the performance of packages in hypothetical drop accident scenarios. The exact purpose of the tests and the analyses, and the relative prominence of the two in the license application, may depend on the Competent Authority and will vary between countries. The Finite Element Method (FEM) is a powerful analysis tool. A reliable finite element (FE) code when used correctly and appropriately, will allow a package's behaviour to be simulated reliably. With improvements in computing power, and in sophistication and reliability of FE codes, it is likely that FEM calculations will increasingly be used as evidence of drop test performance when seeking Competent Authority approval. What is lacking at the moment, however, is a standardised method of assessing a FE code in order to determine whether it is sufficiently reliable or pessimistic. To this end, the project Evaluation of Codes for Analysing the Drop Test Performance of Radioactive Material Transport Containers, funded by the European Commission Directorate-General XVII (now Directorate-General for Energy and Transport) and jointly performed by Arup and Gesellschaft fuer Nuklear-Behaelter mbH, was carried out in 1998. The work consisted of three components: Survey of existing finite element software, with a view to finding codes that may be capable of analysing drop test performance of radioactive material packages, and to produce an inventory of them. Develop a set of benchmark problems to evaluate software used for analysing the drop test performance of packages. Evaluate the finite element codes by testing them against the benchmarks This paper presents a summary of this work.

  16. Evaluation of finite element codes for demonstrating the performance of radioactive material packages in hypothetical accident drop scenarios

    International Nuclear Information System (INIS)

    Tso, C.F.; Hueggenberg, R.

    2004-01-01

    Drop testing and analysis are the two methods for demonstrating the performance of packages in hypothetical drop accident scenarios. The exact purpose of the tests and the analyses, and the relative prominence of the two in the license application, may depend on the Competent Authority and will vary between countries. The Finite Element Method (FEM) is a powerful analysis tool. A reliable finite element (FE) code when used correctly and appropriately, will allow a package's behaviour to be simulated reliably. With improvements in computing power, and in sophistication and reliability of FE codes, it is likely that FEM calculations will increasingly be used as evidence of drop test performance when seeking Competent Authority approval. What is lacking at the moment, however, is a standardised method of assessing a FE code in order to determine whether it is sufficiently reliable or pessimistic. To this end, the project Evaluation of Codes for Analysing the Drop Test Performance of Radioactive Material Transport Containers, funded by the European Commission Directorate-General XVII (now Directorate-General for Energy and Transport) and jointly performed by Arup and Gesellschaft fuer Nuklear-Behaelter mbH, was carried out in 1998. The work consisted of three components: Survey of existing finite element software, with a view to finding codes that may be capable of analysing drop test performance of radioactive material packages, and to produce an inventory of them. Develop a set of benchmark problems to evaluate software used for analysing the drop test performance of packages. Evaluate the finite element codes by testing them against the benchmarks This paper presents a summary of this work

  17. Computer codes for the study of the loss of coolant accident of PWR reactors

    International Nuclear Information System (INIS)

    Gomolinski, M.; Menessier, D.; Tellier, N.

    1975-01-01

    The CEA has undertaken a large programme to study the consequence on the core of the LOCA of a PWR. In the programme, simultaneously carried out experiments and the development of the calculations means are described. Several experiments such as OMEGA, ERSEC and PHEBUS tests, which provide data to check the computer codes are outlined briefly in the paper. For analysis of the LOCA of a PWR, a series of computer codes, which are at present in use or under development, are linked with each other. The codes are DANAIDES for blowdown, CERES for refill and reflood, THETA-1B and FLIRA for heat up calculation during the blow-down and the reflooding period respectively. FLIRA-PASTEL, a combination of FLIRA and PASTEL which calculate the stress and deformations of material using the finite element method, will be used in place of FLIRA. The basic models and flowcharts of the above codes are described in the paper

  18. Accident analyses on TMLB' and LOCA for KNGR using MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Choi, Y.; Ahn, K.I

    2000-11-01

    Plant specific phenomenological analyses for the Korean Next Generation Reactor, using MELCOR program, are described in this report. The most important two accident sequences, a station blackout and a loss of coolant scenario, are selected. Complete coverage of corium behavior both in-vessel and ex-vessel, and the corresponding containment responses, are analyzed. The in-vessel progression includes the thermal hydraulics in the primary system, core heat up, hydrogen generation, and melt progression up to the reactor vessel breach. The ex-vessel progression describes molten corium - concrete interaction phenomena and the pressure behavior in the containment atmosphere.

  19. Analysis of metal fuel transient overpower experiments with the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.; Kalimullah; Miles, K.J.

    1990-01-01

    The results of the SAS4A analysis of the M7 TREAT Metal fuel experiment are presented. New models incorporated in the metal fuel version of SAS4A are described. The computational results are compared with the experimental observations and this comparison is used in the interpretation of physical phenomena. This analysis was performed using the integrated metal fuel SAS4A version and covers a wide range of events, providing an increased degree of confidence in the SAS4A metal fuel accident analysis capabilities

  20. A restructuring proposal based on MELCOR for severe accident analysis code development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Song, Y. M.; Kim, D. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    In order to develop a template based on existing MELCOR code, current data saving and transferring methods used in MELCOR are addressed first. Then a naming convention for the constructed module is suggested and an automatic program to convert old variables into new derived type variables has been developed. Finally, a restructured module for the SPR package has been developed to be applied to MELCOR. The current MELCOR code ensures a fixed-size storage for four different data types, and manages the variable-sized data within the storage limit by storing the data on the stacked packages. It uses pointer to identify the variables between the packages. This technique causes a difficult grasping of the meaning of the variables as well as memory waste. New features of FORTRAN90, however, make it possible to allocate the storage dynamically, and to use the user-defined data type which lead to a restructured module development for the SPR package. An efficient memory treatment and as easy understanding of the code are allowed in this developed module. The validation of the template has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. The template for the SPR package suggested in this report hints the extension of the template to the entire code. It is expected that the template will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models. 3 refs., 15 figs., 16 tabs. (Author)

  1. Use and development of coupled computer codes for the analysis of accidents at nuclear power plants. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-01-01

    Computer codes are widely used in Member States for the analysis of safety at nuclear power plants (NPPs). Coupling of computer codes, a further tool for safety analysis, is especially beneficial to safety analysis. The significantly increased capacity of new computation technology has made it possible to switch to a newer generation of computer codes, which are capable of representing physical phenomena in detail and include a more precise consideration of multidimensional effects. The coupling of advanced, best estimate computer codes is an efficient method of addressing the multidisciplinary nature of reactor accidents with complex interfaces between disciplines. Coupling of computer codes is very advantageous for studies which relate to licensing of new NPPs, safety upgrading programmes for existing plants, periodic safety reviews, renewal of operating licences, use of safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, justification for lifetime extensions, development of new emergency operating procedures, analysis of operational events and development of accident management programmes. In this connection, the OECD/NEA Working Group on the Analysis and Management of Accidents (GAMA) recently highlighted the application of coupled computer codes as an area of 'high collective interest'. Coupled computer codes are being developed in many Member States independently or within small groups composed of several technical organizations. These developments revealed that there are many types and methods of code coupling. In this context, it was believed that an exchange of views and experience while addressing these problems at an international meeting could contribute to the more efficient and reliable use of advanced computer codes in nuclear safety applications. The present publication constitutes the report on the Technical Meeting on Progress in the Development and Use of Coupled Codes for Accident

  2. Comparative analysis of unprotected loss-of-flow accidents for the 1.0 m EFR-LVC core using different computer codes

    International Nuclear Information System (INIS)

    Royl, P.; Frizonnet, J.M.; Moran, J.

    1993-02-01

    A comparative analysis of the unprotected loss of flow (ULOF) accident has been performed for the LVC core (Lower Void Core) of the European Fast Reactor EFR with the FRAX5B and FRAX5C codes from the AEA-T, the PHYSURAC code from CEA and the SAS4A REF92 code system developed jointly between KfK, CEA and PNC. The accident is triggered by the run down of the coolant pumps with failure to trip the reactor by the primary and/or secondary shutdown system. Only a limited amount of mitigating reactivity from the third shutdown line was considered so that the accident can progress into boiling and core disruption. This code outlines the important modelling differences and compares the different simulations. The discussion of the rather wide spectrum of calculated accident progressions identifies the generic differences, relates them to the applied models, and summarizes the key points that are responsible for the different progressions. A comparison of the consequence spectrum from all simulations indicates zero work energies for the majority of the calculations. All simulations show up the need for a continued accident analysis into the early and late transition phase

  3. Comparison of MACCS users calculations for the international comparison exercise on probabilistic accident consequence assessment code, October 1989--June 1993

    International Nuclear Information System (INIS)

    Neymotin, L.

    1994-04-01

    Over the past several years, the OECD/NEA and CEC sponsored an international program intercomparing a group of six probabilistic consequence assessment (PCA) codes designed to simulate health and economic consequences of radioactive releases into atmosphere of radioactive materials following severe accidents at nuclear power plants (NPPs): ARANO (Finland), CONDOR (UK), COSYMA (CEC), LENA (Sweden), MACCS (USA), and OSCAAR (Japan). In parallel with this effort, two separate groups performed similar calculations using the MACCS and COSYMA codes. Results produced in the MACCS Users Group (Greece, Italy, Spain, and USA) calculations and their comparison are contained in the present report. Version 1.5.11.1 of the MACCS code was used for the calculations. Good agreement between the results produced in the four participating calculations has been reached, with the exception of the results related to the ingestion pathway dose predictions. The main reason for the scatter in those particular results is attributed to the lack of a straightforward implementation of the specifications for agricultural production and counter-measures criteria provided for the exercise. A significantly smaller scatter in predictions of other consequences was successfully explained by differences in meteorological files and weather sampling, grids, rain distance intervals, dispersion model options, and population distributions

  4. Evaluation of dose calculation models for inhabited areas applicable in nuclear accident consequence assessment codes

    International Nuclear Information System (INIS)

    Katalin Eged; Zoltan Kis; Natalia Semioschkina; Gabriele Voigt

    2004-01-01

    One of the objectives of the EC project EVANET-TERRA is to provide suitable inputs to the RODOS system. This study gives an overview on urban dose calculation models with special emphasis on the RECLAIM-EDEM2M and TEMAS-urban codes. The TEMAS-urban code is more complex compared to the RECLAIM-EDEM2M code although both models use similar and some times even same model parameters. The database and the way of its data collection as used in RECLAIM-EDEM2M is recommended as a preferred option because it contains many data from local and regional measurements. However in a decision situation the outputs of the TEMASurban model may better help stake holders by providing a ranking of the surfaces to be decontaminated. (author)

  5. A first accident simulation for Angra-1 power plant using the ALMOD computer code

    International Nuclear Information System (INIS)

    Camargo, C.T.M.

    1981-02-01

    The acquisition of the Almod computer code from GRS-Munich to CNEN has permited doing calculations of transients in PWR nuclear power plants, in which doesn't occur loss of coolant. The implementation of the german computer code Almod and its application in the calculation of Angra-1, a nuclear power plant different from the KWU power plants, demanded study and models adaptation; and due to economic reasons simplifications and optimizations were necessary. The first results define the analytical potential of the computer code, confirm the adequacy of the adaptations done and provide relevant conclusions about the Angra-1 safety analysis, showing at the same time areas in which the model can be applied or simply improved. (Author) [pt

  6. KUPOL-M code for simulation of the VVER's accident localization system under LOCA conditions

    International Nuclear Information System (INIS)

    Efanov, A.D.; Lukyanov, A.A.; Shangin, N.N.; Zajtsev, A.A.; Solov'ev, S.L.

    2004-01-01

    Computer code KUPOL-M is developed for analysis of thermodynamic parameters of medium within full pressure containment for NPPs with VVER under LOCA conditions. The analysis takes into account the effects of non-stationary heat-mass transfer of gas-drop mixture in the containment compartments with natural convection, volume and surface steam condensation in the presence of noncondensables, heat-mass exchange of the compartment atmosphere with water in the sumps. The operation of the main safety systems like a spray system, hydrogen catalytic recombiners, emergency core cooling pumps, valves and a fan system is simulated in KUPOL-M code. The main results of the code verification including the ones of the participation in ISP-47 International Standard Problem on containment thermal-hydraulics are presented. (author)

  7. Modeling of BWR core meltdown accidents - for application in the MELRPI. MOD2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Koh, B R; Kim, S H; Taleyarkhan, R P; Podowski, M Z; Lahey, Jr, R T

    1985-04-01

    This report summarizes improvements and modifications made in the MELRPI computer code. A major difference between this new, updated version of the code, called MELRPI.MOD2, and the one reported previously, concerns the inclusion of a model for the BWR emergency core cooling systems (ECCS). This model and its computer implementation, the ECCRPI subroutine, account for various emergency injection modes, for both intact and rubblized geometries. Other changes to MELRPI deal with an improved model for canister wall oxidation, rubble bed modeling, and numerical integration of system equations. A complete documentation of the entire MELRPI.MOD2 code is also given, including an input guide, list of subroutines, sample input/output and program listing.

  8. The first accident simulation of Angra-1 power plant using the ALMOD computer code

    International Nuclear Information System (INIS)

    Camargo, C.T.M.

    1981-01-01

    The implementation of the german computer code ALMOD and its application in the calculation of Angra-1, a nuclear power plant different from the KWU power plants, demanded study and models adaptation, and due to economic reasons simplifications and optimizations were necessary. The first results define the analytical potential of the computer code, confirm the adequacy of the adaptations done and provide relevant conclusions about the Angra-1 safety analysis, showing at the same time areas in which the model can be applied or simply improved. (E.G.) [pt

  9. Simulation of the postulated stopping accident of the bombs of the primary circuit of Angra 2 with the code RELAP5/MOD3.2

    International Nuclear Information System (INIS)

    Andrade, Delvonei A.; Sabundjian, Gaiane; Madeira, Alzira A.; Pereira, Luiz Carlos M.; Borges, Ronaldo C.; Lapa, Nelbia S.

    2001-01-01

    This work presents the simulation of an anticipated transient for Angra 2 Nuclear Power Plant, where the coast down of the four reactor coolant pumps is verified. The best estimate thermal hydraulic system code RELAP5/MOD3.2 was used on this frame. A multi-purpose nodalization of Angra 2 was developed to simulate a comprehensive set of operational transients and accidents with RELAP5/MOD3.2 code. The overall objective of this work is to provide independent accident evaluation and further operational behavior follow-up to support the licensing process of the plant. (author)

  10. DEFORM-4: fuel pin characterization and transient response in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Miles, K.J.; Hill, D.J.

    1986-01-01

    The DEFORM-4 module is the segment of the SAS4A Accident Analysis Code System that calculates the fuel pin characterization in response to a steady state irradiation history, thereby providing the initial conditions for the transient calculation. The various phenomena considered include fuel porosity migration, fission gas bubble induced swelling, fuel cracking and healing, fission gas release, cladding swelling, and the thermal-mechanical state of the fuel and cladding. In the transient state, the module continues the thermal-mechanical response calculation, including fuel melting and central cavity pressurization, until cladding failure is predicted and one of the failed fuel modules is initiated. Comparisons with experimental data have demonstrated the validity of the modeling approach

  11. Computer code for the analysis of destructive pressure generation process during a fuel failure accident, PULSE-2

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1978-03-01

    The computer code PULSE-2 has been developed for the analysis of pressure pulse generation process when hot fuel particles come into contact with the coolant in a fuel rod failure accident. In the program, it is assumed that hot fuel fragments mix with the coolant instantly and homogeneously in the failure region. Then, the rapid vaporization of the coolant and transient pressure rise in failure region, and the movement of ejected coolant slugs are calculated. The effect of a fuel-particle size distribution is taken into consideration. Heat conduction in the fuel particles and heat transfer at fuel-coolant interface are calculated. Temperature, pressure and void fraction in the mixed region are calculated from the average enthalpy. With physical property subroutines for liquid sodium and water, the model is usable for both LMFBR and LWR conditions. (auth.)

  12. Performance of the primary containment of a BWR during a severe accident whit the code RELAP/SCDAPSIM

    International Nuclear Information System (INIS)

    Castillo G, F.

    2015-01-01

    In this thesis work, it was developed a model of the vacuum breaker valves and down comers for a BWR Mark II primary containment for the code RELAP/SCDAPSIM Mod. 3.4. This code was used to simulate a Station Blackout (Sbo) that evolves to a severe accident scenario. To accomplish this task, the vacuum breaker valves and down comers were included in a simplified model of the primary containment that includes both wet well and dry well, which was coupled with a model of the Nuclear Steam Supply System (NSSS), in order to study the behavior of the primary containment during the evolution of the accident scenario. In the analysis of the results of the simulation, the behavior of the wet well and dry well during the event was particularly monitored, by analyzing the evolution of temperature and pressure profiles in such volumes, this to determine the impact of the inclusion of the breaker vacuum valves and down comers. The results show that the effect of this extension of the model is that more conservative results are obtained, i.e., higher pressures are reached in both wet well and dry well than when it is used a containment model that does not include neither the vacuum valves nor the down comers. The most relevant results obtained show that the Rcic alone is able to keep the core fully covered, but even in such a case, it evaporates about 15% of the initial inventory of liquid water in the Pressure Suppression Pool (Psp). When the Rcic operation is lost, 20% more of the liquid water inventory in the Psp is further reduced within four to twelve hours (approximately), time at which the simulation crashed. Besides, there is a significant increase of pressure in the containment. As the accident evolves, the pressure in the containment continues increasing, but there is still considerable margin to reach the design pressure of the containment. At the end of the simulation, the results show a gauge pressure value of 224,550 Pa in the Psp and 187,482 Pa in the wet well

  13. Linking of FRAP-T, FRAPCON and RELAP-4 codes for transient analysis and accidents of light water reactors fuel rods

    International Nuclear Information System (INIS)

    Marra Neto, A.; Silva, A.T. e; Sabundjian, G.; Freitas, R.L.; Neves Conti, T. das.

    1991-09-01

    The computer codes FRAP-T, FRAPCON and RELAP-4 have been linked for the fuel rod behavior analysis under transients and hypothetical accidents in light water reactors. The results calculated by thermal hydraulic code RELAP-4 give input in file format into the transient fuel analysis code FRAP-T. If the effect of fuel burnup is taken into account, the fuel performance code FRAPCON should provide the initial steady state data for thhe transient analysis. With the thermal hydraulic boundary conditions provided by RELAP-4 (MOD3), FRAP-T6 is used to analyse pressurized water reactor fuel rod behavior during the blowdown phase under large break loss of coolant accident conditions. Two cases have been analysed: without and with initialization from FRAPCON-2 steady state data. (author)

  14. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.; Haste, T.J.

    1982-04-01

    MABEL can be used to determine the cladding deformation in a PWR during a LOCA. It takes the results of calculations from other codes to define the initial fuel condition and the transient whole core thermal-hydraulic behaviour. The use of MABEL with input data appropriate to different regions of a reactor core allows an overall picture of coolant channel blockage within the core to be obtained. (U.K.)

  15. Analysis of the main steam line break accident with loss of offsite power using the fully coupled RELAP5/PANTHER/COBRA code package

    International Nuclear Information System (INIS)

    Ruben Van Parys; Sandrine Bosso; Christophe Schneidesch; Jinzhao Zhang

    2005-01-01

    Full text of publication follows: A coupled thermal hydraulics-neutronics code package (RELAP5/PANTHER/COBRA) has been qualified for accident analysis at Tractebel Engineering. In the TE coupled code package, the best estimate thermal-hydraulic system code, RELAP5/MOD2.5, is coupled with the full three-dimensional reactor core kinetics code, PANTHER, via a dynamic data exchange control and processing tool, TALINK. An interface between PANTHER code and the sub-channel thermal-hydraulic analysis code COBRA-IIIC is developed in order to perform online calculation of Departure from Nucleate Boiling Ratio (DNBR). The TE coupled code package has been applied to develop a MSLB accident analysis methodology using the TE deterministic bounding approach. The methodology has been applied for MSLB accident analysis in support of licensing of the power up-rate and steam generator replacement of the Doel 2 plant. The results of coupled thermal-hydraulic and neutronic analysis of SLB show that there exists an important margin in the traditional FSAR MSLB accident analysis. As a specific licensing requirement, the main steam line break accident with loss of offsite power has to be analyzed. In the standard methodology with the coupled RELAP5/PANTHER code, and some corrective methods has to be taken in order to overcome the limitations due to the close-channel T/H model in PANTHER at low flow conditions. The results show that the steam line break accident with loss of offsite power is far less limiting. In order to verify the effect of the cross-flow at low flow conditions, the fully dynamic coupling of RELAP5/PANTHER/COBRA code package is used for reanalysis of this case, in which the PANTHER close-channel T/H model is replaced by the COBRA sub-channel T/H model with crossflow option. It has been demonstrated that, although the consideration of cross-flow in this challenging situation may lead to higher core return to power and slightly lower DNBR than in the standard methodology

  16. Analysis of the main steam line break accident with loss of offsite power using the fully coupled RELAP5/PANTHER/COBRA code package

    Energy Technology Data Exchange (ETDEWEB)

    Ruben Van Parys; Sandrine Bosso; Christophe Schneidesch; Jinzhao Zhang [Nuclear Department, Suez-Tractebel Engineering, avenue Ariane 5, B-1200 Brussels (Belgium)

    2005-07-01

    Full text of publication follows: A coupled thermal hydraulics-neutronics code package (RELAP5/PANTHER/COBRA) has been qualified for accident analysis at Tractebel Engineering. In the TE coupled code package, the best estimate thermal-hydraulic system code, RELAP5/MOD2.5, is coupled with the full three-dimensional reactor core kinetics code, PANTHER, via a dynamic data exchange control and processing tool, TALINK. An interface between PANTHER code and the sub-channel thermal-hydraulic analysis code COBRA-IIIC is developed in order to perform online calculation of Departure from Nucleate Boiling Ratio (DNBR). The TE coupled code package has been applied to develop a MSLB accident analysis methodology using the TE deterministic bounding approach. The methodology has been applied for MSLB accident analysis in support of licensing of the power up-rate and steam generator replacement of the Doel 2 plant. The results of coupled thermal-hydraulic and neutronic analysis of SLB show that there exists an important margin in the traditional FSAR MSLB accident analysis. As a specific licensing requirement, the main steam line break accident with loss of offsite power has to be analyzed. In the standard methodology with the coupled RELAP5/PANTHER code, and some corrective methods has to be taken in order to overcome the limitations due to the close-channel T/H model in PANTHER at low flow conditions. The results show that the steam line break accident with loss of offsite power is far less limiting. In order to verify the effect of the cross-flow at low flow conditions, the fully dynamic coupling of RELAP5/PANTHER/COBRA code package is used for reanalysis of this case, in which the PANTHER close-channel T/H model is replaced by the COBRA sub-channel T/H model with crossflow option. It has been demonstrated that, although the consideration of cross-flow in this challenging situation may lead to higher core return to power and slightly lower DNBR than in the standard methodology

  17. Comparison of european computer codes relative to the aerosol behavior in PWR containment buildings during severe core damage accidents. (Modelling of steam condensation on the particles)

    International Nuclear Information System (INIS)

    Bunz, H.; Dunbar, L.H.; Fermandjian, J.; Lhiaubet, G.

    1987-11-01

    An aerosol code comparison exercise was performed within the framework of the Commission of European Communities (Division of Safety of Nuclear Installations). This exercise, focused on the process of steam condensation onto the aerosols occurring in PWR containment buildings during severe core damage accidents, has allowed to understand the discrepancies between the results obtained. These discrepancies are due, in particular, to whether the curvature effect is modelled or not in the codes

  18. A comparative analysis of reactor lower head debris cooling models employed in the existing severe accident analysis codes

    International Nuclear Information System (INIS)

    Ahn, K.I.; Kim, D.H.; Kim, S.B.; Kim, H.D.

    1998-08-01

    MELCOR and MAAP4 are the representative severe accident analysis codes which have been developed for the integral analysis of the phenomenological reactor lower head corium cooling behavior. Main objectives of the present study is to identify merits and disadvantages of each relevant model through the comparative analysis of the lower plenum corium cooling models employed in these two codes. The final results will be utilized for the development of LILAC phenomenological models and for the continuous improvement of the existing MELCOR reactor lower head models, which are currently being performed at the KAERI. For these purposes, first, nine reference models are selected featuring the lower head corium behavior based on the existing experimental evidences and related models. Then main features of the selected models have been critically analyzed, and finally merits and disadvantages of each corresponding model have been summarized in the view point of realistic corium behavior and reasonable modeling. Being on these evidences, summarized and presented the potential improvements for developing more advanced models. The present study has been focused on the qualitative comparison of each model and so more detailed quantitative analysis is strongly required to obtain the final conclusions for their merits and disadvantages. In addition, in order to compensate the limitations of the current model, required further studies relating closely the detailed mechanistic models with the molten material movement and heat transfer based on phase-change in the porous medium, to the existing simple models. (author). 36 refs

  19. A review of the Melcor Accident Consequence Code System (MACCS): Capabilities and applications

    International Nuclear Information System (INIS)

    Young, M.

    1995-01-01

    MACCS was developed at Sandia National Laboratories (SNL) under U.S. Nuclear Regulatory Commission (NRC) sponsorship to estimate the offsite consequences of potential severe accidents at nuclear power plants (NPPs). MACCS was publicly released in 1990. MACCS was developed to support the NRC's probabilistic safety assessment (PSA) efforts. PSA techniques can provide a measure of the risk of reactor operation. PSAs are generally divided into three levels. Level one efforts identify potential plant damage states that lead to core damage and the associated probabilities, level two models damage progression and containment strength for establishing fission-product release categories, and level three efforts evaluate potential off-site consequences of radiological releases and the probabilities associated with the consequences. MACCS was designed as a tool for level three PSA analysis. MACCS performs probabilistic health and economic consequence assessments of hypothetical accidental releases of radioactive material from NPPs. MACCS includes models for atmospheric dispersion and transport, wet and dry deposition, the probabilistic treatment of meteorology, environmental transfer, countermeasure strategies, dosimetry, health effects, and economic impacts. The computer systems MACCS is designed to run on are the 386/486 PC, VAX/VMS, E3M RISC S/6000, Sun SPARC, and Cray UNICOS. This paper provides an overview of MACCS, reviews some of the applications of MACCS, international collaborations which have involved MACCS, current developmental efforts, and future directions

  20. Qualification of the WIMS lattice code, for the design, operation and accident analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Lerner, A.M.

    1996-01-01

    A basic problem in nuclear reactor physics in that of the description of the neutron population behaviour in the multiplicative medium of a nuclear fuel. Due to the magnitude of the physical problem involved and the present degree of technological evolution regarding computing resources, of increasing complexity and possibilities, the calculation programs or codes have turned to be a basic auxiliary tool in reactor physics. In order to analyze the global problem, several aspects should be taken into consideration. The first aspect to be considered is that of the availability of the necessary nuclear data. The second one is the existence of a variety of methods and models to perform the calculations. The final phase for this kind of analysis is the qualification of the computing programs to be used, i.e. the verification of the validity domain of its nuclear data and the models involved. The last one is an essential phase, and in order to carry it on great variety of calculations are required, that will check the different aspects contained in the code. We here analyze the most important physical processes that take place in a nuclear reactor cell, and we consider the qualification of the lattice code WIMS, that calculates the neutronic parameters associated with such processes. Particular emphasis has been put in the application to natural uranium fuelled reactor, heavy water cooled and moderated, as the Argentinean power reactors now in operation. A wide set of experiments has been chosen: a.-Fresh fuel in zero-power experimental facilities and power reactors; b.-Irradiated fuel in both types of facilities; c.-Benchmark (prototype) experiments with loss of coolant. From the whole analysis it was concluded that for the research reactors, as well as for the heavy water moderated power reactors presently operating in our country, or those that could operate in a near future, the lattice code WIMS is reliable and produces results within the experimental values and

  1. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-02-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSISM-M, UK; AEROSOLS/BI, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

  2. DISA- a computer code for accident analysis of fast reactor during disassembly phase

    International Nuclear Information System (INIS)

    Yadav, R.D.S.; Gupta, H.P.

    2005-01-01

    Analysis of the hypothetical transients in fast rectors that result in the disassembly of the reactor generally consists of three phases. In the phase-l, some initiating event like control rod ejection, coolant pump failure etc. is assumed to have taken place which leads the reactor to prompt critical state where fuel melting, sodium voiding etc. take place. In fast reactor normally the fuel is not in the optimum shape and further positive reactivity may be introduced into the system due to fuel melting. Fuel slumping is assumed to take place in this phase. If prompt criticality is reached as a result of the first phase, then disassembly phase is assumed to start. In this phase the neutron transient is followed till it is terminated by the disassembly of the core which takes place due to generation of high pressure gradients and which lead the core material to move from more worth region to less worth region. Doppler feed back is taken into account and reactivity feedback due to material movement is calculated by solving the hydrodynamics equations. The third phase will calculate the effect of this transient on the reactor vessel and containment. A computer code DISA for fast reactor DISAssembly phase, which is similar to the well known code VENUS has been developed. (author)

  3. Simulation of accident-tolerant U3Si2 fuel using FRAPCON code

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia

    2017-01-01

    The research on accident-tolerant fuels (ATFs) increased after the Fukushima event. This benefited risk management in nuclear operations. In this investigation, the physical properties of the materials being developed for the ATF program were compared with those of the standard UO 2 - Zr fuel system. The research efforts in innovative fuel design include rigorous characterization of thermal, mechanical, and chemical assessment, with the objectives of making the burnup cycle longer, increasing power density, and improving safety performance. Fuels must reach a high uranium density - above that supported by UO 2 - and possess coating that exhibits better oxidation resistance than Zircaloy. The uranium density and thermal conductivity of ATFs, such as U 3 Si 2 , UN, and UC, is higher than that of UO 2 ; their combination with advanced cladding provides possible fuel - cladding options. An ideal combination of fuel and cladding must increase fuel performance in loss-of-coolant scenarios. The disadvantages of U 3 Si 2 , UN, and UC are their swelling rates, which are higher than that of UO 2 . The thermal conductivities of ATFs are approximately four times higher than that of UO2. To prevent the generation of hydrogen due to oxidation of zirconium-based alloys in contact with steam, cladding options, such as ferritic alloys, were studied. It was verified that FeCrAl alloys and SiC provide better response under severe conditions because of their thermophysical properties. The findings of this study indicate that U 3 Si 2 and the FeCrAl fuel cladding concept should replace UO 2 - Zr as the fuel system of choice. (author)

  4. Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code

    International Nuclear Information System (INIS)

    Beuzet, Emilie; Lamy, Jean-Sylvestre; Perron, Hadrien; Simoni, Eric; Ducros, Gérard

    2012-01-01

    Highlights: ► We developed a new modelling of fuel oxidation and ruthenium release in the EDF version of the MAAP4 code. ► We validated this model against some VERCORS experiments. ► Ruthenium release prediction quantitatively and qualitatively well reproduced under air and steam atmospheres. - Abstract: In a nuclear power plant (NPP), a severe accident is a low probability sequence that can lead to core fusion and fission product (FP) release to the environment (source term). For instance during a loss-of-coolant accident, water vaporization and core uncovery can occur due to decay heat. These phenomena enhance core degradation and, subsequently, molten materials can relocate to the lower head of the vessel. Heat exchange between the debris and the vessel may cause its rupture and air ingress. After lower head failure, steam and air entering in the vessel can lead to degradation and oxidation of materials that are still intact in the core. Indeed, Zircaloy-4 cladding oxidation is very exothermic and fuel interaction with the cladding material can decrease its melting temperature by several hundred of Kelvin. FP release can thus be increased, noticeably that of ruthenium under oxidizing conditions. Ruthenium is of particular interest because of its high radio-toxicity due to 103 Ru and 106 Ru isotopes and its ability to form highly volatile compounds, even at room temperature, such as gaseous ruthenium tetra-oxide (RuO 4 ). It is consequently of great need to understand phenomena governing steam and air oxidation of the fuel and ruthenium release as prerequisites for the source term issues. A review of existing data on these phenomena shows relatively good understanding. In terms of oxygen affinity, the fuel is oxidized before ruthenium, from UO 2 to UO 2+x . Its oxidation is a rate-controlling surface exchange reaction with the atmosphere, so that the stoichiometric deviation and oxygen partial pressure increase. High temperatures combined with the presence

  5. Test and validation of CFD codes for the simulation of accident-typical phenomena in the reactor containment

    International Nuclear Information System (INIS)

    Schramm, Berthold; Stewering, Joern; Sonnenkalb, Martin

    2014-03-01

    CFD (Computational Fluid Dynamic) simulation techniques have a growing relevance for the simulation and assessment of accidents in nuclear reactor containments. Some fluid dynamic problems like the calculation of the flow resistances in a complex geometry, turbulence calculations or the calculation of deflagrations could only be solved exactly for very simple cases. These fluid dynamic problems could not be represented by lumped parameter models and must be approximated numerically. Therefore CFD techniques are discussed by a growing international community in conferences like the CFD4NRS-conference. Also the number of articles with a CFD topic is increasing in professional journals like Nuclear Engineering and Design. CFD tools like GASFLOW or GOTHIC are already in use in European nuclear site licensing processes for future nuclear power plants like EPR or AP1000 and the results of these CFD tools are accepted by the authorities. For these reasons it seems to be necessary to build up national competences in the field of CFD techniques and it is important to validate and assess the existing CFD tools. GRS continues the work for the validation and assessment of CFD codes for the simulation of accident scenarios in a nuclear reactor containment within the framework of the BMWi sponsored project RS1500. The focus of this report is on the following topics: - Further validation of condensation models from GRS, FZJ and ANSYS and development of a new condensate model. - Validation of a new turbulence model which was developed by the University of Stuttgart in cooperation with ANSYS. - The formation and dissolution of light gas stratifications are analyzed by large scale experiments. These experiments were simulated by GRS. - The AREVA correlations for hydrogen recombiners (PARs) could be improved by GRS after the analysis of experimental data. Relevant experiments were simulated with this improved recombiner correlation. - Analyses on the simulation of H_2 deflagration

  6. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report; WASA-BOSS. Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt F. Beitraege zur Codevalidierung anhand von SWR-Daten und zur Bewertung und Optimierung von Stoerfallmassnahmen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-15

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  7. Review of the status of validation of the computer codes used in the severe accident source term reassessment study (BMI-2104)

    International Nuclear Information System (INIS)

    Kress, T.S.

    1985-04-01

    The determination of severe accident source terms must, by necessity it seems, rely heavily on the use of complex computer codes. Source term acceptability, therefore, rests on the assessed validity of such codes. Consequently, one element of NRC's recent efforts to reassess LWR severe accident source terms is to provide a review of the status of validation of the computer codes used in the reassessment. The results of this review is the subject of this document. The separate review documents compiled in this report were used as a resource along with the results of the BMI-2104 study by BCL and the QUEST study by SNL to arrive at a more-or-less independent appraisal of the status of source term modeling at this time

  8. Validation of CONTAIN-LMR code for accident analysis of sodium-cooled fast reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Hering, W.; Schikorr, M.; Stieglitz, R. [Inst. for Neutron Physic and Reactor Technology, Karlsruhe Inst. of Technology, Campus Nord (Germany)

    2012-07-01

    CONTAIN-LMR 1 is an analytical tool for the containment performance of sodium cooled fast reactors. In this code, the modelling for the sodium fire is included: the oxygen diffusion model for the sodium pool fire, and the liquid droplet model for the sodium spray fire. CONTAIN-LMR is also able to model the interaction of liquid sodium with concrete structure. It may be applicable to different concrete compositions. Testing and validation of these models will help to qualify the simulation results. Three experiments with sodium performed in the FAUNA facility at FZK have been used for the validation of CONTAIN-LMR. For pool fire tests, calculations have been performed with two models. The first model consists of one gas cell representing the volume of the burn compartment. The volume of the second model is subdivided into 32 coupled gas cells. The agreement between calculations and experimental data is acceptable. The detailed pool fire model shows less deviation from experiments. In the spray fire, the direct heating from the sodium burning in the media is dominant. Therefore, single cell modeling is enough to describe the phenomena. Calculation results have reasonable agreement with experimental data. Limitations of the implemented spray model can cause the overestimation of predicted pressure and temperature in the cell atmosphere. The ability of the CONTAIN-LMR to simulate the sodium pool fire accompanied by sodium-concrete reactions was tested using the experimental study of sodium-concrete interactions for construction concrete as well as for shielding concrete. The model provides a reasonably good representation of chemical processes during sodium-concrete interaction. The comparison of time-temperature profiles of sodium and concrete shows, that the model requires modifications for predictions of the test results. (authors)

  9. Modeling of continuous withdrawal and falling out of CPS control rods accident, using QUABOX/CUBBOX-HYCA code

    International Nuclear Information System (INIS)

    Bubelis, E.; Pabarcius, R.; Tonkunas, A.

    2003-01-01

    At present, at the Ignalina NPP the process of a wider use of the new uranium-erbium fuel of higher saturation and the manual control rods of new design is going on. These actions are directed to reducing the reactor control and protection system (CPS) cooling circuit voiding effect and to improving the technical and economical reactor operation parameters. Continuous withdrawal and falling out of CPS control rods lead to the reactivity and power changes in the reactor core. Therefore, important for safety is the evaluation of the CPS ability to compensate for the resulting excess reactivity in the reactor core, having the changed core loading conditions during such accidents. This article presents the calculation results of the continuous withdrawal and falling out of CPS control rods for the specific reactor core conditions of the Ignalina NPP Unit 2, i.e. during its operation on the maximum allowed power level of 4200 MW. The German code QUABOX/CUBBOX-HYCA with the improved CPS logic was used for the simulation of the above-mentioned transients. (author)

  10. PBDOWN - a computer code for simulating core material discharge and thermal to mechanical energy conversion in LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Royl, P.

    1981-01-01

    PBDOWN is a computer code that simulates the blowdown of confined boiling materials ('pools') into a colder upper coolant plenum as time dependent ejection and expansion with consideration of a few selected exchange processes. Its application is restricted to situations resulting from hypothetical loss of flow (LOF) accidents in LMFBR's, where enough voiding has occured, that in core sodium vapor pressures become negligible. PBDOWN considers one working fluid for the discharge process (either fuel or steel) and a maximum of two working fluids (either fuel and sodium or steel and sodium) for the expansion process in the upper coolant plenum. Entrainment of sodium at the accelerated bubble liquid interfaces is mechanistically calculated by a Taylor instability entrainment model. Simulation of a hemispherical expansion form together with this mechanistic entrainment model gives a new integrated calculation of the time dependent sodium mass in the bubble. The paper summarizes the basic equations and assumptions of this computer model. Sample results compare different heat transfer and Na entrainment models during steel and fuel driven discharge processes. Mechanistic sodium entrainment simulation for SNR-type reactors coupled with a realistic heat transfer model is shown to reduce the integral mechanical work potential by a factor of 1.3 to 2.0 over the isentropic energy of the discharge working fluids. (orig.)

  11. Use and development of coupled computer codes for the analysis of accidents at nuclear power plants. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-01-01

    Computer codes are widely used in Member States for the analysis of safety at nuclear power plants (NPPs). Coupling of computer codes, a further tool for safety analysis, is especially beneficial to safety analysis. The significantly increased capacity of new computation technology has made it possible to switch to a newer generation of computer codes, which are capable of representing physical phenomena in detail and include a more precise consideration of multidimensional effects. The coupling of advanced, best estimate computer codes is an efficient method of addressing the multidisciplinary nature of reactor accidents with complex interfaces between disciplines. Coupling of computer codes is very advantageous for studies which relate to licensing of new NPPs, safety upgrading programmes for existing plants, periodic safety reviews, renewal of operating licences, use of safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, justification for lifetime extensions, development of new emergency operating procedures, analysis of operational events and development of accident management programmes. In this connection, the OECD/NEA Working Group on the Analysis and Management of Accidents (GAMA) recently highlighted the application of coupled computer codes as an area of 'high collective interest'. Coupled computer codes are being developed in many Member States independently or within small groups composed of several technical organizations. These developments revealed that there are many types and methods of code coupling. In this context, it was believed that an exchange of views and experience while addressing these problems at an international meeting could contribute to the more efficient and reliable use of advanced computer codes in nuclear safety applications. The present publication constitutes the report on the Technical Meeting on Progress in the Development and Use of Coupled Codes for Accident

  12. Application of MELCOR Code to a French PWR 900 MWe Severe Accident Sequence and Evaluation of Models Performance Focusing on In-Vessel Thermal Hydraulic Results

    International Nuclear Information System (INIS)

    De Rosa, Felice

    2006-01-01

    In the ambit of the Severe Accident Network of Excellence Project (SARNET), funded by the European Union, 6. FISA (Fission Safety) Programme, one of the main tasks is the development and validation of the European Accident Source Term Evaluation Code (ASTEC Code). One of the reference codes used to compare ASTEC results, coming from experimental and Reactor Plant applications, is MELCOR. ENEA is a SARNET member and also an ASTEC and MELCOR user. During the first 18 months of this project, we performed a series of MELCOR and ASTEC calculations referring to a French PWR 900 MWe and to the accident sequence of 'Loss of Steam Generator (SG) Feedwater' (known as H2 sequence in the French classification). H2 is an accident sequence substantially equivalent to a Station Blackout scenario, like a TMLB accident, with the only difference that in H2 sequence the scram is forced to occur with a delay of 28 seconds. The main events during the accident sequence are a loss of normal and auxiliary SG feedwater (0 s), followed by a scram when the water level in SG is equal or less than 0.7 m (after 28 seconds). There is also a main coolant pumps trip when ΔTsat < 10 deg. C, a total opening of the three relief valves when Tric (core maximal outlet temperature) is above 603 K (330 deg. C) and accumulators isolation when primary pressure goes below 1.5 MPa (15 bar). Among many other points, it is worth noting that this was the first time that a MELCOR 1.8.5 input deck was available for a French PWR 900. The main ENEA effort in this period was devoted to prepare the MELCOR input deck using the code version v.1.8.5 (build QZ Oct 2000 with the latest patch 185003 Oct 2001). The input deck, completely new, was prepared taking into account structure, data and same conditions as those found inside ASTEC input decks. The main goal of the work presented in this paper is to put in evidence where and when MELCOR provides good enough results and why, in some cases mainly referring to its

  13. Review of current severe accident management approaches in Europe and identification of related modelling requirements for the computer code ASTEC V2.1

    International Nuclear Information System (INIS)

    Hermsmeyer, S.

    2015-01-01

    The severe accident at the Fukushima-Daiichi nuclear power plant (NPP) has led to a worldwide review of nuclear safety approaches and is bringing a refocussing of R and D in the field. To support these efforts several new Euratom FP7 projects have been launched. The CESAM project focuses on the improvement of the ASTEC computer code. ASTEC is jointly developed by IRSN and GRS and is considered as the European reference code for Severe Accident Analyses since it capitalizes knowledge from the extensive Euro-pean R and D in the field. The project aims at the code's enhancement and extension for use in Severe Accident Management (SAM) analysis of the NPPs of Generation II-III presently under operation or foreseen in the near future in Europe, spent fuel pools included. The work reported here is concerned with the importance, for the further development of the code, of SAM strategies to be simulated. To this end, SAM strategies applied in the EU have been compiled. This compilation is mainly based on the public information made available in the frame of the EU ''stress tests'' for NPPs and has been complemented by information pro-vided by the different CESAM partners. The context of SAM is explained and the strategies are presented. The modelling capabilities for the simulation of these strategies in the current production version 2.0 of ASTEC are discussed. Furthermore, the requirements for the next version of ASTEC V2.1 that is supported in the CESAM project are highlighted. They are a necessary complement to the list of code improvements that is drawn from consolidating new fields of application, like SFP and BWR model enhancements, and from new experimental results on severe accident phenomena.

  14. Review of current severe accident management approaches in Europe and identification of related modelling requirements for the computer code ASTEC V2.1

    Energy Technology Data Exchange (ETDEWEB)

    Hermsmeyer, S. [European Commission JRC, Petten (Netherlands). Inst. for Energy and Transport; Herranz, L.E.; Iglesias, R. [CIEMAT, Madrid (Spain); and others

    2015-07-15

    The severe accident at the Fukushima-Daiichi nuclear power plant (NPP) has led to a worldwide review of nuclear safety approaches and is bringing a refocussing of R and D in the field. To support these efforts several new Euratom FP7 projects have been launched. The CESAM project focuses on the improvement of the ASTEC computer code. ASTEC is jointly developed by IRSN and GRS and is considered as the European reference code for Severe Accident Analyses since it capitalizes knowledge from the extensive Euro-pean R and D in the field. The project aims at the code's enhancement and extension for use in Severe Accident Management (SAM) analysis of the NPPs of Generation II-III presently under operation or foreseen in the near future in Europe, spent fuel pools included. The work reported here is concerned with the importance, for the further development of the code, of SAM strategies to be simulated. To this end, SAM strategies applied in the EU have been compiled. This compilation is mainly based on the public information made available in the frame of the EU ''stress tests'' for NPPs and has been complemented by information pro-vided by the different CESAM partners. The context of SAM is explained and the strategies are presented. The modelling capabilities for the simulation of these strategies in the current production version 2.0 of ASTEC are discussed. Furthermore, the requirements for the next version of ASTEC V2.1 that is supported in the CESAM project are highlighted. They are a necessary complement to the list of code improvements that is drawn from consolidating new fields of application, like SFP and BWR model enhancements, and from new experimental results on severe accident phenomena.

  15. Development of a severe accident module of a nuclear power plant based in the MELCOR nuclear code and its incorporation to the room simulator

    International Nuclear Information System (INIS)

    Cortes M, F.S.; Ramos P, J.C.; Nelson E, P.; Chavez M, C.

    2004-01-01

    This work describes the development of the Severe Accidents Module (MAS) based on the Code MELCOR and its incorporation to the Simulator of Classroom of the Group of Nuclear Engineering of the Engineering Faculty (GrINFI) of the National Autonomous University of Mexico (UNAM). The module of Severe Accidents has the purpose of counting with installed and operational capacity for the simulation of accident sequences with capacitation purposes, training, analysis and design. A shallow description of SimAula is presented, and the philosophy used to obtain the interactive version of MELCOR are discussed, as well as its implementation in the atmosphere of SimAula. Finally, after confirming the correct operation of the development of the tool, some possible topics are discussed for specific applications of the MAS. (Author)

  16. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO, A library of materials properties for Light-Water-Reactor accident analysis. Volume 4

    International Nuclear Information System (INIS)

    Hagrman, D.T.

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light -- water-reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission products released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume, Volume IV, describes the material properties correlations and computer subroutines (MATPRO) used by SCDAP/RELAP5. formulation of the materials properties are generally semi-empirical in nature. The materials property subroutines contained in this document are for uranium, uranium dioxide, mixed uranium-plutonium dioxide fuel, zircaloy cladding, zirconium dioxide, stainless steel, stainless steel oxide, silver-indium-cadmium alloy, cadmium, boron carbide, Inconel 718, zirconium-uranium-oxygen melts, fill gas mixtures, carbon steel, and tungsten. This document also contains descriptions of the reaction and solution rate models needed to analyze a reactor accident

  17. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Bunz, H.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-01-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSIM-M, UK; AEROSOLS/B1, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR. Topics considered in this paper include aerosols, containment buildings, reactor safety, fission product release, reactor cores, meltdown, and monitoring

  18. Use of MAAP code for identification of key plant vulnerabilities for the beyond design accidents and their mitigation at NPP Krsko

    International Nuclear Information System (INIS)

    Krajnc, B.

    1995-01-01

    NPP Krsko performed according to GL 88-20, Supplement 1-4 and RUJV requirement the Individual Plant Examination analyses. For the required deterministic analyses the MAAP 3.0B code was used. It was proven that such severe accident analysis can be used for evaluation of the overall level of safety improvement that can be gained with the different modifications and alternate design. In this paper one such important outcomes from these analyses will be presented. (author)

  19. Utilization of the RELAP4/MOD5/SAS code version in loss of coolant accident in the Angra 1 nuclear power station

    International Nuclear Information System (INIS)

    Sabundjian, G.; Freitas, R.L.

    1991-09-01

    A new version of computer code RELAP4/MOD5 was developed to improve the output. The new version, called RELAP4/MOD5/SAS, prints the main variables in graphical form. In order to check the program, a 36 - volume simulation of the Loss-of-Coolant Accident for Angra - I was performed and the results compared to those of a existing 44 - volume simulation showed a satisfactory agreement with a substantial reduction in computing time. (author)

  20. Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burnup condition

    International Nuclear Information System (INIS)

    Kim, H. D.; Kim, D. H.; Park, S. Y.; Park, J. H.

    2005-10-01

    This project was performed by KAERI in the frame of construction of the international cooperative basis on the nuclear energy. This was supported from MOST under the title of 'Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burn up condition'. The current operating NPP are converting the burned fuel to the wasted fuel after burn up of 40 GWD/MTU. But in Korea, burn up of more than 60 GWD/MTU will be expected because of the high fuel efficiency but also cost saving for storing the wasted fuel safely. The domestic research for the purpose of developing the fuel and the cladding that can be used under the high burn up condition up to 100 GWD/MTU is in progress now. But the current computer code adopts the model and the data that are valid only up to the 40 GWD/MTU at most. Therefore the current model could not take into account the phenomena that may cause differences in the fission product release behavior or in the core damage process due to the high burn up operation (more than 40 GWD/MTU). To evaluate the safety of the NPP with the high burn up fuel, the improvement of current severe accident code against the high burn up condition is an important research item. Also it should start without any delay. Therefore, in this study, an expert group was constructed to establish the research basis for the severe accident under high burn up conditions. From this expert group, the research items regarding the high burn up condition were selected and identified through discussion and technical seminars. Based on these selected items, the meeting between IRSN and KAERI to find out the cooperative research items on the severe accident under the high burn up condition was held in the IRSN headquater in Paris. After the meeting, KAERI and IRSN agreed to cooperate with each other on the selected items, and to co-host the international seminar, and to develop the model and to

  1. Development of a computer code system for selecting off-site protective action in radiological accidents based on the multiobjective optimization method

    International Nuclear Information System (INIS)

    Ishigami, Tsutomu; Oyama, Kazuo

    1989-09-01

    This report presents a new method to support selection of off-site protective action in nuclear reactor accidents, and provides a user's manual of a computer code system, PRASMA, developed using the method. The PRASMA code system gives several candidates of protective action zones of evacuation, sheltering and no action based on the multiobjective optimization method, which requires objective functions and decision variables. We have assigned population risks of fatality, injury and cost as the objective functions, and distance from a nuclear power plant characterizing the above three protective action zones as the decision variables. (author)

  2. Accident and safety analyses for the HTR-modul. Partial project 1: Computer codes for system behaviour calculation. Final report. Pt. 1

    International Nuclear Information System (INIS)

    Lohnert, G.; Becker, D.; Dilcher, L.; Doerner, G.; Feltes, W.; Gysler, G.; Haque, H.; Kindt, T.; Kohtz, N.; Lange, L.; Ragoss, H.

    1993-08-01

    The project encompasses the following project tasks and problems: (1) Studies relating to complete failure of the main heat transfer system; (2) Pebble flow; (3) Development of computer codes for detailed calculation of hypothetical accidents; (a) the THERMIX/RZKRIT temperature buildup code (covering a.o. a variation to include exothermal heat sources); (b) the REACT/THERMIX corrosion code (variation taking into account extremely severe air ingress into the primary loop); (c) the GRECO corrosion code (variation for treating extremely severe water ingress into the primary loop); (d) the KIND transients code (for treating extremely fast transients during reactivity incidents. (4) Limiting devices for safety-relevant quantities. (5) Analyses relating to hypothetical accidents. (a) hypothetical air ingress; (b) effects on the fuel particles induced by fast transients. The problems of the various tasks are defined in detail and the main results obtained are explained. The contributions reporting the various project tasks and activities have been prepared for separate retrieval from the database. (orig./HP) [de

  3. GEYSER/TONUS: A coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J. [Commissariat a l`Energie Atomique, Gif sur Yvette (France)

    1995-09-01

    In many countries, the safety requirements for future light water reactors include accounting for severe accidents in the design process. As far as the containment is concerned, the design must now include mitigation features to limit the pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. In this context, new needs appear for the modeling of the thermal hydraulics inside the containment. It requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. Moreover, the effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled, as for example hydrogen stratification and condensation. To model such a complex situation, the use of multi-dimensional computer codes seems to be necessary in case of large volumes. The aim of the GEYSER/TONUS computer code is to fulfill this need. This code is currently under development at CEA in Saclay. It will allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, as the objective is to be able to treat complete scenarios. Physical models of classical lumped parameters codes will adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows, thanks to its modular conception, to construct sophisticated applications based upon it.

  4. Accident and safety analyses for the HTR-modul. Partial project 1: Computer codes for system behaviour calculation. Final report. Pt. 2

    International Nuclear Information System (INIS)

    Lohnert, G.; Becker, D.; Dilcher, L.; Doerner, G.; Feltes, W.; Gysler, G.; Haque, H.; Kindt, T.; Kohtz, N.; Lange, L.; Ragoss, H.

    1993-08-01

    The project encompasses the following project tasks and problems: (1) Studies relating to complete failure of the main heat transfer system; (2) Pebble flow; (3) Development of computer codes for detailed calculation of hypothetical accidents; (a) the THERMIX/RZKRIT temperature buildup code (covering a.o. a variation to include exothermal heat sources); (b) the REACT/THERMIX corrosion code (variation taking into account extremely severe air ingress into the primary loop); (c) the GRECO corrosion code (variation for treating extremely severe water ingress into the primary loop); (d) the KIND transients code (for treating extremely fast transients during reactivity incidents. (4) Limiting devices for safety-relevant quantities. (5) Analyses relating to hypothetical accidents. (a) hypothetical air ingress; (b) effects on the fuel particles induced by fast transients. The problems of the various tasks are defined in detail and the main results obtained are explained. The contributions reporting the various project tasks and activities have been prepared for separate retrieval from the database. (orig./HP) [de

  5. Quantifying reactor safety margins: Application of code scaling, applicability, and uncertainty evaluation methodology to a large-break, loss-of-coolant accident

    International Nuclear Information System (INIS)

    Boyack, B.; Duffey, R.; Wilson, G.; Griffith, P.; Lellouche, G.; Levy, S.; Rohatgi, U.; Wulff, W.; Zuber, N.

    1989-12-01

    The US Nuclear Regulatory Commission (NRC) has issued a revised rule for loss-of-coolant accident/emergency core cooling system (ECCS) analysis of light water reactors to allow the use of best-estimate computer codes in safety analysis as an option. A key feature of this option requires the licensee to quantify the uncertainty of the calculations and include that uncertainty when comparing the calculated results with acceptance limits provided in 10 CFR Part 50. To support the revised ECCS rule and illustrate its application, the NRC and its contractors and consultants have developed and demonstrated an uncertainty evaluation methodology called code scaling, applicability, and uncertainty (CSAU). The CSAU methodology and an example application described in this report demonstrate that uncertainties in complex phenomena can be quantified. The methodology is structured, traceable, and practical, as is needed in the regulatory arena. The methodology is systematic and comprehensive as it addresses and integrates the scenario, experiments, code, and plant to resolve questions concerned with: (a) code capability to scale-up processes from test facility to full-scale nuclear power plants; (b) code applicability to safety studies of a postulated accident scenario in a specified nuclear power plant; and (c) quantifying uncertainties of calculated results. 127 refs., 55 figs., 40 tabs

  6. Development of a simple computer code to obtain relevant data on H2 and CO combustion in severe accidents and to aid in PSA-2 assessments

    International Nuclear Information System (INIS)

    Robledo, F.; Martin-Valdepenas, J.M.; Jimenez, M.A.; Martin-Fuertes, F.

    2007-01-01

    By following Consejo de Seguridad Nuclear (CSN) requirements, all of the Spanish NPPs performed plant specific PSA level 2 studies and implemented Severe Accident Management Guidelines during the first years of this century. CSN and contractors made an independent detailed review of these PSA level 2 studies. This independent review included the performance of plant specific calculations by using the MELCOR code and some other stand-alone codes and the calculation of the fission product release frequencies for each plant. One of the aspects treated in detail by CSN evaluations was the calculation of the containment failure probability due to the burn of combustible gases generated during a severe accident. It was shown that it would be useful to have a fast running code with capability to provide the most relevant data concerning H 2 and CO combustion. Therefore, the Polytechnic University of Madrid (UPM) developed the CPPC code for the CSN. This stand-alone module makes fast calculations on maximum static pressures in the containment building generated from H 2 and CO combustion in severe accidents, considering well-mixed atmospheres and includes the most recent advances and developments in the field of H 2 and CO combustion. Code input is simple: mass of H 2 and CO, initial environmental conditions inside the containment before the combustion and simple geometric data, such as the volume of the building enclosing the combustible gases. The code calculates the containment temperature assuming steam saturated atmosphere and provides the following output: - Combustion completeness (CC); - Adiabatic and isochoric combustion pressure (p AICC ); - Chapman-Jouguet pressure (p CJ ); - Chapman-Jouguet reflected pressure (p Cjrefl ). When the combustion regime results in dynamic pressure loads, the CPPC code calculates the equivalent static pressure (effective pressure p eff ) by modeling the containment structure as a simple harmonic oscillator. Additionally, the code

  7. Assessment of Radiological and Economic Consequences of a Hypothetical Accident for ETRR-2, Egypt Utilizing COSYMA Code

    International Nuclear Information System (INIS)

    Tawfik, F.S.; Abdel-Aal, M.M.

    2008-01-01

    A comprehensive probabilistic study of an accident consequence assessment (ACA) for loss of coolant accident (LOCA) has accomplished to the second research reactor ETRR-2, located at Inshas Nuclear Research Center, Cairo, Egypt. PC-COSYMA, developed with the support of European Commission, has adopted to assess the radiological and economic consequences of a proposed accident. The consequences of the accident evaluated in case of early and late effects. The effective doses and doses in different organs carried out with and without countermeasures. The force mentioned calculations were required the following studies: the core inventory due to the hypothetical accident, the physical parameters of the source term, the hourly basis meteorological parameters for one complete year, and the population distribution around the plant. The hourly stability conditions and height of atmospheric boundary layers (ABL) of the concerned site were calculated. The results showed that, the nuclides that have short half-lives (few days) give the highest air and ground concentrations after the accident than the others. The area around the reactor requires the early and late countermeasures action after the accident especially in the downwind sectors. Economically, the costs of emergency plan are effectively high in case of applying countermeasures but countermeasures reduce the risk effects

  8. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    Directory of Open Access Journals (Sweden)

    Itamar Iliuk

    2016-01-01

    Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.

  9. Utilization of DRUFAN 01/MOD 02 computer code for the depressurization phase analysis of a postulated loss of coolant accident in Angra 2/3 Nuclear Power Plants

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.; Figueiredo, P.J.M.

    1985-08-01

    The DRUFAN 01/Mod 2 developed by Gesellschaft fur Reaktorsicherheit (GRS) mbh to simulate thermohydraulic behavior of the primary circuit of PWR reactors, during the despressurization phase and initial refilling phase of loss of coolant accidents by great ruptures, is presented. The program simulates the system to be analysed by control volumes-concentrated parameters model - and it is based on numerical solution of conservation equations for mass of water, mass of vapor, quantities of motion and energy, and on the control volume homogeneity hypothesis. The possibilities of thermodynamic disequilibrium, determining mass transfer between liquid and vapor phases assuming that one saturated phase, are considered. The process of computer code implantation in the Honeywell Bull 64 DPS 7 system at CNEN, the modifications done into the program and the application to the despressurization phase analysis of a loss of coolant accident at Angra-2 and Angra-3 reactors are considered. (M.C.K.) [pt

  10. Application of thermal hydraulic and severe accident code SOCRAT/V3 to bottom water reflood experiment QUENCH-LOCA-0

    International Nuclear Information System (INIS)

    Vasiliev, A.D.; Stuckert, J.

    2013-01-01

    Highlights: ► QLOCA-0 test simulates a design basis LOCA NPP accident with maximum temperature 1300 K. ► Deep understanding of hydraulics and thermal mechanics under accident conditions is necessary. ► We model the test QLOCA-0 with bottom flooding using the Russian code SOCRAT/V3. ► Calculated and experimental data are in a good agreement. ► Experimental procedure is determined to reach a representative LOCA scenario in future tests. -- Abstract: The thermal hydraulic and SFD (severe fuel damage) best estimate computer modeling code SOCRAT/V3 has been used for the calculation of QUENCH-LOCA-0 experiment. The new QUENCH-LOCA bundle tests with different cladding materials will simulate a representative scenario of the LOCA (loss of coolant accident) nuclear power plant accident sequence in which the overheated up to 1300 K reactor core would be reflooded from the bottom by ECCS (emergency core cooling system). The first test QUENCH-LOCA-0 was successfully conducted at the KIT, Karlsruhe, Germany, in July 22, 2010, and was performed as the commissioning test for this series. The rod claddings are identical to that used in PWRs. The bundle was electrically heated in steam from 800 K to 1340 K with the heat-up rate of approximately 2.7 K/s. After cooling in the saturated steam the bottom flooding with water flow rate of about 100 g/s was initiated. The SOCRAT calculated results are in a good agreement with experimental data taking into account additional quenching due to water condensate entrainment at the steam cooling stage. SOCRAT/V3 has been used for estimation of further steps in experimental procedure to reach a representative LOCA scenario in future tests

  11. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-12-31

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig.

  12. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    International Nuclear Information System (INIS)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-01-01

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig

  13. Evaluating the break flow for the 100% DVI line break accident of ATLAS using the RELAP5/MOD3.3 code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Suk Ho; You, Sung Chang; Kim, Han Gon [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2010-10-15

    An integral effect test database for major design basis accidents using the Advanced Test Loop for Accident Simulation (ATLAS) facility has been compiled by the Korea Atomic Energy Research Institute (KAERI). In order to effectively utilize the database, the Domestic Standard Problem (DSP) exercise was proposed and launched in 2009. As the first DSP exercise, scenario involving a 100% break of the DVI nozzle was determined by considering its technical importance including such phenomena as the break flow, loop seal clearing. The first DSP exercise was performed in an open calculation environment. Thus, integral effect test data were opened to the participants prior to code calculations. Ten domestic organizations including members of nuclear industry, a research institute, and universities participated in the DSP exercise using various best-estimate safety analysis codes and finally presented their code prediction results, comparing them to the experimental data. This paper presents the analysis results performed by NETEC as one of the first DSP exercise participants. This analysis focuses on the break flow phenomena and modeling

  14. Analyzing the loss of coolant accident in PWR nuclear reactors with elevation change in cold leg by RELAP5/MOD3.2 system code

    International Nuclear Information System (INIS)

    Kheshtpaz, H.; Alison, C.

    2006-01-01

    As, the Russian designed VVER-1000 reactor of the Bushehr Nuclear Power Plant by taking into account the change from German technology to that of Russian technology, and with the design of elevation change in the cold legs has been developed; therefore safety assessment of these systems for loss of coolant accident in elevation change in the cold legs and comparison results for non change elevation in the cold legs for a typical reactor (normal design of nuclear reactors) is the main important factor to be considered for the safe operation. In this article, the main objective is the simulation of the loss of coolant accident scenario by the RELAP5/MOD3.2 code in two different cases; first, the elevation change in the cold legs, and the second, non change in it. After comparing and analyzing these two code calculations the results have been generalized for a new design feature of Bushehr reactor. The design and simulation of the elevation change in the cold legs process with RELAP5/MOD3.2 code for PWR reactor is performed for the first time in the country, where it is introducing several important results in this respect

  15. Features of RAPTA-SFD code modelling of chemical interactions of basic materials of the WWER active zone in accident conditions with severe fuel damage

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Sokolov, N.B.; Salatov, A.V.; Nechaeva, O.A.; Andreyeva-Andrievskaya, L.N.; Vlasov, F.Yu.

    1996-01-01

    A brief description of RAPTA-SFD code intended for computer simulations of WWER-type fuel elements (simulator or absorber element) in conditions of accident with severe damage of fuel. Presented are models of chemical interactions of basic materials of the active zone, emphasized are special feature of their application in carrying out of the CORA-W2 experiment within the framework of International Standard Problem ISP-36. Results obtained confirm expediency of phenomenological models application. (author). 6 refs, 7 figs, 1 tab

  16. ATHENA-2D: A computer code for simulation of hypothetical recriticality accidents in a thermal neutron spectrum

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1995-01-01

    In a damaged light water reactor core (as in the aftermath of a Three-Mile-Island-like core meltdown), water reflood is performed to carry off decay heat. The severely degraded geometry of the fuel debris bed may increase core reactivity with water reflood. Sufficient boron poisoning of the reflood water is therefore very important. One hypothetical accident is the reintroduction of cooling water that is insufficiently borated, resulting in the damaged reactor attaining criticality in this uncontrolled configuration. The goal in simulating this accident is the prediction of the energy release from the resulting transient

  17. Analyses and computer code developments for accident-induced thermohydraulic transients in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    Wulff, W.

    1977-01-01

    A review is presented on the development of analyses and computer codes for the prediction of thermohydraulic transients in nuclear reactor systems. Models for the dynamics of two-phase mixtures are summarized. Principles of process, reactor component and reactor system modeling are presented, as well as the verification of these models by comparing predicted results with experimental data. Codes of major importance are described, which have recently been developed or are presently under development. The characteristics of these codes are presented in terms of governing equations, solution techniques and code structure. Current efforts and problems of code verification are discussed. A summary is presented of advances which are necessary for reducing the conservatism currently implied in reactor hydraulics codes for safety assessment

  18. Review of the chronic exposure pathways models in MACCS [MELCOR Accident Consequence Code System] and several other well-known probabilistic risk assessment models

    International Nuclear Information System (INIS)

    Tveten, U.

    1990-06-01

    The purpose of this report is to document the results of the work performed by the author in connection with the following task, performed for US Nuclear Regulatory Commission, (USNRC) Office of Nuclear Regulatory Research, Division of Systems Research: MACCS Chronic Exposure Pathway Models: Review the chronic exposure pathway models implemented in the MELCOR Accident Consequence Code System (MACCS) and compare those models to the chronic exposure pathway models implemented in similar codes developed in countries that are members of the OECD. The chronic exposures concerned are via: the terrestrial food pathways, the water pathways, the long-term groundshine pathway, and the inhalation of resuspended radionuclides pathway. The USNRC has indicated during discussions of the task that the major effort should be spent on the terrestrial food pathways. There is one chapter for each of the categories of chronic exposure pathways listed above

  19. Simulation of a severe accident at a typical PWR due to break of a hot leg ECCS line using MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Sabundjian, Gaianê, E-mail: smlee@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The aim of this work was to simulate a severe accident at a typical PWR caused by break in Emergency Core Cooling System (ECCS) line of a hot leg using the MELCOR code. The nodalization of this typical PWR was elaborated by the Global Research for Safety (GRS) and provided to the CNEN for analysis of the severe accidents at the Angra 2, which is similar to that PWR. Although both of them are not identical the results obtained for that typical PWR may be valuable because of the lack of officially published calculation for Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes after the break in the hot leg were calculated as well as degree of core degradation and hydrogen concentration in containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management (SAMG) by adding associated conditions for each measure in its input. (author)

  20. Simulation with the MELCOR code of two severe accident sequences, Station Blackout and Small Break LOCA, for the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Valle Cepero, Reinaldo

    2004-01-01

    The results of the PSA-I applied to the Atucha I nuclear power plant (CNA I) determine the accidental sequences with the most influence related to the probability of the core reactor damage. Among those sequences are include, the Station Blackout and lost of primary coolant, combine with the failure of the emergency injection systems by pipe breaks of diameters between DN100 - DN25 or equivalent areas, Small LOCA. This paper has the objective to model and analyze the behavior of the primary circuit and the pressure vessel during the evolution of those two accidental sequences. It presented a detailed analysis of the main phenomena that occur from the initial moment of the accident to the failure moment of the pressure vessel and the melt material fall to the reactor cavity. Two sequences were taken into account, considering the main phenomena (core uncover, heating, fuel element oxidation, hydrogen generation, degradation and relocation of the melt material, failure of the support structures, etc.) and the time of occurrence, of those events will be different, if it is considered that both sequences will be developed in different scenarios. One case is an accident with the primary circuit to a high pressure (Station Blackout scenario) and the other with a early primary circuit depressurization due to the lost of primary coolant. For this work the MELCOR 1.8.5 code was used and it allows within a unified framework to modeling an extensive spectrum of phenomenology associated with the severe accidents. (author)

  1. Simulation of a severe accident at a typical PWR due to break of a hot leg ECCS line using MELCOR code

    International Nuclear Information System (INIS)

    Lee, Seung Min; Sabundjian, Gaianê

    2017-01-01

    The aim of this work was to simulate a severe accident at a typical PWR caused by break in Emergency Core Cooling System (ECCS) line of a hot leg using the MELCOR code. The nodalization of this typical PWR was elaborated by the Global Research for Safety (GRS) and provided to the CNEN for analysis of the severe accidents at the Angra 2, which is similar to that PWR. Although both of them are not identical the results obtained for that typical PWR may be valuable because of the lack of officially published calculation for Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes after the break in the hot leg were calculated as well as degree of core degradation and hydrogen concentration in containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management (SAMG) by adding associated conditions for each measure in its input. (author)

  2. THYDE-B1/MOD2: a computer code for analysis of small-break loss-of-coolant accidents of boiling water reactors

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Muramatsu, Ken; Kukita, Yutaka; Tasaka, Kanji

    1988-04-01

    THYDE-B1/MOD2 is a fast-running best estimate (BE) computer code to analyze thermal-hydraulic behaviors of the reactor cooling system of a boiling water reactor (BWR), mainly, during a small-break loss-of-coolant accident (SBLOCA) with a special emphasis on the behavior of pressure and mixture level in the pressure vessel. The coolant behavior is simulated with a volume-and-junction method based on assumptions of thermal equilibrium and homogeneous conditions for two-phase flow. A characteristic feature of this code is a three-region representation of the state of the coolant in a control volume, in which three regions consist of subcooled liquid, saturated mixture and saturated steam regions from the volume bottom. The regions are separated by two horizontal moving boundaries which are tracked by mass and energy balances for each region. With this three region node model, the interior of the pressure vessel can be represented by only two volumes: one for inside of the shroud and the other for outside, while other portions of the system are treated with homogeneous node model. This method, although it seems to be very simple, has been verified to be adequate for cases of BWR SBLOCAs in which the thermal-hydraulic behavior is relatively slow and gravity controlled. The code has been improved and modified from the last version of the code, THYDE-B1/MOD1, especially in the phase separation model which is used in the mixture level calculation in the three region node model. Then, a good predictability of the code has been indicated through the comparison of calculated results with various SBLOCA test data including ROSA-III of JAERI and FIST of the General Electric Co. This report presents the code modifications and input data requirements of the THYDE-B1/MOD2 code. (author)

  3. Investigation of 3D spatial effect on point kinetics estimation of the thermal hydraulics code RELAP for the analysis of MSLB accident of KK-NP

    International Nuclear Information System (INIS)

    Bera, S.; Pradhan, S.K.; Dubey, S.K.; Gupta, S.K.

    2011-01-01

    In general safety analyses of design basis accident of NPPs are being carried out using system thermal hydraulics code like RELAP. In RELAP, power is calculated based on point kinetics approximation, which virtually ignores the space and energy dependence of neutron flux. To include the space and energy dependence of neutron flux, three-dimensional neutronics code TRIHEXFA has been externally coupled with RELAP through interface program, TRIHEXFA-RELAP Interface Program (TRIP). Calculation methodology of TRIP program is based on adiabatic approximation. In the adiabatic approximation the neutron flux is being factored into spatial and amplitude part. Spatial part of flux is slowly varying with time whereas amplitude part is strongly varying function. The RELAP controls the transient time steps. Transient time is divided into several major and minor time steps. Minor time step is the sub-step of major time step. Thermal hydraulics and neutronics data are exchanged at each major time step. Spatial part of neutron flux has been updated at each major time step using TRIHEXFA code. But amplitude part of the neutron flux is calculated at each minor time step using RELAP code. Convergence of results of the coupled code, TRIP has been checked through coupling time step descritization study. This study determines the minimum coupling time step. Transient concerning VVER-1000 Main Steam Line Break, MSLB has been considered to investigate the space-time effect on point kinetics. MSLB occurs as a consequence of the rupture of one steam line upstream of main steam line isolation valves. Reference design and data from Kudankulam Nuclear Power Plant (KK-NPP) are used for the analysis. From this investigation it is found that TRIP significantly overestimates the maximum reactor power against uncoupled RELAP result. The time of scram also occur six seconds earlier in TRIP calculation compared to the RELAP. This exercise has also shown a proof of principle that coupling 3D

  4. Analysis of Rod Withdrawal at Power (RWAP) Accident using ATHLET Mod 2.2 Cycle A and RELAP5/mod 3.3 Codes

    International Nuclear Information System (INIS)

    Bencik, V.; Cavlina, N.; Grgic, D.

    2012-01-01

    The system code ATHLET is being developed at Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS) in Germany. In 1996, the NPP Krsko (NEK) input deck for ATHLET Mod 1.1 Cycle C has been developed at Faculty of Electrical Engineering (FER), University of Zagreb. The input deck was tested by analyzing the realistic plant event 'Main Steam Isolation Valve Closure' and the results were assessed against the measured data. The input deck was established before plant modernization that took place in 2000 and included the power uprate and SG replacement. The released ATHLET version (Mod 2.2 Cycle A) is now being available at FER Zagreb. Accordingly, the NEK input deck for ATHLET Mod 2.2 Cycle A has been developed. A completely new input deck has been created taking into account the large number of changes due to power uprate and SG replacement as well as taking advantage of developmental work on NEK data base performed at FER. The new NEK input deck for ATHLET code has been tested by analyzing the Rod Withdrawal Power (RWAP) accident and the results were assessed against the analysis performed by RELAP5/mod 3.3 code. The RWAP accident can be either Departure from Nucleate Boiling (DNB) ratio or overpower limiting accident depending on initial power and reactivity insertion rate. Since the automatic rod control system is assumed unavailable, the only negative reactivity is due to Doppler and moderator feedback. Consequently, the nuclear power and the transferred heat in the steam generators (SGs) increase. Since the steam flow to the turbine and the extracted power from the SGs remain constant, the SG secondary pressure and the temperatures on the primary side increase. Unless terminated by manual or automatic action, the power mismatch between primary and secondary side and the resultant coolant temperature rise could eventually result in DNB ratio and/or fuel centreline melt. In order to avoid core damage, the reactor protection system is designed to automatically

  5. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    International Nuclear Information System (INIS)

    Kalkahoran, Omid Noori; Ahangari, Rohollah; Shirani, Amir Saied

    2016-01-01

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results

  6. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Kalkahoran, Omid Noori; Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

  7. Adaption, validation and application of advanced codes with 3-dimensional neutron kinetics for accident analysis calculations - STC with Bulgaria

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Mittag, S.; Rohde, U.; Seidel, A.; Panayotov, D.; Ilieva, B.

    2001-08-01

    In the frame of a project on scientific-technical co-operation funded by BMBF/BMWi, the program code DYN3D and the coupled code ATHLET-DYN3D have been transferred to the Institute for Nuclear Research and Nuclear Energy (INRNE) Sofia. The coupled code represents an implementation of the 3D core model DYN3D developed by FZR into the GRS thermal-hydraulics code system ATHLET. For the purpose of validation of these codes, a measurement data base about a start-up experiment obtained at the unit 6 of Kozloduy NPP (VVER-1000/V-320) has been generated. The results of performed validation calculations were compared with measurement values from the data base. A simplified model for estimation of cross flow mixing between fuel assemblies has been implemented into the program code DYN3D by Bulgarian experts. Using this cross flow model, transient processes with asymmetrical boundary conditions can be analysed more realistic. The validation of the implemented model were performed with help of comparison calculations between modified DYD3D code and thermal-hydraulics code COBRA-4I, and also on the base of the collected measurement data from Kozloduy NPP. (orig.) [de

  8. A thermohydraulic analysis for LOCA accident of a CANDU 600 reactor core charged with SEU 43 fuel by means of FIREBIRD code

    International Nuclear Information System (INIS)

    Serbanel, M.; Catana, A.

    2001-01-01

    This report presents a comparative analysis of the behaviour of primary circuit during a LOCA 20% RIH accident for two types of reactor core, namely, normally charged, i.e., with clusters of 37 rods and charged with clusters of 43 rods, respectively. This type of accident was chosen since Canadian analyses showed that the associated transient regime stress the fuel elements. The void reactivity as a function of coolant average density was calibrated for a reference regime (LOCA 20% RIH) so that the results of the model be able to reproduce the average distribution in the reference transient regime. The computation makes use of CERBERUS and FIREBIRD codes externally coupled by files. The void reactivity of the hot pencil was obtained this way. An extremely conservative hypothesis was used, namely that the momentary power of the cluster hosting the pencil is the maximal power over the cluster for the corresponding half reactor core. To carry out this work the following steps were covered: 1. The scenario for the LOCA 20% RIH accident was worked out and the input data corresponding to the thermohydraulic and neutronic modules, for the complex model and the 37 rod clusters, were checked; 2. The input data corresponding to the thermohydraulic module for the complex model and the 43 rod cluster were checked; 3. The kinetic parameters corresponding to the 37 rod cluster were computed; 4. The kinetic parameters corresponding to the 43 rod cluster were computed and the file for the input data in the neutronic module was built; 5. A sub-routine for writing files with the thermohydraulic and neutronic quantities, in a format adequate to the other programs, was implemented; 6. The two transient regimes considered were implemented and the archives containing the quantities were built ;7. The results obtained were analyzed. The conclusion of this work is that in case of LOCA 20% RIH accident the 43 bar clusters have a better behaviour than the 37 bar clusters

  9. Preliminary Analysis of a Steam Line Break Accident with the MARS-KS code for the SMART Design with Passive Safety Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doohyuk; Ko, Yungjoo; Suh, Jaeseung [Hannam Univ., Daejeon (Korea, Republic of); Bae, Hwang; Ryu, Sunguk; Yi, Sungjae; Park, Hyunsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    SMART has been developed by KAERI, and SMART-Standard Design Approval (SDA) was recently granted in 2012. A SMART design with Passive Safety System (PSS) features (called SMART-PSS) is being developed and added to the standard design of SMART by KAERI to improve its safety system. Active safety systems such as safety injection pumps will be replaced by a passive safety system, which is actuated only by the gravity force caused by the height difference. All tanks for the passive safety systems are higher than the injection nozzle, which is located around the reactor coolant pumps (RCPs). In this study, a preliminary analysis of the main steam line break accident (MSLB) was performed using the MARS-KS code to understand the general behavior of the SMART-PSS design and to prepare its validation test with the SMART-ITL (FESTA) facility. An anticipated accident for the main steam line break (MSLB) was performed using the MARS-KS code to understand the thermal-hydraulic behaviors of the SMART-PSS design. The preliminary analysis provides good insight into the passive safety system design features of the SMART-PSS and the thermal-hydraulic characteristics of the SMART design. The analysis results of the MSLB showed that the core water collapsed level inside the core support barrel was maintained high over the active core top level during the transient period. Therefore, the SMART-PSS design has satisfied the requirements to maintain the plant at a safe shutdown condition during 72 hours without AC power or operator action after an anticipated accident.

  10. SSYST-1. A computer code system to analyse the fuel rod behaviour during a loss of coolant accident

    International Nuclear Information System (INIS)

    Gulden, W.

    1977-08-01

    The modules of the SSYST program system allow the detailed analysis of an LWR fuel rod in the course of a postulated loss-of-coolant accident. They provide a tool for considering the interaction between the heat conduction in the fuel rod, heat transfer in the gap, fuel and cladding tube deformation, pressure in the coolant, as well as thermal and fluid dynamics in the cooling channel and for calculating the time and location of ballooning and rod failure, respectively. They can be used both to precalculate the behaviour of fuel rods during LWR accidents and in support of the design of experiments. Depending on the problem to be solved, the individual modules can be easily combined. (orig.) [de

  11. Comparative accident analyses for a KONVOI-type PWR using the integral codes ASTEC V1.33 and MELCOR 1.8.6

    International Nuclear Information System (INIS)

    Reinke, Nils; Erdmann, Walter; Nowack, Holger; Sonnenkalb, Martin

    2010-08-01

    In the frame of the project RS1180 funded by the German Federal Ministry for Economics and Technology (BMWi) calculations have been carried out with the integral code ASTEC V1.33 p3 developed by GRS for two postulated accidents in a nuclear power plant with KONVOI type a pressurized water reactor and compared to calculations with MELCOR 1.8.6 YU. Major objective was to assess the capability of ASTEC for application in level 2 probabilistic safety analyses (PSA). In particular, it was investigated to which extent ASTEC is able to perform such integral calculations meeting criteria with regard to both reasonable calculation time and specific boundary conditions necessary for PSA analyses. Two exemplary accidents were selected: - A transient with loss of steam generator feed water, - A small break loss of coolant accident (50 cm 2 ) in the cold leg of the coolant line connected to the pressurizer. In principle, the results demonstrate the capability of ASTEC V1.33 to carry out such PSA level 2 calculations. In addition, it has to be noted that for both ASTEC and MELCOR the requirements in view of the quality of the results leads to prolonged calculation times due to more detailed nodalisations of the whole plant. This is valid for the core region as well as for the primary circuit and for the containment. Consequently, calculation times in the order of one day to two weeks are accomplished, thereby excluding extensive parameter analyses in order to assess the sensitivity of the calculation results. Concerning the quality of the results a good agreement can be stated between ASTEC and MELCOR results in terms of global data. In detail some results are sensitive to user effects. Here, the nodalisation seems to be of major influence besides differences in modeling specific phenomena. The comparison suggests that in particular the influence of the nodalisation defined by the user and depending on the user's experience should be carefully evaluated. Since some

  12. Quest for the real-time for the safety analysis code Cathare 2 used in the post-accident simulator Sipa

    International Nuclear Information System (INIS)

    Ruby, A.; Antoni, O.; Rose, Ch.; Iffenecker, F.

    2003-01-01

    The aim of the SCAR project is to use the CATHARE French thermal-hydraulic accident code in the SIPA simulator (Post-Accident Simulator) and extend SIPA to reactor cold shutdown states. The quest for real-time has been one of the key themes of the project since it began in 1997. The required CPU time depends on the computing power and on the ability of CATHARE to converge as fast as possible on the solution. Three main tasks have been scheduled to contain the lag between the simulation and the real-time: -1) Parallelism in CATHARE has been developed with shared-memory model (using OPEN MP). Standardized and adapted to the numerical method and the structure of CATHARE, it has enabled parallel tasks in 95% of the code with efficient parallel loops on the elements, and an optimized but limited parallelism in the solver. Validation has been carried out all along the task, ensuring the binary identity of results for 10 representative accident transients, whatever the number of processors used on each computer of the SCAR project. -2) Convergence has been improved for 20 CATHARE transients, ranging from the 100% full power state to cold-shutdown for maintenance state. A method based on the definition of maximum lag criteria in function of an estimated power of computers has been developed, revealing coding errors and leading to numerical improvements without any regression of physical law validation. A second phase has started in 2003 on another series of 25 transients within the simulator. -3) A techno-watch policy (using benchmarking) has allowed to keep up to date with progress in computer power throughout the duration of the project. It has consisted in comparing the performance of computers for 12 standard CATHARE input decks using an elementary time relevant of the computing machines for a given modeling of plant series. Furthermore, development validation and performance assessment tools have been developed at the same time. As a result of these three tasks

  13. Quest for the real-time for the safety analysis code Cathare 2 used in the post-accident simulator Sipa

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, A.; Antoni, O. [CEA Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique; Creach, V.; Dufeil, Ph. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Rose, Ch.; Iffenecker, F. [Electricite de France, 75 - Paris (France)

    2003-07-01

    The aim of the SCAR project is to use the CATHARE French thermal-hydraulic accident code in the SIPA simulator (Post-Accident Simulator) and extend SIPA to reactor cold shutdown states. The quest for real-time has been one of the key themes of the project since it began in 1997. The required CPU time depends on the computing power and on the ability of CATHARE to converge as fast as possible on the solution. Three main tasks have been scheduled to contain the lag between the simulation and the real-time: -1) Parallelism in CATHARE has been developed with shared-memory model (using OPEN MP). Standardized and adapted to the numerical method and the structure of CATHARE, it has enabled parallel tasks in 95% of the code with efficient parallel loops on the elements, and an optimized but limited parallelism in the solver. Validation has been carried out all along the task, ensuring the binary identity of results for 10 representative accident transients, whatever the number of processors used on each computer of the SCAR project. -2) Convergence has been improved for 20 CATHARE transients, ranging from the 100% full power state to cold-shutdown for maintenance state. A method based on the definition of maximum lag criteria in function of an estimated power of computers has been developed, revealing coding errors and leading to numerical improvements without any regression of physical law validation. A second phase has started in 2003 on another series of 25 transients within the simulator. -3) A techno-watch policy (using benchmarking) has allowed to keep up to date with progress in computer power throughout the duration of the project. It has consisted in comparing the performance of computers for 12 standard CATHARE input decks using an elementary time relevant of the computing machines for a given modeling of plant series. Furthermore, development validation and performance assessment tools have been developed at the same time. As a result of these three tasks

  14. PBDOWN: A computer code for simulation of core material discharge and expansion in the upper coolant plenum in a hypothetical unprotected loss of flow accident in a LMFBR

    International Nuclear Information System (INIS)

    Royl, P.

    1985-01-01

    The report gives a description of the code PBDOWN (Pool Blow Down), its equations, input specifications and subroutines and it lists the input and output for some samples. Besides that some analysis results for the SNR-300 are discussed, that were obtained with this code. PBDOWN is an integral blow-down and expansion code, which simulates core material discharge and expansion into a sodium filled upper coolant plenum after build-up of vapour pressures in an unprotected loss of flow accident. The model includes the effect of sodium entrainment into an expending bubble of fuel or steel vapour with various assumptions for the heat transfer and vaporization of the entrained sodium droplets. The expanding vapour bubble is connected to the discharging pool via an orifice of a given size through which a time dependent ejection is simulated using quasi-stationary blow down correlations. The model allows bounding analysis of the possible influence of sodium vapour as a secondary working fluid, that is activated outside the pool on the overall expansion energy and discharge

  15. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  16. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident: status February 1980

    International Nuclear Information System (INIS)

    Gittus, J.H.; Haste, T.J.; Bowring, R.W.; Cooper, C.A.

    1980-02-01

    MABEL-2 calculates the deformation of a single fuel rod. This rod is surrounded by 8 other rods on a square lattice whose behaviour is specified via Input Data options. A 2-D (r,theta) conduction model is used for the fuel rod, the cladding creep is calculated from the CANSWEL-2 model and the feedback effect of clad strain on heat transfer to the coolant is obtained from subchannel analysis of the coolant passages surrounding the rod. The coding of the first version of MABEL-2 has been completed except for work to optimise the iteration convergence, minimise the running time and generally tidy up the coding. (author)

  17. Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

    Directory of Open Access Journals (Sweden)

    Omid Noori-Kalkhoran

    2016-10-01

    Full Text Available Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model. In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code’s results.

  18. Development of an accident consequence assessment code for evaluating site suitability of light- and heavy-water reactors based on the Korean Technical standards

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Tae; Jeong, Hae Sung; Jeong, Hyo Joon; Kil, A Reum; Kim, Eun Han; Han, Moon Hee [Nuclear Environment Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Methodologies for a series of radiological consequence assessments show a distinctive difference according to the design principles of the original nuclear suppliers and their technical standards to be imposed. This is due to the uncertainties of the accidental source term, radionuclide behavior in the environment, and subsequent radiological dose. Both types of PWR and PHWR are operated in Korea. However, technical standards for evaluating atmospheric dispersion have been enacted based on the U.S. NRC's positions regardless of the reactor types. For this reason, it might cause a controversy between the licensor and licensee of a nuclear power plant. It was modelled under the framework of the NRC Regulatory Guide 1.145 for light-water reactors, reflecting the features of heavy-water reactors as specified in the Canadian National Standard and the modelling features in MACCS2, such as atmospheric diffusion coefficient, ground deposition, surface roughness, radioactive plume depletion, and exposure from ground deposition. An integrated accident consequence assessment code, ACCESS (Accident Consequence Assessment Code for Evaluating Site Suitability), was developed by taking into account the unique regulatory positions for reactor types under the framework of the current Korean technical standards. Field tracer experiments and hand calculations have been carried out for validation and verification of the models. The modelling approaches of ACCESS and its features are introduced, and its applicative results for a hypothetical accidental scenario are comprehensively discussed. In an applicative study, the predicted results by the light-water reactor assessment model were higher than those by other models in terms of total doses.

  19. Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

    Directory of Open Access Journals (Sweden)

    Isabelle Guénot-Delahaie

    2018-03-01

    Full Text Available The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs, power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs. As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on PWR-UO2 fuel rods with advanced claddings such as M5® under “low pressure–low temperature” or “high pressure–high temperature” water coolant conditions.This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on UO2-M5® fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE—starting from base irradiation conditions it itself computes—is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur.Areas of improvement are finally discussed with a view to simulating and

  20. BUSH: A computer code for calculating steady state heat transfer in LWR rod bundles under accident conditions

    International Nuclear Information System (INIS)

    Shepherd, I.M.

    1982-01-01

    The computer code BUSH has been developed for the calculation of steady state heat transfer in a rod bundle. For a given power, flow and geometry it can calculate the temperatures in the rods, coolant and shroud assuming that at any axial level each rod can be described by one temperature and the coolant fluid is also radially uniform at this level. Heat transfer by convection and radiation are handled and the geometry is flexible enough to model nearly all types of envisaged shroud design for the SUPERSARA test series. The modular way in which BUSH has been written makes it suitable for future development, either within the present BUSH framework or as part of a more advanced code

  1. WSPEEDI (worldwide version of SPEEDI): A computer code system for the prediction of radiological impacts on Japanese due to a nuclear accident in foreign countries

    Energy Technology Data Exchange (ETDEWEB)

    Chino, Masamichi; Yamazawa, Hiromi; Nagai, Haruyasu; Moriuchi, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishikawa, Hirohiko

    1995-09-01

    A computer code system has been developed for near real-time dose assessment during radiological emergencies. The system WSPEEDI, the worldwide version of SPEEDI (System for Prediction of Environmental Emergency Dose Information) aims at predicting the radiological impact on Japanese due to a nuclear accident in foreign countries. WSPEEDI consists of a mass-consistent wind model WSYNOP for large-scale wind fields and a particle random walk model GEARN for atmospheric dispersion and dry and wet deposition of radioactivity. The models are integrated into a computer code system together with a system control software, worldwide geographic database, meteorological data processor and graphic software. The performance of the models has been evaluated using the Chernobyl case with reliable source terms, well-established meteorological data and a comprehensive monitoring database. Furthermore, the response of the system has been examined by near real-time simulations of the European Tracer Experiment (ETEX), carried out over about 2,000 km area in Europe. (author).

  2. WSPEEDI (worldwide version of SPEEDI): A computer code system for the prediction of radiological impacts on Japanese due to a nuclear accident in foreign countries

    International Nuclear Information System (INIS)

    Chino, Masamichi; Yamazawa, Hiromi; Nagai, Haruyasu; Moriuchi, Shigeru; Ishikawa, Hirohiko.

    1995-09-01

    A computer code system has been developed for near real-time dose assessment during radiological emergencies. The system WSPEEDI, the worldwide version of SPEEDI (System for Prediction of Environmental Emergency Dose Information) aims at predicting the radiological impact on Japanese due to a nuclear accident in foreign countries. WSPEEDI consists of a mass-consistent wind model WSYNOP for large-scale wind fields and a particle random walk model GEARN for atmospheric dispersion and dry and wet deposition of radioactivity. The models are integrated into a computer code system together with a system control software, worldwide geographic database, meteorological data processor and graphic software. The performance of the models has been evaluated using the Chernobyl case with reliable source terms, well-established meteorological data and a comprehensive monitoring database. Furthermore, the response of the system has been examined by near real-time simulations of the European Tracer Experiment (ETEX), carried out over about 2,000 km area in Europe. (author)

  3. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000 degree F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion (''bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled

  4. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  5. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  6. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  7. AXAIR: A Computer Code for SAR Assessment of Plume-Exposure Doses from Potential Process-Accident Releases to Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pillinger, W.L.

    2001-05-17

    This report describes the AXAIR computer code which is available to terminal users for evaluating the doses to man from exposure to the atmospheric plume from postulated stack or building-vent releases at the Savannah River Plant. The emphasis herein is on documentation of the methodology only. The total-body doses evaluated are those that would be exceeded only 0.5 percent of the time based on worst-sector, worst-case meteorological probability analysis. The associated doses to other body organs are given in the dose breakdowns by radionuclide, body organ and pathway.

  8. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity

  9. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    International Nuclear Information System (INIS)

    Kang, S. H.; Ha, K. S.

    2013-01-01

    The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity feedback (Doppler and

  10. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    International Nuclear Information System (INIS)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyoung-Ho

    2014-01-01

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection

  11. Simulation of accident-tolerant U{sub 3}Si{sub 2} fuel using FRAPCON code

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R., E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    The research on accident-tolerant fuels (ATFs) increased after the Fukushima event. This benefited risk management in nuclear operations. In this investigation, the physical properties of the materials being developed for the ATF program were compared with those of the standard UO{sub 2} - Zr fuel system. The research efforts in innovative fuel design include rigorous characterization of thermal, mechanical, and chemical assessment, with the objectives of making the burnup cycle longer, increasing power density, and improving safety performance. Fuels must reach a high uranium density - above that supported by UO{sub 2} - and possess coating that exhibits better oxidation resistance than Zircaloy. The uranium density and thermal conductivity of ATFs, such as U{sub 3}Si{sub 2}, UN, and UC, is higher than that of UO{sub 2}; their combination with advanced cladding provides possible fuel - cladding options. An ideal combination of fuel and cladding must increase fuel performance in loss-of-coolant scenarios. The disadvantages of U{sub 3}Si{sub 2}, UN, and UC are their swelling rates, which are higher than that of UO{sub 2}. The thermal conductivities of ATFs are approximately four times higher than that of UO2. To prevent the generation of hydrogen due to oxidation of zirconium-based alloys in contact with steam, cladding options, such as ferritic alloys, were studied. It was verified that FeCrAl alloys and SiC provide better response under severe conditions because of their thermophysical properties. The findings of this study indicate that U{sub 3}Si{sub 2} and the FeCrAl fuel cladding concept should replace UO{sub 2} - Zr as the fuel system of choice. (author)

  12. Thermal-hydraulic analysis best-estimate of an accident in the containment a PWR-W reactor with GOTHIC code using a 3D model detailed; Analisis termo-hidraulico best-estimate de un accidente en contencion de un reactor PWR-W con el codigo GOTHIC mediante un modelo 3D detallado

    Energy Technology Data Exchange (ETDEWEB)

    Bocanegra, R.; Jimenez, G.

    2013-07-01

    The objective of this project will be a model of containment PWR-W with the GOTHIC code that allows analyzing the behavior detailed after a design basis accident or a severe accident. Unlike the models normally used in codes of this type, the analysis will take place using a three-dimensional model of the containment, being this much more accurate.

  13. Unprotected Accident Analyses of the 1200MWe GEN-IV Sodium-Cooled Fast Reactor Using the SSC-K Code

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Hae Yong; Chang, Won Pyo; Seok, Su Dong; Lee, Yong Bum

    2010-02-01

    A conceptual design of an advanced breakeven sodium-cooled fast reactor (G4SFR) has recently been developed by KAERI under the national nuclear R and D plan. The G4SFR is a 1,200MWe metal-fueled pool-type sodium-cooled fast reactor adopting advanced safety design features. The G4SFR development plan focuses on particular technology development efforts to effectively meet the goals of the Generation-IV (GEN-IV) nuclear system such as efficient utilization of resources, economic competitiveness, a high standard of safety, and enhanced proliferation resistance. To enhance the safety of G4SFR, advanced design features of metal-fueled core, simple and large sodium-inventory primary heat transport system, and passive safety decay heat removal system are included in the reactor design. To evaluate potential safety characteristics of such advanced design features, the plant responses and safety margins were investigated using the system transient code SSC-K for three unprotected accidents of UTOP, ULOF, and ULOHS. It was shown that the G4SFR design has inherent and passive safety characteristics and is accommodating the selected ATWS events. The inherent safety mechanism of the reactor design makes the core shutdown with sufficient margin and passive removal of decay heat with matching the core power to heat sink by passive self-regulation. The self-regulation of power without scram is mainly due to the inherent negative reactivity feedback in conjunction with the large thermal inertia of the primary heat transport system and the passive decay heat removal. Such favorable inherent and passive safety behaviors of G4SFR are expected to virtually exclude the probability of severe accidents with potential for core damage

  14. Qualification and application of nuclear reactor accident analysis code with the capability of internal assessment of uncertainty; Qualificacao e aplicacao de codigo de acidentes de reatores nucleares com capacidade interna de avaliacao de incerteza

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ronaldo Celem

    2001-10-15

    This thesis presents an independent qualification of the CIAU code ('Code with the capability of - Internal Assessment of Uncertainty') which is part of the internal uncertainty evaluation process with a thermal hydraulic system code on a realistic basis. This is done by combining the uncertainty methodology UMAE ('Uncertainty Methodology based on Accuracy Extrapolation') with the RELAP5/Mod3.2 code. This allows associating uncertainty band estimates with the results obtained by the realistic calculation of the code, meeting licensing requirements of safety analysis. The independent qualification is supported by simulations with RELAP5/Mod3.2 related to accident condition tests of LOBI experimental facility and to an event which has occurred in Angra 1 nuclear power plant, by comparison with measured results and by establishing uncertainty bands on safety parameter calculated time trends. These bands have indeed enveloped the measured trends. Results from this independent qualification of CIAU have allowed to ascertain the adequate application of a systematic realistic code procedure to analyse accidents with uncertainties incorporated in the results, although there is an evident need of extending the uncertainty data base. It has been verified that use of the code with this internal assessment of uncertainty is feasible in the design and license stages of a NPP. (author)

  15. Test and validation of CFD codes for the simulation of accident-typical phenomena in the reactor containment; Erprobung und Validierung von CFD-Codes fuer die Simulation von unfalltypischen Phaenomenen im Sicherheitseinschluss

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Berthold; Stewering, Joern; Sonnenkalb, Martin

    2014-03-15

    CFD (Computational Fluid Dynamic) simulation techniques have a growing relevance for the simulation and assessment of accidents in nuclear reactor containments. Some fluid dynamic problems like the calculation of the flow resistances in a complex geometry, turbulence calculations or the calculation of deflagrations could only be solved exactly for very simple cases. These fluid dynamic problems could not be represented by lumped parameter models and must be approximated numerically. Therefore CFD techniques are discussed by a growing international community in conferences like the CFD4NRS-conference. Also the number of articles with a CFD topic is increasing in professional journals like Nuclear Engineering and Design. CFD tools like GASFLOW or GOTHIC are already in use in European nuclear site licensing processes for future nuclear power plants like EPR or AP1000 and the results of these CFD tools are accepted by the authorities. For these reasons it seems to be necessary to build up national competences in the field of CFD techniques and it is important to validate and assess the existing CFD tools. GRS continues the work for the validation and assessment of CFD codes for the simulation of accident scenarios in a nuclear reactor containment within the framework of the BMWi sponsored project RS1500. The focus of this report is on the following topics: - Further validation of condensation models from GRS, FZJ and ANSYS and development of a new condensate model. - Validation of a new turbulence model which was developed by the University of Stuttgart in cooperation with ANSYS. - The formation and dissolution of light gas stratifications are analyzed by large scale experiments. These experiments were simulated by GRS. - The AREVA correlations for hydrogen recombiners (PARs) could be improved by GRS after the analysis of experimental data. Relevant experiments were simulated with this improved recombiner correlation. - Analyses on the simulation of H{sub 2

  16. EPRI research on accident management

    International Nuclear Information System (INIS)

    Oehlberg, R.N.; Chao, J.

    1991-01-01

    The paper discusses Nuclear Regulatory Commission (NRC) efforts regarding severe reactor accident management and the Nuclear Management and Resources Council (NUMAEX), activities. (EPRI) Electric Power Research Institute accident management program consists of the two products just mentioned plus one related to severe accident plant status information and the MAAP 4.0 computer code. These are briefly discussed

  17. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  18. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    International Nuclear Information System (INIS)

    Lazaro, A.; Schikorr, M.; Mikityuk, K.; Ammirabile, L.; Bandini, G.; Darmet, G.; Schmitt, D.; Dufour, Ph.; Tosello, A.; Gallego, E.; Jimenez, G.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D.; Stempniewicz, M.

    2014-01-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs

  19. Reactivity insertion accident analysis

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Nakata, H.; Yorihaz, H.

    1990-04-01

    The correct prediction of postulated accidents is the fundamental requirement for the reactor licensing procedures. Accident sequences and severity of their consequences depend upon the analysis which rely on analytical tools which must be validated against known experimental results. Present work presents a systematic approach to analyse and estimate the reactivity insertion accident sequences. The methodology is based on the CINETHICA code which solves the point-kinetics/thermohydraulic coupled equations with weighted temperature feedback. Comparison against SPERT experimental results shows good agreement for the step insertion accidents. (author) [pt

  20. Severe accident analysis methodology in support of accident management

    International Nuclear Information System (INIS)

    Boesmans, B.; Auglaire, M.; Snoeck, J.

    1997-01-01

    The author addresses the implementation at BELGATOM of a generic severe accident analysis methodology, which is intended to support strategic decisions and to provide quantitative information in support of severe accident management. The analysis methodology is based on a combination of severe accident code calculations, generic phenomenological information (experimental evidence from various test facilities regarding issues beyond present code capabilities) and detailed plant-specific technical information

  1. Accidents - Chernobyl accident

    International Nuclear Information System (INIS)

    2004-01-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  2. Analysis of an accident type sbloca in reactor contention AP1000 with 8.0 Gothic code; Analisis de un accidente tipo Sbloca en la contencion del reactor AP1000 con el codigo Gothic 8.0

    Energy Technology Data Exchange (ETDEWEB)

    Goni, Z.; Jimenez Varas, G.; Fernandez, K.; Queral, C.; Montero, J.

    2016-08-01

    The analysis is based on the simulation of a Small Break Loss-of-Coolant-Accident in the AP1000 nuclear reactor using a Gothic 8.0 tri dimensional model created in the Science and Technology Group of Nuclear Fision Advanced Systems of the UPM. The SBLOCA has been simulated with TRACE 5.0 code. The main purpose of this work is the study of the thermo-hydraulic behaviour of the AP1000 containment during a SBLOCA. The transients simulated reveal close results to the realistic behaviour in case of an accident with similar characteristics. The pressure and temperature evolution enables the identification of the accident phases from the RCS point of view. Compared to the licensing calculations included in the AP1000 Safety Analysis, it has been proved that the average pressure and temperature evolution is similar, yet lower than the licensing calculations. However, the temperature and inventory distribution are significantly heterogeneous. (Author)

  3. Modelization of the initiator success of the accident of Fukushima Daiichi in the NPP of ZION by the code MAAP-5; Modelizacion del suceso iniciador del accidente de Fukushima Daiichi en la C.N. de ZION mediante el codigo MAAP-5

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Fernandez, M.; Jimenez, G.; Batteira, P.

    2013-07-01

    The main objective of the project is the modeling of the accident with a code new in the industry, MAAP5, and in a different nuclear plant, as well as various parameters sensitivity analysis to assess their influence on the evolution of the accident. The paper presents the analysis of the evolution of the simulated accident, as well as the evaluation of different sensitivity analyses performed on different parameters influence on the evolution: pre-accident conditions, actions of operator, etc. Operator actions, not referred to in the emergency procedures, which could influence the behavior of the reactor vessel during severe accident progression were analyzed.

  4. Postulated accidents

    International Nuclear Information System (INIS)

    Ullrich, W.

    1980-01-01

    This lecture on 'Postulated Accidents' is the first of a series of lectures on the dynamic and transient behaviour of nuclear power plants, especially pressurized water reactors. The main points covered will be: Reactivity Accidents, Transients (Intact Loop) and Loss of Cooland Accidents (LOCA) including small leak. This lecture will discuss the accident analysis in general, the definition of the various operational phases, the accident classification, and, as an example, an accident sequence analysis on the basis of 'Postulated Accidents'. (orig./RW)

  5. Simulation of a loss of primary coolant accident due to a large break in Angra 2 Nuclear Power Plant with RELAP5/MOD3.2.2G code

    International Nuclear Information System (INIS)

    Sabunddjian, Gaiane; Andrade, Delvonei Alves de

    2003-01-01

    This work presents the simulation, with RELAP5/MOD.3.2.2G code, of the postulate accident with loss of coolant in the primary circuit for large break (LBLOCA), which is described in Chapter 15 of the Final Safety Analysis Report of Angra 2 FSAR. The accident consists basically of the total break of the cold leg (Loop 20) of Angra 2 Plant. The rupture area considered is 4418 cm 2 , which represents 100% of the primary circuit pipe flow area. The Emergency Core Cooling System (ECCS) efficiency is also verified for this accident. In this simulation, failure and repair criteria are adopted for the ECCS components, in order to verify the system operation, in carrying out its function as expected by the project to preserve the integrity of the reactor core and to guarantee its cooling. LBLOCA accidents are characterized by a fast blowdown in the primary circuit to values that the low pressure injection system is activated and then, followed by the water injection by the accumulators. The thermal-hydraulic processes inherent to the accident phenomenon, such as hot leg vaporization and consequently core vaporization causing an inappropriate flow distribution in the reactor core, can lead to a reduction in the core liquid level, until the ECCS is capable to reflood it. It is important to point out that the results do not represent an independent calculation for the licensing process, but a calculation to give support to the qualification process of Angra 2 transient basic nodalization (author)

  6. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.

    1998-03-01

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [de

  7. Severe accidents in nuclear reactors

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Dumitrescu, Iulia; Tunaru, Mariana

    2004-01-01

    The likelihood of accidents leading to core meltdown in nuclear reactors is low. The consequences of such an event are but so severe that developing and implementing of adequate measures for preventing or diminishing the consequences of such events are of paramount importance. The analysis of major accidents requires sophisticated computation codes but necessary are also relevant experiments for checking the accuracy of the predictions and capability of these codes. In this paper an overview of the severe accidents worldwide with definitions, computation codes and relating experiments is presented. The experimental research activity of severe accidents was conducted in INR Pitesti since 2003, when the Institute jointed the SARNET Excellence Network. The INR activity within SARNET consists in studying scenarios of severe accidents by means of ASTEC and RELAP/SCDAP codes and conducting bench-scale experiments

  8. Pedestrian injury causation study (pedestrian accident typing)

    Science.gov (United States)

    1982-08-01

    A new computerized pedestrian accident typing procedure was tested on 1,997 cases from the Pedestrian Injury Causation Study (PICS). Two coding procedures were used to determine the effects of quantity and quality of information on accident typing ac...

  9. Sports-related injuries in New Zealand: National Insurance (Accident Compensation Corporation) claims for five sporting codes from 2012 to 2016.

    Science.gov (United States)

    King, Doug; Hume, Patria A; Hardaker, Natalie; Cummins, Cloe; Gissane, Conor; Clark, Trevor

    2018-03-12

    To provide epidemiological data and related costs for sport-related injuries of five sporting codes (cricket, netball, rugby league, rugby union and football) in New Zealand for moderate-to-serious and serious injury claims. A retrospective analytical review using detailed descriptive epidemiological data obtained from the Accident Compensation Corporation (ACC) for 2012-2016. Over the 5 years of study data, rugby union recorded the most moderate-to-serious injury entitlement claims (25 226) and costs (New Zealand dollars (NZD$)267 359 440 (£139 084 749)) resulting in the highest mean cost (NZD$10 484 (£5454)) per moderate-to-serious injury entitlement claim. Rugby union recorded more serious injury entitlement claims (n=454) than cricket (t (4) =-66.6; P<0.0001); netball (t (4) =-45.1; P<0.0001); rugby league (t (4) =-61.4; P<0.0001) and football (t (4) =66.6; P<0.0001) for 2012-2016. There was a twofold increase in the number of female moderate-to-serious injury entitlement claims for football (RR 2.6 (95%CI 2.2 to 2.9); P<0.0001) compared with cricket, and a threefold increase when compared with rugby union (risk ratio (RR) 3.1 (95%CI 2.9 to 3.3); P<0.0001). Moderate-to-serious concussion claims increased between 2012 and 2016 for netball (RR 3.7 (95%CI 1.9 to 7.1); P<0.0001), rugby union (RR 2.0 (95% CI 1.6 to 2.4); P<0.0001) and football (RR 2.3 (95%CI 1.6 to 3.2); P<0.0001). Nearly a quarter of moderate-to-serious entitlement claims (23%) and costs (24%) were to participants aged 35 years or older. Rugby union and rugby league have the highest total number and costs associated with injury. Accurate sport exposure data are needed to enable injury risk calculations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Accident management

    International Nuclear Information System (INIS)

    Lutz, R.J.; Monty, B.S.; Liparulo, N.J.; Desaedeleer, G.

    1989-01-01

    The foundation of the framework for a Severe Accident Management Program is the contained in the Probabilistic Safety Study (PSS) or the Individual Plant Evaluations (IPE) for a specific plant. The development of a Severe Accident Management Program at a plant is based on the use of the information, in conjunction with other applicable information. A Severe Accident Management Program must address both accident prevention and accident mitigation. The overall Severe Accident Management framework must address these two facets, as a living program in terms of gathering the evaluating information, the readiness to respond to an event. Significant international experience in the development of severe accident management programs exist which should provide some direction for the development of Severe Accident Management in the U.S. This paper reports that the two most important elements of a Severe Accident Management Program are the Emergency Consultation process and the standards for measuring the effectiveness of individual Severe Accident Management Programs at utilities

  11. Unavoidable Accident

    OpenAIRE

    Grady, Mark F.

    2009-01-01

    In negligence law, "unavoidable accident" is the risk that remains when an actor has used due care. The counterpart of unavoidable accident is "negligent harm." Negligence law makes parties immune for unavoidable accident even when they have used less than due care. Courts have developed a number of methods by which they "sort" accidents to unavoidable accident or to negligent harm, holding parties liable only for the latter. These sorting techniques are interesting in their own right and als...

  12. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  13. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  14. Preventing accidents

    Science.gov (United States)

    2005-08-01

    As the most effective strategy for improving safety is to prevent accidents from occurring at all, the Volpe Center applies a broad range of research techniques and capabilities to determine causes and consequences of accidents and to identify, asses...

  15. Contributions to the validation of advanced codes for accident analysis calculations with 3-dimensional neutron kinetics. STC with the Ukraine. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Rohde, U.; Khalimonchuk, V.; Kuchin, A.; Seidel, A.

    2000-10-01

    In the frame of a project of scientific-technical cooperation funded by BMBF/BMWi, the coupled code ATHLET-DYN3D has been transferred to the Scientific and Technical Centre on Nuclear and Radiation Safety Kiev (Ukraine). This program code represents an implementation of the 3D core model DYN3D developed by FZR into the GRS thermohydraulics code system ATHLET. For the purpose of validation of this coupled code, a measurement data base has been generated. In the data base suitable experimental data for operational transients from NPPs are collected. The data collection and documentation was performed in accordance with a directive about requirements to measurement data for code validation, which has been elaborated within the project. The validation calculations have been performed for two selected transients. The results of these calculations were compared with measurement values from the data base. The function of the code DYN3D was expanded with a subroutine for reactivity coefficients calculation. Using this modification of the code DYN3D, investigations of reactivity contributions on different operational processes can be performed. (orig.) [de

  16. Accident management for severe accidents

    International Nuclear Information System (INIS)

    Bari, R.A.; Pratt, W.T.; Lehner, J.; Leonard, M.; Disalvo, R.; Sheron, B.

    1988-01-01

    The management of severe accidents in light water reactors is receiving much attention in several countries. The reduction of risk by measures and/or actions that would affect the behavior of a severe accident is discussed. The research program that is being conducted by the US Nuclear Regulatory Commission focuses on both in-vessel accident management and containment and release accident management. The key issues and approaches taken in this program are summarized. 6 refs

  17. Accident sequence quantification with KIRAP

    International Nuclear Information System (INIS)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong.

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP's cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs

  18. Accident sequence quantification with KIRAP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP`s cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs.

  19. Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD/nuclear energy agency (NEA benchmark on reactivity-initiated accident codes phase-II

    Directory of Open Access Journals (Sweden)

    Olivier Marchand

    2018-03-01

    Full Text Available In the framework of OECD/NEA Working Group on Fuel Safety, a RIA fuel-rod-code Benchmark Phase I was organized in 2010–2013. It consisted of four experiments on highly irradiated fuel rodlets tested under different experimental conditions. This benchmark revealed the need to better understand the basic models incorporated in each code for realistic simulation of the complicated integral RIA tests with high burnup fuel rods. A second phase of the benchmark (Phase II was thus launched early in 2014, which has been organized in two complementary activities: (1 comparison of the results of different simulations on simplified cases in order to provide additional bases for understanding the differences in modelling of the concerned phenomena; (2 assessment of the uncertainty of the results. The present paper provides a summary and conclusions of the second activity of the Benchmark Phase II, which is based on the input uncertainty propagation methodology. The main conclusion is that uncertainties cannot fully explain the difference between the code predictions. Finally, based on the RIA benchmark Phase-I and Phase-II conclusions, some recommendations are made. Keywords: RIA, Codes Benchmarking, Fuel Modelling, OECD

  20. WWER reactor physics code applications

    International Nuclear Information System (INIS)

    Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.

    1994-01-01

    The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs

  1. Evaluation of reflooding effects on an overheated boiling water reactor core in a small steam-line break accident using MAAP, MELCOR, and SCDAP/RELAP5 computer codes

    International Nuclear Information System (INIS)

    Lindholm, I.; Pekkarinen, E.; Sjoevall, H.

    1995-01-01

    Selected core reflooding situations were investigated in the case of a Finnish boiling water reactor with three severe accident analysis computer codes (MAAP, MELCOR, and SCDAP/RELAP5). The unmitigated base case accident scenario was a 10% steam-line break without water makeup to the reactor pressure vessel initially. The pumping of water to the core was started with the auxiliary feed water system when the maximum fuel cladding temperature reached 1,500 K. The auxiliary feedwater system pumps water (temperature 303 K) through the core spray spargers (core spray) on the top of the core and through feedwater nozzles to the downcomer (downcomer injection). The scope of the study was restricted to cases where the overheated core was still geometrically intact at the start of the reflooding. The following different core reflooding situations were investigated: (1) auxiliary feedwater injection to core spray (45 kg/s); (2) auxiliary feedwater injection to downcomer (45 kg/s); (3) auxiliary feedwater injection to downcomer (45 kg/s) and to core spray (45 kg/s); (4) no reflooding of the core. All the three codes predicted debris formation after the water addition, and in all MAAP and MELCOR reflooding results the core was quenched. The major difference between the code predictions was in the amount of H 2 produced, though the trends in H 2 production were similar. Additional steam production during the quenching process accelerated the oxidation in the unquenched parts of the core. This result is in accordance with several experimental observations

  2. Comparison of THALES and VIPRE-01 Subchannel Codes for Loss of Flow and Single Reactor Coolant Pump Rotor Seizure Accidents using Lumped Channel APR1400 Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, Erdal; Moon, Kang Hoon; Oh, Seung Jong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Kim, Yongdeog [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    Subchannel analysis plays important role to evaluate safety critical parameters like minimum departure from nucleate boiling ratio (MDNBR), peak clad temperature and fuel centerline temperature. In this study, two different subchannel codes, VIPRE-01 (Versatile Internals and Component Program for Reactors: EPRI) and THALES (Thermal Hydraulic AnaLyzer for Enhanced Simulation of core) are examined. In this study, two different transient cases for which MDNBR result play important role are selected to conduct analysis with THALES and VIPRE-01 subchannel codes. In order to get comparable results same core geometry, fuel parameters, correlations and models are selected for each code. MDNBR results from simulations by both code are agree with each other with negligible difference. Whereas, simulations conducted by enabling conduction model in VIPRE-01 shows significant difference from the results of THALES.

  3. Code assessment and modelling for Design Basis Accident Analysis of the European sodium fast reactor design. Part I: System description, modelling and benchmarking

    International Nuclear Information System (INIS)

    Lázaro, A.; Ammirabile, L.; Bandini, G.; Darmet, G.; Massara, S.; Dufour, Ph.; Tosello, A.; Gallego, E.; Jimenez, G.; Mikityuk, K.; Schikorr, M.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Stempniewicz, M.

    2014-01-01

    Highlights: • Ten system-code models of the ESFR were developed in the frame of the CP-ESFR project. • Eight different thermohydraulic system codes adapted to sodium fast reactor's technology. • Benchmarking exercise settled to check the consistency of the calculations. • Upgraded system codes able to simulate the reactivity feedback and key safety parameters. -- Abstract: The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes

  4. Code assessment and modelling for Design Basis Accident Analysis of the European sodium fast reactor design. Part I: System description, modelling and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro, A., E-mail: aurelio.lazaro-chueca@ec.europa.eu [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); UPV—Universidad Politecnica de Valencia, Cami de vera s/n-46002, Valencia (Spain); Ammirabile, L. [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Massara, S. [EDF, 1 avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2-28006 Madrid (Spain); Mikityuk, K. [PSI—Paul Scherrer Institut, 5232 Villigen Switzerland (Switzerland); Schikorr, M.; Bubelis, E.; Ponomarev, A.; Kruessmann, R. [KIT—Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, PO Box 9034 6800 ES, Arnhem (Netherlands)

    2014-01-15

    Highlights: • Ten system-code models of the ESFR were developed in the frame of the CP-ESFR project. • Eight different thermohydraulic system codes adapted to sodium fast reactor's technology. • Benchmarking exercise settled to check the consistency of the calculations. • Upgraded system codes able to simulate the reactivity feedback and key safety parameters. -- Abstract: The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes.

  5. Severe accident recriticality analyses (SARA)

    DEFF Research Database (Denmark)

    Frid, W.; Højerup, C.F.; Lindholm, I.

    2001-01-01

    with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality-both super-prompt power bursts and quasi steady-state power......Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies......, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g(-1), was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s(-1). In most cases, however, the predicted energy deposition was smaller, below...

  6. CONTAIN LMR/1B-Mod.1, A computer code for containment analysis of accidents in liquid-metal-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Murata, K.K.; Carroll, D.E.; Bergeron, K.D.; Valdez, G.D.

    1993-01-01

    The CONTAIN computer code is a best-estimate, integrated analysis tool for predicting the physical, chemical, and radiological conditions inside a nuclear reactor containment building following the release of core material from the primary system. CONTAIN is supported primarily by the U. S. Nuclear Regulatory Commission (USNRC), and the official code versions produced with this support are intended primarily for the analysis of light water reactors (LWR). The present manual describes CONTAIN LMR/1B-Mod. 1, a code version designed for the analysis of reactors with liquid metal coolant. It is a variant of the official CONTAIN 1.11 LWR code version. Some of the features of CONTAIN-LMR for treating the behavior of liquid metal coolant are in fact present in the LWR code versions but are discussed here rather than in the User's Manual for the LWR versions. These features include models for sodium pool and spray fires. In addition to these models, new or substantially improved models have been installed in CONTAIN-LMR. The latter include models for treating two condensables (sodium and water) simultaneously, sodium atmosphere and pool chemistry, sodium condensation on aerosols, heat transfer from core-debris beds and to sodium pools, and sodium-concrete interactions. A detailed description of each of the above models is given, along with the code input requirements

  7. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject E. Improvement of the lower head model in MELCOR and calculations in connection with the FUKUSHIMA accident. Final report; WASA-BOSS. Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt E. Verbesserung des Lower Head-Modelles fuer MELCOR und MELCOR-Rechnungen zu Fukushima. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Frank; Dietrich, Philipp; Gabriel, Stephan; Miassoedov, Alexei

    2016-12-15

    The knowledge of the key phenomena, which govern the chronological sequence of a core melt accident, is a crucial precondition for the development of SAMGs (Severe Management Guides) to avoid and mitigate the radiological consequences for the population and the environment. In the frame of a dissertation a new model has been coupled with MELCOR, which describes the thermal interaction of a core melt with the RPV (reactor pressure vessel) wall in the lower plenum. This model allows a better description of this phenomenon. The method to couple extern programs with MELCOR had been already developed and used in a former dissertation at KIT-IKET. The model has been validated recalculating according experiments in the LIVE facility. Afterwards a defined accident scenario has been calculated for a German generic KONVOI power plant. 12 months after the start of the project a MELCOR input has been developed using data delivered by the Ruhr university of Bochum (subproject ''Simulation des Unfalls in Fukushima-Daichi zur Bewertung des Stoerfall-Analysecodes ATHLET-CD''). The results of this simulation have made a contribution to review the current understanding of the FUKUSHIMA sequence. HZDR and KIT-IKET have agreed in the course of the project, that KIT-IKET will develop a MELCOR input of a german generic KONVOI power plant following an ATHLET-CDinput of HZDR. Using this MELCOR input, a comparative analysis has been performed.

  8. Accidents in making fireworks. Tapaturmat polttopuun teossa

    Energy Technology Data Exchange (ETDEWEB)

    Solmio, H

    1991-01-01

    The accidents and the trends in the number of accidents and their causes were analyzed in a study conducted by the Forestry Department of the Work Efficiency Institute. The study was funded by the Finnish Agricultural Enterpreneurs' Pension Fund (MELA). The study material was selected from MELA's accident stage work and cause code. Altogether, the material comprised the following accidents that occurred while making and using firewood: 671 accidents in 1987 and 596 accidents in 1988. The amount of accidents caused by the working environment and hand tools was clearly higher in 1987 than in 1988. The number of accidents occurred while chopping wood was 20 % higher in 1987 than in 1988. April was the most accident-prone month both in 1987 and in 1988. Chopping of firewood was the most dangerous work stage in terms of the number of accidents. In 1988, the number of accidents in chopping firewood was 336, in sawing using circular saw 97 cases and other mechanized chopping led to 93 accidents. Heating with wood caused 33 accidents. In 1988 there were 10 (2 %) accidents involving loss of limbs and 9 of them occurred in the mechanized chopping of firewood. Nine accidents of these involved the loss of one or more fingers. Serious accidents, leading to inability to work for more than 3 months, were most frequent in chopping and in storing firewood.

  9. A reactivity accidents simulation of the Fort Saint Vrain HTGR

    International Nuclear Information System (INIS)

    Fainer, Gerson

    1980-01-01

    A reactivity accidents analysis of the Fort Saint Vrain HTGR was made. The following accidents were analysed 1) A rod pair withdrawal accident during normal operation, 2) A rod pair ejection accident, 3) A rod pair withdrawal accident during startup operations at source levels and 4) Multiple rod pair withdrawal accident. All the simulations were performed by using the BLOOST-6 nuclear code The steady state reactor operation results obtained with the code were consistent with the design reactor data. The numerical analysis showed that all accidents - except the first one - cause particle failure. (author)

  10. Scenarios simulation of severe accident type small loss of coolant (Loca), with the code MELCOR version 2.1 for the nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V.

    2013-10-01

    In this work was carried out the analysis of two scenarios of the accident type with loss of coolant in a recirculation loop for a break with smaller ares to 0.1 ft 2 (4.6 cm 2 ), which is classified according to their size like small Loca. The first simulated scenario was a small Loca without action of the emergency coolant injection systems, and the second was a small Loca with only the available system LPCS. This design base accident was taken into account for its relevance with regard to the damage to the core and the hydrogen generation. Was also observed and analyzed the response of the action of the ECCS that depend of the loss of coolant reason and this in turn depends of the size and type of the pipe break. The specified scenarios were simulated by means of the use of MELCOR model for the nuclear power plant of Laguna Verde that has the Comision Nacional de Seguridad Nuclear y Salvaguardias. (Author)

  11. Nuclear accidents

    International Nuclear Information System (INIS)

    1987-01-01

    On 27 May 1986 the Norwegian government appointed an inter-ministerial committee of senior officials to prepare a report on experiences in connection with the Chernobyl accident. The present second part of the committee's report describes proposals for measures to prevent and deal with similar accidents in the future. The committee's evaluations and proposals are grouped into four main sections: Safety and risk at nuclear power plants; the Norwegian contingency organization for dealing with nuclear accidents; compensation issues; and international cooperation

  12. Verification of reactor safety codes

    International Nuclear Information System (INIS)

    Murley, T.E.

    1978-01-01

    The safety evaluation of nuclear power plants requires the investigation of wide range of potential accidents that could be postulated to occur. Many of these accidents deal with phenomena that are outside the range of normal engineering experience. Because of the expense and difficulty of full scale tests covering the complete range of accident conditions, it is necessary to rely on complex computer codes to assess these accidents. The central role that computer codes play in safety analyses requires that the codes be verified, or tested, by comparing the code predictions with a wide range of experimental data chosen to span the physical phenomena expected under potential accident conditions. This paper discusses the plans of the Nuclear Regulatory Commission for verifying the reactor safety codes being developed by NRC to assess the safety of light water reactors and fast breeder reactors. (author)

  13. Development of the stationary state and simulation of an accident severe stage type station blackout with the MELCOR code version 1.8.6 for the nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Mugica R, C. A.; Godinez S, V.

    2011-11-01

    Considering the events happened since the 11 March of 2011, in Japan, where an earthquake of 9.1 grades Ritcher of intensity and a later tsunami impacted in an important way the operation of a nuclear power plant located in the Fukushima, Japan; damaging and disabling their cooling systems and injection of emergency water due to the total loss of electric power (commonly denominated Station Blackout), is eminent the analysis of this stage type that took to the nuclear power plant to conditions of damage to the core and explosions generation by hydrogen concentrations in the reactor building. In this work an analysis of a stage type station blackout is presented, using the model of the nuclear power plant of Laguna Verde starting of the stationary state. The analysis is carried out using the MELCOR code (Methods for Estimation of Leakages and Consequences of Releases) version 1.8.6 whose purpose is to model the accidents progression for light water reactors. The obtained results are qualitatively similar to the events observed in the Fukushima nuclear power plant even though limitations exist to achieve a precise simulation of the events happened in Japan, such as the information flow of the chronology of the operator actions, as well as of the characteristic design of the power plant, volumes in cavities and rooms, water/cooling inventories, interconnected systems and their own emergency procedures or guides for the administration of severe accidents among others. (Author)

  14. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  15. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. THYDE-B1/MOD1: a computer code for analysis of small-break loss-of-coolant accident of boiling water reactors

    International Nuclear Information System (INIS)

    Muramatsu, Ken; Akimoto, Masayuki

    1982-08-01

    THYDE-B1/MOD1 is a computer code to analyze thermo-hydraulic transients of the reactor cooling system of a BWR, mainly during a small-break loss-of-coolant accidnet (SB-LOCA) with a special emphasis on the behavior of pressure and mixture level in the pressure vessel. The coolant behavior is simulated with a volume-and-junction method based on assumptions of thermal equilibrium and homogeneous conditions for two-phase flow. A characteristic feature of this code is a three-region representation of the state of the coolant in a control volume, in which three regions, i.e., subcooled liquid, saturated mixture and saturated steam regions are allowed to exist. The regions are separated by moving boundaries, tracked by mass and energy balances for each region. The interior of the pressure vessel is represented by two volumes with three regions: one for inside of the shroud and the other for outside, while other portions of the system are treated with homogeneous model. This method, although it seems to be very simple, has been verified to be adequate for cases of BWR SB-LOCAs in which the hydraulic transient is relatively slow and the cooling of the core strongly depends on the mixture level behavior in the vessel. In order to simulate the system behavior, THYDE-B1 is provided with analytical models for reactor kinetics, heat generation and conduction in fuel rods and structures, heat transfer between coolant and solid surfaces, coolant injection systems, breaks and discharge systems, jet pumps, recirculation pumps, and so on. The verification of the code has been conducted. A good predictability of the code has been indicated through the comparison of calculated results with experimental data provided by ROSA-III small-break tests. This report presents the analytical models, solution method, and input data requirements of the THYDE-B1/MOD1 code. (author)

  17. Study on safety analysis of VVER-1200/V491 in scenario of Loss of Coolant Accidents along with partly failure of ECCS using RELAP5 code

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Ha Thi Anh Dao; Hoang Tan Hung; Bui Thi Hoa; Nguyen Thi Tu Oanh; Dinh Anh Tuan; Pham Tuan Nam

    2017-01-01

    The advanced VVER-1200/V491 reactor designed with passive safety systems to deal with design extension conditions is primarily selected as priority candidate for Ninh Thuan 1 nuclear power plant project. So that, in order to enhance competence of nuclear safety and toward participation on review Safety Analysis Report (SAR) of Ninh Thuan nuclear Power project the study on safety analysis of VVER-1200/V491 in scenario of Loss of Coolant Accidents along with partly failure of ECCS is implemented. As requirement of the study, the input deck file of VVER-1200/V491 for RELAP5 and analysis report for some special case of LOCAs along with partly failure of ECCS are issued. (author)

  18. Performance of the primary containment of a BWR during a severe accident whit the code RELAP/SCDAPSIM; Comportamiento del contenedor primario de un reactor BWR durante un accidente severo con el codigo RELAP/SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Castillo G, F.

    2015-07-01

    In this thesis work, it was developed a model of the vacuum breaker valves and down comers for a BWR Mark II primary containment for the code RELAP/SCDAPSIM Mod. 3.4. This code was used to simulate a Station Blackout (Sbo) that evolves to a severe accident scenario. To accomplish this task, the vacuum breaker valves and down comers were included in a simplified model of the primary containment that includes both wet well and dry well, which was coupled with a model of the Nuclear Steam Supply System (NSSS), in order to study the behavior of the primary containment during the evolution of the accident scenario. In the analysis of the results of the simulation, the behavior of the wet well and dry well during the event was particularly monitored, by analyzing the evolution of temperature and pressure profiles in such volumes, this to determine the impact of the inclusion of the breaker vacuum valves and down comers. The results show that the effect of this extension of the model is that more conservative results are obtained, i.e., higher pressures are reached in both wet well and dry well than when it is used a containment model that does not include neither the vacuum valves nor the down comers. The most relevant results obtained show that the Rcic alone is able to keep the core fully covered, but even in such a case, it evaporates about 15% of the initial inventory of liquid water in the Pressure Suppression Pool (Psp). When the Rcic operation is lost, 20% more of the liquid water inventory in the Psp is further reduced within four to twelve hours (approximately), time at which the simulation crashed. Besides, there is a significant increase of pressure in the containment. As the accident evolves, the pressure in the containment continues increasing, but there is still considerable margin to reach the design pressure of the containment. At the end of the simulation, the results show a gauge pressure value of 224,550 Pa in the Psp and 187,482 Pa in the wet well

  19. Comparative severe accident analysis of WWER 1000/B 320 LOCA DN100 computed by computer codes ASTEC V1.1 and SCDAP/RELAP5

    International Nuclear Information System (INIS)

    Kalchev, B.; Dimov, D.; Tusheva, P.; Mladenov, I.

    2005-01-01

    This paper presents the modelling approach for LOCA 100 mm sequence for WWER 1000-B 320 type of reactor with the integral ASTEC computer code and SCDAP/RELAP5 computer code. As a basic input deck the reference input file for Balakovo NPP from the released ASTEC CD has been applied. As a first part of the calculations for the SBLOCA sequence the ASTEC v1.1 modules CESAR, DIVA and CPA have been activated in a coupled mode. For SCDAP/RELAP5 calculation input deck for WWER 1000-B 320 has been applied which meant to be closer to the initial boundary conditions applied for ASTEC WWER 1000 input deck. A SBLOCA 100 mm comparison between ASTEC v1.1 and SCADAP/RELAP5 has been presented. ASTEC predicts vessel failure at 15620 s. ASTEC and SCDAP/RELAP5 give close but not similar results - this could be observed on the trends. The comparison of 100 mm-break shows that SCDAP/RELAP5 predicts clear phenomenological changes in primary pressure evolution and molten pool formation. Similar hydrogen production mass for both codes around 5000 s is detected

  20. Analysis of PWR control rod ejection accident with the coupled code system SKETCH-INS/TRACE by incorporating pin power reconstruction model

    International Nuclear Information System (INIS)

    Nakajima, T.; Sakai, T.

    2010-01-01

    The pin power reconstruction model was incorporated in the 3-D nodal kinetics code SKETCH-INS in order to produce accurate calculation of three-dimensional pin power distributions throughout the reactor core. In order to verify the employed pin power reconstruction model, the PWR MOX/UO_2 core transient benchmark problem was analyzed with the coupled code system SKETCH-INS/TRACE by incorporating the model and the influence of pin power reconstruction model was studied. SKETCH-INS pin power distributions for 3 benchmark problems were compared with the PARCS solutions which were provided by the host organisation of the benchmark. SKETCH-INS results were in good agreement with the PARCS results. The capability of employed pin power reconstruction model was confirmed through the analysis of benchmark problems. A PWR control rod ejection benchmark problem was analyzed with the coupled code system SKETCH-INS/ TRACE by incorporating the pin power reconstruction model. The influence of pin power reconstruction model was studied by comparing with the result of conventional node averaged flux model. The results indicate that the pin power reconstruction model has significant effect on the pin powers during transient and hence on the fuel enthalpy

  1. Shipping container response to severe highway and railway accident conditions: Appendices

    International Nuclear Information System (INIS)

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    Volume 2 contains the following appendices: Severe accident data; truck accident data; railroad accident data; highway survey data and bridge column properties; structural analysis; thermal analysis; probability estimation techniques; and benchmarking for computer codes used in impact analysis. (LN)

  2. Qualification of the core model DYN3D coupled with the code ATHLET as an advanced tool for the accident analysis of VVER type reactors. Pt. 2. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Rohde, U.

    2002-10-01

    Benchmark calculations for the validation of the coupled neutron kinetics/thermohydraulic code complex DYN3D-ATHLET are described. Two benchmark problems concerning hypothetical accident scenarios with leaks in the steam system for a VVER-440 type reactor and the TMI-1 PWR have been solved. The first benchmark task has been defined by FZR in the frame of the international association 'Atomic Energy Research' (AER), the second exercise has been organized under the auspices of the OECD. While in the first benchmark the break of the main steam collector in the sub-critical hot zero power state of the reactor was considered, the break of one of the two main steam lines at full reactor power was assumed in the OECD benchmark. Therefore, in this exercise the mixing of the coolant from the intact and the defect loops had to be considered, while in the AER benchmark the steam collector break causes a homogeneous overcooling of the primary circuit. In the AER benchmark, each participant had to use its own macroscopic cross section libraries. In the OECD benchmark, the cross sections were given in the benchmark definition. The main task of both benchmark problems was to analyse the re-criticality of the scrammed reactor due to the overcooling. For both benchmark problems, a good agreement of the DYN3D-ATHLET solution with the results of other codes was achieved. Differences in the time of re-criticality and the height of the power peak between various solutions of the AER benchmark can be explained by the use of different cross section data. Significant differences in the thermohydraulic parameters (coolant temperature, pressure) occurred only at the late stage of the transient during the emergency injection of highly borated water. In the OECD benchmark, a broader scattering of the thermohydraulic results can be observed, while a good agreement between the various 3D reactor core calculations with given thermohydraulic boundary conditions was achieved. Reasons for the

  3. Contributing to the design of accident tolerant fuels by applying the TRANSURANUS fuel performance code. Contribution to the design of ATF by means of TRANSURANUS

    International Nuclear Information System (INIS)

    Van Uffelen, Paul; Schubert, A.; Di Marcello, V.; Van De Laar, J.

    2013-01-01

    The TRANSURANUS fuel performance code is used by safety authorities, industry, research centre and universities in the EU and across the globe. Accordingly, only a very brief overview was provided about the structure of the code and the corresponding input requirements before summarising the needs for simulating new cladding materials such as those considered in the framework of the workshop by means of TRANSURANUS. Two concrete examples were then provided. The first deals with the implementation of the material properties from the CEA for SiC based cladding in the frame of the GoFASTR Project, which is funded by the EU. The second deals with material properties for T91, which have been implemented in the framework of a collaboration agreement between Politecnico di Milano and JRC-ITU. In order to illustrate the impact of replacing one cladding by another, an example irradiation has been selected, and some of the relevant cladding properties shown as a function of irradiation time when considering SiC-based cladding, T91 cladding, compared to standard zircaloy and stainless steel cladding. Finally, it was pointed out that despite the fact that the fuel performance codes may be very useful for the current scoping studies based on available material properties, there are limitations in terms of material properties under representative irradiation conditions, or in terms of representativeness for heterogeneous and anisotropic materials such as Complex Matrix Composite cladding materials (e.g. the so-called sandwiched SiCf-SiC material). More experimental data are therefore required for more refined and reliable predictions

  4. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    OpenAIRE

    Itamar Iliuk; José Manoel Balthazar; Ângelo Marcelo Tusset; José Roberto Castilho Piqueira

    2016-01-01

    Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was prop...

  5. Normal accidents

    International Nuclear Information System (INIS)

    Perrow, C.

    1989-01-01

    The author has chosen numerous concrete examples to illustrate the hazardousness inherent in high-risk technologies. Starting with the TMI reactor accident in 1979, he shows that it is not only the nuclear energy sector that bears the risk of 'normal accidents', but also quite a number of other technologies and industrial sectors, or research fields. The author refers to the petrochemical industry, shipping, air traffic, large dams, mining activities, and genetic engineering, showing that due to the complexity of the systems and their manifold, rapidly interacting processes, accidents happen that cannot be thoroughly calculated, and hence are unavoidable. (orig./HP) [de

  6. Development and verification of a three-dimensional core model for WWR type reactors and its coupling with the accident code ATHLET. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Lucas, D.; Mittag, S.; Rohde, U.

    1995-04-01

    The main goal of the project was the coupling of the 3D core model DYN3D for Russian VVER-type reactors, which has been developed in the RCR, with the thermohydraulic code ATHLET. The coupling has been realized on two basically different ways: - The implementation of only the neutron kinetics model of DYN3D into ATHLET (internal coupling), - the connection of the complete DYN3D core model including neutron kinetics, thermohydraulics and fuel rod model via data interfaces at the core top and bottom (external coupling). For the test of the coupling, comparative calculations between internal and external coupling versions have been carried out for a LOCA and a reactivity transient. Complementary goals of the project were: - The development of a DYN3D version for burn-up calculations, - the verification of DYN3D on benchmark tasks and experimental data on fuel rod behaviour, - a study on the extension of the neutron-physical data base. The project contributed to the development of advanced tools for the safety analysis of VVER-type reactors. Future work is aimed to the verification of the coupled code complex DYN3D-ATHLET. (orig.) [de

  7. Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  8. Radiation accidents

    International Nuclear Information System (INIS)

    Nenot, J.C.

    1996-01-01

    Analysis of radiation accidents over a 50 year period shows that simple cases, where the initiating events were immediately recognised, the source identified and under control, the medical input confined to current handling, were exceptional. In many cases, the accidents were only diagnosed when some injuries presented by the victims suggested the radiological nature of the cause. After large-scale accidents, the situation becomes more complicated, either because of management or medical problems, or both. The review of selected accidents which resulted in severe consequences shows that most of them could have been avoided; lack of regulations, contempt for rules, human failure and insufficient training have been identified as frequent initiating parameters. In addition, the situation was worsened because of unpreparedness, insufficient planning, unadapted resources, and underestimation of psychosociological aspects. (author)

  9. Sports Accidents

    CERN Multimedia

    Kiebel

    1972-01-01

    Le Docteur Kiebel, chirurgien à Genève, est aussi un grand ami de sport et de temps en temps médecin des classes genevoises de ski et également médecin de l'équipe de hockey sur glace de Genève Servette. Il est bien qualifié pour nous parler d'accidents de sport et surtout d'accidents de ski.

  10. Radiation accidents

    International Nuclear Information System (INIS)

    Poplavskij, K.K.; Smorodintseva, G.I.

    1978-01-01

    On the basis of a critical analysis of the available data on causes and consequences of radiation accidents (RA), a classification of RA by severity (five groups of accidents) according to biomedical consequences and categories of exposed personnel is proposed. A RA is defined and its main characteristics are described. Methods of RA prevention are proposed, as is a plan of specific measures to deal with RA in accordance with the proposed classification

  11. Cost per severe accident as an index for severe accident consequence assessment and its applications

    International Nuclear Information System (INIS)

    Silva, Kampanart; Ishiwatari, Yuki; Takahara, Shogo

    2014-01-01

    The Fukushima Accident emphasizes the need to integrate the assessments of health effects, economic impacts, social impacts and environmental impacts, in order to perform a comprehensive consequence assessment of severe accidents in nuclear power plants. “Cost per severe accident” is introduced as an index for that purpose. The calculation methodology, including the consequence analysis using level 3 probabilistic risk assessment code OSCAAR and the calculation method of the cost per severe accident, is proposed. This methodology was applied to a virtual 1,100 MWe boiling water reactor. The breakdown of the cost per severe accident was provided. The radiation effect cost, the relocation cost and the decontamination cost were the three largest components. Sensitivity analyses were carried out, and parameters sensitive to cost per severe accident were specified. The cost per severe accident was compared with the amount of source terms, to demonstrate the performance of the cost per severe accident as an index to evaluate severe accident consequences. The ways to use the cost per severe accident for optimization of radiation protection countermeasures and for estimation of the effects of accident management strategies are discussed as its applications. - Highlights: • Cost per severe accident is used for severe accident consequence assessment. • Assessments of health, economic, social and environmental impacts are included. • Radiation effect, relocation and decontamination costs are important cost components. • Cost per severe accident can be used to optimize radiation protection measures. • Effects of accident management can be estimated using the cost per severe accident

  12. INF Code related matters. Joint IAEA/IMO literature survey on potential consequences of severe maritime accidents involving the transport of radioactive material. 2 volumes. Vol. I - Report and publication titles. Vol. II - Relevant abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-10

    This literature survey was undertaken jointly by the International Maritime Organization (IMO) and the International Atomic Energy Agency (IAEA) as a step in addressing the subject of environmental impact of accidents involving materials subject to the IMO's Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes in Flasks on Board Ships, also known as the INF Code. The results of the survey are provided in two volumes: the first one containing the description of the search and search results with the list of generated publication titles, and the second volume containing the abstracts of those publications deemed relevant for the purposes of the literature survey. Literature published between 1980 and mid-1999 was reviewed by two independent consultants who generated publication titles by performing searches of appropriate databases, and selected the abstracts of relevant publications for inclusion in this survey. The IAEA operates INIS, the world's leading computerised bibliographical information system on the peaceful uses of nuclear energy. The acronym INIS stands for International Nuclear Information System. INIS Members are responsible for determining the relevant nuclear literature produced within their borders or organizational confines, and then preparing the associated input in accordance with INIS rules. INIS records are included in other major databases such as the Energy, Science and Technology database of the DIALOG service. Because it is the INIS Members, rather than the IAEA Secretariat, who are responsible for its contents, it was considered appropriate that INIS be the primary source of information for this literature review. Selected unpublished reports were also reviewed, e.g. Draft Proceedings of the Special Consultative Meeting of Entities involved in the maritime transport of materials covered by the INF Code (SCM 5), March 1996. Many of the formal papers at SCM 5 were included in the literature

  13. INF Code related matters. Joint IAEA/IMO literature survey on potential consequences of severe maritime accidents involving the transport of radioactive material. 2 volumes. Vol. I - Report and publication titles. Vol. II - Relevant abstracts

    International Nuclear Information System (INIS)

    2000-01-01

    This literature survey was undertaken jointly by the International Maritime Organization (IMO) and the International Atomic Energy Agency (IAEA) as a step in addressing the subject of environmental impact of accidents involving materials subject to the IMO's Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes in Flasks on Board Ships, also known as the INF Code. The results of the survey are provided in two volumes: the first one containing the description of the search and search results with the list of generated publication titles, and the second volume containing the abstracts of those publications deemed relevant for the purposes of the literature survey. Literature published between 1980 and mid-1999 was reviewed by two independent consultants who generated publication titles by performing searches of appropriate databases, and selected the abstracts of relevant publications for inclusion in this survey. The IAEA operates INIS, the world's leading computerised bibliographical information system on the peaceful uses of nuclear energy. The acronym INIS stands for International Nuclear Information System. INIS Members are responsible for determining the relevant nuclear literature produced within their borders or organizational confines, and then preparing the associated input in accordance with INIS rules. INIS records are included in other major databases such as the Energy, Science and Technology database of the DIALOG service. Because it is the INIS Members, rather than the IAEA Secretariat, who are responsible for its contents, it was considered appropriate that INIS be the primary source of information for this literature review. Selected unpublished reports were also reviewed, e.g. Draft Proceedings of the Special Consultative Meeting of Entities involved in the maritime transport of materials covered by the INF Code (SCM 5), March 1996. Many of the formal papers at SCM 5 were included in the literature

  14. Validation of thermalhydraulic codes

    International Nuclear Information System (INIS)

    Wilkie, D.

    1992-01-01

    Thermalhydraulic codes require to be validated against experimental data collected over a wide range of situations if they are to be relied upon. A good example is provided by the nuclear industry where codes are used for safety studies and for determining operating conditions. Errors in the codes could lead to financial penalties, to the incorrect estimation of the consequences of accidents and even to the accidents themselves. Comparison between prediction and experiment is often described qualitatively or in approximate terms, e.g. ''agreement is within 10%''. A quantitative method is preferable, especially when several competing codes are available. The codes can then be ranked in order of merit. Such a method is described. (Author)

  15. Criticality accident:

    International Nuclear Information System (INIS)

    Canavese, Susana I.

    2000-01-01

    A criticality accident occurred at 10:35 on September 30, 1999. It occurred in a precipitation tank in a Conversion Test Building at the JCO Tokai Works site in Tokaimura (Tokai Village) in the Ibaraki Prefecture of Japan. STA provisionally rated this accident a 4 on the seven-level, logarithmic International Nuclear Event Scale (INES). The September 30, 1999 criticality accident at the JCO Tokai Works Site in Tokaimura, Japan in described in preliminary, technical detail. Information is based on preliminary presentations to technical groups by Japanese scientists and spokespersons, translations by technical and non-technical persons of technical web postings by various nuclear authorities, and English-language non-technical reports from various news media and nuclear-interest groups. (author)

  16. Evaluation of severe accident environmental conditions taking accident management strategy into account for equipment survivability assessments

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Jeong, Ji Hwan; Na, Man Gyun; Kim, Soong Pyung

    2003-01-01

    This paper presents a methodology utilizing accident management strategy in order to determine accident environmental conditions in equipment survivability assessments. In case that there is well-established accident management strategy for specific nuclear power plant, an application of this tool can provide a technical rationale on equipment survivability assessment so that plant-specific and time-dependent accident environmental conditions could be practically and realistically defined in accordance with the equipment and instrumentation required for accident management strategy or action appropriately taken. For this work, three different tools are introduced; Probabilistic Safety Assessment (PSA) outcomes, major accident management strategy actions, and Accident Environmental Stages (AESs). In order to quantitatively investigate an applicability of accident management strategy to equipment survivability, the accident simulation for a most likely scenario in Korean Standard Nuclear Power Plants (KSNPs) is performed with MAAP4 code. The Accident Management Guidance (AMG) actions such as the Reactor Control System (RCS) depressurization, water injection into the RCS, the containment pressure and temperature control, and hydrogen concentration control in containment are applied. The effects of these AMG actions on the accident environmental conditions are investigated by comparing with those from previous normal accident simulation, especially focused on equipment survivability assessment. As a result, the AMG-involved case shows the higher accident consequences along the accident environmental stages

  17. 76 FR 55079 - Recreational Vessel Accident Reporting

    Science.gov (United States)

    2011-09-06

    ... operators to make decisions aimed at improving boating safety. This information, described in title 33 Code... Coast Guard long after an accident occurs. Incomplete, inaccurate, or late accident information makes... the recreational vessel owner or operator? If so, how many man-hours are required to collect this...

  18. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  19. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  20. Containment integrity analysis under accidents

    International Nuclear Information System (INIS)

    Lin Chengge; Zhao Ruichang; Liu Zhitao

    2010-01-01

    Containment integrity analyses for current nuclear power plants (NPPs) mainly focus on the internal pressure caused by design basis accidents (DBAs). In addition to the analyses of containment pressure response caused by DBAs, the behavior of containment during severe accidents (SAs) are also evaluated for AP1000 NPP. Since the conservatism remains in the assumptions,boundary conditions and codes, margin of the results of containment integrity analyses may be overestimated. Along with the improvements of the knowledge to the phenomena and process of relevant accidents, the margin overrated can be appropriately reduced by using the best estimate codes combined with the uncertainty methods, which could be beneficial to the containment design and construction of large passive plants (LPP) in China. (authors)

  1. Development of a severe accident module of a nuclear power plant based in the MELCOR nuclear code and its incorporation to the room simulator; Desarrollo del modulo de accidentes severos de una central nucleoelectrica basado en el codigo nuclear MELCOR y su incorporacion al simulador de aula

    Energy Technology Data Exchange (ETDEWEB)

    Cortes M, F.S.; Ramos P, J.C.; Nelson E, P.; Chavez M, C. [Facultad de Ingenieria, Division de Ingenieria Electrica, Grupo de Ingenieria Nuclear, UNAM, Ciudad Universitaria, Distrito Federal (Mexico)]. E-mail: samuelcortes@correo.unam.mx

    2004-07-01

    This work describes the development of the Severe Accidents Module (MAS) based on the Code MELCOR and its incorporation to the Simulator of Classroom of the Group of Nuclear Engineering of the Engineering Faculty (GrINFI) of the National Autonomous University of Mexico (UNAM). The module of Severe Accidents has the purpose of counting with installed and operational capacity for the simulation of accident sequences with capacitation purposes, training, analysis and design. A shallow description of SimAula is presented, and the philosophy used to obtain the interactive version of MELCOR are discussed, as well as its implementation in the atmosphere of SimAula. Finally, after confirming the correct operation of the development of the tool, some possible topics are discussed for specific applications of the MAS. (Author)

  2. NPP Krsko containment environmental conditions during postulated accident

    International Nuclear Information System (INIS)

    Kozaric, M.; Cavlina, N.; Spalj, S.

    1989-01-01

    This paper presents NPP Krsko containment pressure and temperature increase during Loss of Coolant Accident (LOCA) and Main Steam Line Break (MSLB). Containment environmental condition calculation was performed by CONTEMPT4/MOD4 computer code. Design accident calculations were performed by RELAP4/MOD6 and RELAP5/MOD1 computer codes. Calculational abilities and application methodology of these codes are presented. The CONTEMPT code is described in more detail. The containment pressure and temperature time distribution are presented as well. (author)

  3. SAMEX: A severe accident management support expert

    International Nuclear Information System (INIS)

    Park, Soo-Yong; Ahn, Kwang-Il

    2010-01-01

    A decision support system for use in a severe accident management following an incident at a nuclear power plant is being developed which is aided by a severe accident risk database module and a severe accident management simulation module. The severe accident management support expert (SAMEX) system can provide the various types of diagnostic and predictive assistance based on the real-time plant specific safety parameters. It consists of four major modules as sub-systems: (a) severe accident risk data base module (SARDB), (b) risk-informed severe accident risk data base management module (RI-SARD), (c) severe accident management simulation module (SAMS), and (d) on-line severe accident management guidance module (on-line SAMG). The modules are integrated into a code package that executes within a WINDOWS XP operating environment, using extensive user friendly graphics control. In Korea, the integrated approach of the decision support system is being carried out under the nuclear R and D program planned by the Korean Ministry of Education, Science and Technology (MEST). An objective of the project is to develop the support system which can show a theoretical possibility. If the system is feasible, the project team will recommend the radiation protection technical support center of a national regulatory body to implement a plant specific system, which is applicable to a real accident, for the purpose of immediate and various diagnosis based on the given plant status information and of prediction of an expected accident progression under a severe accident situation.

  4. Tchernobyl accident

    International Nuclear Information System (INIS)

    1986-06-01

    First, R.M.B.K type reactors are described. Then, safety problems are dealt with reactor control, behavior during transients, normal loss of power and behavior of the reactor in case of leak. A possible scenario of the accident of Tchernobyl is proposed: events before the explosion, possible initiators, possible scenario and events subsequent to the core meltdown (corium-concrete interaction, interaction with the groundwater table). An estimation of the source term is proposed first from the installation characteristics and the supposed scenario of the accident, and from the measurements in Europe; radiological consequences are also estimated. Radioactivity measurements (Europe, Scandinavia, Western Europe, France) are given in tables (meteorological maps and fallouts in Europe). Finally, a description of the site is given [fr

  5. Comparative analysis of station blackout accident progression in typical PWR, BWR, and PHWR

    International Nuclear Information System (INIS)

    Park, Soo Young; Ahn, Kwang Il

    2012-01-01

    Since the crisis at the Fukushima plants, severe accident progression during a station blackout accident in nuclear power plants is recognized as a very important area for accident management and emergency planning. The purpose of this study is to investigate the comparative characteristics of anticipated severe accident progression among the three typical types of nuclear reactors. A station blackout scenario, where all off-site power is lost and the diesel generators fail, is simulated as an initiating event of a severe accident sequence. In this study a comparative analysis was performed for typical pressurized water reactor (PWR), boiling water reactor (BWR), and pressurized heavy water reactor (PHWR). The study includes the summarization of design differences that would impact severe accident progressions, thermal hydraulic/severe accident phenomenological analysis during a station blackout initiated-severe accident; and an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.

  6. Accident: Reminder

    CERN Multimedia

    2003-01-01

    There is no left turn to Point 1 from the customs, direction CERN. A terrible accident happened last week on the Route de Meyrin just outside Entrance B because traffic regulations were not respected. You are reminded that when travelling from the customs, direction CERN, turning left to Point 1 is forbidden. Access to Point 1 from the customs is only via entering CERN, going down to the roundabout and coming back up to the traffic lights at Entrance B

  7. Development of a totally integrated severe accident training system

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Park, Sun Hee; Choi, Young; Kim, Dong Ha

    2006-01-01

    Recently KAERI has developed the severe accident management guidance to establish the Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, which uses the MELCOR code as the simulation engine. The simulator SATS graphically displays and simulates the severe accidents with interactive user commands. Especially the control capability of SATS could make a severe accident training course more interesting and effective. In this paper we will describe the development and functions of the electrical guidance module, HyperKAMG, and the SATS-HyperKAMG linkage system designed for a totally integrated and automated severe accident training. (author)

  8. Development of severe accident guidance module for the SATS simulator

    International Nuclear Information System (INIS)

    Kim, K.R.; Park, S.H.; Kim, D.H.; Song, Y.M.

    2004-01-01

    Recently KAERI has developed the severe accident management guidance to establish Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, which uses MELCOR code as the simulation engine. SATS graphically displays and simulates the severe accidents with interactive user commands. The control capability of SATS could make severe accident training course more interesting and effective. In this paper we will describe the development and functions of the electrical hypertext guidance module HyperKAMG and the SATS-HyperKAMG linkage system for the severe accident management. (author)

  9. Nuclear safety code study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.H.; Ford, D.; Le, H.; Park, S.; Cooke, K.L.; Bleakney, T.; Spanier, J.; Wilburn, N.P.; O' Reilly, B.; Carmichael, B.

    1981-01-01

    The objective is to analyze an overpower accident in an LMFBR. A simplified model of the primary coolant loop was developed in order to understand the instabilities encountered with the MELT III and SAS codes. The computer programs were translated for switching to the IBM 4331. Numerical methods were investigated for solving the neutron kinetics equations; the Adams and Gear methods were compared. (DLC)

  10. The IAEA Accident Management Programme

    International Nuclear Information System (INIS)

    Kabanov, L.; Jankowski, M.; Mauersberger, H.

    1993-01-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.)

  11. The IAEA Accident Management Programme

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, L.; Jankowski, M.; Mauersberger, H. (International Atomic Energy Agency, Vienna (Austria))

    1993-02-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.).

  12. Prevention of pedestrian accidents.

    OpenAIRE

    Kendrick, D

    1993-01-01

    Child pedestrian accidents are the most common road traffic accident resulting in injury. Much of the existing work on road traffic accidents is based on analysing clusters of accidents despite evidence that child pedestrian accidents tend to be more dispersed than this. This paper analyses pedestrian accidents in 573 children aged 0-11 years by a locally derived deprivation score for the years 1988-90. The analysis shows a significantly higher accident rate in deprived areas and a dose respo...

  13. DISP1 code

    International Nuclear Information System (INIS)

    Vokac, P.

    1999-12-01

    DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)

  14. Radiation accidents

    International Nuclear Information System (INIS)

    Saenger, E.L.

    1986-01-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity

  15. Chernobyl accident

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.G.

    1995-01-01

    The monograph contains the catastrophe's events chronology, the efficiency assessed of those measures assumed for their localization as well as their environmental and socio-economic impact. Among materials of the monograph the results are presented of research on the radioactive contamination field forming as well as those concerning the investigation of biogeochemical properties of Chernobyl radionuclides and their migration process in the environment of the Ukraine. The data dealing with biological effects of the continued combined internal and external radioactive influence on plants, animals and human health under the circumstances of Chernobyl accident are of the special interest. In order to provide the scientific generalizing information on the medical aspects of Chernobyl catastrophe, the great part of the monograph is allotted to appraise those factors affecting the health of different population groups as well as to depict clinic aspects of Chernobyl events and medico-sanitarian help system. The National Programme of Ukraine for the accident consequences elimination and population social protection assuring for the years 1986-1993 and this Programme concept for the period up to the year 2000 with a special regard of the world community participation there

  16. XSOR codes users manual

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms

  17. Computerized accident management support system: development for severe accident management

    International Nuclear Information System (INIS)

    Garcia, V.; Saiz, J.; Gomez, C.

    1998-01-01

    The activities involved in the international Halden Reactor Project (HRP), sponsored by the OECD, include the development of a Computerized Accident Management Support System (CAMS). The system was initially designed for its operation under normal conditions, operational transients and non severe accidents. Its purpose is to detect the plant status, analyzing the future evolution of the sequence (initially using the APROS simulation code) and the possible recovery and mitigation actions in case of an accident occurs. In order to widen the scope of CAMS to severe accident management issues, the integration of the MAAP code in the system has been proposed, as the contribution of the Spanish Electrical Sector to the project (with the coordination of DTN). To include this new capacity in CAMS is necessary to modify the system structure, including two new modules (Diagnosis and Adjustment). These modules are being developed currently for Pressurized Water Reactors and Boiling Water REactors, by the engineering of UNION FENOSA and IBERDROLA companies (respectively). This motion presents the characteristics of the new structure of the CAMS, as well as the general characteristics of the modules, developed by these companies in the framework of the Halden Reactor Project. (Author)

  18. MELCOR code modeling for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young; Park, S. Y.; Kim, D. H.; Ahn, K. I.; Song, Y. M.; Kim, S. D.; Park, J. H

    2001-11-01

    The severe accident phenomena of nuclear power plant have large uncertainties. For the retention of the containment integrity and improvement of nuclear reactor safety against severe accident, it is essential to understand severe accident phenomena and be able to access the accident progression accurately using computer code. Furthermore, it is important to attain a capability for developing technique and assessment tools for an advanced nuclear reactor design as well as for the severe accident prevention and mitigation. The objective of this report is to establish technical bases for an application of the MELCOR code to the Korean Next Generation Reactor (APR1400) by modeling the plant and analyzing plant steady state. This report shows the data and the input preparation for MELCOR code as well as state-state assessment results using MELCOR code.

  19. Design and Development of a Severe Accident Training System

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Park, Sun Hee; Kim, Dong Ha

    2005-01-01

    The nuclear plants' severe accidents have two big characteristics. One is that they are very rare accidents, and the other is that they bring extreme conditions such as the high pressure and temperature in their process. It is, therefore, very hard to get the severe accident data, without inquiring that the data should be real or experimental. In fact, most of severe accident analyses rely on the simulation codes where almost all severe accident knowledge is contained. These codes are, however, programmed by the Fortran language, so that their output are typical text files which are very complicated. To avoid this kind of difficulty in understanding the code output data, several kinds of graphic user interface (GUI) programs could be developed. In this paper, we will introduce a GUI system for severe accident management and training, partly developed and partly in design stage

  20. Chernobyl accident

    International Nuclear Information System (INIS)

    Capra, D.; Facchini, U.; Gianelle, V.; Ravasini, G.; Bacci, P.

    1988-01-01

    The radioactive cloud released during the Chernobyl accident reached the Padana plain and Lombardy in the night of April 30th 1986; the cloud remained in the northern Italian skies for a few days and then disappeared either dispersed by winds and washed by rains. The evidence in atmosphere of radionuclides as Tellurium, Iodine, Cesium, was promptly observed. The intense rain, in first week of may, washed the radioactivity and fall-out contamined the land, soil, grass. The present work concerns the overall contamination of the Northern Italy territory and in particular the radioactive fall-out in the Lakes region. Samples of soil have been measured at the gamma spectroscope; a correlation is found between the radionuclides concentration in soil samples and the rain intensity, when appropriate deposition models are considered. A number of measurements has been done on the Como'lake ecosystem: sediments, plankton, fishes and the overall fall-out in the area has been investigated

  1. Self-reported accidents

    DEFF Research Database (Denmark)

    Møller, Katrine Meltofte; Andersen, Camilla Sloth

    2016-01-01

    The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals.......The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals....

  2. Accident Assessment

    International Nuclear Information System (INIS)

    Tripputi, Ivo; Lund, Ingemar

    2002-01-01

    There is a general feeling that decommissioning is an activity involving limited risks, compared to NPP operation, and in particular risks involving the general public. This is technically confirmed by licensing analysis and evaluations, where, once the spent fuel has been removed from the plant, the radioactivity inventory available to be released to the environment is very limited. Decommissioning activities performed so far in the world have also confirmed the first assumptions and no specific issue has been identified, in this field, to justify a completely new approach. Commercial interests in international harmonization, which could drive an in-depth discussion about the bases of this approach, are weak at the moment. However, there are several reasons why a discussion in an international framework about the Safety Case for decommissioning (and, in particular, about Accident Assessment) may be considered necessary and important, and why it may show some specific and peculiar aspects. An effort for a comprehensive and systematic D and D accident safety assessment of the decommissioning process is justified. It is necessary also to explore in a holistic way the aspects of industrial safety, and develop tools for the decision-making process optimization. The expected results are the implementation of appropriate and optimized protective measures in any event and of adequate on/off-site emergency plans for optimal public and workers protection. The experience from other decommissioning projects and large-scale industrial activities is essential to balance provisions and an Operating Experience review process (specific for decommissioning) should help to focus on real issues

  3. Monitoring severe accidents using AI techniques

    International Nuclear Information System (INIS)

    No, Young Gyu; Ahn, Kwang Il; Kim, Ju Hyun; Na, Man Gyun; Lim, Dong Hyuk

    2012-01-01

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  4. Monitoring severe accidents using AI techniques

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Lim, Dong Hyuk [Korea Institute of Nuclear Nonproliferation and Control, Daejon (Korea, Republic of)

    2012-05-15

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  5. A CANDU Severe Accident Analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie

    2006-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents for CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D2O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 10000 deg C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the existing data. The results are encouraging. (authors)

  6. MELCOR analysis of the TMI-2 accident

    International Nuclear Information System (INIS)

    Boucheron, E.A.

    1990-01-01

    This paper describes the analysis of the Three Mile Island-2 (TMI-2) standard problem that was performed with MELCOR. The MELCOR computer code is being developed by Sandia National Laboratories for the Nuclear Regulatory Commission for the purpose of analyzing severe accident in nuclear power plants. The primary role of MELCOR is to provide realistic predictions of severe accident phenomena and the radiological source team. The analysis of the TMI-2 standard problem allowed for comparison of the model predictions in MELCOR to plant data and to the results of more mechanistic analyses. This exercise was, therefore valuable for verifying and assessing the models in the code. The major trends in the TMI-2 accident are reasonably well predicted with MELCOR, even with its simplified modeling. Comparison of the calculated and measured results is presented and, based on this comparison, conclusions can be drawn concerning the applicability of MELCOR to severe accident analysis. 5 refs., 10 figs., 3 tabs

  7. Severe accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Valle Cepero, R.; Castillo Alvarez, J.; Ramon Fuente, J.

    1996-01-01

    For the assessment of the safety of nuclear power plants it is of great importance the analyses of severe accidents since they allow to estimate the possible failure models of the containment, and also permit knowing the magnitude and composition of the radioactive material that would be released to the environment in case of an accident upon population and the environment. This paper presents in general terms the basic principles for conducting the analysis of severe accidents, the fundamental sources in the generation of radionuclides and aerosols, the transportation and deposition processes, and also makes reference to de main codes used in the modulation of severe accidents. The final part of the paper contents information on how severe accidents are dialed with the regulatory point view in different countries

  8. Code Cactus; Code Cactus

    Energy Technology Data Exchange (ETDEWEB)

    Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)

  9. Accident analysis for PRC-II reactor

    International Nuclear Information System (INIS)

    Wei Yongren; Tang Gang; Wu Qing; Lu Yili; Liu Zhifeng

    1997-12-01

    The computer codes, calculation models, transient results, sensitivity research, design improvement, and safety evaluation used in accident analysis for PRC-II Reactor (The Second Pulsed Reactor in China) are introduced. PRC-II Reactor is built in big populous city, so the public pay close attention to reactor safety. Consequently, Some hypothetical accidents are analyzed. They include an uncontrolled control rod withdrawal at rated power, a pulse rod ejection at rated power, and loss of coolant accident. Calculation model which completely depict the principle and process for each accident is established and the relevant analysis code is developed. This work also includes comprehensive computing and analyzing transients for each accident of PRC-II Reactor; the influences in the reactor safety of all kind of sensitive parameters; evaluating the function of engineered safety feature. The measures to alleviate the consequence of accident are suggested and taken in the construction design of PRC-II Reactor. The properties of reactor safety are comprehensively evaluated. A new advanced calculation model (True Core Uncovered Model) of LOCA of PRC-II Reactor and the relevant code (MCRLOCA) are first put forward

  10. Severe accident sequences simulated at the Grand Gulf Nuclear Station

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1999-01-01

    Different severe accident sequences employing the MELCOR code, version 1.8.4 QK, have been simulated at the Grand Gulf Nuclear Station (Grand Gulf). The postulated severe accidents simulated are two low-pressure, short-term, station blackouts; two unmitigated small-break (SB) loss-of-coolant accidents (LOCAs) (SBLOCAs); and one unmitigated large LOCA (LLOCA). The purpose of this study was to calculate best-estimate timings of events and source terms for a wide range of severe accidents and to compare the plant response to these accidents

  11. Accident information needs

    International Nuclear Information System (INIS)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-01-01

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information

  12. Accident information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-12-31

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information.

  13. Accident information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-01-01

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information.

  14. MELCOR assessment of sequential severe accident mitigation actions under SGTR accident

    International Nuclear Information System (INIS)

    Choi, Wonjun; Jeon, Joongoo; Kim, Nam Kyung; Kim, Sung Joong

    2017-01-01

    The representative example of the severe accident studies using the severe accident code is investigation of effectiveness of developed severe accident management (SAM) strategy considering the positive and adverse effects. In Korea, some numerical studies were performed to investigate the SAM strategy using various severe accident codes. Seo et.al performed validation of RCS depressurization strategy and investigated the effect of severe accident management guidance (SAMG) entry condition under small break loss of coolant accident (SBLOCA) without safety injection (SI), station blackout (SBO), and total loss of feed water (TLOFW) scenarios. The SGTR accident with the sequential mitigation actions according to the flow chart of SAMG was simulated by the MELCOR 1.8.6 code. Three scenariospreventing the RPV failure were investigated in terms of fission product release, hydrogen risk, and the containment pressure. Major conclusions can be summarized as follows: (1) According to the flow chart of SAMG, RPV failure can be prevented depending on the method of RCS depressurization. (2) To reduce the release of fission product during the injecting into SGs, a temporary opening of SDS before the injecting into SGs was suggested. These modified sequences of mitigation actions can reduce the release of fission product and the adverse effect of SDS.

  15. Amino acid codes in mitochondria as possible clues to primitive codes

    Science.gov (United States)

    Jukes, T. H.

    1981-01-01

    Differences between mitochondrial codes and the universal code indicate that an evolutionary simplification has taken place, rather than a return to a more primitive code. However, these differences make it evident that the universal code is not the only code possible, and therefore earlier codes may have differed markedly from the previous code. The present universal code is probably a 'frozen accident.' The change in CUN codons from leucine to threonine (Neurospora vs. yeast mitochondria) indicates that neutral or near-neutral changes occurred in the corresponding proteins when this code change took place, caused presumably by a mutation in a tRNA gene.

  16. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  17. Use of fuel failure correlations in accident analysis

    International Nuclear Information System (INIS)

    O'Dell, L.D.; Baars, R.E.; Waltar, A.E.

    1975-05-01

    The MELT-III code for analysis of a Transient Overpower (TOP) accident in an LMFBR is briefly described, including failure criteria currently applied in the code. Preliminary results of calculations exploring failure patterns in time and space in the reactor core are reported and compared for the two empirical fuel failure correlations employed in the code. (U.S.)

  18. Identification of NPP accidents using support vector classification

    Energy Technology Data Exchange (ETDEWEB)

    Back, Ju Hyun; Yoo, Kwae Hwan; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    In case of the accidents that happens in a nuclear power plants (NPPs), it is very important to identify its accidents for the operator. Therefore, in order to effectively manage the accidents, the initial short time trends of major parameters have to be observed and NPP accidents have to accurately be identified to provide its information to operators and technicians. In this regard, the objective of this study is to identify the accidents when the accidents happen in NPPs. In this study, we applied the support vector classification (SVC) model to classify the initiating events of critical accidents such as loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), station blackout (SBO), and steam generator tube rupture (SGTR). Input variables were used as the initial integral value of the signal measured in the reactor coolant system (RCS), steam generator, and containment vessel after reactor trip. The proposed SVC model is verified by using the simulation data of the modular accident analysis program (MAAP4) code. In this study, the proposed SVC model is verified by using the simulation data of the modular accident analysis program (MAAP4) code. We used an initial integral value of the simulated sensor signals to identify the NPP accidents. The training data was used to train the SVC model. And, the trained model was confirmed using the test data. As a result, it was known that it can accurately classify five events.

  19. Severe Accident Research Program plan update

    International Nuclear Information System (INIS)

    1992-12-01

    In August 1989, the staff published NUREG-1365, ''Revised Severe Accident Research Program Plan.'' Since 1989, significant progress has been made in severe accident research to warrant an update to NUREG-1365. The staff has prepared this SARP Plan Update to: (1) Identify those issues that have been closed or are near completion, (2) Describe the progress in our understanding of important severe accident phenomena, (3) Define the long-term research that is directed at improving our understanding of severe accident phenomena and developing improved methods for assessing core melt progression, direct containment heating, and fuel-coolant interactions, and (4) Reflect the growing emphasis in two additional areas--advanced light water reactors, and support for the assessment of criteria for containment performance during severe accidents. The report describes recent major accomplishments in understanding the underlying phenomena that can occur during a severe accident. These include Mark I liner failure, severe accident scaling methodology, source term issues, core-concrete interactions, hydrogen transport and combustion, TMI-2 Vessel Investigation Project, and direct containment heating. The report also describes the major planned activities under the SARP over the next several years. These activities will focus on two phenomenological issues (core melt progression, and fuel-coolant interactions and debris coolability) that have significant uncertainties that impact our understanding and ability to predict severe accident phenomena and their effect on containment performance SARP will also focus on severe accident code development, assessment and validation. As the staff completes the research on severe accident issues that relate to current generation reactors, continued research will focus on efforts to independently evaluate the capability of new advanced light water reactor designs to withstand severe accidents

  20. Estimation of cost per severe accident for improvement of accident protection and consequence mitigation strategies

    International Nuclear Information System (INIS)

    Silva, Kampanart; Ishiwatari, Yuki; Takahara, Shogo

    2013-01-01

    To assess the complex situations regarding the severe accidents such as what observed in Fukushima Accident, not only radiation protection aspects but also relevant aspects: health, environmental, economic and societal aspects; must be all included into the consequence assessment. In this study, the authors introduce the “cost per severe accident” as an index to analyze the consequences of severe accidents comprehensively. The cost per severe accident consists of various costs and consequences converted into monetary values. For the purpose of improvement of the accident protection and consequence mitigation strategies, the costs needed to introduce the protective actions, and health and psychological consequences are included in the present study. The evaluations of these costs and consequences were made based on the systematic consequence analysis using level 2 and 3 probabilistic safety assessment (PSA) codes. The accident sequences used in this analysis were taken from the results of level 2 seismic PSA of a virtual 1,100 MWe BWR-5. The doses to the public and the number of people affected were calculated using the level 3 PSA code OSCAAR of Japan Atomic Energy Agency (JAEA). The calculations have been made for 248 meteorological sequences, and the outputs are given as expectation values for various meteorological conditions. Using these outputs, the cost per severe accident is calculated based on the open documents on the Fukushima Accident regarding the cost of protective actions and compensations for psychological harms. Finally, optimized accident protection and consequence mitigation strategies are recommended taking into account the various aspects comprehensively using the cost per severe accident. The authors must emphasize that the aim is not to estimate the accident cost itself but to extend the scope of “risk-informed decision making” for continuous safety improvements of nuclear energy. (author)

  1. MELCOR computer code manuals

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  2. MELCOR computer code manuals

    International Nuclear Information System (INIS)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package

  3. Core loss during a severe accident (COLOSS)

    International Nuclear Information System (INIS)

    Adroguer, B.; Bertrand, F.; Chatelard, P.; Cocuaud, N.; Van Dorsselaere, J.P.; Bellenfant, L.; Knocke, D.; Bottomley, D.; Vrtilkova, V.; Belovsky, L.; Mueller, K.; Hering, W.; Homann, C.; Krauss, W.; Miassoedov, A.; Schanz, G.; Steinbrueck, M.; Stuckert, J.; Hozer, Z.; Bandini, G.; Birchley, J.; Berlepsch, T. von; Kleinhietpass, I.; Buck, M.; Benitez, J.A.F.; Virtanen, E.; Marguet, S.; Azarian, G.; Caillaux, A.; Plank, H.; Boldyrev, A.; Veshchunov, M.; Kobzar, V.; Zvonarev, Y.; Goryachev, A.

    2005-01-01

    The COLOSS project was a 3-year shared-cost action, which started in February 2000. The work-programme performed by 19 partners was shaped around complementary activities aimed at improving severe accident codes. Unresolved risk-relevant issues regarding H 2 production, melt generation and the source term were studied through a large number of experiments such as (a) dissolution of fresh and high burn-up UO 2 and MOX by molten Zircaloy (b) simultaneous dissolution of UO 2 and ZrO 2 (c) oxidation of U-O-Zr mixtures (d) degradation-oxidation of B 4 C control rods. Corresponding models were developed and implemented in severe accident computer codes. Upgraded codes were then used to apply results in plant calculations and evaluate their consequences on key severe accident sequences in different plants involving B 4 C control rods and in the TMI-2 accident. Significant results have been produced from separate-effects, semi-global and large-scale tests on COLOSS topics enabling the development and validation of models and the improvement of some severe accident codes. Breakthroughs were achieved on some issues for which more data are needed for consolidation of the modelling in particular on burn-up effects on UO 2 and MOX dissolution and oxidation of U-O-Zr and B 4 C-metal mixtures. There was experimental evidence that the oxidation of these mixtures can contribute significantly to the large H 2 production observed during the reflooding of degraded cores under severe accident conditions. The plant calculation activity enabled (a) the assessment of codes to calculate core degradation with the identification of main uncertainties and needs for short-term developments and (b) the identification of safety implications of new results. Main results and recommendations for future R and D activities are summarized in this paper

  4. PWR pressure vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1981-01-01

    Pressurized water reactors are susceptible to certain types of hypothetical accidents that under some circumstances, including operation of the reactor beyond a critical time in its life, could result in failure of the pressure vessel as a result of propagation of crack-like defects in the vessel wall. The accidents of concern are those that result in thermal shock to the vessel while the vessel is subjected to internal pressure. Such accidents, referred to as pressurized thermal shock or overcooling accidents (OCA), include a steamline break, small-break LOCA, turbine trip followed by stuck-open bypass valves, the 1978 Rancho Seco and the TMI accidents and many other postulated and actual accidents. The source of cold water for the thermal shock is either emergency core coolant or the normal primary-system coolant. ORNL performed fracture-mechanics calculations for a steamline break in 1978 and for a turbine-trip case in 1980 and concluded on the basis of the results that many more such calculations would be required. To meet the expected demand in a realistic way a computer code, OCA-I, was developed that accepts primary-system temperature and pressure transients as input and then performs one-dimensional thermal and stress analyses for the wall and a corresponding fracture-mechanics analysis for a long axial flaw. The code is briefly described, and its use in both generic and specific plant analyses is discussed

  5. Calculations for accidents in water reactors during operation at power

    International Nuclear Information System (INIS)

    Blanc, H.; Dutraive, P.; Fabrega, S.; Millot, J.P.

    1976-07-01

    The behaviour of a water reactor on an accident occurring as the reactor is normally operated at power may be calculated through the computer code detailed in this article. Reactivity accidents, loss of coolant ones and power over-running ones are reviewed. (author)

  6. Modeling atmospheric dispersion for reactor accident consequence evaluation

    International Nuclear Information System (INIS)

    Alpert, D.J.; Gudiksen, P.H.; Woodard, K.

    1982-01-01

    Atmospheric dispersion models are a central part of computer codes for the evaluation of potential reactor accident consequences. A variety of ways of treating to varying degrees the many physical processes that can have an impact on the predicted consequences exists. The currently available models are reviewed and their capabilities and limitations, as applied to reactor accident consequence analyses, are discussed

  7. BWR severe accident sequence analyses at ORNL - some lessons learned

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1983-01-01

    Boiling water reactor severe accident sequence studies are being carried out using Browns Ferry Unit 1 as the model plant. Four accident studies were completed, resulting in recommendations for improvements in system design, emergency procedures, and operator training. Computer code improvements were an important by-product

  8. Application of FFTBM to severe accidents

    International Nuclear Information System (INIS)

    Prosek, A.; Leskovar, M.

    2005-01-01

    In Europe an initiative for the reduction of uncertainties in severe accident safety issues was initiated. Generally, the error made in predicting plant behaviour is called uncertainty, while the discrepancies between measured and calculated trends related to experimental facilities are called the accuracy of the prediction. The purpose of the work is to assess the accuracy of the calculations of the severe accident International Standard Problem ISP-46 (Phebus FPT1), performed with two versions of MELCOR 1.8.5 for validation purposes. For the quantitative assessment of calculations the improved fast Fourier transform based method (FFTBM) was used with the capability to calculate time dependent code accuracy. In addition, a new measure for the indication of the time shift between the experimental and the calculated signal was proposed. The quantitative results obtained with FFTBM confirm the qualitative conclusions made during the Jozef Stefan Institute participation in ISP-46. In general good agreement of thermal-hydraulic variables and satisfactory agreement of total releases for most radionuclide classes was obtained. The quantitative FFTBM results showed that for the Phebus FPT1 severe accident experiment the accuracy of thermal-hydraulic variables calculated with the MELCOR severe accident code is close to the accuracy of thermal-hydraulic variables for design basis accident experiments calculated with best-estimate system codes. (author)

  9. The intercomparison of aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.; Fermandjian, J.; Gauvain, J.

    1988-01-01

    The behavior of aerosols in a reactor containment vessel following a severe accident could be an important determinant of the accident source term to the environment. Various processes result in the deposition of the aerosol onto surfaces within the containment, from where they are much less likely to be released. Some of these processes are very sensitive to particle size, so it is important to model the aerosol growth processes: agglomeration and condensation. A number of computer codes have been written to model growth and deposition processes. They have been tested against each other in a series of code comparison exercises. These exercises have investigated sensitivities to physical and numerical assumptions and have also proved a useful means of quality control for the codes. Various exercises in which code predictions are compared with experimental results are now under way

  10. Description of the COMRADEX code

    International Nuclear Information System (INIS)

    Spangler, G.W.; Boling, M.; Rhoades, W.A.; Willis, C.A.

    1967-01-01

    The COMRADEX Code is discussed briefly and instructions are provided for the use of the code. The subject code was developed for calculating doses from hypothetical power reactor accidents. It permits the user to analyze four successive levels of containment with time-varying leak rates. Filtration, cleanup, fallout and plateout in each containment shell can also be analyzed. The doses calculated include the direct gamma dose from the containment building, the internal doses to as many as 14 organs including the thyroid, bone, lung, etc. from inhaling the contaminated air, and the external gamma doses from the cloud. While further improvements are needed, such as a provision for calculating doses from fallout, rainout and washout, the present code capabilities have a wide range of applicability for reactor accident analysis

  11. Severe Accident Recriticality Analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B{sub 4}C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  12. Severe accident recriticality analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. E-mail: wiktor.frid@ski.se; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H

    2001-11-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the following issues have been investigated in the SARA project: (1) the energy deposition in the fuel during super-prompt power burst; (2) the quasi steady-state reactor power following the initial power burst; and (3) containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality--both super-prompt power bursts and quasi steady-state power generation--for the range of parameters studied, i.e. with core uncovering and heat-up to maximum core temperatures of approximately 1800 K, and water flow rates of 45-2000 kg s{sup -1} injected into the downcomer. Since recriticality takes place in a small fraction of the core, the power densities are high, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g{sup -1}, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s{sup -1}. In most cases, however, the predicted energy deposition was smaller, below the regulatory limits for fuel failure, but close to or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated

  13. Severe accident recriticality analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H.

    2001-01-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the following issues have been investigated in the SARA project: (1) the energy deposition in the fuel during super-prompt power burst; (2) the quasi steady-state reactor power following the initial power burst; and (3) containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality--both super-prompt power bursts and quasi steady-state power generation--for the range of parameters studied, i.e. with core uncovering and heat-up to maximum core temperatures of approximately 1800 K, and water flow rates of 45-2000 kg s -1 injected into the downcomer. Since recriticality takes place in a small fraction of the core, the power densities are high, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g -1 , was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s -1 . In most cases, however, the predicted energy deposition was smaller, below the regulatory limits for fuel failure, but close to or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated quasi steady

  14. Severe Accident Recriticality Analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Puska, E.K.; Nilsson, Lars; Sjoevall, H.

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B 4 C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  15. Assessment of WWER fuel condition in design basis accident

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.; Sokolov, N.; Andreeva-Andrievskaya, L.; Vlasov, Yu.; Nechaeva, O.; Salatov, A.

    1994-01-01

    The fuel behaviour in design basis accidents is assessed by means of the verified code RAPTA-5. The code uses a set of high temperature physico-chemical properties of the fuel components as determined for commercially produced materials, fuel rod simulators and fuel rod bundles. The WWER fuel criteria available in Russia for design basis accidents do not generally differ from the similar criteria adopted for PWR's. 12 figs., 11 refs

  16. Assessment of WWER fuel condition in design basis accident

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu; Sokolov, N; Andreeva-Andrievskaya, L; Vlasov, Yu; Nechaeva, O; Salatov, A [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    1994-12-31

    The fuel behaviour in design basis accidents is assessed by means of the verified code RAPTA-5. The code uses a set of high temperature physico-chemical properties of the fuel components as determined for commercially produced materials, fuel rod simulators and fuel rod bundles. The WWER fuel criteria available in Russia for design basis accidents do not generally differ from the similar criteria adopted for PWR`s. 12 figs., 11 refs.

  17. Dose calculations for severe LWR accident scenarios

    International Nuclear Information System (INIS)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well

  18. Reactivity accident analysis in MTR cores

    International Nuclear Information System (INIS)

    Waldman, R.M.; Vertullo, A.C.

    1987-01-01

    The purpose of the present work is the analysis of reactivity transients in MTR cores with LEU and HEU fuels. The analysis includes the following aspects: the phenomenology of the principal events of the accident that takes place, when a reactivity of more than 1$ is inserted in a critical core in less than 1 second. The description of the accident that happened in the RA-2 critical facility in September 1983. The evaluation of the accident from different points of view: a) Theoretical and qualitative analysis; b) Paret Code calculations; c) Comparison with Spert I and Cabri experiments and with post-accident inspections. Differences between LEU and HEU RA-2 cores. (Author)

  19. Overview of severe accident research at KAERI

    International Nuclear Information System (INIS)

    Kim, H.D.; Kim, S.B.; Hong, S.W.; Kim, D.H.

    2000-01-01

    The severe accident research program at Korea Atomic Energy Research Institute, within the framework of governmental 10 year long-term nuclear R and D program, aims at the development of assessment techniques and accident management strategies for the prevention and mitigation of potential risk. The research program includes experimental efforts, development of phenomena specific models and development of an integrated computer code. The results of research program is intended to be utilized for the design of the advanced light water reactor and development of accident management strategies for the operating reactors. The main focused areas of recent investigation at KAERI are experiments on in-vessel core debris retention (SONATA-IV) and fuel coolant interaction (TROI) along with the development of models and integrated computer code (MIDAS). (author)

  20. Methods for air cleaning system design and accident analysis

    International Nuclear Information System (INIS)

    Gregory, W.S.; Nichols, B.D.

    1987-01-01

    This paper describes methods, in the form of a handbook and five computer codes, that can be used for nuclear facility air cleaning system design and accident analysis. Four of the codes were developed primarily at the Los Alamos National Laboratory, and one was developed in France. Tools such as these are used to design ventilation systems in the mining industry but do not seem to be commonly used in the nuclear industry. For example, the Nuclear Air Cleaning Handbook is an excellent design reference, but it fails to include information on computer codes that can be used to aid in the design process. These computer codes allow the analyst to use the handbook information to form all the elements of a complete system design. Because these analysis methods are in the form of computer codes they allow the analyst to investigate many alternative designs. In addition, the effects of many accident scenarios on the operation of the air cleaning system can be evaluated. These tools originally were intended for accident analysis, but they have been used mostly as design tools by several architect-engineering firms. The Cray, VAX, and personal computer versions of the codes, an accident analysis handbook, and the codes availability will be discussed. The application of these codes to several design operations of nuclear facilities will be illustrated, and their use to analyze the effect of several accident scenarios also will be described

  1. Overview of severe accident research at JAERI

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1999-01-01

    Severe accident research at JAERI aims at the confirmation of the safety margin, the quantification of the associated risk, and the evaluation of the effectiveness of the accident management measures of the nuclear power reactors, in accordance with the government five-year nuclear safety research program. JAERI has been conducting a wide range of severe accident research activities both in experiment and analysis, such as melt coolant interactions, fission product behaviors in coolant system, containment integrity and assessment of accident management measures. Molten core/coolant interaction and in-vessel molten coolability have been investigated in ALPHA Program. MUSE experiments in ALPHA Program has been conducted for the precise energy measurement due to steam explosion in melt jet and stratified geometries. In VEGA Program, which aims at FP release from irradiated fuels at high temperature and high pressure under various atmospheric conditions, the facility construction is almost completed. In WIND Program the revaporization of aerosols due to decay heating and also the integrity of the piping from this heat source are being investigated. Code development activities are in progress for an integrated source term analysis with THALES, fission product behaviors with ART, steam explosion with JASMINE, and in-vessel debris behaviors with CAMP. The experimental analyses and reactor application have made progress by participating international standard problem and code comparison exercises, along with the use of introduced codes, such as SCDAP/RELAP5 and MELCOR. The outcome of the severe accident research will be utilized for the evaluation of more reliable severe accident scenarios, detailed implementation of the accident management measures, and also for the future reactor development, basically through the sophisticated use of verified analytical tools. (author)

  2. QNPP containment response to MSLB accident

    International Nuclear Information System (INIS)

    Zhou Jie

    1989-01-01

    The containment behavior of nuclear power plant under accident conditions plays an important role in nuclear safety analysis. The analysis and parametric studies are performed and some conclusions are obtained for QNPP (Qinshen Nuclear Power Plant) as reported in the paper. The CONTEMPT-LT/028 code is used

  3. Containment loading during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Cenerino, C.; Berthion, Y.; Carvallo, G.

    1984-11-01

    The objective of the article is to study the influence of the state of the reactor cavity (dry or flooded) and of the corium coolability on the thermal-hydraulics in the containment in the case of an accident sequence involving core melting and subsequent containment basemat erosion, in a 900 MWe PWR unit. Calculations are performed by using the JERICHO thermal hydraulics code

  4. Buses involved in fatal accidents codebook 2008.

    Science.gov (United States)

    2011-03-01

    This report provides documentation for UMTRIs file of Buses Involved in Fatal Accidents (BIFA), 2008, : including distributions of the code values for each variable in the file. The 2008 BIFA file is a census of all : buses involved in a fatal acc...

  5. Trucks involved in fatal accidents codebook 2008.

    Science.gov (United States)

    2011-01-01

    This report provides documentation for UMTRIs file of Trucks Involved in Fatal Accidents : (TIFA), 2008, including distributions of the code values for each variable in the file. The 2008 : TIFA file is a census of all medium and heavy trucks invo...

  6. Buses involved in fatal accidents codebook 2007.

    Science.gov (United States)

    2009-12-01

    This report provides documentation for UMTRIs file of Buses Involved in Fatal Accidents (BIFA), 2007, : including distributions of the code values for each variable in the file. The 2007 BIFA file is a census of all : buses involved in a fatal acc...

  7. Use of simulators in severe accident management

    International Nuclear Information System (INIS)

    Evans, R.C.

    1994-01-01

    The U.S. nuclear utility industry is moving in a deliberate fashion through a coordinated industry severe accident working group to study and augment, where appropriate, the existing utility organizational and emergency planning structure to address accident and severe accident management. Full-scope simulators are used extensively to train licensed operators for their initial license examinations and continually thereafter in licensed operator requalification training and yearly examinations. The goal of the training (both initial and requalification) is to ensure that operators possess adequate knowledge, skills and abilities to prevent an event from progressing to core damage. The use of full-scope simulators in severe accident management training is in large part viewed by the industry as being premature. The working group study has not progressed to the point where the decision to employ full-scope simulators can be logically considered. It is not however premature to consider part-task or work station simulators as invaluable research tools to support the industry's study. These simulators could be employed, subject to limitations in the current state of knowledge regarding severe accident progression and phenomenological responses, in the validation and verification (V and V) of severe accident models or codes as they are developed. The U.S. nuclear utility industry has made substantial strides in the past 12 years in the accident prevention, mitigation and management arena. These strides are a product of the industry's preference for a logical and systematic approach to change. (orig.)

  8. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  9. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  10. An overview of selected severe accident research and applications

    International Nuclear Information System (INIS)

    Hammersley, R.J.; Henry, R.E.

    2004-01-01

    Severe accident research is being conducted world wide by industry organizations, utilities, and regulatory agencies. As this research is disseminated, it is being applied by utilities when they perform their Individual Plant Examinations (IPEs) and consider the preparation of Accident Management programs. The research is associated with phenomenological assessments of containment challenges and associated uncertainties, severe accident codes and analysis tools, systematic evaluation processes, and accident management planning. The continued advancement of this research and its applications will significantly contribute to the enhanced safety and operation of nuclear power plants. (author)

  11. Calculation of spent fuel pool severe accident with MELCOR

    International Nuclear Information System (INIS)

    Deng Jian; Xiang Qing'an; Zhou Kefeng

    2014-01-01

    A calculation model was established for spent fuel pool (SFP) using MELCOR code to study the severe accident phenomena caused by the long term station black-out (SBO), including spent fuel heatup, zirconium cladding oxidation, and the injection into SFP to mitigate the severe accident. The results show that the severe accident progression is slow and relates directly with the initial water level in SFP. It is illustrated that the injection into SFP is one of the best mitigated measures for the SFP severe accident. (authors)

  12. Supervisor's accident investigation handbook

    International Nuclear Information System (INIS)

    1980-02-01

    This pamphlet was prepared by the Environmental Health and Safety Department (EH and S) of Lawrence Berkeley Laboratory (LBL) to provide LBL supervisors with a handy reference to LBL's accident investigation program. The publication supplements the Accident and Emergencies section of LBL's Regulations and Procedures Manual, Pub. 201. The present guide discusses only accidents that are to be investigated by the supervisor. These accidents are classified as Type C by the Department of Energy (DOE) and include most occupational injuries and illnesses, government motor-vehicle accidents, and property damages of less than $50,000

  13. Containment Code Validation Matrix

    International Nuclear Information System (INIS)

    Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah

    2014-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description

  14. Analysis of severe accidents in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    2008-06-01

    Certain very low probability plant states that are beyond design basis accident conditions and which may arise owing to multiple failures of safety systems leading to significant core degradation may jeopardize the integrity of many or all the barriers to the release of radioactive material. Such event sequences are called severe accidents. It is required in the IAEA Safety Requirements publication on Safety of the Nuclear Power Plants: Design, that consideration be given to severe accident sequences, using a combination of engineering judgement and probabilistic methods, to determine those sequences for which reasonably practicable preventive or mitigatory measures can be identified. Acceptable measures need not involve the application of conservative engineering practices used in setting and evaluating design basis accidents, but rather should be based on realistic or best estimate assumptions, methods and analytical criteria. Recently, the IAEA developed a Safety Report on Approaches and Tools for Severe Accident Analysis. This publication provides a description of factors important to severe accident analysis, an overview of severe accident phenomena and the current status in their modelling, categorization of available computer codes, and differences in approaches for various applications of severe accident analysis. The report covers both the in- and ex-vessel phases of severe accidents. The publication is consistent with the IAEA Safety Report on Accident Analysis for Nuclear Power Plants and can be considered as a complementary report specifically devoted to the analysis of severe accidents. Although the report does not explicitly differentiate among various reactor types, it has been written essentially on the basis of available knowledge and databases developed for light water reactors. Therefore its application is mostly oriented towards PWRs and BWRs and, to a more limited extent, they can be only used as preliminary guidance for other types of reactors

  15. RENEB accident simulation exercise.

    Science.gov (United States)

    Brzozowska, Beata; Ainsbury, Elizabeth; Baert, Annelot; Beaton-Green, Lindsay; Barrios, Leonardo; Barquinero, Joan Francesc; Bassinet, Celine; Beinke, Christina; Benedek, Anett; Beukes, Philip; Bortolin, Emanuela; Buraczewska, Iwona; Burbidge, Christopher; De Amicis, Andrea; De Angelis, Cinzia; Della Monaca, Sara; Depuydt, Julie; De Sanctis, Stefania; Dobos, Katalin; Domene, Mercedes Moreno; Domínguez, Inmaculada; Facco, Eva; Fattibene, Paola; Frenzel, Monika; Monteiro Gil, Octávia; Gonon, Géraldine; Gregoire, Eric; Gruel, Gaëtan; Hadjidekova, Valeria; Hatzi, Vasiliki I; Hristova, Rositsa; Jaworska, Alicja; Kis, Enikő; Kowalska, Maria; Kulka, Ulrike; Lista, Florigio; Lumniczky, Katalin; Martínez-López, Wilner; Meschini, Roberta; Moertl, Simone; Moquet, Jayne; Noditi, Mihaela; Oestreicher, Ursula; Orta Vázquez, Manuel Luis; Palma, Valentina; Pantelias, Gabriel; Montoro Pastor, Alegria; Patrono, Clarice; Piqueret-Stephan, Laure; Quattrini, Maria Cristina; Regalbuto, Elisa; Ricoul, Michelle; Roch-Lefevre, Sandrine; Roy, Laurence; Sabatier, Laure; Sarchiapone, Lucia; Sebastià, Natividad; Sommer, Sylwester; Sun, Mingzhu; Suto, Yumiko; Terzoudi, Georgia; Trompier, Francois; Vral, Anne; Wilkins, Ruth; Zafiropoulos, Demetre; Wieser, Albrecht; Woda, Clemens; Wojcik, Andrzej

    2017-01-01

    The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.

  16. Desktop Severe Accident Graphic Simulator Module for CANDU6 : PSAIS

    International Nuclear Information System (INIS)

    Park, S. Y.; Song, Y. M.

    2015-01-01

    The ISAAC ((Integrated Severe Accident Analysis Code for CANDU Plant) code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a Level 2 probabilistic safety assessment or severe accident management strategy developments. The code has the capability to predict a severe accident progression by modeling the CANDU6- specific systems and the expected physical phenomena based on the current understanding of the unique accident progressions. The code models the sequence of accident progressions from a core heatup, pressure tube/calandria tube rupture after an uncovery from inside and outside, a relocation of the damaged fuel to the bottom of the calandria, debris behavior in the calandria, corium quenching after a debris relocation from the calandria to the calandria vault and an erosion of the calandria vault concrete floor, a hydrogen burn, and a reactor building failure. Along with the thermal hydraulics, the fission product behavior is also considered in the primary system as well as in the reactor building

  17. Improved hydrogen distribution calculation in the containment using the coupled codes MELCOR and GASFLOW for the analysis of severe accidents in nuclear power plants; Verbesserte Berechnung der Wasserstoffverteilung im Sicherheitsbehaelter bei der Analyse schwerer Stoerfaelle in Kernkraftwerken durch Kopplung von MELCOR und GASFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Tobias

    2014-09-01

    The risk of a hydrogen combustion within a containment of a pressurized water reactor during a severe loss of coolant accident (LOCA) is evaluated using numerical simulations. The code MELCOR provides integral analysis capabilities for severe accidents. Yet, its Lumped Parameter (LP) model provides less accurate information about on thermal hydraulics within the containment during a LOCA. GASFLOW is a CFD code that simulates both the local hydrogen distribution and the pressure inside the containment more realistically. Currently, to perform these GASFLOW simulations, the common procedure is to use a source term from a previous MELCOR calculation. However, with this approach, the influence of the more realistic GASFLOW pressure on the mass flow through the leak cannot be taken into account. This inconsistency is overcome by coupling both codes in this thesis. Here, the MELCOR instance is responsible for the primary and secondary systems. At the same time, the GASFLOW instance predicts the thermal hydraulics of the containment. The more accurate containment pressure from the GASFLOW instance is used in the MELCOR instance to calculate consistent outflow rates through the leak. In order to couple both codes, the existing interface in MELCOR is modified and a new interface for GASFLOW is developed and implemented. To begin with, the hydrogen distribution inside a generic containment is calculated by MELCOR using a typical coarse LP nodalization and a refined one. The results obtained are compared to a GASFLOW simulation. It is shown that the refinement only leads to a better agreement with the GASFLOW result if the correct flow directions are predefined by the nodalization. The safety relevant, local peak concentrations of hydrogen cannot be resolved by MELCOR. Consequently, the use of the CFD code is indispensable. The correct functioning of the coupling is proven within four steps. At first, the modified MELCOR interface is checked by computing a test case using two

  18. Large Break LOCA Accident Management Strategies for Accidents With Large Containment Leaks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    2006-01-01

    The goal of this work is the investigation of the influence of different accident management strategies on the thermal-hydraulics in the containment during a Large Break Loss of Coolant Accident with a large containment leak from the beginning of the accident. The increasing relevance of terrorism suggests a closer look at this kind of severe accidents. Normally the course of severe accidents and their associated phenomena are investigated with the assumption of an intact containment from the beginning of the accident. This intact containment has the ability to retain a large part of the radioactive inventory. In these cases there is only a release via a very small leakage due to the un-tightness of the containment up to cavity bottom melt through. This paper represents the last part of a comprehensive study on the influence of accident management strategies on the source term of VVER-1000 reactors. Basically two different accident sequences were investigated: the 'Station Blackout'- sequence and the 'Large Break LOCA'. In a first step the source term calculations were performed assuming an intact containment from the beginning of the accident and no accident management action. In a further step the influence of different accident management strategies was studied. The last part of the project was a repetition of the calculations with the assumption of a damaged containment from the beginning of the accident. This paper concentrates on the last step in the case of a Large Break LOCA. To be able to compare the results with calculations performed years ago the calculations were performed using the Source Term Code Package (STCP), hydrogen explosions are not considered. In this study four different scenarios have been investigated. The main parameter was the switch on time of the spray systems. One of the results is the influence of different accident management strategies on the source term. In the comparison with the sequence with intact containment it was

  19. Comparison of sodium aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.; Fermandjian, J.; Bunz, H.; L'homme, A.; Lhiaubet, G.; Himeno, Y.; Kirby, C.R.; Mitsutsuka, N.

    1984-01-01

    Although hypothetical fast reactor accidents leading to severe core damage are very low probability events, their consequences are to be assessed. During such accidents, one can envisage the ejection of sodium, mixed with fuel and fission products, from the primary circuit into the secondary containment. Aerosols can be formed either by mechanical dispersion of the molten material or as a result of combustion of the sodium in the mixture. Therefore considerable effort has been devoted to study the different sodium aerosol phenomena. To ensure that the problems of describing the physical behaviour of sodium aerosols were adequately understood, a comparison of the codes being developed to describe their behaviour was undertaken. The comparison consists of two parts. The first is a comparative study of the computer codes used to predict aerosol behaviour during a hypothetical accident. It is a critical review of documentation available. The second part is an exercise in which code users have run their own codes with a pre-arranged input. For the critical comparative review of the computer models, documentation has been made available on the following codes: AEROSIM (UK), MAEROS (USA), HAARM-3 (USA), AEROSOLS/A2 (France), AEROSOLS/B1 (France), and PARDISEKO-IIIb (FRG)

  20. Development of the severe accident management guidance module for the SATS training simulator

    International Nuclear Information System (INIS)

    Kim, K. R.; Park, S. H.; Kim, D. H.

    2004-01-01

    Recently KAERI has developed severe accident management guidance to establish Korea standard severe accident management system. On the other hand PC-based severe accident training simulator SATS has been developed, which uses MELCOR computing code as the simulation engine. SATS graphically displays and simulates the severe accident progression with interactive user inputs. The control capability of SATS makes a severe accident training course more interesting and effective. In this paper the development and functions of HyperKAMG module are explained. Furthermore easiness and effectiveness of the HyperKAMG-SATS system in severe accident management are described

  1. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  2. Evaluation of nuclear accidents consequences. Risk assessment methodologies, current status and applications

    International Nuclear Information System (INIS)

    Rodriguez, J.M.

    1996-01-01

    General description of the structure and process of the probabilistic methods of assessment the external consequences in the event of nuclear accidents is presented. attention is paid in the interface with Probabilistic Safety Analysis level 3 results (source term evaluation) Also are described key issues in accident consequence evaluation as: effects evaluated (early and late health effects and economic effects due to countermeasures), presentation of accident consequences results, computer codes. Briefly are presented some relevant areas for the applications of Accident Consequence Evaluation

  3. Visualization of Traffic Accidents

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  4. Jose Cabrera NPP severe accident management activities

    International Nuclear Information System (INIS)

    Blanco, J.; Almeida, P.; Saiz, J.; Sastre, J.L.; Delgado, R.

    1998-01-01

    To prepare a common acting plan with respect to Severe Accident Management, in 1994 was founded the severe accident management ''ad-hoc'' working group from the Spanish Westinghouse PWR Nuclear Power Plant Owners Group. In this group actively collaborated the Jose Cabrera NPP Training Centre and the Department of Nuclear Engineering of UNION FENOSA. From this moment, Jose Cabrera NPP began the planning of its specific Severe Accident Management Program, which main point are Severe Accident Management Guidelines (SAMG). To elaborate this guidelines, the Spanish translation of Westinghouse Owners Group (WOG) Severe Accident Management Guidelines were considered the reference documents. The implementation of this Guidelines to Jose Cabrera NPP started on January 1997. Once the specific guidelines have been implemented to the plant, training activities for the personnel involved in severe accident issues will be developed. To prepare the training exercises MAAP4 code will be used, and with this intention, a specific Jose Cabrera NPP MAAP-GRAAPH screen has been developed. Furthermore, a wide selection of MAAP input files for the simulation of different scenarios and accidental events is available. (Author)

  5. Assessing economic consequences of radiation accidents

    International Nuclear Information System (INIS)

    Rowe, M.D.; Lee, J.C.; Grimshaw, C.A.; Kalb, P.D.

    1987-01-01

    A recent review of existing models and methods for assessing potential consequences of accidents in the high-level radioactive waste (HLW) disposal system identifies economic consequence assessment methods as a weak point. Existing methods have mostly been designed to assess economic consequences of reactor accidents, the possible scale of which can be several orders of magnitude greater than anything possible in the HLW disposal system. There is therefore some question about the applicability of these methods, their assumptions, and their level of detail to assessments of smaller accidents. The US Dept. of Energy funded this study to determine needs for code modifications or model development for assessing economic costs of accidents in the HLW disposal system. The objectives of the study were as follows: (1) review the literature on economic consequences of accidents to determine the availability of assessment methods and data and their applicability to the HLW disposal system before closure. (2) Determine needs for expansion, revision, or adaptation of methods and data for modeling economic consequences of accidents of the scale projected for the disposal system. (3) Gather data that might be useful for the needed revisions for modeling economic impacts on this scale

  6. The development of severe accident analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heuy Dong; Cho, Sung Won; Kim, Sang Baek; Park, Jong Hwa; Lee, Kyu Jung; Park, Lae Joon; Hu, Hoh; Hong, Sung Wan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    The objective of the development of severe accident analysis technology is to understand the severe accident phenomena such as core melt progression and to provide a reliable analytical tool to assess severe accidents in a nuclear power plant. Furthermore, establishment of the accident management strategies for the prevention/mitigation of severe accidents is also the purpose of this research. The study may be categorized into three areas. For the first area, two specific issues were reviewed to identify the further research direction, that is the natural circulation in the reactor coolant system and the fuel-coolant interaction as an in-vessel and an ex-vessel phenomenological study. For the second area, the MELCOR and the CONTAIN codes have been upgraded, and a validation calculation of the MELCOR has been performed for the PHEBUS-B9+ experiment. Finally, the experimental program has been established for the in-vessel and the ex-vessel severe accident phenomena with the in-pile test loop in KMRR and the integral containment test facilities, respectively. (Author).

  7. Event course analysis of core disruptive accidents

    International Nuclear Information System (INIS)

    Hering, W.; Homann, C.; Sengpiel, W.; Struwe, D.; Messainguiral, C.

    1995-01-01

    The theortical studies of the behavior of a PWR core in a meltdown accident are focused on hydrogen release, materials redistribution in the core area including forming of an oxide melt pool, quantity of melt and its composition, and temperatures attained by the RPV internals (esp. in the upper plenum) during the accident up to the time of melt relocation into the lower plenum. The calculations are done by the SCDAP/RELAP5 code. For its validation selected CORA results and Phebus FPTO results have been used. (orig.)

  8. Lessons learned from early criticality accidents

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1996-01-01

    Four accidents involving the approach to criticality occurred during the period July, 1945, through May, 1996. These have been described in the format of the OPERATING EXPERIENCE WEEKLY SUMMARY which is distributed by the Office of Nuclear and Facility Safety. Although the lessons learned have been incorporated in standards, codes, and formal procedures during the last fifty years, this is their first presentation in this format. It is particularly appropriate that they be presented in the forum of the Nuclear Criticality Technology Safety Project Workshop closest to the fiftieth anniversary of the last of the four accidents, and that which was most instrumental in demonstrating the need to incorporate lessons learned

  9. Accident analysis of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Chi, D. Y

    1998-03-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. The HANARO fuel test loop was designed to match the CANDU and PWR fuel operating conditions. The accident analysis was performed by RELAP5/MOD3 code based on FTL system designs and determined the detail engineering specification of in-pile test section and out-pile systems. The accident analysis results of FTL system could be used for the fuel and materials designer to plan the irradiation testing programs. (author). 23 refs., 20 tabs., 178 figs.

  10. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  11. Conclusions on severe accident research priorities

    International Nuclear Information System (INIS)

    Klein-Heßling, W.; Sonnenkalb, M.; Jacquemain, D.; Clément, B.; Raimond, E.; Dimmelmeier, H.; Azarian, G.; Ducros, G.; Journeau, C.; Herranz Puebla, L.E.; Schumm, A.; Miassoedov, A.; Kljenak, I.; Pascal, G.; Bechta, S.; Güntay, S.; Koch, M.K.; Ivanov, I.; Auvinen, A.; Lindholm, I.

    2014-01-01

    Highlights: • Estimation of research priorities related to severe accident phenomena. • Consideration of new topics, partly linked to the severe accidents at Fukushima. • Consideration of results of recent projects, e.g. SARNET, ASAMPSA2, OECD projects. - Abstract: The objectives of the SARNET network of excellence are to define and work on common research programs in the field of severe accidents in Gen. II–III nuclear power plants and to further develop common tools and methodologies for safety assessment in this area. In order to ensure that the research conducted on severe accidents is efficient and well-focused, it is necessary to periodically evaluate and rank the priorities of research. This was done at the end of 2008 by the Severe Accident Research Priority (SARP) group at the end of the SARNET project of the 6th Framework Programme of European Commission (FP6). This group has updated this work in the FP7 SARNET2 project by accounting for the recent experimental results, the remaining safety issues as e.g. highlighted by Level 2 PSA national studies and the results of the recent ASAMPSA2 FP7 project. These evaluation activities were conducted in close relation with the work performed under the auspices of international organizations like OECD or IAEA. The Fukushima-Daiichi severe accidents, which occurred while SARNET2 was running, had some effects on the prioritization and definition of new research topics. Although significant progress has been gained and simulation models (e.g. the ASTEC integral code, jointly developed by IRSN and GRS) were improved, leading to an increased confidence in the predictive capabilities for assessing the success potential of countermeasures and/or mitigation measures, most of the selected research topics in 2008 are still of high priority. But the Fukushima-Daiichi accidents underlined that research efforts had to focus still more to improve severe accident management efficiency

  12. The Chernobyl accident consequences

    International Nuclear Information System (INIS)

    2001-04-01

    Five teen years later, Tchernobyl remains the symbol of the greater industrial nuclear accident. To take stock on this accident, this paper proposes a chronology of the events and presents the opinion of many international and national organizations. It provides also web sites references concerning the environmental and sanitary consequences of the Tchernobyl accident, the economic actions and propositions for the nuclear safety improvement in the East Europe. (A.L.B.)

  13. Radiation, accidents, society

    International Nuclear Information System (INIS)

    1988-01-01

    This book is meant to be used as a reference book for information officers at the event of a nuclear accident. The main part is edited in alphabetical order to facilitate use under stress. The book gives a short review of the health risks of radiation, and descriptions of accidents that have occured. The index words that have been chosen for the main part of the book have been selected due to experiences in connection with incidents and accidents. (L.E.)

  14. Nuclear accidents and epidemiology

    International Nuclear Information System (INIS)

    1987-01-01

    A consultation on epidemiology related to the Chernobyl accident was held in Copenhagen in May 1987 as a basis for concerted action. This was followed by a joint IAEA/WHO workshop in Vienna, which reviewed appropriate methodologies for possible long-term effects of radiation following nuclear accidents. The reports of these two meetings are included in this volume, and cover the subjects: 1) Epidemiology related to the Chernobyl nuclear accident. 2) Appropriate methodologies for studying possible long-term effects of radiation on individuals exposed in a nuclear accident. Figs and tabs

  15. Accidents (FARS) (National)

    Data.gov (United States)

    Department of Transportation — Accident - (1975-current): This data file (NTAD) contains information about crash characteristics and environmental conditions at the time of the crash. There is one...

  16. Numerical simulation of the accident of Three Mile Island

    International Nuclear Information System (INIS)

    Perrin, M.H.; Kastelanski, P.

    1981-01-01

    The chief object of the present study was to assess the ability of our numerical code for the dynamic behavior of power plants, SICLE, to handle the simulation of small accidents in PWRs. In the first part of the paper the authors introduce the main principles, equations and numerical methods of the code. In the second part those of the elements of Three Mile Island Power Plant which were simulated, the different phases of the accident and the results obtained with the code are described. These results are compared to the values recorded in the plant and generally a good agreement is found (for instance the primary pressure). As a conclusion SICLE is the minimum code for representing accidents such as Three Mile Island; its main advantage lies in its ability to take into account all the elements of the plant which are important in the study

  17. SIMMER-II code and its applications

    International Nuclear Information System (INIS)

    Smith, L.L.

    1979-01-01

    The significant features of SIMMER-II, a disrupted-core analysis code, are described. The code has the capabalities to begin space-time neutronics calculations from nonstationary reactor states, to track the intermixing of fuel of different enrichments, and to model the complicated heat- and mass-transfer processes that occur in the transition phase. Example calculations are presented for analyses of whole-core accidents and for analyses of experiments supporting the code models

  18. Risk Analysis of Fukushima Accident using MACCS2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul; Kim, Sukhoon; Kim, Juyub [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2014-05-15

    It has been three years since Fukushima Daiichi accident had occurred. Many efforts have been done for a restoration, however, radioactive materials are still released resulting in a crucial additional damage to a human health and economics and the scale of damage is not much evaluated. Therefore, an estimation of damage degree caused by the released radioactive materials right after a nuclear accident is essential to cope with additional radioactive problems. Here, we report the risk analysis of Fukushima Dai-ichi accident using MELCOR Accident Consequence Code System 2 (MACCS2), which is the Nuclear Regulatory Commission's (NRC's) code for evaluating off-site consequences. It is used in level-3 Probabilistic Risk Analyses (PRA), for planning purposes, for cost-benefit analyses and so on. The purpose of this study is to estimate radiological doses and health risks of Fukushima Daiichi accident through short- and long-term of lifetime using MACCS2. In summary, the health risk for inhabitants near Fukushima Daiichi NPP has been evaluated by considering the long term radiation effect using MACCS2 code. The result indicates that the occurrence and death rate of the cancer have been increased by the radioactive materials released from Fukushima Daiichi accident. The result obtained in this study may provide new insights for taking action after the nuclear reactor accident to mitigate the released radioactive materials and to prepare the countermeasure.

  19. What Froze the Genetic Code?

    Directory of Open Access Journals (Sweden)

    Lluís Ribas de Pouplana

    2017-04-01

    Full Text Available The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  20. What Froze the Genetic Code?

    Science.gov (United States)

    Ribas de Pouplana, Lluís; Torres, Adrian Gabriel; Rafels-Ybern, Àlbert

    2017-04-05

    The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  1. Accident analysis for nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    Deterministic safety analysis (frequently referred to as accident analysis) is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). Owing to the close interrelation between accident analysis and safety, an analysis that lacks consistency, is incomplete or is of poor quality is considered a safety issue for a given NPP. Developing IAEA guidance documents for accident analysis is thus an important step towards resolving this issue. Requirements and guidelines pertaining to the scope and content of accident analysis have, in the past, been partially described in various IAEA documents. Several guidelines relevant to WWER and RBMK type reactors have been developed within the IAEA Extrabudgetary Programme on the Safety of WWER and RBMK NPPs. To a certain extent, accident analysis is also covered in several documents of the revised NUSS series, for example, in the Safety Requirements on Safety of Nuclear Power Plants: Design (NS-R-1) and in the Safety Guide on Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). Consistent with these documents, the IAEA has developed the present Safety Report on Accident Analysis for Nuclear Power Plants. Many experts have contributed to the development of this Safety Report. Besides several consultants meetings, comments were collected from more than fifty selected organizations. The report was also reviewed at the IAEA Technical Committee Meeting on Accident Analysis held in Vienna from 30 August to 3 September 1999. The present IAEA Safety Report is aimed at providing practical guidance for performing accident analyses. The guidance is based on present good practice worldwide. The report covers all the steps required to perform accident analyses, i.e. selection of initiating events and acceptance criteria, selection of computer codes and modelling assumptions, preparation of input data and presentation of the

  2. Domino effect in chemical accidents: main features and accident sequences

    OpenAIRE

    Casal Fàbrega, Joaquim; Darbra Roman, Rosa Maria

    2010-01-01

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes a...

  3. Processing Expert Judgements in Accident Consequence Modelling (invited paper)

    International Nuclear Information System (INIS)

    Kraan, B.C.P.; Cooke, R.M.

    2000-01-01

    In performing uncertainty analysis a distribution on the code input parameters is required. The construction of the distribution on the code input parameters for the joint CEC/USNRC Accident Consequence Code Uncertainty Analysis using Expert Judgement is discussed. An example from the food chain module is used to illustrate the construction. Different mathematical techniques have been developed to transform the expert judgements into the required format. Finally, the effect of taking account of correlations in performing uncertainty analysis is investigated. (author)

  4. Qualification of the WIMS lattice code, for the design, operation and accident analysis of nuclear reactors; Calificacion del programa WIMS de calculo neutronico para diseno, seguimiento de operacion y analisis de accidentes de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, A M [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina)

    1997-12-31

    A basic problem in nuclear reactor physics in that of the description of the neutron population behaviour in the multiplicative medium of a nuclear fuel. Due to the magnitude of the physical problem involved and the present degree of technological evolution regarding computing resources, of increasing complexity and possibilities, the calculation programs or codes have turned to be a basic auxiliary tool in reactor physics. In order to analyze the global problem, several aspects should be taken into consideration. The first aspect to be considered is that of the availability of the necessary nuclear data. The second one is the existence of a variety of methods and models to perform the calculations. The final phase for this kind of analysis is the qualification of the computing programs to be used, i.e. the verification of the validity domain of its nuclear data and the models involved. The last one is an essential phase, and in order to carry it on great variety of calculations are required, that will check the different aspects contained in the code. We here analyze the most important physical processes that take place in a nuclear reactor cell, and we consider the qualification of the lattice code WIMS, that calculates the neutronic parameters associated with such processes. Particular emphasis has been put in the application to natural uranium fuelled reactor, heavy water cooled and moderated, as the Argentinean power reactors now in operation. A wide set of experiments has been chosen: a.-Fresh fuel in zero-power experimental facilities and power reactors; b.-Irradiated fuel in both types of facilities; c.-Benchmark (prototype) experiments with loss of coolant. From the whole analysis it was concluded that for the research reactors, as well as for the heavy water moderated power reactors presently operating in our country, or those that could operate in a near future, the lattice code WIMS is reliable and produces results within the experimental values and

  5. Chernobyl accident and Denmark

    International Nuclear Information System (INIS)

    1986-12-01

    The report describes the Chernobyl accident and its consequences for Denmark in particular. It was commissioned by The Secretary of State for the Environment. Volume 2 contains copies of original documents issued by Danish authorities during the first accident phase and afterwards. Evaluations, monitoring data, press releases, legislation acts etc. are included. (author)

  6. Criticality accident in Argentina

    International Nuclear Information System (INIS)

    Oliveira, A.R. de.

    1984-01-01

    A recent criticality type accident, ocurred in Argetina, is commented. Considerations about the nature of the facility where this accident took place, its genesis, type of operation carried out on the day of the event, and the medical aspects involved are done. (Author) [pt

  7. Chernobyl accident and Danmark

    International Nuclear Information System (INIS)

    1986-12-01

    The report describes the Chernobyl accident and its consequences for Denmark in particular. It was commissioned by the Secretary of State for the Environment. Volume 1 contains copies of original documents issued by Danish authorities during the first accident phase and afterwards. Evaluations, monitoring data, press releases, legislation acts etc. are included. (author)

  8. Communication and industrial accidents

    NARCIS (Netherlands)

    As, Sicco van

    2001-01-01

    This paper deals with the influence of organizational communication on safety. Accidents are actually caused by individual mistakes. However the underlying causes of accidents are often organizational. As a link between these two levels - the organizational failures and mistakes - I suggest the

  9. Chapter 6: Accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    Th chapter 6 presents the accidents of: 1) Stimos (Italy - May, 1975); 2) San Salvador (El Salvador - February 5, 1989); 3) Soreq (Israel - June 21, 1990); 4) Nesvizh (Belarus - October 26, 1991); 5) Illinois (USA - February, 1965); 6)Maryland (EUA - December 11, 1991); 7)Hanoi (Vietnam -November 17, 1992); 8)Fleurus (Belgium - March 11, 2006) and final remarks on accidents.

  10. MIDAS/PK code development using point kinetics model

    International Nuclear Information System (INIS)

    Song, Y. M.; Park, S. H.

    1999-01-01

    In this study, a MIDAS/PK code has been developed for analyzing the ATWS (Anticipated Transients Without Scram) which can be one of severe accident initiating events. The MIDAS is an integrated computer code based on the MELCOR code to develop a severe accident risk reduction strategy by Korea Atomic Energy Research Institute. In the mean time, the Chexal-Layman correlation in the current MELCOR, which was developed under a BWR condition, is appeared to be inappropriate for a PWR. So as to provide ATWS analysis capability to the MIDAS code, a point kinetics module, PKINETIC, has first been developed as a stand-alone code whose reference model was selected from the current accident analysis codes. In the next step, the MIDAS/PK code has been developed via coupling PKINETIC with the MIDAS code by inter-connecting several thermal hydraulic parameters between the two codes. Since the major concern in the ATWS analysis is the primary peak pressure during the early few minutes into the accident, the peak pressure from the PKINETIC module and the MIDAS/PK are compared with the RETRAN calculations showing a good agreement between them. The MIDAS/PK code is considered to be valuable for analyzing the plant response during ATWS deterministically, especially for the early domestic Westinghouse plants which rely on the operator procedure instead of an AMSAC (ATWS Mitigating System Actuation Circuitry) against ATWS. This capability of ATWS analysis is also important from the view point of accident management and mitigation

  11. Radiological accidents in medical practice

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Different radiological accidents that may occur in medical practice are shown. The following topics are focused: accident statistics for medical exposure, accidental medical exposures, radiotherapy accidents and potential accidental scenarios [es

  12. Nuclear Power Reactor Core Melt Accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus- FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day

  13. Analysis of construction accidents in Spain, 2003-2008.

    Science.gov (United States)

    López Arquillos, Antonio; Rubio Romero, Juan Carlos; Gibb, Alistair

    2012-12-01

    The research objective for this paper is to obtain a new extended and updated insight to the likely causes of construction accidents in Spain, in order to identify suitable mitigating actions. The paper analyzes all construction sector accidents in Spain between 2003 and 2008. Ten variables were chosen and the influence of each variable is evaluated with respect to the severity of the accident. The descriptive analysis is based on a total of 1,163,178 accidents. Results showed that the severity of accidents was related to variables including age, CNAE (National Classification of Economic Activities) code, size of company, length of service, location of accident, day of the week, days of absence, deviation, injury, and climatic zones. According to data analyzed, a large company is not always necessarily safer than a small company in the aspect of fatal accidents, experienced workers do not have the best accident fatality rates, and accidents occurring away from the usual workplace had more severe consequences. Results obtained in this paper can be used by companies in their occupational safety strategies, and in their safety training programs. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  14. Development of Database for Accident Analysis in Indian Mines

    Science.gov (United States)

    Tripathy, Debi Prasad; Guru Raghavendra Reddy, K.

    2016-10-01

    Mining is a hazardous industry and high accident rates associated with underground mining is a cause of deep concern. Technological developments notwithstanding, rate of fatal accidents and reportable incidents have not shown corresponding levels of decline. This paper argues that adoption of appropriate safety standards by both mine management and the government may result in appreciable reduction in accident frequency. This can be achieved by using the technology in improving the working conditions, sensitising workers and managers about causes and prevention of accidents. Inputs required for a detailed analysis of an accident include information on location, time, type, cost of accident, victim, nature of injury, personal and environmental factors etc. Such information can be generated from data available in the standard coded accident report form. This paper presents a web based application for accident analysis in Indian mines during 2001-2013. An accident database (SafeStat) prototype based on Intranet of the TCP/IP agreement, as developed by the authors, is also discussed.

  15. [Accidents and injuries at work].

    Science.gov (United States)

    Standke, W

    2014-06-01

    In the case of an accident at work, the person concerned is insured by law according to the guidelines of the Sozialgesetzbuch VII as far as the injuries have been caused by this accident. The most important source of information on the incident in question is the accident report that has to be sent to the responsible institution for statutory accident insurance and prevention by the employer, if the accident of the injured person is fatal or leads to an incapacity to work for more than 3 days (= reportable accident). Data concerning accidents like these are sent to the Deutsche Gesetzliche Unfallversicherung (DGUV) as part of a random sample survey by the institutions for statutory accident insurance and prevention and are analyzed statistically. Thus the key issues of accidents can be established and used for effective prevention. Although the success of effective accident prevention is undisputed, there were still 919,025 occupational accidents in 2011, with clear gender-related differences. Most occupational accidents involve the upper and lower extremities. Accidents are analyzed comprehensively and the results are published and made available to all interested parties in an effort to improve public awareness of possible accidents. Apart from reportable accidents, data on the new occupational accident pensions are also gathered and analyzed statistically. Thus, additional information is gained on accidents with extremely serious consequences and partly permanent injuries for the accident victims.

  16. Thermal hydraulics of CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents in CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D 2 O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the available data. The results are encouraging. (authors)

  17. Severe accidents and ESFR design issues

    International Nuclear Information System (INIS)

    Rineiski, A.

    2013-01-01

    Current SFR studies in Germany: ⇒ In support of European SFR studies, mainly on safety and safety-related (design optimization) issues; ⇒ ADS and SFR as main options for spent fuel management in studies on the possibility of P&T; ⇒ ESFR-type designs studied recently; ⇒ ASTRID-type designs to be studied in the future; ⇒ Particular area: modeling of severe accidents with SAS4A/SAS-SFR and SIMMER codes

  18. Study of evacuation times based on recent accident history

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1995-01-01

    A key parameter in the calculation of accident dose-risks by the RADTRAN 4 code is the time assigned for evacuation of the affected area surrounding the accident. Currently, in the interest of assured conservatism, this time is set at 24 hrs. Casual anecdotal evidence has indicated that this value is overly conservative and results in assignment of overly conservative estimates of accident dose-risk. Therefore, a survey of recent truck accidents involving various hazardous materials which required evacuation of surrounding populations reported in various news media was undertaken. Accounts of pertinent scenarios were gleaned from databases citing newspapers and other periodicals, and the local authorities involved in each were contacted to get details of the evacuation including time required. This paper presents the data obtained in the study and the resultant mean evacuation time plus limits and factors influencing specific results together with conclusions regarding the appropriate value to be used in the RADTRAN 4 code

  19. Road Traffic Accident Analysis of Ajmer City Using Remote Sensing and GIS Technology

    Science.gov (United States)

    Bhalla, P.; Tripathi, S.; Palria, S.

    2014-12-01

    With advancement in technology, new and sophisticated models of vehicle are available and their numbers are increasing day by day. A traffic accident has multi-facet characteristics associated with it. In India 93% of crashes occur due to Human induced factor (wholly or partly). For proper traffic accident analysis use of GIS technology has become an inevitable tool. The traditional accident database is a summary spreadsheet format using codes and mileposts to denote location, type and severity of accidents. Geo-referenced accident database is location-referenced. It incorporates a GIS graphical interface with the accident information to allow for query searches on various accident attributes. Ajmer city, headquarter of Ajmer district, Rajasthan has been selected as the study area. According to Police records, 1531 accidents occur during 2009-2013. Maximum accident occurs in 2009 and the maximum death in 2013. Cars, jeeps, auto, pickup and tempo are mostly responsible for accidents and that the occurrence of accidents is mostly concentrated between 4PM to 10PM. GIS has proved to be a good tool for analyzing multifaceted nature of accidents. While road safety is a critical issue, yet it is handled in an adhoc manner. This Study is a demonstration of application of GIS for developing an efficient database on road accidents taking Ajmer City as a study. If such type of database is developed for other cities, a proper analysis of accidents can be undertaken and suitable management strategies for traffic regulation can be successfully proposed.

  20. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  1. Radiological accident reconstruction with numerical tools: towards a more realistic representation of the victim

    International Nuclear Information System (INIS)

    Courageot, E.; Sayah, R.; Huet, Ch.

    2010-01-01

    The authors describe the evolutions brought to the SESAME (Simulation of External Source Accident with Medical images) simulation code. This code aims at making a computational dosimetric reconstruction of a radiological accident by modelling the victim by means of a voxelized phantom, as well as the accident source and environment. This new version creates a voxelized phantom of a victim whose position and morphology have been modified, thus enabling the position of victim at the moment of the accident to be taken into account. The authors report the computational and experimental validation of this new functionality, and discuss the results. They compare computed and measured doses

  2. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1987-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery managment concevtrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that 'active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk', and goes further in considering and formulating the key issue: 'The most fruitful path to follow in reducing risk even further is through the planning of accident management.' (author)

  3. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  4. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1988-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery management concentrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk, and goes further in considering and formulating the key issue: The most fruitful path to follow in reducing risk even further is through the planning of accident management

  5. Persistence of airline accidents.

    Science.gov (United States)

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  6. MELCOR DB Construction for the Severe Accident Analysis DB

    International Nuclear Information System (INIS)

    Song, Y. M.; Ahn, K. I.

    2011-01-01

    The Korea Atomic Energy Research Institute (KAERI) has been constructing a severe accident analysis database (DB) under a National Nuclear R and D Program. In particular, an MAAP (commercial code being widely used in industries for integrated severe accident analysis) DB for many scenarios including a station blackout (SBO) has been completed. This paper shows the MELCOR DB construction process with examples of SBO scenarios, and the results will be used for a comparison with the MAAP DB

  7. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report; Qualifizierung des Kernmodells DYN3D im Komplex mit dem Stoerfallcode ATHLET als fortgeschrittenes Werkzeug fuer die Stoerfallanalyse von WWER-Reaktoren. T. 1. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.

    1998-03-01

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for