WorldWideScience

Sample records for hydraulic engineering design

  1. Design of hydraulic output Stirling engine

    Science.gov (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  2. Suspended Decoupler: A New Design of Hydraulic Engine Mount

    OpenAIRE

    J. Christopherson; Mahinfalah, M.; Jazar, Reza N.

    2012-01-01

    Because of the density mismatch between the decoupler and surrounding fluid, the decoupler of all hydraulic engine mounts (HEM) might float, sink, or stick to the cage bounds, assuming static conditions. The problem appears in the transient response of a bottomed-up floating decoupler hydraulic engine mount. To overcome the bottomed-up problem, a suspended decoupler design for improved decoupler control is introduced. The new design does not noticeably affect the mechanism's steady-state beha...

  3. Suspended Decoupler: A New Design of Hydraulic Engine Mount

    Directory of Open Access Journals (Sweden)

    J. Christopherson

    2012-01-01

    Full Text Available Because of the density mismatch between the decoupler and surrounding fluid, the decoupler of all hydraulic engine mounts (HEM might float, sink, or stick to the cage bounds, assuming static conditions. The problem appears in the transient response of a bottomed-up floating decoupler hydraulic engine mount. To overcome the bottomed-up problem, a suspended decoupler design for improved decoupler control is introduced. The new design does not noticeably affect the mechanism's steady-state behavior, but improves start-up and transient response. Additionally, the decoupler mechanism is incorporated into a smaller, lighter, yet more tunable and hence more effective hydraulic mount design. The steady-state response of a dimensionless model of the mount is examined utilizing the averaging perturbation method applied to a set of second-order nonlinear ordinary differential equations. It is shown that the frequency responses of the floating and suspended decoupled designs are similar and functional. To have a more realistic modeling, utilizing nonlinear finite elements in conjunction with a lumped parameter modeling approach, we evaluate the nonlinear resorting characteristics of the components and implement them in the equations of motion.

  4. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  5. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  6. Corps of Engineers Hydraulic Design Criteria. Volume I

    Science.gov (United States)

    1977-01-01

    Design Memorandum No. G-7, 1955. (10) Moore, M. 0., "Incrustation in water pipelines ." ASCE, Pipeline Di- vision, Journal, vol 94, PL 1, paper 6161...October 1968), pp 37-T7. 224 -1/1 Revised 6-57 Revised 1-64 Revised 9-70 Revised 3-73 (i)Franke, P. G., "Some roughness values of water pipelines ." L’Energia

  7. Implementation of knowledge-based engineering methodology in hydraulic generator design

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-05-01

    Full Text Available Hydraulic generator design companies are always being exhorted to become more competitive by reducing the lead time and costs for their products for survival. Knowledge-based engineering technology is a rapidly developing technology with competitive advantage for design application to reduce time and cost in product development. This article addresses the structure of the hydraulic generator design system based on the knowledge-based engineering technology in detail. The system operates by creating a unified knowledge base to store the scattered knowledge among the whole life of the design process, which was contained in the expert’s brain and technical literature. It helps designers to make appropriate decisions by supplying necessary information at the right time through query and inference engine to represent the knowledge within the knowledge-based engineering application framework. It also integrates the analysis tools into one platform to help achieve global optimum solutions. Finally, an example of turbine-type selection was given to illustrate the operation process and prove its validity.

  8. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    Science.gov (United States)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  9. Ecological Engineering Approaches to Improve Hydraulic Properties of Infiltration Basins Designed for Groundwater Recharge.

    Science.gov (United States)

    Gette-Bouvarot, Morgane; Volatier, Laurence; Lassabatere, Laurent; Lemoine, Damien; Simon, Laurent; Delolme, Cécile; Mermillod-Blondin, Florian

    2015-08-18

    Infiltration systems are increasingly used in urban areas for groundwater recharge. The reduction of sediment permeability by physical and/or biological processes is a major problem in management of infiltration systems often requiring expensive engineering operations for hydraulic performance maintenance. To reduce these costs and for the sake of sustainable development, we proposed to evaluate the ability of ecological engineering approaches to reduce the biological clogging of infiltration basins. A 36-day field-scale experiment using enclosures was performed to test the influences of abiotic (light reduction by shading) and biotic (introduction of the macrophyte Vallisneria spiralis (L.) or the gastropod Viviparus viviparus (Linnaeus, 1758)) treatments to limit benthic biofilm biomass and to maintain or even increase hydraulic performances. We coupled biological characterization of sediment (algal biomass, bacterial abundance, total organic carbon, total nitrogen, microbial enzymatic activity, photosynthetic activity, and photosystem II efficiency) with hydraulic conductivity measurements to assess the effects of treatments on sediment permeability. The grazer Viviparus viviparus significantly reduced benthic biofilm biomass and enhanced hydraulic conductivity. The other treatments did not produce significant changes in hydraulic conductivity although Vallisneria spiralis affected photosynthetic activity of biofilm. Finally, our results obtained with Viviparus viviparus are promising for the development of ecological engineering solutions to prevent biological fouling in infiltration systems.

  10. Design and Analysis of Hydraulic Chassis with Obstacle Avoidance Function

    Science.gov (United States)

    Hong, Yingjie; Zhang, Xiang

    2017-07-01

    This article mainly expounds the design of hydraulic system for the hydraulic chassis with obstacle avoidance function. Including the selection of hydraulic motor wheels, hydraulic pump, digital hydraulic cylinder and the matching of engine power. And briefly introduces the principle of obstacle avoidance.

  11. Design and modeling of a hydraulically amplified magnetostrictive actuator for automotive engine mounts

    Science.gov (United States)

    Chakrabarti, Suryarghya; Dapino, Marcelo J.

    2010-04-01

    A model is developed which describes the dynamic response of a Terfenol-D actuator with a hydraulic displacement amplification mechanism for use in active engine mounts. The model includes three main components: magnetic diffusion, Terfenol-D constitutive model, and mechanical actuator model. Eddy current losses are modeled as a one-dimensional magnetic field diffusion problem in cylindrical coordinates. The Jiles-Atherton model is used to describe the magnetization state of the Terfenol-D driver as a function of applied magnetic fields. A quadratic, single-valued model for the magnetostriction dependence on magnetization is utilized which provides an input to the mechanical model describing the system vibrations. Friction at the elastomeric seals is modeled using the LuGre friction model for lubricated contacts. The actuator's dynamic response is quantified in terms of the output displacement in the unloaded condition and force output in the loaded condition. The model is shown to accurately quantify the dynamic behavior of the actuator over the frequency range considered, from near dc to 500 Hz. An order analysis shows that the model also describes the higher harmonic content present in the measured responses. A study on the variation of energy delivered by the actuator with the load stiffness reveals that the actuator delivers the highest energy output near the stiffness match region.

  12. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  13. Designing educational software for analysing pressurised hydraulic systems in civil engineering

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2010-04-01

    Full Text Available New information technologies have opened up a world of inexhaustible possibilities in teaching. Using such technologies in technical teaching has become indispensable due to the nature of current resources in industrial design and production. This work consists of preparing didactic material (educational software aimed at tea- ching fluid mechanics, particularly analysing tube, tank and pumping systems, initially aimed at civil engineering students from the Universidad Santo Tomás in Bogotá. Such materials have been successfully developed and used in their formal programmes by several universities around the world during the last few years. The didactic software mentioned in this work was constructed using Visual Basic programming language. This has resulted in a very useful educational tool, leading to effective teacher—student communication which is suitable for both the classroom and students’ personal work (Angel y Bautista, 2001; Aguiar, 2002.

  14. Design of a hydraulic bending machine

    Science.gov (United States)

    Steven G. Hankel; Marshall Begel

    2004-01-01

    To keep pace with customer demands while phasing out old and unserviceable test equipment, the staff of the Engineering Mechanics Laboratory (EML) at the USDA Forest Service, Forest Products Laboratory, designed and assembled a hydraulic bending test machine. The EML built this machine to test dimension lumber, nominal 2 in. thick and up to 12 in. deep, at spans up to...

  15. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  16. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea

    2012-01-01

    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  17. A solenoid-based active hydraulic engine mount: modelling, analysis, and verification

    OpenAIRE

    Hosseini, Ali

    2010-01-01

    The focus of this thesis is on the design, modelling, identification, simulation, and experimental verification of a low-cost solenoid-based active hydraulic engine mount. To build an active engine mount, a commercial On-Off solenoid is modified to be used as an actuator and it is embedded inside a hydraulic engine mount. The hydraulic engine mount is modelled and tested, solenoid actuator is modelled and identified, and finally the models were integrated to obtain the analytical model of the...

  18. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  19. The use of asphalt in hydraulic engineering

    NARCIS (Netherlands)

    Van de Velde, P.A.; Ebbens, E.H.; Van Herpen, J.A.

    1985-01-01

    Asphalt products have been used in the Netherlands in hydraulic engineering for a long time on a large scale, especially after the great disaster in 1953 when a large part of western Holland was flooded by the sea. After the disaster a great number of dikes had to be repaired very quickly and this w

  20. Sustainable hydraulic engineering through building with nature

    NARCIS (Netherlands)

    Vriend, de H.J.; Koningsveld, van M.; Aarninkhof, S.G.J.; Vries, de M.B.; Baptist, M.J.

    2015-01-01

    Hydraulic engineering infrastructures are of concern to many people and are likely to interfere with the environment. Moreover, they are supposed to keep on functioning for many years. In times of rapid societal and environmental change this implies that sustainability and adaptability are important

  1. The use of asphalt in hydraulic engineering

    NARCIS (Netherlands)

    Van de Velde, P.A.; Ebbens, E.H.; Van Herpen, J.A.

    1985-01-01

    Asphalt products have been used in the Netherlands in hydraulic engineering for a long time on a large scale, especially after the great disaster in 1953 when a large part of western Holland was flooded by the sea. After the disaster a great number of dikes had to be repaired very quickly and this w

  2. International Institute for Hydraulic and Environmental Engineering

    Science.gov (United States)

    Mostertman, L. J.

    1977-01-01

    Describes the activities of the International Institute for Hydraulic and Environmental Engineering (IHE), whose primary function is the promotion of the better use of water resources as a vehicle of development by the transfer of knowledge and experience. (Author/RK)

  3. Sustainable hydraulic engineering through building with nature

    NARCIS (Netherlands)

    Vriend, de H.J.; Koningsveld, van M.; Aarninkhof, S.G.J.; Vries, de M.B.; Baptist, M.J.

    2015-01-01

    Hydraulic engineering infrastructures are of concern to many people and are likely to interfere with the environment. Moreover, they are supposed to keep on functioning for many years. In times of rapid societal and environmental change this implies that sustainability and adaptability are important

  4. Design of a laboratory hydraulic device for testing of hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available The present contribution deals with solves problem of research of testing device to monitor of hydrostatic pumps durability about dynamic loading under laboratory conditions. When carrying out the design of testing device are based on load characteristics of tractor hydraulic circuit, the individual characteristics of hydraulic components and performed calculations. Load characteristics on the tractors CASE IH Magnum 310, JOHN DEERE 8100, ZETOR FORTERRA 114 41 and Fendt 926 Vario were measured. Design of a hydraulic laboratory device is based on the need for testing new types of hydraulic pumps or various types of hydraulic fluids. When creating of hydraulic device we focused on testing hydraulic pumps used in agricultural and forestry tractors. Proportional pressure control valve is an active member of the hydraulic device, which provides change of a continuous control signal into relative pressure of operating fluid. The advantage of a designed hydraulic system is possibility of simulation of dynamic operating loading, which is obtained by measurement under real conditions, and thereby creates laboratory conditions as close to real conditions as possible. The laboratory device is constructed at the Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra.

  5. Mechanical design engineering handbook

    CERN Document Server

    Childs, Peter R N

    2013-01-01

    Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum

  6. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  7. USE OF GEOSYNTHETIC CASINGS IN HYDRAULIC ENGINEERING

    Directory of Open Access Journals (Sweden)

    Piyavskiy Semen Avraamovich

    2012-10-01

    Full Text Available The article covers the use of geosynthetic casings in hydraulic engineering. The authors describe the structure of earth dams that have geosynthetic casings used as the reinforcement of downstream slopes. Results of stability calculations are provided. The authors consider several examples of effective application of advanced geosynthetic materials used in combination with local building materials as structural elements of hydraulic engineering facilities. Their analysis has demonstrated a strong potential and expediency of application of geosynthetic casings in the course of construction and renovation of low-pressure earth dams. The authors have also developed a new structure of an earth dam. The new earth dam has geosynthetic casings used as structural reinforcing elements of the crown and the downstream slope. The dam structure contemplates the overflow of high water. The structural strengths of the proposed solution include a smaller material consumption rate, lower labour intensiveness and cost of the slope reinforcement due to the application of local building materials used to fill the casings, fast and easy depositing of slope reinforcing elements, and high workability of its dismantling for repair purposes. The authors have also completed the analysis of stability of geosynthetic casings of downstream slopes of an earth dam. The analysis has proven high efficiency of a small slope ratio in combination with its anchorage and reinforcement of the downstream toe with the help of high-strength geogrids.

  8. Stream restoration hydraulic design course: lecture notes

    National Research Council Canada - National Science Library

    Newbury, R

    2002-01-01

    Steam restoration encompasses a broad range of activities and disciplines. This lecture series is designed for practitioners who must fit habitat improvement works in the hydraulics of degraded channels...

  9. Hydraulic fracture design and optimization of gas storage wells

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, S.; Ameri, S. [Petroleum and Natural Gas and Engineering Department, West Virginia University, P.O. Box 6070, Morgantown, WV (United States); Balanb, B. [Schlumberger Austin Product Center, 8311 North FM 620 Road, Austin, TX (United States); Platon, V. [Baker Atlas, 10201 Westheimer Rd., Houston, TX (United States)

    1999-10-01

    Conventional hydraulic fracture design and optimization involves the use of two- or three-dimensional hydraulic fracture simulators. These simulators need a wealth of reservoir data as input to provide users with usable results. In many cases, such data are not available or very expensive to acquire. This paper provides a new methodology that can be used in cases where detail reservoir data are not available or prohibitively expensive to acquire. Through the use of two virtual intelligence techniques, namely neural networks and genetic algorithms, hydraulic fracture treatments are designed using only the available data. The unique design optimization method presented here is a logical continuation of the study that was presented in two previous papers [McVey et al., 1996, Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network, SPE Computer Applications Journal, Apr., 54-57; Mohaghegh et al., 1996b, Predicting well stimulation results in a gas storage field in the absence of reservoir data, using neural networks, SPE Reservoir Engineering Journal, Nov., 54-57]. A quick review of these papers is included here. This method will use the available data on each well, which includes basic well information, production history and results of previous frac job treatments, and provides engineer with a detail optimum hydraulic fracture design unique to each well. The expected post-hydraulic fracture deliverability for the designed treatment is also provided to assist engineers in estimating incremental increase in recovery to be used in economic calculations. There are no simulated data throughout this study and all data used for development and verification of all methods are actual field data.

  10. DESIGN AND CONSTRUCTION OF A HYDRAULIC PISTON

    OpenAIRE

    Santos De La Cruz, Eulogio; Universidad Nacional Mayor de San Marcos; Rojas Lazo, Oswaldo; Universidad Nacional Mayor de San Marcos; Yenque Dedios, Julio; Universidad Nacional Mayor de San Marcos; Lavado Soto, Aurelio; Universidad Nacional Mayor de San Marcos

    2014-01-01

    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  11. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  12. 发动机齿轮室盖液压自动夹具设计%Design of Hydraulic Automated Fixture for Gear Housing Cover of Engine

    Institute of Scientific and Technical Information of China (English)

    孙燕华; 唐立平; 李薇

    2011-01-01

    齿轮室盖零件是典型的形状复杂、加工部位众多、形位精度要求高的铝合金薄壁箱壳类零件,其数控加工工艺及工装设计是复杂薄壁箱壳类零件数控加工的典型案例.通过对某型号发动机齿轮室盖零件结构与尺寸精度要求的分析,编制符合企业加工能力和要求的数控加工工艺路线.针对薄壁装夹刚性差、加工部位多与走刀路径干涉问题,合理选择装夹点位置,布置浮动支撑,设计相应液压自动夹具.该套数控加工工艺及工装已应用于实践,为其他同类型零件加工提供借鉴.%The gear housing cover is a typical aluminum alloy thin-walled shell box part, which is complex, numerous machining locations and high precision demand. The design of NC machining process and fixture for gear housing cover of engine is a typical case of the NC machining for complex thin-walled shell box part. Based on analyzing structure and dimension accuracy requirements of the gear housing cover part in a certain engine, the NC process route which accorded with processing capacity and requirement of enterprises was worked out. Aiming at the problems such as poor clamping rigidity of thin-walled shell part, numerous machining locations and tool path interference, the hydraulic automated fixture was designed by reasonable selection of clamping points and floating type support cylinders. The NC machining process and fixture has been applied to practice. It can provide good reference for other same type parts.

  13. Digital hydraulic valving system. [design and development

    Science.gov (United States)

    1973-01-01

    The design and development are reported of a digital hydraulic valving system that would accept direct digital inputs. Topics include: summary of contractual accomplishments, design and function description, valve parameters and calculations, conclusions, and recommendations. The electrical control circuit operating procedure is outlined in an appendix.

  14. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    2011-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. Such movements and manipulations are frequently accomplished by means of devices driven by liquids (hydraulics) or air (pneumatics), the subject of this book. Hydraulics and Pneumatics is written by a practicing process control engineer as a guide to the successful operation of hydraulic and pneumatic systems for all engineers and technicians working with them. Keeping mathematics and theory to a minimum, this practical guide is thorough but accessible to technicians without a

  15. Space Shuttle Main Engine control system. [hydraulic actuator with digital control

    Science.gov (United States)

    Seitz, P. F.; Searle, R. F.

    1973-01-01

    The Space Shuttle Main Engine is a reusable, high-performance rocket engine being developed by the Rocketdyne Div. of Rockwell International to satisfy the operational requirements of the Space Shuttle Orbiter Vehicle. The design incorporates a hydraulically actuated, closed-loop servosystem controlled and monitored by a programmable electronic digital controller. The controller accepts vehicle commands for the various engine operational phases, positions the appropriate valves, monitors the engine for the required performance precisions and conditions, and provides redundancy management.

  16. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    OpenAIRE

    HUANG, Ye; Liu, Changsheng; Shiongur Bamed

    2014-01-01

    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  17. Reactive barriers: hydraulic performance and design enhancements.

    Science.gov (United States)

    Painter, B D M

    2004-01-01

    The remediation of contaminated ground water is a multibillion-dollar global industry. Permeable reactive barriers (PRBs) are one of the leading technologies being developed in the search for alternatives to the pump-and-treat method. Improving the hydraulic performance of these PRBs is an important part of maximizing their potential to the industry. Optimization of the hydraulic performance of a PRB can be defined in terms of finding the balance between capture, residence time, and PRB longevity that produces a minimum-cost acceptable design. Three-dimensional particle tracking was used to estimate capture zone and residence time distributions. Volumetric flow analysis was used for estimation of flow distribution across a PRB and in the identification of flow regimes that may affect the permeability or reactivity of portions of the PRB over time. Capture zone measurements extended below the base of partially penetrating PRBs and were measured upgradient from the portion of aquifer influenced by PRB emplacement. Hydraulic performance analysis of standard PRB designs confirmed previously presented research that identified the potential for significant variation in residence time and capture zone. These variations can result in the need to oversize the PRB to ensure that downgradient contaminant concentrations do not exceed imposed standards. The most useful PRB design enhancements for controlling residence time and capture variation were found to be customized downgradient gate faces, velocity equalization walls, deeper emplacement of the funnel than the gate, and careful manipulation of the hydraulic conductivity ratio between the gate and the aquifer.

  18. Trends in Design of Water Hydraulics

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus is on the advantages using...... ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process...... operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap water...

  19. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  20. 缸间齿轮联动液压发动机结构设计与研究%Structure design and research of the gear-linked cylinders hydraulic engine

    Institute of Scientific and Technical Information of China (English)

    舒培; 张洪信; 肖汝琴; 孙文革

    2015-01-01

    针对液压自由活塞发动机和液压约束活塞发动机在关键技术和产业化方面出现的问题,创新性地提出了缸间齿轮联动液压发动机的结构原理,在此基础上对作为影响缸间齿轮联动液压发动机整机性能关键部件的缸间齿轮齿条传动机构和液压配流系统进行了结构设计与研究。缸间齿轮齿条传动机构采用正变位直齿圆柱齿轮和标准齿条无侧隙啮合传动,通过合理选择几何参数和强度校核,其能够支持发动机正常稳定运转;设计了一种往复柱塞泵用转套式配流系统,能够实现单向吸油和泵油,完成动力输出,且容积效率高、结构紧凑,相较于传统阀配流往复柱塞泵配流结构优势明显。缸间齿轮联动液压发动机的结构设计与研究为随后的整机性能研究、仿真优化和样机试制提供了参考依据。%The structure and working principle of the Gear-linked Cylinders Hydraulic Engine ( GCHE) is put forward creatively for the issues appearing in the critical technologies and industrialization of the Hydraulic Free Piston Engine ( HFPE) and the Hydraulic Confined Piston Engine ( HCPE) .And a structure researching design of the rack and pinion mechanism between cylin-ders and the hydraulically orifice system which play important roles in the engine performance has been conducted on the basis . The rack and pinion mechanism takes the method of positive displacement spur gear and standard rack no backlash meshing .With the geometric parameters selected and the strength check done reasonably ,the mechanism is able to support normal and stable op-eration of the engine.Meanwhile,a rotating sleeve type hydraulically orifice system for reciprocating piston pump is designed ,it can implement unidirectional suction and pump oil to complete the power output with high volumetric efficiency and compact structure and has obvious advantages compared to traditional valve type orifice

  1. Relevant thermal-hydraulic aspects in the design of the RRR (Replacement Research Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Doval, Alicia S.; Mazufri, Claudio M. [INVAP SE, Bariloche (Argentina)

    2002-07-01

    A description of the main thermal-hydraulic features and challenges of the Replacement Research Reactor, for the Australian Nuclear Science and Technology Organization (ANSTO), is presented. Different hydraulic and thermal-hydraulic aspects are considered, core cooling during full power operation and the way it affects the design, design criteria, engineered safety features and computational tools, amongst others. A special section is devoted to the thermal-hydraulic aspects inside the reflector tank, as well as the cooling of irradiation facilities, particularly, the Molybdenum production facility. (author)

  2. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  3. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    Science.gov (United States)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  4. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    Science.gov (United States)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  5. Development of a hydraulic turbine design method

    Science.gov (United States)

    Kassanos, Ioannis; Anagnostopoulos, John; Papantonis, Dimitris

    2013-10-01

    In this paper a hydraulic turbine parametric design method is presented which is based on the combination of traditional methods and parametric surface modeling techniques. The blade of the turbine runner is described using Bezier surfaces for the definition of the meridional plane as well as the blade angle distribution, and a thickness distribution applied normal to the mean blade surface. In this way, it is possible to define parametrically the whole runner using a relatively small number of design parameters, compared to conventional methods. The above definition is then combined with a commercial CFD software and a stochastic optimization algorithm towards the development of an automated design optimization procedure. The process is demonstrated with the design of a Francis turbine runner.

  6. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  7. VIRTUAL DESIGN OF A NEW TYPE OF HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using virtual reality to design a new type of hydraulic support is discussed. That is how to make use of the virtual design to develop coal mining machine in practice. The advantages of virtual design are studied and the simple virtual reality system is built. The 3D parts and elements of hydraulic support are modeled with parametric design in CAD software, then exported to VR environment, in which the virtual hydraulic support is assembled, operated and tested. With the method, the errors and faults of design can be fined easily, many improvements are made and the new hydraulic support is developed successfully.

  8. Engineering applications of pneumatics and hydraulics

    CERN Document Server

    Turner, Ian C

    2014-01-01

    Assuming only the most basic knowledge of the physics of fluids, this book aims to equip the reader with a sound understanding of fluid power systems and their uses in practical engineering. In line with the strongly practical bias of the book, maintenance and trouble-shooting are covered, with particular emphasis on safety systems and regulations.

  9. Mobile hydraulic power supply. Liquid piston Stirling engine pump

    Energy Technology Data Exchange (ETDEWEB)

    Ven, James D. van de [100 Institute Road, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2009-11-15

    Conventional mobile hydraulic power supplies involve numerous kinematic connections and are limited by the efficiency, noise, and emissions of internal combustion engines. The Stirling cycle possesses numerous benefits such as the ability to operate from any heat source, quiet operation, and high theoretical efficiency. The Stirling engine has seen limited success due to poor heat transfer in the working chambers, difficulty sealing low-molecular weight gases at high pressure, and non-ideal piston displacement profiles. As a solution to these limitations, a liquid piston Stirling engine pump is proposed. The liquid pistons conform to irregular volumes, allowing increased heat transfer through geometry features on the interior of the working chambers. Creating near-isothermal operation eliminates the costly external heat exchangers and increases the engine efficiency through decreasing the engine dead space. The liquid pistons provide a positive gas seal and thermal transport to the working chambers. Controlling the flow of the liquid pistons with valves enables matching the ideal Stirling cycle and creates a direct hydraulic power supply. Using liquid hydrogen as a fuel source allows cooling the compression side of the engine before expanded the fuel into a gas and combusting it to heat the expansion side of the engine. Cooling the compression side not only increases the engine power, but also significantly increases the potential thermal efficiency of the engine. A high efficiency Stirling engine makes energy regeneration through reversing the Stirling cycle practical. When used for regeneration, the captured energy can be stored in thermal batteries, such as a molten salt. The liquid piston Stirling engine pump requires further research in numerous areas such as understanding the behavior of the liquid pistons, modeling and optimization of a full engine pump, and careful selection of materials for the extreme operating temperatures. Addressing these obtainable

  10. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  11. Optimization of Classical Hydraulic Engine Mounts Based on RMS Method

    Directory of Open Access Journals (Sweden)

    J. Christopherson

    2005-01-01

    Full Text Available Based on RMS averaging of the frequency response functions of the absolute acceleration and relative displacement transmissibility, optimal parameters describing the hydraulic engine mount are determined to explain the internal mount geometry. More specifically, it is shown that a line of minima exists to define a relationship between the absolute acceleration and relative displacement transmissibility of a sprung mass using a hydraulic mount as a means of suspension. This line of minima is used to determine several optimal systems developed on the basis of different clearance requirements, hence different relative displacement requirements, and compare them by means of their respective acceleration and displacement transmissibility functions. In addition, the transient response of the mount to a step input is also investigated to show the effects of the optimization upon the time domain response of the hydraulic mount.

  12. Design of PI Controllers for Hydraulic Control Systems

    Directory of Open Access Journals (Sweden)

    LJubiša Dubonjić

    2013-01-01

    Full Text Available The paper proposes a procedure for design of PI controllers for hydraulic systems with long transmission lines which are described by models of high order. Design is based on the combination of the IE criterion and engineering specifications (settling time and relative stability as well as on the application of D-decomposition. In comparison with some known results, the method is of graphical character, and it is very simple (solving nonlinear algebraic equations is eliminated. The paper presents the algorithm of software procedure for design of the controller. The method is compared with other methods at the level of simulation, and its superiority is shown. By applying the Nyquist criterion, it is shown that the method possesses robustness in relation to non modelled dynamics.

  13. Main Problems and Countermeasures in Hydraulic Engineering Design Estimates Preparation%水利工程设计概算编制中的主要问题及对策

    Institute of Scientific and Technical Information of China (English)

    冯家团

    2013-01-01

      水利工程概算编制是工程设计的重要组成部分,对于合理确定工程造价预算、确保有效控制工程项目投资规模、合理使用投资、提高投资回报率,是必不可少的。本文简要归纳了一些普遍存在于水利工程设计概算编制中的问题,并结合工程实际提出了几项应对措施,以期提升设计概算编制的质量、保证项目投资控制目标的实现,从而取得较好的投资效益和社会效益。%Preparation of hydraulic engineering budget estimates is an important part of engineering design .It is essential for reasonably determining project cost budgets , ensuring effective control of the project investment scale , rationally using investment, and improving the return rate on investment .This paper briefly summarizes some problems prevalent in the budget water conservancy project design budget estimates .Engineering practice is combined to device counter-measures in order to improve the quality of the design estimates preparation and ensure the realization of project investment control goals, thereby obtaining better investment benefits and social benefits .

  14. Encouraging the Learning of Hydraulic Engineering Subjects in Agricultural Engineering Schools

    Science.gov (United States)

    Sinobas, Leonor Rodríguez; Sánchez Calvo, Raúl

    2014-01-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of…

  15. Encouraging the Learning of Hydraulic Engineering Subjects in Agricultural Engineering Schools

    Science.gov (United States)

    Sinobas, Leonor Rodríguez; Sánchez Calvo, Raúl

    2014-01-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of…

  16. Two-Mode Operation Engine Mount Design for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Reza Tikani

    2012-01-01

    Full Text Available Hydraulic engine mounts are applied to the automotive applications to isolate the chassis from the high frequency noise and vibration generated by the engine as well as to limit the engine shake motions resulting at low frequencies. In this paper, a new hydraulic engine mount with a controllable inertia track profile is proposed and its dynamic behavior is investigated. The profile of the inertia track is varied by applying a controlled force to a cylindrical rubber disk, placed in the inertia track. This design provides a hydraulic engine mount design with an adjustable notch frequency location and also damping characteristics in shake motions. By using a simple control strategy, the efficiency of the proposed hydraulic engine mount in two-mode operation meaning isolating mode in the highway driving condition and damping mode in the shock motions, is investigated.

  17. Lunar nuclear power plant design for thermal-hydraulic cooling in nano-scale environment: Nuclear engineering-based interdisciplinary nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Systemix Global Co. Ltd., Seoul (Korea, Republic of)

    2015-05-15

    The environment of the Moon is nearly vacant, which has very low density of several kinds of gases. It has the molecular level contents of the lunar atmosphere in Table 1, which is recognized that radiation heat transfer is a major cooling method. The coolant of the nuclear power plant (NPP) in the lunar base is the Moon surface soil , which is known as the regolith. The regolith is the layer of loose and heterogeneous material covering the solid rock. For finding the optimized length of the radiator of the coolant in the lunar NPP, the produced power and Moon environmental temperature are needed. This makes the particular heat transfer characteristics in heat transfer in the Moon surface. The radiation is the only heat transfer way due to very weak atmosphere. It is very cold in the night time and very hot in the daytime on the surface of the ground. There are comparisons between lunar high land soil and Earth averages in Table 2. In the historical consideration, Konstantin Tsiolkovsky made a suggestion for the colony on the Moon.. There are a number of ideas for the conceptual design which have been proposed by several scientists. In 1954, Arthur C. Clarke mentioned a lunar base of inflatable modules covered in lunar dust for insulation. John S. Rinehart suggested the structure of the stationary ocean of dust, because there could be a mile-deep dust ocean on the Moon, which gives a safer design. In 1959, the project horizon was launched regarding the U.S. Army's plan to establish a fort on the Moon by 1967. H. H. Koelle, a German rocket engineer of the Army Ballistic Missile Agency, leaded the project (ABMA). There was the first landing in 1965 and 245 tons of cargos were transported to the outpost by 1966. The coolant material of regolith in the Moon is optimized for the NPP. By the simulation, there are some results. The temperature is calculated as the 9 nodals by radiation heat transfer from the potassium coolant to the regolith flow. The high efficiency

  18. OPTIMAL HYDRAULIC DESIGN AND CAD APPLICATIONS OF AXIAL FLOW HYDRAULIC TURBINE'S RUNNER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method of the optimal hydraulic design and CAD application of runner blades of axial-flow hydraulic turbines are discussed on the basis of optimization principle and CAD technique in this paper. Based on the theory of fluid dynamics, the blade′s main geometrical parameter, working parameters and performances index of the blades and the relationship between them are analysed, and the mathematical model of optimal hydraulic design of axial-flow runners has been established. Through nonlinear programming, the problems can be solved. By making use of the calculation geometry and computer graphics, the distribution method of the singular points, and an CAD applied software, an optimal hydraulic design are presented.

  19. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  20. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  1. Parameter Designing for Heave Compensation Hydraulic System Installed in Deepwater

    Directory of Open Access Journals (Sweden)

    Zhao Teng

    2013-01-01

    Full Text Available The function diagram of active heave compensation hydraulic system has been given, besides, the mathematics model for the principal hydraulic components of the compensation system has been built, and the input-output relation between components has been made clear. Aimed at compensating work capacity for the system, design and research on parameters as the bearing pressure, the initial state and the maximum flow of hydraulic cylinder, accumulator and other principal components have been made separately, and standardized design has been accomplished in accordance with relevant standards. Furthermore, calculus and verification for the capacity of the hydraulic system in different working stages have been made in order to calculate the pressure lose of the system and provide objective data for the hardware system design of the hydraulic components of the heave compensation system.

  2. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  3. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  4. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  5. Applications of CFD in Hydraulics and River Engineering

    Science.gov (United States)

    Nguyen, Van Thinh; Nestmann, Franz

    2004-02-01

    In this paper, various applications and developments of CFD technology in hydraulics and river engineering are presented. Numerical studies of three-dimensional turbulent flow fields in open channels and rivers are carried out by CFD packages such as the finite element code FIDAP and finite volume code COMET. Meshing procedures are implemented by GAMBIT or CFD-GEOM. To calculate the position of the free surface two methods are applied, free surface tracking and volume-of-fluid, and some comparisons of these methods are discussed.

  6. Applications of CFD in hydraulics and river engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V.T.; Nestmann, F. [Univ. of Karlsruhe, Civil Engineering, Karlsruhe (Germany)]. E-mail: ge27@rz.uni-karlsruhe.de; Franz.Nestmann@iwk.uni-karlsruhe.de

    2002-07-01

    In this paper various applications and developments of CFD technology in hydraulics and river engineering are presented. Numerical studies of three dimensional turbulent flow fields in open channels and rivers are carried out by CFD packages such as finite element FIDAP of Fluent and finite volume COMET of ICCM (Institute of Computational Continuum Mechanics GmbH). Meshing procedures are implemented by GAMBIT (Fluent) or CFD-GEOM (CFDRC). Especially, to calculate the position of the free surface both methods, free surface tracking and Volume-Of-Fluid (VOF), are applied. (author)

  7. Engineering and design skills

    DEFF Research Database (Denmark)

    Schrøder, Anne Lise

    2006-01-01

    In various branches of society there is focus on the need for design skills and innovation potential as a means of communicating and handling constant change. In this context, the traditional idea of the engineer as a poly-technician inventing solutions by understanding the laws of nature...... concept of diagrammatic reasoning to some extent incarnates the very method of engineering and design. On this background, it is argued how the work field and techniques of the engineer and the engineering scientist could be characterized in a broader creative context of learning and communication....... This leads to considering the fundamental skills of the engineering practice as basic abilities to see the structures and dynamics of the world, to model it, and to create new solutions concerning practical as well as theoretical matters. Finally, it is assumed that the essence of engineering “bildung...

  8. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    in a project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency......, but even more important is the system topology. However, there are no rules or guidelines for what system topology to choose for a given application, in order to obtain the most energy efficient system, nor for how the energy should be distributed in the system. This paper describes the approach taken...

  9. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...... machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...

  10. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  11. Lock Culvert Valves; Hydraulic Design Considerations

    Science.gov (United States)

    2011-06-01

    the U.S. Army Engineer Waterways Experiment Station and U.S. Army Engineer Districts, St. Paul and Walla Walla . The prototype data suggest that the...been issued (U.S. Army Engineer District, Walla Walla 1955). 4.4.2 Lock No. 19 Lock 19 has a lift of 38.2 ft and flow is controlled with 14.5- by...Army Engineer Waterways Experiment Station. U.S. Army Engineer District, Walla Walla . 1955. Synchronization of lock filling valves, McNary Lock

  12. DYNAMIC MODEL AND SIMULATION OF A NOVEL ELECTRO-HYDRAULIC FULLY VARIABLE VALVE SYSTEM FOR FOUR-STROKE AUTOMOTIVE ENGINES

    Institute of Scientific and Technical Information of China (English)

    WONG Pak-kin; TAM Lap-mou; LI Ke

    2007-01-01

    In modern four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.

  13. Vehicular engine design

    CERN Document Server

    Hoag, Kevin

    2016-01-01

    This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds.  Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.

  14. Concept Design of Movable Beam of Hydraulic Press

    Directory of Open Access Journals (Sweden)

    Li Yancong

    2017-01-01

    Full Text Available The hydraulic press movable beam is one of the key components of the hydraulic press; its design quality impacts the accuracy of the workpiece that the press suppressed. In this paper, first, with maximum deflection and material strength as constraints, mechanical model of the movable beam is established; next, the concept design model of the moveable beam structure is established; the relationship among the force of the side cylinder, the thickness of the inclined plate, outer plate is established also. Taking movable beam of the 100MN type THP10-10000 isothermal forging hydraulic press as an example, the conceptual design result is given. This concept design method mentoned in the paper has general meaning and can apply to other similar product design.

  15. Encouraging the learning of hydraulic engineering subjects in agricultural engineering schools

    Science.gov (United States)

    Rodríguez Sinobas, Leonor; Sánchez Calvo, Raúl

    2014-09-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of 'online' and web tools in two undergraduate courses. Results from their application to encourage learning and communication skills in Hydraulic Engineering subjects are analysed and compared to the initial situation. Student's academic performance has improved since their application, but surveys made among students showed that not all the methodological proposals were perceived as beneficial. Their participation in the 'online', classroom and reading activities was low although they were well assessed.

  16. A Target Tracking System for Applications in Hydraulic Engineering

    Institute of Scientific and Technical Information of China (English)

    SHEN Qiaonan; AN Xuehui

    2008-01-01

    A new type of digital video monitoring system (DVMS) named user defined target tracking system (UDTTS), was developed based on the digital image processing (DIP) technology and the practice demands of construction site management in hydraulic engineering. The position, speed, and track of moving targets such as humans and vehicles, which could be calculated by their locations at anytime in images basically, were required for management. The proposed algorithm, dependent on the context-sensitive moving infor- mation of image sequences which was much more than one or two images provided, compared the blobs' properties in current frame to the trajectories of targets in the previous frames and then corresponded them. The processing frame rate is about 10fps with the image 240-by-120 pixels. Experimental results show that position, direction, and speed measurements have an accuracy level compatible with the manual work. The user-define process makes the UDTTS available to the public whenever appropriate.

  17. An engineering based approach for hydraulic computations in river flows

    Science.gov (United States)

    Di Francesco, S.; Biscarini, C.; Pierleoni, A.; Manciola, P.

    2016-06-01

    This paper presents an engineering based approach for hydraulic risk evaluation. The aim of the research is to identify a criteria for the choice of the simplest and appropriate model to use in different scenarios varying the characteristics of main river channel. The complete flow field, generally expressed in terms of pressure, velocities, accelerations can be described through a three dimensional approach that consider all the flow properties varying in all directions. In many practical applications for river flow studies, however, the greatest changes occur only in two dimensions or even only in one. In these cases the use of simplified approaches can lead to accurate results, with easy to build and faster simulations. The study has been conducted taking in account a dimensionless parameter of channels (ratio of curvature radius and width of the channel (R/B).

  18. Engineering Design Thinking

    Science.gov (United States)

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  19. Task committee on experimental uncertainty and measurement errors in hydraulic engineering: An update

    Science.gov (United States)

    Wahlin, B.; Wahl, T.; Gonzalez-Castro, J. A.; Fulford, J.; Robeson, M.

    2005-01-01

    As part of their long range goals for disseminating information on measurement techniques, instrumentation, and experimentation in the field of hydraulics, the Technical Committee on Hydraulic Measurements and Experimentation formed the Task Committee on Experimental Uncertainty and Measurement Errors in Hydraulic Engineering in January 2003. The overall mission of this Task Committee is to provide information and guidance on the current practices used for describing and quantifying measurement errors and experimental uncertainty in hydraulic engineering and experimental hydraulics. The final goal of the Task Committee on Experimental Uncertainty and Measurement Errors in Hydraulic Engineering is to produce a report on the subject that will cover: (1) sources of error in hydraulic measurements, (2) types of experimental uncertainty, (3) procedures for quantifying error and uncertainty, and (4) special practical applications that range from uncertainty analysis for planning an experiment to estimating uncertainty in flow monitoring at gaging sites and hydraulic structures. Currently, the Task Committee has adopted the first order variance estimation method outlined by Coleman and Steele as the basic methodology to follow when assessing the uncertainty in hydraulic measurements. In addition, the Task Committee has begun to develop its report on uncertainty in hydraulic engineering. This paper is intended as an update on the Task Committee's overall progress. Copyright ASCE 2005.

  20. Engineering and design skills

    DEFF Research Database (Denmark)

    Schrøder, Anne Lise

    2006-01-01

    In various branches of society there is focus on the need for design skills and innovation potential as a means of communicating and handling constant change. In this context, the traditional idea of the engineer as a poly-technician inventing solutions by understanding the laws of nature....... This leads to considering the fundamental skills of the engineering practice as basic abilities to see the structures and dynamics of the world, to model it, and to create new solutions concerning practical as well as theoretical matters. Finally, it is assumed that the essence of engineering “bildung...

  1. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...... are working under the most optimal operating conditions. The above in this way constitute the background for the work that is the basis of this report, which deals with how to design and control open-circuit hydraulic systems with multiple consumers to obtain the largest energy utilization, when also...... a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...

  2. A novel design of semi-active hydraulic mount with wide-band tunable notch frequency

    Science.gov (United States)

    Wang, Min; Yao, Guo-feng; Zhao, Jing-zhou; Qin, Min

    2014-04-01

    Hydraulic engine mount is advanced vibration isolator with superior performance to reduce vibration transferred from engine to chassis. As the stiffness at notch frequency is small, some semi-active or active hydraulic mounts tune some parameters to let notch frequency coincide with exciting frequency for better vibration isolation performance. It is discovered the current semi-active mounts can tune the notch frequency in narrow frequency band when only one parameter is tuned. A novel semi-active hydraulic engine mount design which introduces screw thread is proposed and researched in the paper. This hydraulic mount can control both cross section area and the length of inertia track and the theoretical tunable notch frequency band is [0, ∞). Theoretical work is carried out to uncover the capability for the proposed design to tune notch frequency. Simulation work is performed to understand its high vibration isolation performance. For the purpose of energy conservation, the friction self-locking is introduced. This denotes once the mount is tuned at optimal condition, the energy can be cut off and the optimal condition will never change. We also determine the best time to tune the parameters of the proposed mount in order to decrease the acting force. The proposed semi-active mount has capability to obtain wide band tunable notch frequency and has merit of energy conservation.

  3. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  4. Education for hydraulics and pneumatics in Yokohama University, Faculty of Engineering, Department of Mechanical Engineering and Materials Sciences; Yokohama Kokuritsu Daigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    2000-03-15

    Described herein is education for hydraulics and pneumatics in Yokohama University. Department of Mechanical Engineering and Materials Science pursues to most efficiently produce high-quality products useful for human living and compatible with the environments, based on scientific and technological knowledge man has learned. This department has four professional education courses, materials designs, mechanical processes, hot fluid dynamics, and mechanical systems. An independent subject of hydraulic and pneumatic systems is provided for hydraulics and pneumatics. The lectures on mechatronics include those for digitally-, electronically/hydraulically- and electronically/pneumatically-controlled devices, and their characteristics. The related subjects include fluid dynamics, basic fluid analysis, applied fluid analysis, turbo machines, and automatic control. The postgraduate courses provide hydraulic and pneumatic engineering for, e.g., cavitation and unsteady flow through conduits, hydraulic/pneumatic driving and controlling, modeling and robust control of mechanical systems, and designs of fluid-controlling devices and actuators. The experimental courses include tests of centrifugal pump performance, measurement of pressure distributions on journal bearings, and tests of fluid flow through conduits. (NEDO)

  5. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... longer tradition, as can be seen from the establishment of many technical universities in the second half of the 19th century. However, despite 30 years of design research, the feld is not a well-established scientific discipline. Furthermore, the effects on industrial practice and education are far less...... than expected . According to Suh (1998) "the most significant changes in design practice will occur when the field is fully endowed with a firm science base." Today, due to the organisation of our universitites and the paht to a university position, a substantial part of all research efforts is created...

  6. PRINCIPLE OF POST-PRODUCTION DESIGN OF HYDRAULIC ACTUATORS

    Directory of Open Access Journals (Sweden)

    A. V. Puzanov

    2015-01-01

    Full Text Available In work the problem of design-technology preparation of production of hydraulic actuators is staticized. The structure and business processes of design and production are analysed. Methods and means of reorganization of project works for the purpose of cutting-down of time of preparation of production are offered. The directions of reorganization of process of design are formulated. The principle of carrying out procedures of design-technology preparation of production of hydraulic actuators with use of ready elements of a production cycle is considered. The scheme of their practical realization at machine-building enterprise is offered. The assessment of growth of efficiency of design-technology preparation of production is given in machine-building enterprise.

  7. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  8. Is Engineering Design Disappearing from Design Research?

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.

    2011-01-01

    on engineer-ing, we observe a declining focus on engineering design in design research, articu-lated in the composition of contributions to Design Society conferences. Engineer-ing design relates closely to the ‘materialisation’ of products and systems, i.e. the embodiment and detailing. The role of clever...... embodiment. Embodiment design is just as intellectually challenging as conceptualisation but seems much more engineering dependant and intriguing in its complexity of dependencies and unsure reasoning about properties by the fact that often a multidisciplinary team is necessary. This article should be seen...

  9. Effect of filter designs on hydraulic properties and well efficiency.

    Science.gov (United States)

    Kim, Byung-Woo

    2014-09-01

    To analyze the effect of filter pack arrangement on the hydraulic properties and the well efficiency of a well design, a step drawdown was conducted in a sand-filled tank model. Prior to the test, a single filter pack (SFP), granule only, and two dual filter packs (DFPs), type A (granule-pebble) and type B (pebble-granule), were designed to surround the well screen. The hydraulic properties and well efficiencies related to the filter packs were evaluated using the Hazen's, Eden-Hazel's, Jacob's, and Labadie-Helweg's methods. The results showed that the hydraulic properties and well efficiency of the DFPs were higher than those of a SFP, and the clogging effect and wellhead loss related to the aquifer material were the lowest owing to the grain size and the arrangement of the filter pack. The hydraulic conductivity of the DFPs types A and B was about 1.41 and 6.43 times that of a SFP, respectively. In addition, the well efficiency of the DFPs types A and B was about 1.38 and 1.60 times that of the SFP, respectively. In this study, hydraulic property and well efficiency changes were observed according to the variety of the filter pack used. The results differed from the predictions of previous studies on the grain-size ratio. Proper pack-aquifer ratios and filter pack arrangements are primary factors in the construction of efficient water wells, as is the grain ratio, intrinsic permeability (k), and hydraulic conductivity (K) between the grains of the filter packs and the grains of the aquifer. © 2014, National Ground Water Association.

  10. Design Optimization of Hydraulic Press Plate using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Akshay Vaishnav

    2016-05-01

    Full Text Available Metal forming is a process which is done by deforming metal work pieces to the desired shape and size using pressing or hammering action. Hydraulic presses are being used for forming and pressing operations with wide range of capacities. Hydraulic press machine works under continuous impact load. Because of this continuous load, tensile and compressive stresses are experienced in various parts of machine. These stresses cause permanent deformation in some parts of machine. This work is based on optimization of a 250-ton four pillar type hydraulic press considering constraints like design, weight and cost. The work is focused on design and optimization of top plate of the press machine. Top plate holds the hydraulic cylinder and is one of the most critical parts of the machine. The design is based on sizing optimization method and the results are validated by Finite Element method with proper boundary conditions. The CAD modelling has been carried out by PTC CREO and for FEA, ANSYS software is used.

  11. Numerical simulation of two-phase turbulent flow in hydraulic and hydropower engineering

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In connection with the specific features of high velocity aerated flow generated by hydraulic engineering structures,the mathematical model is developed for high turbulence air-water two-phase flow with the use of twin flow theoretical model in this paper.Furthermore the numerical method is proposed to treat bubbled flows.In addition,on the basis of air-water stratified twin flow model,the new calculation methods and free surface tracking technique are proposed to describe complicated movements of the free surface.Finally,the proposed model is used to calculate artificial aerated flows.The computed results coincide quite well with experimental results.This means that the proposed method can provide solid basis for practical engineering design.

  12. OPTIMUM DESIGN AND NON-LINEAR MODEL OF POWERPLANT HYDRAULIC MOUNT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Shi Wenku; Min Haitao; Dang Zhaolong

    2003-01-01

    6-DOF non-linear mechanics model of powerplant hydraulic mount system is established. Optimum design of the powerplant hydraulic mount system is made with the hydraulic mount parameters as variables and with uncoupling of energy, rational disposition of nature frequency and minimum of reactive force at mount's location as objective functions. And based on the optimum design, software named ODPHMS (optimum design of powerplant hydraulic mount system) used in powerplant mount system optimum design is developed.

  13. Effects of Microneedle Design Parameters on Hydraulic Resistance

    Science.gov (United States)

    Hood, R. Lyle; Kosoglu, Mehmet A.; Parker, Matthew; Rylander, Christopher G.

    2011-01-01

    Microneedles have been an expanding medical technology in recent years due to their ability to penetrate tissue and deliver therapy with minimal invasiveness and patient discomfort. Variations in design have allowed for enhanced fluid delivery, biopsy collection, and the measurement of electric potentials. Our novel microneedle design attempts to combine many of these functions into a single length of silica tubing capable of both light and fluid delivery terminating in a sharp tip of less than 100 microns in diameter. This manuscript focuses on the fluid flow aspects of the design, characterizing the contributions to hydraulic resistance from the geometric parameters of the microneedles. Experiments consisted of measuring the volumetric flow rate of de-ionized water at set pressures (ranging from 69-621 kPa) through a relevant range of tubing lengths, needle lengths, and needle tip diameters. Data analysis showed that the silica tubing (~150 micron bore diameter) adhered to within ±5% of the theoretical prediction by Poiseuille’s Law describing laminar internal pipe flow at Reynolds numbers less than 700. High hydraulic resistance within the microneedles correlated with decreasing tip diameter. The hydraulic resistance offered by the silica tubing preceding the microneedle taper was approximately 1-2 orders of magnitude less per unit length, but remained the dominating resistance in most experiments as the tubing length was >30 mm. These findings will be incorporated into future design permutations to produce a microneedle capable of both efficient fluid transfer and light delivery. PMID:22211159

  14. Hydraulic design of geothermal probes; Hydraulische Auslegung von Erdwaermesondenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, Christoph; Zapp, Franz Josef [GEFGA mbH, Gesellschaft zur Entwicklung und Foerderung von Geothermen Anlagen, Limburg (Germany)

    2011-07-01

    Based on hydraulic considerations of geothermal probes of various designs and dimensions, the contribution under consideration reports on various influences on the heat transfer capacity of geothermal probes. The influence of laminar and turbulent pipe flow on the heat transfer capacity of geothermal probes is explained. Various parameters are considered such as the effect of various antifreezing compounds and the different types of construction of geothermal probes.

  15. Is Engineering Design Disappearing from Design Research?

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.

    2011-01-01

    Most systems and products need to be engineered during their design, based upon scientific insight into principles, mechanisms, materials and production pos-sibilities, leading to reliability, durability and value for the user. Despite the central importance and design’s crucial dependency...... on engineer-ing, we observe a declining focus on engineering design in design research, articu-lated in the composition of contributions to Design Society conferences. Engineer-ing design relates closely to the ‘materialisation’ of products and systems, i.e. the embodiment and detailing. The role of clever...... embodiment. Embodiment design is just as intellectually challenging as conceptualisation but seems much more engineering dependant and intriguing in its complexity of dependencies and unsure reasoning about properties by the fact that often a multidisciplinary team is necessary. This article should be seen...

  16. Development of guidelines for improved hydraulic design of waste stabilisation ponds.

    Science.gov (United States)

    Shilton, A; Harrison, J

    2003-01-01

    Pond hydraulic behaviour is influenced by the inlet/outlet configuration, baffles and wind, but design information relating to these factors is still very limited. This paper reviews the development of "Guidelines for the Improved Hydraulic Design of Waste Stabilisation Ponds" and summarises some of the key findings and recommendations. This work was based on review of previous research, laboratory experimentation, field studies and mathematical modelling using computational fluid dynamics. The inlet design can have a significant influence on the flow regime in a pond. Poorly considered positioning of the inlet and the outlet can create hydraulic short-circuiting problems. As an example of the nature of the work undertaken in this project, the use of a small horizontal inlet pipe was compared against a vertical inlet design. A practical method of assessing the relative significance of wind versus inlet power input was presented. The application of this analysis may allow engineers to size inlet pipes to help control the flow patterns in ponds for efficient performance. Extensive testing has been undertaken on a wide range of baffle configurations. An example of this research showed how short stub baffles could provide similar improvements to longer "traditional" baffle designs, potentially offering significant savings in construction costs. For traditional baffle designs a minimum of two baffles is recommended. For the pond modelled in this work, it was found that any more than four baffles gave only marginal improvements.

  17. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  18. Fusion Engineering Device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  19. Justification of application of new types of fastening of slopes of hydraulic engineering constructions

    Directory of Open Access Journals (Sweden)

    Smyvalov Anatoly

    2017-01-01

    Full Text Available The article represents the analysis of various types of fastenings of the soil slopes which have found broad application in the hydrotechnical construction practice for the last 10-15 years. It is noted that, generally, new types of fastenings represent composite materials made of concrete, metal and polymers. Experience shows that producers of the construction materials used in bank protection designs seek to recommend them for the solution of a wide range of tasks, at the same time it isn’t always founded. The authors, on the basis of the analysis of experience with the types of fastenings and also modern domestic and foreign recommendations about their design and construction, offer a technique of justification of new types of fastenings of slopes of hydraulic engineering constructions. The use of concrete filled geotextile mats in bank protection is brought out as a practical realization of the represented technique.

  20. Designing of Hydraulically Balanced Water Distribution Network Based on GIS and EPANET

    Directory of Open Access Journals (Sweden)

    RASOOLI Ahmadullah

    2016-02-01

    Full Text Available The main objectives of this paper are, designing and balancing of Water Distribution Network (WDN based on loops hydraulically balanced method as well as using Geographical Information System (GIS methodology with the contribution of EPANET. GIS methodology is used to ensure WDN’s integrity and skeletonized a proper and functional WDN by using Network Analyst utilizing the geometric network and topology network by hierarchical geo-databases. The problem is to make WDN hydraulically balanced by applying WDN balancing method. For that reason, we have analyzed water flows in each pipe and performed the iterations process on loops in order to make the algebraic summation of head loss“h_f” around any closed loop zero. In case, the summation of pipe flows must be equal to the flow amount entering or leaving the system through each node. At each iteration, reasonable changes occurred at pipes flow until the head loss has become very small or fixed zero as (optimizes correction by using excel sheet solver. Since this method is confirmed to be effective, simulations were done by using GIS and EPANET water distribution platform. As a result, we accomplished hydraulically balanced WDN. Finally, we have analyzed and simulated hydraulics parameters for the targeted area in Kabul city. Thus, determined successfully the hydraulics state of parameters around the network as a positive result. It is worth mentioning that, Hardy-cross method is being used for approaching more precise optimized correction and consequences concerning hydraulically-balanced and optimal WDN. This method can be done for complex loops WDN as well; the advantage of the method is simple math and self-correction. Managers and engineers who work in the field of water supply this methodology has been recommended as the more advantageous workflow in planning water distribution pattern.

  1. Optimal design for cone valve of mechanical-hydraulic dual power engine%机械-液压双元动力发动机锥形配流阀的优化

    Institute of Scientific and Technical Information of China (English)

    霍炜; 张纪鹏; 张洪信; 张铁柱

    2013-01-01

    机械-液压双元动力输出发动机(MHPE)将传统的内燃机和柱塞泵融为一体,可同时或单独输出机械、液压2种动力。MHPE采用锥形阀配流系统,其容积效率高低直接影响MHPE的整机性能。该文以容积效率为目标函数,以锥形阀的工作条件和结构尺寸为约束条件,以MHPE锥形阀的结构参数为优化变量,建立了优化模型,并基于iSIGHT软件进行优化设计。优化结果表明,优化后系统的容积效率提高5.71%,改善程度较大。%Heat energy can be converted to hydraulic energy by a traditional engine-pump system(EPS). However, the EPS has some disadvantages, such as a long transmission line, low efficiency, and a complex and heavy structure. With an integrating traditional internal combustion engine and plunger pump to remove intermediate links, a mechanical-hydraulic dual power engine (MHPE) can convert heat energy to hydraulic energy directly. Therefore, the energy conversion efficiency was improved and the structure was simplified. MHPE can output one of or both machinery and hydraulic powers, and it can be used for excavators, loaders, bulldozers, and other engineering machineries. The distribution valve, the important element of MHPE, can affect the volume efficiency of the system directly by its structure and performance. The 36114ZG4B type six-cylinders radial MHPE was developed. A-H20L type one-way cone valve with the valve disk of 0.07557 kg quality, 0.028 m large diameter, 0.021 m small diameter and 40° angle is used as an inlet valve. A DIF-L20H type one-way cone valve with the valve disk of 0.04672 kg quality, 0.021 m large diameter, 0.016 m small diameter and 45° angle was used as an outlet valve. With the volume efficiency taken as an objective function, the cone valve’s working conditions and structure dimensions taken as constraint conditions, and the cone valve’s structure parameters taken as optimization variables, an optimization model

  2. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity

    Science.gov (United States)

    Su, Huaizhi; Tian, Shiguang; Cui, Shusheng; Yang, Meng; Wen, Zhiping; Xie, Wei

    2016-09-01

    In order to systematically investigate the general principle and method of monitoring seepage velocity in the hydraulic engineering, the theoretical analysis and physical experiment were implemented based on distributed fiber-optic temperature sensing (DTS) technology. During the coupling influence analyses between seepage field and temperature field in the embankment dam or dike engineering, a simplified model was constructed to describe the coupling relationship of two fields. Different arrangement schemes of optical fiber and measuring approaches of temperature were applied on the model. The inversion analysis idea was further used. The theoretical method of monitoring seepage velocity in the hydraulic engineering was finally proposed. A new concept, namely the effective thermal conductivity, was proposed referring to the thermal conductivity coefficient in the transient hot-wire method. The influence of heat conduction and seepage could be well reflected by this new concept, which was proved to be a potential approach to develop an empirical method monitoring seepage velocity in the hydraulic engineering.

  3. Design and Construction of a Hydraulic Ram Pump

    Directory of Open Access Journals (Sweden)

    Shuaibu Ndache MOHAMMED

    2007-09-01

    Full Text Available The Design and Fabrication of a Hydraulic Ram Pump (Hydram is undertaken. It is meant to lift water from a depth of 2m below the surface with no other external energy source required. Based on the design the volume flow rate in the derived pipe was 4.5238 × 10-5 m3/s (2.7 l/min, Power was 1.273 kW which results in an efficiency of 57.3%. The overall cost of fabrication of this hydram shows that the pump is relatively cheaper than the existing pumps.

  4. 解析水文频率在水利工程设计中的作用%Analysis on the Effect of Hydrological Frequency in Hydraulic Engineering Design

    Institute of Scientific and Technical Information of China (English)

    石高扬; 包波; 郑晓波

    2014-01-01

    As an important infrastructure, the effect of water conservancy engineering in agricultural irrigation, power gen-eration, city water supply, flood control is remarkable. Water c-onservancy engineering design relates to the subsequent const-ruction cost, operation ef iciency, and hydrological frequency analysis provides the condition for engineering design parame-ters set ing.%作为重要的基础设施,水利工程在农业灌溉、发电、城市供水、防洪等方面作用显著。水利工程设计关乎后续施工建设成本、运行效率,而水文频率的分析为工程设计参数确立提供了条件。

  5. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional......The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  6. Computer-Aided Structural Engineering (CASE) Project. CBASIN--Structural Design of Saint Anthony Falls Stilling Basins According to Corps of Engineers Criteria for Hydraulic Structures. Computer Program X0098

    Science.gov (United States)

    1989-08-01

    unreliable. The pas- sive resistance of the channel material downstream of the toewall is neg- lected since it may be scoured away. Slijinq forces...than ?2 inches thick are taken as ^2 inches. Web Reinforcement The necessity of providing some type of stirrup or tie in the slab be- cause of...Computer Program with Interactive Graphics for Analysis of Plane Frame Structures (CFRAME) Survey of Bridge -Oriented Design Software Evaluation of

  7. Design and Development of Attachment for Hydraulic Stacker

    Directory of Open Access Journals (Sweden)

    S.H. Gawande

    2010-05-01

    Full Text Available The main purpose of this paper is to develop an Attachment which will enable the lateral movement of the manufacturing Dies by mounting it on the forks of any Hydraulic Stacker or Fork Lift. The Attachmentmanufactured is unique because it can be attached or mounted on any hydraulic stalker in the One Tonne range. The attachment is a combination of two separate bed of rollers, a lead screw, a gear mechanism and a moving frame which enables the hydraulic stacker to easily load or unload Dies upto the range of one tonne, in and out of Machine Presses and Storage Racks which reduces material handling time and cost, manual effort and increases safety. The developed attachment in this work can also be easily detached and kept aside when not in use, so that the stacker can be used for regular purposes in the logistics department. The detail design, fabrication and testing work is carried out at A.V.M Seating Systems Ltd, Pune-26.

  8. Trends in Engineering and Design

    OpenAIRE

    Hamersly, Alan; Cripe, Mary

    2013-01-01

    Trail design and engineering are complex tasks that change as rules and technology change. The discussion in this session will cover design criteria such as drainage, wayfinding signage, road crossings and surface materials. AASHTO standards for trails will also be discussed and analyzed. Good engineering and design can make trails easier to maintain for the future and safer for your users.

  9. Designing requirements engineering research

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Heerkens, Johannes M.G.

    2007-01-01

    Engineering sciences study different topics than natural sciences, and utility is an essential factor in choosing engineering research problems. But despite these differences, research methods for the engineering sciences are no different than research methods for any other kind of science. At most

  10. Intelligent Stability Design of Large Underground Hydraulic Caverns: Chinese Method and Practice

    Directory of Open Access Journals (Sweden)

    Xiating Feng

    2011-10-01

    Full Text Available The global energy shortage has revived the interest in hydroelectric power, but extreme geological condition always pose challenges to the construction of hydroelectric power stations with large underground caverns. To solve the problem of safe design of large underground caverns, a Chinese-style intelligent stability design, representing recent developments in Chinese techniques for the construction of underground hydropower systems is presented. The basic aim of this method is to help designers improve the stability and design efficiency of large underground hydropower cavern groups. Its flowchart consists of two parts, one is initial design with an ordinal structure, and the other is dynamic design with a closed loop structure. In each part of the flowchart, analysis techniques, analysis content and design parameters for caverns’ stability are defined, respectively. Thus, the method provides designers with a bridge from the basic information of objective engineering to reasonable design parameters for managing the stability of hydraulic cavern groups. Application to two large underground caverns shows that it is a scientific and economical method for safely constructing underground hydraulic caverns.

  11. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  12. Experiences with the hydraulic design of the high specific speed Francis turbine

    Science.gov (United States)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  13. Dynamic characteristics of Semi-active Hydraulic Engine Mount Based on Fluid-Structure Interaction FEA

    Directory of Open Access Journals (Sweden)

    Tian Jiande

    2015-01-01

    Full Text Available A kind of semi-active hydraulic engine mount is studied in this paper. After careful analysis of its structure and working principle, the FEA simulation of it was divided into two cases. One is the solenoid valve is open, so the air chamber connects to the atmosphere, and Fluid-Structure Interaction was used. Another is the solenoid valve is closed, and the air chamber has pressure, so Fluid-Structure-Gas Interaction was used. The test of this semi-active hydraulic engine mount was carried out to compare with the simulation results, and verify the accuracy of the model. Then the dynamic characteristics-dynamic stiffness and damping angle were analysed by simulation and test. This paper provides theoretical support for the development and optimization of the semi-active hydraulic engine mount.

  14. Design Rules for High Damping in Mobile Hydraulic Systems

    OpenAIRE

    Axin, Mikael; Krus, Petter

    2013-01-01

    This paper analyses the damping in pressure compensated closed centre mobile working hydraulic systems. Both rotational and linear loads are covered and the analysis applies to any type of pump controller. Only the outlet orifice in the directional valve will provide damping to a pressure compensated system. Design rules are proposed for how the system should be dimensioned in order to obtain a high damping. The volumes on each side of the load have a high impact on the damping. In case of a ...

  15. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  16. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  17. Education for hydraulics and pneumatics in Nippon Institute of Technology, Department of Mechanical Engineering; Nippon Kogyo Daigaku ni okeru yukuatsukyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Y. [Nippon Institute of Technology, Saitama (Japan)

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Nippon Institute of Technology. Department of Mechanical Engineering has fluid dynamics, mechatronics II, air conditioning, heat transfer engineering, and facility and equipment engineering as the themes related to hydraulics and pneumatics. The control engineering courses have the pneumatics-related themes of supply of pneumatic pressure for a short time and methods for cutting off pneumatic pressure when the piston reaches the dead center, as the energy-saving type driving methods for pneumatic cylinders; measurement of frictional force by the experiments on low-friction cylinders; and researches on improvement of stiffness of pneumatic cylinder type actuators for control valves, among others. Students are directly involved in equipment designs, fabrication and experiments. Many machines and facilities are now easily handled, and operated according to manuals. To prepare graduation theses only by the aid of personal computers is not adequate for education of students in this age, when they have less chances for education through experiences in affluent environments. The mechanical engineering students are given chances for practical education through experiments and graduation thesis preparation. However, it is necessary for general engineering students to be more exposed to technical practices. (NEDO)

  18. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  19. Dynamic characteristics of Semi-active Hydraulic Engine Mount Based on Fluid-Structure Interaction FEA

    OpenAIRE

    Tian Jiande; Jiang Xue; Liu Guozheng; Shi Wenku; Liu Baoquan; Ma Meiqin

    2015-01-01

    A kind of semi-active hydraulic engine mount is studied in this paper. After careful analysis of its structure and working principle, the FEA simulation of it was divided into two cases. One is the solenoid valve is open, so the air chamber connects to the atmosphere, and Fluid-Structure Interaction was used. Another is the solenoid valve is closed, and the air chamber has pressure, so Fluid-Structure-Gas Interaction was used. The test of this semi-active hydraulic engine mount was carried ou...

  20. Engineering rhizosphere hydraulics: pathways to improve plant adaptation to drought

    Science.gov (United States)

    Ahmed, Mutez; Zarebanadkouki, Mohsen; Ahmadi, Katayoun; Kroener, Eva; Kostka, Stanley; Carminati, Andrea

    2017-04-01

    Developing new technologies to optimize the use of water in irrigated croplands is of increasing importance. Recent studies have drawn attention to the role of mucilage in shaping rhizosphere hydraulic properties and regulating root water uptake. During drying mucilage keeps the rhizosphere wet and conductive, but upon drying it turns hydrophobic limiting root water uptake. Here we introduced the concept of rhizoligands, defined as additives that 1) rewet the rhizosphere and 2) reduce mucilage swelling hereby reducing the rhizosphere conductivity. We then tested its effect on rhizosphere water dynamics and transpiration. The following experiments were carried out to test if selected surfactants behave as a rhizoligand. We used neutron radiography to monitor water redistribution in the rhizosphere of lupine and maize irrigated with water and rhizoligand solution. In a parallel experiment, we tested the effect of rhizoligand on the transpiration rate of lupine and maize subjected to repeated drying and wetting cycles. We also measured the effect of rhizoligand on the maximum swelling of mucilage and the saturated hydraulic conductivity of soil mixed with various mucilage concentrations. The results were then simulated using a root water uptake model. Rhizoligand treatment quickly and uniformly rewetted the rhizosphere of maize and lupine. Interestingly, rhizoligand also reduced transpiration during drying/wetting cycles. Evaporation from the bare soil was of minor importance. Our hypothesis is that the reduction in transpiration was triggered by the interaction between rhizoligand and mucilage exuded by roots. This hypothesis is supported by the fact that rhizoligand reduced the maximum swelling of mucilage, increased its viscosity, and decreased the hydraulic conductivity of soil-mucilage mixtures. The reduced conductivity of the rhizosphere induced a moderate stress to the plants reducing transpiration. Simulation with a reduced hydraulic conductivity of the

  1. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  2. Design of Hydraulic Pump Detector Based on ARM%基于ARM的液压泵检测仪设计

    Institute of Scientific and Technical Information of China (English)

    高立龙; 王新晴; 蒋文峰; 张红涛

    2013-01-01

    Aim at the conditions that engineering machine has big fluidity, engineering machine hydraulic system is complex and hydraulic pump detection is difficult on the spot. This paper introduces a design of the portable hydraulic pump detector based on ARM embedded system. This detector has S3C6410A based on ARM11 as the core processor, designing signal regulate circuit, photoelectric isolating circuit and friendly data acquisition software, introducing the installation and test methods of hydraulic pump detection, realizing the collection of pump meters and the hydraulic pump performance test on the spot.%针对工程机械流动性大、液压系统复杂、液压泵现场检测困难等情况.该文设计了一种基于ARM嵌入式系统的便携式液压泵检测仪,该检测仪以ARM 11类型处理器S3C6410A为核心,设计了相应的信号整流电路、光电隔离电路和友好的数据采集软件,介绍了液压泵现场检测的安装和检测方法,实现了液压泵参数的现场快速采集和性能曲线的现场绘制.

  3. Free-piston engine-and-hydraulic pump for railway vehicles

    Directory of Open Access Journals (Sweden)

    A. F. Golovchuk

    2013-04-01

    Full Text Available Purpose. The development of the free-piston diesel engine-and-hydraulic pump for the continuously variable hydrostatical transmission of mobile power vehicles. Methodology. For a long time engine builders have been interesting in the problem of developing free piston engines, which have much bigger coefficient of efficiency (40…80%. Such engines don’t have the conversion of reciprocating motion for inner combustion engine piston into rotating motion of crankshaft, from which the engine torque is transferred to the power machine transmission. Free-piston engines of inner combustion don’t have the crank mechanism (CM that significantly reduces mechanical losses for friction. Such engines can be used as compressors. Free-piston engine compressor (FPEC – is a free-piston machine in which energy received from engine’s cylinder is being transferred direct to compressor’s pistons connected with operational pistons of engine without crank mechanism. Part of the pressed air is being consumed for engine cylinder drain and the other part is going to the consumer. Findings. The use of free-piston engines-and-hydraulic pumps as power-transmission plants of power vehicles (diesel locomotives, combine harvester, tractors, cars and other mobile and stationary power installations with the continuously variable transmissions allows cost effectiveness improvement and metal consumption reduction of these vehicles, since the cost effectiveness of FPE is higher by 25-30%, and the metal consumption is lower by 40-50%. Originality. One of the important advantages of the free-piston engines is their simplicity and engine balance. As a result of the crank mechanism absence their construction is much simplified and the vibrations, peculiar to the ordinary engines are eliminated. In such installation the engine pistons are directly connected through the rod to compressor pistons and therefore there are no losses in the bearing bushes. Practical value. The free

  4. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    OpenAIRE

    M Osman Abdalla

    2013-01-01

    Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulate...

  5. Thermal hydraulic analysis of the annular flow helium heater design

    Science.gov (United States)

    Chen, N. C.; Sanders, J. P.

    1982-05-01

    Core support performance test (CSPT) by use of an existing facility, components flow test loop (CFTL), as part of the high temperature gas cooled reactor (HTGR) application program were conducted. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6 month test represents the 30 year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000 deg C in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. Performance characteristics of the heater which were determined from an analysis based on this design are presented.

  6. Seeking for methodological proposals to motivate students in the learning of hydraulic engineering subjects

    Science.gov (United States)

    Rodriguez-Sinobas, L.; Sánchez Calvo, R.

    2012-04-01

    Hydraulic Engineering courses are one of the toughest among different degrees dealing with agricultural and environmental engineering schools in the Spanish universities. Nowadays, most of these courses are updating and changing to meet the Bologna guidelines set out in the Declaration of 1999. In fact, some universities such us the Technical University of Madrid, have developed an educational guide highlighting the priorities to meet the new standards on education. This guide set up a framework to be followed by all professors. This work presents different methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses in the Agriculture Engineering School of Madrid. During three years student progress and satisfaction have been assessed by continuous monitoring strategies and the use of "on-line" tools. Surveys made among the students show that not of the new methodological proposals were perceived as beneficial, even though some of the very new "on-line" tools were rejected.

  7. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  8. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects

    Institute of Scientific and Technical Information of China (English)

    ZHONG DengHua; LI MingChao; LIU Jie

    2007-01-01

    Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric engineering geology, a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then, according to the classified thought of the object-oriented technique, the different 3D models of geological and engineering objects were realized based on the data structure, including terrain class,strata class, fault class, and limit class; and the modeling mechanism was alternative. Finally, the 3D integrated model was established by Boolean operations between 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification, the arbitrary slicing analysis of the 3D model, the geological analysis of the dam, and underground engineering. They provide powerful theoretical principles and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.

  9. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.

  10. Hydraulic design of a low-specific speed Francis runner for a hydraulic cooling tower

    Science.gov (United States)

    Ruan, H.; Luo, X. Q.; Liao, W. L.; Zhao, Y. P.

    2012-11-01

    The air blower in a cooling tower is normally driven by an electromotor, and the electric energy consumed by the electromotor is tremendous. The remaining energy at the outlet of the cooling cycle is considerable. This energy can be utilized to drive a hydraulic turbine and consequently to rotate the air blower. The purpose of this project is to recycle energy, lower energy consumption and reduce pollutant discharge. Firstly, a two-order polynomial is proposed to describe the blade setting angle distribution law along the meridional streamline in the streamline equation. The runner is designed by the point-to-point integration method with a specific blade setting angle distribution. Three different ultra-low-specificspeed Francis runners with different wrap angles are obtained in this method. Secondly, based on CFD numerical simulations, the effects of blade setting angle distribution on pressure coefficient distribution and relative efficiency have been analyzed. Finally, blade angles of inlet and outlet and control coefficients of blade setting angle distribution law are optimal variables, efficiency and minimum pressure are objective functions, adopting NSGA-II algorithm, a multi-objective optimization for ultra-low-specific speed Francis runner is carried out. The obtained results show that the optimal runner has higher efficiency and better cavitation performance.

  11. Designing blended engineering courses

    NARCIS (Netherlands)

    Puffelen, van E.A.M.

    2017-01-01

    Universities have to deal with larger differences of engagement between students and more need for outcomes-based teaching and learning that allows for differences in learning styles. In addition for engineers, the rapidly changing world brings the need to engage students in diverse learning.

  12. Hydraulic analysis and optimization design in Guri rehabilitation project

    Science.gov (United States)

    Cheng, H.; Zhou, L. J.; Gong, L.; Wang, Z. N.; Wen, Q.; Zhao, Y. Z.; Wang, Y. L.

    2016-11-01

    Recently Dongfang was awarded the contract for rehabilitation of 6 units in Guri power plant, the biggest hydro power project in Venezuela. The rehabilitation includes, but not limited to, the extension of output capacity by about 50% and enhancement of efficiency level. To achieve the targets the runner and the guide vanes will be replaced by the newly optimized designs. In addition, the out-of-date stay vanes with straight plate shape will be modified into proper profiles after considering the application feasibility in field. The runner and vane profiles were optimized by using state-of-the-art flow simulation techniques. And the hydraulic performances were confirmed by the following model tests. This paper describes the flow analysis during the optimization procedure and the comparison between various technical concepts.

  13. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  14. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  15. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    M Osman Abdalla

    2013-01-01

    Full Text Available Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulated in FLUENT. Results show that the small outlet ports are the sources of energy loss in hydraulic cylinders. A new hydraulic system was proposed as a solution to relieve the hydraulic resistance in the actuators. The proposed system is a four ports hydraulic cylinder fitted with a novel flow control valve. The proposed four ports cylinder was simulated and parameters such as ports sizes, loads and pressures are varied during the simulation. The hydraulic resisting forces, piston speed and mass flow rates are computed. Results show that the hydraulic resistance is significantly reduced in the proposed four ports actuators; and the proposed cylinders run faster than the conventional cylinders and a considerable amount of energyis saved as well.

  16. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims......, the advantages and disadvantages of the methods and describes two case studies in detail. The paper draws conclusions from the studies reviewed about the use of empirical research methods in industry....

  17. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims......, the advantages and disadvantages of the methods and describes two case studies in detail. The paper draws conclusions from the studies reviewed about the use of empirical research methods in industry....

  18. DESIGN AND HETEROGENEOUS ENGINEERING:

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian; Binder, Thomas

    2008-01-01

    This paper seeks a vocabulary to study designers at work. The paper draws on STS studies of scientists and laboratories. A number of studies are explored in order to identify different points of attention in studies of science and in studies of design. It is argued that the notions in actor network...... for a messy middleground between a regime of science with the purpose of information transfer and a regime of design that produces a master narrative of the designer. Being mindful of identities, materials, machines, plans, customers and ideas is held to be the way designers stabilize networks and become...

  19. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    Science.gov (United States)

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  20. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  1. An integrated characteristic simulation method for hydraulically damped rubber mount of vehicle engine

    Science.gov (United States)

    Wang, Li-Rong; Wang, Jia-Cai; Hagiwara, Ichiro

    2005-09-01

    Hydraulically Damped Rubber Mount (HDM) is widely equipped in vehicle powertrain mounting system and plays an important role in noise, vibration and harshness (NVH) control of vehicle. It is necessary that static and dynamic characteristics of HDM and its effectiveness on vibration isolation of powertrain system are predicted at design and development stage. In this paper, a kind of graphic HDM modeling method integrating with parameter identifications obtained from finite element (FE) analysis and experimental analysis is investigated to predict performance of HDM. The fluid-structure interactions in HDM are explored by predictions of volumetric elasticity and equivalent piston area of fluid chamber using a kind of hydrostatic fluid-structure FE method in commercial code of ABAQUS. Predications of static elasticity and dynamic characteristics and frequency response analysis of a typical HDM with fixed-decoupler verify the effectiveness of the proposed method. This research helps automotive engineers to enhance computer-aided system technology in design and development of HDM and powertrain mounting system.

  2. Routine Design for Mechanical Engineering

    OpenAIRE

    Brinkop, Axel; Laudwein, Norbert; Maasen, Rudiger

    1995-01-01

    COMIX (configuration of mixing machines) is a system that assists members of the EKATO Sales Department in designing a mixing machine that fulfills the requirements of a customer. It is used to help the engineer design the requested machine and prepare an offer that's to be submitted to the customer. comix integrates more traditional software techniques with explicit knowledge representation and constraint propagation. During the process of routine design, some design decisions have to be mad...

  3. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...

  4. Free-piston Stirling hydraulic engine and drive system for automobiles

    Science.gov (United States)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  5. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.

  6. Protein Design for Pathway Engineering

    Science.gov (United States)

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  7. Kansei Engineering and Website Design

    DEFF Research Database (Denmark)

    Song, Zheng; Howard, Thomas J.; Achiche, Sofiane

    2012-01-01

    a methodology based on Kansei Engineering, which has done significant work in product and industrial design but not quite been adopted in the IT field, in order to discover implicit emotional needs of users toward web site and transform them into design details. Survey and interview techniques and statistical...... methods were performed in this paper. A prototype web site was produced based on the Kansei results integrated with technical expertise and practical considerations. The results showed that the Kansei Engineering methodology in this paper played a significant role in web site design in terms of satisfying...

  8. Fluid-dynamic design optimization of hydraulic proportional directional valves

    Science.gov (United States)

    Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo

    2014-10-01

    This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.

  9. University Engineering Design Challenge

    Science.gov (United States)

    2015-01-02

    SolidWorks Simulation analysis to verify that our components would not fail under the heavy loads being applied. With the analysis complete, materials were...672022− . 442 45 = 7962 Radial Force: = ∅ = 7962 tan(20) cos(45) = 2049 Axial Force: = ∅ = 7962 tan(20) sin(45) = 2049 SolidWorks Simulation Analysis...After developing solid models of our design, some of the first tasks performed were running Finite Element Analysis (FEA) simulations using SolidWorks

  10. Dynamic design of automotive systems: Engine mounts and structural joints

    Indian Academy of Sciences (India)

    R Singh

    2000-06-01

    Dynamic design and vibro-acoustic modelling issues for automotive structures are illustrated via two case studies. The first case examines the role performance of passive and adaptive hydraulic engine mounts. In the second, the importance of welded joints and adhesives in vehicle bodies and chassis structures is highlighted via generic 'T' and 'L' beams assemblies. In each case, analytical and experimental results are presented. Unresolved research issues are briefly discussed.

  11. Sharing the design intent between industrial designers and engineering designers

    DEFF Research Database (Denmark)

    Laursen, Esben Skov; Møller, Louise

    2016-01-01

    The aim of the paper is to understand the challenges sharing the product frame between industrial designers with the engineering designers. The study is based on six case studies. The analysis showed correspondence between industrial designers and engineering designers in their understanding...... of the key elements of the context and concept. However the analysis also showed a lack of correspondence between the industrial designers and engineering designers in regards to the product framing and thereby how the different elements of the product frame is connected and interrelated....

  12. Sharing the design intent between industrial designers and engineering designers

    DEFF Research Database (Denmark)

    Laursen, Esben Skov; Møller, Louise

    2016-01-01

    The aim of the paper is to understand the challenges sharing the product frame between industrial designers with the engineering designers. The study is based on six case studies. The analysis showed correspondence between industrial designers and engineering designers in their understanding...... of the key elements of the context and concept. However the analysis also showed a lack of correspondence between the industrial designers and engineering designers in regards to the product framing and thereby how the different elements of the product frame is connected and interrelated....

  13. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  14. Design of a Hydraulic Damper for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Emil Zaev

    2011-09-01

    Full Text Available A hydraulic unit consisting of an accumulator as energy storage element and an orifice providing friction was designed to damp oscillations of a machine during operation. In the first step, a model for the gas spring was developed from the ideal gas laws for the dimensioning the elements. To model the gas process with a graphical simulation tool it is necessary to find a form of the gas law which can be integrated with a numerical solver, such as Tustin, Runge-Kutta, or other. For simulating the working condition, the model was refined using the van der Waals equations for real gas. A unified model representation was found to be applied for any arbitrary state change. Verifications were made with the help of special state changes, adiabatic and isothermal. After determining the dimensional parameters, which are the accumulator capacity and the orifice size, the operational and the limiting parameters were to be found. The working process of a damper includes the gas pre-charging to a predefined pressure, the nearly isothermal static loading process, and the adiabatic change during the dynamic operation.

  15. Kansei Engineering and Website Design

    DEFF Research Database (Denmark)

    Song, Zheng; Howard, Thomas J.; Achiche, Sofiane

    2012-01-01

    Capturing users’ needs is critical in web site design. However, a lot of attention has been paid to enhance the functionality and usability, whereas much less consideration has been given to satisfy the emotional needs of users, which is also important to a successful design. This paper explores...... a methodology based on Kansei Engineering, which has done significant work in product and industrial design but not quite been adopted in the IT field, in order to discover implicit emotional needs of users toward web site and transform them into design details. Survey and interview techniques and statistical...... methods were performed in this paper. A prototype web site was produced based on the Kansei results integrated with technical expertise and practical considerations. The results showed that the Kansei Engineering methodology in this paper played a significant role in web site design in terms of satisfying...

  16. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  17. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.;

    2009-01-01

    of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...... to generate a controlled leakage  ow that aids in stabilising the system. The robustness of the system is then discussed in relation to dierent pilot line volumes and pump dynamics. Finally experimental results are presented, where the performance is compared to that of a similar hydraulic reference system...

  18. Hydraulic design of a tilting weir allowing for periodic fish migration

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Dommerholt, A.; Gerven, van L.P.A.

    2008-01-01

    The hydraulic design of a tilting weir is presented, which allows for periodic exchange of potadromous fish between freshwater ecosystems. The application domain includes inland waters that need to be isolated hydraulically, preserving the existing ecological connection with the surrounding areas as

  19. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  20. The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    Science.gov (United States)

    Brinkman, P. W.; Kretz, D.

    1992-01-01

    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented.

  1. Knowledge engineering for design automation

    NARCIS (Netherlands)

    Schotborgh, Wouter Olivier

    2009-01-01

    Engineering design teams face many challenges, one of which is the time pressure on the product creation process. A wide range of Information and Communications Technology solutions is available to relieve the time pressure and increase overall efficiency. A promising type of software is that which

  2. Knowledge engineering for design automation

    NARCIS (Netherlands)

    Schotborgh, W.O.

    2009-01-01

    Engineering design teams face many challenges, one of which is the time pressure on the product creation process. A wide range of Information and Communications Technology solutions is available to relieve the time pressure and increase overall efficiency. A promising type of software is that which

  3. Design Formulae for Hydraulic Stability and Structural Integrity of Dolos Breakwater Round-Heads

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    A rational design of Dolos armour unit should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) resulted in design formulae for the trunk of a 1:1.5 slope Dolos breakwater without superstructure including both...... the hydraulic stability and the structural integrity. The objective of the round-head tests is to produce similar design formulae for Dolos armour in around-head. The tests will also include examinations of the hydraulic stability and run-up for a trunk section adjacent to the round-head. A run-up formula...

  4. BASIC FLOW PATTERNS AND OPTIMUM HYDRAULIC DESIGN OF A SUCTION BOX OF PUMPING STATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A numerical method based on 3-D turbulence flow was applied to simulate the flow pattern in suction boxes of six different types.In light of the computational results, the basic flow patterns in the boxes were revealed and a theoretical method to optimize hydraulically design of the suction box is developed.The box geometrical parameters, which influence the flow pattern in the box, could be optimized.The optimum criteria for the hydraulic design of the suction boxes of six types established, respectively.Furthermore, a summarization is given here based on the classification of the basic flow patterns in order to systematically understand the hydraulic design of suction boxes.

  5. Design and Analysis of High Pressure Hydraulic Filter for Marine Application

    Science.gov (United States)

    Momin, Toshin; Chandrasekar, RP; Balasubramanian, S.; Junaid Basha, AM, Dr.

    2017-05-01

    Filter is a critical component in ahydraulic system for maintaining the cleanliness of the fluid to required class level. InMarine applications very high reliable filter is required to operate continuously in saline environment. Design anddevelopment of high pressure hydraulic filter for Marine application is a challenging task. The design involves selection of special materialsandstringent qualification tests as per International standards. The present paper describes various stages of design and development of high pressure hydraulic filter for Marine application.

  6. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    of seat valves suitable for large scale digital hydraulic motors and detailed analysis methods for the pressure chambers of such machines. In addition, modeling methods of seat valves within this field have been developed, and a design method utilizing these models including optimization of subdomains has......The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...

  7. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    Science.gov (United States)

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  8. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-08-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report.

  9. An Optimisation Approach Applied to Design the Hydraulic Power Supply for a Forklift Truck

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2004-01-01

    -level optimisation approach, and is in the current paper exemplified through the design of the hydraulic power supply for a forklift truck. The paper first describes the prerequisites for the method and then explains the different steps in the approach to design the hydraulic system. Finally the results...... of the optimisation example for the forklift truck are presented along with a discussion of the method....

  10. Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics

    Science.gov (United States)

    Weyer, K.

    2013-12-01

    Within engineering practice, the calculation of subsurface flow is dominated by the mathematical pseudo-physics of the engineer's adaptation of continuum methods to mechanics. Continuum mechanics rose to prominence in the 19th century in an successful attempt to solve practical engineering problems. To that end were put in place quite a number of simplifications in geometry and the properties of water and other fluids, as well as simplifications of Darcy's equation, in order to find reasonable answers to practical problems by making use of analytical equations. The proof of the correctness of the approach and its usefulness was in the practicability of results obtained. In the 1930s, a diametrically-opposed duality developed in the theoretical derivation of the laws of subsurface fluid flow between Muskat's (1937) velocity potential (engineering hydraulics) and Hubbert's (1940) force potential. The conflict between these authors lasted a lifetime. In the end Hubbert stated on one occasion that Muskat formulates a refined mathematics but does not know what it means in physical terms. In this author's opinion that can still be said about the application of continuum mechanics by engineers to date, as for example to CO2 sequestration, regional groundwater flow, oil sands work, and geothermal studies. To date, engineering hydraulics is best represented by Bear (1972) and de Marsily (1986). In their well-known textbooks, both authors refer to Hubbert's work as the proper way to deal with the physics of compressible fluids. Water is a compressible fluid. The authors then ignore, however, their own insights (de Marsily states so explicitly, Bear does not) and proceed to deal with water as an incompressible fluid. At places both authors assume the pressure gradients to be the main driving force for flow of fluids in the subsurface. That is not, however, the case. Instead the pressure potential forces are caused by compression initiated by unused gravitational energy not

  11. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole;

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable......Currently mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are becoming standard on a high number of machines, hereby replacing hydraulic pilot lines and offering new possibilities with regard to both control and feasibility. As most open...... displacement pump based on an electrical reference. The paper first presents the considered system and an experimentally verified model of this. A linearized model and a stability analysis is then presented, based on which an H∞control strategy is selected. A nominal performance and a robustly stable...

  12. IT-tools for Mechatronic System Engineering and Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben; Andersen, T. O.

    2003-01-01

    , operation capability, man-machine interface (MMI), robustness, reliability and safety in use. Information Technology (IT) offers both software and hardware for improvement of the engineering design and industrial applications. The latest progress in IT makes integration of an overall design...... the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a hydraulic robot and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP controller utilizes the dSPACE System suitable...

  13. Engineering Design Education Program for Graduate School

    Science.gov (United States)

    Ohbuchi, Yoshifumi; Iida, Haruhiko

    The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.

  14. Two-Mode Operation Engine Mount Design for Automotive Applications

    OpenAIRE

    Reza Tikani; Nader Vahdati; Saeed Ziaei-Rad

    2012-01-01

    Hydraulic engine mounts are applied to the automotive applications to isolate the chassis from the high frequency noise and vibration generated by the engine as well as to limit the engine shake motions resulting at low frequencies. In this paper, a new hydraulic engine mount with a controllable inertia track profile is proposed and its dynamic behavior is investigated. The profile of the inertia track is varied by applying a controlled force to a cylindrical rubber disk, placed in the inerti...

  15. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  16. Game-like Characteristic of Engineering Design

    NARCIS (Netherlands)

    Oruc, S.; Cunningham, S.W.

    2012-01-01

    Engineering design is conventionally regarded as a mono actor optimization problem and modeled accordingly. Decision making, values and optimality are building blocks of conventional engineering design. However with the advent of decentralized decision making processes, various actors are more likel

  17. Design and Performance Analysis of a new Rotary Hydraulic Joint

    Science.gov (United States)

    Feng, Yong; Yang, Junhong; Shang, Jianzhong; Wang, Zhuo; Fang, Delei

    2017-07-01

    To improve the driving torque of the robots joint, a wobble plate hydraulic joint is proposed, and the structure and working principle are described. Then mathematical models of kinematics and dynamics was established. On the basis of this, dynamic simulation and characteristic analysis are carried out. Results show that the motion curve of the joint is continuous and the impact is small. Moreover the output torque of the joint characterized by simple structure and easy processing is large and can be rotated continuously.

  18. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...... displacement pump based on an electrical reference. The paper first presents the considered system and an experimentally verified model of this. A linearized model and a stability analysis is then presented, based on which an H∞control strategy is selected. A nominal performance and a robustly stable...

  19. Design of a hydraulic actuator for active control of rotating machinery

    Science.gov (United States)

    Rashidi, Majid; Dirusso, Eliseo

    1991-01-01

    A hydraulic actuator is described which consists of a pump, a hydraulic servo-valve, and a thin elastic plate which transduces the generated pressure variations into forces acting on a mass which simulates the bearing of a rotor system. An actuator characteristic number is defined to provide a base for an optimum design of force actuators with combined weight, frequency, and force considerations. This characteristic number may also be used to compare hydraulic and electromagnetic force actuators. In tests, this actuator generated 182.3 Newton force at a frequency of 100 Hz and a displacement amplitude of 5.8 x 10 exp -5 meter.

  20. Game-like Characteristic of Engineering Design

    OpenAIRE

    Oruc, S.; Cunningham, S.W.

    2012-01-01

    Engineering design is conventionally regarded as a mono actor optimization problem and modeled accordingly. Decision making, values and optimality are building blocks of conventional engineering design. However with the advent of decentralized decision making processes, various actors are more likely to be involved in decision making processes in engineering design. As a response in this paper we attempt to claim that engineering design is inherently multi actor and has game-like characterist...

  1. Semantics for Digital Engineering Archives Supporting Engineering Design Education

    OpenAIRE

    Regli, William C.; Drexel University; Kopena, Joseph B.; Drexel University; Grauer, Michael; Drexel University; Simpson, Timothy W.; Penn State University; Stone, Robert B.; Oregon State University; Lewis, Kemper; University at Buffalo - SUNY; Bohm, Matt R.; Oregon State University; Wilkie, David; Drexel University; Piecyk, Martin; Drexel University; Osecki, Jordan; Drexel University

    2010-01-01

    This article introduces the challenge of digital preservation in the area of engineering design and manufacturing and presents a methodology to apply knowledge representation and semantic techniques to develop Digital Engineering Archives. This work is part of an ongoing, multiuniversity, effort to create cyber infrastructure-based engineering repositories for undergraduates (CIBER-U) to support engineering design education. The technical approach is to use knowledge representation techniques...

  2. AutoCAD Civil 3D在水利工程中的应用%Application of AutoCAD Civil 3D in Hydraulic and hydroelectric Engineering

    Institute of Scientific and Technical Information of China (English)

    于佳

    2015-01-01

    The paper,taking the concrete arch dam which was built in XinJiang as an example ,introduced the application of Civil 3D in aspect of dam model of hydraulic engineering from generating original terrain sur-face,assembly setting of arch dam,dam crest circular arcs lofting,slope excavation,excavation and embank-ment volume engineering quantity calculation etc.its application prospects in hydraulic engineering was sum-marized,which can private reference for hydraulic and hydroelectric engineering designers.%以新疆某混凝土拱坝为例,从地形数据分析、地形曲面创建、定制拱坝体型装配、拱坝路线放样、边坡开挖、挖填方工程量统计等方面介绍了Civil 3D在水利工程中拱坝主体建模方面的应用。总结了AutoCAD Civil 3D在水利工程中的应用前景,可为水利水电工程设计者提供参考。

  3. Table-Top Robotics for Engineering Design

    Science.gov (United States)

    Wilczynski, Vincent; Dixon, Gregg; Ford, Eric

    2005-01-01

    The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…

  4. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem s...

  5. An Optimisation Approach Applied to Design the Hydraulic Power Supply for a Forklift Truck

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2004-01-01

    This paper describes the first part of a method that may be used in the design of the most energy efficient hydraulic opencircuit systems, when also considering the operational aspects of the system given in the design specifications. The method builds on a numerically based multi-level optimisat......This paper describes the first part of a method that may be used in the design of the most energy efficient hydraulic opencircuit systems, when also considering the operational aspects of the system given in the design specifications. The method builds on a numerically based multi...

  6. Overview of pool hydraulic design of Indian prototype fast breeder reactor

    Indian Academy of Sciences (India)

    K Velusamy; P Chellapandi; S C Chetal; Baldev Raj

    2010-04-01

    Thermal hydraulics plays an important role in the design of liquid metal cooled fast breeder reactor components, where thermal loads are dominant. Detailed thermal hydraulic investigations of reactor components considering multi-physics heat transfer are essential for choosing optimum designs among the various possibilities. Pool hydraulics is multi-dimensional in nature and simple one-dimensional treatment for the same is often inadequate. Computational Fluid Dynamics (CFD) plays a critical role in the design of pool type reactors and becomes an increasingly popular tool, thanks to the advancements in computing technology. In this paper, thermal hydraulic characteristics of a fast breeder reactor, design limits and challenging thermal hydraulic investigations carried out towards successful design of Indian Prototype Fast Breeder Reactor (PFBR) that is under construction, are highlighted. Special attention is paid to phenomena like thermal stratification, thermal stripping, gas entrainment, inter-wrapper flow in decay heat removal and multiphysics cellular convection. The issues in these phenomena and the design solutions to address them satisfactorily are elaborated. Experiments performed for special phenomena, which are not amenable for CFD treatment and experiments carried out for validation of the computer codes have also been described.

  7. Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator

    Science.gov (United States)

    Strohmaier, Kyle Glenn

    Improving mobile energy storage technology is an important means of addressing concerns over fossil fuel scarcity and energy independence. Traditional hydraulic accumulator energy storage, though favorable in power density, durability, cost, and environmental impact, suffers from relatively low energy density and a pressure-dependent state of charge. The hydraulic flywheel-accumulator concept utilizes both the hydro-pneumatic and rotating kinetic energy domains by employing a rotating pressure vessel. This thesis provides an in-depth analysis of the hydraulic flywheel-accumulator concept and an assessment of the advantages it offers over traditional static accumulator energy storage. After specifying a practical architecture for the hydraulic flywheel-accumulator, this thesis addresses the complex fluid phenomena and control implications associated with multi-domain energy storage. To facilitate rapid selection of the hydraulic flywheel-accumulator dimensions, computationally inexpensive material stress models are developed for each component. A drive cycle simulation strategy is also developed to assess the dynamic performance of the device. The stress models and performance simulation are combined to form a toolset that facilitates computationally-efficient model-based design. The aforementioned toolset has been embedded into a multi-objective optimization algorithm that aims to minimize the mass of the hydraulic flywheel-accumulator system and to minimize the losses it incurs over the course of a drive cycle. Two optimizations have been performed - one with constraints that reflect a vehicle-scale application, and one with constraints that reflect a laboratory application. At both scales, the optimization results suggest that the hydraulic flywheel-accumulator offers at least an order of magnitude improvement over traditional static accumulator energy storage, while operating at efficiencies between 75% and 93%. A particular hydraulic flywheel-accumulator design

  8. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  9. Design and Experiment of Electronic-hydraulic Loading Test-bed Based on Tractor’s Hydraulic Steering By-wire

    Institute of Scientific and Technical Information of China (English)

    Yue JIN; Yang LU; Jiahui GONG; Zhixiong LU; Wenming LI; Jungan WU

    2015-01-01

    An Electro-hydraulic loading system is designed based on a test-bed of tractor’s hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force is controlled to make proportional and continuous variable by an electro-hydraulic proportional relief valve. A steering resistance loading test-bed is built to test three kinds of steering resistance including constant,step and sine style. Tire lateral resistance is also tested under different steering conditions. The result shows that the electro-hydraulic loading system has high stability and following performance. Besides,the system’s steady state error is lower than 3. 1%,and it meets the test requirement of tractor’s hydraulic steering by-wire.

  10. Multiobjective Optimization Design of Double-Row Blades Hydraulic Retarder with Surrogate Model

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2015-02-01

    Full Text Available For the design of double-row blades hydraulic retarder involves too many parameters, the solution process of the optimal parameter combination is characterized by the large calculation load, the long calculation time, and the high cost. In this paper, we proposed a multiobjective optimization method to obtain the optimal balanced solution between the braking torque and volume of double-row blades hydraulic retarder. Moreover, we established the surrogate model for objective function with radial basis function (RBF, thus avoiding the time-consuming three-dimensional modeling and fluid simulation. Then, nondominated sorting genetic algorithm-II (NSGA-II was adopted to obtain the optimal combination solution of design variables. Moreover, the comparison results of computational fluid dynamics (CFD values of the optimal combination parameters and original design parameters indicated that the multiobjective optimization method based on surrogate model was applicable for the design of double-row blades hydraulic retarder.

  11. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hwan [Pusan National University, Busan (Korea, Republic of)

    2009-09-15

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  12. Design of hydraulic active stabilizer bar test platform based on dSPACE

    Directory of Open Access Journals (Sweden)

    Shan CHEN

    2016-12-01

    Full Text Available For the study of the influence of hydraulic active stabilizer bar to vehicle lateral stability under high speed steering maneuver, the hydraulic active stabilizer bar HIL test platform is implemented. The HIL test platform is designed with single/double axles universal test bench to experiment on single or double axles active stabilizer bar, using MC9S12DG128 microcontroller as the core controller and running vehicle dynamics model in the dSPACE. This HIL platform is used to study the effect of the hydraulic active stabilizer bar on the vehicle roll stability under different types of the road and typical steering maneuvers. The experiment results illustrate that the hydraulic active stabilizer bar HIL test platform can simulate the experiment environment and provide a powerful support for the development of active stabilizer bar system.

  13. Idaho National Engineering Laboratory (INEL) technical review of YGN 3 and 4 thermal-hydraulic relative size effects

    Energy Technology Data Exchange (ETDEWEB)

    Ward, L.W.; Fineman, C.P.; Gruen, G.E.

    1989-08-01

    Combustion Engineering, Inc., (CE) and the Korean Advanced Energy Research Institute (KAERI) are jointly designing two 2825 MW{sub t} System 80 nuclear steam supply systems for construction in Korea. The two 2825 MW{sub t} plants are similar in design to the larger System 80 class of plants but are reduced in size from 3817 MW{sub t}. These plants will be operated by the Korean Electric Power Company and have been designated as Yonggwang Nuclear Units 3 and 4. The Idaho National Engineering Laboratory (INEL) was selected by CE to perform a third party independent technical review of the thermal-hydraulic safety analyses for Yonggwang Units 3 and 4. The purpose of the review is to establish the acceptability of the safety analyses addressing the differences in size between the 2825 and 3817 MW{sub t} CE designed System 80 plants. The analysis methods used by Combustion Engineering, Inc. were also reviewed to assure that only United States Nuclear Regulatory Commission approved methods were used for the Yonggwang Units 3 and 4 safety analyses and that the methods were applied in a manner consistent with that for the Palo Verde System 80 plants, currently in operation in the US. In general, it was found that the differences between 3817 and 2825 MW{sub t} units led to increased margins except for the large break LOCA (LBLOCA) and boron dilution transient. For the LBLOCA, use of improved models enhanced performance which allowed an increase in peak linear heat generation rate relative to that for the 3817 MW{sub t} plant. For the boron dilution event, an increase in the shutdown margin was necessary to assure the same time to criticality as that for the 3817 MW{sub t} plant. 39 refs., 9 figs., 4 tabs.

  14. Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis

    Science.gov (United States)

    Shangguan, Wen-Bin; Lu, Zhen-Hua

    2004-08-01

    Hydraulic engine mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter (LP) model is a traditional model for modelling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, a fluid-structure interaction (FSI) finite element analysis (FEA) method and a non-linear FEA technology are used to determine the system parameters, and a fully coupled FSI model is developed for modelling the static and lower-frequency performance of an HEM. A FSI FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and the decoupler of an HEM. A non-linear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions. A numerical simulation for an HEM with an inertia track and a free decoupler is performed based on the FSI model and the LP model along with the estimated system parameters, and again the simulation results are compared with experimental data. The calculated time histories of some variables in the model, such as the pressure in the upper chamber, the displacement of the free decoupler and the volume flow through the inertia track and the decoupler, under different excitations, elucidate the working mechanism of the HEM. The pressure distribution calculated with the FSI model in the chambers of the HEM validates the assumption that the pressure distribution in the upper and lower chamber is uniform in the LP model. The work conducted in the paper demonstrates that the methods for estimating the system parameters in the LP model and the FSI model for modelling HEM are effective, with which the dynamic characteristic analysis and design optimization of an HEM can be performed before its prototype development, and this

  15. Optimization, an Important Stage of Engineering Design

    Science.gov (United States)

    Kelley, Todd R.

    2010-01-01

    A number of leaders in technology education have indicated that a major difference between the technological design process and the engineering design process is analysis and optimization. The analysis stage of the engineering design process is when mathematical models and scientific principles are employed to help the designer predict design…

  16. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  17. Design Formulae for Hydraulic Stability and Structural Integrity of Dolos Breakwater Round-Heads

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    A rational design of Dolos armour unit should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) resulted in design formulae for the trunk of a 1:1.5 slope Dolos breakwater without superstructure including both...

  18. Design science, engineering science and requirements engineering

    NARCIS (Netherlands)

    Wieringa, R.J.; Heerkens, J.M.G.

    2008-01-01

    For several decades there has been a debate in the computing sciences about the relative roles of design and empirical research, and about the contribution of design and research methodology to the relevance of research results. In this minitutorial we review this debate and compare it with evidence

  19. Engineering Design Information System (EDIS)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.S.; Short, R.D.; Schwarz, R.K.

    1990-11-01

    This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

  20. Optical engineering: learning by design

    Science.gov (United States)

    Kirk, Andrew G.

    2007-06-01

    This presentation will describe the issues associated with a design-based course in optical engineering. The original purpose of this course was to provide senior undergraduate and graduate students with a good foundation in free-space optics, including topics such as geometric aberrations, Gaussian beam theory, diffractive optics, interference filters and polarization. However in order to make the material more immediate and to help the students to integrate their knowledge, a design project component was introduced into the course several years ago. Over the succeeding years, the project component has become a more and more significant part of the course, so that it now forms the central component. Typical enrollment is 15-25 students. The class is typically 75% graduate students, with the remainder being senior undergraduates. 30% have previously taken an undergraduate optics class and around 30% are typically doing graduate/undergraduate research in photonics. A course in electromagnetic waves is a pre-requisite but for many of the students this is their first real `optics' course. Therefore it is a significant challenge to present sufficient material that the students can do real work in their design projects without over-burdening them with new concepts. Most of the students (90%) attend McGill, with the remainder attending UQAM, Ecole Polytechnique or Concordia.

  1. 23 CFR 650.111 - Location hydraulic studies.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Location hydraulic studies. 650.111 Section 650.111 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains §...

  2. 液压泵性能测试实验台设计%Design of Performance Test Bench for Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    郑明辉; 江吉彬; 郭熛

    2011-01-01

    Hydraulic pump as hydraulic system's power part, is one of important parts of engineering machinery product. The hydraulic pump performance test bench is the necessary device for hydraulic pump product quality examination which is the main safe guard of pump product quality. A hydraulic pump performance test bench was designed. The composition, working principle and char acteristics of the hydraulic system were introduced. Data test and analysis were carried on.%液压泵作为液压系统的动力元件,是工程机械产品的重要部件之一.液压泵性能测试实验台是进行液压泵产品质量检测的必要设备,是泵产品质量监控的主要保障.设计了液压泵性能测试实验台,介绍液压系统组成、工作原理和特点,并进行了数据测试及分析.

  3. Designed by Engineers: An analysis of interactionaries with engineering students

    Directory of Open Access Journals (Sweden)

    Henrik Artman

    2014-12-01

    Full Text Available The aim of this study is to describe and analyze learning taking place in a collaborative design exercise involving engineering students. The students perform a time-constrained, open-ended, complex interaction design task, an “interactionary”. A multimodal learning perspective is used. We have performed detailed analyses of video recordings of the engineering students, including classifying aspects of interaction. Our results show that the engineering students carry out and articulate their design work using a technology-centred approach and focus more on the function of their designs than on aspects of interaction. The engineering students mainly make use of ephemeral communication strategies (gestures and speech rather than sketching in physical materials. We conclude that the interactionary may be an educational format that can help engineering students learn the messiness of design work. We further identify several constraints to the engineering students’ design learning and propose useful interventions that a teacher could make during an interactionary. We especially emphasize interventions that help engineering students-retain aspects of human-centered design throughout the design process. This study partially replicates a previous study which involved interaction design students.

  4. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.

  5. Educating engineering designers for a multidisciplinary future

    DEFF Research Database (Denmark)

    engineering design education. Educating engineering designers today significantly differs from traditional engineering education (McAloone, et.al., 2007). However, a broader view of design activities gains little attention. The project course Product/Service-Systems, which is coupled to the lecture based...... course Product life and Environmental issues at the Technical University of Denmark (DTU) and the master programme Product Development Processes at the Luleå University of Technology (LTU), Sweden, are both curriculums with a broader view than traditional (mechanical) engineering design. Based...... on these two representatives of a Scandinavian approach, the purpose in this presentation is to describe two ways of educating engineering designers to enable them to develop these broader competencies of socio-technical aspects of engineering design. Product Development Processes at LTU A process, called...

  6. LHCb RICH1 Engineering Design Review Report

    CERN Document Server

    Brook, N; Metlica, F; Muir, A; Phillips, A; Buckley, A; Gibson, V; Harrison, K; Jones, C R; Katvars, S G; Lazzeroni, C; Storey, J; Ward, CP; Wotton, S; Alemi, M; Arnabaldi, C; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Negri, P; Perego, D L; Pessina, G; Chamonal, R; Eisenhardt, S; Lawrence, J; McCarron, J; Muheim, F; Playfer, S; Walker, A; Cuneo, S; Fontanelli, F; Gracco, Valerio; Mini, G; Musico, P; Petrolini, A; Sannino, M; Bates, A; MacGregor, A; O'Shea, V; Parkes, C; Paterson, S; Petrie, D; Pickford, A; Rahman, M; Soler, F; Allebone, L; Barber, J H; Cameron, W; Clark, D; Dornan, Peter John; Duane, A; Egede, U; Hallam, R; Howard, A; Plackett, R; Price, D; Savidge, T; Vidal-Sitjes, G; Websdale, D M; Adinolfi, M; Bibby, J H; Cioffi, C; Gligorov, Vladimir V; Harnew, N; Harris, F; McArthur, I A; Newby, C; Ottewell, B; Rademacker, J; Senanayake, R; Somerville, L P; Soroko, A; Smale, N J; Topp-Jørgensen, S; Wilkinson, G; Yang, S; Benayoun, M; Khmelnikov, V A; Obraztsov, V F; Densham, C J; Easo, S; Franek, B; Kuznetsov, G; Loveridge, P W; Morrow, D; Morris, JV; Papanestis, A; Patrick, G N; Woodward, M L; Aglieri-Rinella, G; Albrecht, A; Braem, André; Campbell, M; D'Ambrosio, C; Forty, R W; Frei, C; Gys, Thierry; Jamet, O; Kanaya, N; Losasso, M; Moritz, M; Patel, M; Piedigrossi, D; Snoeys, W; Ullaland, O; Van Lysebetten, A; Wyllie, K

    2005-01-01

    This document describes the concepts of the engineering design to be adopted for the upstream Ring Imaging Cherenkov detector (RICH1) of the reoptimized LHCb detector. Our aim is to ensure that coherent solutions for the engineering design and integration for all components of RICH1 are available, before proceeding with the detailed design of these components.

  7. RELIABILITY-BASED DESIGN AND ANALYSIS ON HYDRAULIC SYSTEM FOR SYNTHETIC RUBBER PRESS

    Institute of Scientific and Technical Information of China (English)

    Yao Chengyu; Zhao Jingyi

    2005-01-01

    To overcome the design limitations of traditional hydraulic control system for synthetic rubber press and such faults as high fault rate, low reliability, high energy-consuming and which always led to shutting down of post-treatment product line for synthetic rubber, brand-new hydraulic system combining with PC control and two-way cartridge valves for the press is developed, whose reliability is analyzed, reliability model of the hydraulic system for the press is established by analyzing processing steps, and reliability simulation of each step and the whole system is carried out by software MATLAB, which is verified through reliability test. The fixed time test has proved not that theory analysis is sound, but the system has characteristics of reasonable design and high reliability,and can lower the required power supply and operational energy cost.

  8. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir

    2009-01-01

    converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using......The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system...... consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically...

  9. Sea Water Quality Modeling in the Frame of a Building First Turn of a Hydraulic Engineering Complex

    Directory of Open Access Journals (Sweden)

    Igor G. Kantargi

    2012-05-01

    Full Text Available The article deals with an application of developed system-dynamic model of the coastal waters quality for an assessment of sea water quality in the frame of building 1 turn of a hydraulic engineering complex "Object" the Island Federation». The attention is paid to a coast site with a coastal protection constructions.

  10. Selected Aspects of Hydraulic Engineering: Liber Amicorum dedicated to Johannes Theodoor Thijsse, on occasion of his retirement as professor

    NARCIS (Netherlands)

    Van Douwen, A.A.

    1963-01-01

    - Biography of Johannes Theodoor Thijsse - British Hydraulic Engineering and Research - Probleme der Donau in Österreich - Évolution, depuis trente ans, de la Normalisation Internationale des Mesures de Débits en Conduite - L' Association Internationale d'Hydrologie Scientifique - Activities of

  11. Corps of Engineers Hydraulic Design Criteria. Volume 2

    Science.gov (United States)

    1977-01-01

    gate seat locations. The general absence of excessive negative pressures is noteworthy. Structural economy should no doubt have a strong influence on...34 Uber den Strbmungsverlust in gekrimmten Kanblen." VDI, Forschungsarbeiten, Heft 320, Berlin (1929). 1.j 534-2 and 534-2/1 Revised 1-68 7 - - - - I- D...downstream erosion. In most cases economy of construction is the deciding factor. 3. Background. The accepted relation between the height of drop h

  12. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  13. OPTIMIZATION DESIGN OF HYDRAU-LIC MANIFOLD BLOCKS BASED ON HUMAN-COMPUTER COOPERATIVE GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Feng Yi; Li Li; Tian Shujun

    2003-01-01

    Optimization design of hydraulic manifold blocks (HMB) is studied as a complex solid spatial layout problem. Based on comprehensive research into structure features and design rules of HMB, an optimal mathematical model for this problem is presented. Using human-computer cooperative genetic algorithm (GA) and its hybrid optimization strategies, integrated layout and connection design schemes of HMB can be automatically optimized. An example is given to testify it.

  14. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    dynamics under real conditions. The behavior of the system is analyzed with regard to 20 years of operation. This is for example done by applying loads from different design load cases, e.g. normal turbulence, extreme turbulence and different fault scenarios on the turbine. The paper first presents...... an introduction with the current state of the art and problem description, followed by a system description, where the system is designed and dimensioned. Based on the design, results from the test rig are presented and analyzed. Finally a conclusion summing up the design, model and test results is given....

  15. Use of hydraulic models to identify and resolve design isssues in FGD systems

    Energy Technology Data Exchange (ETDEWEB)

    Strock, T.W. [Babcock & Wilcox, Alliance, OH (United States); Gohara, W.F. [Babcock & Wilcox, Barberton, OH (United States)

    1995-06-01

    The hydraulics within a wet flue gas desulfurization (FGD) scrubber involve several complex two-phase gas/liquid interactions that directly affect the scrubber pressure drop, mist elimination efficiency, and the mass transfer process of SO{sub 2} removal. Current industrial efforts to develop cost effective, high-efficiency wet FGD scrubbers are focusing, in part, on the hydraulics. The development of an experimental approach and test facility for understanding and optimizing wet scrubber flow characteristics has been completed. Hydraulic models simulate full-scale units and allow the designer to view the gas/liquid flow interactions. Modeling procedures for downsizing the wet scrubber for the laboratory have been developed and validated with field data comparisons. A one-eighth scale hydraulic model has been used to study several FGD scrubber design issues. Design changes to reduce capital and operating cost have been developed and tested. Recently, the model was used to design a commercial, uniform flow, high gas velocity absorber for the next generation of FGD systems.

  16. Modeling and Optimal Design of 3 Degrees of Freedom Helmholtz Resonator in Hydraulic System

    Institute of Scientific and Technical Information of China (English)

    GUAN Changbin; JIAO Zongxia

    2012-01-01

    Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-ncck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system.A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hydraulic fluid in the necks.Applying the Newton's second law of motion to the equivalent mechanical model of the resonator,closed-form expression of transmission loss and resonance frequency is presented.Based on the LPM,an optimal design method which employs rotate vector optimization method (RVOM) is proposed.The purpose of the optimal design is to search the resonator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively.The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system.The optimization result shows the feasibility of this method,and the simulation under optimum parameters reveals that the LPM can get the same precision as transfer matrix method (TMM).

  17. Design and Development of Hydraulic Disc Brake Systems for Well Servicing Rig Drawworks

    Institute of Scientific and Technical Information of China (English)

    Gao xiangqian; Zhou Yongxia

    1996-01-01

    @@ The conventional band brakes have been known to be important but also the most unlnerable part in servicing rig deawworks.. The failures in braking and releasing operations haven't well been avoided. There have evidently existed the problems of difficult operation and inconvenient maintenance in this connection. The use of power-assisted hydraulic cylinders or pneumatic cylinders can not meet the requirements of operations either. Since the late 1980s, we have cooperated with Shengli oilfields and others in the successful design and development of PST25 hydraulic disc brake systems for well servicing rig in a fully closed working state.

  18. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  19. Design and Optimization of Valveless Pulsejet Engine

    OpenAIRE

    Karthick Raja.R; Rio Melvin Aro.T

    2014-01-01

    Simple design and efficiency make pulsejet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. During the operations of these pulsejet engines the surfaces of engine will get more heated. In order to cool the engine surface and to get more thrust we have attached an additional component called secondary inlet i...

  20. Design of a New Type of Distribution Valve for Hydraulic Breaker and Analysis of Energy Consumption

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Energy consumed by distribution valves causes an energy loss for the output energy of hydraulic breakers, which has a significant influence on its efficiency. A new type of distribution valve used for hydraulic breakers, designed to reduce energy consumption, is analyzed on the basis of the operating principle and energy loss of the current distribution valve. The new distribution valve adopts a cone valve and the optimization technique of unequal open degree for the valve port. Theoretical calculations and analyses have proven that the new distribution valve can reduce energy loss by 9.0127J, or energy consumption by 31%, during an impact cycle and the efficiency of the hydraulic breaker can be raised by 4.5%. It has the following characteristics: little leakage, little pressure loss and low energy consumption.

  1. AP600 design certification thermal hydraulics testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hochreiter, L.E.; Piplica, E.J.

    1995-09-01

    Westinghouse Electric Corporation, in conjunction with the Department of Energy and the Electric Power Research Institute, have been developing an advanced light water reactor design; the AP600. The AP600 is a 1940 Mwt, 600Mwe unit which is similar to a Westinghouse two-loop Pressurized Water Reactor. The accumulated knowledge on reactor design to reduce the capital costs, construction time, and the operational and maintenance cost of the unit once it begins to generate electrical power. The AP600 design goal is to maintain an overall cost advantage over fossil generated electrical power.

  2. Capstone Engineering Design Projects for Community Colleges

    Science.gov (United States)

    Walz, Kenneth A.; Christian, Jon R.

    2017-01-01

    Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…

  3. Design of experiments in production engineering

    CERN Document Server

    2016-01-01

    This book covers design of experiments (DoE) applied in production engineering as a combination of manufacturing technology with applied management science. It presents recent research advances and applications of design experiments in production engineering and the chapters cover metal cutting tools, soft computing for modelling and optmization of machining, waterjet machining of high performance ceramics, among others.

  4. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  5. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri......This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods....... The described work is part of a project that aims at establishing a coherent framework for future development of integrated design tools....

  6. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  7. Profile constructing and elevation design of soil reclaimed by hydraulic dredge pump in mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Longqian, C.; Aiqin, S.; Tianjian, Z. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). School of Environmental Science and Spatial Informatics; Mei, L. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China)

    2007-07-01

    Underground coal mining is the main method of coal mining in China. The hydraulic dredge pump reclamation method is the basic method used for repairing hydraulic erosion. This paper reviewed land reclamation by hydraulic dredge pump in the Yi'an coal mine of Xuzhou mining area in the east of China, and analyzed the constructing theory of soil profiling. It examined factors such as the height of the ground-water table; the thickness of plough horizon; the length of crops root and the state of soil erosion; and the methods of profile construction and elevation design of soil reclaimed by hydraulic dredge pump. A relevant mathematical model was also developed. The paper discussed the general situation of the study site as well as the basic theory of profile constructing and the profile constructing method. The paper also discussed the elevation design of the reclaimed land. It was concluded that the practice has proved that the methods can make the reclaimed soil keep a similar characteristics to that of original cropped soil, and meet the requirements for elevation of reclaimed land. 8 refs., 1 tab., 2 figs.

  8. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Energy Technology Data Exchange (ETDEWEB)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  9. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Shakofsky, S.

    1995-03-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.

  10. Engineering Changes in Product Design - A Review

    Science.gov (United States)

    Karthik, K.; Janardhan Reddy, K., Dr

    2016-09-01

    Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.

  11. 液压发动机在市内公交车上的应用探究%Application Research of Hydraulic Engine on the City Bus

    Institute of Scientific and Technical Information of China (English)

    张超

    2013-01-01

    Brielfy introduce the better performance of hydraulic free piston engine than the traditional internal combustion engine. According to the characteristics of the hydraulic free piston engine and the specialty of bus running, the paper researched the feasibility of hydraulic free piston engine used on the bus. It shows the wide application prospects of hydraulic free piston engine.%简要介绍了液压自由活塞发动机相比于传统内燃机的优越性能,针对液压自由活塞发动机的特点以及公交车运行的特殊性,探究了液压自由活塞发动机在市内公交车上应用的可行性,展现了液压自由活塞发动机的广阔应用前景。

  12. Decision-Based Design Integrating Consumer Preferences into Engineering Design

    CERN Document Server

    Chen, Wei; Wassenaar, Henk Jan

    2013-01-01

    Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design.  Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: •A rigorous framework of integrating the interests from both producer and consumers in engineering design, •Analytical techniques of consumer choice model...

  13. Design and Optimization of Valveless Pulsejet Engine

    Directory of Open Access Journals (Sweden)

    Karthick Raja.R

    2014-11-01

    Full Text Available Simple design and efficiency make pulsejet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. During the operations of these pulsejet engines the surfaces of engine will get more heated. In order to cool the engine surface and to get more thrust we have attached an additional component called secondary inlet in that valve less pulsejet engine. The pulsejet is the only jet engine combustor that shows a net pressure gain between the intake and the exhaust. The pulsejet is the only jet engine combustor that shows a net pressure gain between the intake and the exhaust. We choose the LOCKWOOD’s design of pulsejet engine. By using the CFD analysis we have analysed the modified design of valveless pulsejet engine. This project provides an overview of this unique process and the results of these design modifications are reported.

  14. Stability and Ergonomic Design Features of Tractor Mounted Hydraulic Elevator for Coconut Harvesting

    Directory of Open Access Journals (Sweden)

    Kishor P. Kolhe

    2011-01-01

    Full Text Available Problem statement: The most important design criterion of mechanized device is safety; safety comprises both the safety of operator and safety of maintenance personnel. Failures and safety of harvesting platform of Tractor Mounted Hydraulic Elevator (TMHE powered by tractor PTO was tested by Finite Element Method for the mechanical harvesting of coconut orchards using digital Ergonomic hart rate meter. The objective of this study was to study the stability of the THME by finite element method, operational safety and power requirement for the use of this elevator for coconut harvesting. Also to provide sufficient adjustment and space to account for variation in body sizes, ensure controls are situated within suitable reach and are properly marked. Approach: The Modal analysis was carried out for the whole assembly of tractor mounted hydraulic elevator by using Ansis software. The digital polar hart rate meter RS400TM having infrared connectivity sensor is used for recording the hart rates. The research work was conducted at, Dr. Balasaheb Sawant Kokan Krishi Vidyapeeth Dapoli. The harvesting of coconuts was performed by manual climbing labor and by tractor mounted hydraulic elevator. The technical assessments included the use of biomechanical models, vibration testing equipment, ODR, BPDS. The ergonomical evaluation results of the above study are correlates to decide the feasibility, safety and efficiency of Tractor mounted hydraulic elevator for coconut harvesting. The PTO rpm influence for the lifting and lowering of the harvesting platform was studied experimentally by using digital tachometer. Results: The better stability results with the controlled vibrations and frequency of the lifting platform and welded joints were recorded by keeping constrained boundary conditions. Ergonomically operational safe and controlled heart rates are recorded. Hence the labors can continuously do the coconut harvesting work by using the tractor mounted

  15. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  16. Parameter Identification on Lumped Parameters of the Hydraulic Engine Mount Model

    Directory of Open Access Journals (Sweden)

    Li Qian

    2016-01-01

    Full Text Available Hydraulic Engine Mounts (HEM are important vibration isolation components with compound structure in the vehicle powertrain mounting system. They have the characteristic that large damping and high dynamic stiffness in the high frequency region, and small damping and low dynamic stiffness in the low frequency region, which can meet the requirements of the vehicle powertrain mounting system better. The method to identify the lumped parameters of the HEM is not only the necessary work for the analysis and calculation in dynamic performance and can also provide the theory for the performance optimization and structure optimization of product in the future. The parameter identification method based on coupled fluid-structure interaction (FSI and finite element analysis (FEA was established in this study to identify the equivalent piston area of the rubber spring, the volume stiffness of the upper chamber, as well as the inertia coefficient and damping coefficient of the liquid through the inertia track. The simulated dynamic characteristic curves of the HEM with the parameters identified are in accordance with the measured dynamic characteristic curves well.

  17. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    Integrating ergonomic knowledge into engineering design processes has been shown to contribute to healthy and effective designs of workplaces. However, it is also well-recognized that, in practice, ergonomists often have difficulties gaining access to and impacting engineering design processes....... This PhD dissertation takes its point of departure in a recent development in Denmark in which many larger engineering consultancies chose to established ergonomic departments in house. In the ergonomic profession, this development was seen as a major opportunity to gain access to early design phases....... Present study contributes new perspectives on possibilities and barriers for integrating ergonomic knowledge in design by exploring the integration activities under new conditions. A case study in an engineering consultancy in Denmark was carried out. A total of 23 persons were interviewed...

  18. Design and computation of modern engineering materials

    CERN Document Server

    Altenbach, Holm

    2014-01-01

     The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.

  19. Making room in engineering design practices

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer; Buch, Anders

    2016-01-01

    This article aims to explore the challenges that occur from a practice perspective when a new approach to engineering design enters an existing ecology of professional practices in a workplace. Using four empirical episodes, the article illustrates a concrete effort to challenge what counts...... as ‘real engineering’ or what is recognized as part of the engineering expertise. Using an ethnographic, case-studybased research design the article documentshowholistically minded professionals do engineering design ‘by other means’, in ways that strive to promote user experience approaches. The article...

  20. An Approach to Design Reusable Workflow Engine

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Developers still need design workflow system according to users' specific needs, though workflow management coalition standardized the five kinds of abstract interfaces in workflow reference model. Specific business process characteristics are still supported by specific workflow system. A set of common functionalities of workflow engine are abstracted from business component, so the reusability of business component is extended into workflow engine and composition method is proposed. Needs of different business requirements and characteristics are met by reusing the workflow engine.

  1. Conceptual Design of a Supersonic Jet Engine

    OpenAIRE

    Kareliusson, Joakim; Nordqvist, Melker

    2014-01-01

    This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...

  2. MEMS & microsystems design, manufacture, and nanoscale engineering

    CERN Document Server

    Hsu, Tai-Ran

    2008-01-01

    A bestselling MEMS text...now better than ever. An engineering design approach to Microelectromechanical Systems, MEMS and Microsystems remains the only available text to cover both the electrical and the mechanical aspects of the technology. In the five years since the publication of the first edition, there have been significant changes in the science and technology of miniaturization, including microsystems technology and nanotechnology. In response to the increasing needs of engineers to acquire basic knowledge and experience in these areas, this popular text has been carefully updated, including an entirely new section on the introduction of nanoscale engineering. Following a brief introduction to the history and evolution of nanotechnology, the author covers the fundamentals in the engineering design of nanostructures, including fabrication techniques for producing nanoproducts, engineering design principles in molecular dynamics, and fluid flows and heat transmission in nanoscale substances.

  3. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  4. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  5. Engineering design: A cognitive process approach

    Science.gov (United States)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the

  6. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  7. Computer Aided Design in Engineering Education.

    Science.gov (United States)

    Gobin, R.

    1986-01-01

    Discusses the use of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) systems in an undergraduate engineering education program. Provides a rationale for CAD/CAM use in the already existing engineering program. Describes the methods used in choosing the systems, some initial results, and warnings for first-time users. (TW)

  8. Natural genetic engineering: intelligence & design in evolution?

    DEFF Research Database (Denmark)

    Ussery, David

    2011-01-01

    function. Shapiro argues that what we see in genomes is 'Natural Genetic Engineering', or designed evolution: "Thinking about genomes from an informatics perspective, it is apparent that systems engineering is a better metaphor for the evolutionary process than the conventional view of evolution...

  9. Embedding Context in Teaching Engineering Design

    Science.gov (United States)

    Neumeyer, Xaver; Chen, Wei; McKenna, Ann F.

    2013-01-01

    Understanding the global, societal, environmental and economic (GSEE) context of a product, process or system is critical to an engineer's ability to design and innovate. The already packed curricula in engineering programs provide few occasions to offer meaningful experiences to address this issue, and most departments delegate this requirement…

  10. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...

  11. Design and verification of additional filtration for the application of ecological transmission and hydraulic fluids in tractorc

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available This contribution presents the design and function verification of additional filtration. It is intended for the common transmission and hydraulic oil filling of tractors. The main role of this filtration concept is to ensure a high level of oil cleanness as a condition for the application of ecologic fluids in tractors. The next one is to decrease the wear of lubricated tractor components, the degradation of oil and eventually to extend the interval of oil change. The designed additional filtering is characterized by ease installation through the use of quick couplings and hoses to the external hydraulic circuit. Therefore, the filtration is suitable for various tractor types. Filter element has been designed with the filter ability 1micron and the ability to separate to 0.5 dm3 of water from oil. Function of additional filtration was verified during the 150 engine hours of tractor operation. During this time period the oil contamination was evaluated on the basis of chemical elements content such as Fe, Cu, Si, Al, Ni, Mo and Cr. The additive concentration was evaluated on the basis of chemical elements content such as Ca, P and Zn. During the test operation of tractor the concentration decrease of chemical elements reached the values 25.53 % (Fe, 23.53 % (Si, 25 % (Al and 5.5 % (Cu. The decrease of additive concentration reached only medium level (6.6 %. Therefore, the designed additional filtration doesn’t remove additives from oil. Based on the evaluation of the content of chemical elements (that representing contamination and additives, we can say that the designed filtering method is suitable for use in agricultural tractors.

  12. A study of passive and adaptive hydraulic engine mount systems with emphasis on non-linear characteristics

    Science.gov (United States)

    Kim, G.; Singh, R.

    1995-01-01

    Passive hydraulic mounts exhibit excitation frequency variant and deflection amplitude sensitive stiffness and damping properties. Such non-linear dynamic characteristics are examined by using analytical and experimental methods, both at the device level and within the context of a simplified vehicle model. A new lumped parameter non-linear mathematical model of the hydraulic mount is developed by simulating its decoupler switching mechanism and inertia track dynamics. The low frequency performance features and limitations of several passive mounts are made clear through the non-linear vehicle model simulation and comparable laboratory vibration tests. The high frequency performance problems of the passive hydraulic mount are identified by applying the quasi-linear analysis method. Based on these results, a new adaptive mount system is developed which exhibits broad bandwidth performance features up to 250 Hz. It implements an on-off damping control mode by using engine intake manifold vacuum and a microprocessor based solenoid valve controller. A laboratory bench set-up has already demonstrated its operational feasibility. Through analytical methods, it is observed that our adaptive mount provides superior dynamic performance to passive engine mounts and comparable performance to a small scale active mount over a wide frequency range, given the engine mounting resonance control, shock absorption and vibration isolation performance requirements. Although technical prospects of the proposed adaptive system appear promising, the in situperformance needs to be evaluated.

  13. Engineering Design EDUCATION: When, What, and HOW

    Science.gov (United States)

    Khalaf, Kinda; Balawi, Shadi; Hitt, George Wesley; Radaideh, Ahmad

    2013-01-01

    This paper presents an innovative, interdisciplinary, design-and-build course created to improve placement, content, and pedagogy for introductory engineering design education. Infused at the freshman level, the course aims to promote expert design thinking by using problem-based learning (PBL) as the mode of delivery. The course is structured to…

  14. Team Based Engineering Design Thinking

    Science.gov (United States)

    Mentzer, Nathan

    2014-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective was encompassed in the research question driving the inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  15. Studying Design Engineers Use Of Information Systems

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Studying information usage by design engineers involves considering technical, social, cognitive and volitional factors. This makes it challenging, especially for researchers without a cognitive psychology background. This paper presents a summary of key findings in researching information use...

  16. Design Acceptance Passed for CⅡ Engineering Project

    Institute of Scientific and Technical Information of China (English)

    LI; Zhen-yi; LI; Song; XUE; Sui-zhi; LI; Yan; CHENG; Ming

    2012-01-01

    <正>C Ⅱengineering project involves the design and technical services of a reactor electric power supply system, which responds to the requirement of foreign client. The content of this project mainly covers

  17. Guidelines for engineering design for process safety

    National Research Council Canada - National Science Library

    2012-01-01

    "This updated version of one of the most popular and widely used CCPS books provides plant design engineers, facility operators, and safety professionals with key information on selected topics of interest...

  18. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    Science.gov (United States)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  19. Control of dense collagen gel scaffolds for tissue engineering through measurement and modelling of hydraulic permeability

    Science.gov (United States)

    Serpooshan, Vahid

    Among various natural biopolymers, type I collagen gels have demonstrated the highest potential as biomimetic scaffolds for tissue engineering (TE). However, the successful application of collagen gels requires a greater understanding of the relationship between their microstructure and physical-mechanical properties. Therefore, a precise method to modulate collagen gel microstructure in order to attain optimal scaffold properties for diverse biomedical applications is necessary. This dissertation describes a new approach to produce collagen gels with defined microstructures, quantified by hydraulic permeability ( k), in order to optimize scaffold properties for TE applications. It was hypothesized that the measurement of k can be used to study the role of microstructure in collagen gel properties, as well as cell function and cell-scaffold interactions. Applying increasing levels of plastic compression (PC) to the highly hydrated collagen gels resulted in an increase in collagen fibrillar density, reduced Happel model derived k values, increased gel stiffness, promoted MSC metabolic activity, osteogenic differentiation, and mineral deposition, while cell-induced gel contraction diminished. Thus, collagen gels with lower k and higher stiffness values exhibited greater potential for bone tissue engineering. Correlating between collagen gel microstructure, k, and fibroblast function within collagen gels indicated that increasing the level of PC yielded a reduction in pore size and an increase in fibril bundle diameter. Decrease in k values resulted in a decrease in gel contraction and an increase in cell metabolic activity. An increase in cell density accelerated contraction. Therefore, fibroblast function within collagen gels can be optimised by a balance between the microstructure, k, and cell seeding density. Developing a micromechanical model to measure experimental k of collagen gels during confined compression revealed the formation of a dense collagen lamella

  20. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  1. Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System

    Directory of Open Access Journals (Sweden)

    Lianpeng Zhang

    2016-08-01

    Full Text Available This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control using a novel based on sliding mode control based on adaptive reaching law (ASMC, which can adaptively tune the parameters of sliding mode control (SMC, is proposed to reduce the synchronization error. To improve the tracking performance, the observer-based inverse control scheme combining the feed-forward inverse model controller and disturbance observer is proposed. The system model is identified applying the recursive least squares (RLS algorithm and then the feed-forward inverse controller is designed based on zero phase error tracking controller (ZPETC technique. To compensate disturbance and model errors, disturbance observer is used cooperating with the designed inverse controller. The combination of the novel ASMC cross-coupled controller and proposed observer-based inverse controller can improve the control precision noticeably. The dual-shaking table experiment system is built and various experiments are performed. The experimental results indicate that the developed system with the proposed hybrid control strategy is feasible and efficient and can reduce the tracking errors to 25% and synchronization error to 16% compared with traditional control schemes.

  2. Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design

    Science.gov (United States)

    1974-08-30

    by estimation, compound helicopter performance, to think of the air- plots of effective lift and drag areas and pitching mo- craft as a biplane having...stncural design problems but may produce loads that where are critikal locally. A = presented arms ft’ Ca = drag coefficient, dimensionless F• V = wind speed...groups is to be provided in accordance with MIL-STD- 1374, Part I. The useful load condition shall be as I. W. H. Ballhaus, Clear Design Thinking Using

  3. Engineering Mechanics and Design Applications Transdisciplinary Engineering Fundamentals

    CERN Document Server

    Ertas, Atila

    2011-01-01

    In the last decade, the number of complex problems facing engineers has increased, and the technical knowledge required to address and mitigate them continues to evolve rapidly. These problems include not only the design of engineering systems with numerous components and subsystems, but also the design, redesign, and interaction of social, political, managerial, commercial, biological, medical, and other systems. These systems are likely to be dynamic and adaptive in nature. Finding creative solutions to such large-scale, unstructured problems requires activities that cut across traditional d

  4. Forming-Precision-Driven Structure Design of Hydraulic Press:Methodology and Case Study

    Institute of Scientific and Technical Information of China (English)

    李艳聪; 张连洪; 何柏岩; 陈永亮; 张淳

    2015-01-01

    The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, re-sulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses cost-effective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiff-ness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to proto-types;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the opti-mization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.

  5. Engineering graphics theoretical foundations of engineering geometry for design

    CERN Document Server

    Brailov, Aleksandr Yurievich

    2016-01-01

    This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measu...

  6. Perceptions of Engineers Regarding Successful Engineering Team Design

    Science.gov (United States)

    Nowaczyk, Ronald H.

    1998-01-01

    The perceptions of engineers and scientists at NASA Langley Research Center toward engineering design teams were evaluated. A sample of 49 engineers and scientists rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors focused on team issues occurring during the early stages of a team's existence. They included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. The discussion includes a comparison of engineering teams with the prototypical business team portrayed in the literature.

  7. A Bayesian Chance-Constrained Method for Hydraulic Barrier Design Under Model Structure Uncertainty

    Science.gov (United States)

    Chitsazan, N.; Pham, H. V.; Tsai, F. T. C.

    2014-12-01

    The groundwater community has widely recognized the model structure uncertainty as the major source of model uncertainty in groundwater modeling. Previous studies in the aquifer remediation design, however, rarely discuss the impact of the model structure uncertainty. This study combines the chance-constrained (CC) programming with the Bayesian model averaging (BMA) as a BMA-CC framework to assess the effect of model structure uncertainty in the remediation design. To investigate the impact of the model structure uncertainty on the remediation design, we compare the BMA-CC method with the traditional CC programming that only considers the model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from saltwater intrusion in the "1,500-foot" sand and the "1-700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address the model structure uncertainty, we develop three conceptual groundwater models based on three different hydrostratigraphy structures. The results show that using the traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from connector wells is higher than the total pumpage of the protected public supply wells. While reducing injection rate can be achieved by reducing reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station is not economically attractive.

  8. Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator

    Institute of Scientific and Technical Information of China (English)

    Qi-huai CHEN; Qing-feng WANG; Tao WANG

    2015-01-01

    A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the stator dimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabri-cated and tested on the experimental platform. The analytical design results are validated by measurements.

  9. Data-driven engineering design research

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be described...... the already available and continuously growing body of open data sources to create opportunities for research in Engineering Design. Insights are illustrated by an examination of two examples: a study of open source software repositories and an analysis of open business registries in the cleantech industry...... as “closed”. Keeping such data closed is in many cases necessary and justifiable. However, this closedness also hinders replicability, and thus, may limit our possibilities to test the validity and reliability of research results in the field. This paper discusses implications and applications of using...

  10. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  11. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  12. Assessment and Development of Engineering Design Processes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Jeppe Bjerrum

    customer demands for customised products. The thesis at hand is based on six scientific articles. Three of the articles are written and presented at scientific conferences whereas the remaining three are submitted to scientific journals. The results of the six papers constitute the main contribution......Many engineering companies are currently facing a significant challenge as they are experiencing increasing demands from their customers for delivery of customised products that have almost the same delivery time, price and quality as mass-produced products. In order to comply with this development......, the engineering companies need to have efficient engineering design processes in place, so they can design customised product variants faster and more efficiently. It is however not an easy task to model and develop such processes. To conduct engineering design is often a highly iterative, illdefined and complex...

  13. DESIGN QUALITY IN MECHANICAL ENGINEERING APPLICATION

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdogan Eker

    2010-09-01

    Full Text Available There is a close relationship between material chose and quality in mechanical engineering application like there is in all the other engineering applications. If this relation is balanced then engineering success increases. Material chose comes to fore in the design process most of the time. The two most important responsibilities of the design engineer in here is to chose suitable material and to know the production processes about design. The chose of material of a design that will fulfill the needs all through its life has great importance. It is needed to limit the material applicants by choosing the most suitable ones among variable material. Choosing materials that were examined before and whose behavior is well known provides the designer to feel confident. However since using highly successful materials would increase the competitive power of the designs; designers should follow the developments in materials and know the features of new materials. The description of these features can be interpreted within quality. Quality from the point of engineer is the total fulfillment of expectations.Engineer today are faced with very important problems such as fast technological innovations, a dynamic socio-economical environment, global rivalry. One of the life buoys they stick while trying to solve these problems is total method of quality control. Total Quality model which can provide higher competitive power compared to classical management model brings success only when applied with its whole components. "Approach toward prevention" and "measurement and statistics" have an important place among these elements. The first step of the approach toward prevention composes of design quality and Quality Function Deployment (QFD, or in other words The House of Quality method that will provide this. In this paper; considering the quality function deployment, how the chose of material are done in mechanical engineering applications will be explained.

  14. A Biofilm Treatment Approach for Produced Water from Hydraulic Fracturing Using Engineered Microbial Mats

    Science.gov (United States)

    Akyon, B.; Stachler, E.; Bibby, K. J.

    2015-12-01

    Hydraulic fracturing results in large volumes of wastewater, called "produced water". Treatment of produced water is challenged by its high salt, organic compound, and radionuclide concentrations. Current disposal approaches include deep well injection and physical-chemical treatment for surface disposal; however, deep well injection has been recently linked to induced seismicity and physical-chemical treatments suffer from fouling and high cost. The reuse of the produced water has emerged as a desirable management option; however, this requires pretreatment to generate a water of usable quality and limit microbial activity. Biological treatment is an underexplored area in produced water management and has the potential to remove organics and reduce overall costs for physiochemical treatment or reuse. Suspended growth biological treatment techniques are known to be limited by salinity motivating a more robust biofilm approach: 'microbial mats'. In this study, we used engineered microbial mats as a biofilm treatment for the produced water. Evaluation of the biodegradation performance of microbial mats in synthetic and real produced waters showed microbial activity at up to 100,000 mg/L TDS concentration (three times the salt concentration of the ocean). Organic removal rates reached to 1.45 mg COD/gramwet-day at 91,351 mg/L TDS in real produced water samples and initial evaluation demonstrated the potential for field-scale application. Metagenomic analyses of microbial mats demonstrated an adaptive shift in the microbial community treating different samples, suggesting the wide applicability of this treatment approach for produced waters with varying chemical composition. On-going studies focus on the evaluation of the removal of the organics and the contaminants of high concern in produced water using microbial mats as well as the effect of the biofilm growth conditions on the biodegradation in changing salt concentrations.

  15. Hydraulic Evaluation of Marmet Lock Filling and Emptying System, Kanawha River, West Virginia

    Science.gov (United States)

    2015-04-01

    Army Engineer Waterways Experiment Station. Headquarters, U.S. Army Corps of Engineers. 1975. Hydraulic design of lock culvert valves . Engineer Manual ...operations with various valve operations was computed. The numerical model results indicate that the hydraulic conditions are not significantly...2 1.3 Vertical-Lift Valves

  16. Mechanical engineering capstone senior design textbook

    Science.gov (United States)

    Barrett, Rolin Farrar, Jr.

    This textbook is intended to bridge the gap between mechanical engineering equations and mechanical engineering design. To that end, real-world examples are used throughout the book. Also, the material is presented in an order that follows the chronological sequence of coursework that must be performed by a student in the typical capstone senior design course in mechanical engineering. In the process of writing this book, the author surveyed the fifty largest engineering schools (as ranked by the American Society of Engineering Education, or ASEE) to determine what engineering instructors are looking for in a textbook. The survey results revealed a clear need for a textbook written expressly for the capstone senior design course as taught throughout the nation. This book is designed to meet that need. This text was written using an organizational method that the author calls the General Topics Format. The format gives the student reader rapid access to the information contained in the text. All manufacturing methods, and some other material presented in this text, have been presented using the General Topics Format. The text uses examples to explain the importance of understanding the environment in which the product will be used and to discuss product abuse. The safety content contained in this text is unique. The Safety chapter teaches engineering ethics and includes a step-by-step guide to resolving ethical conflicts. The chapter includes explanations of rules, recommendations, standards, consensus standards, key safety concepts, and the legal implications of product failure. Key design principles have been listed and explained. The text provides easy-to-follow design steps, helpful for both the student and new engineer. Prototyping is presented as consisting of three phases: organization, building, and refining. A chapter on common manufacturing methods is included for reference.

  17. When participatory workspace design meets engineering design in collaborative events

    DEFF Research Database (Denmark)

    Broberg, Ole

    2008-01-01

    The Danish Workspace Design research program has developed and tested a new concept for ergonomists to intervene in design processes. In the case of an industrial manufacturer two sets of workshops were applied. The first set was based on a layout design game. The second set was use scenarios...... in which the future work processes and ergonomics were simulated. These workshops succeeded in reframing the engineering design project to include ergonomics and work processes. A layout game board, documents with schematic representations and a production manager turned out to be appropriate transmitters...... of insights and results from the workshop to the engineering design process....

  18. 3D Blade Hydraulic Design Method of the Rotodynamic Multiphase Pump Impeller and Performance Research

    Directory of Open Access Journals (Sweden)

    Yongxue Zhang

    2014-02-01

    Full Text Available A hydraulic design method of three-dimensional blade was presented to design the blades of the rotodynamic multiphase pump. Numerical simulations and bench test were conducted to investigate the performance of the example impeller designed by the presented method. The results obtained from the bench test were in good agreement with the simulation results, which indicated the reasonability of the simulation. The distributions of pressure and gas volume fraction were analyzed and the results showed that the designed impeller was good for the transportation of mixture composed of gas and liquid. In addition, the advantage of the impeller designed by the presented method was suitable for using in large volume rate conditions, which were reflected by the comparison of the head performance between this three-dimensional design method and another one.

  19. Dynamics and design of a power unit with a hydraulic piston actuator

    Science.gov (United States)

    Misyurin, S. Yu.; Kreinin, G. V.

    2016-07-01

    The problem of the preselection of parameters of a power unit of a mechatronic complex on the basis of the condition for providing a required control energy has been discussed. The design of the unit is based on analysis of its dynamics under the effect of a special-type test conditional control signal. The specific features of the approach used are a reasonably simplified normalized dynamic model of the unit and the formation of basic similarity criteria. Methods of designing a power unit with a hydraulic piston actuator that operates in point-to-point and oscillatory modes have been considered.

  20. Design of computer controlled combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R.; Mueller, N. [Darmstadt University of Technology (Germany). Inst. of Automatic Control

    2003-12-01

    Globalization and growing new markets, as well as increasing emission and fuel consumption requirements, force the car manufacturers and their suppliers to develop new engine control strategies in shorter time periods. This can mainly be reached by development tools and an integrated hardware and software environment enabling rapid implementation and testing of advanced engine control algorithms. The structure of a rapid control prototyping (RCP) system is explained, which allows fast measurement signal evaluation, and rapid prototyping of advanced engine control algorithms. A hardware-in-the-loop simulator for diesel engine control design is illustrated, simulation results for a 40 tons truck are presented. Providing efficient engine models for the proposed development tools, a dynamic local linear neural network approach is explained and applied for modelling the NO{sub x} emission characteristics of a 1.9 1 direct injection diesel engine. Furthermore the application of a RCP system is exemplified by the application of combustion pressure based closed-loop ignition timing control for a SI engine. Experimental results are shown for a 1.01 SI engine on a dynamic engine test stand. (author)

  1. The Engineering Process in Construction & Design

    Science.gov (United States)

    Stoner, Melissa A.; Stuby, Kristin T.; Szczepanski, Susan

    2013-01-01

    Recent research suggests that high-impact activities in science and math classes promote positive attitudinal shifts in students. By implementing high-impact activities, such as designing a school and a skate park, mathematical thinking can be linked to the engineering design process. This hands-on approach, when possible, to demonstrate or…

  2. An Architecture for Learning Design Engines

    NARCIS (Netherlands)

    Vogten, Hubert; Koper, Rob; Martens, Harrie; Tattersall, Colin

    2005-01-01

    Vogten, H., Koper, R., Martens, H. & Tattersall, C. (2005). An Architecture for Learning Design Engines. In: Koper, R. & Tattersall, C., Learning Design: A Handbook on Modelling and Delivering Networked Education and Training (pp. 75-90). Berlin-Heidelberg: Springer Verlag.

  3. An Architecture for Learning Design Engines

    NARCIS (Netherlands)

    Vogten, Hubert; Koper, Rob; Martens, Harrie; Tattersall, Colin

    2005-01-01

    Vogten, H., Koper, R., Martens, H. & Tattersall, C. (2005). An Architecture for Learning Design Engines. In: Koper, R. & Tattersall, C., Learning Design: A Handbook on Modelling and Delivering Networked Education and Training (pp. 75-90). Berlin-Heidelberg: Springer Verlag.

  4. Risk Assessment in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    M. Holický

    2003-01-01

    Full Text Available Traditional methods for designing of civil engineering structures and other engineering systems are frequently based on the concept of target probability of failure. However, this fundamental quantity is usually specified on the basis of comparative studies and past experience only. Moreover, probabilistic design methods suffer from several deficiencies, including lack of consideration for accidental and other hazard situations and their consequences. Both of these extreme conditions are more and more frequently becoming causes of serious failures and other adverse events. Available experience clearly indicates that probabilistic design procedures may be efficiently supplemented by a risk analysis and assessment, which can take into account various consequences of unfavourable events. It is therefore anticipated that in addition to traditional probabilistic concepts the methods of advanced engineering design will also commonly include criteria for acceptable risks.

  5. CREATIVE DESIGN BASED ON KNOWLEDGE MANAGEMENT IN ENGINEERING DESIGN

    Institute of Scientific and Technical Information of China (English)

    LIANG Jun; JIANG Zuhua; ZHEN Lu; SU Hai; WANG Kuoming

    2007-01-01

    To support and serve engineering design, creative design based on knowledge management is proposed. The key knowledge factors of creative design are analyzed and discussed, and knowledge extraction tools are utilized to distill the important knowledge to serve for knowledge resource of creative design. The implementation of creative design mode is described and executed, which can promote the intelligent asset of the enterprise and shorten the period of creative design. With this study, design afflatus and conceptual design can be achieved expediently and effectively.

  6. Thermal-hydraulic design and transient evaluation of a small long-life HTR

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ming [Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Kloosterman, Jan Leen, E-mail: j.l.kloosterman@tudelft.nl [Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2013-02-15

    Highlights: ► We present the thermal-hydraulic evaluations of a small, long-life and block-type HTR using the DALTON/THERMIX code system. ► A cross section generation methodology is developed and verified for the diffusion calculations of the small HTR. ► The thermal-hydraulic characteristics of the small HTR during pressurized loss of forced-cooling incidents are compared with depressurized loss of forced-cooling ones. ► The thermal-hydraulic characteristics of a cylindrical core are compared with an annular one. ► Thermal power limit of the small HTR is investigated based on depressurized loss of forced-cooling incidents. -- Abstract: Small long-life high temperature gas-cooled reactors (HTRs) may provide electricity or heat for remote areas or industrial users in developed and/or developing countries. Moreover, small HTRs have advantages over large nuclear reactors of demonstrated inherent safety, transportability, modular construction, and flexible site selection. This paper presents the thermal-hydraulic evaluations of the U-Battery, which is a small, long-life and block-type HTR using the DALTON/THERMIX code system. The thermal-hydraulic characteristics of a cylindrical design and an annular design of the U-Battery were evaluated for loss of forced-cooling (LOFC) incidents including depressurized LOFC (DLOFC) and pressurized LOFC (PLOFC) incidents. The calculations show that the stronger natural circulation during the PLOFC makes the reactor core cool faster than during the DLOFC, flattens the radial solid temperature distribution, and transfers more heat from the hot regions (bottom and center of the reactor core) to cold regions (top and periphery of the reactor core). Although the natural circulation in the reactor core is so weak that it is neglected during the DLOFC, the decay heat is removed passively by conduction without any violation of the temperature limits for the 20 MWth U-Battery. The comparisons of the cylindrical and annular reactor

  7. The use of Norilsk region’s sulfur and hes ash for hydraulic engineering and reconstruction (rus

    Directory of Open Access Journals (Sweden)

    Lichman N.V.

    2011-12-01

    Full Text Available As a result of the industrial activity millions of tons of industrial wastes are piled in the industrially developed countries. They occupy huge spaces, worsen ecological situation and require proper recovery.The paper contains the information about the ways of technical sulfur and ash recovery from the thermal power station which are used for obtaining artificial fillers and as components in the hydraulic concretes. Comparative characteristics that identify preferential parameters of sulfur concrete with respect to cement concretes are presented. Also the possibility of using technical sulfur and compositions based on it in hydraulic engineering as an anti-screen were investigated. Studies have revealed the fundamental possibility of obtaining high-quality sulfur compounds on the basis of industrial wastes and their field of application was determined.

  8. Reliability and safety of the K Reactor cooling system: Part 2, Engineering analysis of hydraulic and mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, R.H.

    1960-04-04

    Subsequent to the recent formulation and adoption of safety criteria for reactor cooling systems, there appeared the need for an independent evaluation of the safety and reliability of the K-Reactor cooling system in terms of these criteria. The primary, secondary and last-ditch cooling systems of this reactor involve a strong inter-dependence between electrical and hydraulic components of the water plant. Because of the complexity of inter-relationships between these components, the analysis was divided into two parallel studies which were accomplished during the simmer of 1959. F. D. Robbins has presented his analysis of the electrical power and control system in HW-61887. This report deals with an engineering analysis of the hydraulic and mechanical aspects of the reliability and safety of the K-Reactor Cooling System. The system, as described in this report, is that which existed during the simmer of 1959, prior to modification under Project CG-775 (now Project CG-883).

  9. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  10. Markup in Engineering Design: A Discourse

    Directory of Open Access Journals (Sweden)

    Shaofeng Liu

    2010-03-01

    Full Text Available Today’s engineering companies are facing unprecedented competition in a global market place. There is now a knowledge intensive shift towards whole product lifecycle support, and collaborative environments. It has become particularly important to capture information, knowledge and experiences about previous design and following stages during their product lifecycle, so as to retrieve and reuse such information in new and follow-on designs activities. Recently, with the rapid development and adoption of digital technologies, annotation and markup are becoming important tools for information communication, retrieval and management. Such techniques are being increasingly applied to an array of applications and different digital items, such as text documents, 2D images and 3D models. This paper presents a state-of-the-art review of recent research in markup for engineering design, including a number of core markup languages and main markup strategies. Their applications and future utilization in engineering design, including multi-viewpoint of product models, capture of information and rationale across the whole product lifecycle, integration of engineering design processes, and engineering document management, are comprehensively discussed.

  11. Hydraulic design and analysis of the saxo-type vertical axial turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hofler, Edvard; Gale, Janez; Bergant, Anton

    2010-07-01

    The design of the blade geometry of a wind turbine is highly important as it influences the power generation. The aim of this study is to introduce a method for hydraulic design and analysis of the blade geometry of a highly specific speed runner of the Saxo-type double-regulated vertical axial turbine. The streamline curvature method (SCM) was used to develop four blade shapes which were analyzed with computational fluid dynamics (CFD) tools and the best one chosen in term of turbine efficiency and cavitational characteristics. Results demonstrated that the physical shape of the blade can be found for the design duty point in a rapid and transparent way by using the SCM method with no adjustments required to use the CFD methods. This study proved that the SCM design procedure developed herein can be used to accurately design runner blades.

  12. Assembly design system based on engineering connection

    Science.gov (United States)

    Yin, Wensheng

    2016-12-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  13. Breadboard development of a hydraulically coupled free piston engine heat pump compressor

    Science.gov (United States)

    Marusak, T. J.

    1984-11-01

    The free piston Stirling engine (FPSE) was considered as a candidate for a thermally activated heat pump because of its potential for high efficiency coupled with long life and high reliability. The distinguishing features of the FPSE, one moving part and hermatic separation of the power cycle and refrigeration cycle working fluids, makes it ideally suited for a heat pump application. However, two major designs challenges have kept the FPSE in the realm of laboratory rather than product development. These challenges involve: effective control of a tuned resonant system over a wide range of loads and hermatic coupling of the driver and driven mechanical members.

  14. Expert vs. Novice: Problem Decomposition/Recomposition in Engineering Design

    OpenAIRE

    Ting, Song

    2014-01-01

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and au...

  15. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  16. Knowledge management in the engineering design environment

    Science.gov (United States)

    Briggs, Hugh C.

    2006-01-01

    The Aerospace and Defense industry is experiencing an increasing loss of knowledge through workforce reductions associated with business consolidation and retirement of senior personnel. Significant effort is being placed on process definition as part of ISO certification and, more recently, CMMI certification. The process knowledge in these efforts represents the simplest of engineering knowledge and many organizations are trying to get senior engineers to write more significant guidelines, best practices and design manuals. A new generation of design software, known as Product Lifecycle Management systems, has many mechanisms for capturing and deploying a wider variety of engineering knowledge than simple process definitions. These hold the promise of significant improvements through reuse of prior designs, codification of practices in workflows, and placement of detailed how-tos at the point of application.

  17. Hydraulic design and pre-whirl regulation law of inlet guide vane for centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new hydraulic design method of three-dimensional guide vane for centrifugal pump is proposed on the assumption that the fluid at the outlet of guide vane satisfies the uniform velocity moment condition.The geometry of blade is controlled by the distributed rule of blade angles along the meridional streamline which is described by a fourth-order polynomial.Experiment results demonstrate that the designed guide vane can overcome the drawback of two-dimensional guide vane,enlarge the high efficiency scope and improve the hydraulic performance of centrifugal pump on the off-design operation conditions.In comparison with the performance of the centrifugal pump without inlet guide vane,the peak value of efficiency can be enhanced by 2.13% after the three-dimensional guide vane was being installed.The three-dimensional entire flow field of the centrifugal pump with inlet guide vane is simulated,and the basic principle and mechanism of inlet guide vane pre-whirl regulation are analyzed.The validity of design method has been proved.

  18. Optimal design of the front linkage of a hydraulic excavator for multi-objective function

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Won; Jung, Seung Min; Kim, Jong Won [Seoul National University, Seoul (Korea, Republic of); Kim, Jin Uk [Doosan Infracore, Incheon (Korea, Republic of); Seo, Tae Won [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The workspace, working velocity, excavating force, and load capacity of a hydraulic excavator play critical roles in the performance of the excavator for various tasks. This paper presents an optimal design of the front linkage of an excavator to maximize the performances of several indices simultaneously. A multi-objective function is defined to increase the excavator's workspace, working velocity, excavating force, and load capacity simultaneously. The workspace is defined by using four geometrical indices and the working velocity is defined by the amount of time needed to perform one cycle composed of digging and dumping. The excavating force consists of two forces, and the load capacity is defined by using the minimum values of three types with specific operations. A total of 10 indices define objective function with each weight, and pin-points of the front linkage are the design parameters, including joint positions of links and hydraulic actuators. A two-step optimization procedure is considered based on a new method called the hybrid Taguchi-random coordinate search algorithm. The results indicate a 3.43% increase in performance relative to the initial design parameters of a commercial excavator. More specifically, the excavator's workspace, working velocity, excavating force, and load capacity increase by 5.55%, 0.14%, 5.46%, and 0.33%, respectively. These improved design parameters can be applied to next generation excavators.

  19. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    Science.gov (United States)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  20. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  1. Data-driven engineering design research: Opportunities using open data

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be describe...

  2. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    Science.gov (United States)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  3. Production engineering jig and tool design

    CERN Document Server

    Jones, E J H

    1972-01-01

    Production Engineering: Jig and Tool Design focuses on jig and tool design as part of production engineering and covers topics ranging from inspection and gauging to multiple and consecutive tooling, tool calculation and development of form tools, deep-hole boring, and grinding-wheel form-crushing. Air and oil operated fixtures, negative rake machining, and the economics of jig and fixture practice are also discussed. This text is comprised of 22 chapters; the first of which provides an overview of the function and organization of the jig and tool department. Attention then turns to the subjec

  4. ENGINEERING DESIGN USING STANDARD CATALOGUES

    Directory of Open Access Journals (Sweden)

    URDEA Mihaela

    2015-06-01

    Full Text Available This paper highlights various types of pre-existing parts in SolidWorks and CATIA referring to the possibility of creating new customized parts or blocks. These parts were intended to help those who work in this field and increase the efficiency of designing. For example, they are used in assemblies with bolts, screws, nuts and washers modeled in SolidWorks and CATIA. These software use special tools to add rapidly fasteners to the available holes features in assemblies. The work also presents the possibility of accessing existing parts libraries created by the users or specialized companies and posted on the Internet. In order to illustrate this activity with standardized components, flexible couplings are used.

  5. Advantages of variable-speed operation of hydraulic turbo-engines; Vorteile durch den drehzahlvariablen Betrieb von hydraulischen Stroemungsmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Harbort, T. [Stuttgart Univ. (Germany). Inst. fuer Stroemungsmechanik und Hydraulische Stroemungsmaschinen

    1997-12-31

    The performance of current hydraulic turbo-engines in the variable speed sector is monitored and judged. The study covers radial and axial engines as well as Pelton turbines. Variable-speed operation of hydraulic turbo-engines can be realized by means of different combinations of electrical rotating machines and frequency converters. The operating range of the frequency converter plays an important role in the optimization of performance and is taken into account. The smoothness of run of reaction turbines and their cavitation performance can be enhanced by speed regulation. But above all, efficiency is more or less substantially enhanced during partial load or in the case of greatly varying heights of drop. The latter holds true also of Pelton turbines. (orig.) [Deutsch] Das Betriebsverhalten der gaengigen hydraulischen Stroemungsmaschinen wird in Hinblick auf den drehzahlvariablen Betrieb erfasst und beurteilt. Die Untersuchung erfolgt fuer Radialmaschinen, Axialmaschinen und Peltonturbinen. Der drehzahlvariable Betrieb hydraulischer Stroemungsmaschinen kann mit verschiedenen Kombinationen von elektrischen Maschinen und Frequenzumrichtern realisiert werden. Der Arbeitsbereich des Frequenzumrichters spielt eine wichtige Rolle fuer die Optimierung des Betriebsverhaltens und wird beruecksichtigt. Bei Ueberdruckturbinen kann man durch Drehzahlregelung eine groessere Laufruhe sowie ein guenstigeres Kavitationsverhalten erreichen. Vor allem aber sind im Teillastbereich oder bei stark schwankenden Fallhoehen mehr oder weniger grosse Wirkungsgradgewinne erzielbar. Das letztere gilt auch fuer Peltonturbinen. (orig.)

  6. Design of A Hydraulic Power Take-off System for the Wave Energy Device with An Inverse Pendulum

    Institute of Scientific and Technical Information of China (English)

    张大海; 李伟; 赵海涛; 鲍经纬; 林勇刚

    2014-01-01

    This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

  7. Climate Changes and their Influence on the Design of Hydraulic Structures from Romania

    Directory of Open Access Journals (Sweden)

    Florin Trofin

    2013-09-01

    Full Text Available During the last decades, the human being influenced environmentally the Earth, causing global environmental changes of such a size that have become global phenomena. These changes include the climate, ozone layer depletion, biogeochemical cycles, hydrological cycle, and water resources, raising the ocean levels or thermohaline circulation. The hydrological cycle and water resources changes have significant effects on the design of hydraulic structures, provided they are exploited in the presence or absence of major climatic factors, such as water, air, or soil.

  8. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a DTU-AAU hydraulic robot ¿Thor¿, and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP...

  9. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes.

  10. A fully-coupled geomechanics and flow model for hydraulic fracturing and reservoir engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Charoenwongsa, S.; Kazemi, H.; Miskimins, J.; Fakcharoenphol [Colorado School of Mines, Golden, CO (United States)

    2010-07-01

    A fully coupled geomechanics flow model was used to assess how the changes in pore pressure and temperature influence rock stresses in tight gas reservoirs. The finite difference method was used to develop simulations for phases, components, and thermal stresses. A wave component was used to model the propagation of the strain displacement front as well as changes in stress with time. Fluid and heat flow volumes were modelled separately from rock formation properties. The influence of hydraulic fracturing on stress distributions surrounding the fracture was investigated as well as the effect of filter cake and filtrate. Results of the study showed that significant changes in shear stresses near hydraulic fractures occur as a result of hydraulic fracture face displacement perpendicular to the fracture face. While temperature effects also caused changes in stress distributions, changes in pore pressure did not significantly impact shear stresses as the filtrate did not travel very far into the reservoir. 17 refs., 17 figs.

  11. DESIGNING HYDRAULIC AIR CHAMBER IN WATER TRANSMISSION SYSTEMS USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Abdorahim Jamal

    2016-09-01

    Full Text Available Transient flow control in Water Transmission Systems (WTS is one of the requirements of designing these systems. Hence, among control equipment, air chambers offer the best solution to control transient flow effects, i.e. both prevents water column separation and absorbs pressure increase. It is essential to carry out an accurate and optimized design of air chambers, not only due to high costs of their manufacturing but also their important protective role. Accordingly, hydraulic design parameters comprise tank volume, diameter of nozzle and coefficients of inflow and outflow of nozzle. In this paper, it is intended to optimize these parameters in order to minimize manufacturing costs. On the other hand, maximum and minimum pressures in main pipeline are considered as constraints which shall fall in allowed range. Therefore, a model has been developed which is a combination of a hydraulic simulation model of WTS and an optimization model based on genetic algorithm. This model is first applied to WTS of Dehgolan-Ghorveh plain as a case study. Results of this research demonstrate that based on suggested model, negative wave creation and pressure increase in pipeline is prevented as well as decrease in manufacturing costs of air chamber.

  12. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  13. 远洋船用伸缩折叠起重机液压系统设计%Marine telescopic folding crane hydraulic system design

    Institute of Scientific and Technical Information of China (English)

    卢志珍; 倪学虎; 舒希勇; 王成龙

    2012-01-01

    在分析伸缩折叠起重机对液压系统要求的基础上,针对起重机技术参数及客户要求提出了液压系统设计的思路.对关键液压元件——液压泵、液压马达、液压缸进行了计算选型,设计了液压原理图,并阐述了起重机液压回路的工作原理.%Based on the analysis of telescopic folding crane hydraulic system requirements,put forward the hydraulic system design thinking according to crane technical parameters and requirements of customers. Calculation and type selection of the key hydraulic components------hydraulic pump and hydraulic motor, hydraulic cylinder, design hydraulic principle diagram and expoundscrane hydraulic loop principle of work.

  14. Biocatalytic Process Design and Reaction Engineering

    Directory of Open Access Journals (Sweden)

    R. Wohlgemuth

    2017-07-01

    Full Text Available Biocatalytic processes occurring in nature provide a wealth of inspiration for manufacturing processes with high molecular economy. The molecular and engineering aspects of bioprocesses converting available raw materials into valuable products are therefore of much industrial interest. Modular reaction platforms and straightforward working paths, from the fundamental understanding of biocatalytic systems in nature to the design and reaction engineering of novel biocatalytic processes, have been important for shortening development times. Building on broadly applicable reaction platforms and tools for designing biocatalytic processes and their reaction engineering are key success factors. Process integration and intensification aspects are illustrated with biocatalytic processes to numerous small-molecular weight compounds, which have been prepared by novel and highly selective routes, for applications in the life sciences and biomedical sciences.

  15. Design of software engineering teaching website

    Science.gov (United States)

    Li, Yuxiang; Liu, Xin; Zhang, Guangbin; Liu, Xingshun; Gao, Zhenbo

    "􀀶oftware engineering" is different from the general professional courses, it is born for getting rid of the software crisis and adapting to the development of software industry, it is a theory course, especially a practical course. However, due to the own characteristics of software engineering curriculum, in the daily teaching process, concerning theoretical study, students may feel boring, obtain low interest in learning and poor test results and other problems. ASPNET design technique is adopted and Access 2007 database is used for system to design and realize "Software Engineering" teaching website. System features mainly include theoretical teaching, case teaching, practical teaching, teaching interaction, database, test item bank, announcement, etc., which can enhance the vitality, interest and dynamic role of learning.

  16. Defining Interactions and Interfaces in Engineering Design

    DEFF Research Database (Denmark)

    Parslov, Jakob Filippson

    This PhD thesis focuses on the understanding and definition of interactions and interfaces during the architectural decomposition of complex, multi-technological products. The Interaction and Interface Framework developed in this PhD project contribute to the field of engineering design research......’ across any engineering discipline for describing and communicating about interactions and interfaces in engineering design. The framework contains classifications of three key terms; interaction, interaction mechanism, and interface. Due to the first principles, physics-­based approach to deriving...... of a product. The framework further proposes an 8-­step architecting approach explicitly articulating how to systematically apply the framework top-­‐down thus enabling complete and unambiguous descriptions of interactions and interfaces throughout the system. A tool called an Interaction Specification Wheel...

  17. Bioreactor Design for Tendon/Ligament Engineering

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  18. Software engineering design theory and practice

    CERN Document Server

    Otero, Carlos

    2012-01-01

    … intended for use as a textbook for an advanced course in software design. Each chapter ends with review questions and references. … provides an overview of the software development process, something that would not be out of line in a course on software engineering including such topics as software process, software management, balancing conflicting values of stakeholders, testing, quality, and ethics. The author has principally focused on software design though, extracting the design phase from the surrounding software development lifecycle. … Software design strategies are addressed

  19. Non-linear hydraulic properties of woodchips necessary to design denitrification beds

    Science.gov (United States)

    Ghane, Ehsan; Feyereisen, Gary W.; Rosen, Carl J.

    2016-11-01

    Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds with optimum nitrate removal, a better understanding of flow in denitrification beds is needed. The main objectives of this study were to characterize the hydraulic properties of old degraded woodchips and provide a better understanding of the factors affecting flow. To achieve this goal, we conducted constant-head column experiments using old woodchips that were excavated from a four-year old denitrification bed near Willmar, Minnesota, USA. For Izbash's equation, the non-Darcy exponent (n) ranged from 0.76 to 0.87 that indicates post-linear regime, and the permeability coefficient (M10) at 10°C ranged from 0.9 to 2.6 cm s-1. For Forchheimer's equation, the intrinsic permeability of 5.6 × 10-5 cm2 and ω constant of 0.40 (at drainable porosity of 0.41) closely resembled the in-situ properties found in a previous study. Forchheimer's equation was better than that of Izbash's for describing water flow through old woodchips, and the coefficients of the former provided stronger correlations with drainable porosity. The strong correlation between intrinsic permeability and drainable porosity showed that woodchip compaction is an important factor affecting water flow through woodchips. Furthermore, we demonstrated the importance of temperature effects on woodchip hydraulics. In conclusion, the hydraulic properties of old woodchips should be characterized using a non-Darcy equation to help design efficient systems with optimum nitrate removal.

  20. Optimal design of hydraulic manifold blocks based on niching genetic simulated annealing algorithm

    Institute of Scientific and Technical Information of China (English)

    Jia Chunqiang; Yu Ling; Tian Shujun; Gao Yanming

    2007-01-01

    To solve the combinatorial optimization problem of outer layout and inner connection integrated schemes in the design of hydraulic manifold blocks(HMB),a hybrid genetic simulated annealing algorithm based on niche technology is presented.This hybrid algorithm,which combines genetic algorithm,simulated annealing algorithm and niche technology,has a strong capability in global and local search,and all extrema can be found in a short time without strict requests for preferences.For the complex restricted solid spatial layout problems in HMB,the optimizing mathematical model is presented.The key technologies in the integrated layout and connection design of HMB,including the realization of coding,annealing operation and genetic operation,are discussed.The framework of HMB optimal design system based on hybrid optimization strategy is proposed.An example is given to testify the effectiveness and feasibility of the algorithm.

  1. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  2. Concurrent Engineering Design Using Intelligent Agents.

    Science.gov (United States)

    Parkinson, Brian

    1998-01-01

    Describes Design Builder, interactive multimedia software that was developed to enable undergraduate engineers to experience working in a concurrent environment without direct and specialized teaching-staff support, and to provide an interactive and intelligent simulation environment from which users may develop a culture that introduces…

  3. Practical stress analysis in engineering design

    CERN Document Server

    Huston, Ronald

    2008-01-01

    Presents the application of engineering design and analysis based on the approach of understanding the physical characteristics of a given problem and then modeling the important aspects of the physical system. This book covers such topics as contact stress analysis, singularity functions, gear stresses, fasteners, shafts, and shaft stresses.

  4. Preliminary thermal-hydraulic design and simulation for hybrid breeder blanket%聚变-快裂变增殖堆包层初步热工水力学设计分析

    Institute of Scientific and Technical Information of China (English)

    王小勇; 栗再新; 赵奉超; 赵周; 武兴华; 王琦杰

    2014-01-01

    Thermal-hydraulic design and analysis for the new conceptual design of fusion-fission breeding reactor using casing pipes for fuel assembly was done. Based on typical thermal-hydraulic design parameters, preliminary thermal-hydraulic design for the blanket was proposed. The corresponding temperature distribution and pressure distribution were obtained using thermal-hydraulic codes, CFX. The simulation results showed that maximum temperature of the materials were all below their corresponding temperature limits, coolant temperature at the outlet was higher than 773℃, and pressure drop of the coolant could satisfy engineering requirement. The reasonability of this thermal-hydraulic design was preliminarily verified.%对新提出的套管结构聚变-快裂变增殖堆包层概念设计方案进行了热工水力学分析和设计,给出了典型的热工设计参数,并结合大型热工水力学软件CFX对其进行了温度场和压力分布的模拟分析。分析结果表明,材料温度均已低于许用温度,冷却剂出口温度高于773K,冷却剂压降也符合工程上的要求,初步验证了增殖堆包层设计的合理性。

  5. Investigation of Desso GrassMaster® as application in hydraulic engineering

    NARCIS (Netherlands)

    Steeg, van der P.; Paulissen, M.P.C.P.; Roex, E.; Mommer, L.

    2015-01-01

    Dessa GrassMaster® is a reinforced grass system which is applied successfully on sports fields and enables to use a sports field more intensively than a normal grass field. In this report the possibility of an application of Dessa GrassMaster®in hydraulic conditions, with a focus on grass dikes, is

  6. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near the INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.

  7. Thermal-hydraulic performance analysis for the conceptual design of Korean HCCR TBMset

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon [KAERI, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The purpose of this document is to provide the thermal-hydraulic (TH) analyses results of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) including TBM-shield, which is called TBM-set. The analyses were performed for Electro- Magnetic Module (EM-TBM) and INTegral Module (INT-TBM) including TBM-shield, respectively, with the same model and meshes according to the ITER operation conditions of H/He and D-T phases, respectively. Thermal-hydraulic performance of the EM- and INTTBM- sets were analysed using the fixed CATIA model for CDR. Fine mesh with 15.9 million elements for solid and 44.7 million elements for fluid was used for ANSYS-CFX 14.5 simulation and coarse mesh with 7.6 million elements for solid is prepared for the thermomechanical analysis. The boundary conditions such as heat flux, nuclear heating, and coolant conditions were determined considering the ITER operation condition and designed cooling scheme. The analysis results and conclusions are as follows; (1) It is confirmed that both EM- and INT-TBM performance results meet the design requirements, which were determined by the material characteristics. (2) The temperature results with fine mesh of both EMand INT-TBM-sets were successfully transferred to those of coarse mesh for the thermo-mechanical analysis.

  8. Factors Related to Successful Engineering Team Design

    Science.gov (United States)

    Nowaczyk, Ronald H.; Zang, Thomas A.

    1998-01-01

    The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.

  9. Instructional design considerations promoting engineering design self-efficacy

    Science.gov (United States)

    Jackson, Andrew M.

    Engineering design activities are frequently included in technology and engineering classrooms. These activities provide an open-ended context for practicing critical thinking, problem solving, creativity, and innovation---collectively part of the 21st Century Skills which are increasingly needed for success in the workplace. Self-efficacy is a perceptual belief that impacts learning and behavior. It has been shown to directly impact each of these 21st Century Skills but its relation to engineering design is only recently being studied. The purpose of this study was to examine how instructional considerations made when implementing engineering design activities might affect student self-efficacy outcomes in a middle school engineering classroom. Student responses to two self-efficacy inventories related to design, the Engineering Design Self-Efficacy Instrument and Creative Thinking Self-Efficacy Inventory, were collected before and after participation in an engineering design curriculum. Students were also answered questions on specific factors of their experience during the curriculum which teachers may exhibit control over: teamwork and feedback. Results were analyzed using Pearson's correlation coefficients, paired and independent t-tests, and structural equation modeling to better understand patterns for self-efficacy beliefs in students. Results suggested that design self-efficacy and creative thinking self-efficacy are significantly correlated, r(1541) = .783, p showed that students perceive team inclusion and feedback as significant contributors to their self-efficacy beliefs, while team diversity was not related to self-efficacy. Separate models for each predictor demonstrated good fit. Recommendations are made based on the corresponding nature of engineering design self-efficacy and creative thinking self-efficacy: strategies encouraging self-efficacy in these domains may be transferrable. Instructors are made aware of the significant impact of classroom

  10. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    Science.gov (United States)

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.

    2016-05-01

    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  11. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  12. Situational interest in engineering design activities

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2013-01-01

    The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n=46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students’ interests were investigated by means of a descript......The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n=46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students’ interests were investigated by means......-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent...

  13. Protein Design for Nanostructural Engineering: General Aspects.

    Science.gov (United States)

    Grove, Tijana Z; Cortajarena, Aitziber L

    This chapter aims to introduce the main challenges in the field of protein design for engineering of nanostructures and functional materials. First, we introduce proteins and illustrate the key characteristics that open many possibilities for the use of proteins in nanotechnology. Then, we describe the current state of the art of nanopatterning techniques and the actual needs of the emerging field of nanotechnology to develop new tools in order to achieve precise control and manipulation of elements at the nanoscale. In this sense, the increasing knowledge of protein science and advances in protein design allow to tackle current challenges such as the design of nanodevices, nanopatterned surfaces, and nanomachines. This book highlights the recent progresses of protein nanotechnology over the last decade and emphasizes the power of protein engineering through illustrative examples of protein based-assemblies and their potential applications.

  14. Educating engineering designers for a multidisciplinary future

    DEFF Research Database (Denmark)

    Contemporary companies on a global market are experiencing constantly changing business demands and increased competition. Increasing focus in product development is now put on issues like understanding users and their needs, the context where users’ activities take place and creating sustainable....... actor-network that support and supply these activities throughout the product’s life. Based on the analysis, goals are set for the improved solution and concepts are developed for a new product/service-system. This way the students are lead through engineering and socio-technical analysis tasks...... as essential competencies in product/service-system design and functional product development. References Larsson, A., Larsson, T., Leifer, L., Van der Loos, M., Feland, J. (2005), Design for Wellbeing: Innovations for People, In proceedings of 15th International Conference on Engineering Design, ICED 05...

  15. Wankel engines as steam expanders: design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Badr, O.; Naik, S.; O' Callaghan, P.W.; Probert, S.D. (Cranfield Inst. of Tech., Bedford (GB). Dept. of Applied Energy)

    1991-01-01

    Rotary Wankel engines offer several advantages compared with turbines and other positive-displacement machines as the expansion devices in low-power-output Rankine-cycle systems. So a Wankel expander was selected as the most appropriate device for a steam Rankine-engine, operating principally as a mini combined heat-and-power unit, providing a mechanical output of 5-20 kW. A computer-aided-design technique for selecting the optimal geometry and location of the ports of the expander is described: the computer programs are available from the authors. Lubrication and possible material combinations are also discussed. (author).

  16. Probabilistic Durability Analysis in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    A. Kudzys

    2000-01-01

    Full Text Available Expedience of probabilistic durability concepts and approaches in advanced engineering design of building materials, structural members and systems is considered. Target margin values of structural safety and serviceability indices are analyzed and their draft values are presented. Analytical methods of the cumulative coefficient of correlation and the limit transient action effect for calculation of reliability indices are given. Analysis can be used for probabilistic durability assessment of carrying and enclosure metal, reinforced concrete, wood, plastic, masonry both homogeneous and sandwich or composite structures and some kinds of equipments. Analysis models can be applied in other engineering fields.

  17. Design of Experiments for Food Engineering

    OpenAIRE

    Pedersen, Søren Juhl; Frosch, Stina; Kulahci, Murat; Geoffrey Vining, G.

    2015-01-01

    This work looks at the application of Design of Experiments (DoE) to Food Engineering (FE) problems in relation to quality. The field of Quality Engineering (QE) is a natural partnering field for FE due to the extensive developments that QE has had in using DoE for quality improvement especially in manufacturing industries. In the thesis the concepts concerning food quality is addressed and in addition how QE proposes to define quality. There is seen a merger in how QE’s definition of quality...

  18. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  19. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    Science.gov (United States)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response

  20. Design of canals

    CERN Document Server

    Swamee, P K

    2015-01-01

    The book presents firsthand material from the authors on design of hydraulic canals. The book discusses elements of design based on principles of hydraulic flow through canals. It covers optimization of design based on usage requirements and economic constraints. The book includes explicit design equations and design procedures along with design examples for varied cases. With its comprehensive coverage of the principles of hydraulic canal design, this book will prove useful to students, researchers, and practicing engineers. End-of-chapter pedagogical elements make it ideal for use in graduate courses on hydraulic structures offered by most civil engineering departments across the world.

  1. Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid

    Science.gov (United States)

    2016-09-01

    T. Edwards (AFRL/RQTF) Engine Mechanical Systems Branch (AFRL/RQTM) Fuels and Energy Branch (AFRL/RQTF) Turbine Engine Division Chris D...MALDONADO, Branch Chief Program Manager Fuels and Energy Branch Fuels and Energy Branch Turbine Engine Division Turbine Engine Division Aerospace...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBEREngine Mechanical Systems Branch (AFRL/RQTM) Fuels and Energy

  2. Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Wang Yeqin

    2013-06-01

    Full Text Available According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. Finally the simulation is conducted with the typical input signal, such as tracking step, sine etc. The simulation results show that,the self-tuning fuzzy PID control system can effectively improve the dynamic characteristic when the system is out of the range of the operating point compared with the traditional PID control system, there is obvious improvement in the indexes of rapidity, stability and accuracy,  and fuzzy self-tuning PID Control is more robust, and more suitable for direct drive electro-hydraulic servo system.

  3. Dynamic Analysis and Design Optimization of Series Hydraulic Hybrid System through Power Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    R. Ramakrishnan

    2014-01-01

    Full Text Available The availability of natural gas and crude oil resources has been declining over the years. In automobile sector, the consumption of crude oil is 63% of total crude oil production in the world. Hence, automobile industries are placing more emphasis on energy efficient hydraulic hybrid systems, which can replace their conventional transmission systems. Series hydraulic hybrid system (SHHS is a multidomain mechatronics system with two distinct power sources that includes prime mover and hydropneumatic accumulator. It replaces the conventional transmission system to drive the vehicle. The sizing of the subsystems in SHHS plays a major role in improving the energy efficiency of the vehicle. In this paper, a power bond graph approach is used to model the dynamics of the SHHS. The obtained simulation results indicate the energy flow during various modes of operations. It also includes the dynamic response of hydropneumatic accumulator, prime mover, and system output speed. Further, design optimization of the system is carried out to optimize the process parameters for maximizing the system energy efficiency. This leads to increase in fuel economy and environmentally friendly vehicle.

  4. A Novel Evolutionary Engineering Design Approach for Mixed-Domain Systems

    DEFF Research Database (Denmark)

    Fan, Zhun; Hu, J.; Seo, K.

    2004-01-01

    to different or mixed physical domains, such as electrical, mechanical, hydraulic, pneumatic, thermal systems and/or a mixture of them. Two important tools are used in this approach, namely, bond graphs and genetic programming. Bond graphs are useful because they are domain independent, amenable to free......This paper presents an approach to engineering design of mixed-domain dynamic systems. The approach aims at system-level design and has two key features: first, it generates engineering designs that satisfy predefined specifications in an automatic manner; second, it can design systems belonging...... structural composition, and are efficient for classification and analysis, allowing rapid determination of various types of acceptability or feasibility of candidate designs. Genetic programming, on the other hand, is a powerful tool for open-ended topological search. To prevent the premature convergence...

  5. Preliminary Design of Large Scale Sodium Thermal-Hydraulic Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Ho; Kim, Tae Joon; Eoh, Jae Hyuk; Lee, Hyeong Yeon; Lee, Jae Han; Jeong, Ji Young; Park, Su Ki; Han, Ji Woong; Yoo, Yong Hwan; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    A large scale sodium thermal-hydraulic test facility is being designed for verification of the advanced design concept of the passive decay heat removal circuit (PDRC) in a medium- or large-sized pool-type SFR. In the test, its cooling capability during the long- and short-term periods after the reactor trip will be evaluated, and also the produced experimental data will be utilized for the assessment and verification of the safety and performance analysis codes. Starting with the preliminary design of the test facility this year using KALIMER-600 as a reference reactor, the basic and the detailed designs will be made through 2011-2012 based on the demonstration reactor which is intended to be constructed by 2028 according to a long-term national SFR development plan. The installation is scheduled to be completed by the end of 2013, and the main experiments will commence from 2015 after the startup test in 2014. This paper briefly introduces the preliminary design features which were produced as a first step to assess the appropriateness of the facility design methodology.

  6. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    Science.gov (United States)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  7. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  8. Collaboration between Industrial Designers and Design Engineers - Comparing the Understanding of Design Intent.

    Science.gov (United States)

    Laursen, Esben Skov; Møller, Louise

    2015-01-01

    This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.

  9. Optimal design of Stewart platforms based on expanding the control bandwidth while considering the hydraulic system design

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Hua-yong YANG; Jun ZOU; Xiao-dong RUAN; Xin FU

    2009-01-01

    We proposed an optimal design method to expand the bandwidth for the control of large hydraulic Stewart platform. The method is based on generalized natural frequency and takes hydraulic oil into consideration. A Lagrangian formulation which considers the whole leg inertia is presented to obtain the accurate equivalent mass matrix. Using the model, the effect of leg inertia and the influence of design parameters on the generalized natural frequency are investigated. Finally, numerical examples are presented to validate and confirm the efficiency of the mathematical model. The results show that the leg inertia, especially the piston part plays an important role in the dynamics. The optimum diameter ratio of the base to the moving platform is between 2 and 3, and the optimum joint angle ratio of the base to the moving platform is about 1. The smaller joint angles and a longer leg stroke are favorable for raising system frequencies. The system oil should be preprocessed for large platforms with a requirement for good dynamic performance.

  10. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  11. Compact designer TALENs for efficient genome engineering

    OpenAIRE

    Beurdeley, Marine; Bietz, Fabian; Li, Jin; Thomas, Severine; Stoddard, Thomas; Juillerat, Alexandre; Zhang, Feng; Daniel F Voytas; Duchateau, Philippe; George H Silva

    2013-01-01

    Transcription activator-like effector nucleases are readily targetable ‘molecular scissors’ for genome engineering applications. These artificial nucleases offer high specificity coupled with simplicity in design that results from the ability to serially chain transcription activator-like effector repeat arrays to target individual DNA bases. However, these benefits come at the cost of an appreciably large multimeric protein complex, in which DNA cleavage is governed by the nonspecific FokI n...

  12. 自动上粕机液压系统设计%Design of Hydraulic System for Automatic Loading Machine

    Institute of Scientific and Technical Information of China (English)

    高军霞

    2016-01-01

    An introduction to the main functions and design principle of the hydraulic system for a automatic loading machine was presented.Based on analyzing the action and functions of the hydraulic system of the automatic loading machine, the design scheme of the hydraulic system was put forward and the circuit design process and hydraulic system working principle were introduced in detail.By practical test, the hydraulic system whose performance can meet the demand of automatic loading machine and work stably, has the good market application prospect.%介绍自动上粕机液压系统的主要功能和设计原理。在分析自动上粕机液压系统动作和功能的基础上,提出该液压系统的设计方案,详细阐述了液压系统回路设计过程以及工作原理。经实践测试:该液压系统工作运行平稳,各项性能可满足自动上粕机作业需求,具有良好的市场应用前景。

  13. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  14. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  15. The NDCX-II engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, W.L., E-mail: WLWaldron@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Abraham, W.J.; Arbelaez, D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friedman, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Galvin, J.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gilson, E.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Greenway, W.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grote, D.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Jung, J.-Y.; Kwan, J.W.; Leitner, M.; Lidia, S.M.; Lipton, T.M.; Reginato, L.L.; Regis, M.J.; Roy, P.K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sharp, W.M. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Stettler, M.W.; Takakuwa, J.H.; Volmering, J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); and others

    2014-01-01

    The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.

  16. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  17. Biomedical Engineering Strategies in System Design Space

    Science.gov (United States)

    Savageau, Michael A.

    2011-01-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a “system design space” for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further

  18. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  19. Design, manufacture and evaluation of a hydraulically installed, multi-sampling lysimeter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Scroppo, J.A.; Scroppo, G.L. [Bladon International, Inc., Oak Brook, IL (United States); Carty, R.H.; Chaimberg, M. [Institute of Gas Technology, Chicago, IL (United States); Timmons, R.D.; O`Donnell, M. [Timco Mfg., Inc., Prairie du Sac, WI (United States)

    1992-06-01

    There is a need for a quick, simple, reliable, and inexpensive on-site method for sampling soil pollutants before they reach the groundwater. Vadose zone monitoring is an important aspect of sound groundwater management. In the vadose zone, where water moves via percolation, this water medium possesses the ability to transfer hazardous wastes to the nation`s groundwater system. Obtaining samples of moisture and contaminants from the vadose zone is necessary if potential problems are to be identified before they reach the water table. Accurate determination of spatial distribution, movement, and concentrations of contaminants is essential to the selection of remediation technologies. There is a need for three-dimentional subsurface characterization technologies to identify the location of hazardous plumes and their migration. Current subsurface characterization methods for dispersed contaminants primarily involve a time consuming, expensive process for drilling wells and taking samples. With no major water flow in the vadose zone, conventional monitoring wells will not function as designed. The multi-sampling lysimeter can be readily linked with physical and chemical sensors for on-site screening. The hydraulically-installed suction lysimeter was capable of extracting soil pore liquid samples from unsaturated test soils without the need to predrill a well. Test results verified that the lysimeters installed with a hydraulic or mechanical ram were able to collect soil pore liquid samples in excess of the amount typically required for monitoring and analysis on a daily basis. Modifications to the prototype design eliminated moving parts and the need for inflatable packers. The elimination of the packer system and the use of porous nickel contributed to increased system ruggedness.

  20. The First 75 Years: History of Hydraulics Engineering at the Waterways Experiment Station

    Science.gov (United States)

    2004-01-01

    Rita Robison, "Taming the Red River," Civil Engineering 65 (1995) 6: 64-66. More detail is provided in C. Fred Pinkard , Jr., "Red River Waterway...Engineers. August 14-18, 1995 (New York: American Society of Civil Engineers, 1996), 31-35. 17. See C. Fred Pinkard , Jr. , "Red River Waterway: A...Works for Niagara Falls." In Transactions of the American Society of Civil Engineers 124 (1959): 336-51. Pinkard , C. Fred, Jr. "Red River Waterway

  1. Designing an Electro-Hydraulic Control Module for an Open-Circuit Variable Displacement Pump

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2005-01-01

    , in the form of an electric control signal, under varying working conditions, when having access to engine speed and actual pump pressure. The paper presents a model of both the pump and the control module, along with design considerations on which linear controllers are developed for a worst point...

  2. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    NARCIS (Netherlands)

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is

  3. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    NARCIS (Netherlands)

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is systematicall

  4. Engineering conceptual design of CFETR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xuebing, E-mail: pengxb@ipp.cas.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Mao, Xin [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Chen, Peiming; Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China)

    2015-10-15

    Highlights: • Three divertor structures for two plasma configurations, ITER-like and snowflake. • Property of enlarging wet area for all three divertors is analyzed. • The divertor accommodating with both the plasma configurations is unfeasible. • Divertor cooling system is developed. - Abstract: The China Fusion Engineering Test Reactor (CFETR), which is in conceptual design phase, aims at producing fusion power of 50–200 MW with tritium breeding ratio of ∼1.2 and duty cycle time of 0.3–0.5. Its designed main parameters are major/minor radii of 5.7 m/1.6 m and plasma current of 10 MA. Although the fusion power is lower than the one of ITER, the relative smaller machine dimensions and planed much higher auxiliary heating power of 100–140 MW make that the power exhausting for the CFETR divertor is a very critical issue. To solve this issue, the divertor should be better designed with advanced physical operation mode, advanced configuration/geometry or high efficient cooling structure. In the paper, much effort was put on the divertor configuration and geometry. With designed magnet system, three divertor configurations can be realized, ITER-like, snowflake and super-X. However, considering structural design feasibility and remote handling compatibility, only the first two configurations were selected for the first step of engineering design. Three divertors were designed. They have different first wall geometries to accommodate with different plasma configurations, one for the ITER-like, one for the snowflake and the third one for both the configurations. All three divertors employ the same cassette body as the support and the cooling water manifold for the first wall. This feature simplifies the interface of the divertor to other components in the vacuum vessel. Besides, the cooling structure and the remote maintenance concept are also introduced in the paper.

  5. Hydraulic System Design of Hydraulic-Driven Load Exoskeleton Robot%液压驱动型负重外骨骼机器人液压系统设计

    Institute of Scientific and Technical Information of China (English)

    周加永; 张昂; 莫新民; 赵浩; 纪平鑫

    2016-01-01

    Started from human motion characteristics, the hydraulic drive overall load exoskeleton robot skeleton structure was an-alyzed. According to the characteristics of the load exoskeleton robot, a complete hydraulic drive system was designed, and the main el-ements of the selection calculation were carried out as hydraulic system, hydraulic pumps, servo valves and hydraulic cylinders, and etc. Simhydraulics software was used to establish the simulation schematics for hydraulic system of load exoskeleton robot, study and simulation analysis were carried out for the hydraulic system, and simulation results were proved of the rational design of the hydraulic system. In the last, technology challenges faced by the hydraulic drive load exoskeleton robot are analyzed, which provide reference for further design of the hydraulic system.%从人体运动特征出发,分析了液压驱动负重外骨骼机器人的整体骨架结构。根据负重外骨骼机器人的特点要求设计了一套完整的液压传动系统,对液压系统中液压泵、伺服阀和液压缸等主要元件进行了选型计算。利用Simhydraulics软件建立了负重外骨骼机器人液压系统仿真原理图,并对液压系统进行了仿真分析研究,由仿真结果证明了所设计液压系统的合理性。最后对液压驱动型负重外骨骼机器人技术面临的挑战进行了分析,为该液压系统的深化设计提供了参考。

  6. Hydraulic engines in armoured conveyors; Motores hidraulicos en los transportadores blindados

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Fernandez, N.; Fernandez Equibar, J.L. [Hullera Vasco-Leones, S.A., Leon (Spain)

    1994-05-01

    The Sociedad Anonima Hullera Vasco-Leonesa (HVL) coal mining company in Spain is exploiting a deposit of large subvertical seams which are characterised by being highly tectonised. A very important part of the work of exploitation is developed in the depths of the mine with the aid of secondary ventilation. In the near future, which will characterise itself with the opening of the `New Mine`, this type of work will come to have a significant relevance in underground mining technology. The limitations of space and the presence of methane necessitate, as for many years, the use of pneumatic moving shields, with the great inconveniences which derive from them: reduced energy efficiency, and elevated production of dust and noise. For this HVL seek to introduce in a conventional working, at the bottom of the mine, a system of armoured conveyors driven by hydraulic units, which besides reducing and/or eliminating the problems referred to above serve, as in the past, to extend hydraulic energy into other parts of mining activity. In order to initiate the proposed investigation a pilot project will be partially financed by Ocicarbon. 5 figs.

  7. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines

    Science.gov (United States)

    Mercorelli, Paolo; Werner, Nils

    2016-10-01

    The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.

  8. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  9. Situational interest in engineering design activities

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2013-01-01

    of a descriptive interpretative analysis of qualitative data from classroom observations and informal interviews. The analysis was complemented by a self-report survey to validate findings and determine prevalence. The analysis revealed four main sources of interest: designing inventions, trial......The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n=46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students’ interests were investigated by means......-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent...

  10. Situational Interest in Engineering Design Activities

    Science.gov (United States)

    Bonderup Dohn, Niels

    2013-08-01

    The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n = 46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students' interests were investigated by means of a descriptive interpretative analysis of qualitative data from classroom observations and informal interviews. The analysis was complemented by a self-report survey to validate findings and determine prevalence. The analysis revealed four main sources of interest: designing inventions, trial-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent that students were able to self-regulate their learning strategies.

  11. Empathic engineering: helping deliver dignity through design

    Science.gov (United States)

    Hosking, Ian; Cornish, Katie; Bradley, Mike; Clarkson, P. John

    2015-01-01

    Abstract Dignity is a key value within healthcare. Technology is also recognized as being a fundamental part of healthcare delivery, but also a potential cause of dehumanization of the patient. Therefore, understanding how medical devices can be designed to help deliver dignity is important. This paper explores the role of empathy tools as a way of engendering empathy in engineers and designers to enable them to design for dignity. A framework is proposed that makes the link between empathy tools and outcomes of feelings of dignity. It represents a broad systems view that provides a structure for reviewing the evidence for the efficacy of empathy tools and also how dignity can be systematically understood for particular medical devices. PMID:26453036

  12. Design of a pictogram of the operator-hydraulic filler system

    Energy Technology Data Exchange (ETDEWEB)

    Bukhgol' ts, V.P.; Dinershtein, V.A.

    1985-09-01

    A modern hydraulic filling system is discussed which consists of two lines: the crusher and sorter preparing the filling material, and the hydraulic filling unit, which includes a mixer and a system of pulp conduits. The process chart of the hydraulic filling system without the crusher-sorter is illustrated. When the system is started, water is first flushed through the pulp conduit, gate valves with drives are opened, and the quantity of water discharged is measured by water output sensors. For effective and failure-free operation of the system, remote control and monitoring elements are introduced into the hydraulic filling system.

  13. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn

    2006-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in modelling, simulation and design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus...

  14. Factors that affect the hydraulic performance of raingardens: implications for design and maintenance.

    Science.gov (United States)

    Virahsawmy, Harry K; Stewardson, Michael J; Vietz, Geoff; Fletcher, Tim D

    2014-01-01

    Raingardens are becoming an increasingly popular technology for urban stormwater treatment. However, their hydraulic performance is known to reduce due to clogging from deposition of fine-grained sediments on the surface. This impacts on their capacity to treat urban runoff. It has been recently hypothesised that plants can help to mitigate the effect of surface clogging on infiltration. A conceptual model is therefore presented to better understand key processes, including those associated with plant cover, which influences surface infiltration mechanisms. Based on this understanding, a field evaluation was carried out to test the hypothesis that plants increase the infiltration rate, and to investigate factors that influence the deposition of fine-grained sediments within raingardens. The results show that infiltration rates around plants are statistically higher than bare areas, irrespective of the degree of surface clogging. This suggests that preferential flow pathways exist around plants. Sediment deposition processes are also influenced by design elements of raingardens such as the inlet configuration. These findings have implications for the design and maintenance of raingardens, in particular the design of the inlet configuration, as well as maintenance of the filter media surface layer and vegetation.

  15. The design of hydraulic pressure regulators that are stable without the use of sensing line restrictors or frictional dampers

    Science.gov (United States)

    Gold, H.

    1977-01-01

    A direct-acting hydraulic pressure regulator design which incorporates stability margin, response and droop margin is developed. The pressure regulator system does not involve a nonlinear sensing line restrictor (which may degrade transient response) or linear damping (which is sensitive to clearance and viscosity). The direct-acting hydraulic pressure regulator makes use of the technique of lead network stabilization (i.e., the tuned stabilizer concept). An analytically derived circuit pressure regulator is tested to study the stability limit under a parallel capacitive plus resistive load and the stabilizing effect of the tuned stabilizer.

  16. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2004-01-01

    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie® product family and equipped...

  17. Multidisciplinary Design Optimization on Conceptual Design of Aero-engine

    Science.gov (United States)

    Zhang, Xiao-bo; Wang, Zhan-xue; Zhou, Li; Liu, Zeng-wen

    2016-06-01

    In order to obtain better integrated performance of aero-engine during the conceptual design stage, multiple disciplines such as aerodynamics, structure, weight, and aircraft mission are required. Unfortunately, the couplings between these disciplines make it difficult to model or solve by conventional method. MDO (Multidisciplinary Design Optimization) methodology which can well deal with couplings of disciplines is considered to solve this coupled problem. Approximation method, optimization method, coordination method, and modeling method for MDO framework are deeply analyzed. For obtaining the more efficient MDO framework, an improved CSSO (Concurrent Subspace Optimization) strategy which is based on DOE (Design Of Experiment) and RSM (Response Surface Model) methods is proposed in this paper; and an improved DE (Differential Evolution) algorithm is recommended to solve the system-level and discipline-level optimization problems in MDO framework. The improved CSSO strategy and DE algorithm are evaluated by utilizing the numerical test problem. The result shows that the efficiency of improved methods proposed by this paper is significantly increased. The coupled problem of VCE (Variable Cycle Engine) conceptual design is solved by utilizing improved CSSO strategy, and the design parameter given by improved CSSO strategy is better than the original one. The integrated performance of VCE is significantly improved.

  18. Creativity from Constraints in Engineering Design

    DEFF Research Database (Denmark)

    Onarheim, Balder

    2012-01-01

    This paper investigates the role of constraints in limiting and enhancing creativity in engineering design. Based on a review of literature relating constraints to creativity, the paper presents a longitudinal participatory study from Coloplast A/S, a major international producer of disposable......, removal, introducing and revising. Constraints introduced late in a project contributed to the generation of new solutions to old problems, and existing solutions were creatively adopted to satisfy new constraints. This paper recommends creative constraint-handling strategies, as well as identifying...... potential directions for future research on the relationship between creativity and constraints...

  19. 基于典型工况的装载机发动机与液力变矩器匹配%Power matching on loader engine and hydraulic torque converter based on typical operating conditions

    Institute of Scientific and Technical Information of China (English)

    徐礼超; 侯学明

    2015-01-01

    determining jointly working points of different engine and torque converter matching schemes, and combined with the parameter relationships between pump impeller and turbine of hydraulic torque converter, the jointly working output characteristics of engine and torque converter were obtained, then the average turbo-shaft output power and the average engine fuel consumption rate of turbine working in high efficient area for experimental power matching scheme were calculated by using integral average method, and a contrast analysis of the corresponding calculated values had been carried out among the matching schemes of experimental power, original power and partial power. The results showed that the average turbo-shaft output power of experimental power matching scheme was respectively 17.02%and 42.59%higher than those of original scheme and partial scheme, and the average engine fuel consumption rate of experimental power matching scheme was respectively 3.80% and 8.72% lower than those of original scheme and partial scheme. Therefore, the proposed matching scheme is superior to several kinds of matching schemes commonly used in power matching at present, which provides a reference for optimum design of hydraulic torque converter and proper matching between engine and hydraulic torque converter.%针对目前发动机与液力变矩器常用匹配方案中发动机净转矩获取方法的不足,为实现发动机与液力变矩器更科学、合理的匹配,构建了装载机液压测试系统,对传感器性能进行了标定。在典型工况下开展了实机试验,应用 nSoft软件对测试数据进行处理,得到液压系统实际消耗的发动机转矩为288.76 N·m,进而提出了一种基于典型工况的发动机与液力变矩器匹配方案。根据试验用装载机发动机与液力变矩器原始特性数据,应用数据拟合方法,得到了发动机与变矩器的共同输入与输出特性。采用积分平均方法求取了涡轮工作高

  20. An integrated turbocharger design approach to improve engine performance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Turbocharging technology is today considered as a promising way for internal combustion engine energy saving and CO2 reduction.Turbocharger design is a major challenge for turbocharged engine performance improvement.The turbocharger designer must draw upon the information of engine operation conditions,and an appropriate link between the engine requirements and design features must be carefully developed to generate the most suitable design recommendation.The objective of this research is to develop a turbocharger design approach for better turbocharger matching to an internal combustion engine.The development of the approach is based on the concept of turbocharger design and interaction links between engine cycle requirements and design parameter values.A turbocharger through flow model is then used to generate the design alternatives.This integrated method has been applied with success to a gasoline engine turbocharger assembly.

  1. 基于有限元分析的2MN四柱液压机液压缸设计%Design of Hydraulic Cylinder for 2 MN Four-column Hydraulic Press Based on FEM Analysis

    Institute of Scientific and Technical Information of China (English)

    卜匀; 王会刚; 刘晓雯

    2014-01-01

    The hydraulic cylinder is a widely used actuators.Based on the design theory for hydraulic press,the structure design method of four-column hydraulic press hydraulic cylinder was introduced.Static finite element analysis of cylinder part was done.Then optimization scheme was proposed.The finite element analysis results show that the improvement design is reasonable.%液压缸是一种应用广泛的执行元件。依据液压机设计理论,介绍四柱式液压机液压缸结构设计方法,对缸筒部件进行静态有限元分析,提出优化改进方案,有限元分析结果表明改进设计合理。

  2. Capture-zone design in an aquifer influenced by cyclic fluctuations in hydraulic gradients

    Science.gov (United States)

    Zawadzki, Willy; Chorley, Don; Patrick, Guy

    2002-10-01

    Design of a groundwater pumping and treatment system for a wood-treatment facility adjacent to the tidally influenced Fraser River estuary required the development of methodologies to account for cyclic variations in hydraulic gradients. Design of such systems must consider the effects of these cyclic fluctuations on the capture of dissolved-phase contaminants. When the period of the cyclic fluctuation is much less than the travel time of the dissolved contaminant from the source to the discharge point, the hydraulic-gradient variations resulting from these cycles can be ignored. Capture zones are then designed based on the average hydraulic gradient determined using filter techniques on continuous groundwater-level measurements. When the period of cyclic fluctuation in hydraulic gradient is near to or greater than the contaminant travel time, the resulting hydraulic-gradient variations cannot be ignored. In these instances, procedures are developed to account for these fluctuations in the capture-zone design. These include proper characterization of the groundwater regime, assessment of the average travel time and period of the cyclic fluctuations, and numerical techniques which allow accounting for the cyclic fluctuations in the design of the capture zone. Résumé. L'étude d'un système de pompage et de traitement de l'eau souterraine d'une usine de traitement du bois proche de l'estuaire de la rivière Fraser, influencé par les marées, a nécessité la mise au point de méthodologies pour prendre en compte les variations cycliques de gradients hydrauliques. L'étude de tels systèmes doit considérer les effets de ces variations cycliques sur l'extraction des contaminants en phase dissoute. Lorsque la période des variations cycliques est très inférieure au temps de parcours du contaminant dissous entre la source et le point d'émergence, les variations du gradient hydraulique résultant de ces cycles peuvent être ignorées. Les zones d'extraction sont

  3. A methodology for creating ontologies for engineering design

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Kim, Sanghee; Wallace, Ken

    2005-01-01

    This paper describes a methodology for developing ontologies for engineering design. The methodology combines a number of methods from social science and computer science, together with taxonomies developed in the field of engineering design. A case study is used throughout the paper focusing upon...... the use of an ontology for searching, indexing and retrieving of engineering knowledge. An ontology for indexing design knowledge can assist the users to formulate their queries when searching for engineering design knowledge. The root concepts of the ontology were elicited from engineering designers...

  4. Design of a New Energy-saving Hydraulic Cylinder%一种新型节能液压缸的设计

    Institute of Scientific and Technical Information of China (English)

    田灵飞; 陈龙淼

    2011-01-01

    In order to improve the efficiency of hydraulic cylinder, on the basis of improving hydraulic cylinder structure and hydraulic circuit design, a new energy-saving hydraulic cylinders was designed which was a combination of piston-cylinder and plungercylinder.The hydraulic cylinder has the characteristics of saving energy and improving the efficiency of hydraulic system.%为提高液压缸的工作效率,从改进液压缸结构以及液压回路的设计出发,设计一种基于柱塞缸与活塞缸的组合式新型节能高效液压缸.使用该液压缸既能节约液压能,又能提高液压系统效率.

  5. DESIGN PATTERNS FOR SELF ADAPTIVE SYSTEMS ENGINEERING

    Directory of Open Access Journals (Sweden)

    Yousef Abuseta

    2015-07-01

    Full Text Available Self adaptation has been proposed to overcome the complexity of today's software systems which results from the uncertainty issue. Aspects of uncertainty include changing systems goals, changing resource availability and dynamic operating conditions. Feedback control loops have been recognized as vital elements for engineering self-adaptive systems. However, despite their importance, there is still a lack of systematic way of the design of the interactions between the different components comprising one particular feedback control loop as well as the interactions between components from different control loops . Most existing approaches are either domain specific or too abstract to be useful. In addition, the issue of multiple control loops is often neglected and consequently self adaptive systems are often designed around a single loop. In this paper we propose a set of design patterns for modeling and designing self adaptive software systems based on MAPE-K. Control loop of IBM architecture blueprint which takes into account the multiple control loops issue. A case study is presented to illustrate the applicability of the proposed design patterns.

  6. Diagnostic systems in DEMO: engineering design issues

    CERN Document Server

    Todd, T N

    2014-01-01

    The diagnostic systems of DEMO that are mounted on or near the torus, whether intended for the monitoring and control functions of the engineering aspects or the physics behaviour of the machine, will have to be designed to suit the hostile nuclear environment. This will be necessary not just for their survival and correct functioning but also to satisfy the pertinent regulatory bodies, especially where any of them relate to machine protection or the prevention or mitigation of accidents foreseen in the safety case. This paper aims to indicate the more important of the reactor design considerations that are likely to apply to diagnostics for DEMO, drawn from experience on JET, the provisions in hand for ITER and modelling results for the wall erosion and neutron damage effects in DEMO.

  7. Design software for hydraulic circuits [for heating systems]; Ontwerpsoftware voor hydraulische schakelingen

    Energy Technology Data Exchange (ETDEWEB)

    Soethout, L.L. [Afdeling Gezonde Gebouwen en Installaties, TNO Bouw, Delft (Netherlands); Aerts, J. [ISSO, Rotterdam (Netherlands); Plokker, W. [Vabi, Delft (Netherlands)

    2006-02-15

    A method for designing hydraulic circuits for heating applications is described, based on the 1998 ISSO Publication 44. Also attention is paid to the development of software to support this method. The aim of the method is to achieve a design that works well both at full load and at partial load. The main approach is to assemble the water side of the installation from modules that are mutually independent as far as possible. These models are selected from a library of standard modules for emission, generation and distribution. The user is given support in choosing the correct module according to the heat requirement of the building and zones within it, and in configuring the modules to obtain efficient operation at full load and controllability at part load. [Dutch] Een methode voor het ontwerp van hydraulische schakelingen voor verwarming wordt beschreven, gebaseerd op de in 1998 gepubliceerde ISSO-publicatie 44, Tevens wordt aandacht gegeven aan de ontwikkeling van software ter ondersteuning van de methode. De methode beoogt tot een ontwerp te leiden dat zowel bij vollast als bij deellast goed werkt. Uitgangspunt is de opbouw van de waterzijdige installatie met modulen die elkaar zo min mogelijk beinvloeden. Deze modulen worden gekozen uit een bibliotheek van standaard modulen voor afgifte, opwekking en distributie. De gebruiker krijgt ondersteuning om, afhankelijk van de warmtebehoefte van het gebouw en zones hierin, de juiste modulen te selecteren, en deze te configureren voor een goede werking bij vollast en een goede regeling bij deellast.

  8. Turbomachinery. Hydraulic and thermal turbo-engines and turbomachines. 5. rev. ed.; Stroemungsmaschinen. Hydraulische und thermische Kraft- und Arbeitsmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Menny, K.

    2006-07-01

    Turbomachines and turbo-engines use liquid and gaseous working fluids, i.e. they cover two different states of aggregation. Mechanical engineering, thermodynamics and gas dynamics as well as construction theory must all be considered in turbomachinery design. This is what the book intends to achieve with its conceptual structure. It starts by presenting the basic scientific equations and then proceeds to the specific engineering knowledge required in turbo-engine design and construction. The fifth edition was revised in several important aspects, i.e. the transition from bar to MPa and the thermodynamic state variables of water and steam according to IAPLWS 97. For this, many examples were newly calculated. The chapter on wind power systems has been brought up to date. Contents: Common fundamentals of turbomachinery; WAter turbines; Steam turbines and steam power systems; Gas turbines; Gyropumps; Blowers and compressors; Hydrodynamic transmissions and converters; Wind rotors and propellers; Appendix. (orig.)

  9. Improve Designing for Heavy-duty Automobile Hydraulic Tank%某重型汽车液压油箱的改进设计

    Institute of Scientific and Technical Information of China (English)

    高军

    2012-01-01

    本文分析了某重型汽车车载液压动力系统失效的原因,介绍了液压油箱设计原则,并对液压油箱进行了改进设计。%this article analyzed the failing reason of heavy-duty automobile hydraulic system, and introduced designing principle of hydraulic tank, also redesigned the hydraulic tank.

  10. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.

    Science.gov (United States)

    Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid

    2015-11-07

    Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the

  11. Proof test on thermal and hydraulic design reliability of Japanese PWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Mamoru (Univ. of Tokyo (Japan)); Inoue, Akira (Tokyo Institute of Technology (Japan)); Miyazaki, Keiji (Osaka Univ. (Japan)); Abeta, Sadaaki (Mitsubishi, Tokyo (Japan)); Hori, Keiichi (Mitsubishi, Hyogo (Japan)); Mukasa, Tomio; Oishi, Masao; Aoki, Toshimasa; Makihara, Yoshiaki

    1990-01-01

    A series of departure from nucleate boiling (DNB) tests for pressurized water reactors (PWRs) was performed at the Nuclear Power Engineering Test Center. The objective was to prove the reliability of fuel assembly design by confirming the thermal margin of heat transfer. The present method for evaluating the DNB ratio in a Japanese 17 x 17 PWR core is adequate according to the newly obtained DNB test data.

  12. Effect of the method of estimation of soil saturated hydraulic conductivity with regards to the design of stormwater infiltration trenches

    Science.gov (United States)

    Paiva coutinho, Artur; Predelus, Dieuseul; Lassabatere, Laurent; Ben Slimene, Erij; Celso Dantas Antonino, Antonio; Winiarski, Thierry; Joaquim da Silva Pereira Cabral, Jaime; Angulo-Jaramillo, Rafael

    2014-05-01

    Best management practices are based on the infiltration of stormwater (e.g. infiltration into basins or trenches) to reduce the risk of flooding of urban areas. Proper estimations of saturated hydraulic conductivity of the vadose zone are required to avoid inappropriate design of infiltration devices. This article aims at assessing (i) the method-dependency of the estimation of soils saturated hydraulic conductivity and (ii) the consequences of such dependency on the design of infiltration trenches. This is illustrated for the specific case of an infiltration trench to be constructed to receive stormwater from a specific parking surface, 250 m2 in area, in Recife (Brazil). Water infiltration experiments were conducted according to the Beerkan Method, i.e. application of a zero water pressure head through a disc source (D=15 cm) and measures of the amount of infiltrated water with time. Saturated hydraulic conductivity estimates are derived from the analysis of these infiltration tests using several different conceptual approaches: one-dimensional models of Horton(1933) and Philip(1957), three-dimensional methods recently developed (Lassabatere et al., 2006, Wu et al., 1999, and Bagarello et al., 2013) and direct 3-dimensional numerical inversion. The estimations for saturated hydraulic conductivity ranged between 65.5 mm/h and 94 mm/h for one-dimensional methods, whereas using three-dimensional methods saturated hydraulic conductivity ranged between 15.6 mm/h and 50 mm/h. These results shows the need for accounting for 3D geometry, and more generally, the physics of water infiltration in soils, if a proper characterization of soil saturated hydraulic conductivity is targeted. In a second step, each estimate of the saturated hydraulic conductivity was used to calculate the stormwater to be stored in the studied trench for several rainfall events of recurrence intervals of 2 to 25 years. The calculation of these volumes showed a great sensitivity with regards to the

  13. Manual for the thermal and hydraulic design of direct contact spray columns for use in extracting heat from geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.R.

    1985-06-01

    This report outlines the current methods being used in the thermal and hydraulic design of spray column type, direct contact heat exchangers. It provides appropriate referenced equations for both preliminary design and detailed performance. The design methods are primarily empirical and are applicable for us in the design of such units for geothermal application and for application with solar ponds. Methods for design, for both preheater and boiler sections of the primary heat exchangers, for direct contact binary powers plants are included. 23 refs., 8 figs.

  14. On the reliability design of hydraulic structures%论水工建筑物的可靠性设计

    Institute of Scientific and Technical Information of China (English)

    陈厚群

    2013-01-01

    So far the application of the method of limit state method with partial factors to substitute the conventional single safety factor method has been disputed especially in the design circles of hydraulic structures,mainly because the former to be confused with reliability analysis.The single safety factor method involves both the non-random factor of engineering experience and all random uncertainties but without regard to their degree of uncertainty.The reliability analysis method can evaluate the combined failure probability of random uncertainties with different degrees but is unable to consider the factor of engineering experience which is now still important for design of hydraulic structures.In this paper some confused concepts inducing the debate are clarified.In the limit state method not only the different degrees of all random uncertainties can be distinguished by the partial factors,but also a structural factor γd is introduced to reflect the engineering experience.Obviously,it should be more logical than the conventional single safety factor method.At present,all the partial factors have still to be determined in accordance with the traditional safety factor in order to keep the continuous of the design codes.So,the concerned method is actually a multi-safety factor method having no essential difference with the conventional single safety factor method concerning the setting of safety level as a whole.However,it is entirely different from the reliability analysis method,as a structural factor γd is introduced and all partial factors both of action effects and resistances are determined independently from the reliability index.So,neither complex theory and unfamiliar terms nor insufficient statistical data must be worried about by the designers.Finally,as an example the successful application of the method of limit state method with partial factors in the《Seismic Design Code of Hydraulic Structures》is briefly described.%主要由于替代惯用的

  15. Exploring the Relationships among Creativity, Engineering Knowledge, and Design Team Interaction on Senior Engineering Design Projects

    Science.gov (United States)

    Ibrahim, Badaruddin

    2012-01-01

    In the 21st century, engineers are expected to be creative and work collaboratively in teams to solve or design new products. Research in the past has shown how creativity and good team communication, together with knowledge, can impact the outcomes in the organization. The purpose of this study was to explore the relationships among creativity,…

  16. Multidimensional sustainability assessment of solar products: Educating engineers and designers

    NARCIS (Netherlands)

    Flipsen, S.F.J.; Bakker, C.A.; Verwaal, M.

    2015-01-01

    Since 2008 the faculty of Industrial Design Engineering at the TU Delft hosts the minor Sustainable Design Engineering. The minor has been highly useful as a platform to pilot new ways of teaching engineering for sustainable development. Instead of having students make life cycle assessments and int

  17. Multidimensional sustainability assessment of solar products: Educating engineers and designers

    NARCIS (Netherlands)

    Flipsen, S.F.J.; Bakker, C.A.; Verwaal, M.

    2015-01-01

    Since 2008 the faculty of Industrial Design Engineering at the TU Delft hosts the minor Sustainable Design Engineering. The minor has been highly useful as a platform to pilot new ways of teaching engineering for sustainable development. Instead of having students make life cycle assessments and

  18. Ethical issues in engineering design safety and sustainability

    NARCIS (Netherlands)

    Van Gorp, A.C.

    2005-01-01

    The goal of this research is to obtain insight in how engineers deal with ethical issues in daily engineering design practice. It is reasonable to assume that ethical issues and the way engineers deal with them depend on characteristics of the design process. I have made use of Vincentis dimensions

  19. Simple, Complex, Innovative: Design Education at Civil Engineering

    NARCIS (Netherlands)

    Van Nederveen, G.A.; Soons, F.A.M.; Suddle, S.I.; De Ridder, H.

    2011-01-01

    In faculties such as Civil Engineering, design is a not a core activity. Core activities at Civil Engineering are structural engineering, structural analysis, mechanics, fluid dynamics, etc. Design education has a relatively small share in the curriculum, compared to faculties such as Industrial

  20. Feedback from uncertainties propagation research projects conducted in different hydraulic fields: outcomes for engineering projects and nuclear safety assessment.

    Science.gov (United States)

    Bacchi, Vito; Duluc, Claire-Marie; Bertrand, Nathalie; Bardet, Lise

    2017-04-01

    In recent years, in the context of hydraulic risk assessment, much effort has been put into the development of sophisticated numerical model systems able reproducing surface flow field. These numerical models are based on a deterministic approach and the results are presented in terms of measurable quantities (water depths, flow velocities, etc…). However, the modelling of surface flows involves numerous uncertainties associated both to the numerical structure of the model, to the knowledge of the physical parameters which force the system and to the randomness inherent to natural phenomena. As a consequence, dealing with uncertainties can be a difficult task for both modelers and decision-makers [Ioss, 2011]. In the context of nuclear safety, IRSN assesses studies conducted by operators for different reference flood situations (local rain, small or large watershed flooding, sea levels, etc…), that are defined in the guide ASN N°13 [ASN, 2013]. The guide provides some recommendations to deal with uncertainties, by proposing a specific conservative approach to cover hydraulic modelling uncertainties. Depending of the situation, the influencing parameter might be the Strickler coefficient, levee behavior, simplified topographic assumptions, etc. Obviously, identifying the most influencing parameter and giving it a penalizing value is challenging and usually questionable. In this context, IRSN conducted cooperative (Compagnie Nationale du Rhone, I-CiTy laboratory of Polytech'Nice, Atomic Energy Commission, Bureau de Recherches Géologiques et Minières) research activities since 2011 in order to investigate feasibility and benefits of Uncertainties Analysis (UA) and Global Sensitivity Analysis (GSA) when applied to hydraulic modelling. A specific methodology was tested by using the computational environment Promethee, developed by IRSN, which allows carrying out uncertainties propagation study. This methodology was applied with various numerical models and in

  1. The ILC engineering design phase: Towards the production of an engineering design report

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Marc; /Fermilab

    2007-01-01

    In August 2007, the International Linear Collider-Global Design Effort (ILC-GDE) published the ILC Reference Design Report (RDR) which contains a description of the design of the linear collider and a ''value'' cost estimate. The RDR was developed over a 2 year period starting in August 2005 with the creation of the GDE at the Second ILC workshop, held at Snowmass, Colorado. The design described in the RDR and its associated estimate allow the GDE to plan and prioritize the next phase of the ILC, the creation of an Engineering Design and the production, by mid 2010, of an Engineering Design Report (EDR). The EDR will contain, in addition to a more mature design and an updated value estimate, a plan for executing the ILC Project. The purpose of the EDR is to facilitate formal international negotiations at government level on siting, funding, organization and execution of the ILC project with a timescale consistent with the start of construction in 2012. The creation of the ILC Engineering Design will include: (1) Basic R&D to demonstrate that all components can be engineered; (2) R&D into alternative solutions to mitigate remaining risk; (3) An overall design to allow machine construction to start within 3 years following its completion; (4) selection between high tech options to allow industrialization efforts; (5) A comprehensive value-engineering exercise; (6) A complete value cost estimate for the machine, including a funding profile consistent with the project schedule; (7) A project execution plan including a realistic schedule; (8) Designs for facilities shared between different ''area systems'', and for site-specific infrastructure. The designs must include the level of detail needed for regions to estimate the cost to host; and (9) All necessary information must be provided to regions to evaluate project technical and financial risks in support of a bid to host. With the completion of the EDR, the ILC-GDE leadership

  2. KJRR-FAI Hydraulic Flow Testing Input Package

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATR’s Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

  3. Mechanical design and thermo-hydraulic simulation of the infrared thermography diagnostic of the WEST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Micolon, Frédéric, E-mail: frederic.micolon@cea.fr; Courtois, Xavier; Aumeunier, Marie-Hélène; Chenevois, Jean-Pierre; Larroque, Sébastien

    2015-10-15

    The WEST (Tungsten (W) Environment in Steady state Tokamak) project is a partial rebuild of the Tore Supra tokamak to make it an X-point metallic environment machine aimed at testing ITER technologies in relevant plasma environment. For the safe operation of the WEST tokamak, infra-red (IR) thermography is a crucial diagnostic as it is a sound and reliable way to detect hotspots or abnormal heating patterns on the plasma facing components (PFCs). Thus WEST will be fitted with middle/short-IR (1.5–2 μm or 3–5 μm) cameras in the upper port plugs to get a full view of the critical PFCs (in particular the new lower divertor) and radio-frequency (RF) heating antennas and one camera at the equatorial level to monitor the new upper divertor and the first wall. This paper describes the design of the up-to-date optical system along with the hydraulic analysis and the thermal and mechanical finite element analysis conducted to ensure adequate heat extraction capabilities. Boundary conditions and simulation results will be presented and discussed as well as technological solutions retained.

  4. Designing terraces for the rainfed farming region in Iraq using the RUSLE and hydraulic principles

    Directory of Open Access Journals (Sweden)

    Mohammad H. Hussein

    2016-03-01

    Full Text Available The rainfed region in Iraq comprises an area of more than 5 million ha of forest, grazing and farmland areas. Except the plains, the region suffers from moderate to severe water erosion due mainly to overgrazing and land mismanagement. Due to population growth and the shortage in water resources, an expansion in land used for agriculture in the region is expected. Terracing is an option when utilizing sloping land for agricultural production. A terrace design criterion was developed for the region in which terrace spacing was determined using the Revised Universal Soil Loss Equation (RUSLE; terrace channel specifications were determined using conventional hydraulic computations. Analyses showed that terracing is feasible on rolling and hilly sloping land in the high rainfall zone (seasonal rainfall >600 mm where economic crops are grown to offset the high cost of terrace construction and maintenance. In the medium and low rainfall zones (seasonal rainfall 400–600 mm and 300–400 mm, terracing for water erosion control is generally not needed on cultivated land less than 10% in slope where wheat and barley crops are normally grown; however, pioneer research projects are needed to assess the feasibility of terraces of the level (detention type to conserve rain water in these two zones for a more successful rainfed farming venture.

  5. Hydraulic performance of biofilter systems for stormwater management: Influences of design and operation

    Science.gov (United States)

    Le Coustumer, Sébastien; Fletcher, Tim D.; Deletic, Ana; Barraud, Sylvie; Lewis, Justin F.

    2009-09-01

    SummaryIn order to evaluate the long-term performance of stormwater biofilters, a study was undertaken to assess their hydraulic conductivity. Despite variability in conductivity (40% being below the recommended range of 50-200 mm/h, 43% within it, and 17% above), treatment performance is unlikely to be affected, as most systems are over-sized such that their detention storage volume compensates for reduced media conductivity. The study broadly reveals two types of systems: some with a high initial conductivity (>200 mm/h) and some with a low initial value (biofilters in the former group, although most are shown to maintain an acceptably high conductivity. Those with initially low conductivity do not change greatly over time. Site characteristics such as filter area (relative to catchment area), age and inflow volume were not useful predictors of conductivity, with initial conductivity of the original media being the most powerful explanatory variable. It is clear therefore, that strict attention must be paid to the specification of original filter media, to ensure that it satisfies design requirements.

  6. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts.

    Science.gov (United States)

    Donovan, F M

    1975-01-01

    A major problem in improving artificial heart designs is the absence of methods for accurate in vitro testing of artificial heart systems. A mock circulatory system has been constructed which hydraulically simulates the systemic and pulmonary circulations of the normal human. The device is constructed of 1/2 in. acrylic sheet and has overall dimensions of 24 in. wide, 16 in. tall, and 8 in. deep. The artificial heart to be tested is attached to the front of the device, and pumps fluid from the systemic venous chamber into the pulmonary arterial chamber and from the pulmonary venous chamber into the systemic arterial chamber. Each of the four chambers is hermetically sealed. The compliance of each chamber is determined by the volume of air trapped above the fluid in that chamber. The pulmonary and systemic resistances are set automatically by bellows-operated valves to simulate the barroreceptor response in the systemic arteries and the passive pulmonary resistance response in the pulmonary arteries. Cardiac output is measured by a turbine flowmeter in the systemic circulation. Results using the Kwan-Gett artificial heart show a good comparison between the mock circulatory system response and the calf response.

  7. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    It has special focus on the application of physical or mathematical modeling, computing, simulation, design and/or ... Power systems Production/Manufacturing systems Process engineering systems ... Department of Mechanical Engineering,

  8. Mouse genome engineering using designer nucleases.

    Science.gov (United States)

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-04-02

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.

  9. DESIGN OPTIMIZATION METHOD USED IN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    SCURTU Iacob Liviu

    2016-11-01

    Full Text Available This paper presents an optimization study in mechanical engineering. First part of the research describe the structural optimization method used, followed by the presentation of several optimization studies conducted in recent years. The second part of the paper presents the CAD modelling of an agricultural plough component. The beam of the plough is analysed using finite element method. The plough component is meshed in solid elements, and the load case which mimics the working conditions of agricultural equipment of this are created. The model is prepared to find the optimal structural design, after the FEA study of the model is done. The mass reduction of part is the criterion applied for this optimization study. The end of this research presents the final results and the model optimized shape.

  10. Design of Polymer Coatings in Automotive Engines

    Institute of Scientific and Technical Information of China (English)

    LIAO Han-lin; ZHANG Ga; BORDES Jean-Michel; CHRISTIAN Coddet

    2004-01-01

    Driven by economical and ecological reasons, thermoplastics based coatings were more and more used in automotive engines. Two design concepts, flame spraying and serigraphy PEEK coatings on light metal substrate, were introduced in this paper. The friction and wear behavior of PEEK based coatings were investigated systematically. Coatings with different crystallinities can be obtained when cooling speed is controlled. Among three sprayed coatings considered with different crystallinities, the one with highest crystallinity exhibits best friction and wear behavior under dry sliding condition. Under lubricated sliding condition, however, the amorphous coating gives lower friction coefficient. The micron particles such as SiC,MoS2 and graphite in composite coatings can improve significantly the coating wear resistance and have a impact on coating friction behavior.

  11. Thermo-hydraulic analysis for sub-module of Chinese HCSB TBM design

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhou; FENG Kai-ming; WANG Xiao-yu; YUAN Tao

    2006-01-01

    Thermo-hydraulic calculation and analysis for sub-module of Chinese HCSB TBM were carried out using FE code ANSYS. Results indicate that temperature distribution in materials used in sub-module is reasonable and acceptable.

  12. Industrial design as an innovative element in engineering education

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Abou-Hayt, Imad; Ashworth, David

    2012-01-01

    This paper describes how the Copenhagen University College of Engineering (IHK), in our continuing effort to innovate the engineering study programs, have introduced strong industrial design elements in the 210 ECTS Bachelor of Mechanical Engineering program as well as the 30 ECTS International...... Design Semester and the 10 ECTS Summer School in International Design and Development. The paper describes how implementation of novel industrial design subject areas requires the creation of new laboratory and workshop facilities in order to combine traditional engineering design disciplines...... with creative design as a driver of innovation. With a practical and problem based learning approach at IHK the students are asked to work closely together with companies to come up with engineering solutions that are sustainable from both an engineering and a design perspective....

  13. Constant-Pressure Hydraulic Pump

    Science.gov (United States)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  14. Design study of RL10 derivatives. Volume 2: Engine design characteristics. [application of rocket engine to space tug propulsion

    Science.gov (United States)

    Adams, A.

    1973-01-01

    The design characteristics of the RL-10 rocket engine are discussed. The results from critical elements evaluation, baseline engine design, parametric and special study tasks are presented. Critical element evaluation established the feasibility of various engine features such as tank head idle, pumped idle, autogenous tank pressurization, and two-phase pumping. Three baseline engines, derived from the RL-10 were conceptually designed. Parametric life and performance data were generated. Special studies were conducted to establish the impact on the engine design of environment, safety, interchangeability, and maintenance.

  15. Mechanical Engineering Design Project report: Enabler control systems

    Science.gov (United States)

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  16. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  17. Measurement of Sedimentary Interbed Hydraulic Properties and Their Hydrologic Influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory

    Science.gov (United States)

    Perkins, Kim S.

    2003-01-01

    Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.

  18. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, N. [Department of Mechanical Engineering, Kobe University, Kobe (Japan)]. E-mail: takenaka@mech.kobe-u.ac.jp; Nio, D. [Hokkaido University, Sapporo (Japan); Kiyanagi, Y. [Hokkaido University, Sapporo (Japan); Mishima, K. [Kyoto University Research Reactor Institute, Kumatori (Japan); Kawai, M. [High Energy Accelerator Research Institute, Tsukuba (Japan); Furusaka, M. [High Energy Accelerator Research Institute, Tsukuba (Japan)

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum-clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1-2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  19. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    Science.gov (United States)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  20. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  1. The design of a low specific fuel consumption turbocompound engine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.E.

    1986-01-01

    Continued emphasis has been placed on reducing the specific fuel consumption (sfc) of heavy-duty diesel engines. Through design improvements, engines with sfc levels of 200 g/kW-hr are now reaching the consumer. With the addition of turbocompounding, sfc can be reduced below 185 g/kW-hr. This paper describes the concept, design, and initial performance test of an 11.3 liter, 6 cylinder non-insulated turbocompound engine. Improvements in the turbocharged engine design resulted in a rated sfc of 192 g/kW-hr. The turbocompound engine demonstrated an sfc of 182 g/kW-hr at the same rating.

  2. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  3. Education for hydraulics and pneumatics in Kanazawa University, Department of Human and Mechanical System Engineering; Kanazawa Daigaku Ningen Kikai Kogakuka ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Y. [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    2000-03-15

    The above-named department was established in 1996. It advocates, standing on the basis of mechanical engineering, 'adaptation with man,' 'symbiosis with society,' and 'harmony with nature,' and, under these mottos, aims to bring up engineers who are able to create technologies in the field of mechanical engineering. There is no independent subject for fluid power. Relative subjects are the science of flows, thermodynamics and exercise, energy and environmental engineering, and nature and flow. Lectures are given using textbooks mainly. There is no subject that requires experiment on fluid power. It is hoped that teaching materials will be provided. Studies for graduation and master's theses are the 'suction performance of toroidal pumps' and the 'fluid force in, and flow coefficients of, spool valves.' Collaborative researches with industrial circles conducted so far involve the 'study of automotive vane pumps' and the 'suction performance of toroidal pumps.' It is difficult for subjects related to hydraulics and pneumatics to interest students greatly. To interest and attract students, it is felt, the concept like 'hydraulics and pneumatics signify power sources' which gives a tough and mighty impression should be replaced by a softer-tone expression like 'hydraulics/pneumatics and mechatronics and control.' (NEDO)

  4. Jacobs Engineering Group Inc. receives architectural and engineering design contract from Stanford Linear Accelerator Centre

    CERN Multimedia

    2004-01-01

    "Jacobs Engineering Group Inc. announced that a subsidiary company won a contract from Stanford Linear Accelerator Center (SLAC), to provide architectural and engineering design services for the Linac Coherent Light Source (LCLS) conventional facilities" (1/2 page)

  5. Hydraulic integration and shrub growth form linked across continental aridity gradients.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Goedhart, Christine M; Nordenstahl, Marisa; Cabrera, Hugo I Martinez; Jones, Cynthia S

    2008-08-12

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering rule. Hydraulic systems of shrubs sampled along two transcontinental aridity gradients changed with increasing aridity from highly integrated to independently redundant modular designs. Shrubs in humid environments tend to be hydraulically integrated, with single, round basal stems, whereas dryland shrubs typically have modular hydraulic systems and multiple, segmented basal stems. Modularity is achieved anatomically at the vessel-network scale or developmentally at the whole-plant scale through asymmetric secondary growth, which results in a semiclonal or clonal shrub growth form that appears to be ubiquitous in global deserts.

  6. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn

    2006-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in modelling, simulation and design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus...... is on the advantages using ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying...... is that the components operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap...

  7. ARIES-III divertor engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Schultz, K.R. [General Atomics, San Diego, CA (United States); Cheng, E.T. [TSI Research, Solana Beach, CA (United States); Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering; Brooks, J.N.; Ehst, D.A.; Sze, D.K. [Argonne National Lab., IL (United States); Herring, J.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Valenti, M.; Steiner, D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Plasma Dynamics Lab.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.

  8. Compact designer TALENs for efficient genome engineering.

    Science.gov (United States)

    Beurdeley, Marine; Bietz, Fabian; Li, Jin; Thomas, Severine; Stoddard, Thomas; Juillerat, Alexandre; Zhang, Feng; Voytas, Daniel F; Duchateau, Philippe; Silva, George H

    2013-01-01

    Transcription activator-like effector nucleases are readily targetable 'molecular scissors' for genome engineering applications. These artificial nucleases offer high specificity coupled with simplicity in design that results from the ability to serially chain transcription activator-like effector repeat arrays to target individual DNA bases. However, these benefits come at the cost of an appreciably large multimeric protein complex, in which DNA cleavage is governed by the nonspecific FokI nuclease domain. Here we report a significant improvement to the standard transcription activator-like effector nuclease architecture by leveraging the partially specific I-TevI catalytic domain to create a new class of monomeric, DNA-cleaving enzymes. In vivo yeast, plant and mammalian cell assays demonstrate that the half-size, single-polypeptide compact transcription activator-like effector nucleases exhibit overall activity and specificity comparable to currently available designer nucleases. In addition, we harness the catalytic mechanism of I-TevI to generate novel compact transcription activator-like effector nuclease-based nicking enzymes that display a greater than 25-fold increase in relative targeted gene correction efficacy.

  9. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  10. The biosystems engineering design challenge at University College Dublin

    OpenAIRE

    Curran, Thomas P.; Cummins, Enda; Nicholas M. Holden; McDonnell, Kevin; Blaney, Colleen

    2007-01-01

    The Biosystems Engineering Design Challenge has recently become an academic module open to all undergraduate students at University College Dublin. The focus of the module is on designing and building a working, bench-scale device that solves a practical problem relevant to Biosystems Engineering. The module provides an opportunity for students to learn about engineering design, project management and teamwork. Enrolled students are split into teams of up to seven and meet an assi...

  11. Hamsters, Picture Books, and Engineering Design

    Science.gov (United States)

    Tank, Kristina; Pettis, Christy; Moore, Tamara; Fehr, Abby

    2013-01-01

    With the integration of engineering into science instruction, teachers have been seeking ways to add engineering in their classrooms. This article presents a primary (K-2) STEM unit that took place in a half-day kindergarten classroom as a way to address the scientific and engineering practices (dimension 1, p.41) and the disciplinary core idea…

  12. 粉末制品成形液压机的设计%Design of hydraulic press for powder products

    Institute of Scientific and Technical Information of China (English)

    李响

    2012-01-01

    As per the technical requirement of press forming process for powder products, the key design points of hydraulic press for powder products with high performance have been briefly introduced.%针对粉末制品压坯成形的工艺要求,简要介绍了高性能粉末制品成形液压机的设计要点.

  13. A SYSTEM DESIGN PROCESS TAILORED FOR REVERSE ENGINEERING AND REENGINEERING

    Directory of Open Access Journals (Sweden)

    Tae-Hun Yoon

    2010-10-01

    Full Text Available This paper discusses a system design process using a reverse engineering. The Reverse Engineering Approach, if possible, is a cost-effective and easy approach to be used in a system design. All industries use this approach consciously or unconsciously to reduce system development risks. It can be a part of formal process, simple requirement reuse, or adoption of industry standards. The reverse engineering approach can be considered as an effective system design method in immature system engineering environments. This paper proposes a system design process using reverse engineering which can be tailored for large complex system development projects. The proposed process composed of two stages to produce system specification generation. The reverse engineering stage is performed to define functional and physical architecture of legacy system used as reference model when they are not available. The reengineering stage takes outputs of the reverse engineering stage to define the rest of logical and physical solutions.

  14. ON THE THEORIES OF HYDRAULIC GEOMETRY

    Institute of Scientific and Technical Information of China (English)

    Vijay P. SINGH

    2003-01-01

    Hydraulic geometry is of fundamental importance in planning, design, and management of river engineering and training works. Although some concepts of hydraulic geometry were proposed toward the end of the nineteenth century, the real impetus toward formulating a theory of hydraulic geometry was provided by the work of Leopold and Maddock (1953). A number of theories have since been proposed.Some of the theories are interrelated but others are based on quite different principles. All theories,however, assume that the river flow is steady and uniform and the river tends to attain a state of equilibrium or quasi-equilibrium. The differences are due to the differences in hydraulic mechanisms that the theories employ to explain the attainment of equilibrium by the river.

  15. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  16. A Design Approach for Collaboration Processes: A Multi-Method Design Science Study in Collaboration Engineering

    NARCIS (Netherlands)

    Kolfschoten, G.L.; De Vreede, G.J.

    2009-01-01

    Collaboration Engineering is an approach for the design and deployment of repeatable collaboration processes that can be executed by practitioners without the support of collaboration professionals such as facilitators. A critical challenge in Collaboration Engineering concerns how the design activi

  17. 液压机液压系统过滤器的选择与设计%Selection and design of hydraulic filter for hydraulic press

    Institute of Scientific and Technical Information of China (English)

    崔景海

    2012-01-01

    维护油液清洁对液压机液压系统十分重要.介绍了液压机液压系统中常用过滤器的种类及过滤器选型时应考虑的因素.%The cleanliness of the hydraulic oil is very important to the hydraulic system of hydraulic press.There are four common kinds of filter used in hydraulic system of hydraulic press as follows: high pressure filter,low pressure filter,water pressure filter,and air filter.Entry and exit size of filters,nominal pressure,filtering precision,and filter material should have been considered in the selection of the filter.

  18. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering.

    Science.gov (United States)

    Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A

    2016-03-05

    Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  19. Industrial design as an innovative element in engineering education

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Abou-Hayt, Imad; Ashworth, David

    2012-01-01

    This paper describes how the Copenhagen University College of Engineering (IHK), in our continuing effort to innovate the engineering study programs, have introduced strong industrial design elements in the 210 ECTS Bachelor of Mechanical Engineering program as well as the 30 ECTS International D...

  20. Systems design and engineering : facilitating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    2016-01-01

    As its name implies, the aim of Systems Design and Engineering: Facilitating Multidisciplinary Development Projects is to help systems engineers develop the skills and thought processes needed to successfully develop and implement engineered systems. Such expertise typically does not come through

  1. Expert vs. novice: Problem decomposition/recomposition in engineering design

    Science.gov (United States)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between

  2. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....

  3. Design and Research of the EQ6105DTAA Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA...

  4. Design of Hydraulic System for Embedded Double Pipes Amphibious Crane%内嵌双输油管两用起重机液压系统设计

    Institute of Scientific and Technical Information of China (English)

    卢志珍; 倪学虎; 舒希勇; 王成龙

    2012-01-01

    Based on analyzing requirements of embedded double pipes amphibious crane to hydraulic system, the hydraulic system design thinking was put forward according to crane technical parameters and customers requirements. Calculations and type selections of the key hydraulic components; hydraulic pump and hydraulic motor, hydraulic cylinder, were completed. The hydraulic principle diagram was designed and the work principle of the hydraulic loop was expounded.%在分析内嵌双输油管两用起重机对液压系统要求的基础上,针对起重机技术参数及客户要求提出了液压系统设计的思路,对关键液压元件——液压泵、液压马达、液压缸进行了计算选型,给出了液压原理图,并阐述了起重机液压回路的工作原理.

  5. Engineering Software Suite Validates System Design

    Science.gov (United States)

    2007-01-01

    EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers

  6. Leadership emergence in engineering design teams.

    Science.gov (United States)

    Guastello, Stephen J

    2011-01-01

    Leaders emerge from leaderless groups as part of a more complex emerging social structure. Several studies have shown that the emerging structure is aptly described by a swallowtail catastrophe model where the control parameters differ depending on whether creative problem solving, production, coordination-intensive, or emergency management groups are involved. The present study explored creative problem solving further where the participants were engaged in real-world tasks extending over several months rather than short laboratory tasks. Participants were engineering students who were organized into groups of to people who designed, built, and tested a prototype product that would solve a real-world problem. At the th week of work they completed a questionnaire indicating who was most like the leader of their group, second most like the leader, along with other questions about individuals' contributions to the group process. Results showed that the swallowtail model (R = .) exhibited a strong advantage over the linear alternative model (R = .) for predicting leadership emergence. The three control variables were control of the task, creative contributions to the group's work, and facilitating the creative contributions of others.

  7. ORNL engineering design and construction reengineering report

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1998-01-01

    A team composed of individuals representing research and development (R and D) divisions, infrastructure support organizations, and Department of Energy (DOE)-Oak Ridge Operations was chartered to reengineer the engineering, design, and construction (ED and C) process at Oak Ridge National Laboratory (ORNL). The team recognized that ED and C needs of both R and D customers and the ORNL infrastructure program have to be met to maintain a viable and competitive national laboratory. Their goal was to identify and recommend implementable best-in-class ED and C processes that will efficiently and cost-effectively support the ORNL R and D staff by being responsive to their programmatic and infrastructure needs. The team conducted process mapping of current and potential ED and C approaches, developed idealized versions of ED and C processes, and identified potential barriers to an efficient ED and C process. Eight subteams were assigned to gather information and to evaluate the significance of potential barriers through benchmarking, surveys, interviews, and reviews of key topical areas in order to determine whether the perceived barriers were real and important and whether they resulted from laws or regulations over which ORNL has no control.

  8. Human factor engineering applied to nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. [TECNATOM SA, BWR General Electric Business Manager, Madrid (Spain); Valdivia, J.C. [TECNATOM SA, Operation Engineering Project Manager, Madrid (Spain); Jimenez, A. [TECNATOM SA, Operation Engineering Div. Manager, Madrid (Spain)

    2001-07-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  9. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  10. A Framework to Support Requirements Analysis in Engineering Design

    OpenAIRE

    Brace, William; Cheutet, Vincent

    2012-01-01

    International audience; Complex system development activities such as requirements analysis to requirements specification, implementation and verification are well defined in the software engineering domain. Interests in using a model driven engineering have increased in this domain. System level requirements analysis and model driven engineering may result in a significant improvement in engineering design. This paper presents a Checklist Oriented Requirement Analysis (CORA) framework to dev...

  11. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  12. Screening candidate systems engineers: a research design

    CSIR Research Space (South Africa)

    Goncalves, DP

    2009-07-01

    Full Text Available engineers for coaching. Thus, developing engineers that have sufficient potential can ensure the better allocation of company resources. As previously mentioned, there is also a lead time. If we assume a basic engineering degree and 3 years practical... curiosity Sociable - good communicator Ambitious - hardworking, dedicated, persevering Forward - willing to ask challenging questions, speak mind Innovative - creative, concept generation Self-motivated - achievement motivation, able to motivate...

  13. Development of modelling tools for thermo-hydraulic analyses and design of JT-60SA TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, Benoit, E-mail: benoit.lacroix@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Portafaix, Christophe [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Barabaschi, Pietro [Fusion For Energy, D-85748 Garching (Germany); Duchateau, Jean-Luc; Hertout, Patrick; Lamaison, Valerie; Nicollet, Sylvie; Reynaud, Pascal [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Villari, Rosaria [Euratom-ENEA Association, IT-00044 Frascati (Italy); Zani, Louis [Fusion For Energy, D-85748 Garching (Germany)

    2011-10-15

    In the framework of the JT-60SA project, the Toroidal Field (TF) coils design has required to address reliably the choice between multiple design options and to calculate the temperature margin criterion for the superconductor. For this purpose, a tool was developed in two stages, interfacing the ANSYS code, used to model the thermal diffusion between the casing and the winding pack, with the GANDALF code which solves the 1D thermo-hydraulics inside each conductor. The first version of this Thermo-hydraulic EXtended TOol (TEXTO) was developed for producing conservative results and has allowed to simulate the fast discharge of the magnet, providing valuable results such as the mass flow expelled from each pancake. In the second stage, the ANSYS code was configured for modelling the helium transport in the casing and in the winding pack, thus computing more realistic transverse heat fluxes to be injected into the GANDALF code for an accurate calculation of the temperature margin. This second version of TEXTO, which integrates the TACOS (Thermo-hydraulic Ansys COmputation Semi 3D) module, has been used for studying the feasibility of positioning the helium inlets in the electrical connections. The temperature margin has then been found close but below the criterion of 1 K.

  14. The design of hyperthermia hydraulic pump station%高温型液压泵站的设计

    Institute of Scientific and Technical Information of China (English)

    王华安; 武光玉

    2013-01-01

    the article refer to key point of design of hyperthermia hydraulic pump station.This kind of pump station can supply hydraulic oil whose pressure is up to 21 MPa 、quantity of flow is up to 30 L/min when its temperature is120℃ ,and it also can be used as a formal station.%本文介绍了高温型泵站的设计要点。该泵站能够提供温度至120℃、压力至21MPa、流量至30L/min的压力油,亦可作为常规泵站使用。

  15. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  16. Product Design Engineering--A Global Education Trend in Multidisciplinary Training for Creative Product Design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-01-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…

  17. Course Content for Life Cycle Engineering and EcoDesign

    DEFF Research Database (Denmark)

    Jerswiet, Jack; Duflou, Joost; Dewulf, Wim;

    2007-01-01

    There is a need to create an awareness of Life Cycle Engineering and EcoDesign in Engineering students. Topics covered in an LCE/EcoDesign course will create an awareness of environmental impacts, especially in other design course projects. This paper suggests that an awareness of product impact...... upon the environment must be created at an early stage in undergraduate education. Deciding what to include in an LCE/EcoDesign Course can be difficult because there are many different views on the subject. However, there are more similarities than differences. All LCE/ EcoDesign Engineering courses...

  18. A Reference Implementation of a Learning Design Engine

    NARCIS (Netherlands)

    Martens, Harrie; Vogten, Hubert

    2005-01-01

    Martens, H. & Vogten, H. (2005). A Reference Implementation of a Learning Design Engine. In: Koper, R. & Tattersall, C., Learning Design: A Handbook on Modelling and Delivering Networked Education and Training (pp. 91-108). Berlin-Heidelberg: Springer Verlag.

  19. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  20. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    Science.gov (United States)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  1. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  2. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  3. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  4. Embodied Interaction Design in Engineering Education using Asus Xtion Pro

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2013-01-01

    How does a design of emerging embodied technologies, such as Asus Xtion Pro, enrich the HCI learning processes in Engineering Education? The fifth semester engineering students used the motion sensing input device, Asus Xtion Pro (similar to Microsoft’s Kinect), for the design of an embodied...

  5. DYNAMIC DESIGN OF INTERNAL COMBUSTION ENGINE BLOCK STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Several main steps of internal combustion engine block structure dynamic design,such as model set-up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of EQ6100 gasoline engine block.

  6. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    Science.gov (United States)

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  7. An Analytic Approach to Cascade Control Design for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Hansen, Anders Hedegaard; Andersen, Torben O.

    2016-01-01

    control and possibly linear active damping functionalities. However difficulties often arise due to the inherent and strong nonlinear nature of hydraulic drives, with the more dominant being nonlinear valve flow- and oil stiffness characteristics, and furthermore the volume expansion/retraction when...

  8. Clinical Immersion and Biomedical Engineering Design Education: "Engineering Grand Rounds".

    Science.gov (United States)

    Walker, Matthew; Churchwell, André L

    2016-03-01

    Grand Rounds is a ritual of medical education and inpatient care comprised of presenting the medical problems and treatment of a patient to an audience of physicians, residents, and medical students. Traditionally, the patient would be in attendance for the presentation and would answer questions. Grand Rounds has evolved considerably over the years with most sessions being didactic-rarely having a patient present (although, in some instances, an actor will portray the patient). Other members of the team, such as nurses, nurse practitioners, and biomedical engineers, are not traditionally involved in the formal teaching process. In this study we examine the rapid ideation in a clinical setting to forge a system of cross talk between engineers and physicians as a steady state at the praxis of ideation and implementation.

  9. Facet‐Engineered Surface and Interface Design of Photocatalytic Materials

    Science.gov (United States)

    Wang, Lili; Li, Zhengquan

    2016-01-01

    The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398

  10. Facet-Engineered Surface and Interface Design of Photocatalytic Materials.

    Science.gov (United States)

    Bai, Song; Wang, Lili; Li, Zhengquan; Xiong, Yujie

    2017-01-01

    The facet-engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono-component semiconductor systems and to design the surface and interface structures of multi-component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet-engineered surface design on mono-component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet-engineered surface and interface design of multi-component photocatalytic materials. Finally, the existing challenges and future prospects are discussed.

  11. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    Science.gov (United States)

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  12. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    Science.gov (United States)

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  13. Hydraulic System Design of 4 YX-4 Type Full-hydraulic Self-propelled Corn Harvester%4 YX-4型全液压自走式玉米收获机液压系统设计

    Institute of Scientific and Technical Information of China (English)

    张志起; 崔中凯; 刘继元; 邸志峰; 魏训成; 姜伟; 周进

    2015-01-01

    随着现代农机技术的进步,液压技术在玉米收获机中的应用越来越广泛。为此,设计了4 YX-4型全液压自走式玉米收获机的液压系统,对液压系统的工作原理、液压元件选择和特点等进行了论述。试验结果表明:该液压系统设计合理、选型正确、可靠性高,能很好完成玉米收获机的工作要求。%With the advancement of modern agricultural technology , the applying of hydraulic technology in corn harvester is getting more and more widely .This article designs the hydraulic system of 4YX-4 type full-hydraulic self-propelled corn harvester and summarizes the principle , characteristic and hydraulic elements selection of this system .The experiment results show that the design is reasonable with correct hydraulic elements selection and high reliability .This system can meet the work requirement of corn harvester well .

  14. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  15. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-05-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  16. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.

    Science.gov (United States)

    Arvand, Arash; Hahn, Nicole; Hormes, Marcus; Akdis, Mustafa; Martin, Michael; Reul, Helmut

    2004-10-01

    A mixed-flow blood pump for long-term applications has been developed at the Helmholtz-Institute in Aachen, Germany. Central features of this implantable pump are a centrally integrated motor, a blood-immersed mechanical bearing, magnetic coupling of the impeller, and a shrouded impeller, which allows a relatively wide clearance. The aim of the study was a numerical analysis of hydraulic and hemolytic properties of different impeller design configurations. In vitro testing and numerical simulation techniques (computational fluid dynamics [CFD]) were applied to achieve a comprehensive overview. Pressure-flow charts were experimentally measured in a mock loop in order to validate the CFD data. In vitro hemolysis tests were performed at the main operating point of each impeller design. General flow patterns, pressure-flow charts, secondary flow rates, torque, and axial forces on the impeller were calculated by means of CFD. Furthermore, based on streak line techniques, shear stress (stress loading), exposure times, and volume percentage with critical stress loading have been determined. Comparison of CFD data with pressure head measurements showed excel-lent agreement. Also, impressive trend conformity was observed between in-vitro hemolysis results and numerical data. Comparison of design variations yielded clear trends and results. Design C revealed the best hydraulic and hemolytic properties and was chosen as the final design for the mixed-flow rotary blood pump.

  17. Theory in the design of the man-machine engineering

    Institute of Scientific and Technical Information of China (English)

    季孟蒙

    2015-01-01

    the article to the man - machine - environment system of interconnected and ergonomics of the content on the investigation and analysis of the role of design in detail, and shows the man-machine engineering opens up a new train of thought for design disciplines; Designer to design the content of the ascension to the height of the humanized design, make the design in line with the ergonomics principle and characteristics of the real reflects the respect of the design aspects of people's listening.

  18. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  19. Reverse engineering by design: using history to teach.

    Science.gov (United States)

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  20. A maximum likelihood estimator for bedrock fracture transmissivities and its application to the analysis and design of borehole hydraulic tests

    Science.gov (United States)

    West, Anthony C. F.; Novakowski, Kent S.; Gazor, Saeed

    2006-06-01

    We propose a new method to estimate the transmissivities of bedrock fractures from transmissivities measured in intervals of fixed length along a borehole. We define the scale of a fracture set by the inverse of the density of the Poisson point process assumed to represent their locations along the borehole wall, and we assume a lognormal distribution for their transmissivities. The parameters of the latter distribution are estimated by maximizing the likelihood of a left-censored subset of the data where the degree of censorship depends on the scale of the considered fracture set. We applied the method to sets of interval transmissivities simulated by summing random fracture transmissivities drawn from a specified population. We found the estimated distributions compared well to the transmissivity distributions of similarly scaled subsets of the most transmissive fractures from among the specified population. Estimation accuracy was most sensitive to the variance in the transmissivities of the fracture population. Using the proposed method, we estimated the transmissivities of fractures at increasing scale from hydraulic test data collected at a fixed scale in Smithville, Ontario, Canada. This is an important advancement since the resultant curves of transmissivity parameters versus fracture set scale would only previously have been obtainable from hydraulic tests conducted with increasing test interval length and with degrading equipment precision. Finally, on the basis of the properties of the proposed method, we propose guidelines for the design of fixed interval length hydraulic testing programs that require minimal prior knowledge of the rock.

  1. Single incision Hydraulic Shear Design%单层下切式液压切头剪设计

    Institute of Scientific and Technical Information of China (English)

    王雨

    2013-01-01

    剪切机是用于剪断金属材料的一种机械设备。在板带车间轧制线及其辅助作业线上,一般都配备有各种型式的剪切机,其中大多数是斜刀刃剪切机。近年来,随着液压传动的广泛应用,在现代化连轧板带车间里,愈来愈多地采用液压驱动的剪切机。本文较为全面地介绍了用于电工钢退火机组的液压单层剪在板带处理线上的运用情况,并且叙述了其结构选择与设计计算。%The shearing machine is used to cut metal material a mechanical device. Workshop in strip rolling line and auxiliary jobs online, generally are equipped with all types of shearing machines, most of which is inclined blade shears. In recent years, with the extensive application of hydraulic transmission, in the modern strip rolling workshop, more and more driven by hydraulic shears. This more comprehensive introduction to electrical steel annealing line for hydraulic shear layer in strip processing line use case, and describe its structure selection and design calculations.

  2. 一种用于液体静压导轨的高精密液压站设计%Design of the Ultra-precision Hydraulic Station for Hydraulic Static Pressured Guide

    Institute of Scientific and Technical Information of China (English)

    赵午云; 郭勇

    2014-01-01

    Hydraulic static pressured guide is the important function unit of precision machine tool. Hydraulic station is indispen-sable and supplementary unit for hydraulic static pressured guide in normal operation,and must provide hydraulic static pressured guide with lubricating oil of invariable pressure. An ultra-precision hydraulic station for hydraulic static pressured guide was designed. In this hydraulic station,lubricating oil was provided by precision gear pump driven by variable frequency motor,and pressure export was ensured to be steady by full-closed loop feedback control. The export pressure precision of the hydraulic station can reach ± 0.05%. Good effect is gained in the application of the hydraulic station on the hydraulic static pressured guide of ultra-precision machine tool.%液体静压导轨是精密超精密加工机床的重要功能单元,液压站是液体静压导轨正常工作的必要辅助单元。液体静压导轨要保持高的精度,液压站必须能够为静压导轨提供压力非常稳定的润滑油输入。设计一种用于液体静压导轨的高精密液压站,该液压站利用变频电机驱动精密齿轮泵供给润滑油,利用全闭环反馈调节装置控制润滑油的稳压输出。实际测量证明:该液压站的输出压力稳定精度可达±0.05%,应用于超精密机床上的液体静压导轨取得了良好的效果。

  3. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    Science.gov (United States)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  4. Design and evaluation of hydraulic baffled-channel PAC contactor for taste and odor removal from drinking water supplies.

    Science.gov (United States)

    Kim, Young-Il; Bae, Byung-Uk

    2007-05-01

    Based on the concept of hydraulic flocculator, a baffled-channel powdered activated carbon (PAC) contactor, placed before the rapid-mixing basin, was designed and evaluated for removal of taste and odor (T&O) in drinking water. PAC adsorption kinetic tests for raw water samples were conducted for selection of design parameters related to contact time and degree of mixing. Within the tested range of velocity gradient (G) from 18 to 83s(-1), mixing had a relatively minor effect on the adsorption kinetics of the PAC. The hydrodynamic characteristics of the pilot-scale horizontally and vertically baffled-channel PAC contactor were investigated by tracer tests. It was found that the plug flow fractions of vertically baffled-channel PAC contactor (vBPC) were higher than those of the horizontally baffled-channel PAC contactor (hBPC) for the same bend width or bend height. However, the hBPC seems to be more appropriate than the vBPC in terms of construction and maintenance. The geosmin and MIB removal rate increased with the number of baffles, PAC dose and contact time increased regardless of bend width in the pilot-scale hBPC. The pair of full-scale hBPCs at Pohang water treatment plant, having a design capacity of 6.5x10(4)m(3)/d with 20min of hydraulic retention time with a safety factor of 2, was designed based on lab- and pilot-scale experimental results. Under a velocity gradient of 20s(-1), the number of baffles to be installed was calculated to be 20 with a space of about 2m between each baffle, resulting in a hydraulic head loss through the contactor of about 0.056m. The successful application of hBPC for T&O removal from drinking water supplies should provide momentum for developing more effective treatment methods.

  5. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  6. Biochemical Engineering. Part II: Process Design

    Science.gov (United States)

    Atkinson, B.

    1972-01-01

    Describes types of industrial techniques involving biochemical products, specifying the advantages and disadvantages of batch and continuous processes, and contrasting biochemical and chemical engineering. See SE 506 318 for Part I. (AL)

  7. Stability analysis of underground engineering based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    MA Rong; ZHOU Ke-ping; GAO Feng

    2008-01-01

    Aiming at characteristics of underground engineering,analyzed the feasibility of Multidisciplinary Design Optimization (MDO) used in underground engineering,and put forward a modularization-based MDO method and the idea of MDO to resolve problems in stability analysis,proving the validity and feasibility of using MDO in underground engineering.Characteristics of uncertainty,complexity and nonlinear become bottle-neck to carry on underground engineering stability analysis by MDO.Therefore,the application of MDO in underground engineering stability analysis is still at a stage of exploration,which need some deep research.

  8. Stability analysis of underground engineering based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    MA Rong; ZHOU Ke-ping; GAO Feng

    2008-01-01

    Aiming at characteristics of underground engineering, analyzed the feasibility of Multidisciplinary Design Optimization (MDO) used in underground engineering, and put forward a modularization-based MDO method and the idea of MDO to resolve problems in stability analysis, proving the validity and feasibility of using MDO in underground engi-neering. Characteristics of uncertainty, complexity and nonlinear become bottle-neck to carry on underground engineering stability analysis by MDO. Therefore, the application of MDO in underground engineering stability analysis is still at a stage of exploration, which need some deep research.

  9. Creating a Strong Foundation with Engineering Design Graphics.

    Science.gov (United States)

    Newcomer, Jeffrey L.; McKell, Eric K.; Raudebaugh, Robert A.; Kelley, David S.

    2001-01-01

    Describes the two-course engineering design graphics sequence on introductory design and graphics topics. The first course focuses on conceptual design and the development of visualization and sketching skills while the second one concentrates on detail design and parametric modeling. (Contains 28 references.) (Author/ASK)

  10. Creating a Strong Foundation with Engineering Design Graphics.

    Science.gov (United States)

    Newcomer, Jeffrey L.; McKell, Eric K.; Raudebaugh, Robert A.; Kelley, David S.

    2001-01-01

    Describes the two-course engineering design graphics sequence on introductory design and graphics topics. The first course focuses on conceptual design and the development of visualization and sketching skills while the second one concentrates on detail design and parametric modeling. (Contains 28 references.) (Author/ASK)

  11. High School Student Information Access and Engineering Design Performance

    Science.gov (United States)

    Mentzer, Nathan

    2014-01-01

    Developing solutions to engineering design problems requires access to information. Research has shown that appropriately accessing and using information in the design process improves solution quality. This quasi-experimental study provides two groups of high school students with a design problem in a three hour design experience. One group has…

  12. Elementary Students' Acquisition of Academic Vocabulary Through Engineering Design

    Science.gov (United States)

    Kugelmass, Rachel

    This study examines how STEM (science, technology, engineering, and mathematics) inquiry-based learning through a hands-on engineering design can be beneficial in helping students acquire academic vocabulary. This research took place in a second grade dual- language classroom in a public, suburban elementary school. English language learners, students who speak Spanish at home, and native English speakers were evaluated in this study. Each day, students were presented with a general academic vocabulary focus word during an engineering design challenge. Vocabulary pre-tests and post-tests as well as observation field notes were used to evaluate the student's growth in reading and defining the focus academic vocabulary words. A quiz and KSB (knowledge and skill builder) packet were used to evaluate students' knowledge of science and math content and engineering design. The results of this study indicate that engineering design is an effective means for teaching academic vocabulary to students with varying levels of English proficiency.

  13. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  14. NUMERICAL MODELING OF MULTICYLINDER ELECTRO-HYDRAULIC SYSTEM AND CONTROLLER DESIGN FOR SHOCK TEST MACHINE

    Institute of Scientific and Technical Information of China (English)

    CHU Deying; ZHANG Zhiyi; WANG Gongxian; HUA Hongxing

    2007-01-01

    A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.

  15. Parameter Design for the Energy-Regeneration System of Series Hydraulic-Hybrid Bus

    Directory of Open Access Journals (Sweden)

    SONG Yunpu

    2012-10-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.  

  16. Capstone Design Courses Producing Industry-Ready Biomedical Engineers

    CERN Document Server

    Goldberg, Jay

    2007-01-01

    The biomedical engineering senior capstone design course is probably the most important course taken by undergraduate biomedical engineering students. It provides them with the opportunity to apply what they have learned in previous years; develop their communication (written, oral, and graphical), interpersonal (teamwork, conflict management, and negotiation), project management, and design skills; and learn about the product development process. It also provides students with an understanding of the economic, financial, legal, and regulatory aspects of the design, development, and commercial

  17. Concurrent engineering design and management knowledge capture

    Science.gov (United States)

    1990-01-01

    The topics are presented in viewgraph form and include the following: real-time management, personnel management, project management, conceptual design and decision making; the SITRF design problem; and the electronic-design notebook.

  18. 基于AMESim液压元件设计库的液压系统建模与仿真研究%Modeling and Simulation Research of Hydraulic System Based on Hydraulic Component Design Library of AMESim

    Institute of Scientific and Technical Information of China (English)

    张宪宇; 陈小虎; 何庆飞; 万俊盛

    2012-01-01

    A hydraulic system test-bed was taken as research object, and AMESim was used for simulation analysis. Hie HCD simulation model of the hydraulic system was built. In order to verify the correctness of the model, characteristics simulation was proceeded and compared with physical characteristics. The HCD simulation model was used to analyze the characteristic factors which in- flueneed hydraulic actuator velocity. The quantification contrast curves of hydraulic actuator velocity were gotten, which were influenced by flow, piston diameter, piston rod diameter and leakage. It provides basis for hydraulic system design and fault diagnosis.%以某液压实验台为研究对象,运用AMESim对液压系统进行仿真分析.建立液压系统的HCD仿真模型;进行特性仿真,并与物理特性进行对比,验证了HCD仿真模型的正确性;运用所建立的HCD仿真模型对影响液压缸运动速度的因素进行分析,给出不同的流量、活塞缸直径、活塞杆直径及泄漏影响液压缸运动速度的量化对比曲线,从而为液压系统的设计及故障诊断提供依据.

  19. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  20. Product design engineering - a global education trend in multidisciplinary training for creative product design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-03-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering training. Product design engineering (PDE) is a new interdisciplinary programme combining the strengths of the industrial design and engineering. This paper examines the emergence of PDE in an environment of critique of conventional engineering education and exemplifies the current spread of programmes endorsing a hybrid programme of design and engineering skills. The paper exemplifies PDE with the analysis of the programme offered at Swinburne University of Technology (Australia), showing how the teaching of 'designerly' thinking to engineers produces a new graduate particularly suited to the current and future environment of produce design practice. The paper concludes with reflections on the significance of this innovative curriculum model for the field of product design and for engineering design in general.