WorldWideScience

Sample records for hydraulic engineering design

  1. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  2. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  3. Design of turning hydraulic engines for manipulators of mobile machines on the basis of multicriterial optimization

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-12-01

    Full Text Available In this paper the mathematical models of the main types of turning hydraulic engines, which at the present time widely used in the construction of handling systems of domestic and foreign mobile transport-technological machines wide functionality. They allow to take into consideration the most significant from the viewpoint of ensuring high technical-economic indicators of hydraulic efficiency criteria – minimum mass (weight, their volume and losses of power. On the basis of these mathematical models the problem of multicriterial constrained optimization of the constructive sizes of turning hydraulic engines are subject to complex constructive, strength and deformation limits. It allows you to de-velop the hydraulic engines in an optimized design which is required for the purpose of designing a comprehensive measure takes into account efficiency criteria. The multicriterial optimization problem is universal in nature, so when designing a turning hydraulic engines allows for one-, two - and three-criteria optimization without making any changes in the solution algorithm. This is a significant advantage for the development of universal software for the automation of design of mobile transport-technological machines.

  4. Sustainable Hydraulic Barrier Design Technologies for Effective Infrastructure Engineering

    Directory of Open Access Journals (Sweden)

    Chitral Wijeyesekera Devapriya

    2017-01-01

    Full Text Available Migration of liquids lead to embarrassing post construction scenarios such as that of leaks from roofs, potable water leaking from water tanks/ reservoirs, rising damp in walls with groundwater seeping into basement structures, leakage of water from ornamental lakes and ponds or leachate leakage into the environment from MSW landfill sites. Such failures demand immediate and expensive maintenance. A stringent control on structural and waterproof stability is deemed necessary for long term service life of structures and in particular underground and near surface structures. On a micro scale and over a longer time scale, the phenomenon of rising dampness occurs in older buildings with the groundwater rising up through walls, floors and masonry via capillary action. Even slower rates of contaminant fluid migration occur through landfill base liners. In this paper a variety of hydraulic barrier technologies is critically discussed against a backdrop of relevant case studies. The choice of an appropriate hydraulic barrier technology for a given scenario will depend also on the sustainability, financial affordability and subjective aesthetics.

  5. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    Science.gov (United States)

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  6. Implementation of knowledge-based engineering methodology in hydraulic generator design

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-05-01

    Full Text Available Hydraulic generator design companies are always being exhorted to become more competitive by reducing the lead time and costs for their products for survival. Knowledge-based engineering technology is a rapidly developing technology with competitive advantage for design application to reduce time and cost in product development. This article addresses the structure of the hydraulic generator design system based on the knowledge-based engineering technology in detail. The system operates by creating a unified knowledge base to store the scattered knowledge among the whole life of the design process, which was contained in the expert’s brain and technical literature. It helps designers to make appropriate decisions by supplying necessary information at the right time through query and inference engine to represent the knowledge within the knowledge-based engineering application framework. It also integrates the analysis tools into one platform to help achieve global optimum solutions. Finally, an example of turbine-type selection was given to illustrate the operation process and prove its validity.

  7. Engineering design and thermal hydraulics of plasma facing components of SST-1

    International Nuclear Information System (INIS)

    Pragash, N. Ravi; Chaudhuri, P.; Santra, P.; Chenna Reddy, D.; Khirwadkar, S.; Saxena, Y.C.

    2001-01-01

    SST-1 is a medium size tokamak with super conducting magnetic field coils. All the subsystems of SST-1 are designed for quasi steady state (∼1000 s) operation. Plasma Facing Components (PFCs) of SST-1 consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be compatible for steady state operation. As SST-1 is designed to run double null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. All the PFC are made of copper alloys (CuCrZr and CuZr) on which graphite tiles are mechanically attached. These copper alloy back plates are actively cooled with water flowing in the channels grooved on them with the main consideration in the design of PFCs as the steady state heat removal of about 1.0 MW/m 2 . In addition to be able to remove high heat fluxes, the PFCs are also designed to be compatible for baking at 350 degree sign C. Extensive studies, involving different flow parameters and various cooling layouts, have been done to select the final cooling parameters and layout. Thermal response of the PFCs and vacuum vessel during baking, has been calculated using a FORTRAN code and a 2-D finite element analysis. The PFCs and their supports are also designed to withstand large electro-magnetic forces. Finite element analysis using ANSYS software package is used in this and other PFCs design. The engineering design including thermal hydraulics for cooling and baking of all the PFCs is completed. Poloidal limiters are being fabricated. The remaining PFCs, viz. divertors, stabilizers and baffles are likely to go for fabrication in the next few months. The detailed engineering design, the finite element calculations in the structural and thermal designs are presented in this paper

  8. Engineering and thermal-hydraulics design of PFC cooling for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Reddy, D. Chenna; Santra, P.; Khiwadkar, S.; Prakash, N. Rabi; Ramash, G.; Dubey, Santosh; Prakash, Arun; Saxena, Y. C.

    2003-01-01

    The main consideration in the design of the PFC cooling for SST-1 tokamak is the steady state heat removal of upto 1MW/m2. The PFC also has been design to withstand the peak heat fluxes without significant erosion such that frequent replacement is not necessary. Proper brazing of cooling tube on the copper back plate is necessary for the efficient heat transfer from the tube to the back plate. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to conduct the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The temperature distribution results for different PFC obtained by FE results were assessed by comparison with 2-D Finite Difference code. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. The contact at the brazed joint of the tube to the backplate is critical for the above application. The manufactured modules need to be evaluated for the quality of brazed joint. Using an infra-red-camera, spatial and temporal evaluation of the temperature profile is studied under various flow parameters. These results of this study will be presented in details in this paper

  9. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  10. Engineering and thermal-hydraulic design of water cooled PFC for SST-1 tokamak

    International Nuclear Information System (INIS)

    Paritosh Chaudhuri; Santra, P.; Rabi Prakash, N.; Khirwadkar, S.; Arun Prakash, A.; Ramash, G.; Dubey, S.; Chenna Reddy, D.; Saxena, Y.C.

    2005-01-01

    plate is necessary for the efficient heat transfer from the tube to the back plate. The contact at the brazed joint of the tube to the backplate/heat sink is critical for the above application. The manufactured modules need to be evaluated for the quality of brazed joint. Using an infra-red-camera, spatial and temporal evaluation of the temperature profile has been studied under various flow parameters. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, erosion rate of the tiles, and tile fitting mechanism. A 2-D Finite Difference code has been developed to study of flow behavior and thermal response of PFC during cooling. The temperature distribution results for different PFC obtained by code were assessed by comparison with 2-D Finite Element (FE) method (using ANSYS). FE models have been developed to conduct the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The result of the calculation led to a good understanding of the flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal response on divertors has been performed both in steady state and transient case. Stress analyses also have been performed by ANSYS to investigate the thermal stress on different PFC during cooling. In this paper an optimized thermal-hydraulic design of PFC cooling and their thermal response will be discussed in detail. (authors)

  11. Proceedings of the 1991 national conference on hydraulic engineering

    International Nuclear Information System (INIS)

    Shane, R.M.

    1991-01-01

    This book contains the proceedings of the 1991 National Conference of Hydraulic Engineering. The conference was held in conjunction with the International Symposium on Ground Water and a Software Exchange that facilitated exchange of information on recent software developments of interest to hydraulic engineers. Also included in the program were three mini-symposia on the Exclusive Economic Zone, Data Acquisition, and Appropriate Technology. Topics include sedimentation; appropriate technology; exclusive economic zone hydraulics; hydraulic data acquisition and display; innovative hydraulic structures and water quality applications of hydraulic research, including the hydraulics of aerating turbines; wetlands; hydraulic and hydrologic extremes; highway drainage; overtopping protection of dams; spillway design; coastal and estuarine hydraulics; scale models; computation hydraulics; GIS and expert system applications; watershed response to rainfall; probabilistic approaches; and flood control investigations

  12. Designing educational software for analysing pressurised hydraulic systems in civil engineering

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2006-09-01

    Full Text Available New information technologies have opened up a world of inexhaustible possibilities in teaching. Using such technologies in technical teaching has become indispensable due to the nature of current resources in industrial design and production. This work consists of preparing didactic material (educational software aimed at tea- ching fluid mechanics, particularly analysing tube, tank and pumping systems, initially aimed at civil engineering students from the Universidad Santo Tomás in Bogotá. Such materials have been successfully developed and used in their formal programmes by several universities around the world during the last few years. The didactic software mentioned in this work was constructed using Visual Basic programming language. This has resulted in a very useful educational tool, leading to effective teacher—student communication which is suitable for both the classroom and students’ personal work (Angel y Bautista, 2001; Aguiar, 2002.

  13. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Lee, Jeong Ik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sub th} power and electricity generation with 100 kW{sub th} idle power. Consequently, KANUTER has the characteristics of a compact and lightweight system, excellent propellant efficiency, bimodal capability, and mission versatility as indicated in the reference design parameters. This thermo-hydraulic design analysis was carried out to estimate the optimum FWT of the unique SLHC fuel design in the core and thereby the maximum rocket performance. The FWT affects the mechanical strength of the SLHC fuel assembly as well as the thermo-hydraulic capability mainly depending on the heat transfer area of fuel. The thicker fuel wafer is mechanically strong with low pressure drop, while the thinner fuel wafer is thermally robust with less mechanical strength and higher shear stress in the core.

  14. Design and modeling of a hydraulically amplified magnetostrictive actuator for automotive engine mounts

    Science.gov (United States)

    Chakrabarti, Suryarghya; Dapino, Marcelo J.

    2009-03-01

    A bidirectional magnetostrictive actuator with millimeter stroke and a blocked force of few tens of Newtons has been developed based on a Terfenol-D driver and a simple hydraulic magnification stage. The actuator is compared with an electrodynamic actuator used in active powertrain mounts in terms of electrical power consumption, frequency bandwidth, and spectral content of the response. The measurements show that the actuator has a flat free-displacement and blocked-force response up to 200 Hz, suggesting a significantly broader frequency bandwidth than commercial electromagnetic actuators while drawing comparable amounts of power.

  15. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  16. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    International Nuclear Information System (INIS)

    Musyurka, A. V.

    2016-01-01

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  17. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    Energy Technology Data Exchange (ETDEWEB)

    Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru [Bureya HPP (a JSC RusGidro affiliate) (Russian Federation)

    2016-09-15

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  18. Design, manufacture and performance research of double acting hydraulic press

    OpenAIRE

    Koc, Erdem; Unver, Ertu; Ozturk, Hidayet

    1990-01-01

    This research presents the design and production of a double acting 40 tons capacity hydraulic press. The issues in the design, engineering manufacturing of the hydraulic press are reported specifically on both cylinders generating the same pressure and velocity using a solenoid directional control valve and a flow separating valve. (In Turkish)

  19. Thermal hydraulics in undergraduate nuclear engineering education

    International Nuclear Information System (INIS)

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  20. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  1. Sustainable hydraulic engineering through building with nature

    NARCIS (Netherlands)

    de Vriend, Huib J.; van Koningsveld, M.; Aarninkhof, S.G.J.; de Vries, Mindert; Baptist, M.J.

    2015-01-01

    Hydraulic engineering infrastructures are of concern to many people and are likely to interfere with the environment. Moreover, they are supposed to keep on functioning for many years. In times of rapid societal and environmental change this implies that sustainability and adaptability are important

  2. Design of a Hydraulic Motor System Driven by Compressed Air

    OpenAIRE

    Shaw, Dein; Yu, Jyun-Jhe; Chieh, Cheng

    2013-01-01

    This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power....

  3. Hydraulic design development of Xiluodu Francis turbine

    International Nuclear Information System (INIS)

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  4. Mechanical design engineering handbook

    CERN Document Server

    Childs, Peter R N

    2013-01-01

    Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum

  5. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    International Nuclear Information System (INIS)

    Shi, Q

    2010-01-01

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  6. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)

    2010-08-15

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  7. Design of a Hydraulic Motor System Driven by Compressed Air

    Directory of Open Access Journals (Sweden)

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  8. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  9. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1996-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  10. Biopolitics problems of large-scale hydraulic engineering construction

    International Nuclear Information System (INIS)

    Romanenko, V.D.

    1997-01-01

    The XX century which will enter in a history as a century of large-scale hydraulic engineering constructions come to the finish. Only on the European continent 517 large reservoirs (more than 1000 million km 3 of water were detained, had been constructed for a period from 1901 till 1985. In the Danube basin a plenty for reservoirs of power stations, navigations, navigating sluices and other hydraulic engineering structures are constructed. Among them more than 40 especially large objects are located along the main bed of the river. A number of hydro-complexes such as Dnieper-Danube and Gabcikovo, Danube-Oder-Labe (project), Danube-Tissa, Danube-Adriatic Sea (project), Danube-Aegean Sea, Danube-Black Sea ones, are entered into operation or are in a stage of designing. Hydraulic engineering construction was especially heavily conducted in Ukraine. On its territory some large reservoirs on Dnieper and Yuzhny Bug were constructed, which have heavily changed the hydrological regime of the rivers. Summarised the results of river systems regulating in Ukraine one can be noted that more than 27 thousand ponds (3 km 3 per year), 1098 reservoirs of total volume 55 km 3 , 11 large channels of total length more than 2000 km and with productivity of 1000 m 2 /s have been created in Ukraine. Hydraulic engineering construction played an important role in development of the industry and agriculture, water-supply of the cities and settlements, in environmental effects, and maintenance of safe navigation in Danube, Dnieper and other rivers. In next part of the paper, the environmental changes after construction of the Karakum Channel on the Aral Sea in the Middle Asia are discussed

  11. DESIGN AND CONSTRUCTION OF A HYDRAULIC PISTON

    OpenAIRE

    Santos De la Cruz, Eulogio; Rojas Lazo, Oswaldo; Yenque Dedios, Julio; Lavado Soto, Aurelio

    2014-01-01

    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  12. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  13. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  14. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  15. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    2011-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. Such movements and manipulations are frequently accomplished by means of devices driven by liquids (hydraulics) or air (pneumatics), the subject of this book. Hydraulics and Pneumatics is written by a practicing process control engineer as a guide to the successful operation of hydraulic and pneumatic systems for all engineers and technicians working with them. Keeping mathematics and theory to a minimum, this practical guide is thorough but accessible to technicians without a

  16. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  17. Development and design optimization of water hydraulic manipulator for ITER

    International Nuclear Information System (INIS)

    Kekaelaeinen, Teemu; Mattila, Jouni; Virvalo, Tapio

    2009-01-01

    This paper describes one of the research projects carried out in The Preparation of Remote Handling Engineers for ITER (PREFIT) program within the European Fusion Training Scheme (EFTS). This research project is focusing on the design and optimization of water hydraulic manipulators used to test several remote handling tasks of ITER at Divertor Test Platform 2 (DTP2), Tampere, Finland, and later in ITER. In this project, a water hydraulic manipulator designed and build by Department of Intelligent Hydraulics and Automation in Tampere University of Technology, Finland (TUT/IHA) is further optimized as a case study for a given manipulator requirement specification in order to illustrate and verify developed comprehensive design guidelines and performance metrics. Without meaningful manipulator performance parameters, the evaluation of alternative robot manipulators designs remains ad hoc at best. Therefore, more comprehensive design guidelines and performance metrics are needed for comparing and improving different existing manipulators versus task requirements or for comparing different digital prototypes at early design phase of manipulators. In this paper the description of the project, its background and developments are presented and discussed.

  18. Trends in Design of Water Hydraulics

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process...... operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap water...... and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie® family and examples of measured performance...

  19. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  20. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  1. Thermal hydraulic design of PFBR core

    International Nuclear Information System (INIS)

    Roychowdhury, D.G.; Vinayagam, P.P.; Ravichandar, S.C.

    2000-01-01

    The thermal-hydraulic design of core is important in respecting temperature limits while achieving higher outlet temperature. This paper deals with the analytical process developed and implemented for analysing steady state thermal-hydraulics of PFBR core. A computer code FLONE has been developed for optimisation of flow allocation through the subassemblies (SA). By calibrating β n (ratio between the maximum channel temperature rise and SA average temperature rise) values with SUPERENERGY code and using these values in FLONE code, prediction of average and maximum coolant temperature distribution is found to be reasonably accurate. Hence, FLONE code is very powerful design tool for core design. A computer code SAPD has been developed to calculate the pressure drop of fuel and blanket SA. Selection of spacer wire pitch depends on the pressure drop, flow-induced vibration and the mixing characteristics. A parametric study was made for optimisation of spacer wire pitch for the fuel SA. Experimental programme with 19 pin-bundle has been undertaken to find the flow-induced vibration characteristics of fuel SA. Also, experimental programme has been undertaken on a full-scale model to find the pressure drop characteristics in unorificed SA, orifices and the lifting force on the SA. (author)

  2. Results From a Channel Restoration Project: Hydraulic Design Considerations

    Science.gov (United States)

    Karle, K.F.; Densmore, R.V.; ,

    2001-01-01

    Techniques for the hydraulic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve, Alaska. The two-year study at Glen Creek focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements included a channel capacity for a bankfull discharge and a floodplain capacity for a 1.5- to 100-year discharge. Several bio-engineering techniques using alder and willow, including anchored brush bars, streambank hedge layering, seedlings, and cuttings, were tested to dissipate floodwater energy and encourage sediment deposition until natural revegetation stabilized the new floodplains. Permanently monumented cross-sections installed throughout the project site were surveyed every one to three years. Nine years after the project began, a summer flood caused substantial damage to the channel form, including a change in width/depth ratio, slope, and thalweg location. Many of the alder brush bars were heavily damaged or destroyed, resulting in significant bank erosion. This paper reviews the original hydraulic design process, and describes changes to the channel and floodplain geometry over time, based on nine years of cross-section surveys.

  3. Virtual Design of a Controller for a Hydraulic Cam Phasing System

    Science.gov (United States)

    Schneider, Markus; Ulbrich, Heinz

    2010-09-01

    Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.

  4. Engineering applications of pneumatics and hydraulics

    CERN Document Server

    Turner, Ian C

    2014-01-01

    Assuming only the most basic knowledge of the physics of fluids, this book aims to equip the reader with a sound understanding of fluid power systems and their uses in practical engineering. In line with the strongly practical bias of the book, maintenance and trouble-shooting are covered, with particular emphasis on safety systems and regulations.

  5. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  6. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  7. Optimization of Classical Hydraulic Engine Mounts Based on RMS Method

    Directory of Open Access Journals (Sweden)

    J. Christopherson

    2005-01-01

    Full Text Available Based on RMS averaging of the frequency response functions of the absolute acceleration and relative displacement transmissibility, optimal parameters describing the hydraulic engine mount are determined to explain the internal mount geometry. More specifically, it is shown that a line of minima exists to define a relationship between the absolute acceleration and relative displacement transmissibility of a sprung mass using a hydraulic mount as a means of suspension. This line of minima is used to determine several optimal systems developed on the basis of different clearance requirements, hence different relative displacement requirements, and compare them by means of their respective acceleration and displacement transmissibility functions. In addition, the transient response of the mount to a step input is also investigated to show the effects of the optimization upon the time domain response of the hydraulic mount.

  8. Stuctures in hydraulic engineering : Port Infrastructure

    NARCIS (Netherlands)

    de Gijt, J.G.

    2007-01-01

    Lecture notes on the planning and design of port infrastructure, like quay walls as gravity structures, sheet-piles, jetties and ro-ro facilties; anchoring of walls. Discussion of the loads on quay walls, jetties and dolphins. Construction of quay walls. Risk analysis, fender design. Scour problems

  9. Thermal-hydraulic design of the 200 MW NHR

    International Nuclear Information System (INIS)

    Li Jincai; Gao Zuying; Xu Baocheng; He Junxiao

    1997-01-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs

  10. Thermal-hydraulic design of the 200 MW NHR

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs.

  11. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but ...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...

  12. Hydraulic Design Criteria for Spacer Grids of Nuclear Fuel Element

    International Nuclear Information System (INIS)

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model for calculating the pressure drop on the CARA spacer grids is extended.This model is validated and feedback from experimental hydraulic test performed in a low pressure loop.The importance of the spacer grid geometric parameter (that is, its thickness and length, the number and kind of their fix spacer), developing hydraulic design criteria for spacer grid on fuel element

  13. Lunar nuclear power plant design for thermal-hydraulic cooling in nano-scale environment: Nuclear engineering-based interdisciplinary nanotechnology

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2015-01-01

    The environment of the Moon is nearly vacant, which has very low density of several kinds of gases. It has the molecular level contents of the lunar atmosphere in Table 1, which is recognized that radiation heat transfer is a major cooling method. The coolant of the nuclear power plant (NPP) in the lunar base is the Moon surface soil , which is known as the regolith. The regolith is the layer of loose and heterogeneous material covering the solid rock. For finding the optimized length of the radiator of the coolant in the lunar NPP, the produced power and Moon environmental temperature are needed. This makes the particular heat transfer characteristics in heat transfer in the Moon surface. The radiation is the only heat transfer way due to very weak atmosphere. It is very cold in the night time and very hot in the daytime on the surface of the ground. There are comparisons between lunar high land soil and Earth averages in Table 2. In the historical consideration, Konstantin Tsiolkovsky made a suggestion for the colony on the Moon.. There are a number of ideas for the conceptual design which have been proposed by several scientists. In 1954, Arthur C. Clarke mentioned a lunar base of inflatable modules covered in lunar dust for insulation. John S. Rinehart suggested the structure of the stationary ocean of dust, because there could be a mile-deep dust ocean on the Moon, which gives a safer design. In 1959, the project horizon was launched regarding the U.S. Army's plan to establish a fort on the Moon by 1967. H. H. Koelle, a German rocket engineer of the Army Ballistic Missile Agency, leaded the project (ABMA). There was the first landing in 1965 and 245 tons of cargos were transported to the outpost by 1966. The coolant material of regolith in the Moon is optimized for the NPP. By the simulation, there are some results. The temperature is calculated as the 9 nodals by radiation heat transfer from the potassium coolant to the regolith flow. The high efficiency

  14. Lunar nuclear power plant design for thermal-hydraulic cooling in nano-scale environment: Nuclear engineering-based interdisciplinary nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Systemix Global Co. Ltd., Seoul (Korea, Republic of)

    2015-05-15

    The environment of the Moon is nearly vacant, which has very low density of several kinds of gases. It has the molecular level contents of the lunar atmosphere in Table 1, which is recognized that radiation heat transfer is a major cooling method. The coolant of the nuclear power plant (NPP) in the lunar base is the Moon surface soil , which is known as the regolith. The regolith is the layer of loose and heterogeneous material covering the solid rock. For finding the optimized length of the radiator of the coolant in the lunar NPP, the produced power and Moon environmental temperature are needed. This makes the particular heat transfer characteristics in heat transfer in the Moon surface. The radiation is the only heat transfer way due to very weak atmosphere. It is very cold in the night time and very hot in the daytime on the surface of the ground. There are comparisons between lunar high land soil and Earth averages in Table 2. In the historical consideration, Konstantin Tsiolkovsky made a suggestion for the colony on the Moon.. There are a number of ideas for the conceptual design which have been proposed by several scientists. In 1954, Arthur C. Clarke mentioned a lunar base of inflatable modules covered in lunar dust for insulation. John S. Rinehart suggested the structure of the stationary ocean of dust, because there could be a mile-deep dust ocean on the Moon, which gives a safer design. In 1959, the project horizon was launched regarding the U.S. Army's plan to establish a fort on the Moon by 1967. H. H. Koelle, a German rocket engineer of the Army Ballistic Missile Agency, leaded the project (ABMA). There was the first landing in 1965 and 245 tons of cargos were transported to the outpost by 1966. The coolant material of regolith in the Moon is optimized for the NPP. By the simulation, there are some results. The temperature is calculated as the 9 nodals by radiation heat transfer from the potassium coolant to the regolith flow. The high efficiency

  15. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    Science.gov (United States)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  16. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  17. Design of a Novel Electro-hydraulic Drive Downhole Tractor

    Science.gov (United States)

    Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei

    2018-02-01

    In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.

  18. Encouraging the Learning of Hydraulic Engineering Subjects in Agricultural Engineering Schools

    Science.gov (United States)

    Sinobas, Leonor Rodríguez; Sánchez Calvo, Raúl

    2014-01-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of…

  19. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    force, torque and power density. One of these areas is the mobile hydraulic area, which generally comprise all type of off-highway machinery, such as construction equipment, agricultural equipment etc. But where hydraulic systems earlier was designed with primary focus on cost, dynamic performance...... and accuracy, energy consumption is becoming an ever more important design parameter. At the same time as the first oil crisis the first hydraulic load sensing (LS) systems also emerged on the market, which, compared to the other systems of the time, offered significant energy saving potentials and which today...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...

  20. CFD based draft tube hydraulic design optimization

    International Nuclear Information System (INIS)

    McNabb, J; Murry, N; Mullins, B F; Devals, C; Kyriacou, S A

    2014-01-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis

  1. CFD based draft tube hydraulic design optimization

    Science.gov (United States)

    McNabb, J.; Devals, C.; Kyriacou, S. A.; Murry, N.; Mullins, B. F.

    2014-03-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis, using a

  2. Evaluation of hot spot factors for thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, So; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Sudo, Yukio; Murakami, Tomoyuki; Fujii, Sadao.

    1993-01-01

    High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal power and 950degC in reactor outlet coolant temperature. One of the major items in thermal and hydraulic design of the HTTR is to evaluate the maximum fuel temperature with a sufficient margin from a viewpoint of integrity of coated fuel particles. Hot spot factors are considered in the thermal and hydraulic design to evaluate the fuel temperature not only under the normal operation condition but also under any transient condition conservatively. This report summarizes the items of hot spot factors selected in the thermal and hydraulic design and their estimated values, and also presents evaluation results of the thermal and hydraulic characteristics of the HTTR briefly. (author)

  3. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  4. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  5. The risks of hydraulic fracturing and the responsibilities of engineers

    Directory of Open Access Journals (Sweden)

    Robert Kirkman

    2017-03-01

    Full Text Available One third of U.S. natural gas is extracted by injecting fluid at high pressure into shale formations, a process associated with a number of possible hazards and risks that have become the subject of intense public controversy. We develop a three-part schema to make sense of risks of hydraulic fracturing and the responsibilities of engineers: the lab, the field, and the forum. In the lab, researchers seek to answer basic questions about, for example, the behavior of shale under particular conditions; there uncertainty seems to arise at every turn. In the field, engineers and others work to implement technological processes, such as hydraulic fracturing and the subsequent extraction of oil and gas; hazards may arise as natural and social systems respond in sometimes surprising ways. In the forum, the public and their representatives deliberate about risk and acceptable risk, questions that are framed in ethical as well as technical terms. The difficulty of characterizing – and in living up to – the responsibilities of engineers lie in part in the apparent distance between the lab and the forum. We examine in turn uncertainties in the lab, hazards in the field, and deliberation in the forum, leading to the conclusion that scientists and engineers can and should help to inform public deliberation but that their research cannot, on its own, resolve all controversies. Scientists and engineers who seek to inform deliberation should be mindful of the scope and limits of their authority, clear and modest in communicating research findings to the public, and careful to avoid even apparent conflicts of interest wherever possible. We close by drawing from the lab-field-forum schema to suggest a direction for pedagogical innovations aimed at the formation of responsible engineers in the context of college-level degree programs.

  6. Engineering and design skills

    DEFF Research Database (Denmark)

    Schrøder, Anne Lise

    2006-01-01

    In various branches of society there is focus on the need for design skills and innovation potential as a means of communicating and handling constant change. In this context, the traditional idea of the engineer as a poly-technician inventing solutions by understanding the laws of nature...... concept of diagrammatic reasoning to some extent incarnates the very method of engineering and design. On this background, it is argued how the work field and techniques of the engineer and the engineering scientist could be characterized in a broader creative context of learning and communication....... This leads to considering the fundamental skills of the engineering practice as basic abilities to see the structures and dynamics of the world, to model it, and to create new solutions concerning practical as well as theoretical matters. Finally, it is assumed that the essence of engineering “bildung...

  7. Fundamental test results of a hydraulic free piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, A.; Ito, T. [Toyohashi University of Technology (Japan). Dept. of Mechanical Engineering

    2004-10-01

    The hydraulic free piston internal combustion engine pump that has been constructed and tested in this work is the opposed piston, two-stroke cycle, uniflow scavenging, direct fuel injection, and compression ignition type. The opposed engine pistons reciprocate the hydraulic pump pistons directly and the hydraulic power to be used in the hydraulic motors is generated. The hydraulic pressure generated is substantially constant. The opposed free pistons rest after every gas cycle and hydraulic power is continuously supplied by a hydraulic accumulator during the free pistons' rest. The smaller the hydraulic flow output, the longer the duration of the rest. Every gas cycle is performed under a fixed working condition independent of hydraulic power output. The test results in this work indicate that the number of gas cycles per second of the free piston engine pump is directly proportional to hydraulic flow output. The opposed free pistons operate every 53.2 s when hydraulic flow output is 1.02 cm{sup 3}/s; at that time hydraulic power output is 0.0124 kW. Hydraulic thermal efficiency, the ratio of hydraulic energy produced to fuel energy consumed, has been measured in the range 0.0124 kW to 4.88 kW of hydraulic power output and it has become clear that hydraulic thermal efficiency in this range is constant. The measured value of hydraulic thermal efficiency is 31 per cent. It has been demonstrated that hydraulic thermal efficiency is kept constant even if hydraulic power output is very small. (author)

  8. a design to digitalize hydraulic cylinder control of a machine tool

    African Journals Online (AJOL)

    Dr Obe

    1995-09-01

    Sep 1, 1995 ... Department of Mechanical Engineering. FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI,. P.M.B. 1526, OWERRI. ABSTRACT. Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC ...

  9. Design of An Energy Efficient Hydraulic Regenerative circuit

    Science.gov (United States)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  10. Stirling engine design manual

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  11. Stirling engine with hydraulic power output for powering artificial hearts

    International Nuclear Information System (INIS)

    Johnston, R.P.; Noble, J.E.; Emigh, S.G.; White, M.A.; Griffith, W.R.; Perrone, R.E.

    1975-01-01

    The DWDL heart power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has already been achieved with an engine module; animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. The present System 5 can reliably meet near-term thousand-hour animal in-vivo test goals as far as the durability and efficacy of the power source are concerned. Carefully planned development of System 6 has produced major reductions in size and required input power. Research engine tests have provided the basis for achieving performance goals and the approach for further improvement is well established. The near term goal is 33 W heat input with 16 W input projected for normal physical activity. The goal of reduction of engine module volume to 0.9 liter has been achieved. Demonstrated reliability of 292 d for the engine and 35 d for the full system, as well as effectiveness of the artificial heart power source in short-term in-vivo tests indicate that life-limiting problems are now blood pump reliability and the machine-animal interface

  12. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  13. Vehicular engine design

    CERN Document Server

    Hoag, Kevin

    2016-01-01

    This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds.  Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.

  14. Fuel design and engineering

    International Nuclear Information System (INIS)

    Hiemer, H.

    1975-01-01

    The essential aspects of the design and engineering of fuel assemblies for LWR reactors are outlined, and the major criteria to be met by the materials used are given. The fuel rods must be mechanically designed to withstand many stresses which are shortly dealt with here. (RB) [de

  15. Engineering Design Thinking

    Science.gov (United States)

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  16. Hydraulic modeling development and application in water resources engineering

    Science.gov (United States)

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

    2015-01-01

    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  17. Concept Design of Movable Beam of Hydraulic Press

    Directory of Open Access Journals (Sweden)

    Li Yancong

    2017-01-01

    Full Text Available The hydraulic press movable beam is one of the key components of the hydraulic press; its design quality impacts the accuracy of the workpiece that the press suppressed. In this paper, first, with maximum deflection and material strength as constraints, mechanical model of the movable beam is established; next, the concept design model of the moveable beam structure is established; the relationship among the force of the side cylinder, the thickness of the inclined plate, outer plate is established also. Taking movable beam of the 100MN type THP10-10000 isothermal forging hydraulic press as an example, the conceptual design result is given. This concept design method mentoned in the paper has general meaning and can apply to other similar product design.

  18. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  19. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  20. System Design and Performance Test of Hydraulic Intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Eui; Lee, Gi Chun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jae Hoon [Chungnam National University, Daejeon (Korea, Republic of)

    2010-07-15

    Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

  1. Encouraging the learning of hydraulic engineering subjects in agricultural engineering schools

    Science.gov (United States)

    Rodríguez Sinobas, Leonor; Sánchez Calvo, Raúl

    2014-09-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of 'online' and web tools in two undergraduate courses. Results from their application to encourage learning and communication skills in Hydraulic Engineering subjects are analysed and compared to the initial situation. Student's academic performance has improved since their application, but surveys made among students showed that not all the methodological proposals were perceived as beneficial. Their participation in the 'online', classroom and reading activities was low although they were well assessed.

  2. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  3. Design reliability engineering

    International Nuclear Information System (INIS)

    Buden, D.; Hunt, R.N.M.

    1989-01-01

    Improved design techniques are needed to achieve high reliability at minimum cost. This is especially true of space systems where lifetimes of many years without maintenance are needed and severe mass limitations exist. Reliability must be designed into these systems from the start. Techniques are now being explored to structure a formal design process that will be more complete and less expensive. The intent is to integrate the best features of design, reliability analysis, and expert systems to design highly reliable systems to meet stressing needs. Taken into account are the large uncertainties that exist in materials, design models, and fabrication techniques. Expert systems are a convenient method to integrate into the design process a complete definition of all elements that should be considered and an opportunity to integrate the design process with reliability, safety, test engineering, maintenance and operator training. 1 fig

  4. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  5. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  6. Main engineering features driving design concept and engineering design constraints

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kobayashi, Takeshi; Yamada, Masao

    1987-09-01

    Major engineering design philosophies are described, which are essential bases for an engineering design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, engineering design drivers and engineering design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as coil system, a mechanical configuration, a tritium breeding scenario, etc.. The design constraints may follow a natural law or engineering limit, such as material strength, coil current density, and so on. (author)

  7. Cold starting characteristics analysis of hydraulic free piston engine

    International Nuclear Information System (INIS)

    Zhang, Shuanlu; Zhao, Zhenfeng; Zhao, Changlu; Zhang, Fujun; Wang, Shan

    2017-01-01

    The cold start characteristic of hydraulic free piston diesel engine may affect its stable operation. Therefore the specific cold start characteristics, such as BDC or TDC positions, pressure in-cylinder, heat release rate, should be investigated in detail. These parameters fluctuate in some regularity in the cod start process. With the development of the free piston engine prototype and the establishment of test bench, the results are obtained. For the dynamic results, the fluctuation range of TDC and BDC positions is 8 mm and decreases with time. The thermodynamic results show that the combustion process is not stable and the pressure in-cylinder fluctuates largely in the cold start process. In addition, the combustion is rapid and knock happens inevitably. In order to investigate the reasons, a CFD model is established for temperature analysis in-cylinder and heat transfer conditions. It is found that higher start wall temperature will lead to more uniform temperature distribution. The delay period may decreases and heat release will move forward. This reason is analyzed by thermodynamic derivation based on the first law of thermodynamics. Finally, the improvement suggestions of cold start strategy are proposed. - Highlights: • The cold start behaviors of HFPE are investigated in detail. • CFD method is used for simulating temperature distribution in start process. • Thermodynamic derivation uncovers the compression temperature distribution. • The improvement suggestions of cold start strategy are proposed.

  8. Design and thermal-hydraulic calculation for EAST PFCs' baking

    International Nuclear Information System (INIS)

    Wan Xiaogang; Yao Damao

    2006-01-01

    According to the vacuum requirements for fusion in a tokamak device, the authors adopted a kind of gas flow baking technique in EAST. This paper presented the sketch design for EAST PFCs' baking, selected the specifications for the working gas. Calculated the hydraulic and thermal conditions in PFCs under baking, and simulated the results. (authors)

  9. Design and simulation for a hydraulic actuated quadruped robot

    International Nuclear Information System (INIS)

    Rong, Xuewen; Li, Yibin; Li, Bin; Ruan, Jiuhong

    2012-01-01

    This paper describes the mechanical configuration of a quadruped robot firstly. Each of the four legs consists of three rotary joints. All joints of the robot are actuated by linear hydraulic servo cylinders. Then it deduces the forward and inverse kinematic equations for four legs with D-H transformation matrices. Furthermore, it gives a composite foot trajectory composed of cubic curve and straight line, which greatly reduces the velocity and acceleration fluctuations of the torso along forward and vertical directions. Finally, dynamics cosimulation is given with MSC.ADAMS and MATLAB. The results of co-simulation provide important guidance to mechanism design and parameters preference for the linear hydraulic servo cylinders

  10. Thermal hydraulic aspects of the SBWR design

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Alamgir, Md.; Andersen, J.G.M.

    1992-01-01

    The Simplified Boiling Water Reactor (SBWR) is being developed by GE Nuclear Energy in cooperation with a number of international associates. The design philosophy stresses simplification of the system by relying to a large extent on passive features. The natural circulation system eliminates the need for external recirculation pumps and loops. Emergency core cooling is accomplished by a Gravity Driven Cooling System (GDCS). Passive energy removal from the containment is by condensers with natural circulation. The principles underlying these features are not novel, and have been proof tested in previous designs. However, their application in the SBWR results in significant differences in operational characteristics from other plants. In this paper, the phenomena that are important for the SBWR are identified, the qualification plan is discussed and sample qualification results are shown for TRACG, the GE version of TRAC-BWR. (author)

  11. Thermal hydraulic aspects of the SBWR design

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Alamgir, M.; Andersen, J.G.M.

    1993-01-01

    The Simplified Boiling Water Reactor (SBWR) is being developed by GE Nuclear Energy in cooperation with a number of international associates. The design philosophy stresses simplification of the system by relying to a large extent on passive features. The natural circulation driven core flow eliminates the need for external recirculation pumps and loops. Emergency core cooling is accomplished by a Gravity Driven Cooling System (GDCS). Passive energy removal from the containment is by condensers with natural circulation. The principles underlying these features are not novel, and have been proof tested in previous designs. However, their application in the SBWR results in significant differences in operational characteristics from other plants. In this paper, the phenomena that are important for the SBWR are identified, the qualification plan is discussed and sample qualification results are shown for TRACG, the GE version of TRAC-BWR. (orig.)

  12. Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid

    Science.gov (United States)

    2016-09-01

    hydraulic fluids were originally developed by the Douglas Aircraft Company during the 1940s to reduce fire risk from leaking high pressure mineral oil...thermal load demands in modern hydraulic systems and reduced density to lower weight impact on the aircraft. Eastman Chemical is the current producer of...AFRL-RQ-WP-TM-2016-0155 OPERATION OF A T63 TURBINE ENGINE USING F24 CONTAMINATED SKYDROL 5 HYDRAULIC FLUID Matthew J. Wagner (AFRL/RQTM) James

  13. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  14. Engineering Encounters: Identifying an Engineering Design Problem

    Science.gov (United States)

    Chizek, Lisa; VanMeeteren, Beth; McDermott, Mark; Uhlenberg, Jill

    2018-01-01

    Engineering is an intriguing way for students to connect the design process with their knowledge of science (NRC 2012). This article describes the "Engineering a Pancake Recipe" design process which was created to make the structure and properties of matter more meaningful for fifth grade students. The whole pancake recipe engineering…

  15. A new approach to designing reduced scale thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    Lapa, Celso M.F.; Sampaio, Paulo A.B. de; Pereira, Claudio M.N.A.

    2004-01-01

    Reduced scale experiments are often employed in engineering because they are much cheaper than real scale testing. Unfortunately, though, it is difficult to design a thermal-hydraulic circuit or equipment in reduced scale capable of reproducing, both accurately and simultaneously, all the physical phenomena that occur in real scale and operating conditions. This paper presents a methodology to designing thermal-hydraulic experiments in reduced scale based on setting up a constrained optimization problem that is solved using genetic algorithms (GAs). In order to demonstrate the application of the methodology proposed, we performed some investigations in the design of a heater aimed to simulate the transport of heat and momentum in the core of a pressurized water reactor (PWR) at 100% of nominal power and non-accident operating conditions. The results obtained show that the proposed methodology is a promising approach for designing reduced scale experiments

  16. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims...

  17. Shedding Light on Engineering Design

    Science.gov (United States)

    Capobianco, Brenda M.; Nyquist, Chell; Tyrie, Nancy

    2013-01-01

    This article describes the steps incorporated to teach an engineering design process in a fifth-grade science classroom. The engineering design-based activity was an existing scientific inquiry activity using UV light--detecting beads and purposefully creating a series of engineering design-based challenges around the investigation. The…

  18. Hydraulic Characterization of Diesel Engine Single-Hole Injectors

    OpenAIRE

    Arco Sola, Javier

    2015-01-01

    Due to world trend on the emission regulations and greater demand of fuel economy,the research on advanced diesel injector designs is a key factor for the next generation diesel engines. For that reason, it is well established that understanding the effects of the nozzle geometry on the spray development, fuel-air mixing, combustion and pollutants formation is of crucial importance to achieve these goals.In the present research, the influence of the injector nozzle geometry on the internalflo...

  19. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  20. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  1. Fusion engineering device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  2. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...... features. The design process is outlined to give insight in the design criteria driving the design. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the FAST aero elastic design software. The concepts are based...... on a 5 MW offshore turbine. After the system presentation, measurement results are presented to verify the behavior of the system. The loads to the system are applied by torque controlled electrical servo drives, which can add a load of up to 3 MNm to the system. This gives an exact picture of the system...

  3. Engineers: Designers--No Alibis.

    Science.gov (United States)

    Stevens, Susan A. R.; Wilkins, Linda C.

    Engineering is the science, art, and business of designing and getting things done; engineers are required to make things happen through interpersonal relationships. At Monash University (Australia), a new course, Management for Engineers, was set up in 1990 to encourage a more holistic approach to the process of engineering. The course included…

  4. Design and analysis of hydraulic ram water pumping system

    Science.gov (United States)

    Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.

    2017-10-01

    The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.

  5. Documenting the Engineering Design Process

    Science.gov (United States)

    Hollers, Brent

    2017-01-01

    Documentation of ideas and the engineering design process is a critical, daily component of a professional engineer's job. While patent protection is often cited as the primary rationale for documentation, it can also benefit the engineer, the team, company, and stakeholders through creating a more rigorously designed and purposeful solution.…

  6. Engineering Encounters: Minding Design Missteps

    Science.gov (United States)

    Crismond, David; Gellert, Laura; Cain, Ryan; Wright, Shequana

    2013-01-01

    The "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013) asks teachers to give engineering design equal standing with scientific inquiry in their science lessons. This article asks the following questions: What do engineering design practices look like, and how do you assess them? How similar and different is engineering design…

  7. Product design and development engineering

    International Nuclear Information System (INIS)

    Lee, Kookhwan

    2008-01-01

    This book gives design of molded plastics, design of press product, design of die casting products, the application of communication terminal design, application and design of machine elements(screw, spring, bearing, gear, retaining ridge, drawing standards, KS and JIS material marks list), 3D CAD, concurrent engineering of product design, creative concept design.

  8. Ethics and engineering design.

    NARCIS (Netherlands)

    van de Poel, I.R.; van der Poel, Ibo; Verbeek, Peter P.C.C.

    2006-01-01

    Engineering ethics and science and technology studies (STS) have until now developed as separate enterprises. The authors argue that they can learn a lot from each other. STS insights can help make engineering ethics open the black box of technology and help discern ethical issues in engineering

  9. Designing requirements engineering research

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Heerkens, Johannes M.G.

    2007-01-01

    Engineering sciences study different topics than natural sciences, and utility is an essential factor in choosing engineering research problems. But despite these differences, research methods for the engineering sciences are no different than research methods for any other kind of science. At most

  10. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  11. Computer aided hydraulic design of axial flow pump impeller

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.

    1994-01-01

    Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs

  12. Role of system characteristics in evolution of pump hydraulic design

    International Nuclear Information System (INIS)

    Walia, Mohinder; Misri, Vijay; Sharma, A.K.; Bapat, C.N.

    1994-01-01

    Primary heat transport (PHT) main circuit provides the means for transferring the heat produced in the fuel by circulating heavy water in the main circuit loop by primary coolant pumps (PCPs). The procurement specification of PCPs for 500 MWe pressurised heavy water reactor (PHWR) was prepared based upon the first order hydraulic analysis of the primary heat transport system and accordingly duty point was fixed. With this specification the manufacturer carried out model testing to arrive at optimum size of the impeller followed by determination of pump characteristics curves using full scale impeller during type testing. The duty point thus obtained was higher than specified necessitating the trimming of impeller. However, in order to make use of available higher duty point from system considerations, the duty point was redefined for production of subsequent pumps within specified tolerances governed by manufacturing limitations. PHT main system sizing (piping and feeders) was carried out based upon pump (delivering maximum flow) characteristics curve. Pressure profiles of PHT system at various operating modes were drawn and corresponding power drawn by motor was calculated. The interfacing of reactor coolant main system with hydraulic characteristics of PCP plays a significant role in establishing the requisite capability and capacity of PHT system in performing its intended functions. Therefore the paper traces the evolution of design parameters for PCP and subsequent generation of pressure profiles commensurate with the changes made in power profile including their impact on feeder sizing. The paper also highlights the scope of interaction between process designer and pump manufacturer in formulating a mutually acceptable and efficient hydraulic performance for PCP. (author). 3 refs., 8 figs., 3 tabs

  13. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  14. Experiences with the hydraulic design of the high specific speed Francis turbine

    International Nuclear Information System (INIS)

    Obrovsky, J; Zouhar, J

    2014-01-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between n s =425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper

  15. Experiences with the hydraulic design of the high specific speed Francis turbine

    Science.gov (United States)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  16. GNPS 18-months fuel cycles core thermal hydraulic design

    International Nuclear Information System (INIS)

    Liu Changwen; Zhou Zhou

    2002-01-01

    GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined

  17. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  18. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Basher, A.M.H.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  19. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  20. Dynamic characteristics of Semi-active Hydraulic Engine Mount Based on Fluid-Structure Interaction FEA

    Directory of Open Access Journals (Sweden)

    Tian Jiande

    2015-01-01

    Full Text Available A kind of semi-active hydraulic engine mount is studied in this paper. After careful analysis of its structure and working principle, the FEA simulation of it was divided into two cases. One is the solenoid valve is open, so the air chamber connects to the atmosphere, and Fluid-Structure Interaction was used. Another is the solenoid valve is closed, and the air chamber has pressure, so Fluid-Structure-Gas Interaction was used. The test of this semi-active hydraulic engine mount was carried out to compare with the simulation results, and verify the accuracy of the model. Then the dynamic characteristics-dynamic stiffness and damping angle were analysed by simulation and test. This paper provides theoretical support for the development and optimization of the semi-active hydraulic engine mount.

  1. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...

  2. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  3. Designing blended engineering courses

    NARCIS (Netherlands)

    Puffelen, van E.A.M.

    2017-01-01

    Universities have to deal with larger differences of engagement between students and more need for outcomes-based teaching and learning that allows for differences in learning styles. In addition for engineers, the rapidly changing world brings the need to engage students in diverse learning.

  4. Engineering Design Challenge

    Science.gov (United States)

    Wheeler, Lindsay B.; Whitworth, Brooke A.; Gonczi, Amanda L.

    2014-01-01

    The number of students majoring in science, technology, engineering, and math (STEM) is declining due in part to a lack of student interest (Fairweather 2008; NRC 2012; PCAST 2010). One reason may be the difference between how science is done in school and how it is done in the field (Osborne, Simon, and Collins 2003). An interdisciplinary…

  5. Engine including hydraulically actuated valvetrain and method of valve overlap control

    Science.gov (United States)

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  6. Free-piston engine-and-hydraulic pump for railway vehicles

    Directory of Open Access Journals (Sweden)

    A. F. Golovchuk

    2013-04-01

    Full Text Available Purpose. The development of the free-piston diesel engine-and-hydraulic pump for the continuously variable hydrostatical transmission of mobile power vehicles. Methodology. For a long time engine builders have been interesting in the problem of developing free piston engines, which have much bigger coefficient of efficiency (40…80%. Such engines don’t have the conversion of reciprocating motion for inner combustion engine piston into rotating motion of crankshaft, from which the engine torque is transferred to the power machine transmission. Free-piston engines of inner combustion don’t have the crank mechanism (CM that significantly reduces mechanical losses for friction. Such engines can be used as compressors. Free-piston engine compressor (FPEC – is a free-piston machine in which energy received from engine’s cylinder is being transferred direct to compressor’s pistons connected with operational pistons of engine without crank mechanism. Part of the pressed air is being consumed for engine cylinder drain and the other part is going to the consumer. Findings. The use of free-piston engines-and-hydraulic pumps as power-transmission plants of power vehicles (diesel locomotives, combine harvester, tractors, cars and other mobile and stationary power installations with the continuously variable transmissions allows cost effectiveness improvement and metal consumption reduction of these vehicles, since the cost effectiveness of FPE is higher by 25-30%, and the metal consumption is lower by 40-50%. Originality. One of the important advantages of the free-piston engines is their simplicity and engine balance. As a result of the crank mechanism absence their construction is much simplified and the vibrations, peculiar to the ordinary engines are eliminated. In such installation the engine pistons are directly connected through the rod to compressor pistons and therefore there are no losses in the bearing bushes. Practical value. The free

  7. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  8. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...... applications and the environmental benefits are in focus, in particular in the food processing industry and in fire-fighting systems.......Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  9. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Paepe, M. de [Ghent University (Belgium). Department of Flow, Heat and Combustion Mechanics; Janssens, A. [Ghent University (Belgium). Department of Architecture and Urbanism

    2003-05-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  10. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent (Belgium); Janssens, A. [Department of Architecture and Urbanism, Ghent University, Ghent (Belgium)

    2003-07-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  11. Hydraulic analysis and optimization design in Guri rehabilitation project

    Science.gov (United States)

    Cheng, H.; Zhou, L. J.; Gong, L.; Wang, Z. N.; Wen, Q.; Zhao, Y. Z.; Wang, Y. L.

    2016-11-01

    Recently Dongfang was awarded the contract for rehabilitation of 6 units in Guri power plant, the biggest hydro power project in Venezuela. The rehabilitation includes, but not limited to, the extension of output capacity by about 50% and enhancement of efficiency level. To achieve the targets the runner and the guide vanes will be replaced by the newly optimized designs. In addition, the out-of-date stay vanes with straight plate shape will be modified into proper profiles after considering the application feasibility in field. The runner and vane profiles were optimized by using state-of-the-art flow simulation techniques. And the hydraulic performances were confirmed by the following model tests. This paper describes the flow analysis during the optimization procedure and the comparison between various technical concepts.

  12. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  13. Hydraulic cylinder simulates parameters of a free piston engine; Hydraulikzylinder simuliert Groessen fuer einen Freikolbenmotor

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, Frank [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Fahrzeugkonzepte

    2011-01-10

    Important data are obtained in the development of a free piston engine by a test stand with a hydraulic cylinder which first simulates the power curves and motion of the individual components, then induces the motion of the system piston, and finally ensures safety against undesired forces. (orig.)

  14. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  15. Routine Design for Mechanical Engineering

    OpenAIRE

    Brinkop, Axel; Laudwein, Norbert; Maasen, Rudiger

    1995-01-01

    COMIX (configuration of mixing machines) is a system that assists members of the EKATO Sales Department in designing a mixing machine that fulfills the requirements of a customer. It is used to help the engineer design the requested machine and prepare an offer that's to be submitted to the customer. comix integrates more traditional software techniques with explicit knowledge representation and constraint propagation. During the process of routine design, some design decisions have to be mad...

  16. Design of a hydraulic loop for characterization of nuclear fuels for the Rech-1

    International Nuclear Information System (INIS)

    Munoz Reveco, David Hernan

    2016-01-01

    The Chilean Nuclear Energy Commission (CCHEN), in particular the Fuels Elements Plant (PEC), wants to increase its capacity of design of nuclear fuel elements (ECN). The International Atomic Energy Agency (IAEA) stipulates that in order to develop new ECN designs must be met with neutron, structural, thermal and hydraulics. The CCHEN in the first instance, wishes to implement the hydraulic tests with a test bench which is called 'Hydraulic Loop (LH)'. The general objective of the project is to design a LH at the level of detailed engineering, with the purpose to characterize ECN hydraulically of the RECH-1 reactor. The specific objectives are: (i) Carry out the conceptual design and control philosophy applicable to the LH, ii) Develop the design LH baseline including layout, equipment, instrumentation and assembly; and iii) Carry out the detailed design for LH construction and assembly including technical specifications for the acquisition, construction and assembly of LH, and estimated investments to materialize the project. To carry out the conceptual design of the LH proceed to review piping projects provided by specialists, fluid pressure drop analysis is carried out in pipelines and papers are reviewed on existing LHs (Petten and IPEN). The basic design is developed by setting the conditions system, taking as a design criterion the operating the RECH-2 reactor. For the design of the test zone, the ASME code VIII division 1 section 13-7. The pond develops according to the capacity of fluid contained in the system. The pump is selected by system losses, overestimating the load of the pump. In addition, the characteristic curves of the pump are compared with the curve feature of the system. Detail planes are generated with Autodesk Inventor software Professional 2014-student version. The instrumentation selection is carried out with the advice of a company dedicated to the measurement and control of industrial activities (VETO). The main results of the project

  17. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some...... of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...

  18. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Dujiangyan: Could the ancient hydraulic engineering be a sustainable solution for Mississippi River diversions?

    Science.gov (United States)

    Xu, Y. J.

    2016-02-01

    Dujiangyan, also known as the Dujiangyan Project, is a hydraulic engineering complex built more than 2260 years ago on the Mingjiang River near Chengdu in China's Sichuan Province. The complex splits the river into two channels, a so-called "inner river" (Leijiang) and an "outer river" (Waijiang) that carry variable water volumes and sediment loads under different river flow conditions. The inner river and its numerous distributary canals are primarily man-made for irrigation over the past 2000 years, while the outer river is the natural channel and flows southward before entering into the Yangtze River. Under normal flow, 60% of the Mingjiang River goes into the inner river for irrigating nearly 1 million hectares of agricultural land on the Chengdu plain. During floods, however, less than 40% of the Mingjiang River flows into the inner river. Under both flow conditions, about 80% of the riverine sediments is carried by the outer river and continues downstream. This hydrology is achieved through a weir work complex that comprises three major components: a V-shaped bypass dike in the center of the Mingjiang River (the Yuzui Bypass Dike, see photo below), a sediment diversion canal in the inner river below the bypass dike (the Feishayan Floodgate), and a flow control in the inner river below the sediment diversion canal (the Baopingkou Diversion Passage). Together with ancillary embankments, these structures have not only ensured a regular supply of silt-reduced water to the fertile Chengdu plain, but have provided great benefits in flood control, sediment transport, and water resources regulation over the past two thousand years. The design of this ancient hydraulic complex ingeniously conforms to the natural environment while incorporating many sophisticated techniques, reflecting the concept that humankind is an integral part of nature. As we are urgently seeking solutions today to save the sinking Mississippi River Delta, examination of the ancient engineering

  20. Hydraulic and thermal design of a gas microchannel heat exchanger

    International Nuclear Information System (INIS)

    Yang Yahui; Brandner, Juergen J; Morini, Gian Luca

    2012-01-01

    In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.

  1. An Optimisation Approach Applied to Design the Hydraulic Power Supply for a Forklift Truck

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2004-01-01

    -level optimisation approach, and is in the current paper exemplified through the design of the hydraulic power supply for a forklift truck. The paper first describes the prerequisites for the method and then explains the different steps in the approach to design the hydraulic system. Finally the results...

  2. Civil Engineering & Design Standards Manual

    OpenAIRE

    Vänttinen, Eetu

    2014-01-01

    Civil Discipline Engineering department in Foster Wheeler Energia Oy takes care of the construction of foundation, steel frame, platforms, cladding/roofing, HVAC, elevator, hoist and central vacuum system of the boiler building. The goal of the thesis was to compile a design manual for the department to ease up the startup of the design of a new project and standardize the design. Main objective was to gather together all the existing guidelines, standards and directives regarding the des...

  3. Sharing the design intent between industrial designers and engineering designers

    DEFF Research Database (Denmark)

    Laursen, Esben Skov; Møller, Louise

    2016-01-01

    The aim of the paper is to understand the challenges sharing the product frame between industrial designers with the engineering designers. The study is based on six case studies. The analysis showed correspondence between industrial designers and engineering designers in their understanding...... of the key elements of the context and concept. However the analysis also showed a lack of correspondence between the industrial designers and engineering designers in regards to the product framing and thereby how the different elements of the product frame is connected and interrelated....

  4. Is Engineering Design Disappearing from Design Research?

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.

    2011-01-01

    Most systems and products need to be engineered during their design, based upon scientific insight into principles, mechanisms, materials and production pos-sibilities, leading to reliability, durability and value for the user. Despite the central importance and design’s crucial dependency...

  5. Kansei Engineering and Website Design

    DEFF Research Database (Denmark)

    Song, Zheng; Howard, Thomas J.; Achiche, Sofiane

    2012-01-01

    a methodology based on Kansei Engineering, which has done significant work in product and industrial design but not quite been adopted in the IT field, in order to discover implicit emotional needs of users toward web site and transform them into design details. Survey and interview techniques and statistical...... methods were performed in this paper. A prototype web site was produced based on the Kansei results integrated with technical expertise and practical considerations. The results showed that the Kansei Engineering methodology in this paper played a significant role in web site design in terms of satisfying......Capturing users’ needs is critical in web site design. However, a lot of attention has been paid to enhance the functionality and usability, whereas much less consideration has been given to satisfy the emotional needs of users, which is also important to a successful design. This paper explores...

  6. NPP Engineering and Servicing / Design Analysis Department

    International Nuclear Information System (INIS)

    Sik, J.

    2006-01-01

    The article provides an overview of the activities of the SKODA JS's Design Analysis Department performed recently in the fields of reactor physics, shielding physics, thermal hydraulics and mechanical structure stresses and life analysis. (orig.)

  7. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  8. Design of a Hydraulic Damper for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Emil Zaev

    2011-09-01

    Full Text Available A hydraulic unit consisting of an accumulator as energy storage element and an orifice providing friction was designed to damp oscillations of a machine during operation. In the first step, a model for the gas spring was developed from the ideal gas laws for the dimensioning the elements. To model the gas process with a graphical simulation tool it is necessary to find a form of the gas law which can be integrated with a numerical solver, such as Tustin, Runge-Kutta, or other. For simulating the working condition, the model was refined using the van der Waals equations for real gas. A unified model representation was found to be applied for any arbitrary state change. Verifications were made with the help of special state changes, adiabatic and isothermal. After determining the dimensional parameters, which are the accumulator capacity and the orifice size, the operational and the limiting parameters were to be found. The working process of a damper includes the gas pre-charging to a predefined pressure, the nearly isothermal static loading process, and the adiabatic change during the dynamic operation.

  9. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...... to enable efficient operation. These valves are complex components to design, as multiple design aspects are present in these integrated valve units, with conflicting objectives and interdependencies. A preliminary study on a small scale single-cylinder digital hydraulic pump has initially been conducted...

  10. A Design to Digitalize Hydraulic Cylinder Control of a Machine Tool ...

    African Journals Online (AJOL)

    Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC milling machine which employs a small stepping motor to digitally actuated hydraulic piston - cylinder servo drives existing on the machines Y-axis is ...

  11. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  12. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1994-01-01

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits

  13. The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    Science.gov (United States)

    Brinkman, P. W.; Kretz, D.

    1992-01-01

    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented.

  14. Design Formulae for Hydraulic Stability and Structural Integrity of Dolos Breakwater Round-Heads

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    A rational design of Dolos armour unit should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) resulted in design formulae for the trunk of a 1:1.5 slope Dolos breakwater without superstructure including both...... the hydraulic stability and the structural integrity. The objective of the round-head tests is to produce similar design formulae for Dolos armour in around-head. The tests will also include examinations of the hydraulic stability and run-up for a trunk section adjacent to the round-head. A run-up formula...

  15. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...... test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  16. Thermo-hydraulic free piston engine as a primary propulsion unit in mobile hydraulic drives; Die thermohydraulische Freikolbenmaschine - ein neues Antriebskonzept fuer hydraulische angetriebene Fahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, H. [Technische Univ. Dresden (Germany)

    2004-07-01

    The principle function of a free piston engine was tested on a test stand. The engine can drive hydraulic loads as a primary aggregate in a storage-based constant pressure network. Its power is independent of the loads. The engine is operated in intermittent operation and at the optimal operating point. There are no idle or part-load fractions. Measurements so far have shown that the performance of the new system equals that of a current combination of internal combustion engine and axial piston pump in their optimal operating point. In cyclic operation, the performance is even better. (orig.)

  17. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    Science.gov (United States)

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  18. Screening candidate systems engineers: a research design

    CSIR Research Space (South Africa)

    Goncalves, DP

    2009-07-01

    Full Text Available engineering screening methodology that could be used to screen potential systems engineers. According to their design, this can be achieved by defining a system engineering profile according to specific psychological attributes, and using this profile...

  19. Infusing Engineering Concepts: Teaching Engineering Design

    Science.gov (United States)

    Daugherty, Jenny

    2012-01-01

    Engineering has gained considerable traction in many K-12 schools. However, there are several obstacles or challenges to an effective approach that leads to student learning. Questions such as where engineering best fits in the curriculum; how to include it authentically and appropriately; toward what educational end; and how best to prepare…

  20. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-01-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report

  1. Determination of hot spot factors for calculation of the maximum fuel temperatures in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, Soh; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Shindo, Ryuichi; Sudo, Yukio

    1988-12-01

    The Japan Atomic Energy Research Institute (JAERI) has been designing the High Temperature Engineering Test Reactor (HTTR), which is 30 MW in thermal power, 950deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in primary coolant pressure. This report summarizes the hot spot factors and their estimated values used in the evaluation of the maximum fuel temperature which is one of the major items in the core thermal and hydraulic design of the HTTR. The hot spot factors consist of systematic factors and random factors. They were identified and their values adopted in the thermal and hydraulic design were determined considering the features of the HTTR. (author)

  2. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  3. Hydraulic screw fastening devices - design, maintenance, operational experience

    International Nuclear Information System (INIS)

    Lachner.

    1976-01-01

    With hydraulic screw fastening devices, pretension values with a maximum deviation of +-2.5% from the rated value can be achieved. This high degree of pretension accuracy is of considerable importance with regard to the safety factor required for the screw connection between reactor vessel head and reactor vessel. The operating rhythm of a nuclear power station with its refuelling art regular intervals makes further demands on the screw fastening device, in particular in connection with the transport of screws and for nuts. The necessary installations extend the screw fastening device into a combination of a high-pressure hydraulic cylinder system with an electrical or pneumoelectrical driving unit and an electrical control unit. Maintenance work is complicated by the large number of identical, highly stressed structural elements in connection with an unfavourable relation operating time/outage time. The problems have been perpetually reduced by close cooperation between the manufacturers and users of screw fastening devices. (orig./AK) [de

  4. Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics

    Science.gov (United States)

    Weyer, K.

    2013-12-01

    Within engineering practice, the calculation of subsurface flow is dominated by the mathematical pseudo-physics of the engineer's adaptation of continuum methods to mechanics. Continuum mechanics rose to prominence in the 19th century in an successful attempt to solve practical engineering problems. To that end were put in place quite a number of simplifications in geometry and the properties of water and other fluids, as well as simplifications of Darcy's equation, in order to find reasonable answers to practical problems by making use of analytical equations. The proof of the correctness of the approach and its usefulness was in the practicability of results obtained. In the 1930s, a diametrically-opposed duality developed in the theoretical derivation of the laws of subsurface fluid flow between Muskat's (1937) velocity potential (engineering hydraulics) and Hubbert's (1940) force potential. The conflict between these authors lasted a lifetime. In the end Hubbert stated on one occasion that Muskat formulates a refined mathematics but does not know what it means in physical terms. In this author's opinion that can still be said about the application of continuum mechanics by engineers to date, as for example to CO2 sequestration, regional groundwater flow, oil sands work, and geothermal studies. To date, engineering hydraulics is best represented by Bear (1972) and de Marsily (1986). In their well-known textbooks, both authors refer to Hubbert's work as the proper way to deal with the physics of compressible fluids. Water is a compressible fluid. The authors then ignore, however, their own insights (de Marsily states so explicitly, Bear does not) and proceed to deal with water as an incompressible fluid. At places both authors assume the pressure gradients to be the main driving force for flow of fluids in the subsurface. That is not, however, the case. Instead the pressure potential forces are caused by compression initiated by unused gravitational energy not

  5. Design and Performance Analysis of a new Rotary Hydraulic Joint

    Science.gov (United States)

    Feng, Yong; Yang, Junhong; Shang, Jianzhong; Wang, Zhuo; Fang, Delei

    2017-07-01

    To improve the driving torque of the robots joint, a wobble plate hydraulic joint is proposed, and the structure and working principle are described. Then mathematical models of kinematics and dynamics was established. On the basis of this, dynamic simulation and characteristic analysis are carried out. Results show that the motion curve of the joint is continuous and the impact is small. Moreover the output torque of the joint characterized by simple structure and easy processing is large and can be rotated continuously.

  6. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    International Nuclear Information System (INIS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M

    2009-01-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation

  7. Thermal-hydraulic design of the 200 MW NHR

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The main problems regarding the AST-500 NHR thermal-hydraulics are considered. Basic thermal data of the reactor plant are given and peculiarities of coolant parameters at natural convection in the primary circuit are discussed. The in-reactor instrumentation system is briefly describes, as well as the results of natural-convective flow characteristics investigations using reactor test models. (author). 4 refs, 5 figs.

  8. Geo synthetics in hydraulic and coastal engineering: Filters, revetments and sand filled structures

    International Nuclear Information System (INIS)

    Bezuijen, A.; Pilarczyk, K. W.

    2014-01-01

    The paper deals with 2 applications of geo textiles in coastal and hydraulic engineering: Geo textiles in filters and revetments; and geo textiles in sand filled structure. Geo textiles are often replacing granular filters. However, they have different properties than a granular filter. For the application of geo textiles in revetments, the consequences of the different properties will be shown: how permeability is influenced by a geo textile and what can be the consequences of the weight differences between granular and geo textile filters. In the other application, the filter properties of geo textiles are only secondary. In geo textile tubes and containers the geo textile is used as wrapping material to create large unties that will not erode during wave attach. the structures with geo textile tubes and containers serve as an alternative for rock based structures. The first of these structures were more or less constructed by trial and error, but research on the shape of the structures, the stability under wave attach and the durability of the used of the used material has given the possibility to use design tools for these structures. Recently also the morphological aspects of these structures have been investigated. This is of importance because regularly structures with geo textile tubes fail due to insufficient toe protection against the scour hole that that develops in front of the structure, leading to undermining of the structure. Recent research in the Dealt Flume of Deltares and the Large Wave Flume in Hannover has led to better understanding what mechanisms determine the stability under wave attach. It is shown that also the degree of filling is of importance and the position of the water level with respect to the tube has a large influence. (Author)

  9. Thermodynamic and energy saving benefits of hydraulic free-piston engines

    International Nuclear Information System (INIS)

    Zhao, Zhenfeng; Wang, Shan; Zhang, Shuanlu; Zhang, Fujun

    2016-01-01

    The hydraulic free-piston engine integrates the internal combustion engine with a hydraulic pump. The piston of an HFPE is not connected to the crankshaft and the piston movement is determined by the forces that act upon it. These features optimize combustion and make higher power density and efficiency increase. In this paper, a detailed thermodynamic and energy saving analysis is performed to demonstrate the fundamental efficiency advantage of an HFPE. The thermodynamic results show that the combustion process can be optimized to an ideal engine cycle. The experimental results show that the HFPE combustion process is a nearly constant-volume process; the efficiency is approximately 50%; the piston displacement and velocity curves for a cycle are the same at any frequency, even at a 1.25 Hz. The maximum velocities are of the same value at high or low frequencies. Similarly, pump output flow is not influenced by frequency. The independent cyclic characteristics of HFPE determine that it should work in higher frequencies when the vehicle runs in Japanese 10–15 road conditions. It indicates that a higher working frequency will lead to the starting frequency of HFPE, and a lower frequency will decrease the pressurized pressure of the hydraulic accumulator. - Highlights: • The thermodynamic and energy saving benefits of the HFPEs was investigated. • The approach of combustion optimization was obtained by adjusting the injection timing and compression ratio. • The high efficiency area of HFPE was given as a function of injection timing and compression pressure. • The maximum efficiency of HFPE of 50% was obtained from the prototype. • The method of energy saving with adjusting the piston frequency was examined.

  10. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  11. The Optimal Hydraulic Design of Centrifugal Impeller Using Genetic Algorithm with BVF

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2014-01-01

    Full Text Available Derived from idea of combining the advantages of two-dimensional hydraulic design theory, genetic algorithm, and boundary vorticity flux diagnosis, an optimal hydraulic design method of centrifugal pump impeller was developed. Given design parameters, the desired optimal centrifugal impeller can be obtained after several iterations by this method. Another 5 impellers with the same parameters were also designed by using single arc, double arcs, triple arcs, logarithmic spiral, and linear-variable angle spiral as blade profiles to make comparisons. Using Reynolds averaged N-S equations with a RNG k-ε two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the flow channel between blades of 6 designed impellers by CFD code FLUENT, the investigation on velocity distributions, pressure distributions, boundary vorticity flux distributions on blade surfaces, and hydraulic performance of impellers was presented and the comparisons of impellers by different design methods were demonstrated. The results showed that the hydraulic performance of impeller designed by this method is much better than the other 5 impellers under design operation condition with almost the same head, higher efficiency, and lower rotating torque, which implied less hydraulic loss and energy consumption.

  12. Hydraulic Theory and Hydraulic Engineering Projects of the Wusong River (吳淞江 Basin Between the Sixteenth and Nineteenth Centuries

    Directory of Open Access Journals (Sweden)

    Chulwoong Chung

    2015-02-01

    Full Text Available This paper attempts to explore the significance of the overall water control system and numerous water control projects in the Jiangnan region. Through a series of large-scale dredging projects, the Ming and Qing Dynasties attempted to achieve the goals of securing national tax revenue and guaranteeing the production activity for the farmers. However, due to the weakened hydraulic system, excessive expenses, and interests on various levels, large-scale hydraulic engineering projects were unable to achieve their original goals. Starting in the sixteenth century already, interests about practical one-time hydraulic engineering projects on a small scale began to surface. Meanwhile, in the Qing Dynasty, when the socio-economic transformation developed more, a new awareness of hydraulics surfaced due to the expansion of commercial cultivation over a large amount of land in the Jiangnan region. This was the result of an attempt to break away from the heavy dependence on water control facilities that had little room for improvement by growing a variety of plants and crops instead of focusing solely on simple grain production. Therefore the cultivation of a variety of commercial crops and plants and the development of the handicraft industry in the Jiangnan region since the sixteenth century are two aspects of Chinese society that resulted from ineffective water control facilities. However, despite these limitations and failures, large-scale hydraulic engineering projects were carried out repeatedly due to the economic importance of the Jiangnan region and to the efforts to achieve the ideals of flood control.

  13. Design of the Driving and Clamp Rotation Hydraulic Control System for the Heavy Load Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Li Geqiang

    2015-01-01

    Full Text Available The manipulator was equipped with full hydraulic drive. We designed the hydraulic systems for the driving and clamping rotation. We used a fuzzy PID control strategy to design the electro-hydraulic proportional control system. We built a united simulation model based on the co-simulation of MATLAB/Simulink and AMEsim. A mathematical model of the system was also established. We did separate simulations of the system’s dynamic characteristics for fast forging and normal forging working conditions. The parameters were optimized. The field test shows that the steady-state error of the hydraulic system is small and the system response is fast. The system’s rapid response speed, high precision, and stability under heavy load were realized.

  14. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  15. Optimal design of hydraulic excavator working device based on multiple surrogate models

    Directory of Open Access Journals (Sweden)

    Qingying Qiu

    2016-05-01

    Full Text Available The optimal design of hydraulic excavator working device is often characterized by computationally expensive analysis methods such as finite element analysis. Significant difficulties also exist when using a sensitivity-based decomposition approach to such practical engineering problems because explicit mathematical formulas between the objective function and design variables are impossible to formulate. An effective alternative is known as the surrogate model. The purpose of this article is to provide a comparative study on multiple surrogate models, including the response surface methodology, Kriging, radial basis function, and support vector machine, and select the one that best fits the optimization of the working device. In this article, a new modeling strategy based on the combination of the dimension variables between hinge joints and the forces loaded on hinge joints of the working device is proposed. In addition, the extent to which the accuracy of the surrogate models depends on different design variables is presented. The bionic intelligent optimization algorithm is then used to obtain the optimal results, which demonstrate that the maximum stresses calculated by the predicted method and finite element analysis are quite similar, but the efficiency of the former is much higher than that of the latter.

  16. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    Zhang, Y X; Su, M; Hou, H C; Song, P F

    2013-01-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  17. Engineering Design vs. Artistic Design: Some Educational Consequences

    Science.gov (United States)

    Eder, Wolfgang Ernst

    2013-01-01

    "Design" can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be coordinated for internal consistency and plausibility. Design research tries to clarify design processes and their underlying theories--for designing in general, and for particular forms, e.g., design engineering. Theories are a…

  18. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  19. Incorporating Engineering Design Challenges into STEM Courses

    OpenAIRE

    Householder, Daniel L.; Hailey, Christine E.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American youth. In most instances, these experiences in engineering design are infused into instruction programs in standards-based courses in science, technol...

  20. Engineering and Design: Civil Works Cost Engineering

    Science.gov (United States)

    1994-03-31

    labor cost requirements are broken into tasks of work. Each task is usually performd by a labor crew. Crews may vary in size and mix of skills. The...requested in advance of the expected purchase date. Suppliers are reluctant to guarantee future pricw and ofien will only quote current prices. It may be...unit cost is the overhead cost for the item. g. Sources for Pricing. The Cost Engineer must rely on judgement, historical data, and current labor market

  1. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem...... solving models from other design domains is of interest to the engineering design community. For this paper an observational study of two software design sessions performed for the workshop on “Studying professional Software Design” is compared to analysis from engineering design. These findings provide...... useful insights of how software designers move from a problem domain to a solution domain and the commonalities between software designers’ and engineering designers’ design activities. The software designers were found to move quickly to a detailed design phase, employ co-.evolution and adopt...

  2. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    solving models from other design domains is of interest to the engineering design community. For this paper an observational study of two software design sessions performed for the workshop on “Studying professional Software Design” is compared to analysis from engineering design. These findings provide......Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem...... useful insights of how software designers move from a problem domain to a solution domain and the commonalities between software designers’ and engineering designers’ design activities. The software designers were found to move quickly to a detailed design phase, employ co-.evolution and adopt...

  3. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  4. Hydraulic design and optimization of a modular pump-turbine runner

    International Nuclear Information System (INIS)

    Schleicher, W.C.; Oztekin, A.

    2015-01-01

    Highlights: • A modular pumped-storage scheme using elevated water storage towers is investigated. • The pumped-storage scheme also aides in the wastewater treatment process. • A preliminary hydraulic pump-turbine runner design is created based on existing literature. • The preliminary design is optimized using a response surface optimization methodology. • The performance and flow fields between preliminary and optimized designs are compared. - Abstract: A novel modular pumped-storage scheme is investigated that uses elevated water storage towers and cement pools as the upper and lower reservoirs. The scheme serves a second purpose as part of the wastewater treatment process, providing multiple benefits besides energy storage. A small pumped-storage scheme has been shown to be a competitive energy storage solution for micro renewable energy grids; however, pumped-storage schemes have not been implemented on scales smaller than megawatts. Off-the-shelf runner designs are not available for modular pumped-storage schemes, so a custom runner design is sought. A preliminary hydraulic design for a pump-turbine runner is examined and optimized for increased pumping hydraulic efficiency using a response surface optimization methodology. The hydraulic pumping efficiency was found to have improved by 1.06% at the best efficiency point, while turbine hydraulic efficiency decreased by 0.70% at the turbine best efficiency point. The round-trip efficiency for the system was estimated to be about 78%, which is comparable to larger pumped-storage schemes currently in operation

  5. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  6. Stable Beginnings in Engineering Design

    Science.gov (United States)

    McCormick, Mary E.; Hammer, David

    2016-01-01

    Novel Engineering activities are premised on the integration of engineering and literacy: students identify and engineer solutions to problems that arise for fictional characters in stories they read for class. There are advantages to this integration, for both engineering and literacy goals of instruction: the stories provide ''clients'' to…

  7. Iteration in Early-Elementary Engineering Design

    Science.gov (United States)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  8. Incorporating Engineering Design Challenges into STEM Courses

    Science.gov (United States)

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  9. How to Develop an Engineering Design Task

    Science.gov (United States)

    Dankenbring, Chelsey; Capobianco, Brenda M.; Eichinger, David

    2014-01-01

    In this article, the authors provide an overview of engineering and the engineering design process, and describe the steps they took to develop a fifth grade-level, standards-based engineering design task titled "Getting the Dirt on Decomposition." Their main goal was to focus more on modeling the discrete steps they took to create and…

  10. Iteration in Early-Elementary Engineering Design

    Science.gov (United States)

    McFarland Kendall, Amber Leigh

    2017-01-01

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect…

  11. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  12. Pathway Design, Engineering, and Optimization.

    Science.gov (United States)

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  13. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  14. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Science.gov (United States)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  15. Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Baek Ju; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

  16. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  17. Soil hydraulic characteristics and its influence on the design of soak ...

    African Journals Online (AJOL)

    The hydraulic characteristics of the soil profile in a plot of land designated for a residential purpose were studied to obtain dependable data for the design of efficient septic- soak-away system in the estate. In situ infiltration tests on three horizons above 400 cm depth were conducted, and soil samples taken from the same ...

  18. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  19. Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhang, Q H; Xu, Y; Shi, W D; Lu, W G

    2012-01-01

    To improve the hydraulic design accuracy and efficiency of the guide vanes of the multistage centrifugal pumps, four different-structured guide vanes are investigated, and the design processes of those systems are established. The secondary development platforms of the ObjectArx2000 and the UG/NX OPEN are utilized to develop the hydraulic design systems of the guide vanes. The error triangle method is adopted to calculate the coordinates of the vanes, the profiles of the vanes are constructed by Bezier curves, and then the curves of the flow areas along the flow-path are calculated. Two-dimensional and three-dimensional hydraulic models can be developed by this system.

  20. Collaborative engineering-design support system

    Science.gov (United States)

    Lee, Dong HO; Decker, D. Richard

    1994-01-01

    Designing engineering objects requires many engineers' knowledge from different domains. There needs to be cooperative work among engineering designers to complete a design. Revisions of a design are time consuming, especially if designers work at a distance and with different design description formats. In order to reduce the design cycle, there needs to be a sharable design describing the engineering community, which can be electronically transportable. Design is a process of integrating that is not easy to define definitively. This paper presents Design Script which is a generic engineering design knowledge representation scheme that can be applied in any engineering domain. The Design Script is developed through encapsulation of common design activities and basic design components based on problem decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The physical relationships between engineering objects and their subparts can be constructed in a hierarchical manner. The same design process is repeatedly applied at each given level of hierarchy and recursively into lower levels of the hierarchy. Each class of the structure can be represented using the Design Script.

  1. Designed by Engineers: An analysis of interactionaries with engineering students

    Directory of Open Access Journals (Sweden)

    Henrik Artman

    2014-12-01

    Full Text Available The aim of this study is to describe and analyze learning taking place in a collaborative design exercise involving engineering students. The students perform a time-constrained, open-ended, complex interaction design task, an “interactionary”. A multimodal learning perspective is used. We have performed detailed analyses of video recordings of the engineering students, including classifying aspects of interaction. Our results show that the engineering students carry out and articulate their design work using a technology-centred approach and focus more on the function of their designs than on aspects of interaction. The engineering students mainly make use of ephemeral communication strategies (gestures and speech rather than sketching in physical materials. We conclude that the interactionary may be an educational format that can help engineering students learn the messiness of design work. We further identify several constraints to the engineering students’ design learning and propose useful interventions that a teacher could make during an interactionary. We especially emphasize interventions that help engineering students-retain aspects of human-centered design throughout the design process. This study partially replicates a previous study which involved interaction design students.

  2. Progress in IFMIF Engineering Validation and Engineering Design Activities

    International Nuclear Information System (INIS)

    Heidinger, R.; Knaster, J.; Matsumoto, H.; Sugimoto, M.; Mosnier, A.; Arbeiter, F.; Baluc, N.; Cara, P.; Chel, S.; Facco, A.; Favuzza, P.; Heinzel, V.; Ibarra, A.; Massaut, V.; Micciche, G.; Nitti, F.S.; Theile, J.

    2013-01-01

    Highlights: ► The IFMIF/EVEDA project has entered into the crucial phase of concluding the Interim IFMIF Engineering Design Report. ► The IFMIF plant configuration has been established with the definition of five IFMIF facilities and of their interfaces. ► Three major prototypes of the IFMIF main systems have been designed and are being manufactured, commissioned and operated. -- Abstract: The International Fusion Materials Irradiation Facility (IFMIF) Engineering Design and Engineering Validation Activities (EVEDA) are being developed in a joint project in the framework of the Broader Approach (BA) Agreement between EU and Japan. This project has now entered into a crucial phase as the engineering design of IFMIF is now being formulated in a series of 3 subsequent phases for delivering an Interim IFMIF Engineering Design Report (IIEDR) by mid of 2013. Content of these phases is explained, including the plant configuration detailing the 5 IFMIF facilities and their systems. Together with the Engineering Design Activities, prototyping sub-projects are pursued in the Engineering Validation Activities which consist of the design, manufacturing and testing of the following prototypical systems: Linear IFMIF Prototype Accelerator (LIPAc), EVEDA Lithium Test Loop (ELTL), and High Flux Test Module (HFTM) with the prototypical helium cooling loop (HELOKA). Highlights are described from recent experiments in the Engineering Validation Activities

  3. Educating engineering designers for a multidisciplinary future

    DEFF Research Database (Denmark)

    engineering design education. Educating engineering designers today significantly differs from traditional engineering education (McAloone, et.al., 2007). However, a broader view of design activities gains little attention. The project course Product/Service-Systems, which is coupled to the lecture based...... course Product life and Environmental issues at the Technical University of Denmark (DTU) and the master programme Product Development Processes at the Luleå University of Technology (LTU), Sweden, are both curriculums with a broader view than traditional (mechanical) engineering design. Based...... on these two representatives of a Scandinavian approach, the purpose in this presentation is to describe two ways of educating engineering designers to enable them to develop these broader competencies of socio-technical aspects of engineering design. Product Development Processes at LTU A process, called...

  4. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    Integrating ergonomic knowledge into engineering design processes has been shown to contribute to healthy and effective designs of workplaces. However, it is also well-recognized that, in practice, ergonomists often have difficulties gaining access to and impacting engineering design processes...... employed in the same company, constituted a supporting factor for the possibilities to integrate ergonomic knowledge into the engineering design processes. However, the integration activities remained discrete and only happened in some of the design projects. A major barrier was related to the business...... to the ergonomic ambitions of the clients. The ergonomists’ ability to navigate, act strategically, and compromise on ergonomic inputs is also important in relation to having an impact in the engineering design processes. Familiarity with the engineering design terminology and the setup of design projects seems...

  5. LHCb RICH1 Engineering Design Review Report

    CERN Document Server

    Brook, N; Metlica, F; Muir, A; Phillips, A; Buckley, A; Gibson, V; Harrison, K; Jones, C R; Katvars, S G; Lazzeroni, C; Storey, J; Ward, CP; Wotton, S; Alemi, M; Arnabaldi, C; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Negri, P; Perego, D L; Pessina, G; Chamonal, R; Eisenhardt, S; Lawrence, J; McCarron, J; Muheim, F; Playfer, S; Walker, A; Cuneo, S; Fontanelli, F; Gracco, Valerio; Mini, G; Musico, P; Petrolini, A; Sannino, M; Bates, A; MacGregor, A; O'Shea, V; Parkes, C; Paterson, S; Petrie, D; Pickford, A; Rahman, M; Soler, F; Allebone, L; Barber, J H; Cameron, W; Clark, D; Dornan, Peter John; Duane, A; Egede, U; Hallam, R; Howard, A; Plackett, R; Price, D; Savidge, T; Vidal-Sitjes, G; Websdale, D M; Adinolfi, M; Bibby, J H; Cioffi, C; Gligorov, Vladimir V; Harnew, N; Harris, F; McArthur, I A; Newby, C; Ottewell, B; Rademacker, J; Senanayake, R; Somerville, L P; Soroko, A; Smale, N J; Topp-Jørgensen, S; Wilkinson, G; Yang, S; Benayoun, M; Khmelnikov, V A; Obraztsov, V F; Densham, C J; Easo, S; Franek, B; Kuznetsov, G; Loveridge, P W; Morrow, D; Morris, JV; Papanestis, A; Patrick, G N; Woodward, M L; Aglieri-Rinella, G; Albrecht, A; Braem, André; Campbell, M; D'Ambrosio, C; Forty, R W; Frei, C; Gys, Thierry; Jamet, O; Kanaya, N; Losasso, M; Moritz, M; Patel, M; Piedigrossi, D; Snoeys, W; Ullaland, O; Van Lysebetten, A; Wyllie, K

    2005-01-01

    This document describes the concepts of the engineering design to be adopted for the upstream Ring Imaging Cherenkov detector (RICH1) of the reoptimized LHCb detector. Our aim is to ensure that coherent solutions for the engineering design and integration for all components of RICH1 are available, before proceeding with the detailed design of these components.

  6. Corps of Engineers Hydraulic Design Criteria. Volume 2

    Science.gov (United States)

    1977-01-01

    than broad - crested - weir coefficients. h. Available data on the effects of submerg nce on discharge coef- ficients for both sharp - and broad - crested ...flow over a broad - crested weir . The equation for free J discharge is: Q = Cf - 2 KH) 3/2 where Cf is an empirical coefficient, L is the length of...0,10 for square-end contractions. The free-flow coefficient Cf varies with the ratio of head H to width B of the broad - crested weir in the direction of

  7. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  8. Hydraulic turbine controller design | Thanni | Journal of Applied ...

    African Journals Online (AJOL)

    No Abstract. Journal of Applied Science, Engineering and Technology Vol. 4(2) 2004: 44-52. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/jaset.v4i2.38280 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  9. Management of engineering design information

    International Nuclear Information System (INIS)

    Gray, J.A.

    1991-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) purchased a Design Management software package called SHERPA for use on the $1 billion Special Isotope Separation Project Sherpa is a customizable software shell that provides for the administrative management of the design function including production, approval, distribution and configuration control of project information. This project information can be either electronic or the traditional paper hardcopy. The use of this computerized system resulted in enhanced productivity and quality performance for the management, engineering, and administrative personnel on the project. The software currently runs on an HP9000 model 835 using the HP-UX operating system. The software had been completely customized to meet specific project needs. Existing databases were converted or left in tact to be accessed through the Sherpa software. Access to the system is available through IBM PCs. Dec terminals, Sun work stations, HP terminals, and X-windows terminals, in short most existing WINCO workstations. The software and hardware were delivered in February of 1990, and the system was on-line with all necessary data converted by the end of ApriL Through the use of the electronic approval function and the highly sophisticated query capabilities of the software, a cost savings of over 1500 personnel hours were realized during the closeout of the Project. The software has since been modified for use in the management of WINCO Environmental Compliance Information including Permits, NEPA, and RECRA documentation and records. Use of this software and hardware has resulted in an increase in quality and a large cost savings to WINCO

  10. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  11. ASSEMBLY DESIGN OPTIMIZATION FOR GEAR PUMP HYDRAULIC UNITS

    Directory of Open Access Journals (Sweden)

    ŞCHEAUA Fanel

    2012-09-01

    Full Text Available This paper presents a model for gear pump assembly design realized in Solid Edge V20. The aim is to highlight modelling aspects for solid part components and how to achieve an assembly from several component parts. Can be noted that computer aided design (CAD software can provide multiple options of representing various designed components, assemblies containing up to hundreds of items and part component motion simulation.

  12. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  13. AP600 design certification thermal hydraulics testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hochreiter, L.E.; Piplica, E.J.

    1995-09-01

    Westinghouse Electric Corporation, in conjunction with the Department of Energy and the Electric Power Research Institute, have been developing an advanced light water reactor design; the AP600. The AP600 is a 1940 Mwt, 600Mwe unit which is similar to a Westinghouse two-loop Pressurized Water Reactor. The accumulated knowledge on reactor design to reduce the capital costs, construction time, and the operational and maintenance cost of the unit once it begins to generate electrical power. The AP600 design goal is to maintain an overall cost advantage over fossil generated electrical power.

  14. Space Station Engineering Design Issues

    Science.gov (United States)

    Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

    1989-01-01

    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

  15. Relevant thermal hydraulic aspects of advanced reactors design: status report

    International Nuclear Information System (INIS)

    1996-11-01

    This status report provides an overview on the relevant thermalhydraulic aspects of advanced reactor designs (e.g. ABWR, AP600, SBWR, EPR, ABB 80+, PIUS, etc.). Since all of the advanced reactor concepts are at the design stage, the information and data available in the open literature are still very limited. Some characteristics of advanced reactor designs are provided together with selected phenomena identification and ranking tables. Specific needs for thermalhydraulic codes together with the list of relevant and important thermalhydraulic phenomena for advanced reactor designs are summarized with the purpose of providing some guidance in development of research plans for considering further code development and assessment needs and for the planning of experimental programs

  16. Hydraulic design considerations for a multi-tube sodium economizer

    International Nuclear Information System (INIS)

    Hassberger, J.A.; McConnell, P.M.; Olson, W.H.

    1975-01-01

    Operating experience gained from tests shows that flow distribution effects can severely affect the thermal performance of high effectiveness, low pressure drop sodium heat exchangers. It has been shown that design efforts for such devices must include proper consideration of potential causes of flow maldistribution within the tube bundle. Furthermore, it has been demonstrated that fairly simple design features can be capable of eliminating detrimental flow fields in the tube bundle

  17. Stirling engine design manual, 2nd edition

    Science.gov (United States)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  18. Control design and optimization for the DOT500 hydraulic wind turbine

    NARCIS (Netherlands)

    Mulders, S.P.; Jager, Stéphane; Diepeveen, N.F.B.; van Wingerden, J.W.

    2017-01-01

    The drivetrain of most wind turbines currently being deployed commercially consists of a rotor-gearboxgenerator configuration in the nacelle. This abstract introduces the control system design and optimization for a wind turbine with a hydraulic drivetrain, based on the Delft Offshore Turbine (DOT)

  19. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  20. Engineer's Notebook--A Design Assessment Tool

    Science.gov (United States)

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  1. Capstone Engineering Design Projects for Community Colleges

    Science.gov (United States)

    Walz, Kenneth A.; Christian, Jon R.

    2017-01-01

    Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…

  2. Design of experiments in production engineering

    CERN Document Server

    2016-01-01

    This book covers design of experiments (DoE) applied in production engineering as a combination of manufacturing technology with applied management science. It presents recent research advances and applications of design experiments in production engineering and the chapters cover metal cutting tools, soft computing for modelling and optmization of machining, waterjet machining of high performance ceramics, among others.

  3. Experimental Engineering: Articulating and Valuing Design Experimentation

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Grönvall, Erik; Fritsch, Jonas

    2017-01-01

    In this paper we propose Experimental Engineering as a way to articulate open- ended technological experiments as a legitimate design research practice. Experimental Engineering introduces a move away from an outcome or result driven design process towards an interest in existing technologies and...

  4. Thermal hydraulic tradeoffs in the design of IRIS primary circuit

    International Nuclear Information System (INIS)

    Oriani, L.; Lombardi, C.; Ricotti, M.E.; Paramonov, D.; Carelli, M.; Conway, L.

    2001-01-01

    IRIS (International Reactor Innovative and Secure) is currently being developed by an international consortium, led by Westinghouse and including universities. In order to achieve high level of safety, reduce complexity and capital cost, and enhance proliferation resistance, an integral primary circuit configuration has been selected. The integral configuration (the core, steam generators, coolant pumps, pressurizer and control rods are all contained within the reactor vessel) has no loop piping and thereby eliminates the possibility of large loss of coolant accidents. If the reactor vessel and components are designed for a very high level of natural circulation, which is promoted by an integral design, the consequence of loss of flow accidents can be significantly reduced or even completely eliminated. Core and integral primary circuit design optimization has been performed using the OSCAR computer code, a specialized tool for the analyses of the IRIS primary system developed at POLIMI. Results of trade-off studies of various in-vessel configurations explored to achieve tight packaging and high serviceability and/or replacement of components such as steam generators and pumps are reported. Effects of changes in secondary side parameters and steam generator design on system efficiency were explored together with the optimization of the vessel and steam generator dimensions and costs. The aim of the trade-off analyses was to limit the design space, and select a reference configuration for the IRIS reactor. (author)

  5. Reducing the environmental impact of hydraulic fracturing through design optimisation of positive displacement pumps

    International Nuclear Information System (INIS)

    Josifovic, Aleksandar; Roberts, Jennifer J.; Corney, Jonathan; Davies, Bruce; Shipton, Zoe K.

    2016-01-01

    The current approach to hydraulic fracturing requires large amounts of industrial hardware to be transported, installed and operated in temporary locations. A significant proportion of this equipment is comprised of the fleet of pumps required to provide the high pressures and flows necessary for well stimulation. Studies have shown that over 90% of the emissions of CO_2 and other pollutants that occur during a hydraulic fracturing operation are associated with these pumps. Pollution and transport concerns are of paramount importance for the emerging hydraulic fracturing industry in Europe, and so it is timely to consider these factors when assessing the design of high pressure pumps for the European resources. This paper gives an overview of the industrial plant required to carry out a hydraulic fracturing operation. This is followed by an analysis of the pump's design space that could result in improved pump efficiency. We find that reducing the plunger diameter and running the pump at higher speeds can increase the overall pump efficiency by up to 4.6%. Such changes to the pump's parameters would results in several environmental benefits beyond the obvious economic gains of lower fuel consumption. The paper concludes with a case study that quantifies these benefits. - Highlights: • We develop a parameterized model of hydraulic fracturing pumps. • We explore performance variation to optimise pump efficiency and performance. • New design could increase pump energy efficiency up to 4.6% and improve reliability. • The new design could also reduce environmental and social impacts of pumping. • This illustrates how optimised mechanical design can lower impacts and cost.

  6. Fusion Engineering Device. Volume II. Design description

    International Nuclear Information System (INIS)

    1981-10-01

    This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components

  7. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  8. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design

  9. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Ramakrishnan, R.; Hiremath, Somashekhar S.; Singaperumal, M.

    2014-01-01

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  10. Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design

    Science.gov (United States)

    1974-08-30

    the cost of prime interest being life-cycle cost, climate that is hot or cold, in atmosphere that is humid Chapter 3 discusses helicopter performance...required to satisfy 8-3.2 ENGINE INSTALLATION LOSSES varying climatic and environmental factors. For in- stance, maintenance of the helicopter should be...thammable h aulic , asytem l at mhtproidtem a considering the overall flight mission in segments, dur- source of flammable fluids, as well as electrical

  11. Engineering Changes in Product Design - A Review

    Science.gov (United States)

    Karthik, K.; Janardhan Reddy, K., Dr

    2016-09-01

    Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.

  12. Rube Goldbergineering: Lessons In Teaching Engineering Design To Future Engineers

    OpenAIRE

    Jordan, Shawn; Pereira, Nielsen

    2009-01-01

    Hands-on learning experiences and interactive learning environments can be effective in teaching K-12 students. Design, in essence, is an interactive, hands-on experience. Engineering design can be taught in the classroom using innovative hands-on projects, such as designing and building serve to teach design, promote creativity, and provide opportunities for hands-on problem solving, in addition to giving students experience working in cooperative teams. In turn, these experiences could enco...

  13. Decision-Based Design Integrating Consumer Preferences into Engineering Design

    CERN Document Server

    Chen, Wei; Wassenaar, Henk Jan

    2013-01-01

    Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design.  Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: •A rigorous framework of integrating the interests from both producer and consumers in engineering design, •Analytical techniques of consumer choice model...

  14. Transformer engineering design, technology, and diagnostics

    CERN Document Server

    Kulkarni, SV

    2012-01-01

    Transformer Engineering: Design, Technology, and Diagnostics, Second Edition helps you design better transformers, apply advanced numerical field computations more effectively, and tackle operational and maintenance issues. Building on the bestselling Transformer Engineering: Design and Practice, this greatly expanded second edition also emphasizes diagnostic aspects and transformer-system interactions. What's New in This Edition Three new chapters on electromagnetic fields in transformers, transformer-system interactions and modeling, and monitoring and diagnostics An extensively revised chap

  15. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  16. Advanced Control Considerations for Turbofan Engine Design

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  17. Profile constructing and elevation design of soil reclaimed by hydraulic dredge pump in mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Longqian, C.; Aiqin, S.; Tianjian, Z. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). School of Environmental Science and Spatial Informatics; Mei, L. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China)

    2007-07-01

    Underground coal mining is the main method of coal mining in China. The hydraulic dredge pump reclamation method is the basic method used for repairing hydraulic erosion. This paper reviewed land reclamation by hydraulic dredge pump in the Yi'an coal mine of Xuzhou mining area in the east of China, and analyzed the constructing theory of soil profiling. It examined factors such as the height of the ground-water table; the thickness of plough horizon; the length of crops root and the state of soil erosion; and the methods of profile construction and elevation design of soil reclaimed by hydraulic dredge pump. A relevant mathematical model was also developed. The paper discussed the general situation of the study site as well as the basic theory of profile constructing and the profile constructing method. The paper also discussed the elevation design of the reclaimed land. It was concluded that the practice has proved that the methods can make the reclaimed soil keep a similar characteristics to that of original cropped soil, and meet the requirements for elevation of reclaimed land. 8 refs., 1 tab., 2 figs.

  18. Resolution of thermal-hydraulic safety and licensing issues for the system 80+trademark design

    International Nuclear Information System (INIS)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-01-01

    The System 80+ trademark Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC's new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs

  19. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Energy Technology Data Exchange (ETDEWEB)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  20. Assessment and Development of Engineering Design Processes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Jeppe Bjerrum

    , the engineering companies need to have efficient engineering design processes in place, so they can design customised product variants faster and more efficiently. It is however not an easy task to model and develop such processes. To conduct engineering design is often a highly iterative, illdefined and complex...... the process can be fully understood and eventually improved. Taking its starting point in this proposition, the outcome of the research is an operational 5-phased procedure for assessing and developing engineering design processes through integrated modelling of product and process, designated IPPM......, and eventually the results are discussed, overall conclusions are made and future research is proposed. The results produced throughout the research project are developed in close collaboration with the Marine Low Speed business unit within the company MAN Diesel & Turbo. The business unit is the world market...

  1. Design and computation of modern engineering materials

    CERN Document Server

    Altenbach, Holm

    2014-01-01

     The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.

  2. ECONOMIC EVALUATION OF MAINTAINING THE CAPACITY OF TRASH RACKS IN HYDRAULIC ENGINEERING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Natalia Walczak

    2017-05-01

    Full Text Available Considering the limited capabilities of obtaining energy in a traditional way from coal combustion and the requirements of the European Union, other alternative energy sources should be sought. They have been being increasingly used by business entities and individual investors and are designed to provide financial profits, which will be ensured only with correct operation of the energy system. One of examples of alternative energy sources application is the construction of small hydropower plants, where the efficiency of all elements included is of great importance. The article analyses financial losses incurred by owners of power plants when the energy system lacks 100% capacity of the inlet channel. Material that accumulates on SHP trash racks might be analysed in two ways: biologically (these are screenings – as in wastewater treatment plants and hydraulically.

  3. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  4. Design type air engine Di Pietro

    Directory of Open Access Journals (Sweden)

    Zwierzchowski Jaroslaw

    2017-01-01

    Full Text Available The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors’ distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  5. Design type air engine Di Pietro

    Science.gov (United States)

    Zwierzchowski, Jaroslaw

    The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  6. IT-tools for Mechatronic System Engineering and Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben; Andersen, T. O.

    2003-01-01

    Companies are facing the on-going challenge that customers always increase their needs for capability of products and machinery. They want improved productivity and efficiency - if possible to lower prices; value for money. The demands often focus on extensions of functionality, faster response......, operation capability, man-machine interface (MMI), robustness, reliability and safety in use. Information Technology (IT) offers both software and hardware for improvement of the engineering design and industrial applications. The latest progress in IT makes integration of an overall design...... the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a hydraulic robot and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP controller utilizes the dSPACE System suitable...

  7. Team Based Engineering Design Thinking

    Science.gov (United States)

    Mentzer, Nathan

    2014-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective was encompassed in the research question driving the inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  8. Making room in engineering design practices

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer; Buch, Anders

    2016-01-01

    This article aims to explore the challenges that occur from a practice perspective when a new approach to engineering design enters an existing ecology of professional practices in a workplace. Using four empirical episodes, the article illustrates a concrete effort to challenge what counts...... as ‘real engineering’ or what is recognized as part of the engineering expertise. Using an ethnographic, case-studybased research design the article documentshowholistically minded professionals do engineering design ‘by other means’, in ways that strive to promote user experience approaches. The article...... aims to show how engineering practices do not exist in isolation within an organization and how ambitions to transform professional engineering work practices require a change in the very ecologies of practices that exist across an organization...

  9. Engineering design: A cognitive process approach

    Science.gov (United States)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the

  10. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  11. Facilitating an Elementary Engineering Design Process Module

    Science.gov (United States)

    Hill-Cunningham, P. Renee; Mott, Michael S.; Hunt, Anna-Blair

    2018-01-01

    STEM education in elementary school is guided by the understanding that engineering represents the application of science and math concepts to make life better for people. The Engineering Design Process (EDP) guides the application of creative solutions to problems. Helping teachers understand how to apply the EDP to create lessons develops a…

  12. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Shakofsky, S.

    1995-03-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry

  13. Toward a Stakeholder Perspective on Social Stability Risk of Large Hydraulic Engineering Projects in China: A Social Network Analysis

    Directory of Open Access Journals (Sweden)

    Zhengqi He

    2018-04-01

    Full Text Available In China, large hydraulic engineering projects have made a great contribution to social economic development; at the same time, they also lead to social risks that affect social stability. The pluralism of stakeholders in large hydraulic engineering projects and the complex interrelationship among stakeholders are the important factors affecting social stability risk. Previous studies of social stability risk have mainly focused on risk identification and risk assessment, without considering the relationships among stakeholders and their linkages of risks. For large hydraulic engineering projects, this paper investigated the relevant risk factors and their interrelationships through a literature review and interviews that represented stakeholder perspectives. The key social stability risk factors were identified based on social network analysis. A multi-channel project financial system, a perfect interest compensation mechanism, an efficient prevention mechanism of group events, and a complete project schedule control system were proposed to mitigate the social stability risks. This study combined stakeholder management with risk management by using social network analysis, providing reference for the social stability risk management of large engineering projects in China.

  14. Taking Engineering Design out for a Spin

    Science.gov (United States)

    Crismond, David; Soobyiah, Mark; Cain, Ryan

    2013-01-01

    This article highlights what inquiry and design have in common, and what makes engineering design uniquely different from inquiry. A case study is presented that gives students practice in conducting fair-test experiments, in troubleshooting to learn how to make designs better, and in building science-based explanations for how things work. The…

  15. Engineering aspects of the INTOR design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1981-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations

  16. Engineering Design EDUCATION: When, What, and HOW

    Science.gov (United States)

    Khalaf, Kinda; Balawi, Shadi; Hitt, George Wesley; Radaideh, Ahmad

    2013-01-01

    This paper presents an innovative, interdisciplinary, design-and-build course created to improve placement, content, and pedagogy for introductory engineering design education. Infused at the freshman level, the course aims to promote expert design thinking by using problem-based learning (PBL) as the mode of delivery. The course is structured to…

  17. Engineering features of the INTOR conceptual design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1981-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations

  18. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  19. Development of model pump for establishing hydraulic design of primary sodium pumps in PFBR

    International Nuclear Information System (INIS)

    Chougule, R.J.; Sahasrabudhe, H.G.; Rao, A.S.L.K.; Balchander, K.; Kale, R.D.

    1994-01-01

    Indira Gandhi Centre for Atomic Research, Kalpakkam indicated requirement of indigenous development of primary sodium pump, handling liquid sodium as coolant in Fast Breeder Reactor. The primary sodium pump concept selected in its preliminary design is a vertical, single stage, with single suction impeller, suction facing downwards. The pump is having diffuser, discharge casing and discharge collector. The 1/3 rd size model pump is developed to establish the hydraulic performance of the prototype primary sodium pump. The main objectives were to verify the hydraulic design to operate on low net positive suction head available (NPSHA), no evidence of visible cavitation at available NPSHA, the pump should be designed with a diffuser etc. The model pump PSP 250/40 was designed and successfully developed by Research and Development Division of M/s Kirloskar Brothers Ltd., Kirloskarvadi. The performance testing using model pump was successfully carried out on a closed circuit test rig. The performance of a model pump at three different speeds 1900 rpm, 1456 rpm and 975 rpm was established. The values of hydraulic axial thrust with and without balancing holes on impeller at 1900 rpm was measured. Visual cavitation study at 1900 rpm was carried out to establish the NPSH at bubble free operation of the pump. The tested performance of the model pump is converted to the full scale prototype pump. The predicted performance of prototype pump at 700 rpm was found to be meeting fully with the expected duties. (author). 6 figs., 3 tabs

  20. Thermal-hydraulic and neutronic considerations for designing a lithium-cooled tokamak blanket

    International Nuclear Information System (INIS)

    Chao, J.; Mikic, B.; Todreas, N.

    1978-12-01

    A methodology for the design of lithium cooled blankets is developed. The thermal-hydraulics, neutronics and interactions between them are extensively investigated. In thermal hydraulics, two models illustrate the methodology used to obtain the acceptable ranges for a set of design parameters. The methodology can be used to identify the limiting constraints for a particular design. A complete neutronic scheme is set up for the calculations of the volumetric heating rate as a function of the distance from the first wall, the breeding ratio as a function of the amount of structural material in the blanket, and the radiation damage in terms of atom displacements and gas production rate. Different values of the volume percent of Type-316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material which satisfies various thermal-hydraulic requirements. The role that the radiation damage plays in the overall design methodology is described. The product of the first wall lifetime and neutron loading is limited by the radiation damage which degrades the mechanical properties of the material

  1. Studying Design Engineers Use Of Information Systems

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Studying information usage by design engineers involves considering technical, social, cognitive and volitional factors. This makes it challenging, especially for researchers without a cognitive psychology background. This paper presents a summary of key findings in researching information use...

  2. Requirements Engineering and Design Technology Report

    National Research Council Canada - National Science Library

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  3. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  4. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  5. Thermal-hydraulic software development for nuclear waste transportation cask design and analysis

    International Nuclear Information System (INIS)

    Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.

    1991-01-01

    This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs

  6. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  7. Thermal-hydraulic criteria for the APT tungsten neutron source design

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.

    1998-03-01

    This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations

  8. Hydraulic and hydrodynamic tests for design evaluation of research reactors fuel elements

    International Nuclear Information System (INIS)

    Kulichevsky, R.; Martin Ghiselli, A.; Fiori, J.; Yedros, P.

    2002-01-01

    During the design steps of research reactors fuel elements some tests are usually necessary to verify its design, i.e.: its hydraulic characteristics, dynamical response and structural integrity. The hydraulic tests are developed in order to know the pressure drops characteristics of different parts or elements of the prototype and of the whole fuel element. Also, some tests are carried out to obtain the velocity distribution of the coolant water across different prototype's sections. The hydrodynamic tests scopes are the assessment of the dynamical characteristics of the fuel elements and their components and its dynamical response considering the forces generated by the coolant flowing water at different flow rate conditions. Endurance tests are also necessary to qualify the structural design of the FE prototypes and their corresponding clamp tools, verifying the whole system structural integrity and wear processes influences. To carry out these tests a special test facility is needed to obtain a proper representation of the hydraulic and geometric boundary conditions of the fuel element. In some cases changes on the fuel element prototype or dummy are necessary to assure that the data results are representative of the case under study. Different kind of sensors are mounted on the test section and also on the fuel element itself when necessary. Some examples of the instrumentation used are strain gauges, displacement transducers, absolute and differential pressure transducers, pitot tubes, etc. The obtained data are, for example, plates' vibration amplitudes and frequencies, whole bundle displacement characterization, pressure drops and flow velocity measurements. The Experimental Low Pressure Loop is a hydraulic loop located at CNEA's Constituyentes Atomic Center and is the test facility where different kind of tests are performed in order to support and evaluate the design of research reactor fuel elements. A brief description of the facility, and examples of

  9. Evaluation of parameters effect on the maximum fuel temperature in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Maruyama, Soh; Sudo, Yukio; Fujii, Sadao; Niguma, Yoshinori.

    1988-10-01

    This report presents the results of quantitative evaluation on the effects of the dominant parameters on the maximum fuel temperature in the core thermal hydraulic design of the High Temperature Engineering Test Reactor(HTTR) of 30 MW in thermal power, 950 deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in coolant pressure. The dominant parameters investigated are 1) Gap conductance. 2) Effect of eccertricity of fuel compacts in graphite sleeve. 3) Effect of spacer ribs on heat transfer coefficients. 4) Contact probability of fuel compact and graphite sleeve. 5) Validity of uniform radial power density in the fuel compacts. 6) Effect of impurity gas on gap conductance. 7) Effect of FP gas on gap conductance. The effects of these items on the maximum fuel temperature were quantitalively identified as hot spot factors. A probability of the appearance of the maximum fuel temperature was also evaluated in this report. (author)

  10. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    Science.gov (United States)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  11. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  12. Design and verification of additional filtration for the application of ecological transmission and hydraulic fluids in tractorc

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available This contribution presents the design and function verification of additional filtration. It is intended for the common transmission and hydraulic oil filling of tractors. The main role of this filtration concept is to ensure a high level of oil cleanness as a condition for the application of ecologic fluids in tractors. The next one is to decrease the wear of lubricated tractor components, the degradation of oil and eventually to extend the interval of oil change. The designed additional filtering is characterized by ease installation through the use of quick couplings and hoses to the external hydraulic circuit. Therefore, the filtration is suitable for various tractor types. Filter element has been designed with the filter ability 1micron and the ability to separate to 0.5 dm3 of water from oil. Function of additional filtration was verified during the 150 engine hours of tractor operation. During this time period the oil contamination was evaluated on the basis of chemical elements content such as Fe, Cu, Si, Al, Ni, Mo and Cr. The additive concentration was evaluated on the basis of chemical elements content such as Ca, P and Zn. During the test operation of tractor the concentration decrease of chemical elements reached the values 25.53 % (Fe, 23.53 % (Si, 25 % (Al and 5.5 % (Cu. The decrease of additive concentration reached only medium level (6.6 %. Therefore, the designed additional filtration doesn’t remove additives from oil. Based on the evaluation of the content of chemical elements (that representing contamination and additives, we can say that the designed filtering method is suitable for use in agricultural tractors.

  13. Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System

    Directory of Open Access Journals (Sweden)

    Lianpeng Zhang

    2016-08-01

    Full Text Available This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control using a novel based on sliding mode control based on adaptive reaching law (ASMC, which can adaptively tune the parameters of sliding mode control (SMC, is proposed to reduce the synchronization error. To improve the tracking performance, the observer-based inverse control scheme combining the feed-forward inverse model controller and disturbance observer is proposed. The system model is identified applying the recursive least squares (RLS algorithm and then the feed-forward inverse controller is designed based on zero phase error tracking controller (ZPETC technique. To compensate disturbance and model errors, disturbance observer is used cooperating with the designed inverse controller. The combination of the novel ASMC cross-coupled controller and proposed observer-based inverse controller can improve the control precision noticeably. The dual-shaking table experiment system is built and various experiments are performed. The experimental results indicate that the developed system with the proposed hybrid control strategy is feasible and efficient and can reduce the tracking errors to 25% and synchronization error to 16% compared with traditional control schemes.

  14. Engineering graphics theoretical foundations of engineering geometry for design

    CERN Document Server

    Brailov, Aleksandr Yurievich

    2016-01-01

    This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measu...

  15. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  16. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  17. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  18. DESIGN QUALITY IN MECHANICAL ENGINEERING APPLICATION

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdogan Eker

    2010-09-01

    Full Text Available There is a close relationship between material chose and quality in mechanical engineering application like there is in all the other engineering applications. If this relation is balanced then engineering success increases. Material chose comes to fore in the design process most of the time. The two most important responsibilities of the design engineer in here is to chose suitable material and to know the production processes about design. The chose of material of a design that will fulfill the needs all through its life has great importance. It is needed to limit the material applicants by choosing the most suitable ones among variable material. Choosing materials that were examined before and whose behavior is well known provides the designer to feel confident. However since using highly successful materials would increase the competitive power of the designs; designers should follow the developments in materials and know the features of new materials. The description of these features can be interpreted within quality. Quality from the point of engineer is the total fulfillment of expectations.Engineer today are faced with very important problems such as fast technological innovations, a dynamic socio-economical environment, global rivalry. One of the life buoys they stick while trying to solve these problems is total method of quality control. Total Quality model which can provide higher competitive power compared to classical management model brings success only when applied with its whole components. "Approach toward prevention" and "measurement and statistics" have an important place among these elements. The first step of the approach toward prevention composes of design quality and Quality Function Deployment (QFD, or in other words The House of Quality method that will provide this. In this paper; considering the quality function deployment, how the chose of material are done in mechanical engineering applications will be explained.

  19. 3D casing-distributor analysis with a novel block coupled OpenFOAM solver for hydraulic design application

    International Nuclear Information System (INIS)

    Devals, C; Zhang, Y; Dompierre, J; Guibault, F; Vu, T C; Mangani, L

    2014-01-01

    Nowadays, computational fluid dynamics is commonly used by design engineers to evaluate and compare losses in hydraulic components as it is less expensive and less time consuming than model tests. For that purpose, an automatic tool for casing and distributor analysis will be presented in this paper. An in-house mesh generator and a Reynolds Averaged Navier-Stokes equation solver using the standard k-ω SST turbulence model will be used to perform all computations. Two solvers based on the C++ OpenFOAM library will be used and compared to a commercial solver. The performance of the new fully coupled block solver developed by the University of Lucerne and Andritz will be compared to the standard 1.6ext segregated simpleFoam solver and to a commercial solver. In this study, relative comparisons of different geometries of casing and distributor will be performed. The present study is thus aimed at validating the block solver and the tool chain and providing design engineers with a faster and more reliable analysis tool that can be integrated into their design process

  20. The engineering design of TPX

    International Nuclear Information System (INIS)

    Reiersen, W.T.

    1993-01-01

    The Tokamak Physics Experiment (TPX) is designed to develop the scientific basis for a compact and continuously operating tokamak fusion reactor. TPX has a long pulse (1000s) capability, can accommodate high divertor heat loads, has a flexible PF system, and auxiliary heating and current drive systems that make it an ideal test bed for development of attractive reactor concepts. The design incorporates superconducting magnets in both the toroidal and poloidal field magnets. Long pulse deuterium operation will produce 6 x 10 21 neutrons per year requiring remote maintenance of the in-vessel hardware. This paper provides an overview of the TPX Project and describes the design approach with emphasis on salient features of the tokamak

  1. A Unique Civil Engineering Capstone Design Course

    Directory of Open Access Journals (Sweden)

    G Padmanabhan

    2018-02-01

    Full Text Available The North Dakota State University, USA, capstone course was developed as a unique model in response to the effort of the Accreditation Board of Engineering and Technology, USA, to streamline and improve design instruction in the curriculum and has steadily evolved to keep pace with the ever-changing technology and the expectations of the profession and the society we serve. A capstone design course by definition should be a design experience for students in the final year before graduation integrating all major design concepts they have learned up until then in the program. Carefully chosen real world projects with design content in all sub-disciplines of civil engineering are assigned in this team-taught course. Faculty and practicing professionals make presentations on design process; project management; leadership in an engineering environment; and public policy; global perspectives in engineering; and professional career and licensure. Practicing professionals also critique the final student presentations. Students work in teams with number of faculty serving as technical consultants, and a faculty mentor for each team to provide non-technical guidance and direction. The course requires students to demonstrate mastery of the curriculum and to work with others in a team environment. Course assessment includes evaluation of the final design, presentations, written technical reports, project design schedule, a project design journal, and reaction papers.

  2. Lagoa Real design - Mineral engineering

    International Nuclear Information System (INIS)

    Forman, J.M.A.

    1982-01-01

    This paper presents the works realized, in course and to realize of Lagoa Real Design, including the works for implantation of Mineral-Industrial complex with the production capacity of 1.000 ton of U sub(3) O sub(8) per year from 1988. (author)

  3. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco

    2007-01-01

    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity....

  4. Comparative Studies of Core Thermal Hydraulic Design Methods for the Prototype Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji

    2013-01-01

    In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems

  5. Emotional Engineers : Toward Morally Responsible Design

    NARCIS (Netherlands)

    Roeser, S.

    2010-01-01

    Engineers are normally seen as the archetype of people who make decisions in a rational and quantitative way. However, technological design is not value neutral. The way a technology is designed determines its possibilities, which can, for better or for worse, have consequences for human wellbeing.

  6. Simulation and Spacecraft Design: Engineering Mars Landings.

    Science.gov (United States)

    Conway, Erik M

    2015-10-01

    A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction.

  7. Design methodology and projects for space engineering

    Science.gov (United States)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  8. 3D Blade Hydraulic Design Method of the Rotodynamic Multiphase Pump Impeller and Performance Research

    Directory of Open Access Journals (Sweden)

    Yongxue Zhang

    2014-02-01

    Full Text Available A hydraulic design method of three-dimensional blade was presented to design the blades of the rotodynamic multiphase pump. Numerical simulations and bench test were conducted to investigate the performance of the example impeller designed by the presented method. The results obtained from the bench test were in good agreement with the simulation results, which indicated the reasonability of the simulation. The distributions of pressure and gas volume fraction were analyzed and the results showed that the designed impeller was good for the transportation of mixture composed of gas and liquid. In addition, the advantage of the impeller designed by the presented method was suitable for using in large volume rate conditions, which were reflected by the comparison of the head performance between this three-dimensional design method and another one.

  9. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    Science.gov (United States)

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  10. Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.

    2014-01-01

    The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)

  11. Hydraulic Design of the CARA Fuel Assembly for Atucha-I

    International Nuclear Information System (INIS)

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model of the CARA fuel assembly within the Atucha I fuel channel is developed. Besides, a experimental test running in the CBP low pressure loop have been designed.This model is used for design purpose of the assembly system such as the whole channel pressure drop remains the same that it is at the present.It is observed that choosing the right thickness and hole surface of the assembly system, it is possible tune up the CARA pressure drop, releases the azimuth alignment condition on the fuel element neighbors

  12. Thermal-Hydraulic Analysis of the Nuclear Power Engineering Corporation Containment Experiments with GOTHIC

    International Nuclear Information System (INIS)

    Wiles, Lawrence E.; George, Thomas L.

    2003-01-01

    GOTHIC version 7.0 was used to model five tests that were conducted in the Nuclear Power Engineering Corporation facility in Japan. The tests involved steam and helium injection into a preheated, spray-moderated, 1/4-scale model of a pressurized water reactor dry containment. Comparison of GOTHIC predictions to measured data for pressure, vapor temperatures, structure surface temperatures, and helium concentrations provided the opportunity to evaluate methods for modeling gas dispersion, drop heat and mass transfer, and surface heat transfer.The test facility includes three floors. The lower two floors are partitioned into a variety of rooms that simulate the lower regions of the modeled containment. On the upper floor, rooms that simulate the steam generator enclosures and the pressurizer enclosure extend into the dome, which represents about two-thirds of the total volume of the containment.The GOTHIC model was defined with 30 control volumes using a mix of lumped parameter volumes and subdivided volumes that employ a three-dimensional mesh. Each volume included several thermal conductors to model the various structures. More than 100 flow paths were used to model the hydraulic connections.Comparison of predictions to data showed that enhanced grid resolution in the vicinity of the steam-helium release point served to limit dispersion of the steam-helium plume. The data comparisons also suggested that spray effectiveness was reduced by drop impact with the containment wall and by the high drop concentration. The data comparisons further suggested that the presence of condensation, sprays, splashing, and other wetting mechanisms should be considered to obtain a reasonable estimate of the effect of liquid films on the structure surfaces

  13. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  14. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  15. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  16. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  17. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  18. Characteristics of Core Thermal-Hydraulic Design of SMART-P

    International Nuclear Information System (INIS)

    Hwang, Dae-Hyun; Seo, Kyong-Won; Kim, Tae-Wan; Lee, Chung-Chan

    2006-01-01

    The SMART (System-Integrated Modular Advanced ReacTor) is an integral-type advanced light water reactor which is purposed to be utilized as an energy source for sea water desalination as well as a small scale power generation. A prototype of this reactor, named SMART-P, has been studied at KAERI in order to demonstrate the relevant technologies incorporated in the SMART design. Due to the closed-channel type fuel assemblies and low mass velocity in the reactor core, the thermal hydraulic design features of SMART-P revealed fairly different characteristics in comparison with existing PWRs. The allowable operating region of the core, from the aspect of the thermal integrity of the fuel, should be primarily limited by two design parameters; critical heat flux (CHF) and fuel temperature. The occurrence of CHF may cause a sudden increase of the cladding temperature which eventually results in the fuel failure. The fuel temperature limit is relevant to a fuel failure mechanism such as a fuel centerline melting or a phase change of metallic fuels. Two phase flow instability is also an important design parameter since a flow oscillation may trigger a CHF or mechanical vibration of the channel. The characteristics of important thermal-hydraulic design parameters have been investigated for the SMART-P core with the closed-channel type fuel assemblies which contained non-square arrayed SSF (Self-sustained Square Finned) fuel rods

  19. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1998-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  20. Knowledge management in the engineering design environment

    Science.gov (United States)

    Briggs, Hugh C.

    2006-01-01

    The Aerospace and Defense industry is experiencing an increasing loss of knowledge through workforce reductions associated with business consolidation and retirement of senior personnel. Significant effort is being placed on process definition as part of ISO certification and, more recently, CMMI certification. The process knowledge in these efforts represents the simplest of engineering knowledge and many organizations are trying to get senior engineers to write more significant guidelines, best practices and design manuals. A new generation of design software, known as Product Lifecycle Management systems, has many mechanisms for capturing and deploying a wider variety of engineering knowledge than simple process definitions. These hold the promise of significant improvements through reuse of prior designs, codification of practices in workflows, and placement of detailed how-tos at the point of application.

  1. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  2. Neutronics and thermal hydraulics coupling scheme for design improvement of liquid metal fast systems

    International Nuclear Information System (INIS)

    Sanchez-Espinoza, V.H.; Jaeger, W.; Travleev, A.; Monti, L.; Doern, R.

    2009-01-01

    Many advanced reactor concepts are nowadays under investigations within the Generation IV international initiative as well as in European research programs including subcritical and critical fast reactor systems cooled by liquid metal, gas and supercritical water. The Institute of Neutron Physics and Reactor Technology (INR) at the Forschungszentrum Karlsruhe GmbH is involved in different European projects like IP EUROTRANS, ELSY, ESFR. The main goal of these projects is, among others, to assess the technical feasibility of proposed concepts regarding safety, economics and transmutation requirements. In view of increased computer capabilities, improved computational schemes, where the neutronic and the thermal hydraulic solution is iteratively coupled, become practicable. The codes ERANOS2.1 and TRACE are being coupled to analyze fuel assembly or core designs of lead-cooled fast reactors (LFR). The neutronic solution obtained with the coupled system for a LFR fuel assembly was compared with the MCNP5 solution. It was shown that the coupled system is predicting physically sound results. The iterative coupling scheme was realized using Perlscripts and auxiliary Fortran programs to ensure that the mapping between the neutronic and the thermal hydraulic part is consistent. The coupled scheme is very flexible and appropriate for the neutron physical and thermal hydraulic investigation of fuel assemblies and of cores of lead cooled fast reactors. The developed methods and the obtained results will be presented and discussed. (author)

  3. The Hydraulic Project Włocławek: Design, Studies, Construction and Operation

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2015-03-01

    Full Text Available The Hydraulic Project Włocławek was commissioned in 1970 as the first barrage of the Lower Vistula Cascade (LVC. The purpose of the LVC was to create an important source of hydro-energy and inland navigation route connecting central Poland with the port city of Gdańsk. Along the Lower Vistula (LV important cities and industrial centres are located. The Włocławek project still remains the only barrage on the LV thus creating a number of problems. The paper presents the basic hydrological and hydraulic data for the Vistula river, and describes the Włocławek project, hydraulic model investigations conducted in the design phase, the construction of the project and the main problems, attendant on its use, including the winter flood of 1982 in the upper part of the Włocławek reservoir. The paper ends with conclusions on project construction and exploitation. The next barrage downstream from Włocławek is proposed.

  4. Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice

    Science.gov (United States)

    Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue

    2016-01-01

    Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…

  5. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    The Journal of Modeling, Design & Management of Engineering Systems publishes original ... systems Electronic/Electrical systems Engineering management systems Fuel and Energy systems Information Technology ... systems Pubic Health systems Software Engineering systems Systems and Industrial Engineering ...

  6. Instructional design considerations promoting engineering design self-efficacy

    Science.gov (United States)

    Jackson, Andrew M.

    Engineering design activities are frequently included in technology and engineering classrooms. These activities provide an open-ended context for practicing critical thinking, problem solving, creativity, and innovation---collectively part of the 21st Century Skills which are increasingly needed for success in the workplace. Self-efficacy is a perceptual belief that impacts learning and behavior. It has been shown to directly impact each of these 21st Century Skills but its relation to engineering design is only recently being studied. The purpose of this study was to examine how instructional considerations made when implementing engineering design activities might affect student self-efficacy outcomes in a middle school engineering classroom. Student responses to two self-efficacy inventories related to design, the Engineering Design Self-Efficacy Instrument and Creative Thinking Self-Efficacy Inventory, were collected before and after participation in an engineering design curriculum. Students were also answered questions on specific factors of their experience during the curriculum which teachers may exhibit control over: teamwork and feedback. Results were analyzed using Pearson's correlation coefficients, paired and independent t-tests, and structural equation modeling to better understand patterns for self-efficacy beliefs in students. Results suggested that design self-efficacy and creative thinking self-efficacy are significantly correlated, r(1541) = .783, p classroom strategies for increasing self-efficacy and given specific recommendations related to teamwork and feedback to support students. Finally, although there were weaknesses in the study related to the survey administration, future research opportunities are presented which may build from this work.

  7. Production engineering jig and tool design

    CERN Document Server

    Jones, E J H

    1972-01-01

    Production Engineering: Jig and Tool Design focuses on jig and tool design as part of production engineering and covers topics ranging from inspection and gauging to multiple and consecutive tooling, tool calculation and development of form tools, deep-hole boring, and grinding-wheel form-crushing. Air and oil operated fixtures, negative rake machining, and the economics of jig and fixture practice are also discussed. This text is comprised of 22 chapters; the first of which provides an overview of the function and organization of the jig and tool department. Attention then turns to the subjec

  8. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Paritosh E-mail: paritosh@ipr.res.in; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C

    2001-09-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m{sup 2}. In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper.

  9. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C.

    2001-01-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m 2 . In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper

  10. Development of Mitsubishi high thermal performance grid 1 - CFD applicability for thermal hydraulic design

    International Nuclear Information System (INIS)

    Ikeda, K.; Hoshi, M.

    2001-01-01

    Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)

  11. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  13. Performance of optimised prosthetic ankle designs that are based on a hydraulic variable displacement actuator (VDA)

    OpenAIRE

    Gardiner, JD; Bari, AZ; Kenney, LPJ; Twiste, M; Moser, D; Zahedi, S; Howard, D

    2017-01-01

    Current energy storage and return (ESR) prosthetic\\ud feet only marginally reduce the cost of amputee locomotion\\ud compared to basic solid ankle cushioned heel (SACH) feet,\\ud possibly due to their lack of push-off at the end of stance. To our knowledge, a prosthetic ankle that utilises a hydraulic variable displacement actuator (VDA) to improve push-off performance has not previously been proposed. Therefore, here we report a design optimisation and simulation feasibility study for a VDA ba...

  14. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  15. Software engineering design theory and practice

    CERN Document Server

    Otero, Carlos

    2012-01-01

    … intended for use as a textbook for an advanced course in software design. Each chapter ends with review questions and references. … provides an overview of the software development process, something that would not be out of line in a course on software engineering including such topics as software process, software management, balancing conflicting values of stakeholders, testing, quality, and ethics. The author has principally focused on software design though, extracting the design phase from the surrounding software development lifecycle. … Software design strategies are addressed

  16. Fermilab HEPCloud Facility Decision Engine Design

    Energy Technology Data Exchange (ETDEWEB)

    Tiradani, Tiradani,Anthony [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Altunay, Mine [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dagenhart, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kowalkowski, Jim [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Litvintsev, Dmitry [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lu, Qiming [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mhashilkar, Parag [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moibenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Paterno, Marc [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Timm, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-23

    The Decision Engine is a critical component of the HEP Cloud Facility. It provides the functionality of resource scheduling for disparate resource providers, including those which may have a cost or a restricted allocation of cycles. Along with the architecture, design, and requirements for the Decision Engine, this document will provide the rationale and explanations for various design decisions. In some cases, requirements and interfaces for a limited subset of external services will be included in this document. This document is intended to be a high level design. The design represented in this document is not complete and does not break everything down in detail. The class structures and pseudo-code exist for example purposes to illustrate desired behaviors, and as such, should not be taken literally. The protocols and behaviors are the important items to take from this document. This project is still in prototyping mode so flaws and inconsistencies may exist and should be noted and treated as failures.

  17. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  18. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    Science.gov (United States)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  19. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  20. DESIGNING HYDRAULIC AIR CHAMBER IN WATER TRANSMISSION SYSTEMS USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Abdorahim Jamal

    2016-09-01

    Full Text Available Transient flow control in Water Transmission Systems (WTS is one of the requirements of designing these systems. Hence, among control equipment, air chambers offer the best solution to control transient flow effects, i.e. both prevents water column separation and absorbs pressure increase. It is essential to carry out an accurate and optimized design of air chambers, not only due to high costs of their manufacturing but also their important protective role. Accordingly, hydraulic design parameters comprise tank volume, diameter of nozzle and coefficients of inflow and outflow of nozzle. In this paper, it is intended to optimize these parameters in order to minimize manufacturing costs. On the other hand, maximum and minimum pressures in main pipeline are considered as constraints which shall fall in allowed range. Therefore, a model has been developed which is a combination of a hydraulic simulation model of WTS and an optimization model based on genetic algorithm. This model is first applied to WTS of Dehgolan-Ghorveh plain as a case study. Results of this research demonstrate that based on suggested model, negative wave creation and pressure increase in pipeline is prevented as well as decrease in manufacturing costs of air chamber.

  1. On the Design Concept in Engineering Ethics

    Science.gov (United States)

    Ohishi, Toshihiro

    The purpose of this study is to clarify the meaning of the trendy concept in engineering ethics education that ethical problems should be comprehended from the viewpoint of design. First, I present two objections against the concept and the content of it. Second, I examine the concept and show that the essence of it is pragmatic methods. That is, we should understand ethical problems and design problems pragmatically. Finally, I point out that the objections are not true of this pragmatic understanding.

  2. Practical stress analysis in engineering design

    CERN Document Server

    Huston, Ronald

    2008-01-01

    Presents the application of engineering design and analysis based on the approach of understanding the physical characteristics of a given problem and then modeling the important aspects of the physical system. This book covers such topics as contact stress analysis, singularity functions, gear stresses, fasteners, shafts, and shaft stresses.

  3. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  4. The Crab Boat Engineering Design Challenge

    Science.gov (United States)

    Love, Tyler S.; Ryan, Larry

    2017-01-01

    Crab cakes and football, that's what Maryland does!" (Abrams, Levy, Panay, & Dobkin, 2005). Although the Old Line State is notorious for harvesting delectable blue crabs, the movie "Wedding Crashers" failed to highlight something else Maryland does well: engineering design competitions. This article discusses how a multistate…

  5. Regeneration in an internal combustion engine: Thermal-hydraulic modeling and analysis

    International Nuclear Information System (INIS)

    Thyageswaran, Sridhar

    2016-01-01

    Highlights: • An arrangement is proposed for in-cylinder regeneration in a 4-stroke engine. • Thermodynamic models are formulated for overall cycle analysis. • A design procedure is outlined for micro-channel regenerators. • Partial differential equations are solved for flow inside the regenerator. • Regeneration with lean combustion decreases the idealized cycle efficiency. - Abstract: An arrangement is proposed for a four-stroke internal combustion engine to: (a) recover thermal energy from products of combustion during the exhaust stroke; (b) store that energy as sensible heat in a micro-channel regenerator matrix; and (c) transfer the stored heat to compressed fresh charge that flows through the regenerator during the succeeding mechanical cycle. An extra moveable piston that can be locked at preferred positions and a sequence of valve events enable the regenerator to lose heat to the working fluid during one interval of time but gain heat from the fluid during another interval of time. This paper examines whether or not this scheme for in-cylinder regeneration (ICR) improves the cycle thermal efficiency η I . Models for various thermodynamic processes in the cycle and treatments for unsteady compressible flow and heat transfer inside the regenerator are developed. Digital simulations of the cycle are made. Compared to an idealized engine cycle devoid of regeneration, provisions for ICR seem to deteriorate the thermal efficiency. In an 8:1 compression ratio octane engine simulated with an equivalence ratio of 0.75, η I  = 0.455 with regeneration and η I  = 0.491 without. This study shows that previous claims on efficiency gains via ICR, using highly-simplified models, may be misleading.

  6. Thermal hydraulic design of a hydride-fueled inverted PWR core

    International Nuclear Information System (INIS)

    Malen, J.A.; Todreas, N.E.; Hejzlar, P.; Ferroni, P.; Bergles, A.

    2009-01-01

    An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U-ZrH 1.6 ) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U-ZrH 1.6 . The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t , which is 135% of the optimally powered standard design (5080 MW t -determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.

  7. Nuclear fuel element design and thermal-hydraulic analysis of Wolsung-1, 600 MWe CANDU-PHWR (Part II)

    International Nuclear Information System (INIS)

    Suk, H.C; Lee, J.C.; Suh, K.S.; Yuk, K.E.; Whang, W.; Park, J.S.; Eim, J.S.; Bang, K.H.; Eim, M.S.; Rim, C.S.

    1982-01-01

    The main objective of the present thermal hydraulic analysis is to determine the thermal hydraulic characteristics of Wolsung-1 600 MWe CANDU-PHW reactor under normal operation. This is to verify and expedite the development of the nuclear fuel design and fabrication as well as the management. The computer program package developed for the stated objective are DOD81, CANREPP, PLOC81 and COBRA-CANDU. (Author)

  8. Emotional engineers: toward morally responsible design.

    Science.gov (United States)

    Roeser, Sabine

    2012-03-01

    Engineers are normally seen as the archetype of people who make decisions in a rational and quantitative way. However, technological design is not value neutral. The way a technology is designed determines its possibilities, which can, for better or for worse, have consequences for human wellbeing. This leads various scholars to the claim that engineers should explicitly take into account ethical considerations. They are at the cradle of new technological developments and can thereby influence the possible risks and benefits more directly than anybody else. I have argued elsewhere that emotions are an indispensable source of ethical insight into ethical aspects of risk. In this paper I will argue that this means that engineers should also include emotional reflection into their work. This requires a new understanding of the competencies of engineers: they should not be unemotional calculators; quite the opposite, they should work to cultivate their moral emotions and sensitivity, in order to be engaged in morally responsible engineering. © The Author(s) 2010. This article is published with open access at Springerlink.com

  9. Advantages of variable-speed operation of hydraulic turbo-engines; Vorteile durch den drehzahlvariablen Betrieb von hydraulischen Stroemungsmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Harbort, T. [Stuttgart Univ. (Germany). Inst. fuer Stroemungsmechanik und Hydraulische Stroemungsmaschinen

    1997-12-31

    The performance of current hydraulic turbo-engines in the variable speed sector is monitored and judged. The study covers radial and axial engines as well as Pelton turbines. Variable-speed operation of hydraulic turbo-engines can be realized by means of different combinations of electrical rotating machines and frequency converters. The operating range of the frequency converter plays an important role in the optimization of performance and is taken into account. The smoothness of run of reaction turbines and their cavitation performance can be enhanced by speed regulation. But above all, efficiency is more or less substantially enhanced during partial load or in the case of greatly varying heights of drop. The latter holds true also of Pelton turbines. (orig.) [Deutsch] Das Betriebsverhalten der gaengigen hydraulischen Stroemungsmaschinen wird in Hinblick auf den drehzahlvariablen Betrieb erfasst und beurteilt. Die Untersuchung erfolgt fuer Radialmaschinen, Axialmaschinen und Peltonturbinen. Der drehzahlvariable Betrieb hydraulischer Stroemungsmaschinen kann mit verschiedenen Kombinationen von elektrischen Maschinen und Frequenzumrichtern realisiert werden. Der Arbeitsbereich des Frequenzumrichters spielt eine wichtige Rolle fuer die Optimierung des Betriebsverhaltens und wird beruecksichtigt. Bei Ueberdruckturbinen kann man durch Drehzahlregelung eine groessere Laufruhe sowie ein guenstigeres Kavitationsverhalten erreichen. Vor allem aber sind im Teillastbereich oder bei stark schwankenden Fallhoehen mehr oder weniger grosse Wirkungsgradgewinne erzielbar. Das letztere gilt auch fuer Peltonturbinen. (orig.)

  10. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Zhu, H G; Zhang, R T; Zhou, J R

    2012-01-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m 3 /s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  11. Energy conservation strategy in Hydraulic Power Packs using Variable Frequency Drive IOP Conference Series: Materials Science and Engineering

    Science.gov (United States)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar; Adithyakumar, C. R.

    2018-02-01

    At present, energy consumption is to such an extent that if the same trend goes on then in the future at some point of time, the energy sources will all be exploited. Energy conservation in a hydraulic power pack refers to the reduction in the energy consumed by the power pack. Many experiments have been conducted to reduce the energy consumption and one of those methods is by introducing a variable frequency drive. The main objective of the present work is to reduce the energy consumed by the hydraulic power pack using variable frequency drive. Variable Frequency drive is used to vary the speed of the motor by receiving electrical signals from the pressure switch which acts as the feedback system. Using this concept, the speed of the motor can be varied between the specified limits. In the present work, a basic hydraulic power pack and a variable frequency drive based hydraulic power pack were designed and compared both of them with the results obtained. The comparison was based on the power consumed, rise in temperature, noise levels, and flow of oil through pressure relief valve, total oil flow during loading cycle. By comparing both the circuits, it is found that for the proposed system, consumption of power reduces by 78.4% and is as powerful as the present system.

  12. Rethinking the Systems Engineering Process in Light of Design Thinking

    Science.gov (United States)

    2016-04-30

    systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system

  13. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  14. Probabilistic Durability Analysis in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    A. Kudzys

    2000-01-01

    Full Text Available Expedience of probabilistic durability concepts and approaches in advanced engineering design of building materials, structural members and systems is considered. Target margin values of structural safety and serviceability indices are analyzed and their draft values are presented. Analytical methods of the cumulative coefficient of correlation and the limit transient action effect for calculation of reliability indices are given. Analysis can be used for probabilistic durability assessment of carrying and enclosure metal, reinforced concrete, wood, plastic, masonry both homogeneous and sandwich or composite structures and some kinds of equipments. Analysis models can be applied in other engineering fields.

  15. Creativity from Constraints in Engineering Design

    DEFF Research Database (Denmark)

    Onarheim, Balder

    2012-01-01

    This paper investigates the role of constraints in limiting and enhancing creativity in engineering design. Based on a review of literature relating constraints to creativity, the paper presents a longitudinal participatory study from Coloplast A/S, a major international producer of disposable...... and ownership of formal constraints played a crucial role in defining their influence on creativity – along with the tacit constraints held by the designers. The designers were found to be highly constraint focused, and four main creative strategies for constraint manipulation were observed: blackboxing...

  16. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  17. Perspectives on knowledge in engineering design

    Science.gov (United States)

    Rasdorf, W. J.

    1985-01-01

    Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.

  18. Investigation of Desso GrassMaster® as application in hydraulic engineering

    NARCIS (Netherlands)

    Steeg, van der P.; Paulissen, M.P.C.P.; Roex, E.; Mommer, L.

    2015-01-01

    Dessa GrassMaster® is a reinforced grass system which is applied successfully on sports fields and enables to use a sports field more intensively than a normal grass field. In this report the possibility of an application of Dessa GrassMaster®in hydraulic conditions, with a focus on grass dikes, is

  19. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  20. Feasibility study for objective oriented design of system thermal hydraulic analysis program

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Jeong, Jae Jun; Hwang, Moon Kyu

    2008-01-01

    The system safety analysis code, such as RELAP5, TRAC, CATHARE etc. have been developed based on Fortran language during the past few decades. Refactoring of conventional codes has been also performed to improve code readability and maintenance. However the programming paradigm in software technology has been changed to use objects oriented programming (OOP), which is based on several techniques, including encapsulation, modularity, polymorphism, and inheritance. In this work, objective oriented program for system safety analysis code has been tried utilizing modernized C language. The analysis, design, implementation and verification steps for OOP system code development are described with some implementation examples. The system code SYSTF based on three-fluid thermal hydraulic solver has been developed by OOP design. The verifications of feasibility are performed with simple fundamental problems and plant models. (author)

  1. Thermal-Hydraulic Design of the Modular Once Through Helical Steam Generator

    International Nuclear Information System (INIS)

    Mazufri, C.M

    2000-01-01

    The steam generator system of the CAREM reactor consists of twelve individual modules located in the annular place between the pressure vessel and barrel walls. Each steam generator module consists of a tube system, an upper header, an external shroud, a collector and a lower seal.The tube system is an arrangement of several multi-start cylindrical coils.In the present work the computation of the necessary heat transfer area to fulfill the heat removal requirements from the primary circuit, and the pressure drop in the primary and secondary side of the helical design of a modular steam generator is presented. Additionally, a first order estimation of the restriction to be used in the secondary side to assure the thermal-hydraulic stability is also made.It is concluded that an array of 6 concentric cylindrical coils fulfills the necessary design requirements

  2. Design and thermal/hydraulic characteristics of the ITER-FEAT vacuum vessel

    International Nuclear Information System (INIS)

    Onozuka, M.; Ioki, K.; Sannazzaro, G.; Utin, Y.; Yoshimura, H.

    2001-01-01

    Recent progress in structural design and thermal and hydraulic assessment of the vacuum vessel (VV) for ITER-FEAT is presented. Because of the direct attachment of the blanket modules to the VV, the module support structures are recessed into the double-wall VV, partially replacing the stiffening ribs between the VV shells to simplify the VV structure. Structural integrity of the VV is provided by the ribs and the module support structures with local reinforcement ribs. The detailed structural design of the VV taking account of the fabricability and code/standard acceptance is presented. Cost reduction of the VV fabrication using casting or forging is proposed. A high heat removal capability is required for the VV cooling to keep the thermal stress below the allowable. It is expected that natural thermo-gravitational convection due to the heat flux from the vessel wall to the water will enhance heat transfer characteristics even in the low flow velocity region

  3. Design and thermal/hydraulic characteristics of the ITER-FEAT vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail: onozukm@itereu.de; Ioki, K.; Sannazzaro, G.; Utin, Y.; Yoshimura, H

    2001-11-01

    Recent progress in structural design and thermal and hydraulic assessment of the vacuum vessel (VV) for ITER-FEAT is presented. Because of the direct attachment of the blanket modules to the VV, the module support structures are recessed into the double-wall VV, partially replacing the stiffening ribs between the VV shells to simplify the VV structure. Structural integrity of the VV is provided by the ribs and the module support structures with local reinforcement ribs. The detailed structural design of the VV taking account of the fabricability and code/standard acceptance is presented. Cost reduction of the VV fabrication using casting or forging is proposed. A high heat removal capability is required for the VV cooling to keep the thermal stress below the allowable. It is expected that natural thermo-gravitational convection due to the heat flux from the vessel wall to the water will enhance heat transfer characteristics even in the low flow velocity region.

  4. Translating DWPF design criteria into an engineered facility design

    International Nuclear Information System (INIS)

    Kemp, J.B.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) takes radioactive defense waste sludge and the radioactive nuclides, cesium and strontium, from the salt solution, and incorporates them in borosilicate glass in stainless steel canisters, for subsequent disposal in a deep geologic repository. The facility was designed by Bechtel National, Inc. under a subcontract from E.I. DuPont de Nemurs and Co., the prime contractor for the Department of Energy, for the design, construction and commissioning of the plant. The design criteria were specified by the DuPont Company, based upon their extensive experience as designer, and operator since the early 1950's, of the existing Savannah River Plant facilities. Some of the design criteria imposed unusual or new requirements on the detailed design of the facilities. This paper describes some of these criteria, encompassing several engineering disciplines, and discusses the solutions and designs which were developed for the DWPF

  5. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  6. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  7. Engineering report (conceptual design) PFP solution stabilization

    International Nuclear Information System (INIS)

    Witt, J.B.

    1997-01-01

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  8. Industry participation in the ITER engineering designing

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2006-01-01

    Involvement of the European industry promoted elaboration of the ITER engineering design. The EFDA is responsible for coordination of the industry involvement under the signed contracts the total amount of which is about 70 MEURO. Diversified remote handling equipment is available to replace internal structures and to transfer them to and back from hot cell. The contribution of the European industry consists mainly of divertor equipment, of air cushion transfer system and transfer casks [ru

  9. Development of a design methodology for hydraulic pipelines carrying rectangular capsules

    International Nuclear Information System (INIS)

    Asim, Taimoor; Mishra, Rakesh; Abushaala, Sufyan; Jain, Anuj

    2016-01-01

    The scarcity of fossil fuels is affecting the efficiency of established modes of cargo transport within the transportation industry. Efforts have been made to develop innovative modes of transport that can be adopted for economic and environmental friendly operating systems. Solid material, for instance, can be packed in rectangular containers (commonly known as capsules), which can then be transported in different concentrations very effectively using the fluid energy in pipelines. For economical and efficient design of such systems, both the local flow characteristics and the global performance parameters need to be carefully investigated. Published literature is severely limited in establishing the effects of local flow features on system characteristics of Hydraulic Capsule Pipelines (HCPs). The present study focuses on using a well validated Computational Fluid Dynamics (CFD) tool to numerically simulate the solid-liquid mixture flow in both on-shore and off-shore HCPs applications including bends. Discrete Phase Modelling (DPM) has been employed to calculate the velocity of the rectangular capsules. Numerical predictions have been used to develop novel semi-empirical prediction models for pressure drop in HCPs, which have then been embedded into a robust and user-friendly pipeline optimisation methodology based on Least-Cost Principle. - Highlights: • Local flow characteristics in a pipeline transporting rectangular capsules. • Development of prediction models for the pressure drop contribution of capsules. • Methodology developed for sizing of Hydraulic Capsule Pipelines. • Implementation of the developed methodology to obtain optimal pipeline diameter.

  10. Thermo-hydraulic analysis of the generic equatorial port plug design

    International Nuclear Information System (INIS)

    Rodríguez, E.; Guirao, J.; Ordieres, J.; Cortizo, J.L.; Iglesias, S.

    2012-01-01

    Highlights: ► Thermo-hydraulic transient performance evaluation and optimization of the GEPP structure cooling/heating system under neutronic heating and baking conditions. ► The optimization of the GEPP box structure's cooling system includes positioning and minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions. - Abstract: The port-based ITER diagnostic systems are housed primarily in two locations, the equatorial and upper port plugs. The port plug structure provides confinement function, maintains ultra-high vacuum quality and the first confinement barrier for radioactive materials at the ports. The port plug structure design, from the ITER International Organisation (IO), is cooled and heated by pressurized water which flows through a series of gun-drilled water channels and water pipes. The cooling function is required to remove nuclear heating due to radiation during operation of ITER, while the heating function is intended to heat up uniformly the machine during baking condition. The work presented provides coupled thermo-hydraulic analysis and optimization of a Generic Equatorial Port Plug (GEPP) structure cooling and heating system. The optimization performed includes positioning, minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions.

  11. Design of a welltest for determining two-phase hydraulic properties

    International Nuclear Information System (INIS)

    Finsterle, S.

    1995-01-01

    This report describes the design of a well test to determine two-phase hydraulic properties of a low permeability, low porosity formation. Estimation of gas-related parameters in such formations is difficult using standard pumping tests mainly because of the strong fluctuations in the pressure and flow rate data which are a consequence of gas bubbles evolving in the test interval. Even more important is the fact that the data do not allow distinguishing among alternative conceptual models. The estimated parameters are therefore uncertain, highly correlated, and ambiguous. In this study we examine a test sequence that could be appended to a standard hydraulic testing program. It is shown that performing a series of water and gas injection tests significantly reduces parameter correlations, thus decreasing the estimation error. Moreover, the extended test sequence makes possible the identification of the model that describes relative permeabilities and capillary pressures. This requires, however, that data of high accuracy are collected under controlled test conditions. The purpose of this report is to describe the modeling approach, assumptions and limitations of the procedure, and to provide practical recommendations for future testing

  12. Performance of Optimized Prosthetic Ankle Designs That Are Based on a Hydraulic Variable Displacement Actuator (VDA).

    Science.gov (United States)

    Gardiner, James; Bari, Abu Zeeshan; Kenney, Laurence; Twiste, Martin; Moser, David; Zahedi, Saeed; Howard, David

    2017-12-01

    Current energy storage and return prosthetic feet only marginally reduce the cost of amputee locomotion compared with basic solid ankle cushioned heel feet, possibly due to their lack of push-off at the end of stance. To the best of our knowledge, a prosthetic ankle that utilizes a hydraulic variable displacement actuator (VDA) to improve push-off performance has not previously been proposed. Therefore, here we report a design optimization and simulation feasibility study for a VDA-based prosthetic ankle. The proposed device stores the eccentric ankle work done from heel strike to maximum dorsiflexion in a hydraulic accumulator and then returns the stored energy to power push-off. Optimization was used to establish the best spring characteristic and gear ratio between ankle and VDA. The corresponding simulations show that, in level walking, normal push-off is achieved and, per gait cycle, the energy stored in the accumulator increases by 22% of the requirements for normal push-off. Although the results are promising, there are many unanswered questions and, for this approach to be a success, a new miniature, low-losses, and lightweight VDA would be required that is half the size of the smallest commercially available device.

  13. Collaboration between Industrial Designers and Design Engineers - Comparing the Understanding of Design Intent.

    Science.gov (United States)

    Laursen, Esben Skov; Møller, Louise

    2015-01-01

    This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.

  14. Design optimization of hydraulic turbine draft tube based on CFD and DOE method

    Science.gov (United States)

    Nam, Mun chol; Dechun, Ba; Xiangji, Yue; Mingri, Jin

    2018-03-01

    In order to improve performance of the hydraulic turbine draft tube in its design process, the optimization for draft tube is performed based on multi-disciplinary collaborative design optimization platform by combining the computation fluid dynamic (CFD) and the design of experiment (DOE) in this paper. The geometrical design variables are considered as the median section in the draft tube and the cross section in its exit diffuser and objective function is to maximize the pressure recovery factor (Cp). Sample matrixes required for the shape optimization of the draft tube are generated by optimal Latin hypercube (OLH) method of the DOE technique and their performances are evaluated through computational fluid dynamic (CFD) numerical simulation. Subsequently the main effect analysis and the sensitivity analysis of the geometrical parameters of the draft tube are accomplished. Then, the design optimization of the geometrical design variables is determined using the response surface method. The optimization result of the draft tube shows a marked performance improvement over the original.

  15. The NDCX-II engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, W.L., E-mail: WLWaldron@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Abraham, W.J.; Arbelaez, D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friedman, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Galvin, J.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gilson, E.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Greenway, W.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grote, D.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Jung, J.-Y.; Kwan, J.W.; Leitner, M.; Lidia, S.M.; Lipton, T.M.; Reginato, L.L.; Regis, M.J.; Roy, P.K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sharp, W.M. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Stettler, M.W.; Takakuwa, J.H.; Volmering, J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); and others

    2014-01-01

    The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.

  16. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  17. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  18. Preparation of a thermal-hydraulic design method for driver core fuel pins of a new in-pile experimental reactor for FBR safety research

    International Nuclear Information System (INIS)

    Mizuno, Masahiro; Yamaguchi, Katsuhisa; Uto, Nariaki

    1999-07-01

    A design study of a new in-pile experimental reactor, SERAPH (Safety Engineering Reactor for Accident PHenomenology), for FBR safety research has progressed at JNC (Japan Nuclear Cycle Development Institute). SERAPH is intended for various in-pile experiments to be performed under quasi-steady state and various transient operation modes. In order to evaluate the driver core performance in conducting such experiments, clarify the relating design issues to be resolved and refine the experimental needs, it is indispensable to comprehend the allowable margin for the thermal-hydraulic fuel pin design since it largely affects the strategy for the driver core design. This report presents a thermal-hydraulic design method for the driver core fuel pins, which is a combination of a two-dimensional time-dependent heat transfer analysis code TAC-2D and a general non-linear finite-element structural analysis code FINAS. In TAC-2D, the allowable spatial mesh and the time step sizes are evaluated. The code is modified so as to treat time-dependent thermal properties, include an improved gap heat-transfer model and treat the change of intra-pin gap width under transient modes, for the purpose of improving the accuracy of evaluating heat transfer characteristics which gives a significant impact on the thermal-hydraulic design. As for FINAS, the number of element nodes and spatial meshes required to obtain adequate accuracy for the thermal stress characteristics of a fuel pellet during transient modes are investigated. In addition, post-processing tools are newly developed to process the calculation results obtained from these codes. The results of this work contribute to advancing the fuel pin design study for SERAPH as well with the investigation on the technique of manufacturing fuel pins. (author)

  19. Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.

    2003-10-01

    On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements

  20. Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.

    2003-10-01

    On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements on the electrical

  1. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  2. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  3. Engineering study of tank leaks related to hydraulic retrieval of sludge from tank 241-C-106

    International Nuclear Information System (INIS)

    Lowe, S.S.; Carlos, W.C.; Irwin, J.J.; Khaleel, R.; Kline, N.W.; Ludowise, J.D.; Marusich, R.M.; Rittman, P.D.

    1993-01-01

    This study evaluates hydraulic retrieval (sluicing) of the waste in single-shell tank 241-C-106 with respect to the likelihood of tank leaks, gross volumes of potential leaks, and their consequences. A description of hydraulic retrieval is developed to establish a baseline for the study. Leak models are developed based on postulated leak mechanisms to estimate the amount of waste that could potentially leak while sluicing. Transport models describe the movement of the waste constituents in the surrounding soil and groundwater after a leak occurs. Environmental impact and risk associated with tank leaks are evaluated. Transport of leaked material to the groundwater is found to be dependent on the rate of recharge of moisture in the soil for moderate-sized leaks. Providing a cover over the tank and surrounding area would eliminate the recharge. The bulk of any leaked material would remain in the vicinity of the tank for remedial action

  4. Steam generator thermal hydraulic design & functional architecture features and related operational and reliability issues requiring consideration

    International Nuclear Information System (INIS)

    Klarner, R.G.

    2012-01-01

    Proper thermal hydraulic design and functional architecture are critical to successful steam generator operation and long term reliability. The evolution of steam generators has been a gradual learning process that has benefited from continuous industry operational experience (OPEX). Inadequate thermal hydraulic design can lead to numerous degradation mechanisms such as excessive deposition, corrosion, flow and level instabilities, fluid-elastic instabilities and tube wear. The functional architecture determines the health of the tube bundle and the other internals during manufacturing, handling and operation. It also determines thermal performance as well as establishing global thermal-hydraulic characteristics such as water level shrink and swell response. This paper discusses the range of operational and reliability issues and relates them to the thermal hydraulic attributes and functional architecture of steam generators (many SG reliability issues are further discussed in other presentations at this conference). In pursuing such issues, the paper focuses on the four major features of the equipment, identifying in each case the goals and requirements such features must meet. Typical approaches and the means by which such requirements are addressed in current equipment are discussed. The four features are: 1. Tubing Material and Tube Bundle Heat Transfer Performance; a. Two materials are in current use – Alloy 690 TT and Alloy 800. Both are good materials with excellent performance records which serve their owners very well (the reliability attributes of Alloy 800 and 690 are discussed in other papers at this conference). Caution is advised in the supply of any material: – material quality is only assured by what is specified to material suppliers in procurement specifications – i.e. - all the knowledge and research in the world assures nothing if its findings are not reflected in procurement requirements. b. Heat transfer performance in addition to being

  5. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  6. Study on multi-fractal fault diagnosis based on EMD fusion in hydraulic engineering

    International Nuclear Information System (INIS)

    Lu, Shibao; Wang, Jianhua; Xue, Yangang

    2016-01-01

    Highlights: • The measured shafting vibration data signal of the hydroelectric generating set is acquired through EMD. • The vibration signal waveform is identified and purified with EMD to obtain approximation coefficient of various fault signals. • The multi-fractal spectrum provides the distributed geometrical or probabilistic information of point. • EMD provides the real information for the next subsequent analysis and recognition. - Abstract: The vibration signal analysis of the hydraulic turbine unit aims at extracting the characteristic information of the unit vibration. The effective signal processing and information extraction are the key to state monitoring and fault diagnosis of the hydraulic turbine unit. In this paper, the vibration fault diagnosis model is established, which combines EMD, multi-fractal spectrum and modified BP neural network; the vibration signal waveform is identified and purified with EMD to obtain approximation coefficient of various fault signals; the characteristic vector of the vibration fault is acquired with the multi-fractal spectrum algorithm, which is classified and identified as input vector of BP neural network. The signal characteristics are extracted through the waveform, the diagnosis and identification are carried out in combination of the multi-fractal spectrum to provide a new method for fault diagnosis of the hydraulic turbine unit. After the application test, the results show that the method can improve the intelligence and humanization of diagnosis, enhance the man–machine interaction, and produce satisfactory identification result.

  7. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  8. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  9. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  10. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... in an actual turbine. Full scale hardware testing is both extremely expensive and time consuming, and so the wind turbine industry moves more towards simulations when testing. In order to meet these demands it is necessary with valid models of systems in order to introduce new technologies to the wind turbine...

  11. Experiments and analyses in support of the US ALMR thermal-hydraulic design

    International Nuclear Information System (INIS)

    Hunsbedt, A.

    1993-01-01

    The U.S. Advanced Liquid Metal Reactor (ALMR) which is based on the modular PRISM concept utilizes passive safety characteristics to simplify the reactor design and enhance its safety performance. The relatively small size of each reactor facilitates the use of strong negative feedback with rising temperature for inherent reactivity control and direct, natural air cooling for decay heat removal. The tall, slender reactor geometry of the ALMR enhances uniformity and stability of internal flow distribution during steady state operation and natural circulation flow during transient conditions. The flow uniformity and low operating pressure and temperature of the reactor contributes to high structural margins. A number of experiments and associated analyses have been performed to evaluate natural convection and thermal-hydraulic phenomena experienced under decay heat removal conditions. This paper summarizes these various efforts as described separately below and presents the main results. (author)

  12. Design of in-situ reactive wall systems - a combined hydraulical-geochemical-economical simulation study

    International Nuclear Information System (INIS)

    Teutsch, G.; Tolksdorff, J.; Schad, H.

    1997-01-01

    The paper presents a coupled hydraulical-geochemical-economical simulation model for the design of in-situ reactive wall systems. More specific, the model is used for cost-optimization and sensitivity analysis of a funnel-and-gate system with an in-situ sorption reactor. The groundwater flow and advective transport are simulated under steady-state conditions using a finite-difference numerical model. This model is coupled to an analytical solution describing the sorption kinetics of hydrophobic organic compounds within the reactor (gate). The third part of the model system is an economical model which calculates (a) the investment costs for the funnel-and-gate construction and (b) the operation cost based on the number of reactor refills, which depends on the breakthrough time for a given contaminant and the anticipated total operation time. For practical applications a simplified approximation of the cost-function is derived and tested

  13. Design of emergency plans due to the failure risk of hydraulic works - Theory and case study

    International Nuclear Information System (INIS)

    Ochoa Rivera, Juan Camilo

    2006-01-01

    Dams are built to be highly safe hydraulic works. Nevertheless, they are not exempt from a certain failure risk, which turns in a variable value along the time service of the dam. As the mentioned dam-failure risk can be a significant hazard, analysis on dam-break is becoming important, as same as the assessment of its consequences. This type of studies are intended to reduce the costs linked to dam-failure, which are mainly due to the losses of human beings and material goods. A suitable way to minimize such losses consists of designing emergency plans, which permit to prepare and implant appropriate protection measures. A methodological framework to carry out this kind of emergency plans is introduced in this paper, accompanied by a case study corresponding to an emergency plan of a Spanish dam

  14. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    Science.gov (United States)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  15. Engineering conceptual design of CFETR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xuebing, E-mail: pengxb@ipp.cas.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Mao, Xin [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Chen, Peiming; Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China)

    2015-10-15

    Highlights: • Three divertor structures for two plasma configurations, ITER-like and snowflake. • Property of enlarging wet area for all three divertors is analyzed. • The divertor accommodating with both the plasma configurations is unfeasible. • Divertor cooling system is developed. - Abstract: The China Fusion Engineering Test Reactor (CFETR), which is in conceptual design phase, aims at producing fusion power of 50–200 MW with tritium breeding ratio of ∼1.2 and duty cycle time of 0.3–0.5. Its designed main parameters are major/minor radii of 5.7 m/1.6 m and plasma current of 10 MA. Although the fusion power is lower than the one of ITER, the relative smaller machine dimensions and planed much higher auxiliary heating power of 100–140 MW make that the power exhausting for the CFETR divertor is a very critical issue. To solve this issue, the divertor should be better designed with advanced physical operation mode, advanced configuration/geometry or high efficient cooling structure. In the paper, much effort was put on the divertor configuration and geometry. With designed magnet system, three divertor configurations can be realized, ITER-like, snowflake and super-X. However, considering structural design feasibility and remote handling compatibility, only the first two configurations were selected for the first step of engineering design. Three divertors were designed. They have different first wall geometries to accommodate with different plasma configurations, one for the ITER-like, one for the snowflake and the third one for both the configurations. All three divertors employ the same cassette body as the support and the cooling water manifold for the first wall. This feature simplifies the interface of the divertor to other components in the vacuum vessel. Besides, the cooling structure and the remote maintenance concept are also introduced in the paper.

  16. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    NARCIS (Netherlands)

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is

  17. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    Science.gov (United States)

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  18. Hydraulic Structures : Caissons

    NARCIS (Netherlands)

    Voorendt, M.Z.; Molenaar, W.F.; Bezuyen, K.G.

    These lecture notes on caissons are part of the study material belonging to the course 'Hydraulic Structures 1' (code CTB3355), part of the Bachelor of Science education and the Hydraulic Engineering track of the Master of Science education for civil engineering students at Delft University of

  19. Natural genetic engineering: intelligence & design in evolution?

    DEFF Research Database (Denmark)

    Ussery, David

    2011-01-01

    There are many things that I like about James Shapiro's new book "Evolution: A View from the 21st Century" (FT Press Science, 2011). He begins the book by saying that it is the creation of novelty, and not selection, that is important in the history of life. In the presence of heritable traits...... function. Shapiro argues that what we see in genomes is 'Natural Genetic Engineering', or designed evolution: "Thinking about genomes from an informatics perspective, it is apparent that systems engineering is a better metaphor for the evolutionary process than the conventional view of evolution...... as a select-biased random walk through limitless space of possible DNA configurations" (page 6). In this review, I will have a look at four topics: 1.) why I think genomics is not the whole story; 2.) my own perspective of E. coli genomics, and how I think it relates to this book; 3.) a brief discussion...

  20. Design of Experiments for Food Engineering

    DEFF Research Database (Denmark)

    Pedersen, Søren Juhl; Geoffrey Vining, G.

    This work looks at the application of Design of Experiments (DoE) to Food Engineering (FE) problems in relation to quality. The field of Quality Engineering (QE) is a natural partnering field for FE due to the extensive developments that QE has had in using DoE for quality improvement especially...... in manufacturing industries. In the thesis the concepts concerning food quality is addressed and in addition how QE proposes to define quality. There is seen a merger in how QE’s definition of quality has been translated for food. At the same time within FE a divergence has been proposed in the literature...... that the fundamental principles of DoE have as much importance and relevance as ever for both the food industry and FE research....

  1. The Use of Executive Control Processes in Engineering Design by Engineering Students and Professional Engineers

    Science.gov (United States)

    Dixon, Raymond A.; Johnson, Scott D.

    2012-01-01

    A cognitive construct that is important when solving engineering design problems is executive control process, or metacognition. It is a central feature of human consciousness that enables one "to be aware of, monitor, and control mental processes." The framework for this study was conceptualized by integrating the model for creative design, which…

  2. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  3. Situational Interest in Engineering Design Activities

    Science.gov (United States)

    Bonderup Dohn, Niels

    2013-08-01

    The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n = 46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students' interests were investigated by means of a descriptive interpretative analysis of qualitative data from classroom observations and informal interviews. The analysis was complemented by a self-report survey to validate findings and determine prevalence. The analysis revealed four main sources of interest: designing inventions, trial-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent that students were able to self-regulate their learning strategies.

  4. Situational interest in engineering design activities

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2013-01-01

    The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n=46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students’ interests were investigated by means...... of a descriptive interpretative analysis of qualitative data from classroom observations and informal interviews. The analysis was complemented by a self-report survey to validate findings and determine prevalence. The analysis revealed four main sources of interest: designing inventions, trial......-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent...

  5. Design of canals

    CERN Document Server

    Swamee, P K

    2015-01-01

    The book presents firsthand material from the authors on design of hydraulic canals. The book discusses elements of design based on principles of hydraulic flow through canals. It covers optimization of design based on usage requirements and economic constraints. The book includes explicit design equations and design procedures along with design examples for varied cases. With its comprehensive coverage of the principles of hydraulic canal design, this book will prove useful to students, researchers, and practicing engineers. End-of-chapter pedagogical elements make it ideal for use in graduate courses on hydraulic structures offered by most civil engineering departments across the world.

  6. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Journal Home > Vol 5, No 1 (2007) ... or mathematical modeling, computing, simulation, design and/or operations research tools for solving engineering problems.

  7. Design of a fusion engineering test facility

    International Nuclear Information System (INIS)

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m 2 . In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V

  8. Engineering design of advanced marine reactor MRX

    International Nuclear Information System (INIS)

    1997-10-01

    JAERI has studied the design of an advanced marine reactor (named as MRX), which meets requirements of the enhancement of economy and reliability, by reflecting results and knowledge obtained from the development of N.S. Mutsu. The MRX with a power of 100 MWt is intended to be used for ship propulsion such as an ice-breaker, container cargo ship and so on. After completion of the conceptual design, the engineering design was performed in four year plan from FY 1993 to 1996. (1) Compactness, light-weightiness and simplicity of the reactor system are realized by adopting an integral-type PWR, i.e. by installing the steam generator, the pressurizer, and the control rod drive mechanism (CRDM) inside the pressure vessel. Because of elimination of the primary coolant circulation pipes in the MRX, possibility of large-scale pipe break accidents can be eliminated. This contributes to improve the safety of the reactor system and to simplify the engineered safety systems. (2) The in-vessel type CRDM contributes not only to eliminate possibilities of rod ejection accidents, but also to make the reactor system compact. (3) The concept of water-filled containment where the reactor pressure vessel is immersed in the water is adopted. It can be of use for emergency core cooling system which maintains core flooding passively in case of a loss-of-coolant accident. The water-filled containment system also contributes essentially light-weightness of the reactor system since the water inside containment acts as a radiation shield and in consequence the secondary radiation shield can be eliminated. (4) Adoption of passive decay heat removal systems has contributed in a greater deal to simplification of the engineered safety systems and to enhancement of reliability of the systems. (5) Operability has been improved by simplification of the whole reactor system, by adoption of the passive safety systems, advanced automatic operation systems, and so on. (J.P.N.)

  9. Engineering aspects of the INTOR design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1983-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings. Tokamak support systems and the reactor building and facilities are also important to the overall design evolution and were included in the conceptual design effort. However, this paper discusses only the primary tokamak systems. (author)

  10. The preliminary thermal-hydraulic design of one superheated steam water cooled blanket concept based on RELAP5 and MELCOR codes - 15147

    International Nuclear Information System (INIS)

    Guo, Y.; Wang, G.; Cheng, Y.; Peng, C.

    2015-01-01

    Water Cooled Blanket (WCB) is very important in the concept design and energy transfer in future fusion power plant. One concept design of WCB is under computational testing. RELAP5 and MELCOR codes, which are mature and often used in nuclear engineering, are selected as simulation tools. The complex inner flow channels and heat sources are simplified according to its thermal-hydraulic characteristics. Then the nodal models for RELAP5 and MELCOR are built for approximating the concept design. The superheated steam scheme is analyzed by two codes separately under different power levels. After some adjustments of the inlet flow resistance coefficients of some flow channels, the reasonable stable conditions can be obtained. The stable fluid and wall temperature distributions and pressure drops are studied. The results of two codes are compared and some advices are given. (authors)

  11. High School Engineering and Technology Education Integration through Design Challenges

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  12. Design of Molecular Materials: Supramolecular Engineering

    Science.gov (United States)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  13. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiyuki; Sudo, Yukio

    1994-09-01

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  14. Integrating design and purchasing [in nuclear engineering] with Ingecad

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Ingecad was developed by the Ingevision division of Framatome to overcome deficiencies in traditional computer-aided design. It was developed for nuclear power project engineering around the principle of the shared management of a common database, thus making it possible to integrate several engineering disciplines. The multiuser database is managed and accessed by the different application softwares, corresponding to particular aspects of the engineering task: electrical and process control schematics; plant piping design; pressurized equipment design etc. The use of a common database ensures coherence between the different engineering disciplines, particularly between the process engineering, the plant layout design, the piping, and the instrumentation and control engineering. (author)

  15. Preliminary fluid channel design and thermal-hydraulic analysis of glow discharge cleaning permanent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Lijun, E-mail: cailj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Lin, Tao; Wang, Yingqiao; Wang, Mingxu [Southwestern Institute of Physics, Chengdu (China); Maruyama, So; Yang, Yu; Kiss, Gabor [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • The plasma facing closure cap has to survive after 30,000 thermal heat load cycles. • 0.35 MW/m2 radiation heat load plus nuclear heat load are very challenging for stainless steel. • Multilayer structure has been designed by using advanced welding and drilling technology to solve the neutron heating problem. • Accurate volumetric load application in analysis model by CFX has been mastered. - Abstract: Glow discharge cleaning (GDC) shall be used on ITER device to reduce and control impurity and hydrogenic fuel out-gassing from in-vessel plasma facing components. After first plasma, permanent electrode (PE) will be used to replace Temporary Electrode (TE) for subsequent operation. Two fundamental scenarios i.e., GDC and Plasma Operation State (POS) should be considered for electrode design, which requires the heat load caused by plasma radiation and neutron heating must be taken away by cooling water flowing inside the electrode. In this paper, multilayer cooling channels inside PE are preliminarily designed, and snakelike route in each layer is adopted to improve the heat exchange. Detailed thermal-hydraulic analyses have been done to validate the design feasibility or rationality. The analysis results show that during GDC the cooling water inlet and outlet temperature difference is far less than the allowable temperature rise under water flow rate 0.15 kg/s compromised by many factors. For POS, the temperature rise and pressure drop are within the design goals, but high thermal stress occurs on the front surface of closure cap of electrode. After several iterations of optimization of the closure cap, the equivalent strain range after 30,000 loading cycles for POS is well below 0.3% design goals.

  16. Engineering Encounters: An Engineering Design Process for Early Childhood

    Science.gov (United States)

    Lottero-Perdue, Pamela; Bowditch, Michelle; Kagan, Michelle; Robinson-Cheek, Linda; Webb, Tedra; Meller, Megan; Nosek, Theresa

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about trying (again) to engineer an egg package. Engineering is an essential part of science education, as emphasized in the "Next Generation Science Standards" (NGSS Lead States 2013). Engineering practices and performance…

  17. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  18. Capture-zone design in an aquifer influenced by cyclic fluctuations in hydraulic gradients

    Science.gov (United States)

    Zawadzki, Willy; Chorley, Don; Patrick, Guy

    2002-10-01

    Design of a groundwater pumping and treatment system for a wood-treatment facility adjacent to the tidally influenced Fraser River estuary required the development of methodologies to account for cyclic variations in hydraulic gradients. Design of such systems must consider the effects of these cyclic fluctuations on the capture of dissolved-phase contaminants. When the period of the cyclic fluctuation is much less than the travel time of the dissolved contaminant from the source to the discharge point, the hydraulic-gradient variations resulting from these cycles can be ignored. Capture zones are then designed based on the average hydraulic gradient determined using filter techniques on continuous groundwater-level measurements. When the period of cyclic fluctuation in hydraulic gradient is near to or greater than the contaminant travel time, the resulting hydraulic-gradient variations cannot be ignored. In these instances, procedures are developed to account for these fluctuations in the capture-zone design. These include proper characterization of the groundwater regime, assessment of the average travel time and period of the cyclic fluctuations, and numerical techniques which allow accounting for the cyclic fluctuations in the design of the capture zone. Résumé. L'étude d'un système de pompage et de traitement de l'eau souterraine d'une usine de traitement du bois proche de l'estuaire de la rivière Fraser, influencé par les marées, a nécessité la mise au point de méthodologies pour prendre en compte les variations cycliques de gradients hydrauliques. L'étude de tels systèmes doit considérer les effets de ces variations cycliques sur l'extraction des contaminants en phase dissoute. Lorsque la période des variations cycliques est très inférieure au temps de parcours du contaminant dissous entre la source et le point d'émergence, les variations du gradient hydraulique résultant de ces cycles peuvent être ignorées. Les zones d'extraction sont

  19. Development of heat transfer package for core thermal-hydraulic design and analysis of upgraded JRR-3

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ikawa, Hiromasa; Kaminaga, Masanori

    1985-01-01

    A heat transfer package was developed for the core thermal-hydraulic design and analysis of the Japan Research Reactor-3 (JRR-3) which is to be remodeled to a 20 MWt pool-type, light water-cooled reactor with 20 % low enriched uranium (LEU) plate-type fuel. This paper presents the constitution of the developed heat transfer package and the applicability of the heat transfer correlations adopted in it, based on the heat transfer experiments in which thermal-hydraulic features of the new JRR-3 core were properly reflected. (author)

  20. An Analytic Approach to Cascade Control Design for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Hansen, Anders Hedegaard; Andersen, Torben O.

    2016-01-01

    , unfortunately not present in valve-operated hydraulic drives. This paper considers a cascade control approach for hydraulic valve-cylinder drives motivated by the fact that this may be applied to successfully suppress nonlinearities. The drive is pre-compensated utilizing a pressure updated inverse valve flow...

  1. Similarity analysis applied to the design of scaled tests of hydraulic mitigation methods for Tank 241-SY-101

    International Nuclear Information System (INIS)

    Liljegren, L.M.

    1993-02-01

    The episodic gas releases from Tank 241-SY-101 (SY-101) pose a potential safety hazard. It is thought that gas releases occur because gases are generated and trapped in layers of settled solids located at the bottom of the tank. This document focuses on issues associated with testing of hydraulic mitigation technologies proposed for SY-101. The basic assumption underlying the concept of hydraulic mitigation is that mobilization or maintained suspension of the solids settled in the bottom of the tank wig prevent gas accumulation. Engineering of hydraulic technologies will require testing to determine the operating parameters required to mobilize the solids and to maintain these solids in suspension. Because full scale testing is extremely expensive (even when possible), scaled tests are needed to assess the merit of the proposed technologies and to provide data for numerical or analytical modeling. This research is conducted to support testing and evaluation of proposed hydraulic mitigation concepts only. The work here is oriented towards determining the jet velocities, nozzle sizes, and other operating parameters required to mobilize the settled solids in SY- 101 and maintain them in suspension

  2. Thermal–hydraulic analysis of a candidate design for ITER divertor neutron flux monitor (DNFM)

    Energy Technology Data Exchange (ETDEWEB)

    Tanchuk, Victor, E-mail: Victor.Tanchuk@sintez.niiefa.spb.su [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Alexandrov, Evgeny [Institution “Project Center ITER”, 1, Akademika Kurchatova sq., 123182 Moscow (Russian Federation); Batyunin, Alexander; Kashchuk, Yuri [State Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Korban, Svetlana; Lyublin, Boris [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Obudovsky, Sergey [State Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Senik, Konstantin [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation)

    2013-10-15

    The key role in direct measurement of the ITER fusion power is assigned to the neutron diagnostic system for measurement of total neutron flux of the D–D and D–T fusion reaction with the help of a neutron flux monitor located under the divertor dome. High plasma heat loads in this position implies stringent requirements for the detector design and its cooling system to ensure the required temperature operation regime of the neutron detector. The paper describes the neutron flux monitor design developed in close collaboration with IO ITER diagnostic division. Two numerical models (hydraulic and thermal) built up to simulate the water flow in the cooling system and the temperature state of detector components are also presented and discussed. The numerical investigations carried out on the developed models have shown that only good thermal contact between the shell of the detector blocks and water-cooled casing of the monitor (fit, brazing) will provide the required temperature operation regimes of the most temperature-sensitive IFC electrodes. The obtained high temperature of the detector supports makes necessary an auxiliary direct cooling of the supports or their redesign so as to provide their higher thermal conductivity.

  3. Statistical core design methodology using the VIPRE thermal-hydraulics code

    International Nuclear Information System (INIS)

    Lloyd, M.W.; Feltus, M.A.

    1995-01-01

    An improved statistical core design methodology for developing a computational departure from nucleate boiling ratio (DNBR) correlation has been developed and applied in order to analyze the nominal 1.3 DNBR limit on Westinghouse Pressurized Water Reactor (PWR) cores. This analysis, although limited in scope, found that the DNBR limit can be reduced from 1.3 to some lower value and be accurate within an adequate confidence level of 95%, for three particular FSAR operational transients: turbine trip, complete loss of flow, and inadvertent opening of a pressurizer relief valve. The VIPRE-01 thermal-hydraulics code, the SAS/STAT statistical package, and the EPRI/Columbia University DNBR experimental data base were used in this research to develop the Pennsylvania State Statistical Core Design Methodology (PSSCDM). The VIPRE code was used to perform the necessary sensitivity studies and generate the EPRI correlation-calculated DNBR predictions. The SAS package used for these EPRI DNBR correlation predictions from VIPRE as a data set to determine the best fit for the empirical model and to perform the statistical analysis. (author)

  4. Thermal–hydraulic analysis of a candidate design for ITER divertor neutron flux monitor (DNFM)

    International Nuclear Information System (INIS)

    Tanchuk, Victor; Alexandrov, Evgeny; Batyunin, Alexander; Kashchuk, Yuri; Korban, Svetlana; Lyublin, Boris; Obudovsky, Sergey; Senik, Konstantin

    2013-01-01

    The key role in direct measurement of the ITER fusion power is assigned to the neutron diagnostic system for measurement of total neutron flux of the D–D and D–T fusion reaction with the help of a neutron flux monitor located under the divertor dome. High plasma heat loads in this position implies stringent requirements for the detector design and its cooling system to ensure the required temperature operation regime of the neutron detector. The paper describes the neutron flux monitor design developed in close collaboration with IO ITER diagnostic division. Two numerical models (hydraulic and thermal) built up to simulate the water flow in the cooling system and the temperature state of detector components are also presented and discussed. The numerical investigations carried out on the developed models have shown that only good thermal contact between the shell of the detector blocks and water-cooled casing of the monitor (fit, brazing) will provide the required temperature operation regimes of the most temperature-sensitive IFC electrodes. The obtained high temperature of the detector supports makes necessary an auxiliary direct cooling of the supports or their redesign so as to provide their higher thermal conductivity

  5. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    OpenAIRE

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is systematically discussed, with a focus on content, course formats, assignments and lessons learned from course evaluations in recent years. It is concluded that in particular integration in existing contexts (a...

  6. Rapid product development: project engineering joined to design engineering in a concurrent engineering context

    Science.gov (United States)

    Bernard, Alain; Ouazzani, A.; Chambolle, F.; Bocquet, Jean Claud

    1997-01-01

    Software tools for designers are mainly based on geometry. Today, many industrial modelers have been rebuilt with C++, or any other object oriented language. This paper proposes to locate the research topics, in order to develop a functional link between project management tools, technical data management and product models. The 'design process' aspect will also be justified through the need of capitalizing designer intent and design history. This is related to different research works of Mechanical Engineering and Logistics Laboratory of Ecole Centrale Paris, and especially two PhD topics.

  7. Manpower simulation for the power plant design engineering

    International Nuclear Information System (INIS)

    Moon, B.S.; Juhn, P.E.

    1982-01-01

    Some observation from the examination of actual manhour curves for the power design engineering obtained from Sargent and Lundy Engineers and of a few of the model curves proposed by Bechtel, are analyzed in this paper. A model curve representing typical design engineering manhour has been determined as probability density function for the Gamma Distribution. By means of this model curve, we strategically forecast the future engineering manpower requirements to meet the Covernment's long range nuclear power plan. As a sensitivity analysis, the directions for the localization of nuclear power plant design engineering, are studied in terms of the performance factor for the experienced versus inexperienced engineers. (Author)

  8. Designing an Electro-Hydraulic Control Module for an Open-Circuit Variable Displacement Pump

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2005-01-01

    , in the form of an electric control signal, under varying working conditions, when having access to engine speed and actual pump pressure. The paper presents a model of both the pump and the control module, along with design considerations on which linear controllers are developed for a worst point......This paper deals with the problem of designing an electric control module for a Sauer-Danfoss Series 45 H-frame open circuit axial piston pump. The purpose of the electric control module is to replace the existing hydro-mechanical (LS) regulator, and enable the pump to follow a reference pressure...

  9. Simple, Complex, Innovative : Design Education at Civil Engineering

    NARCIS (Netherlands)

    Van Nederveen, G.A.; Soons, F.A.M.; Suddle, S.I.; De Ridder, H.

    2011-01-01

    In faculties such as Civil Engineering, design is a not a core activity. Core activities at Civil Engineering are structural engineering, structural analysis, mechanics, fluid dynamics, etc. Design education has a relatively small share in the curriculum, compared to faculties such as Industrial

  10. Multidimensional sustainability assessment of solar products : Educating engineers and designers

    NARCIS (Netherlands)

    Flipsen, S.F.J.; Bakker, C.A.; Verwaal, M.

    2015-01-01

    Since 2008 the faculty of Industrial Design Engineering at the TU Delft hosts the minor Sustainable Design Engineering. The minor has been highly useful as a platform to pilot new ways of teaching engineering for sustainable development. Instead of having students make life cycle assessments and

  11. Engineering design of a neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Daniel M.; Campos, Tarcísio P.R. de, E-mail: dmcoelho.eng@gmail.com, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (NRI/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear. Nucleo de Radiações Ionizantes

    2017-07-01

    This paper presents an engineering design of a neutron generator (NG). In order to analyze and choose the materials and the appropriate geometry, previous studies of NRI Group (Nucleus for Ionizing Radiation at UFMG - NRI/UFMG) were considered and a model was developed for the simulation of these systems. The efficiency of a neutron generator is measured by the neutron flux. Among the modeling and simulation methods, was employed open software sources for the transmuting cell, aiming to evaluate resonant cavity and for complementary physical analysis. In addition, the titanium target was compared designed based in other studies of NRI Group. Deuterium plasma with a density close to 10{sup 10} particles/cm³, was proposed with a frequency of 0.898 GHz and an approximate wavelength of 110 μm, using a radio frequency antenna up to 2.45 GHz. This compact system includes a hydrogen-isotopes fusor, moderator, reflector and shield. Neutron reflection minimized the neutron escape, increasing the final flux. A insulation material is required to enclose the device. As a conclusion, the investigated nuclear and electromagnetic features of NG have demonstrated that such generator shall have a notable potential for radioisotope generation applied to medical diagnosis. The designs presented will be used to build a 3D model in the NRI laboratory and then a prototype with the selected materials. (author)

  12. Engineering design of vertical test stand cryostat

    International Nuclear Information System (INIS)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.

    2011-01-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN 2 ) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B and PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface 2 shield has been performed to check the effectiveness of LN 2 cooling and for compliance with ASME piping code allowable stresses.

  13. Data-driven engineering design research: Opportunities using open data

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    the already available and continuously growing body of open data sources to create opportunities for research in Engineering Design. Insights are illustrated by an examination of two examples: a study of open source software repositories and an analysis of open business registries in the cleantech industry....... We conclude with a discussion about the limitations, challenges and risks of using open data in Engineering Design research and practice.......Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be described...

  14. Topology Optimization - Engineering Contribution to Architectural Design

    Science.gov (United States)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2017-10-01

    The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one

  15. Defining Interactions and Interfaces in Engineering Design

    DEFF Research Database (Denmark)

    Parslov, Jakob Filippson

    documents of legal matter and must therefore be unambiguously and completely described. Following this observation, a comprehensive and systematic literature review has been performed in order to investigate the definition and perception of an interface. The review resulted in a classification revealing 13......This PhD thesis focuses on the understanding and definition of interactions and interfaces during the architectural decomposition of complex, multi-technological products. The Interaction and Interface Framework developed in this PhD project contribute to the field of engineering design research...... the framework, it has been possible to arrive at a classification of interaction mechanism, which is mutually exclusive (no overlap) and collectively exhaustive (no gaps). This contribution changes the existing paradigm of reasoning about interactions and allows for an unambiguous architectural decomposition...

  16. DESIGN OPTIMIZATION METHOD USED IN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    SCURTU Iacob Liviu

    2016-11-01

    Full Text Available This paper presents an optimization study in mechanical engineering. First part of the research describe the structural optimization method used, followed by the presentation of several optimization studies conducted in recent years. The second part of the paper presents the CAD modelling of an agricultural plough component. The beam of the plough is analysed using finite element method. The plough component is meshed in solid elements, and the load case which mimics the working conditions of agricultural equipment of this are created. The model is prepared to find the optimal structural design, after the FEA study of the model is done. The mass reduction of part is the criterion applied for this optimization study. The end of this research presents the final results and the model optimized shape.

  17. THE INDUSTRIAL ENGINEER AS ENTERPRISE DESIGNER

    Directory of Open Access Journals (Sweden)

    Johan Rottier

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A method is proposed by which the suitabilityof development capabilitiescan be evaluated for Enterprise design. The method is based on a model for development and models for various aspects of Enterprises. The evaluation approach is based on correlating the methodology, tools and techniques and knowledge base ofthe capabilitywith that required for the engineering of Enterprises.

    AFRIKAANSE OPSOMMING:'n Metode word voorgestel om ontwikkelingsvermoe-ns se geskiktheid vir die ontwerp van ondememings te evalueer. Die metode is enersyds gebaseer op 'n model vir ontwikkeling en andersyds op modelle wat die ontwikkelingsvereistes tov Ondememingstoelig. Die evaluasie geskied deur die metodologie, kennisbasisen ontwikkelings hulpmiddelsvan die vermoe te vergelyk met die vereistes wat die ontwikkeling van 'n Ondememing stel.

  18. Feasibility study on thermal-hydraulic design of reduced-moderation PWR-type core

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime

    2000-03-01

    At JAERI, a conceptual study on reduced-moderation water reactor (RMWR) has been performed as one of the advanced reactor system which is designed so as to realize the conversion ratio more than unity. In this reactor concept, the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated. Therefore, an evaluation of the core thermal margin becomes very important in the design of the RMWR. In this study, we have performed a feasibility evaluation on thermal-hydraulic design of RM-PWR type core (core thermal output: 2900 MWt, Rod gaps: 1 mm). In RM-PWR core, seed and blanket regions are exist. In the blanket region, power density is lower than that of the seed region. Then, evaluation was performed under setting a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because it is possible that the coolant boils in the seed region. In the feasibility evaluations, subchannel code COBRA-IV-I was used in combination with KfK DNB (departure nucleate boiling) correlation. When coolant mass flow rate to the blanket fuel assembly is reduced by 40%, and that to the seed fuel assembly is increased, coolant boiling is not occurred in the assembly region calculation. Provided that the channel boxes to the blanket fuel assembly are set up and coolant mass flow rate to the blanket fuel assembly is reduced by 40%, it is confirmed by the whole core calculation that the boiling of the coolant is not occurred and the RM-PWR core is feasible. (author)

  19. Design concept of a pump stage with replaceable hydraulic components and prediction of its performance curves

    International Nuclear Information System (INIS)

    Lugova, S O; Knyazeva, E G; Tverdokhleb, I B; Kochevsky, A N

    2010-01-01

    In many cases, centrifugal pump units are expected to deliver the required performance under varying operating conditions. In particular, the pumps for oil extraction and transportation should deliver a constant head, although their capacity often changes during the life cycle. In order to keep the efficiency at a high level and not to replace a whole pump, the authors suggest to replace in such cases only hydraulic components of the pump (impellers and stationary sections of diffuser channels) that are to be installed in the same casing. The paper describes an approach for designing of radial-flow impellers and sections of diffuser channels to be used as replaceable. It allows for delivering a required head and providing a high efficiency in a wide range of capacities. The components intended for smaller capacities are featured with narrower flow passages. However, the dimensions of replaceable components are the same. The paper describes also a numerical simulation of fluid flow in a pump stage with two sets of replaceable radial-flow impellers and sections of diffuser channels. The CFD software used in this research is ANSYS CFX 11. Good correspondence of results is observed. Difference in flow pattern at various capacities and its influence on the performance curves delivered with replaceable components is demonstrated. Basing on the obtained results, the analysis of energy losses is presented.

  20. Considering dynamic friction and proper structural response in hydraulic load cases for realistic piping design

    International Nuclear Information System (INIS)

    Diesselhorst, T.; Diatschuk, P.; Schnellhammer, W.

    2005-01-01

    Concerning the design for hydraulic load cases there is always a sequence of fluid- and structural dynamic calculations, where the structural vibrations are induced by the time depending fluid forces. Therefore, in order to prevent excessive structural reactions, it is most important to avoid conservative fluid dynamic results. That refers to the maximum value of the pressure surge as well as to the damping of pressure oscillations. This is especially relevant in case of fluid-structure resonance. To meet these requirements the effect of dynamic wall friction was implemented in our fluid dynamic code. Thus, a more realistic damping behavior of the fluid forces was achieved. In the structural analysis code the damping of the pipe structure could be more accurate adapted to the real conditions. Additionally the local damping by viscous damper was included in the model. At supports now non-linear behavior like clearances can be simulated. The possibility of coupled calculation was installed to consider the effect of fluid structure interaction. The programmed effects are validated against measurement results from power plant systems. The favorable effects of the program improvements are demonstrated by typical examples. These included the realistic damping of pressure oscillations as well as a case of fluid-structure resonance. Additionally the effectiveness of the improved models of piping supports is demonstrated. (authors)

  1. Mechanical design and thermo-hydraulic simulation of the infrared thermography diagnostic of the WEST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Micolon, Frédéric, E-mail: frederic.micolon@cea.fr; Courtois, Xavier; Aumeunier, Marie-Hélène; Chenevois, Jean-Pierre; Larroque, Sébastien

    2015-10-15

    The WEST (Tungsten (W) Environment in Steady state Tokamak) project is a partial rebuild of the Tore Supra tokamak to make it an X-point metallic environment machine aimed at testing ITER technologies in relevant plasma environment. For the safe operation of the WEST tokamak, infra-red (IR) thermography is a crucial diagnostic as it is a sound and reliable way to detect hotspots or abnormal heating patterns on the plasma facing components (PFCs). Thus WEST will be fitted with middle/short-IR (1.5–2 μm or 3–5 μm) cameras in the upper port plugs to get a full view of the critical PFCs (in particular the new lower divertor) and radio-frequency (RF) heating antennas and one camera at the equatorial level to monitor the new upper divertor and the first wall. This paper describes the design of the up-to-date optical system along with the hydraulic analysis and the thermal and mechanical finite element analysis conducted to ensure adequate heat extraction capabilities. Boundary conditions and simulation results will be presented and discussed as well as technological solutions retained.

  2. Designing terraces for the rainfed farming region in Iraq using the RUSLE and hydraulic principles

    Directory of Open Access Journals (Sweden)

    Mohammad H. Hussein

    2016-03-01

    Full Text Available The rainfed region in Iraq comprises an area of more than 5 million ha of forest, grazing and farmland areas. Except the plains, the region suffers from moderate to severe water erosion due mainly to overgrazing and land mismanagement. Due to population growth and the shortage in water resources, an expansion in land used for agriculture in the region is expected. Terracing is an option when utilizing sloping land for agricultural production. A terrace design criterion was developed for the region in which terrace spacing was determined using the Revised Universal Soil Loss Equation (RUSLE; terrace channel specifications were determined using conventional hydraulic computations. Analyses showed that terracing is feasible on rolling and hilly sloping land in the high rainfall zone (seasonal rainfall >600 mm where economic crops are grown to offset the high cost of terrace construction and maintenance. In the medium and low rainfall zones (seasonal rainfall 400–600 mm and 300–400 mm, terracing for water erosion control is generally not needed on cultivated land less than 10% in slope where wheat and barley crops are normally grown; however, pioneer research projects are needed to assess the feasibility of terraces of the level (detention type to conserve rain water in these two zones for a more successful rainfed farming venture.

  3. Thermal hydraulic and power cycle analysis of liquid lithium blanket designs

    International Nuclear Information System (INIS)

    Misra, B.; Stevens, H.C.; Maroni, V.A.

    1977-01-01

    Thermal hydraulic and power cycle analyses were performed for the first-wall and blanket systems of tokamak-type fusion reactors under a typical set of design and operating conditions. The analytical results for lithium-cooled blanket cells show that with stainless steel as construction material and with no divertor present, the maximum allowable neutron wall loading is approximately 2 MW/m 2 and is limited by thermal stress criteria. With vanadium alloy as construction material and no divertor present, the maximum allowable neutron wall loading is approximately 8 MW/m 2 and is limited by an interplay of constraints imposed on the maximum allowable structural temperature and the minimum allowable coolant inlet temperature. With a divertor these wall loadings can be increased by from 40 to 90 percent. The cost of the vanadium system is found to be competitive with the stainless steel system because of the higher allowable structural temperatures and concomitant higher thermal efficiencies afforded by the vanadium alloys

  4. Design search and optimization in aerospace engineering.

    Science.gov (United States)

    Keane, A J; Scanlan, J P

    2007-10-15

    In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams.

  5. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    Science.gov (United States)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  6. Industrial design as an innovative element in engineering education

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Abou-Hayt, Imad; Ashworth, David

    2012-01-01

    This paper describes how the Copenhagen University College of Engineering (IHK), in our continuing effort to innovate the engineering study programs, have introduced strong industrial design elements in the 210 ECTS Bachelor of Mechanical Engineering program as well as the 30 ECTS International...... Design Semester and the 10 ECTS Summer School in International Design and Development. The paper describes how implementation of novel industrial design subject areas requires the creation of new laboratory and workshop facilities in order to combine traditional engineering design disciplines...... with creative design as a driver of innovation. With a practical and problem based learning approach at IHK the students are asked to work closely together with companies to come up with engineering solutions that are sustainable from both an engineering and a design perspective....

  7. Assessment of the impact of neutronic/thermal-hydraulic coupling on the design and performance of nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Aithal, S.M.; Aldemir, T.; Vafai, K.

    1994-01-01

    A series of studies has been performed to investigate the potential impact of the coupling between neutronics and thermal hydraulics on the design and performance assessment of solid core reactors for nuclear thermal space propulsion, using the particle bed reactor (PBR) concept as an example system. For a given temperature distribution in the reactor, the k eff and steady-state core power distribution are obtained from three-dimensional, continuous energy Monte Carlo simulations using the MCNP code. For a given core power distribution, determination of the temperature distribution in the core and hydrogen-filled annulus between the reflector and pressure vessel is based on a nonthermal equilibrium analysis. The results show that a realistic estimation of fuel, core size, and control requirements for PBRs using hydrogenous moderators, as well as optimization of the overall engine design, may require coupled neutronic/thermal-hydraulic studies. However, it may be possible to estimate the thermal safety margins and propellant exit temperatures based on power distributions obtained from neutronic calculations at room temperature. The results also show that, while variation of the hydrogen flow rate in the annulus has been proposed as a partial control mechanism for PBRs, such control mechanism may not be feasible for PBRs with high moderator-to-fuel ratios and hence soft core neutron spectra

  8. Feedback from uncertainties propagation research projects conducted in different hydraulic fields: outcomes for engineering projects and nuclear safety assessment.

    Science.gov (United States)

    Bacchi, Vito; Duluc, Claire-Marie; Bertrand, Nathalie; Bardet, Lise

    2017-04-01

    In recent years, in the context of hydraulic risk assessment, much effort has been put into the development of sophisticated numerical model systems able reproducing surface flow field. These numerical models are based on a deterministic approach and the results are presented in terms of measurable quantities (water depths, flow velocities, etc…). However, the modelling of surface flows involves numerous uncertainties associated both to the numerical structure of the model, to the knowledge of the physical parameters which force the system and to the randomness inherent to natural phenomena. As a consequence, dealing with uncertainties can be a difficult task for both modelers and decision-makers [Ioss, 2011]. In the context of nuclear safety, IRSN assesses studies conducted by operators for different reference flood situations (local rain, small or large watershed flooding, sea levels, etc…), that are defined in the guide ASN N°13 [ASN, 2013]. The guide provides some recommendations to deal with uncertainties, by proposing a specific conservative approach to cover hydraulic modelling uncertainties. Depending of the situation, the influencing parameter might be the Strickler coefficient, levee behavior, simplified topographic assumptions, etc. Obviously, identifying the most influencing parameter and giving it a penalizing value is challenging and usually questionable. In this context, IRSN conducted cooperative (Compagnie Nationale du Rhone, I-CiTy laboratory of Polytech'Nice, Atomic Energy Commission, Bureau de Recherches Géologiques et Minières) research activities since 2011 in order to investigate feasibility and benefits of Uncertainties Analysis (UA) and Global Sensitivity Analysis (GSA) when applied to hydraulic modelling. A specific methodology was tested by using the computational environment Promethee, developed by IRSN, which allows carrying out uncertainties propagation study. This methodology was applied with various numerical models and in

  9. Mechanical Engineering Design Project report: Enabler control systems

    Science.gov (United States)

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  10. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  11. ARIES-III divertor engineering design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.; Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S.; Herring, J.S.; Valenti, M.; Steiner, D.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m 2 , a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m 2 . The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed

  12. ARIES-III divertor engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Schultz, K.R. [General Atomics, San Diego, CA (United States); Cheng, E.T. [TSI Research, Solana Beach, CA (United States); Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering; Brooks, J.N.; Ehst, D.A.; Sze, D.K. [Argonne National Lab., IL (United States); Herring, J.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Valenti, M.; Steiner, D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Plasma Dynamics Lab.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.

  13. Hamsters, Picture Books, and Engineering Design

    Science.gov (United States)

    Tank, Kristina; Pettis, Christy; Moore, Tamara; Fehr, Abby

    2013-01-01

    With the integration of engineering into science instruction, teachers have been seeking ways to add engineering in their classrooms. This article presents a primary (K-2) STEM unit that took place in a half-day kindergarten classroom as a way to address the scientific and engineering practices (dimension 1, p.41) and the disciplinary core idea…

  14. Making Recycled Paper: An Engineering Design Challenge

    Science.gov (United States)

    Song, Ting; Becker, Kurt

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) educators are facing the challenge of attracting more students. The disparity between the need for engineers and the enrollment of engineering students is growing (Genalo, Bruning, & Adams, 2000), and career aspirations of high school students are inconsistent with the employment…

  15. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  16. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  17. Using the Engineering Design Cycle to Develop Integrated Project Based Learning in Aerospace Engineering

    NARCIS (Netherlands)

    Saunders-Smits, G.N.; Roling, P.; Brügemann, V.; Timmer, N.; Melkert, J.

    2012-01-01

    Over the past four years the Faculty of Aerospace Engineering at Delft University of Technology in the Netherlands has redeveloped its BSc curriculum to mimic an engineering design cycle. Each semester represents a step in the design cycle: exploration; system design; sub-system design; test,

  18. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  19. Evaluation of multiple hydraulic models in generating design/near-real time flood inundation extents under various geophysical settings

    Science.gov (United States)

    Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.

    2015-12-01

    Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.

  20. STRESSED STATE OF ROCKY SUBSOIL IN THE VICINITY OF A CIRCULAR SECTION HYDRAULIC ENGINEERING TUNNEL TAKING INTO ACCOUNT THE ANISOTROPY OF THE GROUND MEDIUM

    Directory of Open Access Journals (Sweden)

    D. T. Bautdinov

    2016-01-01

    Full Text Available Objectives. The aim of this study consists ina parametric analysis of the stress state of transversely isotropic rocky ground in the vicinity of a circular cross-sectional hydraulic tunnel taking into account the dead load of the subsoil medium under various relations of the elastic characteristics of the subsoil environment in orthogonal directions and at different angles of inclination of the plane of isotropy. Methods. A transversely isotropic medium model (a special case of an anisotropic medium is applied, in which the subsoil in one plane has the characteristics of an isotropic medium (isotropic plane but in a perpendicular direction – in contradistinction to the characteristics of an isotropic medium.The angle of isotropic planar inclination models the oblique bedding of subsoil layers. Results. The determination of tangential stresses on the contour generation allows the strength of the subsoil medium to be estimated at different depths of emplacement. The calculation of extensive hydraulic engineering tunnels, constructed in strong, transversely isotropic rocky ground, is reduced to a problem of plane strain elasticity theory for a transversely isotropic medium surrounding the tunnel construction. Since the solution of this problem cannot be achieved using analytical methods, the analysis of the stress state was carried out by finite element method using the ANSYS software complex. The type and size of the finite element appropriate for the calculation were pre-identified based on solutions to the task of verification. For the verificatory task, the Kirsch problem was adopted. Conclusion.When designing underground structures, it is necessary to determine the physical and mechanical properties of rocky soils in greater detail and to pay special attention to the elastic characteristics. The absence of tensile stresses in the upper section of development with some relations of the moduli of deformation and Poisson's ratios benefit the

  1. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  2. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Manic, Milos; Patterson, Michael; Danchus, William

    2009-01-01

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  3. Jacobs Engineering Group Inc. receives architectural and engineering design contract from Stanford Linear Accelerator Centre

    CERN Multimedia

    2004-01-01

    "Jacobs Engineering Group Inc. announced that a subsidiary company won a contract from Stanford Linear Accelerator Center (SLAC), to provide architectural and engineering design services for the Linac Coherent Light Source (LCLS) conventional facilities" (1/2 page)

  4. New simulation tools for long-term hydraulic design for a geological repository

    International Nuclear Information System (INIS)

    Richard, S.; Chaudon, L.

    1995-01-01

    Hydraulic concepts for a geological repository were investigated. Numerical simulations were adapted for this purpose and an experimental rheoelectric method based on an analogy between hydraulic flows and electric currents was developed. The results are discussed in this paper. A simplified representation of the host rock was adopted to account for the geometric details of the concept; this rock was described by a homogeneous porous medium associated with two major discontinuities. Steady-state hydraulic conditions were considered, and heating by the waste packages was assumed to be negligible (these conditions correspond to the long-term repository setting). The hydraulic structures obtained by the two methods are comparable, but significant differences were observed in the drained water distribution in the excavations; these discrepancies highlight the importance of the calculation mesh dimensions. Drainage barriers (drainage drifts and boreholes) surrounding the disposal boreholes may reduce water circulation in the disposal areas to their initial levels by constituting a partial hydraulic Faraday cage. This could be achieved with a reasonable number of boreholes if necessary

  5. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.

    2007-01-01

    Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. Such a plan should state: -) Activities to be performed, and -) Creation of a Human Factor Engineering team adequately qualified. The Human Factor Engineering team is an integral part of the design team and is strongly linked to the engineering organizations but simultaneously has independence to act and is free to evaluate designs and propose changes in order to enhance human behavior. TECNATOM S.A. (a Spanish company) has been a part of the Design and Human Factor Engineering Team and has collaborated in the design of an advanced Nuclear Power Plant, developing methodologies and further implementing those methodologies in the design of the plant systems through the development of the plant systems operational analysis and of the man-machine interface design. The methodologies developed are made up of the following plans: -) Human Factor Engineering implementation in the Man-Machine Interface design; -) Plant System Functional Requirement Analysis; -) Allocation of Functions to man/machine; -) Task Analysis; -) Human-System Interface design; -) Control Room Verification and -) Validation

  6. Engineering Software Suite Validates System Design

    Science.gov (United States)

    2007-01-01

    EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers

  7. Leadership emergence in engineering design teams.

    Science.gov (United States)

    Guastello, Stephen J

    2011-01-01

    Leaders emerge from leaderless groups as part of a more complex emerging social structure. Several studies have shown that the emerging structure is aptly described by a swallowtail catastrophe model where the control parameters differ depending on whether creative problem solving, production, coordination-intensive, or emergency management groups are involved. The present study explored creative problem solving further where the participants were engaged in real-world tasks extending over several months rather than short laboratory tasks. Participants were engineering students who were organized into groups of to people who designed, built, and tested a prototype product that would solve a real-world problem. At the th week of work they completed a questionnaire indicating who was most like the leader of their group, second most like the leader, along with other questions about individuals' contributions to the group process. Results showed that the swallowtail model (R = .) exhibited a strong advantage over the linear alternative model (R = .) for predicting leadership emergence. The three control variables were control of the task, creative contributions to the group's work, and facilitating the creative contributions of others.

  8. ORNL engineering design and construction reengineering report

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1998-01-01

    A team composed of individuals representing research and development (R and D) divisions, infrastructure support organizations, and Department of Energy (DOE)-Oak Ridge Operations was chartered to reengineer the engineering, design, and construction (ED and C) process at Oak Ridge National Laboratory (ORNL). The team recognized that ED and C needs of both R and D customers and the ORNL infrastructure program have to be met to maintain a viable and competitive national laboratory. Their goal was to identify and recommend implementable best-in-class ED and C processes that will efficiently and cost-effectively support the ORNL R and D staff by being responsive to their programmatic and infrastructure needs. The team conducted process mapping of current and potential ED and C approaches, developed idealized versions of ED and C processes, and identified potential barriers to an efficient ED and C process. Eight subteams were assigned to gather information and to evaluate the significance of potential barriers through benchmarking, surveys, interviews, and reviews of key topical areas in order to determine whether the perceived barriers were real and important and whether they resulted from laws or regulations over which ORNL has no control.

  9. Horsepower with Brains - The design of the CHIRON Free Piston Engine

    NARCIS (Netherlands)

    Achten, P.A.J.; Oever, van den J.P.J.; Potma, J.; Vael, G.E.M.

    2000-01-01

    The CHIRON is a hydraulic free piston engine developed by the Dutch companies NOAX and Innas. In the CHIRON the energy of the combustion process is almost directly converted into hydraulic energy. The CHIRON features a direct electronic control of the injection parameters, the flow and the

  10. A simple method of calculating Stirling engines for engine design optimization

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.

  11. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  12. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2004-01-01

    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie® product family and equipped...... with a measurement and data acquisition system. Results of the mathematical modeling, simulation and design of the motion control test rigs are presented. Furthermore, the paper presents selected experimental and identifying test results for the water hydraulic test rigs....

  13. High School Student Modeling in the Engineering Design Process

    Science.gov (United States)

    Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde

    2014-01-01

    A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…

  14. Systems design and engineering : facilitating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    2016-01-01

    As its name implies, the aim of Systems Design and Engineering: Facilitating Multidisciplinary Development Projects is to help systems engineers develop the skills and thought processes needed to successfully develop and implement engineered systems. Such expertise typically does not come through

  15. Expert vs. novice: Problem decomposition/recomposition in engineering design

    Science.gov (United States)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between

  16. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  17. DESIGN AND STUDY OF DRIVE SWIVEL JOINTS FOR HYDRAULIC MANIPULATION SYSTEMS OF MOBILE TRANSPORT-TECHNOLOGICAL MACHINES

    Directory of Open Access Journals (Sweden)

    Lagerev A.V.

    2018-03-01

    Full Text Available The paper presents the design and principle of operation of a new type of articulated connection of adjacent links of manipulation systems of mobile transport and technological machines – the drive swivel joints to provide a rotary rela-tive movement of the links. Their design allows to combine the function of ensuring the continuity of the kinematic chain and the function of providing rotary movement adjacent units and without the use of additional external devices. The design of the device is protected by a patent of the Russian Federation. Drive swivel joints are an alternative to tra-ditional designs of articulated joints with external power hydraulic drives. Developed a mathematical optimization model. The model is based on the minimization of the mass of the drive swivel joints when you complete the necessary design, installation, operating and strength constraints. Based on this mathematical model the proposed method of com-puter-aided design of the drive swivel joints, which is implemented in a computer program. A study was conducted of the influence of the main technical characteristics and magnitude of the operational load at the optimal weight and the optimal constructive dimensions of the drive swivel joints. It is shown that at equal freight-altitude characteristics of mobile crane-manipulator the drive swivel joint allows you to exclude a number of operational shortcomings of the tra-ditional swivel: 1 development over time of the additional dynamic load of metal due to the increased clearances in connection; 2 lowering the volume of the working area of the crane due to the presence of external power of hydraulic drives; 3 the appearance of cracks due to fatigue failure of the elements of the attachment point of the hydraulic drives to the links of manipulation system. It is possible that the transfer of the hydraulic system for lower operating pressure, which increases the efficiency of the crane and the efficiency of the

  18. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  19. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  20. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.; Jimenez, A.

    2001-01-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  1. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  2. Clinical Immersion and Biomedical Engineering Design Education: "Engineering Grand Rounds".

    Science.gov (United States)

    Walker, Matthew; Churchwell, André L

    2016-03-01

    Grand Rounds is a ritual of medical education and inpatient care comprised of presenting the medical problems and treatment of a patient to an audience of physicians, residents, and medical students. Traditionally, the patient would be in attendance for the presentation and would answer questions. Grand Rounds has evolved considerably over the years with most sessions being didactic-rarely having a patient present (although, in some instances, an actor will portray the patient). Other members of the team, such as nurses, nurse practitioners, and biomedical engineers, are not traditionally involved in the formal teaching process. In this study we examine the rapid ideation in a clinical setting to forge a system of cross talk between engineers and physicians as a steady state at the praxis of ideation and implementation.

  3. Course Content for Life Cycle Engineering and EcoDesign

    DEFF Research Database (Denmark)

    Jerswiet, Jack; Duflou, Joost; Dewulf, Wim

    2007-01-01

    There is a need to create an awareness of Life Cycle Engineering and EcoDesign in Engineering students. Topics covered in an LCE/EcoDesign course will create an awareness of environmental impacts, especially in other design course projects. This paper suggests that an awareness of product impact...... upon the environment must be created at an early stage in undergraduate education. Deciding what to include in an LCE/EcoDesign Course can be difficult because there are many different views on the subject. However, there are more similarities than differences. All LCE/ EcoDesign Engineering courses...

  4. Discursive Constructions of Design and Implications for Engineering Education

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    Recognition of design discourses at play in professional practice is key when discussing ways to reintroduce designerly ways in engineering education. This paper outlines three design discourses discussed in literature and mirroring contemporary design practice: Viewing ‘design as art’ upholds...... on the discourses discussed, three key elements of design are highlighted: the materiality, the social, and the reflective sides of designing. All of these elements are represented in the issues of communication, which can be a central focus area when taking a designerly turn in engineering practice....

  5. Mechanical design and engineering calculation of the SMCAMS magnet

    International Nuclear Information System (INIS)

    Chen Guosheng

    2001-01-01

    The basis of the mechanical design of the SMCAMS magnet, and the structure characters of the magnet and its coils are introduced. Finally, the engineering design of other parts, including deflectors, probes and accelerating electrodes are described

  6. Product Design Engineering--A Global Education Trend in Multidisciplinary Training for Creative Product Design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-01-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…

  7. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  8. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  9. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering.

    Science.gov (United States)

    Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A

    2016-03-05

    Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Linking First-Year and Senior Engineering Design Teams: Engaging Early Academic Career Students in Engineering Design

    Science.gov (United States)

    Fox, Garey A.; Weckler, Paul; Thomas, Dan

    2015-01-01

    In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and trans­fer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…

  11. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    Science.gov (United States)

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  12. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn

    2006-01-01

    is on the advantages using ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying...... is that the components operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap......, dedicated pumps and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie® family and examples of measured...

  13. Fundamentals of hydraulic piston pump applications in chemical engineering; Verfahrenstechnische Grundsaetze beim Einsatz von hydraulischen Kolbenpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Haubold, H.J. [Putzmeister AG, Putzmeister Industrial Technology (PIT), Aichtal (Germany)

    2007-07-01

    This paper describes design features as well as criteria for the selection of the required piston pump under the circumstance of high viscose sludge. These kind of sludges are mostly contaminated with foreign bodies. Life cycle costs and professional service management are influencing factors of a successful pump operation. This paper will show in detail criteria's for the pipe transportation. For example the influence of the calculation for the pressure loss against the necessary pump pressure. In focus are all structural measures to reduce pressure peaks, as well as the reduction of pressure variation and their elimination in the delivery flow. This under the circumstance of a high pulsating pump delivery. This paper will be concluded with a reference of examples of applications and show new developments of piston pump design. (orig.)

  14. Engineering Design Education: Effect of Mode of Delivery

    OpenAIRE

    Kinda Khalaf; Shadi Balawi; George W. Hitt; Mohammad A.M. Siddiqi

    2013-01-01

    This work reports on the gradual transformation from traditional teaching to student-centered, pure problem-based-learning (PBL) in engineering design education. Three different PBL-based modes of delivery with various degrees of modulation or freedom were used in conjunction with the prescriptive design cycle. The aim is to study the effect of the mode of delivery (PBL at various degrees of integration) on engineering design education and design thinking skills, specifically on the developme...

  15. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  16. Design of compact nuclear power marine engineering simulator

    International Nuclear Information System (INIS)

    Gao Jinghui; Xing Hongchuan; Zhang Ronghua; Yang Yanhua; Xu Jijun

    2004-01-01

    The essentiality of compact nuclear power marine engineering simulator (NPMES) is discussed. The technology of nuclear power plant engineering simulator (NPPES) for NPMES development is introduced, and the function design, general design and model design are given in details. A compact NPMES based on the nuclear power marine of 'Mutsu' is developed. The design can help the development of NPMES, which will improve operation safety and management efficiency of marine. (authors)

  17. Engineering Design of a Drift Tube for PEFP DTL II

    International Nuclear Information System (INIS)

    Kim, Yong Hwan; Kwon, Heok Jung; Kim, Kui Young; Kim, Han Sung; Seol, Keong Tae; Song, Young Gi; Jang, Ji Ho; Hong, In Seok; Choi, Hyun Mi; Han, Sang Hyo; Cho, Yong Sub

    2005-01-01

    As the second stage of the PEFP(Proton Engineering Frontier Project) whose final goal is to develop 100MeV, 20mA proton accelerator, Engineering design of the DTL(Drift Tube Linac) II is in proceeding. In this paper, the details of design of the DT(Drift Tube) and EQM(Electro-Quadrupole Magnet) will be reported

  18. Embodied Interaction Design in Engineering Education using Asus Xtion Pro

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2013-01-01

    How does a design of emerging embodied technologies, such as Asus Xtion Pro, enrich the HCI learning processes in Engineering Education? The fifth semester engineering students used the motion sensing input device, Asus Xtion Pro (similar to Microsoft’s Kinect), for the design of an embodied...

  19. Integrating ergonomics into engineering design: The role of objects

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-01-01

    The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between...

  20. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  1. Integration, Authenticity, and Relevancy in College Science through Engineering Design

    Science.gov (United States)

    Turner, Ken L., Jr.; Hoffman, Adam R.

    2018-01-01

    Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…

  2. Integrating Engineering Design Challenges into Secondary STEM Education

    Science.gov (United States)

    Carr, Ronald L.; Strobel, Johannes

    2011-01-01

    Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…

  3. Building a Framework for Engineering Design Experiences in High School

    Science.gov (United States)

    Denson, Cameron D.; Lammi, Matthew

    2014-01-01

    In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…

  4. Critical Literacy, Disciplinary Literacy: Reading the Engineering-Designed World

    Science.gov (United States)

    Wilson-Lopez, Amy; Strong, Kristin; Sias, Christina

    2017-01-01

    Globally, many people spend most of their time interacting with the products of engineering design as they wear clothes, drink clean water, use transportation systems, and more. Given the omnipresence of engineering design, whose material results are felt daily in people's lives, it seems especially important that students learn to recognize and…

  5. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    Science.gov (United States)

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  6. Design Evaluation of Thermal-hydraulic Test Facility for a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungmo; Kim, Byeong-Yeon; Ko, Yung Joo; Cho, Youngil; Kim, Jong-Man; Son, Seok-Kwon; Jo, Youngchul; Kang, Byeong Su; Jung, Minhwan; Eoh, Jaehyuk; Lee, Hyeong-Yeon; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the recent progress of overall design phase for the SELFA facility and deals with basic thermal-hydraulic design parameters and its design validation as well. For more reliable design of the safety-grade decay heat removal system (DHRS) in PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor), two kinds of sodium-to-air heat exchangers have been employed in the system as an ultimate heat sink. One is a natural draft sodium-to-air heat exchanger (AHX) with helically-coiled sodium tubes, and the other is a forced draft sodium-to-air heat exchanger (FHX) with finned tubes with a straight-type arranged. Since the FHX is normally operated in an active mode with a forced air draft conditions, its performance should be verified for any anticipated operating conditions. To validate the test section design, evaluations of both thermal-hydraulic and mechanical design have been carried out, and some new concepts or devices were newly employed to replicate the prototypic conditions as closely as possible.

  7. Database Design and Management in Engineering Optimization.

    Science.gov (United States)

    1988-02-01

    scientific and engineer- Q.- ’ method In the mid-19SOs along with modern digital com- ing applications. The paper highlights the difference puters, have made...is continuously tion software can call standard subroutines from the DBMS redefined in an application program, DDL must have j libary to define...operations. .. " type data usually encountered in engineering applications. GFDGT: Computes the number of digits needed to display " "’ A user

  8. Expert System Approach For Generating And Evaluating Engine Design Alternatives

    Science.gov (United States)

    Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.

    1989-03-01

    Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.

  9. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  10. Reverse engineering by design: using history to teach.

    Science.gov (United States)

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  11. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  12. ZZ-PBMR-400, OECD/NEA PBMR Coupled Neutronics/Thermal Hydraulics Transient Benchmark - The PBMR-400 Core Design

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2007-01-01

    Description of benchmark: This international benchmark, concerns Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transients based on the PBMR-400 MW design. The deterministic neutronics, thermal-hydraulics and transient analysis tools and methods available to design and analyse PBMRs lag, in many cases, behind the state of the art compared to other reactor technologies. This has motivated the testing of existing methods for HTGRs but also the development of more accurate and efficient tools to analyse the neutronics and thermal-hydraulic behaviour for the design and safety evaluations of the PBMR. In addition to the development of new methods, this includes defining appropriate benchmarks to verify and validate the new methods in computer codes. The scope of the benchmark is to establish well-defined problems, based on a common given set of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark exercise has the following objectives: - Establish a standard benchmark for coupled codes (neutronics/thermal-hydraulics) for PBMR design; - Code-to-code comparison using a common cross section library ; - Obtain a detailed understanding of the events and the processes; - Benefit from different approaches, understanding limitations and approximations. Major Design and Operating Characteristics of the PBMR (PBMR Characteristic and Value): Installed thermal capacity: 400 MW(t); Installed electric capacity: 165 MW(e); Load following capability: 100-40-100%; Availability: ≥ 95%; Core configuration: Vertical with fixed centre graphite reflector; Fuel: TRISO ceramic coated U-235 in graphite spheres; Primary coolant: Helium; Primary coolant pressure: 9 MPa; Moderator: Graphite; Core outlet temperature: 900 C.; Core inlet temperature: 500 C.; Cycle type: Direct; Number of circuits: 1; Cycle

  13. Concurrent engineering design and management knowledge capture

    Science.gov (United States)

    1990-01-01

    The topics are presented in viewgraph form and include the following: real-time management, personnel management, project management, conceptual design and decision making; the SITRF design problem; and the electronic-design notebook.

  14. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  15. Creating a Strong Foundation with Engineering Design Graphics.

    Science.gov (United States)

    Newcomer, Jeffrey L.; McKell, Eric K.; Raudebaugh, Robert A.; Kelley, David S.

    2001-01-01

    Describes the two-course engineering design graphics sequence on introductory design and graphics topics. The first course focuses on conceptual design and the development of visualization and sketching skills while the second one concentrates on detail design and parametric modeling. (Contains 28 references.) (Author/ASK)

  16. High School Student Information Access and Engineering Design Performance

    Science.gov (United States)

    Mentzer, Nathan

    2014-01-01

    Developing solutions to engineering design problems requires access to information. Research has shown that appropriately accessing and using information in the design process improves solution quality. This quasi-experimental study provides two groups of high school students with a design problem in a three hour design experience. One group has…

  17. Creating Learning Environment Connecting Engineering Design and 3D Printing

    Science.gov (United States)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  18. Parameter Design for the Energy Regeneration System of Series Hydraulic Hybrid Bus

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-02-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.

  19. Exploring the collaboration between industrial designers and engineering designers in a handover situation

    DEFF Research Database (Denmark)

    Laursen, Esben Skov

    This study focuses on handover situations between industrial designers and engineering designers in product development projects, on a ‘project level’. The handover situation creates a gap between the industrial designers and the engineering designers in the product development process which...

  20. Applying the design-build-test paradigm in microbiome engineering.

    Science.gov (United States)

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.